text
stringlengths
0
3.06M
meta
stringlengths
57
121
[GOAL] α : Type u r : α → α → Prop inst✝ : IsPartialOrder α r ⊢ ∃ s x, r ≤ s [PROOFSTEP] let S := {s | IsPartialOrder α s} [GOAL] α : Type u r : α → α → Prop inst✝ : IsPartialOrder α r S : Set (α → α → Prop) := {s | IsPartialOrder α s} ⊢ ∃ s x, r ≤ s [PROOFSTEP] have hS : ∀ c, c ⊆ S → IsChain (· ≤ ·) c → ∀ y ∈ c, ∃ ub ∈ S, ∀ z ∈ c, z ≤ ub := by rintro c hc₁ hc₂ s hs haveI := (hc₁ hs).1 refine' ⟨sSup c, _, fun z hz => le_sSup hz⟩ refine' { refl := _ trans := _ antisymm := _ } <;> simp_rw [binary_relation_sSup_iff] · intro x exact ⟨s, hs, refl x⟩ · rintro x y z ⟨s₁, h₁s₁, h₂s₁⟩ ⟨s₂, h₁s₂, h₂s₂⟩ haveI : IsPartialOrder _ _ := hc₁ h₁s₁ haveI : IsPartialOrder _ _ := hc₁ h₁s₂ cases' hc₂.total h₁s₁ h₁s₂ with h h · exact ⟨s₂, h₁s₂, _root_.trans (h _ _ h₂s₁) h₂s₂⟩ · exact ⟨s₁, h₁s₁, _root_.trans h₂s₁ (h _ _ h₂s₂)⟩ · rintro x y ⟨s₁, h₁s₁, h₂s₁⟩ ⟨s₂, h₁s₂, h₂s₂⟩ haveI : IsPartialOrder _ _ := hc₁ h₁s₁ haveI : IsPartialOrder _ _ := hc₁ h₁s₂ cases' hc₂.total h₁s₁ h₁s₂ with h h · exact antisymm (h _ _ h₂s₁) h₂s₂ · apply antisymm h₂s₁ (h _ _ h₂s₂) [GOAL] α : Type u r : α → α → Prop inst✝ : IsPartialOrder α r S : Set (α → α → Prop) := {s | IsPartialOrder α s} ⊢ ∀ (c : Set (α → α → Prop)), c ⊆ S → IsChain (fun x x_1 => x ≤ x_1) c → ∀ (y : α → α → Prop), y ∈ c → ∃ ub, ub ∈ S ∧ ∀ (z : α → α → Prop), z ∈ c → z ≤ ub [PROOFSTEP] rintro c hc₁ hc₂ s hs [GOAL] α : Type u r : α → α → Prop inst✝ : IsPartialOrder α r S : Set (α → α → Prop) := {s | IsPartialOrder α s} c : Set (α → α → Prop) hc₁ : c ⊆ S hc₂ : IsChain (fun x x_1 => x ≤ x_1) c s : α → α → Prop hs : s ∈ c ⊢ ∃ ub, ub ∈ S ∧ ∀ (z : α → α → Prop), z ∈ c → z ≤ ub [PROOFSTEP] haveI := (hc₁ hs).1 [GOAL] α : Type u r : α → α → Prop inst✝ : IsPartialOrder α r S : Set (α → α → Prop) := {s | IsPartialOrder α s} c : Set (α → α → Prop) hc₁ : c ⊆ S hc₂ : IsChain (fun x x_1 => x ≤ x_1) c s : α → α → Prop hs : s ∈ c this : IsPreorder α s ⊢ ∃ ub, ub ∈ S ∧ ∀ (z : α → α → Prop), z ∈ c → z ≤ ub [PROOFSTEP] refine' ⟨sSup c, _, fun z hz => le_sSup hz⟩ [GOAL] α : Type u r : α → α → Prop inst✝ : IsPartialOrder α r S : Set (α → α → Prop) := {s | IsPartialOrder α s} c : Set (α → α → Prop) hc₁ : c ⊆ S hc₂ : IsChain (fun x x_1 => x ≤ x_1) c s : α → α → Prop hs : s ∈ c this : IsPreorder α s ⊢ sSup c ∈ S [PROOFSTEP] refine' { refl := _ trans := _ antisymm := _ } [GOAL] case refine'_1 α : Type u r : α → α → Prop inst✝ : IsPartialOrder α r S : Set (α → α → Prop) := {s | IsPartialOrder α s} c : Set (α → α → Prop) hc₁ : c ⊆ S hc₂ : IsChain (fun x x_1 => x ≤ x_1) c s : α → α → Prop hs : s ∈ c this : IsPreorder α s ⊢ ∀ (a : α), sSup c a a [PROOFSTEP] simp_rw [binary_relation_sSup_iff] [GOAL] case refine'_2 α : Type u r : α → α → Prop inst✝ : IsPartialOrder α r S : Set (α → α → Prop) := {s | IsPartialOrder α s} c : Set (α → α → Prop) hc₁ : c ⊆ S hc₂ : IsChain (fun x x_1 => x ≤ x_1) c s : α → α → Prop hs : s ∈ c this : IsPreorder α s ⊢ ∀ (a b c_1 : α), sSup c a b → sSup c b c_1 → sSup c a c_1 [PROOFSTEP] simp_rw [binary_relation_sSup_iff] [GOAL] case refine'_3 α : Type u r : α → α → Prop inst✝ : IsPartialOrder α r S : Set (α → α → Prop) := {s | IsPartialOrder α s} c : Set (α → α → Prop) hc₁ : c ⊆ S hc₂ : IsChain (fun x x_1 => x ≤ x_1) c s : α → α → Prop hs : s ∈ c this : IsPreorder α s ⊢ ∀ (a b : α), sSup c a b → sSup c b a → a = b [PROOFSTEP] simp_rw [binary_relation_sSup_iff] [GOAL] case refine'_1 α : Type u r : α → α → Prop inst✝ : IsPartialOrder α r S : Set (α → α → Prop) := {s | IsPartialOrder α s} c : Set (α → α → Prop) hc₁ : c ⊆ S hc₂ : IsChain (fun x x_1 => x ≤ x_1) c s : α → α → Prop hs : s ∈ c this : IsPreorder α s ⊢ ∀ (a : α), ∃ r, r ∈ c ∧ r a a [PROOFSTEP] intro x [GOAL] case refine'_1 α : Type u r : α → α → Prop inst✝ : IsPartialOrder α r S : Set (α → α → Prop) := {s | IsPartialOrder α s} c : Set (α → α → Prop) hc₁ : c ⊆ S hc₂ : IsChain (fun x x_1 => x ≤ x_1) c s : α → α → Prop hs : s ∈ c this : IsPreorder α s x : α ⊢ ∃ r, r ∈ c ∧ r x x [PROOFSTEP] exact ⟨s, hs, refl x⟩ [GOAL] case refine'_2 α : Type u r : α → α → Prop inst✝ : IsPartialOrder α r S : Set (α → α → Prop) := {s | IsPartialOrder α s} c : Set (α → α → Prop) hc₁ : c ⊆ S hc₂ : IsChain (fun x x_1 => x ≤ x_1) c s : α → α → Prop hs : s ∈ c this : IsPreorder α s ⊢ ∀ (a b c_1 : α), (∃ r, r ∈ c ∧ r a b) → (∃ r, r ∈ c ∧ r b c_1) → ∃ r, r ∈ c ∧ r a c_1 [PROOFSTEP] rintro x y z ⟨s₁, h₁s₁, h₂s₁⟩ ⟨s₂, h₁s₂, h₂s₂⟩ [GOAL] case refine'_2.intro.intro.intro.intro α : Type u r : α → α → Prop inst✝ : IsPartialOrder α r S : Set (α → α → Prop) := {s | IsPartialOrder α s} c : Set (α → α → Prop) hc₁ : c ⊆ S hc₂ : IsChain (fun x x_1 => x ≤ x_1) c s : α → α → Prop hs : s ∈ c this : IsPreorder α s x y z : α s₁ : α → α → Prop h₁s₁ : s₁ ∈ c h₂s₁ : s₁ x y s₂ : α → α → Prop h₁s₂ : s₂ ∈ c h₂s₂ : s₂ y z ⊢ ∃ r, r ∈ c ∧ r x z [PROOFSTEP] haveI : IsPartialOrder _ _ := hc₁ h₁s₁ [GOAL] case refine'_2.intro.intro.intro.intro α : Type u r : α → α → Prop inst✝ : IsPartialOrder α r S : Set (α → α → Prop) := {s | IsPartialOrder α s} c : Set (α → α → Prop) hc₁ : c ⊆ S hc₂ : IsChain (fun x x_1 => x ≤ x_1) c s : α → α → Prop hs : s ∈ c this✝ : IsPreorder α s x y z : α s₁ : α → α → Prop h₁s₁ : s₁ ∈ c h₂s₁ : s₁ x y s₂ : α → α → Prop h₁s₂ : s₂ ∈ c h₂s₂ : s₂ y z this : IsPartialOrder α s₁ ⊢ ∃ r, r ∈ c ∧ r x z [PROOFSTEP] haveI : IsPartialOrder _ _ := hc₁ h₁s₂ [GOAL] case refine'_2.intro.intro.intro.intro α : Type u r : α → α → Prop inst✝ : IsPartialOrder α r S : Set (α → α → Prop) := {s | IsPartialOrder α s} c : Set (α → α → Prop) hc₁ : c ⊆ S hc₂ : IsChain (fun x x_1 => x ≤ x_1) c s : α → α → Prop hs : s ∈ c this✝¹ : IsPreorder α s x y z : α s₁ : α → α → Prop h₁s₁ : s₁ ∈ c h₂s₁ : s₁ x y s₂ : α → α → Prop h₁s₂ : s₂ ∈ c h₂s₂ : s₂ y z this✝ : IsPartialOrder α s₁ this : IsPartialOrder α s₂ ⊢ ∃ r, r ∈ c ∧ r x z [PROOFSTEP] cases' hc₂.total h₁s₁ h₁s₂ with h h [GOAL] case refine'_2.intro.intro.intro.intro.inl α : Type u r : α → α → Prop inst✝ : IsPartialOrder α r S : Set (α → α → Prop) := {s | IsPartialOrder α s} c : Set (α → α → Prop) hc₁ : c ⊆ S hc₂ : IsChain (fun x x_1 => x ≤ x_1) c s : α → α → Prop hs : s ∈ c this✝¹ : IsPreorder α s x y z : α s₁ : α → α → Prop h₁s₁ : s₁ ∈ c h₂s₁ : s₁ x y s₂ : α → α → Prop h₁s₂ : s₂ ∈ c h₂s₂ : s₂ y z this✝ : IsPartialOrder α s₁ this : IsPartialOrder α s₂ h : s₁ ≤ s₂ ⊢ ∃ r, r ∈ c ∧ r x z [PROOFSTEP] exact ⟨s₂, h₁s₂, _root_.trans (h _ _ h₂s₁) h₂s₂⟩ [GOAL] case refine'_2.intro.intro.intro.intro.inr α : Type u r : α → α → Prop inst✝ : IsPartialOrder α r S : Set (α → α → Prop) := {s | IsPartialOrder α s} c : Set (α → α → Prop) hc₁ : c ⊆ S hc₂ : IsChain (fun x x_1 => x ≤ x_1) c s : α → α → Prop hs : s ∈ c this✝¹ : IsPreorder α s x y z : α s₁ : α → α → Prop h₁s₁ : s₁ ∈ c h₂s₁ : s₁ x y s₂ : α → α → Prop h₁s₂ : s₂ ∈ c h₂s₂ : s₂ y z this✝ : IsPartialOrder α s₁ this : IsPartialOrder α s₂ h : s₂ ≤ s₁ ⊢ ∃ r, r ∈ c ∧ r x z [PROOFSTEP] exact ⟨s₁, h₁s₁, _root_.trans h₂s₁ (h _ _ h₂s₂)⟩ [GOAL] case refine'_3 α : Type u r : α → α → Prop inst✝ : IsPartialOrder α r S : Set (α → α → Prop) := {s | IsPartialOrder α s} c : Set (α → α → Prop) hc₁ : c ⊆ S hc₂ : IsChain (fun x x_1 => x ≤ x_1) c s : α → α → Prop hs : s ∈ c this : IsPreorder α s ⊢ ∀ (a b : α), (∃ r, r ∈ c ∧ r a b) → (∃ r, r ∈ c ∧ r b a) → a = b [PROOFSTEP] rintro x y ⟨s₁, h₁s₁, h₂s₁⟩ ⟨s₂, h₁s₂, h₂s₂⟩ [GOAL] case refine'_3.intro.intro.intro.intro α : Type u r : α → α → Prop inst✝ : IsPartialOrder α r S : Set (α → α → Prop) := {s | IsPartialOrder α s} c : Set (α → α → Prop) hc₁ : c ⊆ S hc₂ : IsChain (fun x x_1 => x ≤ x_1) c s : α → α → Prop hs : s ∈ c this : IsPreorder α s x y : α s₁ : α → α → Prop h₁s₁ : s₁ ∈ c h₂s₁ : s₁ x y s₂ : α → α → Prop h₁s₂ : s₂ ∈ c h₂s₂ : s₂ y x ⊢ x = y [PROOFSTEP] haveI : IsPartialOrder _ _ := hc₁ h₁s₁ [GOAL] case refine'_3.intro.intro.intro.intro α : Type u r : α → α → Prop inst✝ : IsPartialOrder α r S : Set (α → α → Prop) := {s | IsPartialOrder α s} c : Set (α → α → Prop) hc₁ : c ⊆ S hc₂ : IsChain (fun x x_1 => x ≤ x_1) c s : α → α → Prop hs : s ∈ c this✝ : IsPreorder α s x y : α s₁ : α → α → Prop h₁s₁ : s₁ ∈ c h₂s₁ : s₁ x y s₂ : α → α → Prop h₁s₂ : s₂ ∈ c h₂s₂ : s₂ y x this : IsPartialOrder α s₁ ⊢ x = y [PROOFSTEP] haveI : IsPartialOrder _ _ := hc₁ h₁s₂ [GOAL] case refine'_3.intro.intro.intro.intro α : Type u r : α → α → Prop inst✝ : IsPartialOrder α r S : Set (α → α → Prop) := {s | IsPartialOrder α s} c : Set (α → α → Prop) hc₁ : c ⊆ S hc₂ : IsChain (fun x x_1 => x ≤ x_1) c s : α → α → Prop hs : s ∈ c this✝¹ : IsPreorder α s x y : α s₁ : α → α → Prop h₁s₁ : s₁ ∈ c h₂s₁ : s₁ x y s₂ : α → α → Prop h₁s₂ : s₂ ∈ c h₂s₂ : s₂ y x this✝ : IsPartialOrder α s₁ this : IsPartialOrder α s₂ ⊢ x = y [PROOFSTEP] cases' hc₂.total h₁s₁ h₁s₂ with h h [GOAL] case refine'_3.intro.intro.intro.intro.inl α : Type u r : α → α → Prop inst✝ : IsPartialOrder α r S : Set (α → α → Prop) := {s | IsPartialOrder α s} c : Set (α → α → Prop) hc₁ : c ⊆ S hc₂ : IsChain (fun x x_1 => x ≤ x_1) c s : α → α → Prop hs : s ∈ c this✝¹ : IsPreorder α s x y : α s₁ : α → α → Prop h₁s₁ : s₁ ∈ c h₂s₁ : s₁ x y s₂ : α → α → Prop h₁s₂ : s₂ ∈ c h₂s₂ : s₂ y x this✝ : IsPartialOrder α s₁ this : IsPartialOrder α s₂ h : s₁ ≤ s₂ ⊢ x = y [PROOFSTEP] exact antisymm (h _ _ h₂s₁) h₂s₂ [GOAL] case refine'_3.intro.intro.intro.intro.inr α : Type u r : α → α → Prop inst✝ : IsPartialOrder α r S : Set (α → α → Prop) := {s | IsPartialOrder α s} c : Set (α → α → Prop) hc₁ : c ⊆ S hc₂ : IsChain (fun x x_1 => x ≤ x_1) c s : α → α → Prop hs : s ∈ c this✝¹ : IsPreorder α s x y : α s₁ : α → α → Prop h₁s₁ : s₁ ∈ c h₂s₁ : s₁ x y s₂ : α → α → Prop h₁s₂ : s₂ ∈ c h₂s₂ : s₂ y x this✝ : IsPartialOrder α s₁ this : IsPartialOrder α s₂ h : s₂ ≤ s₁ ⊢ x = y [PROOFSTEP] apply antisymm h₂s₁ (h _ _ h₂s₂) [GOAL] α : Type u r : α → α → Prop inst✝ : IsPartialOrder α r S : Set (α → α → Prop) := {s | IsPartialOrder α s} hS : ∀ (c : Set (α → α → Prop)), c ⊆ S → IsChain (fun x x_1 => x ≤ x_1) c → ∀ (y : α → α → Prop), y ∈ c → ∃ ub, ub ∈ S ∧ ∀ (z : α → α → Prop), z ∈ c → z ≤ ub ⊢ ∃ s x, r ≤ s [PROOFSTEP] obtain ⟨s, hs₁ : IsPartialOrder _ _, rs, hs₂⟩ := zorn_nonempty_partialOrder₀ S hS r ‹_› [GOAL] case intro.intro.intro α : Type u r : α → α → Prop inst✝ : IsPartialOrder α r S : Set (α → α → Prop) := {s | IsPartialOrder α s} hS : ∀ (c : Set (α → α → Prop)), c ⊆ S → IsChain (fun x x_1 => x ≤ x_1) c → ∀ (y : α → α → Prop), y ∈ c → ∃ ub, ub ∈ S ∧ ∀ (z : α → α → Prop), z ∈ c → z ≤ ub s : α → α → Prop hs₁ : IsPartialOrder α s rs : r ≤ s hs₂ : ∀ (z : α → α → Prop), z ∈ S → s ≤ z → z = s ⊢ ∃ s x, r ≤ s [PROOFSTEP] haveI : IsPartialOrder α s := hs₁ [GOAL] case intro.intro.intro α : Type u r : α → α → Prop inst✝ : IsPartialOrder α r S : Set (α → α → Prop) := {s | IsPartialOrder α s} hS : ∀ (c : Set (α → α → Prop)), c ⊆ S → IsChain (fun x x_1 => x ≤ x_1) c → ∀ (y : α → α → Prop), y ∈ c → ∃ ub, ub ∈ S ∧ ∀ (z : α → α → Prop), z ∈ c → z ≤ ub s : α → α → Prop hs₁ : IsPartialOrder α s rs : r ≤ s hs₂ : ∀ (z : α → α → Prop), z ∈ S → s ≤ z → z = s this : IsPartialOrder α s ⊢ ∃ s x, r ≤ s [PROOFSTEP] refine ⟨s, { total := ?_, refl := hs₁.refl, trans := hs₁.trans, antisymm := hs₁.antisymm }, rs⟩ [GOAL] case intro.intro.intro α : Type u r : α → α → Prop inst✝ : IsPartialOrder α r S : Set (α → α → Prop) := {s | IsPartialOrder α s} hS : ∀ (c : Set (α → α → Prop)), c ⊆ S → IsChain (fun x x_1 => x ≤ x_1) c → ∀ (y : α → α → Prop), y ∈ c → ∃ ub, ub ∈ S ∧ ∀ (z : α → α → Prop), z ∈ c → z ≤ ub s : α → α → Prop hs₁ : IsPartialOrder α s rs : r ≤ s hs₂ : ∀ (z : α → α → Prop), z ∈ S → s ≤ z → z = s this : IsPartialOrder α s ⊢ ∀ (a b : α), s a b ∨ s b a [PROOFSTEP] intro x y [GOAL] case intro.intro.intro α : Type u r : α → α → Prop inst✝ : IsPartialOrder α r S : Set (α → α → Prop) := {s | IsPartialOrder α s} hS : ∀ (c : Set (α → α → Prop)), c ⊆ S → IsChain (fun x x_1 => x ≤ x_1) c → ∀ (y : α → α → Prop), y ∈ c → ∃ ub, ub ∈ S ∧ ∀ (z : α → α → Prop), z ∈ c → z ≤ ub s : α → α → Prop hs₁ : IsPartialOrder α s rs : r ≤ s hs₂ : ∀ (z : α → α → Prop), z ∈ S → s ≤ z → z = s this : IsPartialOrder α s x y : α ⊢ s x y ∨ s y x [PROOFSTEP] by_contra' h [GOAL] case intro.intro.intro α : Type u r : α → α → Prop inst✝ : IsPartialOrder α r S : Set (α → α → Prop) := {s | IsPartialOrder α s} hS : ∀ (c : Set (α → α → Prop)), c ⊆ S → IsChain (fun x x_1 => x ≤ x_1) c → ∀ (y : α → α → Prop), y ∈ c → ∃ ub, ub ∈ S ∧ ∀ (z : α → α → Prop), z ∈ c → z ≤ ub s : α → α → Prop hs₁ : IsPartialOrder α s rs : r ≤ s hs₂ : ∀ (z : α → α → Prop), z ∈ S → s ≤ z → z = s this : IsPartialOrder α s x y : α h : ¬s x y ∧ ¬s y x ⊢ False [PROOFSTEP] let s' x' y' := s x' y' ∨ s x' x ∧ s y y' [GOAL] case intro.intro.intro α : Type u r : α → α → Prop inst✝ : IsPartialOrder α r S : Set (α → α → Prop) := {s | IsPartialOrder α s} hS : ∀ (c : Set (α → α → Prop)), c ⊆ S → IsChain (fun x x_1 => x ≤ x_1) c → ∀ (y : α → α → Prop), y ∈ c → ∃ ub, ub ∈ S ∧ ∀ (z : α → α → Prop), z ∈ c → z ≤ ub s : α → α → Prop hs₁ : IsPartialOrder α s rs : r ≤ s hs₂ : ∀ (z : α → α → Prop), z ∈ S → s ≤ z → z = s this : IsPartialOrder α s x y : α h : ¬s x y ∧ ¬s y x s' : α → α → Prop := fun x' y' => s x' y' ∨ s x' x ∧ s y y' ⊢ False [PROOFSTEP] rw [← hs₂ s' _ fun _ _ ↦ Or.inl] at h [GOAL] case intro.intro.intro α : Type u r : α → α → Prop inst✝ : IsPartialOrder α r S : Set (α → α → Prop) := {s | IsPartialOrder α s} hS : ∀ (c : Set (α → α → Prop)), c ⊆ S → IsChain (fun x x_1 => x ≤ x_1) c → ∀ (y : α → α → Prop), y ∈ c → ∃ ub, ub ∈ S ∧ ∀ (z : α → α → Prop), z ∈ c → z ≤ ub s : α → α → Prop hs₁ : IsPartialOrder α s rs : r ≤ s hs₂ : ∀ (z : α → α → Prop), z ∈ S → s ≤ z → z = s this : IsPartialOrder α s x y : α s' : α → α → Prop := fun x' y' => s x' y' ∨ s x' x ∧ s y y' h : ¬s' x y ∧ ¬s' y x ⊢ False [PROOFSTEP] apply h.1 (Or.inr ⟨refl _, refl _⟩) [GOAL] α : Type u r : α → α → Prop inst✝ : IsPartialOrder α r S : Set (α → α → Prop) := {s | IsPartialOrder α s} hS : ∀ (c : Set (α → α → Prop)), c ⊆ S → IsChain (fun x x_1 => x ≤ x_1) c → ∀ (y : α → α → Prop), y ∈ c → ∃ ub, ub ∈ S ∧ ∀ (z : α → α → Prop), z ∈ c → z ≤ ub s : α → α → Prop hs₁ : IsPartialOrder α s rs : r ≤ s hs₂ : ∀ (z : α → α → Prop), z ∈ S → s ≤ z → z = s this : IsPartialOrder α s x y : α h : ¬s x y ∧ ¬s y x s' : α → α → Prop := fun x' y' => s x' y' ∨ s x' x ∧ s y y' ⊢ s' ∈ S [PROOFSTEP] refine' { refl := fun x ↦ Or.inl (refl _) trans := _ antisymm := _ } [GOAL] case refine'_1 α : Type u r : α → α → Prop inst✝ : IsPartialOrder α r S : Set (α → α → Prop) := {s | IsPartialOrder α s} hS : ∀ (c : Set (α → α → Prop)), c ⊆ S → IsChain (fun x x_1 => x ≤ x_1) c → ∀ (y : α → α → Prop), y ∈ c → ∃ ub, ub ∈ S ∧ ∀ (z : α → α → Prop), z ∈ c → z ≤ ub s : α → α → Prop hs₁ : IsPartialOrder α s rs : r ≤ s hs₂ : ∀ (z : α → α → Prop), z ∈ S → s ≤ z → z = s this : IsPartialOrder α s x y : α h : ¬s x y ∧ ¬s y x s' : α → α → Prop := fun x' y' => s x' y' ∨ s x' x ∧ s y y' ⊢ ∀ (a b c : α), s' a b → s' b c → s' a c case refine'_2 α : Type u r : α → α → Prop inst✝ : IsPartialOrder α r S : Set (α → α → Prop) := {s | IsPartialOrder α s} hS : ∀ (c : Set (α → α → Prop)), c ⊆ S → IsChain (fun x x_1 => x ≤ x_1) c → ∀ (y : α → α → Prop), y ∈ c → ∃ ub, ub ∈ S ∧ ∀ (z : α → α → Prop), z ∈ c → z ≤ ub s : α → α → Prop hs₁ : IsPartialOrder α s rs : r ≤ s hs₂ : ∀ (z : α → α → Prop), z ∈ S → s ≤ z → z = s this : IsPartialOrder α s x y : α h : ¬s x y ∧ ¬s y x s' : α → α → Prop := fun x' y' => s x' y' ∨ s x' x ∧ s y y' ⊢ ∀ (a b : α), s' a b → s' b a → a = b [PROOFSTEP] rintro a b c (ab | ⟨ax : s a x, yb : s y b⟩) (bc | ⟨bx : s b x, yc : s y c⟩) [GOAL] case refine'_1.inl.inl α : Type u r : α → α → Prop inst✝ : IsPartialOrder α r S : Set (α → α → Prop) := {s | IsPartialOrder α s} hS : ∀ (c : Set (α → α → Prop)), c ⊆ S → IsChain (fun x x_1 => x ≤ x_1) c → ∀ (y : α → α → Prop), y ∈ c → ∃ ub, ub ∈ S ∧ ∀ (z : α → α → Prop), z ∈ c → z ≤ ub s : α → α → Prop hs₁ : IsPartialOrder α s rs : r ≤ s hs₂ : ∀ (z : α → α → Prop), z ∈ S → s ≤ z → z = s this : IsPartialOrder α s x y : α h : ¬s x y ∧ ¬s y x s' : α → α → Prop := fun x' y' => s x' y' ∨ s x' x ∧ s y y' a b c : α ab : s a b bc : s b c ⊢ s' a c [PROOFSTEP] exact Or.inl (_root_.trans ab bc) [GOAL] case refine'_1.inl.inr.intro α : Type u r : α → α → Prop inst✝ : IsPartialOrder α r S : Set (α → α → Prop) := {s | IsPartialOrder α s} hS : ∀ (c : Set (α → α → Prop)), c ⊆ S → IsChain (fun x x_1 => x ≤ x_1) c → ∀ (y : α → α → Prop), y ∈ c → ∃ ub, ub ∈ S ∧ ∀ (z : α → α → Prop), z ∈ c → z ≤ ub s : α → α → Prop hs₁ : IsPartialOrder α s rs : r ≤ s hs₂ : ∀ (z : α → α → Prop), z ∈ S → s ≤ z → z = s this : IsPartialOrder α s x y : α h : ¬s x y ∧ ¬s y x s' : α → α → Prop := fun x' y' => s x' y' ∨ s x' x ∧ s y y' a b c : α ab : s a b bx : s b x yc : s y c ⊢ s' a c [PROOFSTEP] exact Or.inr ⟨_root_.trans ab bx, yc⟩ [GOAL] case refine'_1.inr.intro.inl α : Type u r : α → α → Prop inst✝ : IsPartialOrder α r S : Set (α → α → Prop) := {s | IsPartialOrder α s} hS : ∀ (c : Set (α → α → Prop)), c ⊆ S → IsChain (fun x x_1 => x ≤ x_1) c → ∀ (y : α → α → Prop), y ∈ c → ∃ ub, ub ∈ S ∧ ∀ (z : α → α → Prop), z ∈ c → z ≤ ub s : α → α → Prop hs₁ : IsPartialOrder α s rs : r ≤ s hs₂ : ∀ (z : α → α → Prop), z ∈ S → s ≤ z → z = s this : IsPartialOrder α s x y : α h : ¬s x y ∧ ¬s y x s' : α → α → Prop := fun x' y' => s x' y' ∨ s x' x ∧ s y y' a b c : α ax : s a x yb : s y b bc : s b c ⊢ s' a c [PROOFSTEP] exact Or.inr ⟨ax, _root_.trans yb bc⟩ [GOAL] case refine'_1.inr.intro.inr.intro α : Type u r : α → α → Prop inst✝ : IsPartialOrder α r S : Set (α → α → Prop) := {s | IsPartialOrder α s} hS : ∀ (c : Set (α → α → Prop)), c ⊆ S → IsChain (fun x x_1 => x ≤ x_1) c → ∀ (y : α → α → Prop), y ∈ c → ∃ ub, ub ∈ S ∧ ∀ (z : α → α → Prop), z ∈ c → z ≤ ub s : α → α → Prop hs₁ : IsPartialOrder α s rs : r ≤ s hs₂ : ∀ (z : α → α → Prop), z ∈ S → s ≤ z → z = s this : IsPartialOrder α s x y : α h : ¬s x y ∧ ¬s y x s' : α → α → Prop := fun x' y' => s x' y' ∨ s x' x ∧ s y y' a b c : α ax : s a x yb : s y b bx : s b x yc : s y c ⊢ s' a c [PROOFSTEP] exact Or.inr ⟨ax, yc⟩ [GOAL] case refine'_2 α : Type u r : α → α → Prop inst✝ : IsPartialOrder α r S : Set (α → α → Prop) := {s | IsPartialOrder α s} hS : ∀ (c : Set (α → α → Prop)), c ⊆ S → IsChain (fun x x_1 => x ≤ x_1) c → ∀ (y : α → α → Prop), y ∈ c → ∃ ub, ub ∈ S ∧ ∀ (z : α → α → Prop), z ∈ c → z ≤ ub s : α → α → Prop hs₁ : IsPartialOrder α s rs : r ≤ s hs₂ : ∀ (z : α → α → Prop), z ∈ S → s ≤ z → z = s this : IsPartialOrder α s x y : α h : ¬s x y ∧ ¬s y x s' : α → α → Prop := fun x' y' => s x' y' ∨ s x' x ∧ s y y' ⊢ ∀ (a b : α), s' a b → s' b a → a = b [PROOFSTEP] rintro a b (ab | ⟨ax : s a x, yb : s y b⟩) (ba | ⟨bx : s b x, ya : s y a⟩) [GOAL] case refine'_2.inl.inl α : Type u r : α → α → Prop inst✝ : IsPartialOrder α r S : Set (α → α → Prop) := {s | IsPartialOrder α s} hS : ∀ (c : Set (α → α → Prop)), c ⊆ S → IsChain (fun x x_1 => x ≤ x_1) c → ∀ (y : α → α → Prop), y ∈ c → ∃ ub, ub ∈ S ∧ ∀ (z : α → α → Prop), z ∈ c → z ≤ ub s : α → α → Prop hs₁ : IsPartialOrder α s rs : r ≤ s hs₂ : ∀ (z : α → α → Prop), z ∈ S → s ≤ z → z = s this : IsPartialOrder α s x y : α h : ¬s x y ∧ ¬s y x s' : α → α → Prop := fun x' y' => s x' y' ∨ s x' x ∧ s y y' a b : α ab : s a b ba : s b a ⊢ a = b [PROOFSTEP] exact antisymm ab ba [GOAL] case refine'_2.inl.inr.intro α : Type u r : α → α → Prop inst✝ : IsPartialOrder α r S : Set (α → α → Prop) := {s | IsPartialOrder α s} hS : ∀ (c : Set (α → α → Prop)), c ⊆ S → IsChain (fun x x_1 => x ≤ x_1) c → ∀ (y : α → α → Prop), y ∈ c → ∃ ub, ub ∈ S ∧ ∀ (z : α → α → Prop), z ∈ c → z ≤ ub s : α → α → Prop hs₁ : IsPartialOrder α s rs : r ≤ s hs₂ : ∀ (z : α → α → Prop), z ∈ S → s ≤ z → z = s this : IsPartialOrder α s x y : α h : ¬s x y ∧ ¬s y x s' : α → α → Prop := fun x' y' => s x' y' ∨ s x' x ∧ s y y' a b : α ab : s a b bx : s b x ya : s y a ⊢ a = b [PROOFSTEP] exact (h.2 (_root_.trans ya (_root_.trans ab bx))).elim [GOAL] case refine'_2.inr.intro.inl α : Type u r : α → α → Prop inst✝ : IsPartialOrder α r S : Set (α → α → Prop) := {s | IsPartialOrder α s} hS : ∀ (c : Set (α → α → Prop)), c ⊆ S → IsChain (fun x x_1 => x ≤ x_1) c → ∀ (y : α → α → Prop), y ∈ c → ∃ ub, ub ∈ S ∧ ∀ (z : α → α → Prop), z ∈ c → z ≤ ub s : α → α → Prop hs₁ : IsPartialOrder α s rs : r ≤ s hs₂ : ∀ (z : α → α → Prop), z ∈ S → s ≤ z → z = s this : IsPartialOrder α s x y : α h : ¬s x y ∧ ¬s y x s' : α → α → Prop := fun x' y' => s x' y' ∨ s x' x ∧ s y y' a b : α ax : s a x yb : s y b ba : s b a ⊢ a = b [PROOFSTEP] exact (h.2 (_root_.trans yb (_root_.trans ba ax))).elim [GOAL] case refine'_2.inr.intro.inr.intro α : Type u r : α → α → Prop inst✝ : IsPartialOrder α r S : Set (α → α → Prop) := {s | IsPartialOrder α s} hS : ∀ (c : Set (α → α → Prop)), c ⊆ S → IsChain (fun x x_1 => x ≤ x_1) c → ∀ (y : α → α → Prop), y ∈ c → ∃ ub, ub ∈ S ∧ ∀ (z : α → α → Prop), z ∈ c → z ≤ ub s : α → α → Prop hs₁ : IsPartialOrder α s rs : r ≤ s hs₂ : ∀ (z : α → α → Prop), z ∈ S → s ≤ z → z = s this : IsPartialOrder α s x y : α h : ¬s x y ∧ ¬s y x s' : α → α → Prop := fun x' y' => s x' y' ∨ s x' x ∧ s y y' a b : α ax : s a x yb : s y b bx : s b x ya : s y a ⊢ a = b [PROOFSTEP] exact (h.2 (_root_.trans yb bx)).elim
{"mathlib_filename": "Mathlib.Order.Extension.Linear", "llama_tokens": 11070}
[GOAL] α β : BddDistLatCat e : ↑α.toDistLatCat ≃o ↑β.toDistLatCat ⊢ ((let src := { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toDistLatCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α.toDistLatCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }; { toLatticeHom := { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toDistLatCat), SupHom.toFun { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toDistLatCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α.toDistLatCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom (a ⊔ b) = SupHom.toFun { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toDistLatCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α.toDistLatCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom a ⊔ SupHom.toFun { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toDistLatCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α.toDistLatCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom b) }, map_inf' := (_ : ∀ (a b : ↑α.toDistLatCat), SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) }, map_top' := (_ : ↑e ⊤ = ⊤), map_bot' := (_ : ↑e ⊥ = ⊥) }) ≫ let src := { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toDistLatCat), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β.toDistLatCat), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }; { toLatticeHom := { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toDistLatCat), SupHom.toFun { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toDistLatCat), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β.toDistLatCat), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom (a ⊔ b) = SupHom.toFun { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toDistLatCat), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β.toDistLatCat), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom a ⊔ SupHom.toFun { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toDistLatCat), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β.toDistLatCat), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom b) }, map_inf' := (_ : ∀ (a b : ↑β.toDistLatCat), SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) }, map_top' := (_ : ↑(OrderIso.symm e) ⊤ = ⊤), map_bot' := (_ : ↑(OrderIso.symm e) ⊥ = ⊥) }) = 𝟙 α [PROOFSTEP] ext [GOAL] case w α β : BddDistLatCat e : ↑α.toDistLatCat ≃o ↑β.toDistLatCat x✝ : (forget BddDistLatCat).obj α ⊢ ↑((let src := { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toDistLatCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α.toDistLatCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }; { toLatticeHom := { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toDistLatCat), SupHom.toFun { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toDistLatCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α.toDistLatCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom (a ⊔ b) = SupHom.toFun { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toDistLatCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α.toDistLatCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom a ⊔ SupHom.toFun { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toDistLatCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α.toDistLatCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom b) }, map_inf' := (_ : ∀ (a b : ↑α.toDistLatCat), SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) }, map_top' := (_ : ↑e ⊤ = ⊤), map_bot' := (_ : ↑e ⊥ = ⊥) }) ≫ let src := { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toDistLatCat), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β.toDistLatCat), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }; { toLatticeHom := { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toDistLatCat), SupHom.toFun { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toDistLatCat), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β.toDistLatCat), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom (a ⊔ b) = SupHom.toFun { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toDistLatCat), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β.toDistLatCat), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom a ⊔ SupHom.toFun { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toDistLatCat), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β.toDistLatCat), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom b) }, map_inf' := (_ : ∀ (a b : ↑β.toDistLatCat), SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) }, map_top' := (_ : ↑(OrderIso.symm e) ⊤ = ⊤), map_bot' := (_ : ↑(OrderIso.symm e) ⊥ = ⊥) }) x✝ = ↑(𝟙 α) x✝ [PROOFSTEP] exact e.symm_apply_apply _ [GOAL] α β : BddDistLatCat e : ↑α.toDistLatCat ≃o ↑β.toDistLatCat ⊢ ((let src := { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toDistLatCat), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β.toDistLatCat), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }; { toLatticeHom := { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toDistLatCat), SupHom.toFun { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toDistLatCat), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β.toDistLatCat), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom (a ⊔ b) = SupHom.toFun { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toDistLatCat), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β.toDistLatCat), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom a ⊔ SupHom.toFun { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toDistLatCat), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β.toDistLatCat), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom b) }, map_inf' := (_ : ∀ (a b : ↑β.toDistLatCat), SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) }, map_top' := (_ : ↑(OrderIso.symm e) ⊤ = ⊤), map_bot' := (_ : ↑(OrderIso.symm e) ⊥ = ⊥) }) ≫ let src := { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toDistLatCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α.toDistLatCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }; { toLatticeHom := { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toDistLatCat), SupHom.toFun { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toDistLatCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α.toDistLatCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom (a ⊔ b) = SupHom.toFun { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toDistLatCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α.toDistLatCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom a ⊔ SupHom.toFun { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toDistLatCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α.toDistLatCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom b) }, map_inf' := (_ : ∀ (a b : ↑α.toDistLatCat), SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) }, map_top' := (_ : ↑e ⊤ = ⊤), map_bot' := (_ : ↑e ⊥ = ⊥) }) = 𝟙 β [PROOFSTEP] ext [GOAL] case w α β : BddDistLatCat e : ↑α.toDistLatCat ≃o ↑β.toDistLatCat x✝ : (forget BddDistLatCat).obj β ⊢ ↑((let src := { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toDistLatCat), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β.toDistLatCat), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }; { toLatticeHom := { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toDistLatCat), SupHom.toFun { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toDistLatCat), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β.toDistLatCat), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom (a ⊔ b) = SupHom.toFun { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toDistLatCat), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β.toDistLatCat), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom a ⊔ SupHom.toFun { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toDistLatCat), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β.toDistLatCat), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom b) }, map_inf' := (_ : ∀ (a b : ↑β.toDistLatCat), SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) }, map_top' := (_ : ↑(OrderIso.symm e) ⊤ = ⊤), map_bot' := (_ : ↑(OrderIso.symm e) ⊥ = ⊥) }) ≫ let src := { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toDistLatCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α.toDistLatCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }; { toLatticeHom := { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toDistLatCat), SupHom.toFun { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toDistLatCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α.toDistLatCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom (a ⊔ b) = SupHom.toFun { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toDistLatCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α.toDistLatCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom a ⊔ SupHom.toFun { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toDistLatCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α.toDistLatCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom b) }, map_inf' := (_ : ∀ (a b : ↑α.toDistLatCat), SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) }, map_top' := (_ : ↑e ⊤ = ⊤), map_bot' := (_ : ↑e ⊥ = ⊥) }) x✝ = ↑(𝟙 β) x✝ [PROOFSTEP] exact e.apply_symm_apply _
{"mathlib_filename": "Mathlib.Order.Category.BddDistLatCat", "llama_tokens": 7581}
[GOAL] α β : NonemptyFinLinOrdCat e : ↑α ≃o ↑β ⊢ ↑e ≫ ↑(OrderIso.symm e) = 𝟙 α [PROOFSTEP] ext x [GOAL] case w α β : NonemptyFinLinOrdCat e : ↑α ≃o ↑β x : (forget NonemptyFinLinOrdCat).obj α ⊢ ↑(↑e ≫ ↑(OrderIso.symm e)) x = ↑(𝟙 α) x [PROOFSTEP] exact e.symm_apply_apply x [GOAL] α β : NonemptyFinLinOrdCat e : ↑α ≃o ↑β ⊢ ↑(OrderIso.symm e) ≫ ↑e = 𝟙 β [PROOFSTEP] ext x [GOAL] case w α β : NonemptyFinLinOrdCat e : ↑α ≃o ↑β x : (forget NonemptyFinLinOrdCat).obj β ⊢ ↑(↑(OrderIso.symm e) ≫ ↑e) x = ↑(𝟙 β) x [PROOFSTEP] exact e.apply_symm_apply x [GOAL] A B : NonemptyFinLinOrdCat x✝¹ x✝ : A ⟶ B h : (fun f => ↑(let_fun this := f; this)) x✝¹ = (fun f => ↑(let_fun this := f; this)) x✝ ⊢ x✝¹ = x✝ [PROOFSTEP] ext x [GOAL] case w A B : NonemptyFinLinOrdCat x✝¹ x✝ : A ⟶ B h : (fun f => ↑(let_fun this := f; this)) x✝¹ = (fun f => ↑(let_fun this := f; this)) x✝ x : (forget NonemptyFinLinOrdCat).obj A ⊢ ↑x✝¹ x = ↑x✝ x [PROOFSTEP] exact congr_fun h x [GOAL] A B : NonemptyFinLinOrdCat f : A ⟶ B ⊢ Mono f ↔ Function.Injective ↑f [PROOFSTEP] refine' ⟨_, ConcreteCategory.mono_of_injective f⟩ [GOAL] A B : NonemptyFinLinOrdCat f : A ⟶ B ⊢ Mono f → Function.Injective ↑f [PROOFSTEP] intro [GOAL] A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Mono f ⊢ Function.Injective ↑f [PROOFSTEP] intro a₁ a₂ h [GOAL] A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Mono f a₁ a₂ : ↑A h : ↑f a₁ = ↑f a₂ ⊢ a₁ = a₂ [PROOFSTEP] let X := NonemptyFinLinOrdCat.of (ULift (Fin 1)) [GOAL] A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Mono f a₁ a₂ : ↑A h : ↑f a₁ = ↑f a₂ X : NonemptyFinLinOrdCat := of (ULift (Fin 1)) ⊢ a₁ = a₂ [PROOFSTEP] let g₁ : X ⟶ A := ⟨fun _ => a₁, fun _ _ _ => by rfl⟩ [GOAL] A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Mono f a₁ a₂ : ↑A h : ↑f a₁ = ↑f a₂ X : NonemptyFinLinOrdCat := of (ULift (Fin 1)) x✝² x✝¹ : ↑X x✝ : x✝² ≤ x✝¹ ⊢ (fun x => a₁) x✝² ≤ (fun x => a₁) x✝¹ [PROOFSTEP] rfl [GOAL] A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Mono f a₁ a₂ : ↑A h : ↑f a₁ = ↑f a₂ X : NonemptyFinLinOrdCat := of (ULift (Fin 1)) g₁ : X ⟶ A := { toFun := fun x => a₁, monotone' := (_ : ∀ (x x_1 : ↑X), x ≤ x_1 → (fun x => a₁) x ≤ (fun x => a₁) x) } ⊢ a₁ = a₂ [PROOFSTEP] let g₂ : X ⟶ A := ⟨fun _ => a₂, fun _ _ _ => by rfl⟩ [GOAL] A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Mono f a₁ a₂ : ↑A h : ↑f a₁ = ↑f a₂ X : NonemptyFinLinOrdCat := of (ULift (Fin 1)) g₁ : X ⟶ A := { toFun := fun x => a₁, monotone' := (_ : ∀ (x x_1 : ↑X), x ≤ x_1 → (fun x => a₁) x ≤ (fun x => a₁) x) } x✝² x✝¹ : ↑X x✝ : x✝² ≤ x✝¹ ⊢ (fun x => a₂) x✝² ≤ (fun x => a₂) x✝¹ [PROOFSTEP] rfl [GOAL] A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Mono f a₁ a₂ : ↑A h : ↑f a₁ = ↑f a₂ X : NonemptyFinLinOrdCat := of (ULift (Fin 1)) g₁ : X ⟶ A := { toFun := fun x => a₁, monotone' := (_ : ∀ (x x_1 : ↑X), x ≤ x_1 → (fun x => a₁) x ≤ (fun x => a₁) x) } g₂ : X ⟶ A := { toFun := fun x => a₂, monotone' := (_ : ∀ (x x_1 : ↑X), x ≤ x_1 → (fun x => a₂) x ≤ (fun x => a₂) x) } ⊢ a₁ = a₂ [PROOFSTEP] change g₁ (ULift.up (0 : Fin 1)) = g₂ (ULift.up (0 : Fin 1)) [GOAL] A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Mono f a₁ a₂ : ↑A h : ↑f a₁ = ↑f a₂ X : NonemptyFinLinOrdCat := of (ULift (Fin 1)) g₁ : X ⟶ A := { toFun := fun x => a₁, monotone' := (_ : ∀ (x x_1 : ↑X), x ≤ x_1 → (fun x => a₁) x ≤ (fun x => a₁) x) } g₂ : X ⟶ A := { toFun := fun x => a₂, monotone' := (_ : ∀ (x x_1 : ↑X), x ≤ x_1 → (fun x => a₂) x ≤ (fun x => a₂) x) } ⊢ ↑g₁ { down := 0 } = ↑g₂ { down := 0 } [PROOFSTEP] have eq : g₁ ≫ f = g₂ ≫ f := by ext exact h [GOAL] A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Mono f a₁ a₂ : ↑A h : ↑f a₁ = ↑f a₂ X : NonemptyFinLinOrdCat := of (ULift (Fin 1)) g₁ : X ⟶ A := { toFun := fun x => a₁, monotone' := (_ : ∀ (x x_1 : ↑X), x ≤ x_1 → (fun x => a₁) x ≤ (fun x => a₁) x) } g₂ : X ⟶ A := { toFun := fun x => a₂, monotone' := (_ : ∀ (x x_1 : ↑X), x ≤ x_1 → (fun x => a₂) x ≤ (fun x => a₂) x) } ⊢ g₁ ≫ f = g₂ ≫ f [PROOFSTEP] ext [GOAL] case w A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Mono f a₁ a₂ : ↑A h : ↑f a₁ = ↑f a₂ X : NonemptyFinLinOrdCat := of (ULift (Fin 1)) g₁ : X ⟶ A := { toFun := fun x => a₁, monotone' := (_ : ∀ (x x_1 : ↑X), x ≤ x_1 → (fun x => a₁) x ≤ (fun x => a₁) x) } g₂ : X ⟶ A := { toFun := fun x => a₂, monotone' := (_ : ∀ (x x_1 : ↑X), x ≤ x_1 → (fun x => a₂) x ≤ (fun x => a₂) x) } x✝ : (forget NonemptyFinLinOrdCat).obj X ⊢ ↑(g₁ ≫ f) x✝ = ↑(g₂ ≫ f) x✝ [PROOFSTEP] exact h [GOAL] A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Mono f a₁ a₂ : ↑A h : ↑f a₁ = ↑f a₂ X : NonemptyFinLinOrdCat := of (ULift (Fin 1)) g₁ : X ⟶ A := { toFun := fun x => a₁, monotone' := (_ : ∀ (x x_1 : ↑X), x ≤ x_1 → (fun x => a₁) x ≤ (fun x => a₁) x) } g₂ : X ⟶ A := { toFun := fun x => a₂, monotone' := (_ : ∀ (x x_1 : ↑X), x ≤ x_1 → (fun x => a₂) x ≤ (fun x => a₂) x) } eq : g₁ ≫ f = g₂ ≫ f ⊢ ↑g₁ { down := 0 } = ↑g₂ { down := 0 } [PROOFSTEP] rw [cancel_mono] at eq [GOAL] A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Mono f a₁ a₂ : ↑A h : ↑f a₁ = ↑f a₂ X : NonemptyFinLinOrdCat := of (ULift (Fin 1)) g₁ : X ⟶ A := { toFun := fun x => a₁, monotone' := (_ : ∀ (x x_1 : ↑X), x ≤ x_1 → (fun x => a₁) x ≤ (fun x => a₁) x) } g₂ : X ⟶ A := { toFun := fun x => a₂, monotone' := (_ : ∀ (x x_1 : ↑X), x ≤ x_1 → (fun x => a₂) x ≤ (fun x => a₂) x) } eq : g₁ = g₂ ⊢ ↑g₁ { down := 0 } = ↑g₂ { down := 0 } [PROOFSTEP] rw [eq] [GOAL] A B : NonemptyFinLinOrdCat f : A ⟶ B ⊢ Epi f ↔ Function.Surjective ↑f [PROOFSTEP] constructor [GOAL] case mp A B : NonemptyFinLinOrdCat f : A ⟶ B ⊢ Epi f → Function.Surjective ↑f [PROOFSTEP] intro [GOAL] case mp A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Epi f ⊢ Function.Surjective ↑f [PROOFSTEP] dsimp only [Function.Surjective] [GOAL] case mp A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Epi f ⊢ ∀ (b : ↑B), ∃ a, ↑f a = b [PROOFSTEP] by_contra' hf' [GOAL] case mp A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Epi f hf' : ∃ b, ∀ (a : ↑A), ↑f a ≠ b ⊢ False [PROOFSTEP] rcases hf' with ⟨m, hm⟩ [GOAL] case mp.intro A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Epi f m : ↑B hm : ∀ (a : ↑A), ↑f a ≠ m ⊢ False [PROOFSTEP] let Y := NonemptyFinLinOrdCat.of (ULift (Fin 2)) [GOAL] case mp.intro A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Epi f m : ↑B hm : ∀ (a : ↑A), ↑f a ≠ m Y : NonemptyFinLinOrdCat := of (ULift (Fin 2)) ⊢ False [PROOFSTEP] let p₁ : B ⟶ Y := ⟨fun b => if b < m then ULift.up 0 else ULift.up 1, fun x₁ x₂ h => by simp only split_ifs with h₁ h₂ h₂ any_goals apply Fin.zero_le · exfalso exact h₁ (lt_of_le_of_lt h h₂) · rfl⟩ [GOAL] A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Epi f m : ↑B hm : ∀ (a : ↑A), ↑f a ≠ m Y : NonemptyFinLinOrdCat := of (ULift (Fin 2)) x₁ x₂ : ↑B h : x₁ ≤ x₂ ⊢ (fun b => if b < m then { down := 0 } else { down := 1 }) x₁ ≤ (fun b => if b < m then { down := 0 } else { down := 1 }) x₂ [PROOFSTEP] simp only [GOAL] A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Epi f m : ↑B hm : ∀ (a : ↑A), ↑f a ≠ m Y : NonemptyFinLinOrdCat := of (ULift (Fin 2)) x₁ x₂ : ↑B h : x₁ ≤ x₂ ⊢ (if x₁ < m then { down := 0 } else { down := 1 }) ≤ if x₂ < m then { down := 0 } else { down := 1 } [PROOFSTEP] split_ifs with h₁ h₂ h₂ [GOAL] case pos A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Epi f m : ↑B hm : ∀ (a : ↑A), ↑f a ≠ m Y : NonemptyFinLinOrdCat := of (ULift (Fin 2)) x₁ x₂ : ↑B h : x₁ ≤ x₂ h₁ : x₁ < m h₂ : x₂ < m ⊢ { down := 0 } ≤ { down := 0 } case neg A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Epi f m : ↑B hm : ∀ (a : ↑A), ↑f a ≠ m Y : NonemptyFinLinOrdCat := of (ULift (Fin 2)) x₁ x₂ : ↑B h : x₁ ≤ x₂ h₁ : x₁ < m h₂ : ¬x₂ < m ⊢ { down := 0 } ≤ { down := 1 } case pos A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Epi f m : ↑B hm : ∀ (a : ↑A), ↑f a ≠ m Y : NonemptyFinLinOrdCat := of (ULift (Fin 2)) x₁ x₂ : ↑B h : x₁ ≤ x₂ h₁ : ¬x₁ < m h₂ : x₂ < m ⊢ { down := 1 } ≤ { down := 0 } case neg A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Epi f m : ↑B hm : ∀ (a : ↑A), ↑f a ≠ m Y : NonemptyFinLinOrdCat := of (ULift (Fin 2)) x₁ x₂ : ↑B h : x₁ ≤ x₂ h₁ : ¬x₁ < m h₂ : ¬x₂ < m ⊢ { down := 1 } ≤ { down := 1 } [PROOFSTEP] any_goals apply Fin.zero_le [GOAL] case pos A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Epi f m : ↑B hm : ∀ (a : ↑A), ↑f a ≠ m Y : NonemptyFinLinOrdCat := of (ULift (Fin 2)) x₁ x₂ : ↑B h : x₁ ≤ x₂ h₁ : x₁ < m h₂ : x₂ < m ⊢ { down := 0 } ≤ { down := 0 } [PROOFSTEP] apply Fin.zero_le [GOAL] case neg A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Epi f m : ↑B hm : ∀ (a : ↑A), ↑f a ≠ m Y : NonemptyFinLinOrdCat := of (ULift (Fin 2)) x₁ x₂ : ↑B h : x₁ ≤ x₂ h₁ : x₁ < m h₂ : ¬x₂ < m ⊢ { down := 0 } ≤ { down := 1 } [PROOFSTEP] apply Fin.zero_le [GOAL] case pos A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Epi f m : ↑B hm : ∀ (a : ↑A), ↑f a ≠ m Y : NonemptyFinLinOrdCat := of (ULift (Fin 2)) x₁ x₂ : ↑B h : x₁ ≤ x₂ h₁ : ¬x₁ < m h₂ : x₂ < m ⊢ { down := 1 } ≤ { down := 0 } [PROOFSTEP] apply Fin.zero_le [GOAL] case neg A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Epi f m : ↑B hm : ∀ (a : ↑A), ↑f a ≠ m Y : NonemptyFinLinOrdCat := of (ULift (Fin 2)) x₁ x₂ : ↑B h : x₁ ≤ x₂ h₁ : ¬x₁ < m h₂ : ¬x₂ < m ⊢ { down := 1 } ≤ { down := 1 } [PROOFSTEP] apply Fin.zero_le [GOAL] case pos A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Epi f m : ↑B hm : ∀ (a : ↑A), ↑f a ≠ m Y : NonemptyFinLinOrdCat := of (ULift (Fin 2)) x₁ x₂ : ↑B h : x₁ ≤ x₂ h₁ : ¬x₁ < m h₂ : x₂ < m ⊢ { down := 1 } ≤ { down := 0 } [PROOFSTEP] exfalso [GOAL] case pos.h A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Epi f m : ↑B hm : ∀ (a : ↑A), ↑f a ≠ m Y : NonemptyFinLinOrdCat := of (ULift (Fin 2)) x₁ x₂ : ↑B h : x₁ ≤ x₂ h₁ : ¬x₁ < m h₂ : x₂ < m ⊢ False [PROOFSTEP] exact h₁ (lt_of_le_of_lt h h₂) [GOAL] case neg A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Epi f m : ↑B hm : ∀ (a : ↑A), ↑f a ≠ m Y : NonemptyFinLinOrdCat := of (ULift (Fin 2)) x₁ x₂ : ↑B h : x₁ ≤ x₂ h₁ : ¬x₁ < m h₂ : ¬x₂ < m ⊢ { down := 1 } ≤ { down := 1 } [PROOFSTEP] rfl [GOAL] case mp.intro A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Epi f m : ↑B hm : ∀ (a : ↑A), ↑f a ≠ m Y : NonemptyFinLinOrdCat := of (ULift (Fin 2)) p₁ : B ⟶ Y := { toFun := fun b => if b < m then { down := 0 } else { down := 1 }, monotone' := (_ : ∀ (x₁ x₂ : ↑B), x₁ ≤ x₂ → (fun b => if b < m then { down := 0 } else { down := 1 }) x₁ ≤ (fun b => if b < m then { down := 0 } else { down := 1 }) x₂) } ⊢ False [PROOFSTEP] let p₂ : B ⟶ Y := ⟨fun b => if b ≤ m then ULift.up 0 else ULift.up 1, fun x₁ x₂ h => by simp only split_ifs with h₁ h₂ h₂ any_goals apply Fin.zero_le · exfalso exact h₁ (h.trans h₂) · rfl⟩ [GOAL] A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Epi f m : ↑B hm : ∀ (a : ↑A), ↑f a ≠ m Y : NonemptyFinLinOrdCat := of (ULift (Fin 2)) p₁ : B ⟶ Y := { toFun := fun b => if b < m then { down := 0 } else { down := 1 }, monotone' := (_ : ∀ (x₁ x₂ : ↑B), x₁ ≤ x₂ → (fun b => if b < m then { down := 0 } else { down := 1 }) x₁ ≤ (fun b => if b < m then { down := 0 } else { down := 1 }) x₂) } x₁ x₂ : ↑B h : x₁ ≤ x₂ ⊢ (fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₁ ≤ (fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₂ [PROOFSTEP] simp only [GOAL] A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Epi f m : ↑B hm : ∀ (a : ↑A), ↑f a ≠ m Y : NonemptyFinLinOrdCat := of (ULift (Fin 2)) p₁ : B ⟶ Y := { toFun := fun b => if b < m then { down := 0 } else { down := 1 }, monotone' := (_ : ∀ (x₁ x₂ : ↑B), x₁ ≤ x₂ → (fun b => if b < m then { down := 0 } else { down := 1 }) x₁ ≤ (fun b => if b < m then { down := 0 } else { down := 1 }) x₂) } x₁ x₂ : ↑B h : x₁ ≤ x₂ ⊢ (if x₁ ≤ m then { down := 0 } else { down := 1 }) ≤ if x₂ ≤ m then { down := 0 } else { down := 1 } [PROOFSTEP] split_ifs with h₁ h₂ h₂ [GOAL] case pos A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Epi f m : ↑B hm : ∀ (a : ↑A), ↑f a ≠ m Y : NonemptyFinLinOrdCat := of (ULift (Fin 2)) p₁ : B ⟶ Y := { toFun := fun b => if b < m then { down := 0 } else { down := 1 }, monotone' := (_ : ∀ (x₁ x₂ : ↑B), x₁ ≤ x₂ → (fun b => if b < m then { down := 0 } else { down := 1 }) x₁ ≤ (fun b => if b < m then { down := 0 } else { down := 1 }) x₂) } x₁ x₂ : ↑B h : x₁ ≤ x₂ h₁ : x₁ ≤ m h₂ : x₂ ≤ m ⊢ { down := 0 } ≤ { down := 0 } case neg A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Epi f m : ↑B hm : ∀ (a : ↑A), ↑f a ≠ m Y : NonemptyFinLinOrdCat := of (ULift (Fin 2)) p₁ : B ⟶ Y := { toFun := fun b => if b < m then { down := 0 } else { down := 1 }, monotone' := (_ : ∀ (x₁ x₂ : ↑B), x₁ ≤ x₂ → (fun b => if b < m then { down := 0 } else { down := 1 }) x₁ ≤ (fun b => if b < m then { down := 0 } else { down := 1 }) x₂) } x₁ x₂ : ↑B h : x₁ ≤ x₂ h₁ : x₁ ≤ m h₂ : ¬x₂ ≤ m ⊢ { down := 0 } ≤ { down := 1 } case pos A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Epi f m : ↑B hm : ∀ (a : ↑A), ↑f a ≠ m Y : NonemptyFinLinOrdCat := of (ULift (Fin 2)) p₁ : B ⟶ Y := { toFun := fun b => if b < m then { down := 0 } else { down := 1 }, monotone' := (_ : ∀ (x₁ x₂ : ↑B), x₁ ≤ x₂ → (fun b => if b < m then { down := 0 } else { down := 1 }) x₁ ≤ (fun b => if b < m then { down := 0 } else { down := 1 }) x₂) } x₁ x₂ : ↑B h : x₁ ≤ x₂ h₁ : ¬x₁ ≤ m h₂ : x₂ ≤ m ⊢ { down := 1 } ≤ { down := 0 } case neg A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Epi f m : ↑B hm : ∀ (a : ↑A), ↑f a ≠ m Y : NonemptyFinLinOrdCat := of (ULift (Fin 2)) p₁ : B ⟶ Y := { toFun := fun b => if b < m then { down := 0 } else { down := 1 }, monotone' := (_ : ∀ (x₁ x₂ : ↑B), x₁ ≤ x₂ → (fun b => if b < m then { down := 0 } else { down := 1 }) x₁ ≤ (fun b => if b < m then { down := 0 } else { down := 1 }) x₂) } x₁ x₂ : ↑B h : x₁ ≤ x₂ h₁ : ¬x₁ ≤ m h₂ : ¬x₂ ≤ m ⊢ { down := 1 } ≤ { down := 1 } [PROOFSTEP] any_goals apply Fin.zero_le [GOAL] case pos A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Epi f m : ↑B hm : ∀ (a : ↑A), ↑f a ≠ m Y : NonemptyFinLinOrdCat := of (ULift (Fin 2)) p₁ : B ⟶ Y := { toFun := fun b => if b < m then { down := 0 } else { down := 1 }, monotone' := (_ : ∀ (x₁ x₂ : ↑B), x₁ ≤ x₂ → (fun b => if b < m then { down := 0 } else { down := 1 }) x₁ ≤ (fun b => if b < m then { down := 0 } else { down := 1 }) x₂) } x₁ x₂ : ↑B h : x₁ ≤ x₂ h₁ : x₁ ≤ m h₂ : x₂ ≤ m ⊢ { down := 0 } ≤ { down := 0 } [PROOFSTEP] apply Fin.zero_le [GOAL] case neg A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Epi f m : ↑B hm : ∀ (a : ↑A), ↑f a ≠ m Y : NonemptyFinLinOrdCat := of (ULift (Fin 2)) p₁ : B ⟶ Y := { toFun := fun b => if b < m then { down := 0 } else { down := 1 }, monotone' := (_ : ∀ (x₁ x₂ : ↑B), x₁ ≤ x₂ → (fun b => if b < m then { down := 0 } else { down := 1 }) x₁ ≤ (fun b => if b < m then { down := 0 } else { down := 1 }) x₂) } x₁ x₂ : ↑B h : x₁ ≤ x₂ h₁ : x₁ ≤ m h₂ : ¬x₂ ≤ m ⊢ { down := 0 } ≤ { down := 1 } [PROOFSTEP] apply Fin.zero_le [GOAL] case pos A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Epi f m : ↑B hm : ∀ (a : ↑A), ↑f a ≠ m Y : NonemptyFinLinOrdCat := of (ULift (Fin 2)) p₁ : B ⟶ Y := { toFun := fun b => if b < m then { down := 0 } else { down := 1 }, monotone' := (_ : ∀ (x₁ x₂ : ↑B), x₁ ≤ x₂ → (fun b => if b < m then { down := 0 } else { down := 1 }) x₁ ≤ (fun b => if b < m then { down := 0 } else { down := 1 }) x₂) } x₁ x₂ : ↑B h : x₁ ≤ x₂ h₁ : ¬x₁ ≤ m h₂ : x₂ ≤ m ⊢ { down := 1 } ≤ { down := 0 } [PROOFSTEP] apply Fin.zero_le [GOAL] case neg A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Epi f m : ↑B hm : ∀ (a : ↑A), ↑f a ≠ m Y : NonemptyFinLinOrdCat := of (ULift (Fin 2)) p₁ : B ⟶ Y := { toFun := fun b => if b < m then { down := 0 } else { down := 1 }, monotone' := (_ : ∀ (x₁ x₂ : ↑B), x₁ ≤ x₂ → (fun b => if b < m then { down := 0 } else { down := 1 }) x₁ ≤ (fun b => if b < m then { down := 0 } else { down := 1 }) x₂) } x₁ x₂ : ↑B h : x₁ ≤ x₂ h₁ : ¬x₁ ≤ m h₂ : ¬x₂ ≤ m ⊢ { down := 1 } ≤ { down := 1 } [PROOFSTEP] apply Fin.zero_le [GOAL] case pos A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Epi f m : ↑B hm : ∀ (a : ↑A), ↑f a ≠ m Y : NonemptyFinLinOrdCat := of (ULift (Fin 2)) p₁ : B ⟶ Y := { toFun := fun b => if b < m then { down := 0 } else { down := 1 }, monotone' := (_ : ∀ (x₁ x₂ : ↑B), x₁ ≤ x₂ → (fun b => if b < m then { down := 0 } else { down := 1 }) x₁ ≤ (fun b => if b < m then { down := 0 } else { down := 1 }) x₂) } x₁ x₂ : ↑B h : x₁ ≤ x₂ h₁ : ¬x₁ ≤ m h₂ : x₂ ≤ m ⊢ { down := 1 } ≤ { down := 0 } [PROOFSTEP] exfalso [GOAL] case pos.h A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Epi f m : ↑B hm : ∀ (a : ↑A), ↑f a ≠ m Y : NonemptyFinLinOrdCat := of (ULift (Fin 2)) p₁ : B ⟶ Y := { toFun := fun b => if b < m then { down := 0 } else { down := 1 }, monotone' := (_ : ∀ (x₁ x₂ : ↑B), x₁ ≤ x₂ → (fun b => if b < m then { down := 0 } else { down := 1 }) x₁ ≤ (fun b => if b < m then { down := 0 } else { down := 1 }) x₂) } x₁ x₂ : ↑B h : x₁ ≤ x₂ h₁ : ¬x₁ ≤ m h₂ : x₂ ≤ m ⊢ False [PROOFSTEP] exact h₁ (h.trans h₂) [GOAL] case neg A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Epi f m : ↑B hm : ∀ (a : ↑A), ↑f a ≠ m Y : NonemptyFinLinOrdCat := of (ULift (Fin 2)) p₁ : B ⟶ Y := { toFun := fun b => if b < m then { down := 0 } else { down := 1 }, monotone' := (_ : ∀ (x₁ x₂ : ↑B), x₁ ≤ x₂ → (fun b => if b < m then { down := 0 } else { down := 1 }) x₁ ≤ (fun b => if b < m then { down := 0 } else { down := 1 }) x₂) } x₁ x₂ : ↑B h : x₁ ≤ x₂ h₁ : ¬x₁ ≤ m h₂ : ¬x₂ ≤ m ⊢ { down := 1 } ≤ { down := 1 } [PROOFSTEP] rfl [GOAL] case mp.intro A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Epi f m : ↑B hm : ∀ (a : ↑A), ↑f a ≠ m Y : NonemptyFinLinOrdCat := of (ULift (Fin 2)) p₁ : B ⟶ Y := { toFun := fun b => if b < m then { down := 0 } else { down := 1 }, monotone' := (_ : ∀ (x₁ x₂ : ↑B), x₁ ≤ x₂ → (fun b => if b < m then { down := 0 } else { down := 1 }) x₁ ≤ (fun b => if b < m then { down := 0 } else { down := 1 }) x₂) } p₂ : B ⟶ Y := { toFun := fun b => if b ≤ m then { down := 0 } else { down := 1 }, monotone' := (_ : ∀ (x₁ x₂ : ↑B), x₁ ≤ x₂ → (fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₁ ≤ (fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₂) } ⊢ False [PROOFSTEP] have h : p₁ m = p₂ m := by congr rw [← cancel_epi f] ext a simp only [coe_of, comp_apply] change ite _ _ _ = ite _ _ _ split_ifs with h₁ h₂ h₂ any_goals rfl · exfalso exact h₂ (le_of_lt h₁) · exfalso exact hm a (eq_of_le_of_not_lt h₂ h₁) [GOAL] A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Epi f m : ↑B hm : ∀ (a : ↑A), ↑f a ≠ m Y : NonemptyFinLinOrdCat := of (ULift (Fin 2)) p₁ : B ⟶ Y := { toFun := fun b => if b < m then { down := 0 } else { down := 1 }, monotone' := (_ : ∀ (x₁ x₂ : ↑B), x₁ ≤ x₂ → (fun b => if b < m then { down := 0 } else { down := 1 }) x₁ ≤ (fun b => if b < m then { down := 0 } else { down := 1 }) x₂) } p₂ : B ⟶ Y := { toFun := fun b => if b ≤ m then { down := 0 } else { down := 1 }, monotone' := (_ : ∀ (x₁ x₂ : ↑B), x₁ ≤ x₂ → (fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₁ ≤ (fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₂) } ⊢ ↑p₁ m = ↑p₂ m [PROOFSTEP] congr [GOAL] case e_a A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Epi f m : ↑B hm : ∀ (a : ↑A), ↑f a ≠ m Y : NonemptyFinLinOrdCat := of (ULift (Fin 2)) p₁ : B ⟶ Y := { toFun := fun b => if b < m then { down := 0 } else { down := 1 }, monotone' := (_ : ∀ (x₁ x₂ : ↑B), x₁ ≤ x₂ → (fun b => if b < m then { down := 0 } else { down := 1 }) x₁ ≤ (fun b => if b < m then { down := 0 } else { down := 1 }) x₂) } p₂ : B ⟶ Y := { toFun := fun b => if b ≤ m then { down := 0 } else { down := 1 }, monotone' := (_ : ∀ (x₁ x₂ : ↑B), x₁ ≤ x₂ → (fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₁ ≤ (fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₂) } ⊢ p₁ = p₂ [PROOFSTEP] rw [← cancel_epi f] [GOAL] case e_a A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Epi f m : ↑B hm : ∀ (a : ↑A), ↑f a ≠ m Y : NonemptyFinLinOrdCat := of (ULift (Fin 2)) p₁ : B ⟶ Y := { toFun := fun b => if b < m then { down := 0 } else { down := 1 }, monotone' := (_ : ∀ (x₁ x₂ : ↑B), x₁ ≤ x₂ → (fun b => if b < m then { down := 0 } else { down := 1 }) x₁ ≤ (fun b => if b < m then { down := 0 } else { down := 1 }) x₂) } p₂ : B ⟶ Y := { toFun := fun b => if b ≤ m then { down := 0 } else { down := 1 }, monotone' := (_ : ∀ (x₁ x₂ : ↑B), x₁ ≤ x₂ → (fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₁ ≤ (fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₂) } ⊢ f ≫ p₁ = f ≫ p₂ [PROOFSTEP] ext a [GOAL] case e_a.w A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Epi f m : ↑B hm : ∀ (a : ↑A), ↑f a ≠ m Y : NonemptyFinLinOrdCat := of (ULift (Fin 2)) p₁ : B ⟶ Y := { toFun := fun b => if b < m then { down := 0 } else { down := 1 }, monotone' := (_ : ∀ (x₁ x₂ : ↑B), x₁ ≤ x₂ → (fun b => if b < m then { down := 0 } else { down := 1 }) x₁ ≤ (fun b => if b < m then { down := 0 } else { down := 1 }) x₂) } p₂ : B ⟶ Y := { toFun := fun b => if b ≤ m then { down := 0 } else { down := 1 }, monotone' := (_ : ∀ (x₁ x₂ : ↑B), x₁ ≤ x₂ → (fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₁ ≤ (fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₂) } a : (forget NonemptyFinLinOrdCat).obj A ⊢ ↑(f ≫ p₁) a = ↑(f ≫ p₂) a [PROOFSTEP] simp only [coe_of, comp_apply] [GOAL] case e_a.w A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Epi f m : ↑B hm : ∀ (a : ↑A), ↑f a ≠ m Y : NonemptyFinLinOrdCat := of (ULift (Fin 2)) p₁ : B ⟶ Y := { toFun := fun b => if b < m then { down := 0 } else { down := 1 }, monotone' := (_ : ∀ (x₁ x₂ : ↑B), x₁ ≤ x₂ → (fun b => if b < m then { down := 0 } else { down := 1 }) x₁ ≤ (fun b => if b < m then { down := 0 } else { down := 1 }) x₂) } p₂ : B ⟶ Y := { toFun := fun b => if b ≤ m then { down := 0 } else { down := 1 }, monotone' := (_ : ∀ (x₁ x₂ : ↑B), x₁ ≤ x₂ → (fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₁ ≤ (fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₂) } a : (forget NonemptyFinLinOrdCat).obj A ⊢ ↑{ toFun := fun b => if b < m then { down := 0 } else { down := 1 }, monotone' := (_ : ∀ (x₁ x₂ : ↑B), x₁ ≤ x₂ → (fun b => if b < m then { down := 0 } else { down := 1 }) x₁ ≤ (fun b => if b < m then { down := 0 } else { down := 1 }) x₂) } (↑f a) = ↑{ toFun := fun b => if b ≤ m then { down := 0 } else { down := 1 }, monotone' := (_ : ∀ (x₁ x₂ : ↑B), x₁ ≤ x₂ → (fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₁ ≤ (fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₂) } (↑f a) [PROOFSTEP] change ite _ _ _ = ite _ _ _ [GOAL] case e_a.w A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Epi f m : ↑B hm : ∀ (a : ↑A), ↑f a ≠ m Y : NonemptyFinLinOrdCat := of (ULift (Fin 2)) p₁ : B ⟶ Y := { toFun := fun b => if b < m then { down := 0 } else { down := 1 }, monotone' := (_ : ∀ (x₁ x₂ : ↑B), x₁ ≤ x₂ → (fun b => if b < m then { down := 0 } else { down := 1 }) x₁ ≤ (fun b => if b < m then { down := 0 } else { down := 1 }) x₂) } p₂ : B ⟶ Y := { toFun := fun b => if b ≤ m then { down := 0 } else { down := 1 }, monotone' := (_ : ∀ (x₁ x₂ : ↑B), x₁ ≤ x₂ → (fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₁ ≤ (fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₂) } a : (forget NonemptyFinLinOrdCat).obj A ⊢ (if ↑f a < m then { down := 0 } else { down := 1 }) = if ↑f a ≤ m then { down := 0 } else { down := 1 } [PROOFSTEP] split_ifs with h₁ h₂ h₂ [GOAL] case pos A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Epi f m : ↑B hm : ∀ (a : ↑A), ↑f a ≠ m Y : NonemptyFinLinOrdCat := of (ULift (Fin 2)) p₁ : B ⟶ Y := { toFun := fun b => if b < m then { down := 0 } else { down := 1 }, monotone' := (_ : ∀ (x₁ x₂ : ↑B), x₁ ≤ x₂ → (fun b => if b < m then { down := 0 } else { down := 1 }) x₁ ≤ (fun b => if b < m then { down := 0 } else { down := 1 }) x₂) } p₂ : B ⟶ Y := { toFun := fun b => if b ≤ m then { down := 0 } else { down := 1 }, monotone' := (_ : ∀ (x₁ x₂ : ↑B), x₁ ≤ x₂ → (fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₁ ≤ (fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₂) } a : (forget NonemptyFinLinOrdCat).obj A h₁ : ↑f a < m h₂ : ↑f a ≤ m ⊢ { down := 0 } = { down := 0 } case neg A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Epi f m : ↑B hm : ∀ (a : ↑A), ↑f a ≠ m Y : NonemptyFinLinOrdCat := of (ULift (Fin 2)) p₁ : B ⟶ Y := { toFun := fun b => if b < m then { down := 0 } else { down := 1 }, monotone' := (_ : ∀ (x₁ x₂ : ↑B), x₁ ≤ x₂ → (fun b => if b < m then { down := 0 } else { down := 1 }) x₁ ≤ (fun b => if b < m then { down := 0 } else { down := 1 }) x₂) } p₂ : B ⟶ Y := { toFun := fun b => if b ≤ m then { down := 0 } else { down := 1 }, monotone' := (_ : ∀ (x₁ x₂ : ↑B), x₁ ≤ x₂ → (fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₁ ≤ (fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₂) } a : (forget NonemptyFinLinOrdCat).obj A h₁ : ↑f a < m h₂ : ¬↑f a ≤ m ⊢ { down := 0 } = { down := 1 } case pos A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Epi f m : ↑B hm : ∀ (a : ↑A), ↑f a ≠ m Y : NonemptyFinLinOrdCat := of (ULift (Fin 2)) p₁ : B ⟶ Y := { toFun := fun b => if b < m then { down := 0 } else { down := 1 }, monotone' := (_ : ∀ (x₁ x₂ : ↑B), x₁ ≤ x₂ → (fun b => if b < m then { down := 0 } else { down := 1 }) x₁ ≤ (fun b => if b < m then { down := 0 } else { down := 1 }) x₂) } p₂ : B ⟶ Y := { toFun := fun b => if b ≤ m then { down := 0 } else { down := 1 }, monotone' := (_ : ∀ (x₁ x₂ : ↑B), x₁ ≤ x₂ → (fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₁ ≤ (fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₂) } a : (forget NonemptyFinLinOrdCat).obj A h₁ : ¬↑f a < m h₂ : ↑f a ≤ m ⊢ { down := 1 } = { down := 0 } case neg A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Epi f m : ↑B hm : ∀ (a : ↑A), ↑f a ≠ m Y : NonemptyFinLinOrdCat := of (ULift (Fin 2)) p₁ : B ⟶ Y := { toFun := fun b => if b < m then { down := 0 } else { down := 1 }, monotone' := (_ : ∀ (x₁ x₂ : ↑B), x₁ ≤ x₂ → (fun b => if b < m then { down := 0 } else { down := 1 }) x₁ ≤ (fun b => if b < m then { down := 0 } else { down := 1 }) x₂) } p₂ : B ⟶ Y := { toFun := fun b => if b ≤ m then { down := 0 } else { down := 1 }, monotone' := (_ : ∀ (x₁ x₂ : ↑B), x₁ ≤ x₂ → (fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₁ ≤ (fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₂) } a : (forget NonemptyFinLinOrdCat).obj A h₁ : ¬↑f a < m h₂ : ¬↑f a ≤ m ⊢ { down := 1 } = { down := 1 } [PROOFSTEP] any_goals rfl [GOAL] case pos A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Epi f m : ↑B hm : ∀ (a : ↑A), ↑f a ≠ m Y : NonemptyFinLinOrdCat := of (ULift (Fin 2)) p₁ : B ⟶ Y := { toFun := fun b => if b < m then { down := 0 } else { down := 1 }, monotone' := (_ : ∀ (x₁ x₂ : ↑B), x₁ ≤ x₂ → (fun b => if b < m then { down := 0 } else { down := 1 }) x₁ ≤ (fun b => if b < m then { down := 0 } else { down := 1 }) x₂) } p₂ : B ⟶ Y := { toFun := fun b => if b ≤ m then { down := 0 } else { down := 1 }, monotone' := (_ : ∀ (x₁ x₂ : ↑B), x₁ ≤ x₂ → (fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₁ ≤ (fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₂) } a : (forget NonemptyFinLinOrdCat).obj A h₁ : ↑f a < m h₂ : ↑f a ≤ m ⊢ { down := 0 } = { down := 0 } [PROOFSTEP] rfl [GOAL] case neg A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Epi f m : ↑B hm : ∀ (a : ↑A), ↑f a ≠ m Y : NonemptyFinLinOrdCat := of (ULift (Fin 2)) p₁ : B ⟶ Y := { toFun := fun b => if b < m then { down := 0 } else { down := 1 }, monotone' := (_ : ∀ (x₁ x₂ : ↑B), x₁ ≤ x₂ → (fun b => if b < m then { down := 0 } else { down := 1 }) x₁ ≤ (fun b => if b < m then { down := 0 } else { down := 1 }) x₂) } p₂ : B ⟶ Y := { toFun := fun b => if b ≤ m then { down := 0 } else { down := 1 }, monotone' := (_ : ∀ (x₁ x₂ : ↑B), x₁ ≤ x₂ → (fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₁ ≤ (fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₂) } a : (forget NonemptyFinLinOrdCat).obj A h₁ : ↑f a < m h₂ : ¬↑f a ≤ m ⊢ { down := 0 } = { down := 1 } [PROOFSTEP] rfl [GOAL] case pos A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Epi f m : ↑B hm : ∀ (a : ↑A), ↑f a ≠ m Y : NonemptyFinLinOrdCat := of (ULift (Fin 2)) p₁ : B ⟶ Y := { toFun := fun b => if b < m then { down := 0 } else { down := 1 }, monotone' := (_ : ∀ (x₁ x₂ : ↑B), x₁ ≤ x₂ → (fun b => if b < m then { down := 0 } else { down := 1 }) x₁ ≤ (fun b => if b < m then { down := 0 } else { down := 1 }) x₂) } p₂ : B ⟶ Y := { toFun := fun b => if b ≤ m then { down := 0 } else { down := 1 }, monotone' := (_ : ∀ (x₁ x₂ : ↑B), x₁ ≤ x₂ → (fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₁ ≤ (fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₂) } a : (forget NonemptyFinLinOrdCat).obj A h₁ : ¬↑f a < m h₂ : ↑f a ≤ m ⊢ { down := 1 } = { down := 0 } [PROOFSTEP] rfl [GOAL] case neg A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Epi f m : ↑B hm : ∀ (a : ↑A), ↑f a ≠ m Y : NonemptyFinLinOrdCat := of (ULift (Fin 2)) p₁ : B ⟶ Y := { toFun := fun b => if b < m then { down := 0 } else { down := 1 }, monotone' := (_ : ∀ (x₁ x₂ : ↑B), x₁ ≤ x₂ → (fun b => if b < m then { down := 0 } else { down := 1 }) x₁ ≤ (fun b => if b < m then { down := 0 } else { down := 1 }) x₂) } p₂ : B ⟶ Y := { toFun := fun b => if b ≤ m then { down := 0 } else { down := 1 }, monotone' := (_ : ∀ (x₁ x₂ : ↑B), x₁ ≤ x₂ → (fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₁ ≤ (fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₂) } a : (forget NonemptyFinLinOrdCat).obj A h₁ : ¬↑f a < m h₂ : ¬↑f a ≤ m ⊢ { down := 1 } = { down := 1 } [PROOFSTEP] rfl [GOAL] case neg A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Epi f m : ↑B hm : ∀ (a : ↑A), ↑f a ≠ m Y : NonemptyFinLinOrdCat := of (ULift (Fin 2)) p₁ : B ⟶ Y := { toFun := fun b => if b < m then { down := 0 } else { down := 1 }, monotone' := (_ : ∀ (x₁ x₂ : ↑B), x₁ ≤ x₂ → (fun b => if b < m then { down := 0 } else { down := 1 }) x₁ ≤ (fun b => if b < m then { down := 0 } else { down := 1 }) x₂) } p₂ : B ⟶ Y := { toFun := fun b => if b ≤ m then { down := 0 } else { down := 1 }, monotone' := (_ : ∀ (x₁ x₂ : ↑B), x₁ ≤ x₂ → (fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₁ ≤ (fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₂) } a : (forget NonemptyFinLinOrdCat).obj A h₁ : ↑f a < m h₂ : ¬↑f a ≤ m ⊢ { down := 0 } = { down := 1 } [PROOFSTEP] exfalso [GOAL] case neg.h A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Epi f m : ↑B hm : ∀ (a : ↑A), ↑f a ≠ m Y : NonemptyFinLinOrdCat := of (ULift (Fin 2)) p₁ : B ⟶ Y := { toFun := fun b => if b < m then { down := 0 } else { down := 1 }, monotone' := (_ : ∀ (x₁ x₂ : ↑B), x₁ ≤ x₂ → (fun b => if b < m then { down := 0 } else { down := 1 }) x₁ ≤ (fun b => if b < m then { down := 0 } else { down := 1 }) x₂) } p₂ : B ⟶ Y := { toFun := fun b => if b ≤ m then { down := 0 } else { down := 1 }, monotone' := (_ : ∀ (x₁ x₂ : ↑B), x₁ ≤ x₂ → (fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₁ ≤ (fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₂) } a : (forget NonemptyFinLinOrdCat).obj A h₁ : ↑f a < m h₂ : ¬↑f a ≤ m ⊢ False [PROOFSTEP] exact h₂ (le_of_lt h₁) [GOAL] case pos A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Epi f m : ↑B hm : ∀ (a : ↑A), ↑f a ≠ m Y : NonemptyFinLinOrdCat := of (ULift (Fin 2)) p₁ : B ⟶ Y := { toFun := fun b => if b < m then { down := 0 } else { down := 1 }, monotone' := (_ : ∀ (x₁ x₂ : ↑B), x₁ ≤ x₂ → (fun b => if b < m then { down := 0 } else { down := 1 }) x₁ ≤ (fun b => if b < m then { down := 0 } else { down := 1 }) x₂) } p₂ : B ⟶ Y := { toFun := fun b => if b ≤ m then { down := 0 } else { down := 1 }, monotone' := (_ : ∀ (x₁ x₂ : ↑B), x₁ ≤ x₂ → (fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₁ ≤ (fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₂) } a : (forget NonemptyFinLinOrdCat).obj A h₁ : ¬↑f a < m h₂ : ↑f a ≤ m ⊢ { down := 1 } = { down := 0 } [PROOFSTEP] exfalso [GOAL] case pos.h A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Epi f m : ↑B hm : ∀ (a : ↑A), ↑f a ≠ m Y : NonemptyFinLinOrdCat := of (ULift (Fin 2)) p₁ : B ⟶ Y := { toFun := fun b => if b < m then { down := 0 } else { down := 1 }, monotone' := (_ : ∀ (x₁ x₂ : ↑B), x₁ ≤ x₂ → (fun b => if b < m then { down := 0 } else { down := 1 }) x₁ ≤ (fun b => if b < m then { down := 0 } else { down := 1 }) x₂) } p₂ : B ⟶ Y := { toFun := fun b => if b ≤ m then { down := 0 } else { down := 1 }, monotone' := (_ : ∀ (x₁ x₂ : ↑B), x₁ ≤ x₂ → (fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₁ ≤ (fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₂) } a : (forget NonemptyFinLinOrdCat).obj A h₁ : ¬↑f a < m h₂ : ↑f a ≤ m ⊢ False [PROOFSTEP] exact hm a (eq_of_le_of_not_lt h₂ h₁) [GOAL] case mp.intro A B : NonemptyFinLinOrdCat f : A ⟶ B a✝ : Epi f m : ↑B hm : ∀ (a : ↑A), ↑f a ≠ m Y : NonemptyFinLinOrdCat := of (ULift (Fin 2)) p₁ : B ⟶ Y := { toFun := fun b => if b < m then { down := 0 } else { down := 1 }, monotone' := (_ : ∀ (x₁ x₂ : ↑B), x₁ ≤ x₂ → (fun b => if b < m then { down := 0 } else { down := 1 }) x₁ ≤ (fun b => if b < m then { down := 0 } else { down := 1 }) x₂) } p₂ : B ⟶ Y := { toFun := fun b => if b ≤ m then { down := 0 } else { down := 1 }, monotone' := (_ : ∀ (x₁ x₂ : ↑B), x₁ ≤ x₂ → (fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₁ ≤ (fun b => if b ≤ m then { down := 0 } else { down := 1 }) x₂) } h : ↑p₁ m = ↑p₂ m ⊢ False [PROOFSTEP] simp [FunLike.coe] at h [GOAL] case mpr A B : NonemptyFinLinOrdCat f : A ⟶ B ⊢ Function.Surjective ↑f → Epi f [PROOFSTEP] intro h [GOAL] case mpr A B : NonemptyFinLinOrdCat f : A ⟶ B h : Function.Surjective ↑f ⊢ Epi f [PROOFSTEP] exact ConcreteCategory.epi_of_surjective f h [GOAL] X Y : NonemptyFinLinOrdCat f : X ⟶ Y hf : Epi f ⊢ IsSplitEpi f [PROOFSTEP] have H : ∀ y : Y, Nonempty (f ⁻¹' { y }) := by rw [epi_iff_surjective] at hf intro y exact Nonempty.intro ⟨(hf y).choose, (hf y).choose_spec⟩ [GOAL] X Y : NonemptyFinLinOrdCat f : X ⟶ Y hf : Epi f ⊢ ∀ (y : ↑Y), Nonempty ↑(↑f ⁻¹' {y}) [PROOFSTEP] rw [epi_iff_surjective] at hf [GOAL] X Y : NonemptyFinLinOrdCat f : X ⟶ Y hf : Function.Surjective ↑f ⊢ ∀ (y : ↑Y), Nonempty ↑(↑f ⁻¹' {y}) [PROOFSTEP] intro y [GOAL] X Y : NonemptyFinLinOrdCat f : X ⟶ Y hf : Function.Surjective ↑f y : ↑Y ⊢ Nonempty ↑(↑f ⁻¹' {y}) [PROOFSTEP] exact Nonempty.intro ⟨(hf y).choose, (hf y).choose_spec⟩ [GOAL] X Y : NonemptyFinLinOrdCat f : X ⟶ Y hf : Epi f H : ∀ (y : ↑Y), Nonempty ↑(↑f ⁻¹' {y}) ⊢ IsSplitEpi f [PROOFSTEP] let φ : Y → X := fun y => (H y).some.1 [GOAL] X Y : NonemptyFinLinOrdCat f : X ⟶ Y hf : Epi f H : ∀ (y : ↑Y), Nonempty ↑(↑f ⁻¹' {y}) φ : ↑Y → ↑X := fun y => ↑(Nonempty.some (_ : Nonempty ↑(↑f ⁻¹' {y}))) ⊢ IsSplitEpi f [PROOFSTEP] have hφ : ∀ y : Y, f (φ y) = y := fun y => (H y).some.2 [GOAL] X Y : NonemptyFinLinOrdCat f : X ⟶ Y hf : Epi f H : ∀ (y : ↑Y), Nonempty ↑(↑f ⁻¹' {y}) φ : ↑Y → ↑X := fun y => ↑(Nonempty.some (_ : Nonempty ↑(↑f ⁻¹' {y}))) hφ : ∀ (y : ↑Y), ↑f (φ y) = y ⊢ IsSplitEpi f [PROOFSTEP] refine' IsSplitEpi.mk' ⟨⟨φ, _⟩, _⟩ [GOAL] case refine'_1 X Y : NonemptyFinLinOrdCat f : X ⟶ Y hf : Epi f H : ∀ (y : ↑Y), Nonempty ↑(↑f ⁻¹' {y}) φ : ↑Y → ↑X := fun y => ↑(Nonempty.some (_ : Nonempty ↑(↑f ⁻¹' {y}))) hφ : ∀ (y : ↑Y), ↑f (φ y) = y ⊢ Monotone φ case refine'_2 X Y : NonemptyFinLinOrdCat f : X ⟶ Y hf : Epi f H : ∀ (y : ↑Y), Nonempty ↑(↑f ⁻¹' {y}) φ : ↑Y → ↑X := fun y => ↑(Nonempty.some (_ : Nonempty ↑(↑f ⁻¹' {y}))) hφ : ∀ (y : ↑Y), ↑f (φ y) = y ⊢ { toFun := φ, monotone' := ?refine'_1 } ≫ f = 𝟙 Y [PROOFSTEP] swap [GOAL] case refine'_2 X Y : NonemptyFinLinOrdCat f : X ⟶ Y hf : Epi f H : ∀ (y : ↑Y), Nonempty ↑(↑f ⁻¹' {y}) φ : ↑Y → ↑X := fun y => ↑(Nonempty.some (_ : Nonempty ↑(↑f ⁻¹' {y}))) hφ : ∀ (y : ↑Y), ↑f (φ y) = y ⊢ { toFun := φ, monotone' := ?refine'_1 } ≫ f = 𝟙 Y [PROOFSTEP] ext b [GOAL] case refine'_2.w X Y : NonemptyFinLinOrdCat f : X ⟶ Y hf : Epi f H : ∀ (y : ↑Y), Nonempty ↑(↑f ⁻¹' {y}) φ : ↑Y → ↑X := fun y => ↑(Nonempty.some (_ : Nonempty ↑(↑f ⁻¹' {y}))) hφ : ∀ (y : ↑Y), ↑f (φ y) = y b : (forget NonemptyFinLinOrdCat).obj Y ⊢ ↑({ toFun := φ, monotone' := ?refine'_1 } ≫ f) b = ↑(𝟙 Y) b [PROOFSTEP] apply hφ [GOAL] case refine'_1 X Y : NonemptyFinLinOrdCat f : X ⟶ Y hf : Epi f H : ∀ (y : ↑Y), Nonempty ↑(↑f ⁻¹' {y}) φ : ↑Y → ↑X := fun y => ↑(Nonempty.some (_ : Nonempty ↑(↑f ⁻¹' {y}))) hφ : ∀ (y : ↑Y), ↑f (φ y) = y ⊢ Monotone φ [PROOFSTEP] intro a b [GOAL] case refine'_1 X Y : NonemptyFinLinOrdCat f : X ⟶ Y hf : Epi f H : ∀ (y : ↑Y), Nonempty ↑(↑f ⁻¹' {y}) φ : ↑Y → ↑X := fun y => ↑(Nonempty.some (_ : Nonempty ↑(↑f ⁻¹' {y}))) hφ : ∀ (y : ↑Y), ↑f (φ y) = y a b : ↑Y ⊢ a ≤ b → φ a ≤ φ b [PROOFSTEP] contrapose [GOAL] case refine'_1 X Y : NonemptyFinLinOrdCat f : X ⟶ Y hf : Epi f H : ∀ (y : ↑Y), Nonempty ↑(↑f ⁻¹' {y}) φ : ↑Y → ↑X := fun y => ↑(Nonempty.some (_ : Nonempty ↑(↑f ⁻¹' {y}))) hφ : ∀ (y : ↑Y), ↑f (φ y) = y a b : ↑Y ⊢ ¬φ a ≤ φ b → ¬a ≤ b [PROOFSTEP] intro h [GOAL] case refine'_1 X Y : NonemptyFinLinOrdCat f : X ⟶ Y hf : Epi f H : ∀ (y : ↑Y), Nonempty ↑(↑f ⁻¹' {y}) φ : ↑Y → ↑X := fun y => ↑(Nonempty.some (_ : Nonempty ↑(↑f ⁻¹' {y}))) hφ : ∀ (y : ↑Y), ↑f (φ y) = y a b : ↑Y h : ¬φ a ≤ φ b ⊢ ¬a ≤ b [PROOFSTEP] simp only [not_le] at h ⊢ [GOAL] case refine'_1 X Y : NonemptyFinLinOrdCat f : X ⟶ Y hf : Epi f H : ∀ (y : ↑Y), Nonempty ↑(↑f ⁻¹' {y}) φ : ↑Y → ↑X := fun y => ↑(Nonempty.some (_ : Nonempty ↑(↑f ⁻¹' {y}))) hφ : ∀ (y : ↑Y), ↑f (φ y) = y a b : ↑Y h : ↑(Nonempty.some (_ : Nonempty ↑(↑f ⁻¹' {b}))) < ↑(Nonempty.some (_ : Nonempty ↑(↑f ⁻¹' {a}))) ⊢ b < a [PROOFSTEP] suffices b ≤ a by apply lt_of_le_of_ne this rintro rfl exfalso simp at h [GOAL] X Y : NonemptyFinLinOrdCat f : X ⟶ Y hf : Epi f H : ∀ (y : ↑Y), Nonempty ↑(↑f ⁻¹' {y}) φ : ↑Y → ↑X := fun y => ↑(Nonempty.some (_ : Nonempty ↑(↑f ⁻¹' {y}))) hφ : ∀ (y : ↑Y), ↑f (φ y) = y a b : ↑Y h : ↑(Nonempty.some (_ : Nonempty ↑(↑f ⁻¹' {b}))) < ↑(Nonempty.some (_ : Nonempty ↑(↑f ⁻¹' {a}))) this : b ≤ a ⊢ b < a [PROOFSTEP] apply lt_of_le_of_ne this [GOAL] X Y : NonemptyFinLinOrdCat f : X ⟶ Y hf : Epi f H : ∀ (y : ↑Y), Nonempty ↑(↑f ⁻¹' {y}) φ : ↑Y → ↑X := fun y => ↑(Nonempty.some (_ : Nonempty ↑(↑f ⁻¹' {y}))) hφ : ∀ (y : ↑Y), ↑f (φ y) = y a b : ↑Y h : ↑(Nonempty.some (_ : Nonempty ↑(↑f ⁻¹' {b}))) < ↑(Nonempty.some (_ : Nonempty ↑(↑f ⁻¹' {a}))) this : b ≤ a ⊢ b ≠ a [PROOFSTEP] rintro rfl [GOAL] X Y : NonemptyFinLinOrdCat f : X ⟶ Y hf : Epi f H : ∀ (y : ↑Y), Nonempty ↑(↑f ⁻¹' {y}) φ : ↑Y → ↑X := fun y => ↑(Nonempty.some (_ : Nonempty ↑(↑f ⁻¹' {y}))) hφ : ∀ (y : ↑Y), ↑f (φ y) = y b : ↑Y h : ↑(Nonempty.some (_ : Nonempty ↑(↑f ⁻¹' {b}))) < ↑(Nonempty.some (_ : Nonempty ↑(↑f ⁻¹' {b}))) this : b ≤ b ⊢ False [PROOFSTEP] exfalso [GOAL] case h X Y : NonemptyFinLinOrdCat f : X ⟶ Y hf : Epi f H : ∀ (y : ↑Y), Nonempty ↑(↑f ⁻¹' {y}) φ : ↑Y → ↑X := fun y => ↑(Nonempty.some (_ : Nonempty ↑(↑f ⁻¹' {y}))) hφ : ∀ (y : ↑Y), ↑f (φ y) = y b : ↑Y h : ↑(Nonempty.some (_ : Nonempty ↑(↑f ⁻¹' {b}))) < ↑(Nonempty.some (_ : Nonempty ↑(↑f ⁻¹' {b}))) this : b ≤ b ⊢ False [PROOFSTEP] simp at h [GOAL] case refine'_1 X Y : NonemptyFinLinOrdCat f : X ⟶ Y hf : Epi f H : ∀ (y : ↑Y), Nonempty ↑(↑f ⁻¹' {y}) φ : ↑Y → ↑X := fun y => ↑(Nonempty.some (_ : Nonempty ↑(↑f ⁻¹' {y}))) hφ : ∀ (y : ↑Y), ↑f (φ y) = y a b : ↑Y h : ↑(Nonempty.some (_ : Nonempty ↑(↑f ⁻¹' {b}))) < ↑(Nonempty.some (_ : Nonempty ↑(↑f ⁻¹' {a}))) ⊢ b ≤ a [PROOFSTEP] have H : f (φ b) ≤ f (φ a) := f.monotone (le_of_lt h) [GOAL] case refine'_1 X Y : NonemptyFinLinOrdCat f : X ⟶ Y hf : Epi f H✝ : ∀ (y : ↑Y), Nonempty ↑(↑f ⁻¹' {y}) φ : ↑Y → ↑X := fun y => ↑(Nonempty.some (_ : Nonempty ↑(↑f ⁻¹' {y}))) hφ : ∀ (y : ↑Y), ↑f (φ y) = y a b : ↑Y h : ↑(Nonempty.some (_ : Nonempty ↑(↑f ⁻¹' {b}))) < ↑(Nonempty.some (_ : Nonempty ↑(↑f ⁻¹' {a}))) H : ↑f (φ b) ≤ ↑f (φ a) ⊢ b ≤ a [PROOFSTEP] simpa only [hφ] using H [GOAL] X Y : NonemptyFinLinOrdCat f : X ⟶ Y ⊢ Nonempty (StrongEpiMonoFactorisation f) [PROOFSTEP] letI : NonemptyFinLinOrd (Set.image f ⊤) := ⟨by infer_instance⟩ [GOAL] X Y : NonemptyFinLinOrdCat f : X ⟶ Y ⊢ Nonempty ↑(↑f '' ⊤) [PROOFSTEP] infer_instance [GOAL] X Y : NonemptyFinLinOrdCat f : X ⟶ Y this : NonemptyFinLinOrd ↑(↑f '' ⊤) := NonemptyFinLinOrd.mk ⊢ Nonempty (StrongEpiMonoFactorisation f) [PROOFSTEP] let I := NonemptyFinLinOrdCat.of (Set.image f ⊤) [GOAL] X Y : NonemptyFinLinOrdCat f : X ⟶ Y this : NonemptyFinLinOrd ↑(↑f '' ⊤) := NonemptyFinLinOrd.mk I : NonemptyFinLinOrdCat := of ↑(↑f '' ⊤) ⊢ Nonempty (StrongEpiMonoFactorisation f) [PROOFSTEP] let e : X ⟶ I := ⟨fun x => ⟨f x, ⟨x, by tauto⟩⟩, fun x₁ x₂ h => f.monotone h⟩ [GOAL] X Y : NonemptyFinLinOrdCat f : X ⟶ Y this : NonemptyFinLinOrd ↑(↑f '' ⊤) := NonemptyFinLinOrd.mk I : NonemptyFinLinOrdCat := of ↑(↑f '' ⊤) x : ↑X ⊢ x ∈ ⊤ ∧ ↑f x = ↑f x [PROOFSTEP] tauto [GOAL] X Y : NonemptyFinLinOrdCat f : X ⟶ Y this : NonemptyFinLinOrd ↑(↑f '' ⊤) := NonemptyFinLinOrd.mk I : NonemptyFinLinOrdCat := of ↑(↑f '' ⊤) e : X ⟶ I := { toFun := fun x => { val := ↑f x, property := (_ : ∃ a, a ∈ ⊤ ∧ ↑f a = ↑f x) }, monotone' := (_ : ∀ (x₁ x₂ : ↑X), x₁ ≤ x₂ → ↑f x₁ ≤ ↑f x₂) } ⊢ Nonempty (StrongEpiMonoFactorisation f) [PROOFSTEP] let m : I ⟶ Y := ⟨fun y => y.1, by tauto⟩ [GOAL] X Y : NonemptyFinLinOrdCat f : X ⟶ Y this : NonemptyFinLinOrd ↑(↑f '' ⊤) := NonemptyFinLinOrd.mk I : NonemptyFinLinOrdCat := of ↑(↑f '' ⊤) e : X ⟶ I := { toFun := fun x => { val := ↑f x, property := (_ : ∃ a, a ∈ ⊤ ∧ ↑f a = ↑f x) }, monotone' := (_ : ∀ (x₁ x₂ : ↑X), x₁ ≤ x₂ → ↑f x₁ ≤ ↑f x₂) } ⊢ Monotone fun y => ↑y [PROOFSTEP] tauto [GOAL] X Y : NonemptyFinLinOrdCat f : X ⟶ Y this : NonemptyFinLinOrd ↑(↑f '' ⊤) := NonemptyFinLinOrd.mk I : NonemptyFinLinOrdCat := of ↑(↑f '' ⊤) e : X ⟶ I := { toFun := fun x => { val := ↑f x, property := (_ : ∃ a, a ∈ ⊤ ∧ ↑f a = ↑f x) }, monotone' := (_ : ∀ (x₁ x₂ : ↑X), x₁ ≤ x₂ → ↑f x₁ ≤ ↑f x₂) } m : I ⟶ Y := { toFun := fun y => ↑y, monotone' := (_ : ∀ ⦃a b : ↑I⦄, a ≤ b → a ≤ b) } ⊢ Nonempty (StrongEpiMonoFactorisation f) [PROOFSTEP] haveI : Epi e := by rw [epi_iff_surjective] rintro ⟨_, y, h, rfl⟩ exact ⟨y, rfl⟩ [GOAL] X Y : NonemptyFinLinOrdCat f : X ⟶ Y this : NonemptyFinLinOrd ↑(↑f '' ⊤) := NonemptyFinLinOrd.mk I : NonemptyFinLinOrdCat := of ↑(↑f '' ⊤) e : X ⟶ I := { toFun := fun x => { val := ↑f x, property := (_ : ∃ a, a ∈ ⊤ ∧ ↑f a = ↑f x) }, monotone' := (_ : ∀ (x₁ x₂ : ↑X), x₁ ≤ x₂ → ↑f x₁ ≤ ↑f x₂) } m : I ⟶ Y := { toFun := fun y => ↑y, monotone' := (_ : ∀ ⦃a b : ↑I⦄, a ≤ b → a ≤ b) } ⊢ Epi e [PROOFSTEP] rw [epi_iff_surjective] [GOAL] X Y : NonemptyFinLinOrdCat f : X ⟶ Y this : NonemptyFinLinOrd ↑(↑f '' ⊤) := NonemptyFinLinOrd.mk I : NonemptyFinLinOrdCat := of ↑(↑f '' ⊤) e : X ⟶ I := { toFun := fun x => { val := ↑f x, property := (_ : ∃ a, a ∈ ⊤ ∧ ↑f a = ↑f x) }, monotone' := (_ : ∀ (x₁ x₂ : ↑X), x₁ ≤ x₂ → ↑f x₁ ≤ ↑f x₂) } m : I ⟶ Y := { toFun := fun y => ↑y, monotone' := (_ : ∀ ⦃a b : ↑I⦄, a ≤ b → a ≤ b) } ⊢ Function.Surjective ↑e [PROOFSTEP] rintro ⟨_, y, h, rfl⟩ [GOAL] case mk.intro.intro X Y : NonemptyFinLinOrdCat f : X ⟶ Y this : NonemptyFinLinOrd ↑(↑f '' ⊤) := NonemptyFinLinOrd.mk I : NonemptyFinLinOrdCat := of ↑(↑f '' ⊤) e : X ⟶ I := { toFun := fun x => { val := ↑f x, property := (_ : ∃ a, a ∈ ⊤ ∧ ↑f a = ↑f x) }, monotone' := (_ : ∀ (x₁ x₂ : ↑X), x₁ ≤ x₂ → ↑f x₁ ≤ ↑f x₂) } m : I ⟶ Y := { toFun := fun y => ↑y, monotone' := (_ : ∀ ⦃a b : ↑I⦄, a ≤ b → a ≤ b) } y : ↑X h : y ∈ ⊤ ⊢ ∃ a, ↑e a = { val := ↑f y, property := (_ : ∃ a, a ∈ ⊤ ∧ ↑f a = ↑f y) } [PROOFSTEP] exact ⟨y, rfl⟩ [GOAL] X Y : NonemptyFinLinOrdCat f : X ⟶ Y this✝ : NonemptyFinLinOrd ↑(↑f '' ⊤) := NonemptyFinLinOrd.mk I : NonemptyFinLinOrdCat := of ↑(↑f '' ⊤) e : X ⟶ I := { toFun := fun x => { val := ↑f x, property := (_ : ∃ a, a ∈ ⊤ ∧ ↑f a = ↑f x) }, monotone' := (_ : ∀ (x₁ x₂ : ↑X), x₁ ≤ x₂ → ↑f x₁ ≤ ↑f x₂) } m : I ⟶ Y := { toFun := fun y => ↑y, monotone' := (_ : ∀ ⦃a b : ↑I⦄, a ≤ b → a ≤ b) } this : Epi e ⊢ Nonempty (StrongEpiMonoFactorisation f) [PROOFSTEP] haveI : StrongEpi e := strongEpi_of_epi e [GOAL] X Y : NonemptyFinLinOrdCat f : X ⟶ Y this✝¹ : NonemptyFinLinOrd ↑(↑f '' ⊤) := NonemptyFinLinOrd.mk I : NonemptyFinLinOrdCat := of ↑(↑f '' ⊤) e : X ⟶ I := { toFun := fun x => { val := ↑f x, property := (_ : ∃ a, a ∈ ⊤ ∧ ↑f a = ↑f x) }, monotone' := (_ : ∀ (x₁ x₂ : ↑X), x₁ ≤ x₂ → ↑f x₁ ≤ ↑f x₂) } m : I ⟶ Y := { toFun := fun y => ↑y, monotone' := (_ : ∀ ⦃a b : ↑I⦄, a ≤ b → a ≤ b) } this✝ : Epi e this : StrongEpi e ⊢ Nonempty (StrongEpiMonoFactorisation f) [PROOFSTEP] haveI : Mono m := ConcreteCategory.mono_of_injective _ (fun x y h => Subtype.ext h) [GOAL] X Y : NonemptyFinLinOrdCat f : X ⟶ Y this✝² : NonemptyFinLinOrd ↑(↑f '' ⊤) := NonemptyFinLinOrd.mk I : NonemptyFinLinOrdCat := of ↑(↑f '' ⊤) e : X ⟶ I := { toFun := fun x => { val := ↑f x, property := (_ : ∃ a, a ∈ ⊤ ∧ ↑f a = ↑f x) }, monotone' := (_ : ∀ (x₁ x₂ : ↑X), x₁ ≤ x₂ → ↑f x₁ ≤ ↑f x₂) } m : I ⟶ Y := { toFun := fun y => ↑y, monotone' := (_ : ∀ ⦃a b : ↑I⦄, a ≤ b → a ≤ b) } this✝¹ : Epi e this✝ : StrongEpi e this : Mono m ⊢ Nonempty (StrongEpiMonoFactorisation f) [PROOFSTEP] exact ⟨⟨I, m, e, rfl⟩⟩
{"mathlib_filename": "Mathlib.Order.Category.NonemptyFinLinOrdCat", "llama_tokens": 23409}
[GOAL] α : Type u_1 ι : Type u_2 β : ι → Type u_3 inst✝² : Fintype ι inst✝¹ : (i : ι) → DecidableEq (β i) γ : ι → Type u_4 inst✝ : (i : ι) → DecidableEq (γ i) x : (i : ι) → β i ⊢ hammingDist x x = 0 [PROOFSTEP] rw [hammingDist, card_eq_zero, filter_eq_empty_iff] [GOAL] α : Type u_1 ι : Type u_2 β : ι → Type u_3 inst✝² : Fintype ι inst✝¹ : (i : ι) → DecidableEq (β i) γ : ι → Type u_4 inst✝ : (i : ι) → DecidableEq (γ i) x : (i : ι) → β i ⊢ ∀ (x_1 : ι), x_1 ∈ univ → ¬x x_1 ≠ x x_1 [PROOFSTEP] exact fun _ _ H => H rfl [GOAL] α : Type u_1 ι : Type u_2 β : ι → Type u_3 inst✝² : Fintype ι inst✝¹ : (i : ι) → DecidableEq (β i) γ : ι → Type u_4 inst✝ : (i : ι) → DecidableEq (γ i) x y : (i : ι) → β i ⊢ hammingDist x y = hammingDist y x [PROOFSTEP] simp_rw [hammingDist, ne_comm] [GOAL] α : Type u_1 ι : Type u_2 β : ι → Type u_3 inst✝² : Fintype ι inst✝¹ : (i : ι) → DecidableEq (β i) γ : ι → Type u_4 inst✝ : (i : ι) → DecidableEq (γ i) x y z : (i : ι) → β i ⊢ hammingDist x z ≤ hammingDist x y + hammingDist y z [PROOFSTEP] classical unfold hammingDist refine le_trans (card_mono ?_) (card_union_le _ _) rw [← filter_or] exact monotone_filter_right _ fun i h ↦ (h.ne_or_ne _).imp_right Ne.symm [GOAL] α : Type u_1 ι : Type u_2 β : ι → Type u_3 inst✝² : Fintype ι inst✝¹ : (i : ι) → DecidableEq (β i) γ : ι → Type u_4 inst✝ : (i : ι) → DecidableEq (γ i) x y z : (i : ι) → β i ⊢ hammingDist x z ≤ hammingDist x y + hammingDist y z [PROOFSTEP] unfold hammingDist [GOAL] α : Type u_1 ι : Type u_2 β : ι → Type u_3 inst✝² : Fintype ι inst✝¹ : (i : ι) → DecidableEq (β i) γ : ι → Type u_4 inst✝ : (i : ι) → DecidableEq (γ i) x y z : (i : ι) → β i ⊢ card (filter (fun i => x i ≠ z i) univ) ≤ card (filter (fun i => x i ≠ y i) univ) + card (filter (fun i => y i ≠ z i) univ) [PROOFSTEP] refine le_trans (card_mono ?_) (card_union_le _ _) [GOAL] α : Type u_1 ι : Type u_2 β : ι → Type u_3 inst✝² : Fintype ι inst✝¹ : (i : ι) → DecidableEq (β i) γ : ι → Type u_4 inst✝ : (i : ι) → DecidableEq (γ i) x y z : (i : ι) → β i ⊢ filter (fun i => x i ≠ z i) univ ≤ filter (fun i => x i ≠ y i) univ ∪ filter (fun i => y i ≠ z i) univ [PROOFSTEP] rw [← filter_or] [GOAL] α : Type u_1 ι : Type u_2 β : ι → Type u_3 inst✝² : Fintype ι inst✝¹ : (i : ι) → DecidableEq (β i) γ : ι → Type u_4 inst✝ : (i : ι) → DecidableEq (γ i) x y z : (i : ι) → β i ⊢ filter (fun i => x i ≠ z i) univ ≤ filter (fun a => x a ≠ y a ∨ y a ≠ z a) univ [PROOFSTEP] exact monotone_filter_right _ fun i h ↦ (h.ne_or_ne _).imp_right Ne.symm [GOAL] α : Type u_1 ι : Type u_2 β : ι → Type u_3 inst✝² : Fintype ι inst✝¹ : (i : ι) → DecidableEq (β i) γ : ι → Type u_4 inst✝ : (i : ι) → DecidableEq (γ i) x y z : (i : ι) → β i ⊢ hammingDist x y ≤ hammingDist z x + hammingDist z y [PROOFSTEP] rw [hammingDist_comm z] [GOAL] α : Type u_1 ι : Type u_2 β : ι → Type u_3 inst✝² : Fintype ι inst✝¹ : (i : ι) → DecidableEq (β i) γ : ι → Type u_4 inst✝ : (i : ι) → DecidableEq (γ i) x y z : (i : ι) → β i ⊢ hammingDist x y ≤ hammingDist x z + hammingDist z y [PROOFSTEP] exact hammingDist_triangle _ _ _ [GOAL] α : Type u_1 ι : Type u_2 β : ι → Type u_3 inst✝² : Fintype ι inst✝¹ : (i : ι) → DecidableEq (β i) γ : ι → Type u_4 inst✝ : (i : ι) → DecidableEq (γ i) x y z : (i : ι) → β i ⊢ hammingDist x y ≤ hammingDist x z + hammingDist y z [PROOFSTEP] rw [hammingDist_comm y] [GOAL] α : Type u_1 ι : Type u_2 β : ι → Type u_3 inst✝² : Fintype ι inst✝¹ : (i : ι) → DecidableEq (β i) γ : ι → Type u_4 inst✝ : (i : ι) → DecidableEq (γ i) x y z : (i : ι) → β i ⊢ hammingDist x y ≤ hammingDist x z + hammingDist z y [PROOFSTEP] exact hammingDist_triangle _ _ _ [GOAL] α : Type u_1 ι : Type u_2 β : ι → Type u_3 inst✝² : Fintype ι inst✝¹ : (i : ι) → DecidableEq (β i) γ : ι → Type u_4 inst✝ : (i : ι) → DecidableEq (γ i) ⊢ swap hammingDist = hammingDist [PROOFSTEP] funext x y [GOAL] case h.h α : Type u_1 ι : Type u_2 β : ι → Type u_3 inst✝² : Fintype ι inst✝¹ : (i : ι) → DecidableEq (β i) γ : ι → Type u_4 inst✝ : (i : ι) → DecidableEq (γ i) x y : (i : ι) → β i ⊢ swap hammingDist x y = hammingDist x y [PROOFSTEP] exact hammingDist_comm _ _ [GOAL] α : Type u_1 ι : Type u_2 β : ι → Type u_3 inst✝² : Fintype ι inst✝¹ : (i : ι) → DecidableEq (β i) γ : ι → Type u_4 inst✝ : (i : ι) → DecidableEq (γ i) x y : (i : ι) → β i ⊢ hammingDist x y = 0 → x = y [PROOFSTEP] simp_rw [hammingDist, card_eq_zero, filter_eq_empty_iff, Classical.not_not, funext_iff, mem_univ, forall_true_left, imp_self] [GOAL] α : Type u_1 ι : Type u_2 β : ι → Type u_3 inst✝² : Fintype ι inst✝¹ : (i : ι) → DecidableEq (β i) γ : ι → Type u_4 inst✝ : (i : ι) → DecidableEq (γ i) x y : (i : ι) → β i H : x = y ⊢ hammingDist x y = 0 [PROOFSTEP] rw [H] [GOAL] α : Type u_1 ι : Type u_2 β : ι → Type u_3 inst✝² : Fintype ι inst✝¹ : (i : ι) → DecidableEq (β i) γ : ι → Type u_4 inst✝ : (i : ι) → DecidableEq (γ i) x y : (i : ι) → β i H : x = y ⊢ hammingDist y y = 0 [PROOFSTEP] exact hammingDist_self _ [GOAL] α : Type u_1 ι : Type u_2 β : ι → Type u_3 inst✝² : Fintype ι inst✝¹ : (i : ι) → DecidableEq (β i) γ : ι → Type u_4 inst✝ : (i : ι) → DecidableEq (γ i) x y : (i : ι) → β i ⊢ 0 = hammingDist x y ↔ x = y [PROOFSTEP] rw [eq_comm, hammingDist_eq_zero] [GOAL] α : Type u_1 ι : Type u_2 β : ι → Type u_3 inst✝² : Fintype ι inst✝¹ : (i : ι) → DecidableEq (β i) γ : ι → Type u_4 inst✝ : (i : ι) → DecidableEq (γ i) x y : (i : ι) → β i ⊢ 0 < hammingDist x y ↔ x ≠ y [PROOFSTEP] rw [← hammingDist_ne_zero, iff_not_comm, not_lt, le_zero_iff] [GOAL] α : Type u_1 ι : Type u_2 β : ι → Type u_3 inst✝² : Fintype ι inst✝¹ : (i : ι) → DecidableEq (β i) γ : ι → Type u_4 inst✝ : (i : ι) → DecidableEq (γ i) x y : (i : ι) → β i ⊢ hammingDist x y < 1 ↔ x = y [PROOFSTEP] rw [Nat.lt_one_iff, hammingDist_eq_zero] [GOAL] α : Type u_1 ι : Type u_2 β : ι → Type u_3 inst✝⁴ : Fintype ι inst✝³ : (i : ι) → DecidableEq (β i) γ : ι → Type u_4 inst✝² : (i : ι) → DecidableEq (γ i) inst✝¹ : (i : ι) → Zero (β i) inst✝ : (i : ι) → Zero (γ i) x : (i : ι) → β i ⊢ hammingDist 0 x = hammingNorm x [PROOFSTEP] rw [hammingDist_comm, hammingDist_zero_right] [GOAL] α : Type u_1 ι : Type u_2 β : ι → Type u_3 inst✝⁴ : Fintype ι inst✝³ : (i : ι) → DecidableEq (β i) γ : ι → Type u_4 inst✝² : (i : ι) → DecidableEq (γ i) inst✝¹ : (i : ι) → Zero (β i) inst✝ : (i : ι) → Zero (γ i) f : (i : ι) → γ i → β i x : (i : ι) → γ i hf : ∀ (i : ι), f i 0 = 0 ⊢ (hammingNorm fun i => f i (x i)) ≤ hammingNorm x [PROOFSTEP] simpa only [← hammingDist_zero_right, hf] using hammingDist_comp_le_hammingDist f (y := fun _ ↦ 0) [GOAL] α : Type u_1 ι : Type u_2 β : ι → Type u_3 inst✝⁴ : Fintype ι inst✝³ : (i : ι) → DecidableEq (β i) γ : ι → Type u_4 inst✝² : (i : ι) → DecidableEq (γ i) inst✝¹ : (i : ι) → Zero (β i) inst✝ : (i : ι) → Zero (γ i) f : (i : ι) → γ i → β i x : (i : ι) → γ i hf₁ : ∀ (i : ι), Injective (f i) hf₂ : ∀ (i : ι), f i 0 = 0 ⊢ (hammingNorm fun i => f i (x i)) = hammingNorm x [PROOFSTEP] simpa only [← hammingDist_zero_right, hf₂] using hammingDist_comp f hf₁ (y := fun _ ↦ 0) [GOAL] α : Type u_1 ι : Type u_2 β : ι → Type u_3 inst✝⁶ : Fintype ι inst✝⁵ : (i : ι) → DecidableEq (β i) γ : ι → Type u_4 inst✝⁴ : (i : ι) → DecidableEq (γ i) inst✝³ : (i : ι) → Zero (β i) inst✝² : (i : ι) → Zero (γ i) inst✝¹ : Zero α inst✝ : (i : ι) → SMulWithZero α (β i) k : α x : (i : ι) → β i i : ι ⊢ (fun i c => k • c) i 0 = 0 [PROOFSTEP] simp_rw [smul_zero] [GOAL] α : Type u_1 ι : Type u_2 β : ι → Type u_3 inst✝⁶ : Fintype ι inst✝⁵ : (i : ι) → DecidableEq (β i) γ : ι → Type u_4 inst✝⁴ : (i : ι) → DecidableEq (γ i) inst✝³ : (i : ι) → Zero (β i) inst✝² : (i : ι) → Zero (γ i) inst✝¹ : Zero α inst✝ : (i : ι) → SMulWithZero α (β i) k : α hk : ∀ (i : ι), IsSMulRegular (β i) k x : (i : ι) → β i i : ι ⊢ (fun i c => k • c) i 0 = 0 [PROOFSTEP] simp_rw [smul_zero] [GOAL] α : Type u_1 ι : Type u_2 β : ι → Type u_3 inst✝³ : Fintype ι inst✝² : (i : ι) → DecidableEq (β i) γ : ι → Type u_4 inst✝¹ : (i : ι) → DecidableEq (γ i) inst✝ : (i : ι) → AddGroup (β i) x y : (i : ι) → β i ⊢ hammingDist x y = hammingNorm (x - y) [PROOFSTEP] simp_rw [hammingNorm, hammingDist, Pi.sub_apply, sub_ne_zero] [GOAL] α : Type u_1 ι : Type u_2 β : ι → Type u_3 inst✝¹ : Fintype ι inst✝ : (i : ι) → DecidableEq (β i) ⊢ ∀ (x : Hamming β), dist x x = 0 [PROOFSTEP] push_cast [GOAL] α : Type u_1 ι : Type u_2 β : ι → Type u_3 inst✝¹ : Fintype ι inst✝ : (i : ι) → DecidableEq (β i) ⊢ ∀ (x : Hamming β), ↑(hammingDist (↑ofHamming x) (↑ofHamming x)) = 0 [PROOFSTEP] exact_mod_cast hammingDist_self [GOAL] α : Type u_1 ι : Type u_2 β : ι → Type u_3 inst✝¹ : Fintype ι inst✝ : (i : ι) → DecidableEq (β i) ⊢ ∀ (x y : Hamming β), dist x y = dist y x [PROOFSTEP] push_cast [GOAL] α : Type u_1 ι : Type u_2 β : ι → Type u_3 inst✝¹ : Fintype ι inst✝ : (i : ι) → DecidableEq (β i) ⊢ ∀ (x y : Hamming β), ↑(hammingDist (↑ofHamming x) (↑ofHamming y)) = ↑(hammingDist (↑ofHamming y) (↑ofHamming x)) [PROOFSTEP] exact_mod_cast hammingDist_comm [GOAL] α : Type u_1 ι : Type u_2 β : ι → Type u_3 inst✝¹ : Fintype ι inst✝ : (i : ι) → DecidableEq (β i) ⊢ ∀ (x y z : Hamming β), dist x z ≤ dist x y + dist y z [PROOFSTEP] push_cast [GOAL] α : Type u_1 ι : Type u_2 β : ι → Type u_3 inst✝¹ : Fintype ι inst✝ : (i : ι) → DecidableEq (β i) ⊢ ∀ (x y z : Hamming β), ↑(hammingDist (↑ofHamming x) (↑ofHamming z)) ≤ ↑(hammingDist (↑ofHamming x) (↑ofHamming y)) + ↑(hammingDist (↑ofHamming y) (↑ofHamming z)) [PROOFSTEP] exact_mod_cast hammingDist_triangle [GOAL] α : Type u_1 ι : Type u_2 β : ι → Type u_3 inst✝¹ : Fintype ι inst✝ : (i : ι) → DecidableEq (β i) x✝¹ x✝ : Hamming β ⊢ (fun x y => ↑{ val := dist x y, property := (_ : 0 ≤ dist x y) }) x✝¹ x✝ = ENNReal.ofReal (dist x✝¹ x✝) [PROOFSTEP] exact ENNReal.coe_nnreal_eq _ [GOAL] α : Type u_1 ι : Type u_2 β : ι → Type u_3 inst✝¹ : Fintype ι inst✝ : (i : ι) → DecidableEq (β i) s : Set (Hamming β × Hamming β) ⊢ s ∈ uniformity (Hamming β) ↔ ∃ ε, ε > 0 ∧ ∀ {a b : Hamming β}, dist a b < ε → (a, b) ∈ s [PROOFSTEP] push_cast [GOAL] α : Type u_1 ι : Type u_2 β : ι → Type u_3 inst✝¹ : Fintype ι inst✝ : (i : ι) → DecidableEq (β i) s : Set (Hamming β × Hamming β) ⊢ s ∈ uniformity (Hamming β) ↔ ∃ ε, ε > 0 ∧ ∀ {a b : Hamming β}, ↑(hammingDist (↑ofHamming a) (↑ofHamming b)) < ε → (a, b) ∈ s [PROOFSTEP] constructor [GOAL] case mp α : Type u_1 ι : Type u_2 β : ι → Type u_3 inst✝¹ : Fintype ι inst✝ : (i : ι) → DecidableEq (β i) s : Set (Hamming β × Hamming β) ⊢ s ∈ uniformity (Hamming β) → ∃ ε, ε > 0 ∧ ∀ {a b : Hamming β}, ↑(hammingDist (↑ofHamming a) (↑ofHamming b)) < ε → (a, b) ∈ s [PROOFSTEP] refine' fun hs => ⟨1, zero_lt_one, fun hab => _⟩ [GOAL] case mp α : Type u_1 ι : Type u_2 β : ι → Type u_3 inst✝¹ : Fintype ι inst✝ : (i : ι) → DecidableEq (β i) s : Set (Hamming β × Hamming β) hs : s ∈ uniformity (Hamming β) a✝ b✝ : Hamming β hab : ↑(hammingDist (↑ofHamming a✝) (↑ofHamming b✝)) < 1 ⊢ (a✝, b✝) ∈ s [PROOFSTEP] rw_mod_cast [hammingDist_lt_one] at hab [GOAL] case mp α : Type u_1 ι : Type u_2 β : ι → Type u_3 inst✝¹ : Fintype ι inst✝ : (i : ι) → DecidableEq (β i) s : Set (Hamming β × Hamming β) hs : s ∈ uniformity (Hamming β) a✝ b✝ : Hamming β hab : ↑ofHamming a✝ = ↑ofHamming b✝ ⊢ (a✝, b✝) ∈ s [PROOFSTEP] rw [ofHamming_inj, ← mem_idRel] at hab [GOAL] case mp α : Type u_1 ι : Type u_2 β : ι → Type u_3 inst✝¹ : Fintype ι inst✝ : (i : ι) → DecidableEq (β i) s : Set (Hamming β × Hamming β) hs : s ∈ uniformity (Hamming β) a✝ b✝ : Hamming β hab : (a✝, b✝) ∈ idRel ⊢ (a✝, b✝) ∈ s [PROOFSTEP] exact hs hab [GOAL] case mpr α : Type u_1 ι : Type u_2 β : ι → Type u_3 inst✝¹ : Fintype ι inst✝ : (i : ι) → DecidableEq (β i) s : Set (Hamming β × Hamming β) ⊢ (∃ ε, ε > 0 ∧ ∀ {a b : Hamming β}, ↑(hammingDist (↑ofHamming a) (↑ofHamming b)) < ε → (a, b) ∈ s) → s ∈ uniformity (Hamming β) [PROOFSTEP] rintro ⟨_, hε, hs⟩ ⟨_, _⟩ hab [GOAL] case mpr.intro.intro.mk α : Type u_1 ι : Type u_2 β : ι → Type u_3 inst✝¹ : Fintype ι inst✝ : (i : ι) → DecidableEq (β i) s : Set (Hamming β × Hamming β) w✝ : ℝ hε : w✝ > 0 hs : ∀ {a b : Hamming β}, ↑(hammingDist (↑ofHamming a) (↑ofHamming b)) < w✝ → (a, b) ∈ s fst✝ snd✝ : Hamming β hab : (fst✝, snd✝) ∈ idRel ⊢ (fst✝, snd✝) ∈ s [PROOFSTEP] rw [mem_idRel] at hab [GOAL] case mpr.intro.intro.mk α : Type u_1 ι : Type u_2 β : ι → Type u_3 inst✝¹ : Fintype ι inst✝ : (i : ι) → DecidableEq (β i) s : Set (Hamming β × Hamming β) w✝ : ℝ hε : w✝ > 0 hs : ∀ {a b : Hamming β}, ↑(hammingDist (↑ofHamming a) (↑ofHamming b)) < w✝ → (a, b) ∈ s fst✝ snd✝ : Hamming β hab : fst✝ = snd✝ ⊢ (fst✝, snd✝) ∈ s [PROOFSTEP] rw [hab] [GOAL] case mpr.intro.intro.mk α : Type u_1 ι : Type u_2 β : ι → Type u_3 inst✝¹ : Fintype ι inst✝ : (i : ι) → DecidableEq (β i) s : Set (Hamming β × Hamming β) w✝ : ℝ hε : w✝ > 0 hs : ∀ {a b : Hamming β}, ↑(hammingDist (↑ofHamming a) (↑ofHamming b)) < w✝ → (a, b) ∈ s fst✝ snd✝ : Hamming β hab : fst✝ = snd✝ ⊢ (snd✝, snd✝) ∈ s [PROOFSTEP] refine' hs (lt_of_eq_of_lt _ hε) [GOAL] case mpr.intro.intro.mk α : Type u_1 ι : Type u_2 β : ι → Type u_3 inst✝¹ : Fintype ι inst✝ : (i : ι) → DecidableEq (β i) s : Set (Hamming β × Hamming β) w✝ : ℝ hε : w✝ > 0 hs : ∀ {a b : Hamming β}, ↑(hammingDist (↑ofHamming a) (↑ofHamming b)) < w✝ → (a, b) ∈ s fst✝ snd✝ : Hamming β hab : fst✝ = snd✝ ⊢ ↑(hammingDist (↑ofHamming snd✝) (↑ofHamming snd✝)) = 0 [PROOFSTEP] exact_mod_cast hammingDist_self _ [GOAL] α : Type u_1 ι : Type u_2 β : ι → Type u_3 inst✝¹ : Fintype ι inst✝ : (i : ι) → DecidableEq (β i) ⊢ (Bornology.cobounded (Hamming β)).sets = {s | ∃ C, ∀ (x : Hamming β), x ∈ sᶜ → ∀ (y : Hamming β), y ∈ sᶜ → dist x y ≤ C} [PROOFSTEP] ext [GOAL] case h α : Type u_1 ι : Type u_2 β : ι → Type u_3 inst✝¹ : Fintype ι inst✝ : (i : ι) → DecidableEq (β i) x✝ : Set (Hamming β) ⊢ x✝ ∈ (Bornology.cobounded (Hamming β)).sets ↔ x✝ ∈ {s | ∃ C, ∀ (x : Hamming β), x ∈ sᶜ → ∀ (y : Hamming β), y ∈ sᶜ → dist x y ≤ C} [PROOFSTEP] push_cast [GOAL] case h α : Type u_1 ι : Type u_2 β : ι → Type u_3 inst✝¹ : Fintype ι inst✝ : (i : ι) → DecidableEq (β i) x✝ : Set (Hamming β) ⊢ x✝ ∈ (Bornology.cobounded (Hamming β)).sets ↔ x✝ ∈ {s | ∃ C, ∀ (x : Hamming β), x ∈ sᶜ → ∀ (y : Hamming β), y ∈ sᶜ → ↑(hammingDist (↑ofHamming x) (↑ofHamming y)) ≤ C} [PROOFSTEP] refine' iff_of_true (Filter.mem_sets.mpr Filter.mem_bot) ⟨Fintype.card ι, fun _ _ _ _ => _⟩ [GOAL] case h α : Type u_1 ι : Type u_2 β : ι → Type u_3 inst✝¹ : Fintype ι inst✝ : (i : ι) → DecidableEq (β i) x✝⁴ : Set (Hamming β) x✝³ : Hamming β x✝² : x✝³ ∈ x✝⁴ᶜ x✝¹ : Hamming β x✝ : x✝¹ ∈ x✝⁴ᶜ ⊢ ↑(hammingDist (↑ofHamming x✝³) (↑ofHamming x✝¹)) ≤ ↑(Fintype.card ι) [PROOFSTEP] exact_mod_cast hammingDist_le_card_fintype [GOAL] α : Type u_1 ι : Type u_2 β : ι → Type u_3 inst✝² : Fintype ι inst✝¹ : (i : ι) → DecidableEq (β i) inst✝ : (i : ι) → AddCommGroup (β i) ⊢ ∀ (x y : Hamming β), dist x y = ‖x - y‖ [PROOFSTEP] push_cast [GOAL] α : Type u_1 ι : Type u_2 β : ι → Type u_3 inst✝² : Fintype ι inst✝¹ : (i : ι) → DecidableEq (β i) inst✝ : (i : ι) → AddCommGroup (β i) ⊢ ∀ (x y : Hamming β), ↑(hammingDist (↑ofHamming x) (↑ofHamming y)) = ↑(hammingNorm (↑ofHamming (x - y))) [PROOFSTEP] exact_mod_cast hammingDist_eq_hammingNorm
{"mathlib_filename": "Mathlib.InformationTheory.Hamming", "llama_tokens": 8470}
[GOAL] α β : FinBddDistLatCat e : ↑α.toBddDistLatCat.toDistLatCat ≃o ↑β.toBddDistLatCat.toDistLatCat ⊢ ((let src := { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toBddDistLatCat.toDistLatCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α.toBddDistLatCat.toDistLatCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }; { toLatticeHom := { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toBddDistLatCat.toDistLatCat), SupHom.toFun { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toBddDistLatCat.toDistLatCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α.toBddDistLatCat.toDistLatCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom (a ⊔ b) = SupHom.toFun { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toBddDistLatCat.toDistLatCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α.toBddDistLatCat.toDistLatCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom a ⊔ SupHom.toFun { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toBddDistLatCat.toDistLatCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α.toBddDistLatCat.toDistLatCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom b) }, map_inf' := (_ : ∀ (a b : ↑α.toBddDistLatCat.toDistLatCat), SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) }, map_top' := (_ : ↑e ⊤ = ⊤), map_bot' := (_ : ↑e ⊥ = ⊥) }) ≫ let src := { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toBddDistLatCat.toDistLatCat), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β.toBddDistLatCat.toDistLatCat), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }; { toLatticeHom := { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toBddDistLatCat.toDistLatCat), SupHom.toFun { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toBddDistLatCat.toDistLatCat), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β.toBddDistLatCat.toDistLatCat), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom (a ⊔ b) = SupHom.toFun { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toBddDistLatCat.toDistLatCat), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β.toBddDistLatCat.toDistLatCat), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom a ⊔ SupHom.toFun { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toBddDistLatCat.toDistLatCat), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β.toBddDistLatCat.toDistLatCat), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom b) }, map_inf' := (_ : ∀ (a b : ↑β.toBddDistLatCat.toDistLatCat), SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) }, map_top' := (_ : ↑(OrderIso.symm e) ⊤ = ⊤), map_bot' := (_ : ↑(OrderIso.symm e) ⊥ = ⊥) }) = 𝟙 α [PROOFSTEP] ext [GOAL] case w α β : FinBddDistLatCat e : ↑α.toBddDistLatCat.toDistLatCat ≃o ↑β.toBddDistLatCat.toDistLatCat x✝ : (forget FinBddDistLatCat).obj α ⊢ ↑((let src := { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toBddDistLatCat.toDistLatCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α.toBddDistLatCat.toDistLatCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }; { toLatticeHom := { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toBddDistLatCat.toDistLatCat), SupHom.toFun { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toBddDistLatCat.toDistLatCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α.toBddDistLatCat.toDistLatCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom (a ⊔ b) = SupHom.toFun { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toBddDistLatCat.toDistLatCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α.toBddDistLatCat.toDistLatCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom a ⊔ SupHom.toFun { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toBddDistLatCat.toDistLatCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α.toBddDistLatCat.toDistLatCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom b) }, map_inf' := (_ : ∀ (a b : ↑α.toBddDistLatCat.toDistLatCat), SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) }, map_top' := (_ : ↑e ⊤ = ⊤), map_bot' := (_ : ↑e ⊥ = ⊥) }) ≫ let src := { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toBddDistLatCat.toDistLatCat), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β.toBddDistLatCat.toDistLatCat), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }; { toLatticeHom := { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toBddDistLatCat.toDistLatCat), SupHom.toFun { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toBddDistLatCat.toDistLatCat), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β.toBddDistLatCat.toDistLatCat), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom (a ⊔ b) = SupHom.toFun { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toBddDistLatCat.toDistLatCat), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β.toBddDistLatCat.toDistLatCat), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom a ⊔ SupHom.toFun { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toBddDistLatCat.toDistLatCat), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β.toBddDistLatCat.toDistLatCat), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom b) }, map_inf' := (_ : ∀ (a b : ↑β.toBddDistLatCat.toDistLatCat), SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) }, map_top' := (_ : ↑(OrderIso.symm e) ⊤ = ⊤), map_bot' := (_ : ↑(OrderIso.symm e) ⊥ = ⊥) }) x✝ = ↑(𝟙 α) x✝ [PROOFSTEP] exact e.symm_apply_apply _ [GOAL] α β : FinBddDistLatCat e : ↑α.toBddDistLatCat.toDistLatCat ≃o ↑β.toBddDistLatCat.toDistLatCat ⊢ ((let src := { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toBddDistLatCat.toDistLatCat), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β.toBddDistLatCat.toDistLatCat), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }; { toLatticeHom := { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toBddDistLatCat.toDistLatCat), SupHom.toFun { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toBddDistLatCat.toDistLatCat), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β.toBddDistLatCat.toDistLatCat), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom (a ⊔ b) = SupHom.toFun { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toBddDistLatCat.toDistLatCat), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β.toBddDistLatCat.toDistLatCat), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom a ⊔ SupHom.toFun { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toBddDistLatCat.toDistLatCat), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β.toBddDistLatCat.toDistLatCat), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom b) }, map_inf' := (_ : ∀ (a b : ↑β.toBddDistLatCat.toDistLatCat), SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) }, map_top' := (_ : ↑(OrderIso.symm e) ⊤ = ⊤), map_bot' := (_ : ↑(OrderIso.symm e) ⊥ = ⊥) }) ≫ let src := { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toBddDistLatCat.toDistLatCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α.toBddDistLatCat.toDistLatCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }; { toLatticeHom := { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toBddDistLatCat.toDistLatCat), SupHom.toFun { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toBddDistLatCat.toDistLatCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α.toBddDistLatCat.toDistLatCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom (a ⊔ b) = SupHom.toFun { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toBddDistLatCat.toDistLatCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α.toBddDistLatCat.toDistLatCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom a ⊔ SupHom.toFun { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toBddDistLatCat.toDistLatCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α.toBddDistLatCat.toDistLatCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom b) }, map_inf' := (_ : ∀ (a b : ↑α.toBddDistLatCat.toDistLatCat), SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) }, map_top' := (_ : ↑e ⊤ = ⊤), map_bot' := (_ : ↑e ⊥ = ⊥) }) = 𝟙 β [PROOFSTEP] ext [GOAL] case w α β : FinBddDistLatCat e : ↑α.toBddDistLatCat.toDistLatCat ≃o ↑β.toBddDistLatCat.toDistLatCat x✝ : (forget FinBddDistLatCat).obj β ⊢ ↑((let src := { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toBddDistLatCat.toDistLatCat), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β.toBddDistLatCat.toDistLatCat), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }; { toLatticeHom := { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toBddDistLatCat.toDistLatCat), SupHom.toFun { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toBddDistLatCat.toDistLatCat), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β.toBddDistLatCat.toDistLatCat), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom (a ⊔ b) = SupHom.toFun { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toBddDistLatCat.toDistLatCat), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β.toBddDistLatCat.toDistLatCat), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom a ⊔ SupHom.toFun { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β.toBddDistLatCat.toDistLatCat), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β.toBddDistLatCat.toDistLatCat), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }.toSupHom b) }, map_inf' := (_ : ∀ (a b : ↑β.toBddDistLatCat.toDistLatCat), SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) }, map_top' := (_ : ↑(OrderIso.symm e) ⊤ = ⊤), map_bot' := (_ : ↑(OrderIso.symm e) ⊥ = ⊥) }) ≫ let src := { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toBddDistLatCat.toDistLatCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α.toBddDistLatCat.toDistLatCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }; { toLatticeHom := { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toBddDistLatCat.toDistLatCat), SupHom.toFun { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toBddDistLatCat.toDistLatCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α.toBddDistLatCat.toDistLatCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom (a ⊔ b) = SupHom.toFun { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toBddDistLatCat.toDistLatCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α.toBddDistLatCat.toDistLatCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom a ⊔ SupHom.toFun { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α.toBddDistLatCat.toDistLatCat), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α.toBddDistLatCat.toDistLatCat), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }.toSupHom b) }, map_inf' := (_ : ∀ (a b : ↑α.toBddDistLatCat.toDistLatCat), SupHom.toFun src.toSupHom (a ⊓ b) = SupHom.toFun src.toSupHom a ⊓ SupHom.toFun src.toSupHom b) }, map_top' := (_ : ↑e ⊤ = ⊤), map_bot' := (_ : ↑e ⊥ = ⊥) }) x✝ = ↑(𝟙 β) x✝ [PROOFSTEP] exact e.apply_symm_apply _
{"mathlib_filename": "Mathlib.Order.Category.FinBddDistLatCat", "llama_tokens": 8337}
[GOAL] α β : PreordCat e : ↑α ≃o ↑β ⊢ ↑e ≫ ↑(OrderIso.symm e) = 𝟙 α [PROOFSTEP] ext x [GOAL] case w α β : PreordCat e : ↑α ≃o ↑β x : (forget PreordCat).obj α ⊢ ↑(↑e ≫ ↑(OrderIso.symm e)) x = ↑(𝟙 α) x [PROOFSTEP] exact e.symm_apply_apply x [GOAL] α β : PreordCat e : ↑α ≃o ↑β ⊢ ↑(OrderIso.symm e) ≫ ↑e = 𝟙 β [PROOFSTEP] ext x [GOAL] case w α β : PreordCat e : ↑α ≃o ↑β x : (forget PreordCat).obj β ⊢ ↑(↑(OrderIso.symm e) ≫ ↑e) x = ↑(𝟙 β) x [PROOFSTEP] exact e.apply_symm_apply x [GOAL] X✝ Y✝ : PreordCat a₁✝ a₂✝ : X✝ ⟶ Y✝ h : preordCatToCat.map a₁✝ = preordCatToCat.map a₂✝ ⊢ a₁✝ = a₂✝ [PROOFSTEP] ext x [GOAL] case w X✝ Y✝ : PreordCat a₁✝ a₂✝ : X✝ ⟶ Y✝ h : preordCatToCat.map a₁✝ = preordCatToCat.map a₂✝ x : (forget PreordCat).obj X✝ ⊢ ↑a₁✝ x = ↑a₂✝ x [PROOFSTEP] exact Functor.congr_obj h x
{"mathlib_filename": "Mathlib.Order.Category.PreordCat", "llama_tokens": 521}
[GOAL] 𝕜 : Type u_1 A : Type u_2 inst✝² : Field 𝕜 inst✝¹ : Ring A inst✝ : Algebra 𝕜 A a : A ⊢ annIdealGenerator 𝕜 a = 0 ↔ annIdeal 𝕜 a = ⊥ [PROOFSTEP] simp only [annIdealGenerator, mul_eq_zero, IsPrincipal.eq_bot_iff_generator_eq_zero, Polynomial.C_eq_zero, inv_eq_zero, Polynomial.leadingCoeff_eq_zero, or_self_iff] [GOAL] 𝕜 : Type u_1 A : Type u_2 inst✝² : Field 𝕜 inst✝¹ : Ring A inst✝ : Algebra 𝕜 A a : A ⊢ Ideal.span {annIdealGenerator 𝕜 a} = annIdeal 𝕜 a [PROOFSTEP] by_cases h : annIdealGenerator 𝕜 a = 0 [GOAL] case pos 𝕜 : Type u_1 A : Type u_2 inst✝² : Field 𝕜 inst✝¹ : Ring A inst✝ : Algebra 𝕜 A a : A h : annIdealGenerator 𝕜 a = 0 ⊢ Ideal.span {annIdealGenerator 𝕜 a} = annIdeal 𝕜 a [PROOFSTEP] rw [h, annIdealGenerator_eq_zero_iff.mp h, Set.singleton_zero, Ideal.span_zero] [GOAL] case neg 𝕜 : Type u_1 A : Type u_2 inst✝² : Field 𝕜 inst✝¹ : Ring A inst✝ : Algebra 𝕜 A a : A h : ¬annIdealGenerator 𝕜 a = 0 ⊢ Ideal.span {annIdealGenerator 𝕜 a} = annIdeal 𝕜 a [PROOFSTEP] rw [annIdealGenerator, Ideal.span_singleton_mul_right_unit, Ideal.span_singleton_generator] [GOAL] case neg.h2 𝕜 : Type u_1 A : Type u_2 inst✝² : Field 𝕜 inst✝¹ : Ring A inst✝ : Algebra 𝕜 A a : A h : ¬annIdealGenerator 𝕜 a = 0 ⊢ IsUnit (↑C (leadingCoeff (IsPrincipal.generator (annIdeal 𝕜 a)))⁻¹) [PROOFSTEP] apply Polynomial.isUnit_C.mpr [GOAL] case neg.h2 𝕜 : Type u_1 A : Type u_2 inst✝² : Field 𝕜 inst✝¹ : Ring A inst✝ : Algebra 𝕜 A a : A h : ¬annIdealGenerator 𝕜 a = 0 ⊢ IsUnit (leadingCoeff (IsPrincipal.generator (annIdeal 𝕜 a)))⁻¹ [PROOFSTEP] apply IsUnit.mk0 [GOAL] case neg.h2.hx 𝕜 : Type u_1 A : Type u_2 inst✝² : Field 𝕜 inst✝¹ : Ring A inst✝ : Algebra 𝕜 A a : A h : ¬annIdealGenerator 𝕜 a = 0 ⊢ (leadingCoeff (IsPrincipal.generator (annIdeal 𝕜 a)))⁻¹ ≠ 0 [PROOFSTEP] apply inv_eq_zero.not.mpr [GOAL] case neg.h2.hx 𝕜 : Type u_1 A : Type u_2 inst✝² : Field 𝕜 inst✝¹ : Ring A inst✝ : Algebra 𝕜 A a : A h : ¬annIdealGenerator 𝕜 a = 0 ⊢ ¬leadingCoeff (IsPrincipal.generator (annIdeal 𝕜 a)) = 0 [PROOFSTEP] apply Polynomial.leadingCoeff_eq_zero.not.mpr [GOAL] case neg.h2.hx 𝕜 : Type u_1 A : Type u_2 inst✝² : Field 𝕜 inst✝¹ : Ring A inst✝ : Algebra 𝕜 A a : A h : ¬annIdealGenerator 𝕜 a = 0 ⊢ ¬IsPrincipal.generator (annIdeal 𝕜 a) = 0 [PROOFSTEP] apply (mul_ne_zero_iff.mp h).1 [GOAL] 𝕜 : Type u_1 A : Type u_2 inst✝² : Field 𝕜 inst✝¹ : Ring A inst✝ : Algebra 𝕜 A p : 𝕜[X] a : A ⊢ p ∈ annIdeal 𝕜 a ↔ ∃ s, p = s • annIdealGenerator 𝕜 a [PROOFSTEP] simp_rw [@eq_comm _ p, ← mem_span_singleton, ← span_singleton_annIdealGenerator 𝕜 a, Ideal.span] [GOAL] 𝕜 : Type u_1 A : Type u_2 inst✝² : Field 𝕜 inst✝¹ : Ring A inst✝ : Algebra 𝕜 A p : 𝕜[X] a : A ⊢ p ∈ annIdeal 𝕜 a ↔ annIdealGenerator 𝕜 a ∣ p [PROOFSTEP] rw [← Ideal.mem_span_singleton, span_singleton_annIdealGenerator] [GOAL] 𝕜 : Type u_1 A : Type u_2 inst✝² : Field 𝕜 inst✝¹ : Ring A inst✝ : Algebra 𝕜 A a : A ⊢ annIdealGenerator 𝕜 a = minpoly 𝕜 a [PROOFSTEP] by_cases h : annIdealGenerator 𝕜 a = 0 [GOAL] case pos 𝕜 : Type u_1 A : Type u_2 inst✝² : Field 𝕜 inst✝¹ : Ring A inst✝ : Algebra 𝕜 A a : A h : annIdealGenerator 𝕜 a = 0 ⊢ annIdealGenerator 𝕜 a = minpoly 𝕜 a [PROOFSTEP] rw [h, minpoly.eq_zero] [GOAL] case pos 𝕜 : Type u_1 A : Type u_2 inst✝² : Field 𝕜 inst✝¹ : Ring A inst✝ : Algebra 𝕜 A a : A h : annIdealGenerator 𝕜 a = 0 ⊢ ¬IsIntegral 𝕜 a [PROOFSTEP] rintro ⟨p, p_monic, hp : aeval a p = 0⟩ [GOAL] case pos.intro.intro 𝕜 : Type u_1 A : Type u_2 inst✝² : Field 𝕜 inst✝¹ : Ring A inst✝ : Algebra 𝕜 A a : A h : annIdealGenerator 𝕜 a = 0 p : 𝕜[X] p_monic : Monic p hp : ↑(aeval a) p = 0 ⊢ False [PROOFSTEP] refine' p_monic.ne_zero (Ideal.mem_bot.mp _) [GOAL] case pos.intro.intro 𝕜 : Type u_1 A : Type u_2 inst✝² : Field 𝕜 inst✝¹ : Ring A inst✝ : Algebra 𝕜 A a : A h : annIdealGenerator 𝕜 a = 0 p : 𝕜[X] p_monic : Monic p hp : ↑(aeval a) p = 0 ⊢ p ∈ ⊥ [PROOFSTEP] simpa only [annIdealGenerator_eq_zero_iff.mp h] using mem_annIdeal_iff_aeval_eq_zero.mpr hp [GOAL] case neg 𝕜 : Type u_1 A : Type u_2 inst✝² : Field 𝕜 inst✝¹ : Ring A inst✝ : Algebra 𝕜 A a : A h : ¬annIdealGenerator 𝕜 a = 0 ⊢ annIdealGenerator 𝕜 a = minpoly 𝕜 a [PROOFSTEP] exact minpoly.unique _ _ (monic_annIdealGenerator _ _ h) (annIdealGenerator_aeval_eq_zero _ _) fun q q_monic hq => degree_annIdealGenerator_le_of_mem a q (mem_annIdeal_iff_aeval_eq_zero.mpr hq) q_monic.ne_zero [GOAL] 𝕜 : Type u_1 A : Type u_2 inst✝² : Field 𝕜 inst✝¹ : Ring A inst✝ : Algebra 𝕜 A a : A p : 𝕜[X] p_monic : Monic p p_gen : Ideal.span {p} = annIdeal 𝕜 a ⊢ annIdealGenerator 𝕜 a = p [PROOFSTEP] by_cases h : p = 0 [GOAL] case pos 𝕜 : Type u_1 A : Type u_2 inst✝² : Field 𝕜 inst✝¹ : Ring A inst✝ : Algebra 𝕜 A a : A p : 𝕜[X] p_monic : Monic p p_gen : Ideal.span {p} = annIdeal 𝕜 a h : p = 0 ⊢ annIdealGenerator 𝕜 a = p [PROOFSTEP] rwa [h, annIdealGenerator_eq_zero_iff, ← p_gen, Ideal.span_singleton_eq_bot.mpr] [GOAL] case neg 𝕜 : Type u_1 A : Type u_2 inst✝² : Field 𝕜 inst✝¹ : Ring A inst✝ : Algebra 𝕜 A a : A p : 𝕜[X] p_monic : Monic p p_gen : Ideal.span {p} = annIdeal 𝕜 a h : ¬p = 0 ⊢ annIdealGenerator 𝕜 a = p [PROOFSTEP] rw [← span_singleton_annIdealGenerator, Ideal.span_singleton_eq_span_singleton] at p_gen [GOAL] case neg 𝕜 : Type u_1 A : Type u_2 inst✝² : Field 𝕜 inst✝¹ : Ring A inst✝ : Algebra 𝕜 A a : A p : 𝕜[X] p_monic : Monic p p_gen : Associated p (annIdealGenerator 𝕜 a) h : ¬p = 0 ⊢ annIdealGenerator 𝕜 a = p [PROOFSTEP] rw [eq_comm] [GOAL] case neg 𝕜 : Type u_1 A : Type u_2 inst✝² : Field 𝕜 inst✝¹ : Ring A inst✝ : Algebra 𝕜 A a : A p : 𝕜[X] p_monic : Monic p p_gen : Associated p (annIdealGenerator 𝕜 a) h : ¬p = 0 ⊢ p = annIdealGenerator 𝕜 a [PROOFSTEP] apply eq_of_monic_of_associated p_monic _ p_gen [GOAL] 𝕜 : Type u_1 A : Type u_2 inst✝² : Field 𝕜 inst✝¹ : Ring A inst✝ : Algebra 𝕜 A a : A p : 𝕜[X] p_monic : Monic p p_gen : Associated p (annIdealGenerator 𝕜 a) h : ¬p = 0 ⊢ Monic (annIdealGenerator 𝕜 a) [PROOFSTEP] apply monic_annIdealGenerator _ _ ((Associated.ne_zero_iff p_gen).mp h)
{"mathlib_filename": "Mathlib.LinearAlgebra.AnnihilatingPolynomial", "llama_tokens": 3037}
[GOAL] R : Type u_1 ι : Type u_2 inst✝³ : Semiring R φ : ι → Type u_3 inst✝² : (i : ι) → AddCommMonoid (φ i) inst✝¹ : (i : ι) → Module R (φ i) inst✝ : DecidableEq ι i i' : ι ⊢ ↑(stdBasis R (fun _x => R) i) 1 i' = if i = i' then 1 else 0 [PROOFSTEP] rw [LinearMap.stdBasis_apply, Function.update_apply, Pi.zero_apply] [GOAL] R : Type u_1 ι : Type u_2 inst✝³ : Semiring R φ : ι → Type u_3 inst✝² : (i : ι) → AddCommMonoid (φ i) inst✝¹ : (i : ι) → Module R (φ i) inst✝ : DecidableEq ι i i' : ι ⊢ (if i' = i then 1 else 0) = if i = i' then 1 else 0 [PROOFSTEP] congr 1 [GOAL] case e_c R : Type u_1 ι : Type u_2 inst✝³ : Semiring R φ : ι → Type u_3 inst✝² : (i : ι) → AddCommMonoid (φ i) inst✝¹ : (i : ι) → Module R (φ i) inst✝ : DecidableEq ι i i' : ι ⊢ (i' = i) = (i = i') [PROOFSTEP] rw [eq_iff_iff, eq_comm] [GOAL] R : Type u_1 ι : Type u_2 inst✝³ : Semiring R φ : ι → Type u_3 inst✝² : (i : ι) → AddCommMonoid (φ i) inst✝¹ : (i : ι) → Module R (φ i) inst✝ : DecidableEq ι i : ι ⊢ stdBasis R φ i = pi (diag i) [PROOFSTEP] ext x j [GOAL] case h.h R : Type u_1 ι : Type u_2 inst✝³ : Semiring R φ : ι → Type u_3 inst✝² : (i : ι) → AddCommMonoid (φ i) inst✝¹ : (i : ι) → Module R (φ i) inst✝ : DecidableEq ι i : ι x : φ i j : ι ⊢ ↑(stdBasis R φ i) x j = ↑(pi (diag i)) x j [PROOFSTEP] convert (update_apply (R := R) (φ := φ) (ι := ι) 0 x i j _).symm [GOAL] case h.e'_2.h.e'_1 R : Type u_1 ι : Type u_2 inst✝³ : Semiring R φ : ι → Type u_3 inst✝² : (i : ι) → AddCommMonoid (φ i) inst✝¹ : (i : ι) → Module R (φ i) inst✝ : DecidableEq ι i : ι x : φ i j : ι ⊢ x = ↑id x [PROOFSTEP] rfl [GOAL] R : Type u_1 ι : Type u_2 inst✝³ : Semiring R φ : ι → Type u_3 inst✝² : (i : ι) → AddCommMonoid (φ i) inst✝¹ : (i : ι) → Module R (φ i) inst✝ : DecidableEq ι i j : ι ⊢ comp (proj i) (stdBasis R φ j) = diag j i [PROOFSTEP] rw [stdBasis_eq_pi_diag, proj_pi] [GOAL] R : Type u_1 ι : Type u_2 inst✝³ : Semiring R φ : ι → Type u_3 inst✝² : (i : ι) → AddCommMonoid (φ i) inst✝¹ : (i : ι) → Module R (φ i) inst✝ : DecidableEq ι I J : Set ι h : Disjoint I J ⊢ ⨆ (i : ι) (_ : i ∈ I), range (stdBasis R φ i) ≤ ⨅ (i : ι) (_ : i ∈ J), ker (proj i) [PROOFSTEP] refine' iSup_le fun i => iSup_le fun hi => range_le_iff_comap.2 _ [GOAL] R : Type u_1 ι : Type u_2 inst✝³ : Semiring R φ : ι → Type u_3 inst✝² : (i : ι) → AddCommMonoid (φ i) inst✝¹ : (i : ι) → Module R (φ i) inst✝ : DecidableEq ι I J : Set ι h : Disjoint I J i : ι hi : i ∈ I ⊢ comap (stdBasis R φ i) (⨅ (i : ι) (_ : i ∈ J), ker (proj i)) = ⊤ [PROOFSTEP] simp only [← ker_comp, eq_top_iff, SetLike.le_def, mem_ker, comap_iInf, mem_iInf] [GOAL] R : Type u_1 ι : Type u_2 inst✝³ : Semiring R φ : ι → Type u_3 inst✝² : (i : ι) → AddCommMonoid (φ i) inst✝¹ : (i : ι) → Module R (φ i) inst✝ : DecidableEq ι I J : Set ι h : Disjoint I J i : ι hi : i ∈ I ⊢ ∀ ⦃x : φ i⦄, x ∈ ⊤ → ∀ (i_1 : ι), i_1 ∈ J → ↑(comp (proj i_1) (stdBasis R φ i)) x = 0 [PROOFSTEP] rintro b - j hj [GOAL] R : Type u_1 ι : Type u_2 inst✝³ : Semiring R φ : ι → Type u_3 inst✝² : (i : ι) → AddCommMonoid (φ i) inst✝¹ : (i : ι) → Module R (φ i) inst✝ : DecidableEq ι I J : Set ι h : Disjoint I J i : ι hi : i ∈ I b : φ i j : ι hj : j ∈ J ⊢ ↑(comp (proj j) (stdBasis R φ i)) b = 0 [PROOFSTEP] rw [proj_stdBasis_ne R φ j i, zero_apply] [GOAL] R : Type u_1 ι : Type u_2 inst✝³ : Semiring R φ : ι → Type u_3 inst✝² : (i : ι) → AddCommMonoid (φ i) inst✝¹ : (i : ι) → Module R (φ i) inst✝ : DecidableEq ι I J : Set ι h : Disjoint I J i : ι hi : i ∈ I b : φ i j : ι hj : j ∈ J ⊢ j ≠ i [PROOFSTEP] rintro rfl [GOAL] R : Type u_1 ι : Type u_2 inst✝³ : Semiring R φ : ι → Type u_3 inst✝² : (i : ι) → AddCommMonoid (φ i) inst✝¹ : (i : ι) → Module R (φ i) inst✝ : DecidableEq ι I J : Set ι h : Disjoint I J j : ι hj : j ∈ J hi : j ∈ I b : φ j ⊢ False [PROOFSTEP] exact h.le_bot ⟨hi, hj⟩ [GOAL] R : Type u_1 ι : Type u_2 inst✝³ : Semiring R φ : ι → Type u_3 inst✝² : (i : ι) → AddCommMonoid (φ i) inst✝¹ : (i : ι) → Module R (φ i) inst✝ : DecidableEq ι I : Finset ι J : Set ι hu : Set.univ ⊆ ↑I ∪ J ⊢ ∀ ⦃x : (i : ι) → φ i⦄, x ∈ ⨅ (i : ι) (_ : i ∈ J), ker (proj i) → x ∈ ⨆ (i : ι) (_ : i ∈ I), range (stdBasis R φ i) [PROOFSTEP] intro b hb [GOAL] R : Type u_1 ι : Type u_2 inst✝³ : Semiring R φ : ι → Type u_3 inst✝² : (i : ι) → AddCommMonoid (φ i) inst✝¹ : (i : ι) → Module R (φ i) inst✝ : DecidableEq ι I : Finset ι J : Set ι hu : Set.univ ⊆ ↑I ∪ J b : (i : ι) → φ i hb : b ∈ ⨅ (i : ι) (_ : i ∈ J), ker (proj i) ⊢ b ∈ ⨆ (i : ι) (_ : i ∈ I), range (stdBasis R φ i) [PROOFSTEP] simp only [mem_iInf, mem_ker, proj_apply] at hb [GOAL] R : Type u_1 ι : Type u_2 inst✝³ : Semiring R φ : ι → Type u_3 inst✝² : (i : ι) → AddCommMonoid (φ i) inst✝¹ : (i : ι) → Module R (φ i) inst✝ : DecidableEq ι I : Finset ι J : Set ι hu : Set.univ ⊆ ↑I ∪ J b : (i : ι) → φ i hb : ∀ (i : ι), i ∈ J → b i = 0 ⊢ b ∈ ⨆ (i : ι) (_ : i ∈ I), range (stdBasis R φ i) [PROOFSTEP] rw [← show (∑ i in I, stdBasis R φ i (b i)) = b by ext i rw [Finset.sum_apply, ← stdBasis_same R φ i (b i)] refine Finset.sum_eq_single i (fun j _ ne => stdBasis_ne _ _ _ _ ne.symm _) ?_ intro hiI rw [stdBasis_same] exact hb _ ((hu trivial).resolve_left hiI)] [GOAL] R : Type u_1 ι : Type u_2 inst✝³ : Semiring R φ : ι → Type u_3 inst✝² : (i : ι) → AddCommMonoid (φ i) inst✝¹ : (i : ι) → Module R (φ i) inst✝ : DecidableEq ι I : Finset ι J : Set ι hu : Set.univ ⊆ ↑I ∪ J b : (i : ι) → φ i hb : ∀ (i : ι), i ∈ J → b i = 0 ⊢ ∑ i in I, ↑(stdBasis R φ i) (b i) = b [PROOFSTEP] ext i [GOAL] case h R : Type u_1 ι : Type u_2 inst✝³ : Semiring R φ : ι → Type u_3 inst✝² : (i : ι) → AddCommMonoid (φ i) inst✝¹ : (i : ι) → Module R (φ i) inst✝ : DecidableEq ι I : Finset ι J : Set ι hu : Set.univ ⊆ ↑I ∪ J b : (i : ι) → φ i hb : ∀ (i : ι), i ∈ J → b i = 0 i : ι ⊢ Finset.sum I (fun i => ↑(stdBasis R φ i) (b i)) i = b i [PROOFSTEP] rw [Finset.sum_apply, ← stdBasis_same R φ i (b i)] [GOAL] case h R : Type u_1 ι : Type u_2 inst✝³ : Semiring R φ : ι → Type u_3 inst✝² : (i : ι) → AddCommMonoid (φ i) inst✝¹ : (i : ι) → Module R (φ i) inst✝ : DecidableEq ι I : Finset ι J : Set ι hu : Set.univ ⊆ ↑I ∪ J b : (i : ι) → φ i hb : ∀ (i : ι), i ∈ J → b i = 0 i : ι ⊢ ∑ c in I, ↑(stdBasis R φ c) (b c) i = ↑(stdBasis R φ i) (b i) i [PROOFSTEP] refine Finset.sum_eq_single i (fun j _ ne => stdBasis_ne _ _ _ _ ne.symm _) ?_ [GOAL] case h R : Type u_1 ι : Type u_2 inst✝³ : Semiring R φ : ι → Type u_3 inst✝² : (i : ι) → AddCommMonoid (φ i) inst✝¹ : (i : ι) → Module R (φ i) inst✝ : DecidableEq ι I : Finset ι J : Set ι hu : Set.univ ⊆ ↑I ∪ J b : (i : ι) → φ i hb : ∀ (i : ι), i ∈ J → b i = 0 i : ι ⊢ ¬i ∈ I → ↑(stdBasis R φ i) (b i) i = 0 [PROOFSTEP] intro hiI [GOAL] case h R : Type u_1 ι : Type u_2 inst✝³ : Semiring R φ : ι → Type u_3 inst✝² : (i : ι) → AddCommMonoid (φ i) inst✝¹ : (i : ι) → Module R (φ i) inst✝ : DecidableEq ι I : Finset ι J : Set ι hu : Set.univ ⊆ ↑I ∪ J b : (i : ι) → φ i hb : ∀ (i : ι), i ∈ J → b i = 0 i : ι hiI : ¬i ∈ I ⊢ ↑(stdBasis R φ i) (b i) i = 0 [PROOFSTEP] rw [stdBasis_same] [GOAL] case h R : Type u_1 ι : Type u_2 inst✝³ : Semiring R φ : ι → Type u_3 inst✝² : (i : ι) → AddCommMonoid (φ i) inst✝¹ : (i : ι) → Module R (φ i) inst✝ : DecidableEq ι I : Finset ι J : Set ι hu : Set.univ ⊆ ↑I ∪ J b : (i : ι) → φ i hb : ∀ (i : ι), i ∈ J → b i = 0 i : ι hiI : ¬i ∈ I ⊢ b i = 0 [PROOFSTEP] exact hb _ ((hu trivial).resolve_left hiI) [GOAL] R : Type u_1 ι : Type u_2 inst✝³ : Semiring R φ : ι → Type u_3 inst✝² : (i : ι) → AddCommMonoid (φ i) inst✝¹ : (i : ι) → Module R (φ i) inst✝ : DecidableEq ι I : Finset ι J : Set ι hu : Set.univ ⊆ ↑I ∪ J b : (i : ι) → φ i hb : ∀ (i : ι), i ∈ J → b i = 0 ⊢ ∑ i in I, ↑(stdBasis R φ i) (b i) ∈ ⨆ (i : ι) (_ : i ∈ I), range (stdBasis R φ i) [PROOFSTEP] exact sum_mem_biSup fun i _ => mem_range_self (stdBasis R φ i) (b i) [GOAL] R : Type u_1 ι : Type u_2 inst✝³ : Semiring R φ : ι → Type u_3 inst✝² : (i : ι) → AddCommMonoid (φ i) inst✝¹ : (i : ι) → Module R (φ i) inst✝ : DecidableEq ι I J : Set ι hd : Disjoint I J hu : Set.univ ⊆ I ∪ J hI : Set.Finite I ⊢ ⨆ (i : ι) (_ : i ∈ I), range (stdBasis R φ i) = ⨅ (i : ι) (_ : i ∈ J), ker (proj i) [PROOFSTEP] refine' le_antisymm (iSup_range_stdBasis_le_iInf_ker_proj _ _ _ _ hd) _ [GOAL] R : Type u_1 ι : Type u_2 inst✝³ : Semiring R φ : ι → Type u_3 inst✝² : (i : ι) → AddCommMonoid (φ i) inst✝¹ : (i : ι) → Module R (φ i) inst✝ : DecidableEq ι I J : Set ι hd : Disjoint I J hu : Set.univ ⊆ I ∪ J hI : Set.Finite I ⊢ ⨅ (i : ι) (_ : i ∈ J), ker (proj i) ≤ ⨆ (i : ι) (_ : i ∈ I), range (stdBasis R φ i) [PROOFSTEP] have : Set.univ ⊆ ↑hI.toFinset ∪ J := by rwa [hI.coe_toFinset] [GOAL] R : Type u_1 ι : Type u_2 inst✝³ : Semiring R φ : ι → Type u_3 inst✝² : (i : ι) → AddCommMonoid (φ i) inst✝¹ : (i : ι) → Module R (φ i) inst✝ : DecidableEq ι I J : Set ι hd : Disjoint I J hu : Set.univ ⊆ I ∪ J hI : Set.Finite I ⊢ Set.univ ⊆ ↑(Set.Finite.toFinset hI) ∪ J [PROOFSTEP] rwa [hI.coe_toFinset] [GOAL] R : Type u_1 ι : Type u_2 inst✝³ : Semiring R φ : ι → Type u_3 inst✝² : (i : ι) → AddCommMonoid (φ i) inst✝¹ : (i : ι) → Module R (φ i) inst✝ : DecidableEq ι I J : Set ι hd : Disjoint I J hu : Set.univ ⊆ I ∪ J hI : Set.Finite I this : Set.univ ⊆ ↑(Set.Finite.toFinset hI) ∪ J ⊢ ⨅ (i : ι) (_ : i ∈ J), ker (proj i) ≤ ⨆ (i : ι) (_ : i ∈ I), range (stdBasis R φ i) [PROOFSTEP] refine' le_trans (iInf_ker_proj_le_iSup_range_stdBasis R φ this) (iSup_mono fun i => _) [GOAL] R : Type u_1 ι : Type u_2 inst✝³ : Semiring R φ : ι → Type u_3 inst✝² : (i : ι) → AddCommMonoid (φ i) inst✝¹ : (i : ι) → Module R (φ i) inst✝ : DecidableEq ι I J : Set ι hd : Disjoint I J hu : Set.univ ⊆ I ∪ J hI : Set.Finite I this : Set.univ ⊆ ↑(Set.Finite.toFinset hI) ∪ J i : ι ⊢ ⨆ (_ : i ∈ Set.Finite.toFinset hI), range (stdBasis R φ i) ≤ ⨆ (_ : i ∈ I), range (stdBasis R φ i) [PROOFSTEP] rw [Set.Finite.mem_toFinset] [GOAL] R : Type u_1 ι : Type u_2 inst✝⁴ : Semiring R φ : ι → Type u_3 inst✝³ : (i : ι) → AddCommMonoid (φ i) inst✝² : (i : ι) → Module R (φ i) inst✝¹ : DecidableEq ι inst✝ : Finite ι ⊢ ⨆ (i : ι), range (stdBasis R φ i) = ⊤ [PROOFSTEP] cases nonempty_fintype ι [GOAL] case intro R : Type u_1 ι : Type u_2 inst✝⁴ : Semiring R φ : ι → Type u_3 inst✝³ : (i : ι) → AddCommMonoid (φ i) inst✝² : (i : ι) → Module R (φ i) inst✝¹ : DecidableEq ι inst✝ : Finite ι val✝ : Fintype ι ⊢ ⨆ (i : ι), range (stdBasis R φ i) = ⊤ [PROOFSTEP] convert top_unique (iInf_emptyset.ge.trans <| iInf_ker_proj_le_iSup_range_stdBasis R φ _) [GOAL] case h.e'_2.h.e'_4.h R : Type u_1 ι : Type u_2 inst✝⁴ : Semiring R φ : ι → Type u_3 inst✝³ : (i : ι) → AddCommMonoid (φ i) inst✝² : (i : ι) → Module R (φ i) inst✝¹ : DecidableEq ι inst✝ : Finite ι val✝ : Fintype ι x✝ : ι ⊢ range (stdBasis R φ x✝) = ⨆ (_ : x✝ ∈ ?intro.convert_1), range (stdBasis R φ x✝) [PROOFSTEP] rename_i i [GOAL] case h.e'_2.h.e'_4.h R : Type u_1 ι : Type u_2 inst✝⁴ : Semiring R φ : ι → Type u_3 inst✝³ : (i : ι) → AddCommMonoid (φ i) inst✝² : (i : ι) → Module R (φ i) inst✝¹ : DecidableEq ι inst✝ : Finite ι val✝ : Fintype ι i : ι ⊢ range (stdBasis R φ i) = ⨆ (_ : i ∈ ?intro.convert_1), range (stdBasis R φ i) [PROOFSTEP] exact ((@iSup_pos _ _ _ fun _ => range <| stdBasis R φ i) <| Finset.mem_univ i).symm [GOAL] case intro.convert_2 R : Type u_1 ι : Type u_2 inst✝⁴ : Semiring R φ : ι → Type u_3 inst✝³ : (i : ι) → AddCommMonoid (φ i) inst✝² : (i : ι) → Module R (φ i) inst✝¹ : DecidableEq ι inst✝ : Finite ι val✝ : Fintype ι ⊢ Set.univ ⊆ ↑Finset.univ ∪ ∅ [PROOFSTEP] rw [Finset.coe_univ, Set.union_empty] [GOAL] R : Type u_1 ι : Type u_2 inst✝³ : Semiring R φ : ι → Type u_3 inst✝² : (i : ι) → AddCommMonoid (φ i) inst✝¹ : (i : ι) → Module R (φ i) inst✝ : DecidableEq ι I J : Set ι h : Disjoint I J ⊢ Disjoint (⨆ (i : ι) (_ : i ∈ I), range (stdBasis R φ i)) (⨆ (i : ι) (_ : i ∈ J), range (stdBasis R φ i)) [PROOFSTEP] refine' Disjoint.mono (iSup_range_stdBasis_le_iInf_ker_proj _ _ _ _ <| disjoint_compl_right) (iSup_range_stdBasis_le_iInf_ker_proj _ _ _ _ <| disjoint_compl_right) _ [GOAL] R : Type u_1 ι : Type u_2 inst✝³ : Semiring R φ : ι → Type u_3 inst✝² : (i : ι) → AddCommMonoid (φ i) inst✝¹ : (i : ι) → Module R (φ i) inst✝ : DecidableEq ι I J : Set ι h : Disjoint I J ⊢ Disjoint (⨅ (i : ι) (_ : i ∈ Iᶜ), ker (proj i)) (⨅ (i : ι) (_ : i ∈ Jᶜ), ker (proj i)) [PROOFSTEP] simp only [disjoint_iff_inf_le, SetLike.le_def, mem_iInf, mem_inf, mem_ker, mem_bot, proj_apply, funext_iff] [GOAL] R : Type u_1 ι : Type u_2 inst✝³ : Semiring R φ : ι → Type u_3 inst✝² : (i : ι) → AddCommMonoid (φ i) inst✝¹ : (i : ι) → Module R (φ i) inst✝ : DecidableEq ι I J : Set ι h : Disjoint I J ⊢ ∀ ⦃x : (i : ι) → φ i⦄, ((∀ (i : ι), i ∈ Iᶜ → x i = 0) ∧ ∀ (i : ι), i ∈ Jᶜ → x i = 0) → ∀ (a : ι), x a = OfNat.ofNat 0 a [PROOFSTEP] rintro b ⟨hI, hJ⟩ i [GOAL] case intro R : Type u_1 ι : Type u_2 inst✝³ : Semiring R φ : ι → Type u_3 inst✝² : (i : ι) → AddCommMonoid (φ i) inst✝¹ : (i : ι) → Module R (φ i) inst✝ : DecidableEq ι I J : Set ι h : Disjoint I J b : (i : ι) → φ i hI : ∀ (i : ι), i ∈ Iᶜ → b i = 0 hJ : ∀ (i : ι), i ∈ Jᶜ → b i = 0 i : ι ⊢ b i = OfNat.ofNat 0 i [PROOFSTEP] classical by_cases hiI : i ∈ I · by_cases hiJ : i ∈ J · exact (h.le_bot ⟨hiI, hiJ⟩).elim · exact hJ i hiJ · exact hI i hiI [GOAL] case intro R : Type u_1 ι : Type u_2 inst✝³ : Semiring R φ : ι → Type u_3 inst✝² : (i : ι) → AddCommMonoid (φ i) inst✝¹ : (i : ι) → Module R (φ i) inst✝ : DecidableEq ι I J : Set ι h : Disjoint I J b : (i : ι) → φ i hI : ∀ (i : ι), i ∈ Iᶜ → b i = 0 hJ : ∀ (i : ι), i ∈ Jᶜ → b i = 0 i : ι ⊢ b i = OfNat.ofNat 0 i [PROOFSTEP] by_cases hiI : i ∈ I [GOAL] case pos R : Type u_1 ι : Type u_2 inst✝³ : Semiring R φ : ι → Type u_3 inst✝² : (i : ι) → AddCommMonoid (φ i) inst✝¹ : (i : ι) → Module R (φ i) inst✝ : DecidableEq ι I J : Set ι h : Disjoint I J b : (i : ι) → φ i hI : ∀ (i : ι), i ∈ Iᶜ → b i = 0 hJ : ∀ (i : ι), i ∈ Jᶜ → b i = 0 i : ι hiI : i ∈ I ⊢ b i = OfNat.ofNat 0 i [PROOFSTEP] by_cases hiJ : i ∈ J [GOAL] case pos R : Type u_1 ι : Type u_2 inst✝³ : Semiring R φ : ι → Type u_3 inst✝² : (i : ι) → AddCommMonoid (φ i) inst✝¹ : (i : ι) → Module R (φ i) inst✝ : DecidableEq ι I J : Set ι h : Disjoint I J b : (i : ι) → φ i hI : ∀ (i : ι), i ∈ Iᶜ → b i = 0 hJ : ∀ (i : ι), i ∈ Jᶜ → b i = 0 i : ι hiI : i ∈ I hiJ : i ∈ J ⊢ b i = OfNat.ofNat 0 i [PROOFSTEP] exact (h.le_bot ⟨hiI, hiJ⟩).elim [GOAL] case neg R : Type u_1 ι : Type u_2 inst✝³ : Semiring R φ : ι → Type u_3 inst✝² : (i : ι) → AddCommMonoid (φ i) inst✝¹ : (i : ι) → Module R (φ i) inst✝ : DecidableEq ι I J : Set ι h : Disjoint I J b : (i : ι) → φ i hI : ∀ (i : ι), i ∈ Iᶜ → b i = 0 hJ : ∀ (i : ι), i ∈ Jᶜ → b i = 0 i : ι hiI : i ∈ I hiJ : ¬i ∈ J ⊢ b i = OfNat.ofNat 0 i [PROOFSTEP] exact hJ i hiJ [GOAL] case neg R : Type u_1 ι : Type u_2 inst✝³ : Semiring R φ : ι → Type u_3 inst✝² : (i : ι) → AddCommMonoid (φ i) inst✝¹ : (i : ι) → Module R (φ i) inst✝ : DecidableEq ι I J : Set ι h : Disjoint I J b : (i : ι) → φ i hI : ∀ (i : ι), i ∈ Iᶜ → b i = 0 hJ : ∀ (i : ι), i ∈ Jᶜ → b i = 0 i : ι hiI : ¬i ∈ I ⊢ b i = OfNat.ofNat 0 i [PROOFSTEP] exact hI i hiI [GOAL] R : Type u_1 η : Type u_2 ιs : η → Type u_3 Ms : η → Type u_4 inst✝³ : Ring R inst✝² : (i : η) → AddCommGroup (Ms i) inst✝¹ : (i : η) → Module R (Ms i) inst✝ : DecidableEq η v : (j : η) → ιs j → Ms j hs : ∀ (i : η), LinearIndependent R (v i) ⊢ LinearIndependent R fun ji => ↑(stdBasis R Ms ji.fst) (v ji.fst ji.snd) [PROOFSTEP] have hs' : ∀ j : η, LinearIndependent R fun i : ιs j => stdBasis R Ms j (v j i) := by intro j exact (hs j).map' _ (ker_stdBasis _ _ _) [GOAL] R : Type u_1 η : Type u_2 ιs : η → Type u_3 Ms : η → Type u_4 inst✝³ : Ring R inst✝² : (i : η) → AddCommGroup (Ms i) inst✝¹ : (i : η) → Module R (Ms i) inst✝ : DecidableEq η v : (j : η) → ιs j → Ms j hs : ∀ (i : η), LinearIndependent R (v i) ⊢ ∀ (j : η), LinearIndependent R fun i => ↑(stdBasis R Ms j) (v j i) [PROOFSTEP] intro j [GOAL] R : Type u_1 η : Type u_2 ιs : η → Type u_3 Ms : η → Type u_4 inst✝³ : Ring R inst✝² : (i : η) → AddCommGroup (Ms i) inst✝¹ : (i : η) → Module R (Ms i) inst✝ : DecidableEq η v : (j : η) → ιs j → Ms j hs : ∀ (i : η), LinearIndependent R (v i) j : η ⊢ LinearIndependent R fun i => ↑(stdBasis R Ms j) (v j i) [PROOFSTEP] exact (hs j).map' _ (ker_stdBasis _ _ _) [GOAL] R : Type u_1 η : Type u_2 ιs : η → Type u_3 Ms : η → Type u_4 inst✝³ : Ring R inst✝² : (i : η) → AddCommGroup (Ms i) inst✝¹ : (i : η) → Module R (Ms i) inst✝ : DecidableEq η v : (j : η) → ιs j → Ms j hs : ∀ (i : η), LinearIndependent R (v i) hs' : ∀ (j : η), LinearIndependent R fun i => ↑(stdBasis R Ms j) (v j i) ⊢ LinearIndependent R fun ji => ↑(stdBasis R Ms ji.fst) (v ji.fst ji.snd) [PROOFSTEP] apply linearIndependent_iUnion_finite hs' [GOAL] R : Type u_1 η : Type u_2 ιs : η → Type u_3 Ms : η → Type u_4 inst✝³ : Ring R inst✝² : (i : η) → AddCommGroup (Ms i) inst✝¹ : (i : η) → Module R (Ms i) inst✝ : DecidableEq η v : (j : η) → ιs j → Ms j hs : ∀ (i : η), LinearIndependent R (v i) hs' : ∀ (j : η), LinearIndependent R fun i => ↑(stdBasis R Ms j) (v j i) ⊢ ∀ (i : η) (t : Set η), Set.Finite t → ¬i ∈ t → Disjoint (span R (Set.range fun i_1 => ↑(stdBasis R Ms i) (v i i_1))) (⨆ (i : η) (_ : i ∈ t), span R (Set.range fun i_1 => ↑(stdBasis R Ms i) (v i i_1))) [PROOFSTEP] intro j J _ hiJ [GOAL] R : Type u_1 η : Type u_2 ιs : η → Type u_3 Ms : η → Type u_4 inst✝³ : Ring R inst✝² : (i : η) → AddCommGroup (Ms i) inst✝¹ : (i : η) → Module R (Ms i) inst✝ : DecidableEq η v : (j : η) → ιs j → Ms j hs : ∀ (i : η), LinearIndependent R (v i) hs' : ∀ (j : η), LinearIndependent R fun i => ↑(stdBasis R Ms j) (v j i) j : η J : Set η a✝ : Set.Finite J hiJ : ¬j ∈ J ⊢ Disjoint (span R (Set.range fun i => ↑(stdBasis R Ms j) (v j i))) (⨆ (i : η) (_ : i ∈ J), span R (Set.range fun i_1 => ↑(stdBasis R Ms i) (v i i_1))) [PROOFSTEP] simp only [GOAL] R : Type u_1 η : Type u_2 ιs : η → Type u_3 Ms : η → Type u_4 inst✝³ : Ring R inst✝² : (i : η) → AddCommGroup (Ms i) inst✝¹ : (i : η) → Module R (Ms i) inst✝ : DecidableEq η v : (j : η) → ιs j → Ms j hs : ∀ (i : η), LinearIndependent R (v i) hs' : ∀ (j : η), LinearIndependent R fun i => ↑(stdBasis R Ms j) (v j i) j : η J : Set η a✝ : Set.Finite J hiJ : ¬j ∈ J ⊢ Disjoint (span R (Set.range fun i => ↑(stdBasis R Ms j) (v j i))) (⨆ (i : η) (_ : i ∈ J), span R (Set.range fun i_1 => ↑(stdBasis R Ms i) (v i i_1))) [PROOFSTEP] have h₀ : ∀ j, span R (range fun i : ιs j => stdBasis R Ms j (v j i)) ≤ LinearMap.range (stdBasis R Ms j) := by intro j rw [span_le, LinearMap.range_coe] apply range_comp_subset_range [GOAL] R : Type u_1 η : Type u_2 ιs : η → Type u_3 Ms : η → Type u_4 inst✝³ : Ring R inst✝² : (i : η) → AddCommGroup (Ms i) inst✝¹ : (i : η) → Module R (Ms i) inst✝ : DecidableEq η v : (j : η) → ιs j → Ms j hs : ∀ (i : η), LinearIndependent R (v i) hs' : ∀ (j : η), LinearIndependent R fun i => ↑(stdBasis R Ms j) (v j i) j : η J : Set η a✝ : Set.Finite J hiJ : ¬j ∈ J ⊢ ∀ (j : η), span R (Set.range fun i => ↑(stdBasis R Ms j) (v j i)) ≤ LinearMap.range (stdBasis R Ms j) [PROOFSTEP] intro j [GOAL] R : Type u_1 η : Type u_2 ιs : η → Type u_3 Ms : η → Type u_4 inst✝³ : Ring R inst✝² : (i : η) → AddCommGroup (Ms i) inst✝¹ : (i : η) → Module R (Ms i) inst✝ : DecidableEq η v : (j : η) → ιs j → Ms j hs : ∀ (i : η), LinearIndependent R (v i) hs' : ∀ (j : η), LinearIndependent R fun i => ↑(stdBasis R Ms j) (v j i) j✝ : η J : Set η a✝ : Set.Finite J hiJ : ¬j✝ ∈ J j : η ⊢ span R (Set.range fun i => ↑(stdBasis R Ms j) (v j i)) ≤ LinearMap.range (stdBasis R Ms j) [PROOFSTEP] rw [span_le, LinearMap.range_coe] [GOAL] R : Type u_1 η : Type u_2 ιs : η → Type u_3 Ms : η → Type u_4 inst✝³ : Ring R inst✝² : (i : η) → AddCommGroup (Ms i) inst✝¹ : (i : η) → Module R (Ms i) inst✝ : DecidableEq η v : (j : η) → ιs j → Ms j hs : ∀ (i : η), LinearIndependent R (v i) hs' : ∀ (j : η), LinearIndependent R fun i => ↑(stdBasis R Ms j) (v j i) j✝ : η J : Set η a✝ : Set.Finite J hiJ : ¬j✝ ∈ J j : η ⊢ (Set.range fun i => ↑(stdBasis R Ms j) (v j i)) ⊆ Set.range ↑(stdBasis R Ms j) [PROOFSTEP] apply range_comp_subset_range [GOAL] R : Type u_1 η : Type u_2 ιs : η → Type u_3 Ms : η → Type u_4 inst✝³ : Ring R inst✝² : (i : η) → AddCommGroup (Ms i) inst✝¹ : (i : η) → Module R (Ms i) inst✝ : DecidableEq η v : (j : η) → ιs j → Ms j hs : ∀ (i : η), LinearIndependent R (v i) hs' : ∀ (j : η), LinearIndependent R fun i => ↑(stdBasis R Ms j) (v j i) j : η J : Set η a✝ : Set.Finite J hiJ : ¬j ∈ J h₀ : ∀ (j : η), span R (Set.range fun i => ↑(stdBasis R Ms j) (v j i)) ≤ LinearMap.range (stdBasis R Ms j) ⊢ Disjoint (span R (Set.range fun i => ↑(stdBasis R Ms j) (v j i))) (⨆ (i : η) (_ : i ∈ J), span R (Set.range fun i_1 => ↑(stdBasis R Ms i) (v i i_1))) [PROOFSTEP] have h₁ : span R (range fun i : ιs j => stdBasis R Ms j (v j i)) ≤ ⨆ i ∈ ({ j } : Set _), LinearMap.range (stdBasis R Ms i) := by rw [@iSup_singleton _ _ _ fun i => LinearMap.range (stdBasis R (Ms) i)] apply h₀ [GOAL] R : Type u_1 η : Type u_2 ιs : η → Type u_3 Ms : η → Type u_4 inst✝³ : Ring R inst✝² : (i : η) → AddCommGroup (Ms i) inst✝¹ : (i : η) → Module R (Ms i) inst✝ : DecidableEq η v : (j : η) → ιs j → Ms j hs : ∀ (i : η), LinearIndependent R (v i) hs' : ∀ (j : η), LinearIndependent R fun i => ↑(stdBasis R Ms j) (v j i) j : η J : Set η a✝ : Set.Finite J hiJ : ¬j ∈ J h₀ : ∀ (j : η), span R (Set.range fun i => ↑(stdBasis R Ms j) (v j i)) ≤ LinearMap.range (stdBasis R Ms j) ⊢ span R (Set.range fun i => ↑(stdBasis R Ms j) (v j i)) ≤ ⨆ (i : η) (_ : i ∈ {j}), LinearMap.range (stdBasis R Ms i) [PROOFSTEP] rw [@iSup_singleton _ _ _ fun i => LinearMap.range (stdBasis R (Ms) i)] [GOAL] R : Type u_1 η : Type u_2 ιs : η → Type u_3 Ms : η → Type u_4 inst✝³ : Ring R inst✝² : (i : η) → AddCommGroup (Ms i) inst✝¹ : (i : η) → Module R (Ms i) inst✝ : DecidableEq η v : (j : η) → ιs j → Ms j hs : ∀ (i : η), LinearIndependent R (v i) hs' : ∀ (j : η), LinearIndependent R fun i => ↑(stdBasis R Ms j) (v j i) j : η J : Set η a✝ : Set.Finite J hiJ : ¬j ∈ J h₀ : ∀ (j : η), span R (Set.range fun i => ↑(stdBasis R Ms j) (v j i)) ≤ LinearMap.range (stdBasis R Ms j) ⊢ span R (Set.range fun i => ↑(stdBasis R Ms j) (v j i)) ≤ LinearMap.range (stdBasis R Ms j) [PROOFSTEP] apply h₀ [GOAL] R : Type u_1 η : Type u_2 ιs : η → Type u_3 Ms : η → Type u_4 inst✝³ : Ring R inst✝² : (i : η) → AddCommGroup (Ms i) inst✝¹ : (i : η) → Module R (Ms i) inst✝ : DecidableEq η v : (j : η) → ιs j → Ms j hs : ∀ (i : η), LinearIndependent R (v i) hs' : ∀ (j : η), LinearIndependent R fun i => ↑(stdBasis R Ms j) (v j i) j : η J : Set η a✝ : Set.Finite J hiJ : ¬j ∈ J h₀ : ∀ (j : η), span R (Set.range fun i => ↑(stdBasis R Ms j) (v j i)) ≤ LinearMap.range (stdBasis R Ms j) h₁ : span R (Set.range fun i => ↑(stdBasis R Ms j) (v j i)) ≤ ⨆ (i : η) (_ : i ∈ {j}), LinearMap.range (stdBasis R Ms i) ⊢ Disjoint (span R (Set.range fun i => ↑(stdBasis R Ms j) (v j i))) (⨆ (i : η) (_ : i ∈ J), span R (Set.range fun i_1 => ↑(stdBasis R Ms i) (v i i_1))) [PROOFSTEP] have h₂ : ⨆ j ∈ J, span R (range fun i : ιs j => stdBasis R Ms j (v j i)) ≤ ⨆ j ∈ J, LinearMap.range (stdBasis R (fun j : η => Ms j) j) := iSup₂_mono fun i _ => h₀ i [GOAL] R : Type u_1 η : Type u_2 ιs : η → Type u_3 Ms : η → Type u_4 inst✝³ : Ring R inst✝² : (i : η) → AddCommGroup (Ms i) inst✝¹ : (i : η) → Module R (Ms i) inst✝ : DecidableEq η v : (j : η) → ιs j → Ms j hs : ∀ (i : η), LinearIndependent R (v i) hs' : ∀ (j : η), LinearIndependent R fun i => ↑(stdBasis R Ms j) (v j i) j : η J : Set η a✝ : Set.Finite J hiJ : ¬j ∈ J h₀ : ∀ (j : η), span R (Set.range fun i => ↑(stdBasis R Ms j) (v j i)) ≤ LinearMap.range (stdBasis R Ms j) h₁ : span R (Set.range fun i => ↑(stdBasis R Ms j) (v j i)) ≤ ⨆ (i : η) (_ : i ∈ {j}), LinearMap.range (stdBasis R Ms i) h₂ : ⨆ (j : η) (_ : j ∈ J), span R (Set.range fun i => ↑(stdBasis R Ms j) (v j i)) ≤ ⨆ (j : η) (_ : j ∈ J), LinearMap.range (stdBasis R (fun j => Ms j) j) ⊢ Disjoint (span R (Set.range fun i => ↑(stdBasis R Ms j) (v j i))) (⨆ (i : η) (_ : i ∈ J), span R (Set.range fun i_1 => ↑(stdBasis R Ms i) (v i i_1))) [PROOFSTEP] have h₃ : Disjoint (fun i : η => i ∈ ({ j } : Set _)) J := by convert Set.disjoint_singleton_left.2 hiJ using 0 [GOAL] R : Type u_1 η : Type u_2 ιs : η → Type u_3 Ms : η → Type u_4 inst✝³ : Ring R inst✝² : (i : η) → AddCommGroup (Ms i) inst✝¹ : (i : η) → Module R (Ms i) inst✝ : DecidableEq η v : (j : η) → ιs j → Ms j hs : ∀ (i : η), LinearIndependent R (v i) hs' : ∀ (j : η), LinearIndependent R fun i => ↑(stdBasis R Ms j) (v j i) j : η J : Set η a✝ : Set.Finite J hiJ : ¬j ∈ J h₀ : ∀ (j : η), span R (Set.range fun i => ↑(stdBasis R Ms j) (v j i)) ≤ LinearMap.range (stdBasis R Ms j) h₁ : span R (Set.range fun i => ↑(stdBasis R Ms j) (v j i)) ≤ ⨆ (i : η) (_ : i ∈ {j}), LinearMap.range (stdBasis R Ms i) h₂ : ⨆ (j : η) (_ : j ∈ J), span R (Set.range fun i => ↑(stdBasis R Ms j) (v j i)) ≤ ⨆ (j : η) (_ : j ∈ J), LinearMap.range (stdBasis R (fun j => Ms j) j) ⊢ Disjoint (fun i => i ∈ {j}) J [PROOFSTEP] convert Set.disjoint_singleton_left.2 hiJ using 0 [GOAL] R : Type u_1 η : Type u_2 ιs : η → Type u_3 Ms : η → Type u_4 inst✝³ : Ring R inst✝² : (i : η) → AddCommGroup (Ms i) inst✝¹ : (i : η) → Module R (Ms i) inst✝ : DecidableEq η v : (j : η) → ιs j → Ms j hs : ∀ (i : η), LinearIndependent R (v i) hs' : ∀ (j : η), LinearIndependent R fun i => ↑(stdBasis R Ms j) (v j i) j : η J : Set η a✝ : Set.Finite J hiJ : ¬j ∈ J h₀ : ∀ (j : η), span R (Set.range fun i => ↑(stdBasis R Ms j) (v j i)) ≤ LinearMap.range (stdBasis R Ms j) h₁ : span R (Set.range fun i => ↑(stdBasis R Ms j) (v j i)) ≤ ⨆ (i : η) (_ : i ∈ {j}), LinearMap.range (stdBasis R Ms i) h₂ : ⨆ (j : η) (_ : j ∈ J), span R (Set.range fun i => ↑(stdBasis R Ms j) (v j i)) ≤ ⨆ (j : η) (_ : j ∈ J), LinearMap.range (stdBasis R (fun j => Ms j) j) h₃ : Disjoint (fun i => i ∈ {j}) J ⊢ Disjoint (span R (Set.range fun i => ↑(stdBasis R Ms j) (v j i))) (⨆ (i : η) (_ : i ∈ J), span R (Set.range fun i_1 => ↑(stdBasis R Ms i) (v i i_1))) [PROOFSTEP] exact (disjoint_stdBasis_stdBasis _ _ _ _ h₃).mono h₁ h₂ [GOAL] R : Type u_1 η : Type u_2 ιs : η → Type u_3 Ms : η → Type u_4 inst✝⁴ : Semiring R inst✝³ : (i : η) → AddCommMonoid (Ms i) inst✝² : (i : η) → Module R (Ms i) inst✝¹ : Fintype η inst✝ : DecidableEq η s : (j : η) → Basis (ιs j) R (Ms j) j : η i : ιs j ⊢ ↑(Pi.basis s).repr (↑(stdBasis R Ms j) (↑(s j) i)) = Finsupp.single { fst := j, snd := i } 1 [PROOFSTEP] ext ⟨j', i'⟩ [GOAL] case h.mk R : Type u_1 η : Type u_2 ιs : η → Type u_3 Ms : η → Type u_4 inst✝⁴ : Semiring R inst✝³ : (i : η) → AddCommMonoid (Ms i) inst✝² : (i : η) → Module R (Ms i) inst✝¹ : Fintype η inst✝ : DecidableEq η s : (j : η) → Basis (ιs j) R (Ms j) j : η i : ιs j j' : η i' : ιs j' ⊢ ↑(↑(Pi.basis s).repr (↑(stdBasis R Ms j) (↑(s j) i))) { fst := j', snd := i' } = ↑(Finsupp.single { fst := j, snd := i } 1) { fst := j', snd := i' } [PROOFSTEP] by_cases hj : j = j' [GOAL] case pos R : Type u_1 η : Type u_2 ιs : η → Type u_3 Ms : η → Type u_4 inst✝⁴ : Semiring R inst✝³ : (i : η) → AddCommMonoid (Ms i) inst✝² : (i : η) → Module R (Ms i) inst✝¹ : Fintype η inst✝ : DecidableEq η s : (j : η) → Basis (ιs j) R (Ms j) j : η i : ιs j j' : η i' : ιs j' hj : j = j' ⊢ ↑(↑(Pi.basis s).repr (↑(stdBasis R Ms j) (↑(s j) i))) { fst := j', snd := i' } = ↑(Finsupp.single { fst := j, snd := i } 1) { fst := j', snd := i' } [PROOFSTEP] subst hj [GOAL] case pos R : Type u_1 η : Type u_2 ιs : η → Type u_3 Ms : η → Type u_4 inst✝⁴ : Semiring R inst✝³ : (i : η) → AddCommMonoid (Ms i) inst✝² : (i : η) → Module R (Ms i) inst✝¹ : Fintype η inst✝ : DecidableEq η s : (j : η) → Basis (ιs j) R (Ms j) j : η i i' : ιs j ⊢ ↑(↑(Pi.basis s).repr (↑(stdBasis R Ms j) (↑(s j) i))) { fst := j, snd := i' } = ↑(Finsupp.single { fst := j, snd := i } 1) { fst := j, snd := i' } [PROOFSTEP] simp only [Pi.basis, LinearEquiv.trans_apply, Basis.repr_self, stdBasis_same, LinearEquiv.piCongrRight, Finsupp.sigmaFinsuppLEquivPiFinsupp_symm_apply, Basis.repr_symm_apply, LinearEquiv.coe_mk, ne_eq, Sigma.mk.inj_iff, heq_eq_eq, true_and] [GOAL] case pos R : Type u_1 η : Type u_2 ιs : η → Type u_3 Ms : η → Type u_4 inst✝⁴ : Semiring R inst✝³ : (i : η) → AddCommMonoid (Ms i) inst✝² : (i : η) → Module R (Ms i) inst✝¹ : Fintype η inst✝ : DecidableEq η s : (j : η) → Basis (ιs j) R (Ms j) j : η i i' : ιs j ⊢ ↑(Finsupp.single i 1) i' = ↑(Finsupp.single { fst := j, snd := i } 1) { fst := j, snd := i' } [PROOFSTEP] symm -- Porting note: `Sigma.mk.inj` not found in the following, replaced by `Sigma.mk.inj_iff.mp` [GOAL] case pos R : Type u_1 η : Type u_2 ιs : η → Type u_3 Ms : η → Type u_4 inst✝⁴ : Semiring R inst✝³ : (i : η) → AddCommMonoid (Ms i) inst✝² : (i : η) → Module R (Ms i) inst✝¹ : Fintype η inst✝ : DecidableEq η s : (j : η) → Basis (ιs j) R (Ms j) j : η i i' : ιs j ⊢ ↑(Finsupp.single { fst := j, snd := i } 1) { fst := j, snd := i' } = ↑(Finsupp.single i 1) i' [PROOFSTEP] exact Finsupp.single_apply_left (fun i i' (h : (⟨j, i⟩ : Σ j, ιs j) = ⟨j, i'⟩) => eq_of_heq (Sigma.mk.inj_iff.mp h).2) _ _ _ [GOAL] case neg R : Type u_1 η : Type u_2 ιs : η → Type u_3 Ms : η → Type u_4 inst✝⁴ : Semiring R inst✝³ : (i : η) → AddCommMonoid (Ms i) inst✝² : (i : η) → Module R (Ms i) inst✝¹ : Fintype η inst✝ : DecidableEq η s : (j : η) → Basis (ιs j) R (Ms j) j : η i : ιs j j' : η i' : ιs j' hj : ¬j = j' ⊢ ↑(↑(Pi.basis s).repr (↑(stdBasis R Ms j) (↑(s j) i))) { fst := j', snd := i' } = ↑(Finsupp.single { fst := j, snd := i } 1) { fst := j', snd := i' } [PROOFSTEP] simp only [Pi.basis, LinearEquiv.trans_apply, Finsupp.sigmaFinsuppLEquivPiFinsupp_symm_apply, LinearEquiv.piCongrRight] [GOAL] case neg R : Type u_1 η : Type u_2 ιs : η → Type u_3 Ms : η → Type u_4 inst✝⁴ : Semiring R inst✝³ : (i : η) → AddCommMonoid (Ms i) inst✝² : (i : η) → Module R (Ms i) inst✝¹ : Fintype η inst✝ : DecidableEq η s : (j : η) → Basis (ιs j) R (Ms j) j : η i : ιs j j' : η i' : ιs j' hj : ¬j = j' ⊢ ↑(↑{ toLinearMap := { toAddHom := { toFun := fun f i => ↑(s i).repr (f i), map_add' := (_ : ∀ (x y : (j : η) → (fun j => Ms j) j), Equiv.toFun (AddEquiv.piCongrRight fun j => toAddEquiv (s j).repr).toEquiv (x + y) = Equiv.toFun (AddEquiv.piCongrRight fun j => toAddEquiv (s j).repr).toEquiv x + Equiv.toFun (AddEquiv.piCongrRight fun j => toAddEquiv (s j).repr).toEquiv y) }, map_smul' := (_ : ∀ (c : R) (f : (i : η) → (fun j => Ms j) i), AddHom.toFun { toFun := fun f i => ↑(s i).repr (f i), map_add' := (_ : ∀ (x y : (j : η) → (fun j => Ms j) j), Equiv.toFun (AddEquiv.piCongrRight fun j => toAddEquiv (s j).repr).toEquiv (x + y) = Equiv.toFun (AddEquiv.piCongrRight fun j => toAddEquiv (s j).repr).toEquiv x + Equiv.toFun (AddEquiv.piCongrRight fun j => toAddEquiv (s j).repr).toEquiv y) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := fun f i => ↑(s i).repr (f i), map_add' := (_ : ∀ (x y : (j : η) → (fun j => Ms j) j), Equiv.toFun (AddEquiv.piCongrRight fun j => toAddEquiv (s j).repr).toEquiv (x + y) = Equiv.toFun (AddEquiv.piCongrRight fun j => toAddEquiv (s j).repr).toEquiv x + Equiv.toFun (AddEquiv.piCongrRight fun j => toAddEquiv (s j).repr).toEquiv y) } f) }, invFun := fun f i => ↑(LinearEquiv.symm (s i).repr) (f i), left_inv := (_ : LeftInverse (AddEquiv.piCongrRight fun j => toAddEquiv (s j).repr).toEquiv.invFun (AddEquiv.piCongrRight fun j => toAddEquiv (s j).repr).toEquiv.toFun), right_inv := (_ : Function.RightInverse (AddEquiv.piCongrRight fun j => toAddEquiv (s j).repr).toEquiv.invFun (AddEquiv.piCongrRight fun j => toAddEquiv (s j).repr).toEquiv.toFun) } (↑(stdBasis R Ms j) (↑(s j) i)) j') i' = ↑(Finsupp.single { fst := j, snd := i } 1) { fst := j', snd := i' } [PROOFSTEP] dsimp [GOAL] case neg R : Type u_1 η : Type u_2 ιs : η → Type u_3 Ms : η → Type u_4 inst✝⁴ : Semiring R inst✝³ : (i : η) → AddCommMonoid (Ms i) inst✝² : (i : η) → Module R (Ms i) inst✝¹ : Fintype η inst✝ : DecidableEq η s : (j : η) → Basis (ιs j) R (Ms j) j : η i : ιs j j' : η i' : ιs j' hj : ¬j = j' ⊢ ↑(↑(s j').repr (↑(stdBasis R Ms j) (↑(s j) i) j')) i' = ↑(Finsupp.single { fst := j, snd := i } 1) { fst := j', snd := i' } [PROOFSTEP] rw [stdBasis_ne _ _ _ _ (Ne.symm hj), LinearEquiv.map_zero, Finsupp.zero_apply, Finsupp.single_eq_of_ne] [GOAL] case neg R : Type u_1 η : Type u_2 ιs : η → Type u_3 Ms : η → Type u_4 inst✝⁴ : Semiring R inst✝³ : (i : η) → AddCommMonoid (Ms i) inst✝² : (i : η) → Module R (Ms i) inst✝¹ : Fintype η inst✝ : DecidableEq η s : (j : η) → Basis (ιs j) R (Ms j) j : η i : ιs j j' : η i' : ιs j' hj : ¬j = j' ⊢ { fst := j, snd := i } ≠ { fst := j', snd := i' } [PROOFSTEP] rintro ⟨⟩ [GOAL] case neg.refl R : Type u_1 η : Type u_2 ιs : η → Type u_3 Ms : η → Type u_4 inst✝⁴ : Semiring R inst✝³ : (i : η) → AddCommMonoid (Ms i) inst✝² : (i : η) → Module R (Ms i) inst✝¹ : Fintype η inst✝ : DecidableEq η s : (j : η) → Basis (ιs j) R (Ms j) j : η i : ιs j hj : ¬j = j ⊢ False [PROOFSTEP] contradiction [GOAL] R : Type u_1 η : Type u_2 ιs : η → Type u_3 Ms : η → Type u_4 inst✝⁴ : Semiring R inst✝³ : (i : η) → AddCommMonoid (Ms i) inst✝² : (i : η) → Module R (Ms i) inst✝¹ : Fintype η inst✝ : DecidableEq η s : (j : η) → Basis (ιs j) R (Ms j) ji : (j : η) × ιs j ⊢ ↑(Pi.basis s).repr (↑(stdBasis R Ms ji.fst) (↑(s ji.fst) ji.snd)) = Finsupp.single ji 1 [PROOFSTEP] simp [GOAL] R : Type u_1 η : Type u_2 ιs : η → Type u_3 Ms : η → Type u_4 inst✝⁴ : Semiring R inst✝³ : (i : η) → AddCommMonoid (Ms i) inst✝² : (i : η) → Module R (Ms i) inst✝¹ : Fintype η inst✝ : DecidableEq η i : η ⊢ ↑(basisFun R η) i = ↑(stdBasis R (fun x => R) i) 1 [PROOFSTEP] simp only [basisFun, Basis.coe_ofEquivFun, LinearEquiv.refl_symm, LinearEquiv.refl_apply, stdBasis_apply] [GOAL] R : Type u_1 η : Type u_2 ιs : η → Type u_3 Ms : η → Type u_4 inst✝³ : Semiring R inst✝² : (i : η) → AddCommMonoid (Ms i) inst✝¹ : (i : η) → Module R (Ms i) inst✝ : Fintype η x : η → R i : η ⊢ ↑(↑(basisFun R η).repr x) i = x i [PROOFSTEP] simp [basisFun] [GOAL] R : Type u_1 m : Type u_2 n : Type u_3 inst✝⁴ : Fintype m inst✝³ : Fintype n inst✝² : Semiring R i : n j : m inst✝¹ : DecidableEq n inst✝ : DecidableEq m ⊢ ↑(stdBasis R n m) (i, j) = stdBasisMatrix i j 1 [PROOFSTEP] ext a b [GOAL] case a.h R : Type u_1 m : Type u_2 n : Type u_3 inst✝⁴ : Fintype m inst✝³ : Fintype n inst✝² : Semiring R i : n j : m inst✝¹ : DecidableEq n inst✝ : DecidableEq m a : n b : m ⊢ ↑(stdBasis R n m) (i, j) a b = stdBasisMatrix i j 1 a b [PROOFSTEP] by_cases hi : i = a [GOAL] case pos R : Type u_1 m : Type u_2 n : Type u_3 inst✝⁴ : Fintype m inst✝³ : Fintype n inst✝² : Semiring R i : n j : m inst✝¹ : DecidableEq n inst✝ : DecidableEq m a : n b : m hi : i = a ⊢ ↑(stdBasis R n m) (i, j) a b = stdBasisMatrix i j 1 a b [PROOFSTEP] by_cases hj : j = b [GOAL] case neg R : Type u_1 m : Type u_2 n : Type u_3 inst✝⁴ : Fintype m inst✝³ : Fintype n inst✝² : Semiring R i : n j : m inst✝¹ : DecidableEq n inst✝ : DecidableEq m a : n b : m hi : ¬i = a ⊢ ↑(stdBasis R n m) (i, j) a b = stdBasisMatrix i j 1 a b [PROOFSTEP] by_cases hj : j = b [GOAL] case pos R : Type u_1 m : Type u_2 n : Type u_3 inst✝⁴ : Fintype m inst✝³ : Fintype n inst✝² : Semiring R i : n j : m inst✝¹ : DecidableEq n inst✝ : DecidableEq m a : n b : m hi : i = a hj : j = b ⊢ ↑(stdBasis R n m) (i, j) a b = stdBasisMatrix i j 1 a b [PROOFSTEP] simp [stdBasis, hi, hj, Basis.coe_reindex, comp_apply, Equiv.sigmaEquivProd_symm_apply, StdBasisMatrix.apply_same] [GOAL] case pos R : Type u_1 m : Type u_2 n : Type u_3 inst✝⁴ : Fintype m inst✝³ : Fintype n inst✝² : Semiring R i : n j : m inst✝¹ : DecidableEq n inst✝ : DecidableEq m a : n b : m hi : i = a hj : j = b ⊢ ↑(Pi.basis fun x => Pi.basisFun R m) { fst := a, snd := b } a b = 1 [PROOFSTEP] erw [Pi.basis_apply] [GOAL] case pos R : Type u_1 m : Type u_2 n : Type u_3 inst✝⁴ : Fintype m inst✝³ : Fintype n inst✝² : Semiring R i : n j : m inst✝¹ : DecidableEq n inst✝ : DecidableEq m a : n b : m hi : i = a hj : j = b ⊢ ↑(LinearMap.stdBasis R (fun a => m → R) { fst := a, snd := b }.fst) (↑(Pi.basisFun R m) { fst := a, snd := b }.snd) a b = 1 [PROOFSTEP] simp [GOAL] case neg R : Type u_1 m : Type u_2 n : Type u_3 inst✝⁴ : Fintype m inst✝³ : Fintype n inst✝² : Semiring R i : n j : m inst✝¹ : DecidableEq n inst✝ : DecidableEq m a : n b : m hi : i = a hj : ¬j = b ⊢ ↑(stdBasis R n m) (i, j) a b = stdBasisMatrix i j 1 a b [PROOFSTEP] simp only [stdBasis, hi, Basis.coe_reindex, comp_apply, Equiv.sigmaEquivProd_symm_apply, hj, and_false, not_false_iff, StdBasisMatrix.apply_of_ne] [GOAL] case neg R : Type u_1 m : Type u_2 n : Type u_3 inst✝⁴ : Fintype m inst✝³ : Fintype n inst✝² : Semiring R i : n j : m inst✝¹ : DecidableEq n inst✝ : DecidableEq m a : n b : m hi : i = a hj : ¬j = b ⊢ ↑(Pi.basis fun x => Pi.basisFun R m) { fst := a, snd := j } a b = 0 [PROOFSTEP] erw [Pi.basis_apply] [GOAL] case neg R : Type u_1 m : Type u_2 n : Type u_3 inst✝⁴ : Fintype m inst✝³ : Fintype n inst✝² : Semiring R i : n j : m inst✝¹ : DecidableEq n inst✝ : DecidableEq m a : n b : m hi : i = a hj : ¬j = b ⊢ ↑(LinearMap.stdBasis R (fun a => m → R) { fst := a, snd := j }.fst) (↑(Pi.basisFun R m) { fst := a, snd := j }.snd) a b = 0 [PROOFSTEP] simp [hj] [GOAL] case pos R : Type u_1 m : Type u_2 n : Type u_3 inst✝⁴ : Fintype m inst✝³ : Fintype n inst✝² : Semiring R i : n j : m inst✝¹ : DecidableEq n inst✝ : DecidableEq m a : n b : m hi : ¬i = a hj : j = b ⊢ ↑(stdBasis R n m) (i, j) a b = stdBasisMatrix i j 1 a b [PROOFSTEP] simp only [stdBasis, hj, Basis.coe_reindex, comp_apply, Equiv.sigmaEquivProd_symm_apply, hi, and_true, not_false_iff, StdBasisMatrix.apply_of_ne] [GOAL] case pos R : Type u_1 m : Type u_2 n : Type u_3 inst✝⁴ : Fintype m inst✝³ : Fintype n inst✝² : Semiring R i : n j : m inst✝¹ : DecidableEq n inst✝ : DecidableEq m a : n b : m hi : ¬i = a hj : j = b ⊢ ↑(Pi.basis fun x => Pi.basisFun R m) { fst := i, snd := b } a b = 0 [PROOFSTEP] erw [Pi.basis_apply] [GOAL] case pos R : Type u_1 m : Type u_2 n : Type u_3 inst✝⁴ : Fintype m inst✝³ : Fintype n inst✝² : Semiring R i : n j : m inst✝¹ : DecidableEq n inst✝ : DecidableEq m a : n b : m hi : ¬i = a hj : j = b ⊢ ↑(LinearMap.stdBasis R (fun a => m → R) { fst := i, snd := b }.fst) (↑(Pi.basisFun R m) { fst := i, snd := b }.snd) a b = 0 [PROOFSTEP] simp [hi, hj, Ne.symm hi, LinearMap.stdBasis_ne] [GOAL] case neg R : Type u_1 m : Type u_2 n : Type u_3 inst✝⁴ : Fintype m inst✝³ : Fintype n inst✝² : Semiring R i : n j : m inst✝¹ : DecidableEq n inst✝ : DecidableEq m a : n b : m hi : ¬i = a hj : ¬j = b ⊢ ↑(stdBasis R n m) (i, j) a b = stdBasisMatrix i j 1 a b [PROOFSTEP] simp only [stdBasis, Basis.coe_reindex, comp_apply, Equiv.sigmaEquivProd_symm_apply, hi, hj, and_self, not_false_iff, StdBasisMatrix.apply_of_ne] [GOAL] case neg R : Type u_1 m : Type u_2 n : Type u_3 inst✝⁴ : Fintype m inst✝³ : Fintype n inst✝² : Semiring R i : n j : m inst✝¹ : DecidableEq n inst✝ : DecidableEq m a : n b : m hi : ¬i = a hj : ¬j = b ⊢ ↑(Pi.basis fun x => Pi.basisFun R m) { fst := i, snd := j } a b = 0 [PROOFSTEP] erw [Pi.basis_apply] [GOAL] case neg R : Type u_1 m : Type u_2 n : Type u_3 inst✝⁴ : Fintype m inst✝³ : Fintype n inst✝² : Semiring R i : n j : m inst✝¹ : DecidableEq n inst✝ : DecidableEq m a : n b : m hi : ¬i = a hj : ¬j = b ⊢ ↑(LinearMap.stdBasis R (fun a => m → R) { fst := i, snd := j }.fst) (↑(Pi.basisFun R m) { fst := i, snd := j }.snd) a b = 0 [PROOFSTEP] simp [hi, hj, Ne.symm hj, Ne.symm hi, LinearMap.stdBasis_ne]
{"mathlib_filename": "Mathlib.LinearAlgebra.StdBasis", "llama_tokens": 21739}
[GOAL] R : Type u inst✝ : Semiring R ⊢ StrongRankCondition R ↔ ∀ (n : ℕ) (f : (Fin (n + 1) → R) →ₗ[R] Fin n → R), ¬Injective ↑f [PROOFSTEP] refine' ⟨fun h n => fun f hf => _, fun h => ⟨@fun n m f hf => _⟩⟩ [GOAL] case refine'_1 R : Type u inst✝ : Semiring R h : StrongRankCondition R n : ℕ f : (Fin (n + 1) → R) →ₗ[R] Fin n → R hf : Injective ↑f ⊢ False [PROOFSTEP] letI : StrongRankCondition R := h [GOAL] case refine'_1 R : Type u inst✝ : Semiring R h : StrongRankCondition R n : ℕ f : (Fin (n + 1) → R) →ₗ[R] Fin n → R hf : Injective ↑f this : StrongRankCondition R := h ⊢ False [PROOFSTEP] exact Nat.not_succ_le_self n (le_of_fin_injective R f hf) [GOAL] case refine'_2 R : Type u inst✝ : Semiring R h : ∀ (n : ℕ) (f : (Fin (n + 1) → R) →ₗ[R] Fin n → R), ¬Injective ↑f n m : ℕ f : (Fin n → R) →ₗ[R] Fin m → R hf : Injective ↑f ⊢ n ≤ m [PROOFSTEP] by_contra H [GOAL] case refine'_2 R : Type u inst✝ : Semiring R h : ∀ (n : ℕ) (f : (Fin (n + 1) → R) →ₗ[R] Fin n → R), ¬Injective ↑f n m : ℕ f : (Fin n → R) →ₗ[R] Fin m → R hf : Injective ↑f H : ¬n ≤ m ⊢ False [PROOFSTEP] exact h m (f.comp (Function.ExtendByZero.linearMap R (Fin.castLE (not_le.1 H)))) (hf.comp (Function.extend_injective (Fin.strictMono_castLE _).injective _)) [GOAL] R : Type u inst✝³ : Semiring R inst✝² : StrongRankCondition R α : Type u_1 β : Type u_2 inst✝¹ : Fintype α inst✝ : Fintype β f : (α → R) →ₗ[R] β → R i : Injective ↑f ⊢ Fintype.card α ≤ Fintype.card β [PROOFSTEP] let P := LinearEquiv.funCongrLeft R R (Fintype.equivFin α) [GOAL] R : Type u inst✝³ : Semiring R inst✝² : StrongRankCondition R α : Type u_1 β : Type u_2 inst✝¹ : Fintype α inst✝ : Fintype β f : (α → R) →ₗ[R] β → R i : Injective ↑f P : (Fin (Fintype.card α) → R) ≃ₗ[R] α → R := LinearEquiv.funCongrLeft R R (Fintype.equivFin α) ⊢ Fintype.card α ≤ Fintype.card β [PROOFSTEP] let Q := LinearEquiv.funCongrLeft R R (Fintype.equivFin β) [GOAL] R : Type u inst✝³ : Semiring R inst✝² : StrongRankCondition R α : Type u_1 β : Type u_2 inst✝¹ : Fintype α inst✝ : Fintype β f : (α → R) →ₗ[R] β → R i : Injective ↑f P : (Fin (Fintype.card α) → R) ≃ₗ[R] α → R := LinearEquiv.funCongrLeft R R (Fintype.equivFin α) Q : (Fin (Fintype.card β) → R) ≃ₗ[R] β → R := LinearEquiv.funCongrLeft R R (Fintype.equivFin β) ⊢ Fintype.card α ≤ Fintype.card β [PROOFSTEP] exact le_of_fin_injective R ((Q.symm.toLinearMap.comp f).comp P.toLinearMap) (((LinearEquiv.symm Q).injective.comp i).comp (LinearEquiv.injective P)) [GOAL] R : Type u inst✝³ : Semiring R inst✝² : StrongRankCondition R α : Type u_1 β : Type u_2 inst✝¹ : Fintype α inst✝ : Fintype β f : (α →₀ R) →ₗ[R] β →₀ R i : Injective ↑f ⊢ Fintype.card α ≤ Fintype.card β [PROOFSTEP] let P := Finsupp.linearEquivFunOnFinite R R β [GOAL] R : Type u inst✝³ : Semiring R inst✝² : StrongRankCondition R α : Type u_1 β : Type u_2 inst✝¹ : Fintype α inst✝ : Fintype β f : (α →₀ R) →ₗ[R] β →₀ R i : Injective ↑f P : (β →₀ R) ≃ₗ[R] β → R := Finsupp.linearEquivFunOnFinite R R β ⊢ Fintype.card α ≤ Fintype.card β [PROOFSTEP] let Q := (Finsupp.linearEquivFunOnFinite R R α).symm [GOAL] R : Type u inst✝³ : Semiring R inst✝² : StrongRankCondition R α : Type u_1 β : Type u_2 inst✝¹ : Fintype α inst✝ : Fintype β f : (α →₀ R) →ₗ[R] β →₀ R i : Injective ↑f P : (β →₀ R) ≃ₗ[R] β → R := Finsupp.linearEquivFunOnFinite R R β Q : (α → R) ≃ₗ[R] α →₀ R := LinearEquiv.symm (Finsupp.linearEquivFunOnFinite R R α) ⊢ Fintype.card α ≤ Fintype.card β [PROOFSTEP] exact card_le_of_injective R ((P.toLinearMap.comp f).comp Q.toLinearMap) ((P.injective.comp i).comp Q.injective) [GOAL] R : Type u inst✝³ : Semiring R inst✝² : RankCondition R α : Type u_1 β : Type u_2 inst✝¹ : Fintype α inst✝ : Fintype β f : (α → R) →ₗ[R] β → R i : Surjective ↑f ⊢ Fintype.card β ≤ Fintype.card α [PROOFSTEP] let P := LinearEquiv.funCongrLeft R R (Fintype.equivFin α) [GOAL] R : Type u inst✝³ : Semiring R inst✝² : RankCondition R α : Type u_1 β : Type u_2 inst✝¹ : Fintype α inst✝ : Fintype β f : (α → R) →ₗ[R] β → R i : Surjective ↑f P : (Fin (Fintype.card α) → R) ≃ₗ[R] α → R := LinearEquiv.funCongrLeft R R (Fintype.equivFin α) ⊢ Fintype.card β ≤ Fintype.card α [PROOFSTEP] let Q := LinearEquiv.funCongrLeft R R (Fintype.equivFin β) [GOAL] R : Type u inst✝³ : Semiring R inst✝² : RankCondition R α : Type u_1 β : Type u_2 inst✝¹ : Fintype α inst✝ : Fintype β f : (α → R) →ₗ[R] β → R i : Surjective ↑f P : (Fin (Fintype.card α) → R) ≃ₗ[R] α → R := LinearEquiv.funCongrLeft R R (Fintype.equivFin α) Q : (Fin (Fintype.card β) → R) ≃ₗ[R] β → R := LinearEquiv.funCongrLeft R R (Fintype.equivFin β) ⊢ Fintype.card β ≤ Fintype.card α [PROOFSTEP] exact le_of_fin_surjective R ((Q.symm.toLinearMap.comp f).comp P.toLinearMap) (((LinearEquiv.symm Q).surjective.comp i).comp (LinearEquiv.surjective P)) [GOAL] R : Type u inst✝³ : Semiring R inst✝² : RankCondition R α : Type u_1 β : Type u_2 inst✝¹ : Fintype α inst✝ : Fintype β f : (α →₀ R) →ₗ[R] β →₀ R i : Surjective ↑f ⊢ Fintype.card β ≤ Fintype.card α [PROOFSTEP] let P := Finsupp.linearEquivFunOnFinite R R β [GOAL] R : Type u inst✝³ : Semiring R inst✝² : RankCondition R α : Type u_1 β : Type u_2 inst✝¹ : Fintype α inst✝ : Fintype β f : (α →₀ R) →ₗ[R] β →₀ R i : Surjective ↑f P : (β →₀ R) ≃ₗ[R] β → R := Finsupp.linearEquivFunOnFinite R R β ⊢ Fintype.card β ≤ Fintype.card α [PROOFSTEP] let Q := (Finsupp.linearEquivFunOnFinite R R α).symm [GOAL] R : Type u inst✝³ : Semiring R inst✝² : RankCondition R α : Type u_1 β : Type u_2 inst✝¹ : Fintype α inst✝ : Fintype β f : (α →₀ R) →ₗ[R] β →₀ R i : Surjective ↑f P : (β →₀ R) ≃ₗ[R] β → R := Finsupp.linearEquivFunOnFinite R R β Q : (α → R) ≃ₗ[R] α →₀ R := LinearEquiv.symm (Finsupp.linearEquivFunOnFinite R R α) ⊢ Fintype.card β ≤ Fintype.card α [PROOFSTEP] exact card_le_of_surjective R ((P.toLinearMap.comp f).comp Q.toLinearMap) ((P.surjective.comp i).comp Q.surjective) [GOAL] R : Type u inst✝¹ : Semiring R inst✝ : InvariantBasisNumber R ⊢ Nontrivial R [PROOFSTEP] by_contra h [GOAL] R : Type u inst✝¹ : Semiring R inst✝ : InvariantBasisNumber R h : ¬Nontrivial R ⊢ False [PROOFSTEP] refine' zero_ne_one (eq_of_fin_equiv R _) [GOAL] R : Type u inst✝¹ : Semiring R inst✝ : InvariantBasisNumber R h : ¬Nontrivial R ⊢ (Fin 0 → R) ≃ₗ[R] Fin 1 → R [PROOFSTEP] haveI := not_nontrivial_iff_subsingleton.1 h [GOAL] R : Type u inst✝¹ : Semiring R inst✝ : InvariantBasisNumber R h : ¬Nontrivial R this : Subsingleton R ⊢ (Fin 0 → R) ≃ₗ[R] Fin 1 → R [PROOFSTEP] haveI : Subsingleton (Fin 1 → R) := Subsingleton.intro <| fun a b => funext fun x => Subsingleton.elim _ _ [GOAL] R : Type u inst✝¹ : Semiring R inst✝ : InvariantBasisNumber R h : ¬Nontrivial R this✝ : Subsingleton R this : Subsingleton (Fin 1 → R) ⊢ (Fin 0 → R) ≃ₗ[R] Fin 1 → R [PROOFSTEP] exact { toFun := 0 invFun := 0 map_add' := by aesop map_smul' := by aesop left_inv := fun _ => by simp right_inv := fun _ => by simp } [GOAL] R : Type u inst✝¹ : Semiring R inst✝ : InvariantBasisNumber R h : ¬Nontrivial R this✝ : Subsingleton R this : Subsingleton (Fin 1 → R) ⊢ ∀ (x y : Fin 0 → R), OfNat.ofNat 0 (x + y) = OfNat.ofNat 0 x + OfNat.ofNat 0 y [PROOFSTEP] aesop [GOAL] R : Type u inst✝¹ : Semiring R inst✝ : InvariantBasisNumber R h : ¬Nontrivial R this✝ : Subsingleton R this : Subsingleton (Fin 1 → R) ⊢ ∀ (r : R) (x : Fin 0 → R), AddHom.toFun { toFun := 0, map_add' := (_ : ∀ (x y : Fin 0 → R), OfNat.ofNat 0 (x + y) = 0 + 0) } (r • x) = ↑(RingHom.id R) r • AddHom.toFun { toFun := 0, map_add' := (_ : ∀ (x y : Fin 0 → R), OfNat.ofNat 0 (x + y) = 0 + 0) } x [PROOFSTEP] aesop [GOAL] R : Type u inst✝¹ : Semiring R inst✝ : InvariantBasisNumber R h : ¬Nontrivial R this✝ : Subsingleton R this : Subsingleton (Fin 1 → R) x✝ : Fin 0 → R ⊢ OfNat.ofNat 0 (AddHom.toFun { toAddHom := { toFun := 0, map_add' := (_ : ∀ (x y : Fin 0 → R), OfNat.ofNat 0 (x + y) = 0 + 0) }, map_smul' := (_ : ∀ (r : R) (x : Fin 0 → R), OfNat.ofNat 0 (r • x) = r • 0) }.toAddHom x✝) = x✝ [PROOFSTEP] simp [GOAL] R : Type u inst✝¹ : Semiring R inst✝ : InvariantBasisNumber R h : ¬Nontrivial R this✝ : Subsingleton R this : Subsingleton (Fin 1 → R) x✝ : Fin 1 → R ⊢ AddHom.toFun { toAddHom := { toFun := 0, map_add' := (_ : ∀ (x y : Fin 0 → R), OfNat.ofNat 0 (x + y) = 0 + 0) }, map_smul' := (_ : ∀ (r : R) (x : Fin 0 → R), OfNat.ofNat 0 (r • x) = r • 0) }.toAddHom (OfNat.ofNat 0 x✝) = x✝ [PROOFSTEP] simp [GOAL] R : Type u inst✝² : Ring R inst✝¹ : Nontrivial R inst✝ : IsNoetherianRing R ⊢ StrongRankCondition R [PROOFSTEP] constructor [GOAL] case le_of_fin_injective R : Type u inst✝² : Ring R inst✝¹ : Nontrivial R inst✝ : IsNoetherianRing R ⊢ ∀ {n m : ℕ} (f : (Fin n → R) →ₗ[R] Fin m → R), Injective ↑f → n ≤ m [PROOFSTEP] intro m n f i [GOAL] case le_of_fin_injective R : Type u inst✝² : Ring R inst✝¹ : Nontrivial R inst✝ : IsNoetherianRing R m n : ℕ f : (Fin m → R) →ₗ[R] Fin n → R i : Injective ↑f ⊢ m ≤ n [PROOFSTEP] by_contra h [GOAL] case le_of_fin_injective R : Type u inst✝² : Ring R inst✝¹ : Nontrivial R inst✝ : IsNoetherianRing R m n : ℕ f : (Fin m → R) →ₗ[R] Fin n → R i : Injective ↑f h : ¬m ≤ n ⊢ False [PROOFSTEP] rw [not_le, ← Nat.add_one_le_iff, le_iff_exists_add] at h [GOAL] case le_of_fin_injective R : Type u inst✝² : Ring R inst✝¹ : Nontrivial R inst✝ : IsNoetherianRing R m n : ℕ f : (Fin m → R) →ₗ[R] Fin n → R i : Injective ↑f h : ∃ c, m = n + 1 + c ⊢ False [PROOFSTEP] obtain ⟨m, rfl⟩ := h [GOAL] case le_of_fin_injective.intro R : Type u inst✝² : Ring R inst✝¹ : Nontrivial R inst✝ : IsNoetherianRing R n m : ℕ f : (Fin (n + 1 + m) → R) →ₗ[R] Fin n → R i : Injective ↑f ⊢ False [PROOFSTEP] let e : Fin (n + 1 + m) ≃ Sum (Fin n) (Fin (1 + m)) := (finCongr (add_assoc _ _ _)).trans finSumFinEquiv.symm [GOAL] case le_of_fin_injective.intro R : Type u inst✝² : Ring R inst✝¹ : Nontrivial R inst✝ : IsNoetherianRing R n m : ℕ f : (Fin (n + 1 + m) → R) →ₗ[R] Fin n → R i : Injective ↑f e : Fin (n + 1 + m) ≃ Fin n ⊕ Fin (1 + m) := (finCongr (_ : n + 1 + m = n + (1 + m))).trans finSumFinEquiv.symm ⊢ False [PROOFSTEP] let f' := f.comp ((LinearEquiv.sumArrowLequivProdArrow _ _ R R).symm.trans (LinearEquiv.funCongrLeft R R e)).toLinearMap [GOAL] case le_of_fin_injective.intro R : Type u inst✝² : Ring R inst✝¹ : Nontrivial R inst✝ : IsNoetherianRing R n m : ℕ f : (Fin (n + 1 + m) → R) →ₗ[R] Fin n → R i : Injective ↑f e : Fin (n + 1 + m) ≃ Fin n ⊕ Fin (1 + m) := (finCongr (_ : n + 1 + m = n + (1 + m))).trans finSumFinEquiv.symm f' : (Fin n → R) × (Fin (1 + m) → R) →ₗ[R] Fin n → R := LinearMap.comp f ↑(LinearEquiv.trans (LinearEquiv.symm (LinearEquiv.sumArrowLequivProdArrow (Fin n) (Fin (1 + m)) R R)) (LinearEquiv.funCongrLeft R R e)) ⊢ False [PROOFSTEP] have i' : Injective f' := i.comp (LinearEquiv.injective _) [GOAL] case le_of_fin_injective.intro R : Type u inst✝² : Ring R inst✝¹ : Nontrivial R inst✝ : IsNoetherianRing R n m : ℕ f : (Fin (n + 1 + m) → R) →ₗ[R] Fin n → R i : Injective ↑f e : Fin (n + 1 + m) ≃ Fin n ⊕ Fin (1 + m) := (finCongr (_ : n + 1 + m = n + (1 + m))).trans finSumFinEquiv.symm f' : (Fin n → R) × (Fin (1 + m) → R) →ₗ[R] Fin n → R := LinearMap.comp f ↑(LinearEquiv.trans (LinearEquiv.symm (LinearEquiv.sumArrowLequivProdArrow (Fin n) (Fin (1 + m)) R R)) (LinearEquiv.funCongrLeft R R e)) i' : Injective ↑f' ⊢ False [PROOFSTEP] apply @zero_ne_one (Fin (1 + m) → R) _ _ [GOAL] case le_of_fin_injective.intro.a R : Type u inst✝² : Ring R inst✝¹ : Nontrivial R inst✝ : IsNoetherianRing R n m : ℕ f : (Fin (n + 1 + m) → R) →ₗ[R] Fin n → R i : Injective ↑f e : Fin (n + 1 + m) ≃ Fin n ⊕ Fin (1 + m) := (finCongr (_ : n + 1 + m = n + (1 + m))).trans finSumFinEquiv.symm f' : (Fin n → R) × (Fin (1 + m) → R) →ₗ[R] Fin n → R := LinearMap.comp f ↑(LinearEquiv.trans (LinearEquiv.symm (LinearEquiv.sumArrowLequivProdArrow (Fin n) (Fin (1 + m)) R R)) (LinearEquiv.funCongrLeft R R e)) i' : Injective ↑f' ⊢ 0 = 1 [PROOFSTEP] apply (IsNoetherian.equivPUnitOfProdInjective f' i').injective [GOAL] case le_of_fin_injective.intro.a.a R : Type u inst✝² : Ring R inst✝¹ : Nontrivial R inst✝ : IsNoetherianRing R n m : ℕ f : (Fin (n + 1 + m) → R) →ₗ[R] Fin n → R i : Injective ↑f e : Fin (n + 1 + m) ≃ Fin n ⊕ Fin (1 + m) := (finCongr (_ : n + 1 + m = n + (1 + m))).trans finSumFinEquiv.symm f' : (Fin n → R) × (Fin (1 + m) → R) →ₗ[R] Fin n → R := LinearMap.comp f ↑(LinearEquiv.trans (LinearEquiv.symm (LinearEquiv.sumArrowLequivProdArrow (Fin n) (Fin (1 + m)) R R)) (LinearEquiv.funCongrLeft R R e)) i' : Injective ↑f' ⊢ ↑(IsNoetherian.equivPUnitOfProdInjective f' i') 0 = ↑(IsNoetherian.equivPUnitOfProdInjective f' i') 1 [PROOFSTEP] ext [GOAL] R : Type u inst✝¹ : CommRing R I✝ : Ideal R ι : Type v inst✝ : Fintype ι ι' : Type w I : Ideal R e : (ι → R) →ₗ[R] ι' → R x : (ι → R) ⧸ Ideal.pi I ι ⊢ ∀ (a b : ι → R), Setoid.r a b → (fun y => ↑(Ideal.Quotient.mk (Ideal.pi I ι')) (↑e y)) a = (fun y => ↑(Ideal.Quotient.mk (Ideal.pi I ι')) (↑e y)) b [PROOFSTEP] refine' fun a b hab => Ideal.Quotient.eq.2 fun h => _ [GOAL] R : Type u inst✝¹ : CommRing R I✝ : Ideal R ι : Type v inst✝ : Fintype ι ι' : Type w I : Ideal R e : (ι → R) →ₗ[R] ι' → R x : (ι → R) ⧸ Ideal.pi I ι a b : ι → R hab : Setoid.r a b h : ι' ⊢ (↑e a - ↑e b) h ∈ I [PROOFSTEP] rw [Submodule.quotientRel_r_def] at hab [GOAL] R : Type u inst✝¹ : CommRing R I✝ : Ideal R ι : Type v inst✝ : Fintype ι ι' : Type w I : Ideal R e : (ι → R) →ₗ[R] ι' → R x : (ι → R) ⧸ Ideal.pi I ι a b : ι → R hab : a - b ∈ Ideal.pi I ι h : ι' ⊢ (↑e a - ↑e b) h ∈ I [PROOFSTEP] rw [← LinearMap.map_sub] [GOAL] R : Type u inst✝¹ : CommRing R I✝ : Ideal R ι : Type v inst✝ : Fintype ι ι' : Type w I : Ideal R e : (ι → R) →ₗ[R] ι' → R x : (ι → R) ⧸ Ideal.pi I ι a b : ι → R hab : a - b ∈ Ideal.pi I ι h : ι' ⊢ ↑e (a - b) h ∈ I [PROOFSTEP] exact Ideal.map_pi _ _ hab e h [GOAL] R : Type u inst✝² : CommRing R I✝ : Ideal R ι : Type v inst✝¹ : Fintype ι ι' : Type w inst✝ : Fintype ι' I : Ideal R e : (ι → R) ≃ₗ[R] ι' → R ⊢ ((ι → R) ⧸ Ideal.pi I ι) ≃ₗ[R ⧸ I] (ι' → R) ⧸ Ideal.pi I ι' [PROOFSTEP] refine' { toFun := induced_map I e invFun := induced_map I e.symm .. } [GOAL] case refine'_1 R : Type u inst✝² : CommRing R I✝ : Ideal R ι : Type v inst✝¹ : Fintype ι ι' : Type w inst✝ : Fintype ι' I : Ideal R e : (ι → R) ≃ₗ[R] ι' → R ⊢ ∀ (x y : (ι → R) ⧸ Ideal.pi I ι), induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y case refine'_2 R : Type u inst✝² : CommRing R I✝ : Ideal R ι : Type v inst✝¹ : Fintype ι ι' : Type w inst✝ : Fintype ι' I : Ideal R e : (ι → R) ≃ₗ[R] ι' → R ⊢ ∀ (r : R ⧸ I) (x : (ι → R) ⧸ Ideal.pi I ι), AddHom.toFun { toFun := induced_map I ↑e, map_add' := ?refine'_1 } (r • x) = ↑(RingHom.id (R ⧸ I)) r • AddHom.toFun { toFun := induced_map I ↑e, map_add' := ?refine'_1 } x case refine'_3 R : Type u inst✝² : CommRing R I✝ : Ideal R ι : Type v inst✝¹ : Fintype ι ι' : Type w inst✝ : Fintype ι' I : Ideal R e : (ι → R) ≃ₗ[R] ι' → R ⊢ LeftInverse (induced_map I ↑(LinearEquiv.symm e)) { toAddHom := { toFun := induced_map I ↑e, map_add' := ?refine'_1 }, map_smul' := ?refine'_2 }.toAddHom.toFun case refine'_4 R : Type u inst✝² : CommRing R I✝ : Ideal R ι : Type v inst✝¹ : Fintype ι ι' : Type w inst✝ : Fintype ι' I : Ideal R e : (ι → R) ≃ₗ[R] ι' → R ⊢ Function.RightInverse (induced_map I ↑(LinearEquiv.symm e)) { toAddHom := { toFun := induced_map I ↑e, map_add' := ?refine'_1 }, map_smul' := ?refine'_2 }.toAddHom.toFun [PROOFSTEP] all_goals first | rintro ⟨a⟩ ⟨b⟩ | rintro ⟨a⟩ -- porting note: the next 4 lines were necessary because Lean couldn't correctly infer `(I.pi ι)` -- and `(I.pi ι')` on its own. [GOAL] case refine'_1 R : Type u inst✝² : CommRing R I✝ : Ideal R ι : Type v inst✝¹ : Fintype ι ι' : Type w inst✝ : Fintype ι' I : Ideal R e : (ι → R) ≃ₗ[R] ι' → R ⊢ ∀ (x y : (ι → R) ⧸ Ideal.pi I ι), induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y [PROOFSTEP] first | rintro ⟨a⟩ ⟨b⟩ | rintro ⟨a⟩ -- porting note: the next 4 lines were necessary because Lean couldn't correctly infer `(I.pi ι)` -- and `(I.pi ι')` on its own. [GOAL] case refine'_1 R : Type u inst✝² : CommRing R I✝ : Ideal R ι : Type v inst✝¹ : Fintype ι ι' : Type w inst✝ : Fintype ι' I : Ideal R e : (ι → R) ≃ₗ[R] ι' → R ⊢ ∀ (x y : (ι → R) ⧸ Ideal.pi I ι), induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y [PROOFSTEP] rintro ⟨a⟩ ⟨b⟩ [GOAL] case refine'_2 R : Type u inst✝² : CommRing R I✝ : Ideal R ι : Type v inst✝¹ : Fintype ι ι' : Type w inst✝ : Fintype ι' I : Ideal R e : (ι → R) ≃ₗ[R] ι' → R ⊢ ∀ (r : R ⧸ I) (x : (ι → R) ⧸ Ideal.pi I ι), AddHom.toFun { toFun := induced_map I ↑e, map_add' := (_ : ∀ (x y : (ι → R) ⧸ Ideal.pi I ι), induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) } (r • x) = ↑(RingHom.id (R ⧸ I)) r • AddHom.toFun { toFun := induced_map I ↑e, map_add' := (_ : ∀ (x y : (ι → R) ⧸ Ideal.pi I ι), induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) } x [PROOFSTEP] first | rintro ⟨a⟩ ⟨b⟩ | rintro ⟨a⟩ -- porting note: the next 4 lines were necessary because Lean couldn't correctly infer `(I.pi ι)` -- and `(I.pi ι')` on its own. [GOAL] case refine'_2 R : Type u inst✝² : CommRing R I✝ : Ideal R ι : Type v inst✝¹ : Fintype ι ι' : Type w inst✝ : Fintype ι' I : Ideal R e : (ι → R) ≃ₗ[R] ι' → R ⊢ ∀ (r : R ⧸ I) (x : (ι → R) ⧸ Ideal.pi I ι), AddHom.toFun { toFun := induced_map I ↑e, map_add' := (_ : ∀ (x y : (ι → R) ⧸ Ideal.pi I ι), induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) } (r • x) = ↑(RingHom.id (R ⧸ I)) r • AddHom.toFun { toFun := induced_map I ↑e, map_add' := (_ : ∀ (x y : (ι → R) ⧸ Ideal.pi I ι), induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) } x [PROOFSTEP] rintro ⟨a⟩ ⟨b⟩ [GOAL] case refine'_3 R : Type u inst✝² : CommRing R I✝ : Ideal R ι : Type v inst✝¹ : Fintype ι ι' : Type w inst✝ : Fintype ι' I : Ideal R e : (ι → R) ≃ₗ[R] ι' → R ⊢ LeftInverse (induced_map I ↑(LinearEquiv.symm e)) { toAddHom := { toFun := induced_map I ↑e, map_add' := (_ : ∀ (x y : (ι → R) ⧸ Ideal.pi I ι), induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) }, map_smul' := (_ : ∀ (r : R ⧸ I) (x : (ι → R) ⧸ Ideal.pi I ι), AddHom.toFun { toFun := induced_map I ↑e, map_add' := (_ : ∀ (x y : (ι → R) ⧸ Ideal.pi I ι), induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) } (r • x) = ↑(RingHom.id (R ⧸ I)) r • AddHom.toFun { toFun := induced_map I ↑e, map_add' := (_ : ∀ (x y : (ι → R) ⧸ Ideal.pi I ι), induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) } x) }.toAddHom.toFun [PROOFSTEP] first | rintro ⟨a⟩ ⟨b⟩ | rintro ⟨a⟩ -- porting note: the next 4 lines were necessary because Lean couldn't correctly infer `(I.pi ι)` -- and `(I.pi ι')` on its own. [GOAL] case refine'_3 R : Type u inst✝² : CommRing R I✝ : Ideal R ι : Type v inst✝¹ : Fintype ι ι' : Type w inst✝ : Fintype ι' I : Ideal R e : (ι → R) ≃ₗ[R] ι' → R ⊢ LeftInverse (induced_map I ↑(LinearEquiv.symm e)) { toAddHom := { toFun := induced_map I ↑e, map_add' := (_ : ∀ (x y : (ι → R) ⧸ Ideal.pi I ι), induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) }, map_smul' := (_ : ∀ (r : R ⧸ I) (x : (ι → R) ⧸ Ideal.pi I ι), AddHom.toFun { toFun := induced_map I ↑e, map_add' := (_ : ∀ (x y : (ι → R) ⧸ Ideal.pi I ι), induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) } (r • x) = ↑(RingHom.id (R ⧸ I)) r • AddHom.toFun { toFun := induced_map I ↑e, map_add' := (_ : ∀ (x y : (ι → R) ⧸ Ideal.pi I ι), induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) } x) }.toAddHom.toFun [PROOFSTEP] rintro ⟨a⟩ ⟨b⟩ [GOAL] case refine'_3 R : Type u inst✝² : CommRing R I✝ : Ideal R ι : Type v inst✝¹ : Fintype ι ι' : Type w inst✝ : Fintype ι' I : Ideal R e : (ι → R) ≃ₗ[R] ι' → R ⊢ LeftInverse (induced_map I ↑(LinearEquiv.symm e)) { toAddHom := { toFun := induced_map I ↑e, map_add' := (_ : ∀ (x y : (ι → R) ⧸ Ideal.pi I ι), induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) }, map_smul' := (_ : ∀ (r : R ⧸ I) (x : (ι → R) ⧸ Ideal.pi I ι), AddHom.toFun { toFun := induced_map I ↑e, map_add' := (_ : ∀ (x y : (ι → R) ⧸ Ideal.pi I ι), induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) } (r • x) = ↑(RingHom.id (R ⧸ I)) r • AddHom.toFun { toFun := induced_map I ↑e, map_add' := (_ : ∀ (x y : (ι → R) ⧸ Ideal.pi I ι), induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) } x) }.toAddHom.toFun [PROOFSTEP] rintro ⟨a⟩ -- porting note: the next 4 lines were necessary because Lean couldn't correctly infer `(I.pi ι)` -- and `(I.pi ι')` on its own. [GOAL] case refine'_4 R : Type u inst✝² : CommRing R I✝ : Ideal R ι : Type v inst✝¹ : Fintype ι ι' : Type w inst✝ : Fintype ι' I : Ideal R e : (ι → R) ≃ₗ[R] ι' → R ⊢ Function.RightInverse (induced_map I ↑(LinearEquiv.symm e)) { toAddHom := { toFun := induced_map I ↑e, map_add' := (_ : ∀ (x y : (ι → R) ⧸ Ideal.pi I ι), induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) }, map_smul' := (_ : ∀ (r : R ⧸ I) (x : (ι → R) ⧸ Ideal.pi I ι), AddHom.toFun { toFun := induced_map I ↑e, map_add' := (_ : ∀ (x y : (ι → R) ⧸ Ideal.pi I ι), induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) } (r • x) = ↑(RingHom.id (R ⧸ I)) r • AddHom.toFun { toFun := induced_map I ↑e, map_add' := (_ : ∀ (x y : (ι → R) ⧸ Ideal.pi I ι), induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) } x) }.toAddHom.toFun [PROOFSTEP] first | rintro ⟨a⟩ ⟨b⟩ | rintro ⟨a⟩ -- porting note: the next 4 lines were necessary because Lean couldn't correctly infer `(I.pi ι)` -- and `(I.pi ι')` on its own. [GOAL] case refine'_4 R : Type u inst✝² : CommRing R I✝ : Ideal R ι : Type v inst✝¹ : Fintype ι ι' : Type w inst✝ : Fintype ι' I : Ideal R e : (ι → R) ≃ₗ[R] ι' → R ⊢ Function.RightInverse (induced_map I ↑(LinearEquiv.symm e)) { toAddHom := { toFun := induced_map I ↑e, map_add' := (_ : ∀ (x y : (ι → R) ⧸ Ideal.pi I ι), induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) }, map_smul' := (_ : ∀ (r : R ⧸ I) (x : (ι → R) ⧸ Ideal.pi I ι), AddHom.toFun { toFun := induced_map I ↑e, map_add' := (_ : ∀ (x y : (ι → R) ⧸ Ideal.pi I ι), induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) } (r • x) = ↑(RingHom.id (R ⧸ I)) r • AddHom.toFun { toFun := induced_map I ↑e, map_add' := (_ : ∀ (x y : (ι → R) ⧸ Ideal.pi I ι), induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) } x) }.toAddHom.toFun [PROOFSTEP] rintro ⟨a⟩ ⟨b⟩ [GOAL] case refine'_4 R : Type u inst✝² : CommRing R I✝ : Ideal R ι : Type v inst✝¹ : Fintype ι ι' : Type w inst✝ : Fintype ι' I : Ideal R e : (ι → R) ≃ₗ[R] ι' → R ⊢ Function.RightInverse (induced_map I ↑(LinearEquiv.symm e)) { toAddHom := { toFun := induced_map I ↑e, map_add' := (_ : ∀ (x y : (ι → R) ⧸ Ideal.pi I ι), induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) }, map_smul' := (_ : ∀ (r : R ⧸ I) (x : (ι → R) ⧸ Ideal.pi I ι), AddHom.toFun { toFun := induced_map I ↑e, map_add' := (_ : ∀ (x y : (ι → R) ⧸ Ideal.pi I ι), induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) } (r • x) = ↑(RingHom.id (R ⧸ I)) r • AddHom.toFun { toFun := induced_map I ↑e, map_add' := (_ : ∀ (x y : (ι → R) ⧸ Ideal.pi I ι), induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) } x) }.toAddHom.toFun [PROOFSTEP] rintro ⟨a⟩ -- porting note: the next 4 lines were necessary because Lean couldn't correctly infer `(I.pi ι)` -- and `(I.pi ι')` on its own. [GOAL] case refine'_1.mk.mk R : Type u inst✝² : CommRing R I✝ : Ideal R ι : Type v inst✝¹ : Fintype ι ι' : Type w inst✝ : Fintype ι' I : Ideal R e : (ι → R) ≃ₗ[R] ι' → R x✝ : (ι → R) ⧸ Ideal.pi I ι a : ι → R y✝ : (ι → R) ⧸ Ideal.pi I ι b : ι → R ⊢ induced_map I (↑e) (Quot.mk Setoid.r a + Quot.mk Setoid.r b) = induced_map I (↑e) (Quot.mk Setoid.r a) + induced_map I (↑e) (Quot.mk Setoid.r b) case refine'_2.mk.mk R : Type u inst✝² : CommRing R I✝ : Ideal R ι : Type v inst✝¹ : Fintype ι ι' : Type w inst✝ : Fintype ι' I : Ideal R e : (ι → R) ≃ₗ[R] ι' → R r✝ : R ⧸ I a : R x✝ : (ι → R) ⧸ Ideal.pi I ι b : ι → R ⊢ AddHom.toFun { toFun := induced_map I ↑e, map_add' := (_ : ∀ (x y : (ι → R) ⧸ Ideal.pi I ι), induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) } (Quot.mk Setoid.r a • Quot.mk Setoid.r b) = ↑(RingHom.id (R ⧸ I)) (Quot.mk Setoid.r a) • AddHom.toFun { toFun := induced_map I ↑e, map_add' := (_ : ∀ (x y : (ι → R) ⧸ Ideal.pi I ι), induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) } (Quot.mk Setoid.r b) case refine'_3.mk R : Type u inst✝² : CommRing R I✝ : Ideal R ι : Type v inst✝¹ : Fintype ι ι' : Type w inst✝ : Fintype ι' I : Ideal R e : (ι → R) ≃ₗ[R] ι' → R x✝ : (ι → R) ⧸ Ideal.pi I ι a : ι → R ⊢ induced_map I (↑(LinearEquiv.symm e)) (AddHom.toFun { toAddHom := { toFun := induced_map I ↑e, map_add' := (_ : ∀ (x y : (ι → R) ⧸ Ideal.pi I ι), induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) }, map_smul' := (_ : ∀ (r : R ⧸ I) (x : (ι → R) ⧸ Ideal.pi I ι), AddHom.toFun { toFun := induced_map I ↑e, map_add' := (_ : ∀ (x y : (ι → R) ⧸ Ideal.pi I ι), induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) } (r • x) = ↑(RingHom.id (R ⧸ I)) r • AddHom.toFun { toFun := induced_map I ↑e, map_add' := (_ : ∀ (x y : (ι → R) ⧸ Ideal.pi I ι), induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) } x) }.toAddHom (Quot.mk Setoid.r a)) = Quot.mk Setoid.r a case refine'_4.mk R : Type u inst✝² : CommRing R I✝ : Ideal R ι : Type v inst✝¹ : Fintype ι ι' : Type w inst✝ : Fintype ι' I : Ideal R e : (ι → R) ≃ₗ[R] ι' → R x✝ : (ι' → R) ⧸ Ideal.pi I ι' a : ι' → R ⊢ AddHom.toFun { toAddHom := { toFun := induced_map I ↑e, map_add' := (_ : ∀ (x y : (ι → R) ⧸ Ideal.pi I ι), induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) }, map_smul' := (_ : ∀ (r : R ⧸ I) (x : (ι → R) ⧸ Ideal.pi I ι), AddHom.toFun { toFun := induced_map I ↑e, map_add' := (_ : ∀ (x y : (ι → R) ⧸ Ideal.pi I ι), induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) } (r • x) = ↑(RingHom.id (R ⧸ I)) r • AddHom.toFun { toFun := induced_map I ↑e, map_add' := (_ : ∀ (x y : (ι → R) ⧸ Ideal.pi I ι), induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) } x) }.toAddHom (induced_map I (↑(LinearEquiv.symm e)) (Quot.mk Setoid.r a)) = Quot.mk Setoid.r a [PROOFSTEP] pick_goal 3 [GOAL] case refine'_3.mk R : Type u inst✝² : CommRing R I✝ : Ideal R ι : Type v inst✝¹ : Fintype ι ι' : Type w inst✝ : Fintype ι' I : Ideal R e : (ι → R) ≃ₗ[R] ι' → R x✝ : (ι → R) ⧸ Ideal.pi I ι a : ι → R ⊢ induced_map I (↑(LinearEquiv.symm e)) (AddHom.toFun { toAddHom := { toFun := induced_map I ↑e, map_add' := (_ : ∀ (x y : (ι → R) ⧸ Ideal.pi I ι), induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) }, map_smul' := (_ : ∀ (r : R ⧸ I) (x : (ι → R) ⧸ Ideal.pi I ι), AddHom.toFun { toFun := induced_map I ↑e, map_add' := (_ : ∀ (x y : (ι → R) ⧸ Ideal.pi I ι), induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) } (r • x) = ↑(RingHom.id (R ⧸ I)) r • AddHom.toFun { toFun := induced_map I ↑e, map_add' := (_ : ∀ (x y : (ι → R) ⧸ Ideal.pi I ι), induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) } x) }.toAddHom (Quot.mk Setoid.r a)) = Quot.mk Setoid.r a case refine'_1.mk.mk R : Type u inst✝² : CommRing R I✝ : Ideal R ι : Type v inst✝¹ : Fintype ι ι' : Type w inst✝ : Fintype ι' I : Ideal R e : (ι → R) ≃ₗ[R] ι' → R x✝ : (ι → R) ⧸ Ideal.pi I ι a : ι → R y✝ : (ι → R) ⧸ Ideal.pi I ι b : ι → R ⊢ induced_map I (↑e) (Quot.mk Setoid.r a + Quot.mk Setoid.r b) = induced_map I (↑e) (Quot.mk Setoid.r a) + induced_map I (↑e) (Quot.mk Setoid.r b) case refine'_2.mk.mk R : Type u inst✝² : CommRing R I✝ : Ideal R ι : Type v inst✝¹ : Fintype ι ι' : Type w inst✝ : Fintype ι' I : Ideal R e : (ι → R) ≃ₗ[R] ι' → R r✝ : R ⧸ I a : R x✝ : (ι → R) ⧸ Ideal.pi I ι b : ι → R ⊢ AddHom.toFun { toFun := induced_map I ↑e, map_add' := (_ : ∀ (x y : (ι → R) ⧸ Ideal.pi I ι), induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) } (Quot.mk Setoid.r a • Quot.mk Setoid.r b) = ↑(RingHom.id (R ⧸ I)) (Quot.mk Setoid.r a) • AddHom.toFun { toFun := induced_map I ↑e, map_add' := (_ : ∀ (x y : (ι → R) ⧸ Ideal.pi I ι), induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) } (Quot.mk Setoid.r b) case refine'_4.mk R : Type u inst✝² : CommRing R I✝ : Ideal R ι : Type v inst✝¹ : Fintype ι ι' : Type w inst✝ : Fintype ι' I : Ideal R e : (ι → R) ≃ₗ[R] ι' → R x✝ : (ι' → R) ⧸ Ideal.pi I ι' a : ι' → R ⊢ AddHom.toFun { toAddHom := { toFun := induced_map I ↑e, map_add' := (_ : ∀ (x y : (ι → R) ⧸ Ideal.pi I ι), induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) }, map_smul' := (_ : ∀ (r : R ⧸ I) (x : (ι → R) ⧸ Ideal.pi I ι), AddHom.toFun { toFun := induced_map I ↑e, map_add' := (_ : ∀ (x y : (ι → R) ⧸ Ideal.pi I ι), induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) } (r • x) = ↑(RingHom.id (R ⧸ I)) r • AddHom.toFun { toFun := induced_map I ↑e, map_add' := (_ : ∀ (x y : (ι → R) ⧸ Ideal.pi I ι), induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) } x) }.toAddHom (induced_map I (↑(LinearEquiv.symm e)) (Quot.mk Setoid.r a)) = Quot.mk Setoid.r a [PROOFSTEP] convert_to Ideal.Quotient.mk (I.pi ι) _ = Ideal.Quotient.mk (I.pi ι) _ [GOAL] case refine'_3.mk.convert_3 R : Type u inst✝² : CommRing R I✝ : Ideal R ι : Type v inst✝¹ : Fintype ι ι' : Type w inst✝ : Fintype ι' I : Ideal R e : (ι → R) ≃ₗ[R] ι' → R x✝ : (ι → R) ⧸ Ideal.pi I ι a : ι → R ⊢ ↑(Ideal.Quotient.mk (Ideal.pi I ι)) (↑↑(LinearEquiv.symm e) (↑↑e a)) = ↑(Ideal.Quotient.mk (Ideal.pi I ι)) a case refine'_1.mk.mk R : Type u inst✝² : CommRing R I✝ : Ideal R ι : Type v inst✝¹ : Fintype ι ι' : Type w inst✝ : Fintype ι' I : Ideal R e : (ι → R) ≃ₗ[R] ι' → R x✝ : (ι → R) ⧸ Ideal.pi I ι a : ι → R y✝ : (ι → R) ⧸ Ideal.pi I ι b : ι → R ⊢ induced_map I (↑e) (Quot.mk Setoid.r a + Quot.mk Setoid.r b) = induced_map I (↑e) (Quot.mk Setoid.r a) + induced_map I (↑e) (Quot.mk Setoid.r b) case refine'_2.mk.mk R : Type u inst✝² : CommRing R I✝ : Ideal R ι : Type v inst✝¹ : Fintype ι ι' : Type w inst✝ : Fintype ι' I : Ideal R e : (ι → R) ≃ₗ[R] ι' → R r✝ : R ⧸ I a : R x✝ : (ι → R) ⧸ Ideal.pi I ι b : ι → R ⊢ AddHom.toFun { toFun := induced_map I ↑e, map_add' := (_ : ∀ (x y : (ι → R) ⧸ Ideal.pi I ι), induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) } (Quot.mk Setoid.r a • Quot.mk Setoid.r b) = ↑(RingHom.id (R ⧸ I)) (Quot.mk Setoid.r a) • AddHom.toFun { toFun := induced_map I ↑e, map_add' := (_ : ∀ (x y : (ι → R) ⧸ Ideal.pi I ι), induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) } (Quot.mk Setoid.r b) case refine'_4.mk R : Type u inst✝² : CommRing R I✝ : Ideal R ι : Type v inst✝¹ : Fintype ι ι' : Type w inst✝ : Fintype ι' I : Ideal R e : (ι → R) ≃ₗ[R] ι' → R x✝ : (ι' → R) ⧸ Ideal.pi I ι' a : ι' → R ⊢ AddHom.toFun { toAddHom := { toFun := induced_map I ↑e, map_add' := (_ : ∀ (x y : (ι → R) ⧸ Ideal.pi I ι), induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) }, map_smul' := (_ : ∀ (r : R ⧸ I) (x : (ι → R) ⧸ Ideal.pi I ι), AddHom.toFun { toFun := induced_map I ↑e, map_add' := (_ : ∀ (x y : (ι → R) ⧸ Ideal.pi I ι), induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) } (r • x) = ↑(RingHom.id (R ⧸ I)) r • AddHom.toFun { toFun := induced_map I ↑e, map_add' := (_ : ∀ (x y : (ι → R) ⧸ Ideal.pi I ι), induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) } x) }.toAddHom (induced_map I (↑(LinearEquiv.symm e)) (Quot.mk Setoid.r a)) = Quot.mk Setoid.r a [PROOFSTEP] congr [GOAL] case refine'_3.mk.convert_3.h.e_6.h R : Type u inst✝² : CommRing R I✝ : Ideal R ι : Type v inst✝¹ : Fintype ι ι' : Type w inst✝ : Fintype ι' I : Ideal R e : (ι → R) ≃ₗ[R] ι' → R x✝ : (ι → R) ⧸ Ideal.pi I ι a : ι → R ⊢ ↑↑(LinearEquiv.symm e) (↑↑e a) = a case refine'_1.mk.mk R : Type u inst✝² : CommRing R I✝ : Ideal R ι : Type v inst✝¹ : Fintype ι ι' : Type w inst✝ : Fintype ι' I : Ideal R e : (ι → R) ≃ₗ[R] ι' → R x✝ : (ι → R) ⧸ Ideal.pi I ι a : ι → R y✝ : (ι → R) ⧸ Ideal.pi I ι b : ι → R ⊢ induced_map I (↑e) (Quot.mk Setoid.r a + Quot.mk Setoid.r b) = induced_map I (↑e) (Quot.mk Setoid.r a) + induced_map I (↑e) (Quot.mk Setoid.r b) case refine'_2.mk.mk R : Type u inst✝² : CommRing R I✝ : Ideal R ι : Type v inst✝¹ : Fintype ι ι' : Type w inst✝ : Fintype ι' I : Ideal R e : (ι → R) ≃ₗ[R] ι' → R r✝ : R ⧸ I a : R x✝ : (ι → R) ⧸ Ideal.pi I ι b : ι → R ⊢ AddHom.toFun { toFun := induced_map I ↑e, map_add' := (_ : ∀ (x y : (ι → R) ⧸ Ideal.pi I ι), induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) } (Quot.mk Setoid.r a • Quot.mk Setoid.r b) = ↑(RingHom.id (R ⧸ I)) (Quot.mk Setoid.r a) • AddHom.toFun { toFun := induced_map I ↑e, map_add' := (_ : ∀ (x y : (ι → R) ⧸ Ideal.pi I ι), induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) } (Quot.mk Setoid.r b) case refine'_4.mk R : Type u inst✝² : CommRing R I✝ : Ideal R ι : Type v inst✝¹ : Fintype ι ι' : Type w inst✝ : Fintype ι' I : Ideal R e : (ι → R) ≃ₗ[R] ι' → R x✝ : (ι' → R) ⧸ Ideal.pi I ι' a : ι' → R ⊢ AddHom.toFun { toAddHom := { toFun := induced_map I ↑e, map_add' := (_ : ∀ (x y : (ι → R) ⧸ Ideal.pi I ι), induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) }, map_smul' := (_ : ∀ (r : R ⧸ I) (x : (ι → R) ⧸ Ideal.pi I ι), AddHom.toFun { toFun := induced_map I ↑e, map_add' := (_ : ∀ (x y : (ι → R) ⧸ Ideal.pi I ι), induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) } (r • x) = ↑(RingHom.id (R ⧸ I)) r • AddHom.toFun { toFun := induced_map I ↑e, map_add' := (_ : ∀ (x y : (ι → R) ⧸ Ideal.pi I ι), induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) } x) }.toAddHom (induced_map I (↑(LinearEquiv.symm e)) (Quot.mk Setoid.r a)) = Quot.mk Setoid.r a [PROOFSTEP] simp only [LinearEquiv.coe_coe, LinearEquiv.symm_apply_apply] [GOAL] case refine'_1.mk.mk R : Type u inst✝² : CommRing R I✝ : Ideal R ι : Type v inst✝¹ : Fintype ι ι' : Type w inst✝ : Fintype ι' I : Ideal R e : (ι → R) ≃ₗ[R] ι' → R x✝ : (ι → R) ⧸ Ideal.pi I ι a : ι → R y✝ : (ι → R) ⧸ Ideal.pi I ι b : ι → R ⊢ induced_map I (↑e) (Quot.mk Setoid.r a + Quot.mk Setoid.r b) = induced_map I (↑e) (Quot.mk Setoid.r a) + induced_map I (↑e) (Quot.mk Setoid.r b) case refine'_2.mk.mk R : Type u inst✝² : CommRing R I✝ : Ideal R ι : Type v inst✝¹ : Fintype ι ι' : Type w inst✝ : Fintype ι' I : Ideal R e : (ι → R) ≃ₗ[R] ι' → R r✝ : R ⧸ I a : R x✝ : (ι → R) ⧸ Ideal.pi I ι b : ι → R ⊢ AddHom.toFun { toFun := induced_map I ↑e, map_add' := (_ : ∀ (x y : (ι → R) ⧸ Ideal.pi I ι), induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) } (Quot.mk Setoid.r a • Quot.mk Setoid.r b) = ↑(RingHom.id (R ⧸ I)) (Quot.mk Setoid.r a) • AddHom.toFun { toFun := induced_map I ↑e, map_add' := (_ : ∀ (x y : (ι → R) ⧸ Ideal.pi I ι), induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) } (Quot.mk Setoid.r b) case refine'_4.mk R : Type u inst✝² : CommRing R I✝ : Ideal R ι : Type v inst✝¹ : Fintype ι ι' : Type w inst✝ : Fintype ι' I : Ideal R e : (ι → R) ≃ₗ[R] ι' → R x✝ : (ι' → R) ⧸ Ideal.pi I ι' a : ι' → R ⊢ AddHom.toFun { toAddHom := { toFun := induced_map I ↑e, map_add' := (_ : ∀ (x y : (ι → R) ⧸ Ideal.pi I ι), induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) }, map_smul' := (_ : ∀ (r : R ⧸ I) (x : (ι → R) ⧸ Ideal.pi I ι), AddHom.toFun { toFun := induced_map I ↑e, map_add' := (_ : ∀ (x y : (ι → R) ⧸ Ideal.pi I ι), induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) } (r • x) = ↑(RingHom.id (R ⧸ I)) r • AddHom.toFun { toFun := induced_map I ↑e, map_add' := (_ : ∀ (x y : (ι → R) ⧸ Ideal.pi I ι), induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) } x) }.toAddHom (induced_map I (↑(LinearEquiv.symm e)) (Quot.mk Setoid.r a)) = Quot.mk Setoid.r a [PROOFSTEP] all_goals convert_to Ideal.Quotient.mk (I.pi ι') _ = Ideal.Quotient.mk (I.pi ι') _ congr simp only [map_add, LinearEquiv.coe_coe, LinearEquiv.map_smulₛₗ, RingHom.id_apply, LinearEquiv.apply_symm_apply] [GOAL] case refine'_1.mk.mk R : Type u inst✝² : CommRing R I✝ : Ideal R ι : Type v inst✝¹ : Fintype ι ι' : Type w inst✝ : Fintype ι' I : Ideal R e : (ι → R) ≃ₗ[R] ι' → R x✝ : (ι → R) ⧸ Ideal.pi I ι a : ι → R y✝ : (ι → R) ⧸ Ideal.pi I ι b : ι → R ⊢ induced_map I (↑e) (Quot.mk Setoid.r a + Quot.mk Setoid.r b) = induced_map I (↑e) (Quot.mk Setoid.r a) + induced_map I (↑e) (Quot.mk Setoid.r b) [PROOFSTEP] convert_to Ideal.Quotient.mk (I.pi ι') _ = Ideal.Quotient.mk (I.pi ι') _ [GOAL] case refine'_1.mk.mk.convert_3 R : Type u inst✝² : CommRing R I✝ : Ideal R ι : Type v inst✝¹ : Fintype ι ι' : Type w inst✝ : Fintype ι' I : Ideal R e : (ι → R) ≃ₗ[R] ι' → R x✝ : (ι → R) ⧸ Ideal.pi I ι a : ι → R y✝ : (ι → R) ⧸ Ideal.pi I ι b : ι → R ⊢ ↑(Ideal.Quotient.mk (Ideal.pi I ι')) (↑↑e ((fun x x_1 => x + x_1) a b)) = ↑(Ideal.Quotient.mk (Ideal.pi I ι')) ((fun x x_1 => x + x_1) (↑↑e a) (↑↑e b)) [PROOFSTEP] congr [GOAL] case refine'_1.mk.mk.convert_3.h.e_6.h R : Type u inst✝² : CommRing R I✝ : Ideal R ι : Type v inst✝¹ : Fintype ι ι' : Type w inst✝ : Fintype ι' I : Ideal R e : (ι → R) ≃ₗ[R] ι' → R x✝ : (ι → R) ⧸ Ideal.pi I ι a : ι → R y✝ : (ι → R) ⧸ Ideal.pi I ι b : ι → R ⊢ ↑↑e ((fun x x_1 => x + x_1) a b) = (fun x x_1 => x + x_1) (↑↑e a) (↑↑e b) [PROOFSTEP] simp only [map_add, LinearEquiv.coe_coe, LinearEquiv.map_smulₛₗ, RingHom.id_apply, LinearEquiv.apply_symm_apply] [GOAL] case refine'_2.mk.mk R : Type u inst✝² : CommRing R I✝ : Ideal R ι : Type v inst✝¹ : Fintype ι ι' : Type w inst✝ : Fintype ι' I : Ideal R e : (ι → R) ≃ₗ[R] ι' → R r✝ : R ⧸ I a : R x✝ : (ι → R) ⧸ Ideal.pi I ι b : ι → R ⊢ AddHom.toFun { toFun := induced_map I ↑e, map_add' := (_ : ∀ (x y : (ι → R) ⧸ Ideal.pi I ι), induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) } (Quot.mk Setoid.r a • Quot.mk Setoid.r b) = ↑(RingHom.id (R ⧸ I)) (Quot.mk Setoid.r a) • AddHom.toFun { toFun := induced_map I ↑e, map_add' := (_ : ∀ (x y : (ι → R) ⧸ Ideal.pi I ι), induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) } (Quot.mk Setoid.r b) [PROOFSTEP] convert_to Ideal.Quotient.mk (I.pi ι') _ = Ideal.Quotient.mk (I.pi ι') _ [GOAL] case refine'_2.mk.mk.convert_3 R : Type u inst✝² : CommRing R I✝ : Ideal R ι : Type v inst✝¹ : Fintype ι ι' : Type w inst✝ : Fintype ι' I : Ideal R e : (ι → R) ≃ₗ[R] ι' → R r✝ : R ⧸ I a : R x✝ : (ι → R) ⧸ Ideal.pi I ι b : ι → R ⊢ ↑(Ideal.Quotient.mk (Ideal.pi I ι')) (↑↑e (a • b)) = ↑(Ideal.Quotient.mk (Ideal.pi I ι')) (a • ↑↑e b) [PROOFSTEP] congr [GOAL] case refine'_2.mk.mk.convert_3.h.e_6.h R : Type u inst✝² : CommRing R I✝ : Ideal R ι : Type v inst✝¹ : Fintype ι ι' : Type w inst✝ : Fintype ι' I : Ideal R e : (ι → R) ≃ₗ[R] ι' → R r✝ : R ⧸ I a : R x✝ : (ι → R) ⧸ Ideal.pi I ι b : ι → R ⊢ ↑↑e (a • b) = a • ↑↑e b [PROOFSTEP] simp only [map_add, LinearEquiv.coe_coe, LinearEquiv.map_smulₛₗ, RingHom.id_apply, LinearEquiv.apply_symm_apply] [GOAL] case refine'_4.mk R : Type u inst✝² : CommRing R I✝ : Ideal R ι : Type v inst✝¹ : Fintype ι ι' : Type w inst✝ : Fintype ι' I : Ideal R e : (ι → R) ≃ₗ[R] ι' → R x✝ : (ι' → R) ⧸ Ideal.pi I ι' a : ι' → R ⊢ AddHom.toFun { toAddHom := { toFun := induced_map I ↑e, map_add' := (_ : ∀ (x y : (ι → R) ⧸ Ideal.pi I ι), induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) }, map_smul' := (_ : ∀ (r : R ⧸ I) (x : (ι → R) ⧸ Ideal.pi I ι), AddHom.toFun { toFun := induced_map I ↑e, map_add' := (_ : ∀ (x y : (ι → R) ⧸ Ideal.pi I ι), induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) } (r • x) = ↑(RingHom.id (R ⧸ I)) r • AddHom.toFun { toFun := induced_map I ↑e, map_add' := (_ : ∀ (x y : (ι → R) ⧸ Ideal.pi I ι), induced_map I (↑e) (x + y) = induced_map I (↑e) x + induced_map I (↑e) y) } x) }.toAddHom (induced_map I (↑(LinearEquiv.symm e)) (Quot.mk Setoid.r a)) = Quot.mk Setoid.r a [PROOFSTEP] convert_to Ideal.Quotient.mk (I.pi ι') _ = Ideal.Quotient.mk (I.pi ι') _ [GOAL] case refine'_4.mk.convert_3 R : Type u inst✝² : CommRing R I✝ : Ideal R ι : Type v inst✝¹ : Fintype ι ι' : Type w inst✝ : Fintype ι' I : Ideal R e : (ι → R) ≃ₗ[R] ι' → R x✝ : (ι' → R) ⧸ Ideal.pi I ι' a : ι' → R ⊢ ↑(Ideal.Quotient.mk (Ideal.pi I ι')) (↑↑e (↑↑(LinearEquiv.symm e) a)) = ↑(Ideal.Quotient.mk (Ideal.pi I ι')) a [PROOFSTEP] congr [GOAL] case refine'_4.mk.convert_3.h.e_6.h R : Type u inst✝² : CommRing R I✝ : Ideal R ι : Type v inst✝¹ : Fintype ι ι' : Type w inst✝ : Fintype ι' I : Ideal R e : (ι → R) ≃ₗ[R] ι' → R x✝ : (ι' → R) ⧸ Ideal.pi I ι' a : ι' → R ⊢ ↑↑e (↑↑(LinearEquiv.symm e) a) = a [PROOFSTEP] simp only [map_add, LinearEquiv.coe_coe, LinearEquiv.map_smulₛₗ, RingHom.id_apply, LinearEquiv.apply_symm_apply]
{"mathlib_filename": "Mathlib.LinearAlgebra.InvariantBasisNumber", "llama_tokens": 22668}
[GOAL] R : Type u_1 inst✝⁶ : StrictOrderedCommSemiring R M : Type u_2 inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M N : Type u_3 inst✝³ : AddCommMonoid N inst✝² : Module R N ι : Type u_4 inst✝¹ : DecidableEq ι x✝ y✝ z : M inst✝ : Subsingleton M x y : M ⊢ SameRay R x y [PROOFSTEP] rw [Subsingleton.elim x 0] [GOAL] R : Type u_1 inst✝⁶ : StrictOrderedCommSemiring R M : Type u_2 inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M N : Type u_3 inst✝³ : AddCommMonoid N inst✝² : Module R N ι : Type u_4 inst✝¹ : DecidableEq ι x✝ y✝ z : M inst✝ : Subsingleton M x y : M ⊢ SameRay R 0 y [PROOFSTEP] exact zero_left _ [GOAL] R : Type u_1 inst✝⁵ : StrictOrderedCommSemiring R M : Type u_2 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M N : Type u_3 inst✝² : AddCommMonoid N inst✝¹ : Module R N ι : Type u_4 inst✝ : DecidableEq ι x✝ y z x : M ⊢ SameRay R x x [PROOFSTEP] nontriviality R [GOAL] R : Type u_1 inst✝⁶ : StrictOrderedCommSemiring R M : Type u_2 inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M N : Type u_3 inst✝³ : AddCommMonoid N inst✝² : Module R N ι : Type u_4 inst✝¹ : DecidableEq ι x✝ y z x : M inst✝ : Nontrivial R ⊢ SameRay R x x [PROOFSTEP] exact Or.inr (Or.inr <| ⟨1, 1, zero_lt_one, zero_lt_one, rfl⟩) [GOAL] R : Type u_1 inst✝⁵ : StrictOrderedCommSemiring R M : Type u_2 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M N : Type u_3 inst✝² : AddCommMonoid N inst✝¹ : Module R N ι : Type u_4 inst✝ : DecidableEq ι x y z : M hxy : SameRay R x y hyz : SameRay R y z hy : y = 0 → x = 0 ∨ z = 0 ⊢ SameRay R x z [PROOFSTEP] rcases eq_or_ne x 0 with (rfl | hx) [GOAL] case inl R : Type u_1 inst✝⁵ : StrictOrderedCommSemiring R M : Type u_2 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M N : Type u_3 inst✝² : AddCommMonoid N inst✝¹ : Module R N ι : Type u_4 inst✝ : DecidableEq ι y z : M hyz : SameRay R y z hxy : SameRay R 0 y hy : y = 0 → 0 = 0 ∨ z = 0 ⊢ SameRay R 0 z [PROOFSTEP] exact zero_left z [GOAL] case inr R : Type u_1 inst✝⁵ : StrictOrderedCommSemiring R M : Type u_2 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M N : Type u_3 inst✝² : AddCommMonoid N inst✝¹ : Module R N ι : Type u_4 inst✝ : DecidableEq ι x y z : M hxy : SameRay R x y hyz : SameRay R y z hy : y = 0 → x = 0 ∨ z = 0 hx : x ≠ 0 ⊢ SameRay R x z [PROOFSTEP] rcases eq_or_ne z 0 with (rfl | hz) [GOAL] case inr.inl R : Type u_1 inst✝⁵ : StrictOrderedCommSemiring R M : Type u_2 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M N : Type u_3 inst✝² : AddCommMonoid N inst✝¹ : Module R N ι : Type u_4 inst✝ : DecidableEq ι x y : M hxy : SameRay R x y hx : x ≠ 0 hyz : SameRay R y 0 hy : y = 0 → x = 0 ∨ 0 = 0 ⊢ SameRay R x 0 [PROOFSTEP] exact zero_right x [GOAL] case inr.inr R : Type u_1 inst✝⁵ : StrictOrderedCommSemiring R M : Type u_2 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M N : Type u_3 inst✝² : AddCommMonoid N inst✝¹ : Module R N ι : Type u_4 inst✝ : DecidableEq ι x y z : M hxy : SameRay R x y hyz : SameRay R y z hy : y = 0 → x = 0 ∨ z = 0 hx : x ≠ 0 hz : z ≠ 0 ⊢ SameRay R x z [PROOFSTEP] rcases eq_or_ne y 0 with (rfl | hy) [GOAL] case inr.inr.inl R : Type u_1 inst✝⁵ : StrictOrderedCommSemiring R M : Type u_2 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M N : Type u_3 inst✝² : AddCommMonoid N inst✝¹ : Module R N ι : Type u_4 inst✝ : DecidableEq ι x z : M hx : x ≠ 0 hz : z ≠ 0 hxy : SameRay R x 0 hyz : SameRay R 0 z hy : 0 = 0 → x = 0 ∨ z = 0 ⊢ SameRay R x z [PROOFSTEP] exact (hy rfl).elim (fun h => (hx h).elim) fun h => (hz h).elim [GOAL] case inr.inr.inr R : Type u_1 inst✝⁵ : StrictOrderedCommSemiring R M : Type u_2 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M N : Type u_3 inst✝² : AddCommMonoid N inst✝¹ : Module R N ι : Type u_4 inst✝ : DecidableEq ι x y z : M hxy : SameRay R x y hyz : SameRay R y z hy✝ : y = 0 → x = 0 ∨ z = 0 hx : x ≠ 0 hz : z ≠ 0 hy : y ≠ 0 ⊢ SameRay R x z [PROOFSTEP] rcases hxy.exists_pos hx hy with ⟨r₁, r₂, hr₁, hr₂, h₁⟩ [GOAL] case inr.inr.inr.intro.intro.intro.intro R : Type u_1 inst✝⁵ : StrictOrderedCommSemiring R M : Type u_2 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M N : Type u_3 inst✝² : AddCommMonoid N inst✝¹ : Module R N ι : Type u_4 inst✝ : DecidableEq ι x y z : M hxy : SameRay R x y hyz : SameRay R y z hy✝ : y = 0 → x = 0 ∨ z = 0 hx : x ≠ 0 hz : z ≠ 0 hy : y ≠ 0 r₁ r₂ : R hr₁ : 0 < r₁ hr₂ : 0 < r₂ h₁ : r₁ • x = r₂ • y ⊢ SameRay R x z [PROOFSTEP] rcases hyz.exists_pos hy hz with ⟨r₃, r₄, hr₃, hr₄, h₂⟩ [GOAL] case inr.inr.inr.intro.intro.intro.intro.intro.intro.intro.intro R : Type u_1 inst✝⁵ : StrictOrderedCommSemiring R M : Type u_2 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M N : Type u_3 inst✝² : AddCommMonoid N inst✝¹ : Module R N ι : Type u_4 inst✝ : DecidableEq ι x y z : M hxy : SameRay R x y hyz : SameRay R y z hy✝ : y = 0 → x = 0 ∨ z = 0 hx : x ≠ 0 hz : z ≠ 0 hy : y ≠ 0 r₁ r₂ : R hr₁ : 0 < r₁ hr₂ : 0 < r₂ h₁ : r₁ • x = r₂ • y r₃ r₄ : R hr₃ : 0 < r₃ hr₄ : 0 < r₄ h₂ : r₃ • y = r₄ • z ⊢ SameRay R x z [PROOFSTEP] refine' Or.inr (Or.inr <| ⟨r₃ * r₁, r₂ * r₄, mul_pos hr₃ hr₁, mul_pos hr₂ hr₄, _⟩) [GOAL] case inr.inr.inr.intro.intro.intro.intro.intro.intro.intro.intro R : Type u_1 inst✝⁵ : StrictOrderedCommSemiring R M : Type u_2 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M N : Type u_3 inst✝² : AddCommMonoid N inst✝¹ : Module R N ι : Type u_4 inst✝ : DecidableEq ι x y z : M hxy : SameRay R x y hyz : SameRay R y z hy✝ : y = 0 → x = 0 ∨ z = 0 hx : x ≠ 0 hz : z ≠ 0 hy : y ≠ 0 r₁ r₂ : R hr₁ : 0 < r₁ hr₂ : 0 < r₂ h₁ : r₁ • x = r₂ • y r₃ r₄ : R hr₃ : 0 < r₃ hr₄ : 0 < r₄ h₂ : r₃ • y = r₄ • z ⊢ (r₃ * r₁) • x = (r₂ * r₄) • z [PROOFSTEP] rw [mul_smul, mul_smul, h₁, ← h₂, smul_comm] [GOAL] R : Type u_1 inst✝⁵ : StrictOrderedCommSemiring R M : Type u_2 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M N : Type u_3 inst✝² : AddCommMonoid N inst✝¹ : Module R N ι : Type u_4 inst✝ : DecidableEq ι x y z v : M r : R h✝ : 0 ≤ r h : 0 < r ⊢ 0 < 1 [PROOFSTEP] nontriviality R [GOAL] R : Type u_1 inst✝⁶ : StrictOrderedCommSemiring R M : Type u_2 inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M N : Type u_3 inst✝³ : AddCommMonoid N inst✝² : Module R N ι : Type u_4 inst✝¹ : DecidableEq ι x y z v : M r : R h✝ : 0 ≤ r h : 0 < r inst✝ : Nontrivial R ⊢ 0 < 1 [PROOFSTEP] exact zero_lt_one [GOAL] R : Type u_1 inst✝⁵ : StrictOrderedCommSemiring R M : Type u_2 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M N : Type u_3 inst✝² : AddCommMonoid N inst✝¹ : Module R N ι : Type u_4 inst✝ : DecidableEq ι x y z : M r : R h : SameRay R x y hr : 0 ≤ r hy : y = 0 ⊢ r • y = 0 [PROOFSTEP] rw [hy, smul_zero] [GOAL] R : Type u_1 inst✝⁵ : StrictOrderedCommSemiring R M : Type u_2 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M N : Type u_3 inst✝² : AddCommMonoid N inst✝¹ : Module R N ι : Type u_4 inst✝ : DecidableEq ι x y z : M f : M →ₗ[R] N h : SameRay R x y hx : x = 0 ⊢ ↑f x = 0 [PROOFSTEP] rw [hx, map_zero] [GOAL] R : Type u_1 inst✝⁵ : StrictOrderedCommSemiring R M : Type u_2 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M N : Type u_3 inst✝² : AddCommMonoid N inst✝¹ : Module R N ι : Type u_4 inst✝ : DecidableEq ι x y z : M f : M →ₗ[R] N h : SameRay R x y hy : y = 0 ⊢ ↑f y = 0 [PROOFSTEP] rw [hy, map_zero] [GOAL] R : Type u_1 inst✝⁵ : StrictOrderedCommSemiring R M : Type u_2 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M N : Type u_3 inst✝² : AddCommMonoid N inst✝¹ : Module R N ι : Type u_4 inst✝ : DecidableEq ι x y z : M f : M →ₗ[R] N h✝ : SameRay R x y x✝ : ∃ r₁ r₂, 0 < r₁ ∧ 0 < r₂ ∧ r₁ • x = r₂ • y r₁ r₂ : R hr₁ : 0 < r₁ hr₂ : 0 < r₂ h : r₁ • x = r₂ • y ⊢ r₁ • ↑f x = r₂ • ↑f y [PROOFSTEP] rw [← f.map_smul, ← f.map_smul, h] [GOAL] R : Type u_1 inst✝⁶ : StrictOrderedCommSemiring R M : Type u_2 inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M N : Type u_3 inst✝³ : AddCommMonoid N inst✝² : Module R N ι : Type u_4 inst✝¹ : DecidableEq ι x y z : M F : Type u_5 inst✝ : LinearMapClass F R M N f : F hf : Function.Injective ↑f ⊢ SameRay R (↑f x) (↑f y) ↔ SameRay R x y [PROOFSTEP] simp only [SameRay, map_zero, ← hf.eq_iff, map_smul] [GOAL] R : Type u_1 inst✝⁵ : StrictOrderedCommSemiring R M : Type u_2 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M N : Type u_3 inst✝² : AddCommMonoid N inst✝¹ : Module R N ι : Type u_4 inst✝ : DecidableEq ι x y z : M hx : SameRay R x z hy : SameRay R y z ⊢ SameRay R (x + y) z [PROOFSTEP] rcases eq_or_ne x 0 with (rfl | hx₀) [GOAL] case inl R : Type u_1 inst✝⁵ : StrictOrderedCommSemiring R M : Type u_2 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M N : Type u_3 inst✝² : AddCommMonoid N inst✝¹ : Module R N ι : Type u_4 inst✝ : DecidableEq ι y z : M hy : SameRay R y z hx : SameRay R 0 z ⊢ SameRay R (0 + y) z [PROOFSTEP] rwa [zero_add] [GOAL] case inr R : Type u_1 inst✝⁵ : StrictOrderedCommSemiring R M : Type u_2 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M N : Type u_3 inst✝² : AddCommMonoid N inst✝¹ : Module R N ι : Type u_4 inst✝ : DecidableEq ι x y z : M hx : SameRay R x z hy : SameRay R y z hx₀ : x ≠ 0 ⊢ SameRay R (x + y) z [PROOFSTEP] rcases eq_or_ne y 0 with (rfl | hy₀) [GOAL] case inr.inl R : Type u_1 inst✝⁵ : StrictOrderedCommSemiring R M : Type u_2 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M N : Type u_3 inst✝² : AddCommMonoid N inst✝¹ : Module R N ι : Type u_4 inst✝ : DecidableEq ι x z : M hx : SameRay R x z hx₀ : x ≠ 0 hy : SameRay R 0 z ⊢ SameRay R (x + 0) z [PROOFSTEP] rwa [add_zero] [GOAL] case inr.inr R : Type u_1 inst✝⁵ : StrictOrderedCommSemiring R M : Type u_2 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M N : Type u_3 inst✝² : AddCommMonoid N inst✝¹ : Module R N ι : Type u_4 inst✝ : DecidableEq ι x y z : M hx : SameRay R x z hy : SameRay R y z hx₀ : x ≠ 0 hy₀ : y ≠ 0 ⊢ SameRay R (x + y) z [PROOFSTEP] rcases eq_or_ne z 0 with (rfl | hz₀) [GOAL] case inr.inr.inl R : Type u_1 inst✝⁵ : StrictOrderedCommSemiring R M : Type u_2 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M N : Type u_3 inst✝² : AddCommMonoid N inst✝¹ : Module R N ι : Type u_4 inst✝ : DecidableEq ι x y : M hx₀ : x ≠ 0 hy₀ : y ≠ 0 hx : SameRay R x 0 hy : SameRay R y 0 ⊢ SameRay R (x + y) 0 [PROOFSTEP] apply zero_right [GOAL] case inr.inr.inr R : Type u_1 inst✝⁵ : StrictOrderedCommSemiring R M : Type u_2 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M N : Type u_3 inst✝² : AddCommMonoid N inst✝¹ : Module R N ι : Type u_4 inst✝ : DecidableEq ι x y z : M hx : SameRay R x z hy : SameRay R y z hx₀ : x ≠ 0 hy₀ : y ≠ 0 hz₀ : z ≠ 0 ⊢ SameRay R (x + y) z [PROOFSTEP] rcases hx.exists_pos hx₀ hz₀ with ⟨rx, rz₁, hrx, hrz₁, Hx⟩ [GOAL] case inr.inr.inr.intro.intro.intro.intro R : Type u_1 inst✝⁵ : StrictOrderedCommSemiring R M : Type u_2 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M N : Type u_3 inst✝² : AddCommMonoid N inst✝¹ : Module R N ι : Type u_4 inst✝ : DecidableEq ι x y z : M hx : SameRay R x z hy : SameRay R y z hx₀ : x ≠ 0 hy₀ : y ≠ 0 hz₀ : z ≠ 0 rx rz₁ : R hrx : 0 < rx hrz₁ : 0 < rz₁ Hx : rx • x = rz₁ • z ⊢ SameRay R (x + y) z [PROOFSTEP] rcases hy.exists_pos hy₀ hz₀ with ⟨ry, rz₂, hry, hrz₂, Hy⟩ [GOAL] case inr.inr.inr.intro.intro.intro.intro.intro.intro.intro.intro R : Type u_1 inst✝⁵ : StrictOrderedCommSemiring R M : Type u_2 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M N : Type u_3 inst✝² : AddCommMonoid N inst✝¹ : Module R N ι : Type u_4 inst✝ : DecidableEq ι x y z : M hx : SameRay R x z hy : SameRay R y z hx₀ : x ≠ 0 hy₀ : y ≠ 0 hz₀ : z ≠ 0 rx rz₁ : R hrx : 0 < rx hrz₁ : 0 < rz₁ Hx : rx • x = rz₁ • z ry rz₂ : R hry : 0 < ry hrz₂ : 0 < rz₂ Hy : ry • y = rz₂ • z ⊢ SameRay R (x + y) z [PROOFSTEP] refine' Or.inr (Or.inr ⟨rx * ry, ry * rz₁ + rx * rz₂, mul_pos hrx hry, _, _⟩) [GOAL] case inr.inr.inr.intro.intro.intro.intro.intro.intro.intro.intro.refine'_1 R : Type u_1 inst✝⁵ : StrictOrderedCommSemiring R M : Type u_2 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M N : Type u_3 inst✝² : AddCommMonoid N inst✝¹ : Module R N ι : Type u_4 inst✝ : DecidableEq ι x y z : M hx : SameRay R x z hy : SameRay R y z hx₀ : x ≠ 0 hy₀ : y ≠ 0 hz₀ : z ≠ 0 rx rz₁ : R hrx : 0 < rx hrz₁ : 0 < rz₁ Hx : rx • x = rz₁ • z ry rz₂ : R hry : 0 < ry hrz₂ : 0 < rz₂ Hy : ry • y = rz₂ • z ⊢ 0 < ry * rz₁ + rx * rz₂ [PROOFSTEP] apply_rules [add_pos, mul_pos] [GOAL] case inr.inr.inr.intro.intro.intro.intro.intro.intro.intro.intro.refine'_2 R : Type u_1 inst✝⁵ : StrictOrderedCommSemiring R M : Type u_2 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M N : Type u_3 inst✝² : AddCommMonoid N inst✝¹ : Module R N ι : Type u_4 inst✝ : DecidableEq ι x y z : M hx : SameRay R x z hy : SameRay R y z hx₀ : x ≠ 0 hy₀ : y ≠ 0 hz₀ : z ≠ 0 rx rz₁ : R hrx : 0 < rx hrz₁ : 0 < rz₁ Hx : rx • x = rz₁ • z ry rz₂ : R hry : 0 < ry hrz₂ : 0 < rz₂ Hy : ry • y = rz₂ • z ⊢ (rx * ry) • (x + y) = (ry * rz₁ + rx * rz₂) • z [PROOFSTEP] simp only [mul_smul, smul_add, add_smul, ← Hx, ← Hy] [GOAL] case inr.inr.inr.intro.intro.intro.intro.intro.intro.intro.intro.refine'_2 R : Type u_1 inst✝⁵ : StrictOrderedCommSemiring R M : Type u_2 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M N : Type u_3 inst✝² : AddCommMonoid N inst✝¹ : Module R N ι : Type u_4 inst✝ : DecidableEq ι x y z : M hx : SameRay R x z hy : SameRay R y z hx₀ : x ≠ 0 hy₀ : y ≠ 0 hz₀ : z ≠ 0 rx rz₁ : R hrx : 0 < rx hrz₁ : 0 < rz₁ Hx : rx • x = rz₁ • z ry rz₂ : R hry : 0 < ry hrz₂ : 0 < rz₂ Hy : ry • y = rz₂ • z ⊢ rx • ry • x + rx • ry • y = ry • rx • x + rx • ry • y [PROOFSTEP] rw [smul_comm] [GOAL] R : Type u_1 inst✝⁵ : StrictOrderedCommSemiring R M : Type u_2 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M N : Type u_3 inst✝² : AddCommMonoid N inst✝¹ : Module R N ι : Type u_4 inst✝ : DecidableEq ι ⊢ ∀ {x y z : RayVector R M}, SameRay R ↑x ↑y → SameRay R ↑y ↑z → SameRay R ↑x ↑z [PROOFSTEP] intros x y z hxy hyz [GOAL] R : Type u_1 inst✝⁵ : StrictOrderedCommSemiring R M : Type u_2 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M N : Type u_3 inst✝² : AddCommMonoid N inst✝¹ : Module R N ι : Type u_4 inst✝ : DecidableEq ι x y z : RayVector R M hxy : SameRay R ↑x ↑y hyz : SameRay R ↑y ↑z ⊢ SameRay R ↑x ↑z [PROOFSTEP] exact hxy.trans hyz fun hy => (y.2 hy).elim [GOAL] R : Type u_1 inst✝⁵ : StrictOrderedCommSemiring R M : Type u_2 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M N : Type u_3 inst✝² : AddCommMonoid N inst✝¹ : Module R N ι : Type u_4 inst✝ : DecidableEq ι u : Rˣ hu : 0 < ↑u v : Ray R M ⊢ u • v = v [PROOFSTEP] induction v using Module.Ray.ind [GOAL] case h R : Type u_1 inst✝⁵ : StrictOrderedCommSemiring R M : Type u_2 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M N : Type u_3 inst✝² : AddCommMonoid N inst✝¹ : Module R N ι : Type u_4 inst✝ : DecidableEq ι u : Rˣ hu : 0 < ↑u v✝ : M hv✝ : v✝ ≠ 0 ⊢ u • rayOfNeZero R v✝ hv✝ = rayOfNeZero R v✝ hv✝ [PROOFSTEP] rw [smul_rayOfNeZero, ray_eq_iff] [GOAL] case h R : Type u_1 inst✝⁵ : StrictOrderedCommSemiring R M : Type u_2 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M N : Type u_3 inst✝² : AddCommMonoid N inst✝¹ : Module R N ι : Type u_4 inst✝ : DecidableEq ι u : Rˣ hu : 0 < ↑u v✝ : M hv✝ : v✝ ≠ 0 ⊢ SameRay R (u • v✝) v✝ [PROOFSTEP] exact SameRay.sameRay_pos_smul_left _ hu [GOAL] R : Type u_1 inst✝⁴ : StrictOrderedCommRing R M : Type u_2 N : Type u_3 inst✝³ : AddCommGroup M inst✝² : AddCommGroup N inst✝¹ : Module R M inst✝ : Module R N x y : M ⊢ SameRay R (-x) (-y) ↔ SameRay R x y [PROOFSTEP] simp only [SameRay, neg_eq_zero, smul_neg, neg_inj] [GOAL] R : Type u_1 inst✝⁴ : StrictOrderedCommRing R M : Type u_2 N : Type u_3 inst✝³ : AddCommGroup M inst✝² : AddCommGroup N inst✝¹ : Module R M inst✝ : Module R N x y : M ⊢ SameRay R (-x) y ↔ SameRay R x (-y) [PROOFSTEP] rw [← sameRay_neg_iff, neg_neg] [GOAL] R : Type u_1 inst✝⁵ : StrictOrderedCommRing R M : Type u_2 N : Type u_3 inst✝⁴ : AddCommGroup M inst✝³ : AddCommGroup N inst✝² : Module R M inst✝¹ : Module R N x y : M inst✝ : NoZeroSMulDivisors R M r : R hr : r < 0 h : SameRay R x (r • x) ⊢ x = 0 [PROOFSTEP] rcases h with (rfl | h₀ | ⟨r₁, r₂, hr₁, hr₂, h⟩) [GOAL] case inl R : Type u_1 inst✝⁵ : StrictOrderedCommRing R M : Type u_2 N : Type u_3 inst✝⁴ : AddCommGroup M inst✝³ : AddCommGroup N inst✝² : Module R M inst✝¹ : Module R N y : M inst✝ : NoZeroSMulDivisors R M r : R hr : r < 0 ⊢ 0 = 0 [PROOFSTEP] rfl [GOAL] case inr.inl R : Type u_1 inst✝⁵ : StrictOrderedCommRing R M : Type u_2 N : Type u_3 inst✝⁴ : AddCommGroup M inst✝³ : AddCommGroup N inst✝² : Module R M inst✝¹ : Module R N x y : M inst✝ : NoZeroSMulDivisors R M r : R hr : r < 0 h₀ : r • x = 0 ⊢ x = 0 [PROOFSTEP] simpa [hr.ne] using h₀ [GOAL] case inr.inr.intro.intro.intro.intro R : Type u_1 inst✝⁵ : StrictOrderedCommRing R M : Type u_2 N : Type u_3 inst✝⁴ : AddCommGroup M inst✝³ : AddCommGroup N inst✝² : Module R M inst✝¹ : Module R N x y : M inst✝ : NoZeroSMulDivisors R M r : R hr : r < 0 r₁ r₂ : R hr₁ : 0 < r₁ hr₂ : 0 < r₂ h : r₁ • x = r₂ • r • x ⊢ x = 0 [PROOFSTEP] rw [← sub_eq_zero, smul_smul, ← sub_smul, smul_eq_zero] at h [GOAL] case inr.inr.intro.intro.intro.intro R : Type u_1 inst✝⁵ : StrictOrderedCommRing R M : Type u_2 N : Type u_3 inst✝⁴ : AddCommGroup M inst✝³ : AddCommGroup N inst✝² : Module R M inst✝¹ : Module R N x y : M inst✝ : NoZeroSMulDivisors R M r : R hr : r < 0 r₁ r₂ : R hr₁ : 0 < r₁ hr₂ : 0 < r₂ h✝ : r₁ • x = r₂ • r • x h : r₁ - r₂ * r = 0 ∨ x = 0 ⊢ x = 0 [PROOFSTEP] refine' h.resolve_left (ne_of_gt <| sub_pos.2 _) [GOAL] case inr.inr.intro.intro.intro.intro R : Type u_1 inst✝⁵ : StrictOrderedCommRing R M : Type u_2 N : Type u_3 inst✝⁴ : AddCommGroup M inst✝³ : AddCommGroup N inst✝² : Module R M inst✝¹ : Module R N x y : M inst✝ : NoZeroSMulDivisors R M r : R hr : r < 0 r₁ r₂ : R hr₁ : 0 < r₁ hr₂ : 0 < r₂ h✝ : r₁ • x = r₂ • r • x h : r₁ - r₂ * r = 0 ∨ x = 0 ⊢ r₂ * r < r₁ [PROOFSTEP] exact (mul_neg_of_pos_of_neg hr₂ hr).trans hr₁ [GOAL] R : Type u_1 inst✝⁵ : StrictOrderedCommRing R M : Type u_2 N : Type u_3 inst✝⁴ : AddCommGroup M inst✝³ : AddCommGroup N inst✝² : Module R M inst✝¹ : Module R N x y : M inst✝ : NoZeroSMulDivisors R M h : SameRay R x (-x) ⊢ x = 0 [PROOFSTEP] nontriviality M [GOAL] R : Type u_1 inst✝⁵ : StrictOrderedCommRing R M : Type u_2 N : Type u_3 inst✝⁴ : AddCommGroup M inst✝³ : AddCommGroup N inst✝² : Module R M inst✝¹ : Module R N x y : M inst✝ : NoZeroSMulDivisors R M h : SameRay R x (-x) ✝ : Nontrivial M ⊢ x = 0 [PROOFSTEP] haveI : Nontrivial R := Module.nontrivial R M [GOAL] R : Type u_1 inst✝⁵ : StrictOrderedCommRing R M : Type u_2 N : Type u_3 inst✝⁴ : AddCommGroup M inst✝³ : AddCommGroup N inst✝² : Module R M inst✝¹ : Module R N x y : M inst✝ : NoZeroSMulDivisors R M h : SameRay R x (-x) ✝ : Nontrivial M this : Nontrivial R ⊢ x = 0 [PROOFSTEP] refine' eq_zero_of_sameRay_neg_smul_right (neg_lt_zero.2 (zero_lt_one' R)) _ [GOAL] R : Type u_1 inst✝⁵ : StrictOrderedCommRing R M : Type u_2 N : Type u_3 inst✝⁴ : AddCommGroup M inst✝³ : AddCommGroup N inst✝² : Module R M inst✝¹ : Module R N x y : M inst✝ : NoZeroSMulDivisors R M h : SameRay R x (-x) ✝ : Nontrivial M this : Nontrivial R ⊢ SameRay R x (-1 • x) [PROOFSTEP] rwa [neg_one_smul] [GOAL] R✝ : Type u_1 inst✝⁴ : StrictOrderedCommRing R✝ M : Type u_2 N : Type u_3 inst✝³ : AddCommGroup M inst✝² : AddCommGroup N inst✝¹ : Module R✝ M inst✝ : Module R✝ N x y : M R : Type u_4 v : RayVector R M ⊢ - -v = v [PROOFSTEP] rw [Subtype.ext_iff, coe_neg, coe_neg, neg_neg] [GOAL] R : Type u_1 inst✝⁴ : StrictOrderedCommRing R M : Type u_2 N : Type u_3 inst✝³ : AddCommGroup M inst✝² : AddCommGroup N inst✝¹ : Module R M inst✝ : Module R N x✝ y : M x : Ray R M ⊢ - -x = x [PROOFSTEP] apply ind R (by simp) x [GOAL] R : Type u_1 inst✝⁴ : StrictOrderedCommRing R M : Type u_2 N : Type u_3 inst✝³ : AddCommGroup M inst✝² : AddCommGroup N inst✝¹ : Module R M inst✝ : Module R N x✝ y : M x : Ray R M ⊢ ∀ (v : M) (hv : v ≠ 0), - -rayOfNeZero R v hv = rayOfNeZero R v hv [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝⁵ : StrictOrderedCommRing R M : Type u_2 N : Type u_3 inst✝⁴ : AddCommGroup M inst✝³ : AddCommGroup N inst✝² : Module R M inst✝¹ : Module R N x✝ y : M inst✝ : NoZeroSMulDivisors R M x : Ray R M ⊢ x ≠ -x [PROOFSTEP] induction' x using Module.Ray.ind with x hx [GOAL] case h R : Type u_1 inst✝⁵ : StrictOrderedCommRing R M : Type u_2 N : Type u_3 inst✝⁴ : AddCommGroup M inst✝³ : AddCommGroup N inst✝² : Module R M inst✝¹ : Module R N x✝ y : M inst✝ : NoZeroSMulDivisors R M x : M hx : x ≠ 0 ⊢ rayOfNeZero R x hx ≠ -rayOfNeZero R x hx [PROOFSTEP] rw [neg_rayOfNeZero, Ne.def, ray_eq_iff] [GOAL] case h R : Type u_1 inst✝⁵ : StrictOrderedCommRing R M : Type u_2 N : Type u_3 inst✝⁴ : AddCommGroup M inst✝³ : AddCommGroup N inst✝² : Module R M inst✝¹ : Module R N x✝ y : M inst✝ : NoZeroSMulDivisors R M x : M hx : x ≠ 0 ⊢ ¬SameRay R x (-x) [PROOFSTEP] exact mt eq_zero_of_sameRay_self_neg hx [GOAL] R : Type u_1 inst✝⁴ : StrictOrderedCommRing R M : Type u_2 N : Type u_3 inst✝³ : AddCommGroup M inst✝² : AddCommGroup N inst✝¹ : Module R M inst✝ : Module R N x y : M u : Rˣ v : Ray R M ⊢ -u • v = -(u • v) [PROOFSTEP] induction v using Module.Ray.ind [GOAL] case h R : Type u_1 inst✝⁴ : StrictOrderedCommRing R M : Type u_2 N : Type u_3 inst✝³ : AddCommGroup M inst✝² : AddCommGroup N inst✝¹ : Module R M inst✝ : Module R N x y : M u : Rˣ v✝ : M hv✝ : v✝ ≠ 0 ⊢ -u • rayOfNeZero R v✝ hv✝ = -(u • rayOfNeZero R v✝ hv✝) [PROOFSTEP] simp only [smul_rayOfNeZero, Units.smul_def, Units.val_neg, neg_smul, neg_rayOfNeZero] [GOAL] R : Type u_1 inst✝⁴ : StrictOrderedCommRing R M : Type u_2 N : Type u_3 inst✝³ : AddCommGroup M inst✝² : AddCommGroup N inst✝¹ : Module R M inst✝ : Module R N x y : M u : Rˣ hu : ↑u < 0 v : Ray R M ⊢ u • v = -v [PROOFSTEP] rw [← neg_inj, neg_neg, ← neg_units_smul, units_smul_of_pos] [GOAL] case hu R : Type u_1 inst✝⁴ : StrictOrderedCommRing R M : Type u_2 N : Type u_3 inst✝³ : AddCommGroup M inst✝² : AddCommGroup N inst✝¹ : Module R M inst✝ : Module R N x y : M u : Rˣ hu : ↑u < 0 v : Ray R M ⊢ 0 < ↑(-u) [PROOFSTEP] rwa [Units.val_neg, Right.neg_pos_iff] [GOAL] R : Type u_1 inst✝⁴ : StrictOrderedCommRing R M : Type u_2 N : Type u_3 inst✝³ : AddCommGroup M inst✝² : AddCommGroup N inst✝¹ : Module R M inst✝ : Module R N x y : M f : M ≃ₗ[R] N v : Ray R M ⊢ ↑(map f) (-v) = -↑(map f) v [PROOFSTEP] induction' v using Module.Ray.ind with g hg [GOAL] case h R : Type u_1 inst✝⁴ : StrictOrderedCommRing R M : Type u_2 N : Type u_3 inst✝³ : AddCommGroup M inst✝² : AddCommGroup N inst✝¹ : Module R M inst✝ : Module R N x y : M f : M ≃ₗ[R] N g : M hg : g ≠ 0 ⊢ ↑(map f) (-rayOfNeZero R g hg) = -↑(map f) (rayOfNeZero R g hg) [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝² : LinearOrderedCommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M v₁ v₂ : M h : v₁ ∈ MulAction.orbit { x // x ∈ Units.posSubgroup R } v₂ ⊢ SameRay R v₁ v₂ [PROOFSTEP] rcases h with ⟨⟨r, hr : 0 < r.1⟩, rfl : r • v₂ = v₁⟩ [GOAL] case intro.mk R : Type u_1 inst✝² : LinearOrderedCommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M v₂ : M r : Rˣ hr : 0 < ↑r ⊢ SameRay R (r • v₂) v₂ [PROOFSTEP] exact SameRay.sameRay_pos_smul_left _ hr [GOAL] R : Type u_1 inst✝² : LinearOrderedCommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M u : Rˣ v : Module.Ray R M this : 0 < ↑u * ↑u ⊢ 0 < ↑(u * u) [PROOFSTEP] exact this [GOAL] R : Type u_1 inst✝² : LinearOrderedCommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M u : Rˣ v : Module.Ray R M this : 0 < ↑u * ↑u ⊢ (u * u) • u⁻¹ • v = u • v [PROOFSTEP] rw [mul_smul, smul_inv_smul] [GOAL] R : Type u_1 inst✝³ : LinearOrderedCommRing R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M v : M hv : v ≠ 0 r : R hr : r ≠ 0 ⊢ SameRay R v (r • v) ↔ 0 < r [PROOFSTEP] simp only [sameRay_smul_right_iff, hv, or_false_iff, hr.symm.le_iff_lt] [GOAL] R : Type u_1 inst✝³ : LinearOrderedCommRing R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M v : M r : R ⊢ SameRay R (-v) (r • v) ↔ r ≤ 0 ∨ v = 0 [PROOFSTEP] rw [← sameRay_neg_iff, neg_neg, ← neg_smul, sameRay_smul_right_iff, neg_nonneg] [GOAL] R : Type u_1 inst✝³ : LinearOrderedCommRing R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M v : M r : R hv : v ≠ 0 hr : r ≠ 0 ⊢ SameRay R (-v) (r • v) ↔ r < 0 [PROOFSTEP] simp only [sameRay_neg_smul_right_iff, hv, or_false_iff, hr.le_iff_lt] [GOAL] R : Type u_1 inst✝³ : LinearOrderedCommRing R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M u : Rˣ v : Module.Ray R M ⊢ u • v = v ↔ 0 < ↑u [PROOFSTEP] induction' v using Module.Ray.ind with v hv [GOAL] case h R : Type u_1 inst✝³ : LinearOrderedCommRing R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M u : Rˣ v : M hv : v ≠ 0 ⊢ u • rayOfNeZero R v hv = rayOfNeZero R v hv ↔ 0 < ↑u [PROOFSTEP] simp only [smul_rayOfNeZero, ray_eq_iff, Units.smul_def, sameRay_smul_left_iff_of_ne hv u.ne_zero] [GOAL] R : Type u_1 inst✝³ : LinearOrderedCommRing R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M u : Rˣ v : Module.Ray R M ⊢ u • v = -v ↔ ↑u < 0 [PROOFSTEP] rw [← neg_inj, neg_neg, ← Module.Ray.neg_units_smul, units_smul_eq_self_iff, Units.val_neg, neg_pos] [GOAL] R : Type u_1 inst✝³ : LinearOrderedCommRing R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x y : M ⊢ SameRay R x y ∨ SameRay R x (-y) ↔ ¬LinearIndependent R ![x, y] [PROOFSTEP] by_cases hx : x = 0 [GOAL] case pos R : Type u_1 inst✝³ : LinearOrderedCommRing R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x y : M hx : x = 0 ⊢ SameRay R x y ∨ SameRay R x (-y) ↔ ¬LinearIndependent R ![x, y] [PROOFSTEP] simpa [hx] using fun h : LinearIndependent R ![0, y] => h.ne_zero 0 rfl [GOAL] case neg R : Type u_1 inst✝³ : LinearOrderedCommRing R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x y : M hx : ¬x = 0 ⊢ SameRay R x y ∨ SameRay R x (-y) ↔ ¬LinearIndependent R ![x, y] [PROOFSTEP] by_cases hy : y = 0 [GOAL] case pos R : Type u_1 inst✝³ : LinearOrderedCommRing R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x y : M hx : ¬x = 0 hy : y = 0 ⊢ SameRay R x y ∨ SameRay R x (-y) ↔ ¬LinearIndependent R ![x, y] [PROOFSTEP] simpa [hy] using fun h : LinearIndependent R ![x, 0] => h.ne_zero 1 rfl [GOAL] case neg R : Type u_1 inst✝³ : LinearOrderedCommRing R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x y : M hx : ¬x = 0 hy : ¬y = 0 ⊢ SameRay R x y ∨ SameRay R x (-y) ↔ ¬LinearIndependent R ![x, y] [PROOFSTEP] simp_rw [Fintype.not_linearIndependent_iff] [GOAL] case neg R : Type u_1 inst✝³ : LinearOrderedCommRing R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x y : M hx : ¬x = 0 hy : ¬y = 0 ⊢ SameRay R x y ∨ SameRay R x (-y) ↔ ∃ g, ∑ i : Fin (Nat.succ (Nat.succ 0)), g i • Matrix.vecCons x ![y] i = 0 ∧ ∃ i, g i ≠ 0 [PROOFSTEP] refine' ⟨fun h => _, fun h => _⟩ [GOAL] case neg.refine'_1 R : Type u_1 inst✝³ : LinearOrderedCommRing R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x y : M hx : ¬x = 0 hy : ¬y = 0 h : SameRay R x y ∨ SameRay R x (-y) ⊢ ∃ g, ∑ i : Fin (Nat.succ (Nat.succ 0)), g i • Matrix.vecCons x ![y] i = 0 ∧ ∃ i, g i ≠ 0 [PROOFSTEP] rcases h with ((hx0 | hy0 | ⟨r₁, r₂, hr₁, _, h⟩) | (hx0 | hy0 | ⟨r₁, r₂, hr₁, _, h⟩)) [GOAL] case neg.refine'_1.inl.inl R : Type u_1 inst✝³ : LinearOrderedCommRing R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x y : M hx : ¬x = 0 hy : ¬y = 0 hx0 : x = 0 ⊢ ∃ g, ∑ i : Fin (Nat.succ (Nat.succ 0)), g i • Matrix.vecCons x ![y] i = 0 ∧ ∃ i, g i ≠ 0 [PROOFSTEP] exact False.elim (hx hx0) [GOAL] case neg.refine'_1.inl.inr.inl R : Type u_1 inst✝³ : LinearOrderedCommRing R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x y : M hx : ¬x = 0 hy : ¬y = 0 hy0 : y = 0 ⊢ ∃ g, ∑ i : Fin (Nat.succ (Nat.succ 0)), g i • Matrix.vecCons x ![y] i = 0 ∧ ∃ i, g i ≠ 0 [PROOFSTEP] exact False.elim (hy hy0) [GOAL] case neg.refine'_1.inl.inr.inr.intro.intro.intro.intro R : Type u_1 inst✝³ : LinearOrderedCommRing R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x y : M hx : ¬x = 0 hy : ¬y = 0 r₁ r₂ : R hr₁ : 0 < r₁ left✝ : 0 < r₂ h : r₁ • x = r₂ • y ⊢ ∃ g, ∑ i : Fin (Nat.succ (Nat.succ 0)), g i • Matrix.vecCons x ![y] i = 0 ∧ ∃ i, g i ≠ 0 [PROOFSTEP] refine' ⟨![r₁, -r₂], _⟩ [GOAL] case neg.refine'_1.inl.inr.inr.intro.intro.intro.intro R : Type u_1 inst✝³ : LinearOrderedCommRing R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x y : M hx : ¬x = 0 hy : ¬y = 0 r₁ r₂ : R hr₁ : 0 < r₁ left✝ : 0 < r₂ h : r₁ • x = r₂ • y ⊢ ∑ i : Fin (Nat.succ (Nat.succ 0)), Matrix.vecCons r₁ ![-r₂] i • Matrix.vecCons x ![y] i = 0 ∧ ∃ i, Matrix.vecCons r₁ ![-r₂] i ≠ 0 [PROOFSTEP] rw [Fin.sum_univ_two, Fin.exists_fin_two] [GOAL] case neg.refine'_1.inl.inr.inr.intro.intro.intro.intro R : Type u_1 inst✝³ : LinearOrderedCommRing R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x y : M hx : ¬x = 0 hy : ¬y = 0 r₁ r₂ : R hr₁ : 0 < r₁ left✝ : 0 < r₂ h : r₁ • x = r₂ • y ⊢ Matrix.vecCons r₁ ![-r₂] 0 • Matrix.vecCons x ![y] 0 + Matrix.vecCons r₁ ![-r₂] 1 • Matrix.vecCons x ![y] 1 = 0 ∧ (Matrix.vecCons r₁ ![-r₂] 0 ≠ 0 ∨ Matrix.vecCons r₁ ![-r₂] 1 ≠ 0) [PROOFSTEP] simp [h, hr₁.ne.symm] [GOAL] case neg.refine'_1.inr.inl R : Type u_1 inst✝³ : LinearOrderedCommRing R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x y : M hx : ¬x = 0 hy : ¬y = 0 hx0 : x = 0 ⊢ ∃ g, ∑ i : Fin (Nat.succ (Nat.succ 0)), g i • Matrix.vecCons x ![y] i = 0 ∧ ∃ i, g i ≠ 0 [PROOFSTEP] exact False.elim (hx hx0) [GOAL] case neg.refine'_1.inr.inr.inl R : Type u_1 inst✝³ : LinearOrderedCommRing R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x y : M hx : ¬x = 0 hy : ¬y = 0 hy0 : -y = 0 ⊢ ∃ g, ∑ i : Fin (Nat.succ (Nat.succ 0)), g i • Matrix.vecCons x ![y] i = 0 ∧ ∃ i, g i ≠ 0 [PROOFSTEP] exact False.elim (hy (neg_eq_zero.1 hy0)) [GOAL] case neg.refine'_1.inr.inr.inr.intro.intro.intro.intro R : Type u_1 inst✝³ : LinearOrderedCommRing R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x y : M hx : ¬x = 0 hy : ¬y = 0 r₁ r₂ : R hr₁ : 0 < r₁ left✝ : 0 < r₂ h : r₁ • x = r₂ • -y ⊢ ∃ g, ∑ i : Fin (Nat.succ (Nat.succ 0)), g i • Matrix.vecCons x ![y] i = 0 ∧ ∃ i, g i ≠ 0 [PROOFSTEP] refine' ⟨![r₁, r₂], _⟩ [GOAL] case neg.refine'_1.inr.inr.inr.intro.intro.intro.intro R : Type u_1 inst✝³ : LinearOrderedCommRing R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x y : M hx : ¬x = 0 hy : ¬y = 0 r₁ r₂ : R hr₁ : 0 < r₁ left✝ : 0 < r₂ h : r₁ • x = r₂ • -y ⊢ ∑ i : Fin (Nat.succ (Nat.succ 0)), Matrix.vecCons r₁ ![r₂] i • Matrix.vecCons x ![y] i = 0 ∧ ∃ i, Matrix.vecCons r₁ ![r₂] i ≠ 0 [PROOFSTEP] rw [Fin.sum_univ_two, Fin.exists_fin_two] [GOAL] case neg.refine'_1.inr.inr.inr.intro.intro.intro.intro R : Type u_1 inst✝³ : LinearOrderedCommRing R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x y : M hx : ¬x = 0 hy : ¬y = 0 r₁ r₂ : R hr₁ : 0 < r₁ left✝ : 0 < r₂ h : r₁ • x = r₂ • -y ⊢ Matrix.vecCons r₁ ![r₂] 0 • Matrix.vecCons x ![y] 0 + Matrix.vecCons r₁ ![r₂] 1 • Matrix.vecCons x ![y] 1 = 0 ∧ (Matrix.vecCons r₁ ![r₂] 0 ≠ 0 ∨ Matrix.vecCons r₁ ![r₂] 1 ≠ 0) [PROOFSTEP] simp [h, hr₁.ne.symm] [GOAL] case neg.refine'_2 R : Type u_1 inst✝³ : LinearOrderedCommRing R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x y : M hx : ¬x = 0 hy : ¬y = 0 h : ∃ g, ∑ i : Fin (Nat.succ (Nat.succ 0)), g i • Matrix.vecCons x ![y] i = 0 ∧ ∃ i, g i ≠ 0 ⊢ SameRay R x y ∨ SameRay R x (-y) [PROOFSTEP] rcases h with ⟨m, hm, hmne⟩ [GOAL] case neg.refine'_2.intro.intro R : Type u_1 inst✝³ : LinearOrderedCommRing R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x y : M hx : ¬x = 0 hy : ¬y = 0 m : Fin (Nat.succ (Nat.succ 0)) → R hm : ∑ i : Fin (Nat.succ (Nat.succ 0)), m i • Matrix.vecCons x ![y] i = 0 hmne : ∃ i, m i ≠ 0 ⊢ SameRay R x y ∨ SameRay R x (-y) [PROOFSTEP] rw [Fin.sum_univ_two, add_eq_zero_iff_eq_neg, Matrix.cons_val_zero, Matrix.cons_val_one, Matrix.head_cons] at hm [GOAL] case neg.refine'_2.intro.intro R : Type u_1 inst✝³ : LinearOrderedCommRing R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x y : M hx : ¬x = 0 hy : ¬y = 0 m : Fin (Nat.succ (Nat.succ 0)) → R hm : m 0 • x = -(m 1 • y) hmne : ∃ i, m i ≠ 0 ⊢ SameRay R x y ∨ SameRay R x (-y) [PROOFSTEP] rcases lt_trichotomy (m 0) 0 with (hm0 | hm0 | hm0) [GOAL] case neg.refine'_2.intro.intro.inl R : Type u_1 inst✝³ : LinearOrderedCommRing R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x y : M hx : ¬x = 0 hy : ¬y = 0 m : Fin (Nat.succ (Nat.succ 0)) → R hm : m 0 • x = -(m 1 • y) hmne : ∃ i, m i ≠ 0 hm0 : m 0 < 0 ⊢ SameRay R x y ∨ SameRay R x (-y) [PROOFSTEP] rcases lt_trichotomy (m 1) 0 with (hm1 | hm1 | hm1) [GOAL] case neg.refine'_2.intro.intro.inr.inl R : Type u_1 inst✝³ : LinearOrderedCommRing R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x y : M hx : ¬x = 0 hy : ¬y = 0 m : Fin (Nat.succ (Nat.succ 0)) → R hm : m 0 • x = -(m 1 • y) hmne : ∃ i, m i ≠ 0 hm0 : m 0 = 0 ⊢ SameRay R x y ∨ SameRay R x (-y) [PROOFSTEP] rcases lt_trichotomy (m 1) 0 with (hm1 | hm1 | hm1) [GOAL] case neg.refine'_2.intro.intro.inr.inr R : Type u_1 inst✝³ : LinearOrderedCommRing R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x y : M hx : ¬x = 0 hy : ¬y = 0 m : Fin (Nat.succ (Nat.succ 0)) → R hm : m 0 • x = -(m 1 • y) hmne : ∃ i, m i ≠ 0 hm0 : 0 < m 0 ⊢ SameRay R x y ∨ SameRay R x (-y) [PROOFSTEP] rcases lt_trichotomy (m 1) 0 with (hm1 | hm1 | hm1) [GOAL] case neg.refine'_2.intro.intro.inl.inl R : Type u_1 inst✝³ : LinearOrderedCommRing R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x y : M hx : ¬x = 0 hy : ¬y = 0 m : Fin (Nat.succ (Nat.succ 0)) → R hm : m 0 • x = -(m 1 • y) hmne : ∃ i, m i ≠ 0 hm0 : m 0 < 0 hm1 : m 1 < 0 ⊢ SameRay R x y ∨ SameRay R x (-y) [PROOFSTEP] refine' Or.inr (Or.inr (Or.inr ⟨-m 0, -m 1, Left.neg_pos_iff.2 hm0, Left.neg_pos_iff.2 hm1, _⟩)) [GOAL] case neg.refine'_2.intro.intro.inl.inl R : Type u_1 inst✝³ : LinearOrderedCommRing R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x y : M hx : ¬x = 0 hy : ¬y = 0 m : Fin (Nat.succ (Nat.succ 0)) → R hm : m 0 • x = -(m 1 • y) hmne : ∃ i, m i ≠ 0 hm0 : m 0 < 0 hm1 : m 1 < 0 ⊢ -m 0 • x = -m 1 • -y [PROOFSTEP] rw [neg_smul_neg, neg_smul, hm, neg_neg] [GOAL] case neg.refine'_2.intro.intro.inl.inr.inl R : Type u_1 inst✝³ : LinearOrderedCommRing R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x y : M hx : ¬x = 0 hy : ¬y = 0 m : Fin (Nat.succ (Nat.succ 0)) → R hm : m 0 • x = -(m 1 • y) hmne : ∃ i, m i ≠ 0 hm0 : m 0 < 0 hm1 : m 1 = 0 ⊢ SameRay R x y ∨ SameRay R x (-y) [PROOFSTEP] exfalso [GOAL] case neg.refine'_2.intro.intro.inl.inr.inl.h R : Type u_1 inst✝³ : LinearOrderedCommRing R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x y : M hx : ¬x = 0 hy : ¬y = 0 m : Fin (Nat.succ (Nat.succ 0)) → R hm : m 0 • x = -(m 1 • y) hmne : ∃ i, m i ≠ 0 hm0 : m 0 < 0 hm1 : m 1 = 0 ⊢ False [PROOFSTEP] simp [hm1, hx, hm0.ne] at hm [GOAL] case neg.refine'_2.intro.intro.inl.inr.inr R : Type u_1 inst✝³ : LinearOrderedCommRing R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x y : M hx : ¬x = 0 hy : ¬y = 0 m : Fin (Nat.succ (Nat.succ 0)) → R hm : m 0 • x = -(m 1 • y) hmne : ∃ i, m i ≠ 0 hm0 : m 0 < 0 hm1 : 0 < m 1 ⊢ SameRay R x y ∨ SameRay R x (-y) [PROOFSTEP] refine' Or.inl (Or.inr (Or.inr ⟨-m 0, m 1, Left.neg_pos_iff.2 hm0, hm1, _⟩)) [GOAL] case neg.refine'_2.intro.intro.inl.inr.inr R : Type u_1 inst✝³ : LinearOrderedCommRing R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x y : M hx : ¬x = 0 hy : ¬y = 0 m : Fin (Nat.succ (Nat.succ 0)) → R hm : m 0 • x = -(m 1 • y) hmne : ∃ i, m i ≠ 0 hm0 : m 0 < 0 hm1 : 0 < m 1 ⊢ -m 0 • x = m 1 • y [PROOFSTEP] rw [neg_smul, hm, neg_neg] [GOAL] case neg.refine'_2.intro.intro.inr.inl.inl R : Type u_1 inst✝³ : LinearOrderedCommRing R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x y : M hx : ¬x = 0 hy : ¬y = 0 m : Fin (Nat.succ (Nat.succ 0)) → R hm : m 0 • x = -(m 1 • y) hmne : ∃ i, m i ≠ 0 hm0 : m 0 = 0 hm1 : m 1 < 0 ⊢ SameRay R x y ∨ SameRay R x (-y) [PROOFSTEP] exfalso [GOAL] case neg.refine'_2.intro.intro.inr.inl.inl.h R : Type u_1 inst✝³ : LinearOrderedCommRing R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x y : M hx : ¬x = 0 hy : ¬y = 0 m : Fin (Nat.succ (Nat.succ 0)) → R hm : m 0 • x = -(m 1 • y) hmne : ∃ i, m i ≠ 0 hm0 : m 0 = 0 hm1 : m 1 < 0 ⊢ False [PROOFSTEP] simp [hm0, hy, hm1.ne] at hm [GOAL] case neg.refine'_2.intro.intro.inr.inl.inr.inl R : Type u_1 inst✝³ : LinearOrderedCommRing R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x y : M hx : ¬x = 0 hy : ¬y = 0 m : Fin (Nat.succ (Nat.succ 0)) → R hm : m 0 • x = -(m 1 • y) hmne : ∃ i, m i ≠ 0 hm0 : m 0 = 0 hm1 : m 1 = 0 ⊢ SameRay R x y ∨ SameRay R x (-y) [PROOFSTEP] rw [Fin.exists_fin_two] at hmne [GOAL] case neg.refine'_2.intro.intro.inr.inl.inr.inl R : Type u_1 inst✝³ : LinearOrderedCommRing R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x y : M hx : ¬x = 0 hy : ¬y = 0 m : Fin (Nat.succ (Nat.succ 0)) → R hm : m 0 • x = -(m 1 • y) hmne : m 0 ≠ 0 ∨ m 1 ≠ 0 hm0 : m 0 = 0 hm1 : m 1 = 0 ⊢ SameRay R x y ∨ SameRay R x (-y) [PROOFSTEP] exact False.elim (not_and_or.2 hmne ⟨hm0, hm1⟩) [GOAL] case neg.refine'_2.intro.intro.inr.inl.inr.inr R : Type u_1 inst✝³ : LinearOrderedCommRing R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x y : M hx : ¬x = 0 hy : ¬y = 0 m : Fin (Nat.succ (Nat.succ 0)) → R hm : m 0 • x = -(m 1 • y) hmne : ∃ i, m i ≠ 0 hm0 : m 0 = 0 hm1 : 0 < m 1 ⊢ SameRay R x y ∨ SameRay R x (-y) [PROOFSTEP] exfalso [GOAL] case neg.refine'_2.intro.intro.inr.inl.inr.inr.h R : Type u_1 inst✝³ : LinearOrderedCommRing R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x y : M hx : ¬x = 0 hy : ¬y = 0 m : Fin (Nat.succ (Nat.succ 0)) → R hm : m 0 • x = -(m 1 • y) hmne : ∃ i, m i ≠ 0 hm0 : m 0 = 0 hm1 : 0 < m 1 ⊢ False [PROOFSTEP] simp [hm0, hy, hm1.ne.symm] at hm [GOAL] case neg.refine'_2.intro.intro.inr.inr.inl R : Type u_1 inst✝³ : LinearOrderedCommRing R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x y : M hx : ¬x = 0 hy : ¬y = 0 m : Fin (Nat.succ (Nat.succ 0)) → R hm : m 0 • x = -(m 1 • y) hmne : ∃ i, m i ≠ 0 hm0 : 0 < m 0 hm1 : m 1 < 0 ⊢ SameRay R x y ∨ SameRay R x (-y) [PROOFSTEP] refine' Or.inl (Or.inr (Or.inr ⟨m 0, -m 1, hm0, Left.neg_pos_iff.2 hm1, _⟩)) [GOAL] case neg.refine'_2.intro.intro.inr.inr.inl R : Type u_1 inst✝³ : LinearOrderedCommRing R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x y : M hx : ¬x = 0 hy : ¬y = 0 m : Fin (Nat.succ (Nat.succ 0)) → R hm : m 0 • x = -(m 1 • y) hmne : ∃ i, m i ≠ 0 hm0 : 0 < m 0 hm1 : m 1 < 0 ⊢ m 0 • x = -m 1 • y [PROOFSTEP] rwa [neg_smul] [GOAL] case neg.refine'_2.intro.intro.inr.inr.inr.inl R : Type u_1 inst✝³ : LinearOrderedCommRing R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x y : M hx : ¬x = 0 hy : ¬y = 0 m : Fin (Nat.succ (Nat.succ 0)) → R hm : m 0 • x = -(m 1 • y) hmne : ∃ i, m i ≠ 0 hm0 : 0 < m 0 hm1 : m 1 = 0 ⊢ SameRay R x y ∨ SameRay R x (-y) [PROOFSTEP] exfalso [GOAL] case neg.refine'_2.intro.intro.inr.inr.inr.inl.h R : Type u_1 inst✝³ : LinearOrderedCommRing R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x y : M hx : ¬x = 0 hy : ¬y = 0 m : Fin (Nat.succ (Nat.succ 0)) → R hm : m 0 • x = -(m 1 • y) hmne : ∃ i, m i ≠ 0 hm0 : 0 < m 0 hm1 : m 1 = 0 ⊢ False [PROOFSTEP] simp [hm1, hx, hm0.ne.symm] at hm [GOAL] case neg.refine'_2.intro.intro.inr.inr.inr.inr R : Type u_1 inst✝³ : LinearOrderedCommRing R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x y : M hx : ¬x = 0 hy : ¬y = 0 m : Fin (Nat.succ (Nat.succ 0)) → R hm : m 0 • x = -(m 1 • y) hmne : ∃ i, m i ≠ 0 hm0 : 0 < m 0 hm1 : 0 < m 1 ⊢ SameRay R x y ∨ SameRay R x (-y) [PROOFSTEP] refine' Or.inr (Or.inr (Or.inr ⟨m 0, m 1, hm0, hm1, _⟩)) [GOAL] case neg.refine'_2.intro.intro.inr.inr.inr.inr R : Type u_1 inst✝³ : LinearOrderedCommRing R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x y : M hx : ¬x = 0 hy : ¬y = 0 m : Fin (Nat.succ (Nat.succ 0)) → R hm : m 0 • x = -(m 1 • y) hmne : ∃ i, m i ≠ 0 hm0 : 0 < m 0 hm1 : 0 < m 1 ⊢ m 0 • x = m 1 • -y [PROOFSTEP] rwa [smul_neg] [GOAL] R : Type u_1 inst✝³ : LinearOrderedCommRing R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x y : M ⊢ SameRay R x y ∨ x ≠ 0 ∧ y ≠ 0 ∧ SameRay R x (-y) ↔ ¬LinearIndependent R ![x, y] [PROOFSTEP] rw [← sameRay_or_sameRay_neg_iff_not_linearIndependent] [GOAL] R : Type u_1 inst✝³ : LinearOrderedCommRing R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x y : M ⊢ SameRay R x y ∨ x ≠ 0 ∧ y ≠ 0 ∧ SameRay R x (-y) ↔ SameRay R x y ∨ SameRay R x (-y) [PROOFSTEP] by_cases hx : x = 0 [GOAL] case pos R : Type u_1 inst✝³ : LinearOrderedCommRing R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x y : M hx : x = 0 ⊢ SameRay R x y ∨ x ≠ 0 ∧ y ≠ 0 ∧ SameRay R x (-y) ↔ SameRay R x y ∨ SameRay R x (-y) [PROOFSTEP] simp [hx] [GOAL] case neg R : Type u_1 inst✝³ : LinearOrderedCommRing R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x y : M hx : ¬x = 0 ⊢ SameRay R x y ∨ x ≠ 0 ∧ y ≠ 0 ∧ SameRay R x (-y) ↔ SameRay R x y ∨ SameRay R x (-y) [PROOFSTEP] by_cases hy : y = 0 [GOAL] case pos R : Type u_1 inst✝³ : LinearOrderedCommRing R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x y : M hx : ¬x = 0 hy : y = 0 ⊢ SameRay R x y ∨ x ≠ 0 ∧ y ≠ 0 ∧ SameRay R x (-y) ↔ SameRay R x y ∨ SameRay R x (-y) [PROOFSTEP] simp [hx, hy] [GOAL] case neg R : Type u_1 inst✝³ : LinearOrderedCommRing R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x y : M hx : ¬x = 0 hy : ¬y = 0 ⊢ SameRay R x y ∨ x ≠ 0 ∧ y ≠ 0 ∧ SameRay R x (-y) ↔ SameRay R x y ∨ SameRay R x (-y) [PROOFSTEP] simp [hx, hy] [GOAL] R : Type u_1 inst✝² : LinearOrderedField R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M x y v₁ v₂ : M h✝ : SameRay R x y hx : x ≠ 0 hy : y ≠ 0 r₁ r₂ : R hr₁ : 0 < r₁ hr₂ : 0 < r₂ h : r₁ • x = r₂ • y ⊢ (r₂⁻¹ * r₁) • x = y [PROOFSTEP] rw [mul_smul, h, inv_smul_smul₀ hr₂.ne'] [GOAL] R : Type u_1 inst✝² : LinearOrderedField R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M x y v₁ v₂ : M h : SameRay R x y hx : x ≠ 0 ⊢ ∃ r, 0 ≤ r ∧ r • x = y [PROOFSTEP] obtain rfl | hy := eq_or_ne y 0 [GOAL] case inl R : Type u_1 inst✝² : LinearOrderedField R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M x v₁ v₂ : M hx : x ≠ 0 h : SameRay R x 0 ⊢ ∃ r, 0 ≤ r ∧ r • x = 0 [PROOFSTEP] exact ⟨0, le_rfl, zero_smul _ _⟩ [GOAL] case inr R : Type u_1 inst✝² : LinearOrderedField R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M x y v₁ v₂ : M h : SameRay R x y hx : x ≠ 0 hy : y ≠ 0 ⊢ ∃ r, 0 ≤ r ∧ r • x = y [PROOFSTEP] exact (h.exists_pos_left hx hy).imp fun _ => And.imp_left le_of_lt [GOAL] R : Type u_1 inst✝² : LinearOrderedField R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M x y v₁ v₂ : M h : SameRay R v₁ v₂ ⊢ ∃ a b, 0 ≤ a ∧ 0 ≤ b ∧ a + b = 1 ∧ v₁ = a • (v₁ + v₂) ∧ v₂ = b • (v₁ + v₂) [PROOFSTEP] rcases h with (rfl | rfl | ⟨r₁, r₂, h₁, h₂, H⟩) [GOAL] case inl R : Type u_1 inst✝² : LinearOrderedField R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M x y v₂ : M ⊢ ∃ a b, 0 ≤ a ∧ 0 ≤ b ∧ a + b = 1 ∧ 0 = a • (0 + v₂) ∧ v₂ = b • (0 + v₂) [PROOFSTEP] use 0, 1 [GOAL] case h R : Type u_1 inst✝² : LinearOrderedField R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M x y v₂ : M ⊢ 0 ≤ 0 ∧ 0 ≤ 1 ∧ 0 + 1 = 1 ∧ 0 = 0 • (0 + v₂) ∧ v₂ = 1 • (0 + v₂) [PROOFSTEP] simp [GOAL] case inr.inl R : Type u_1 inst✝² : LinearOrderedField R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M x y v₁ : M ⊢ ∃ a b, 0 ≤ a ∧ 0 ≤ b ∧ a + b = 1 ∧ v₁ = a • (v₁ + 0) ∧ 0 = b • (v₁ + 0) [PROOFSTEP] use 1, 0 [GOAL] case h R : Type u_1 inst✝² : LinearOrderedField R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M x y v₁ : M ⊢ 0 ≤ 1 ∧ 0 ≤ 0 ∧ 1 + 0 = 1 ∧ v₁ = 1 • (v₁ + 0) ∧ 0 = 0 • (v₁ + 0) [PROOFSTEP] simp [GOAL] case inr.inr.intro.intro.intro.intro R : Type u_1 inst✝² : LinearOrderedField R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M x y v₁ v₂ : M r₁ r₂ : R h₁ : 0 < r₁ h₂ : 0 < r₂ H : r₁ • v₁ = r₂ • v₂ ⊢ ∃ a b, 0 ≤ a ∧ 0 ≤ b ∧ a + b = 1 ∧ v₁ = a • (v₁ + v₂) ∧ v₂ = b • (v₁ + v₂) [PROOFSTEP] have h₁₂ : 0 < r₁ + r₂ := add_pos h₁ h₂ [GOAL] case inr.inr.intro.intro.intro.intro R : Type u_1 inst✝² : LinearOrderedField R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M x y v₁ v₂ : M r₁ r₂ : R h₁ : 0 < r₁ h₂ : 0 < r₂ H : r₁ • v₁ = r₂ • v₂ h₁₂ : 0 < r₁ + r₂ ⊢ ∃ a b, 0 ≤ a ∧ 0 ≤ b ∧ a + b = 1 ∧ v₁ = a • (v₁ + v₂) ∧ v₂ = b • (v₁ + v₂) [PROOFSTEP] refine' ⟨r₂ / (r₁ + r₂), r₁ / (r₁ + r₂), div_nonneg h₂.le h₁₂.le, div_nonneg h₁.le h₁₂.le, _, _, _⟩ [GOAL] case inr.inr.intro.intro.intro.intro.refine'_1 R : Type u_1 inst✝² : LinearOrderedField R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M x y v₁ v₂ : M r₁ r₂ : R h₁ : 0 < r₁ h₂ : 0 < r₂ H : r₁ • v₁ = r₂ • v₂ h₁₂ : 0 < r₁ + r₂ ⊢ r₂ / (r₁ + r₂) + r₁ / (r₁ + r₂) = 1 [PROOFSTEP] rw [← add_div, add_comm, div_self h₁₂.ne'] [GOAL] case inr.inr.intro.intro.intro.intro.refine'_2 R : Type u_1 inst✝² : LinearOrderedField R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M x y v₁ v₂ : M r₁ r₂ : R h₁ : 0 < r₁ h₂ : 0 < r₂ H : r₁ • v₁ = r₂ • v₂ h₁₂ : 0 < r₁ + r₂ ⊢ v₁ = (r₂ / (r₁ + r₂)) • (v₁ + v₂) [PROOFSTEP] rw [div_eq_inv_mul, mul_smul, smul_add, ← H, ← add_smul, add_comm r₂, inv_smul_smul₀ h₁₂.ne'] [GOAL] case inr.inr.intro.intro.intro.intro.refine'_3 R : Type u_1 inst✝² : LinearOrderedField R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M x y v₁ v₂ : M r₁ r₂ : R h₁ : 0 < r₁ h₂ : 0 < r₂ H : r₁ • v₁ = r₂ • v₂ h₁₂ : 0 < r₁ + r₂ ⊢ v₂ = (r₁ / (r₁ + r₂)) • (v₁ + v₂) [PROOFSTEP] rw [div_eq_inv_mul, mul_smul, smul_add, H, ← add_smul, add_comm r₂, inv_smul_smul₀ h₁₂.ne'] [GOAL] R : Type u_1 inst✝² : LinearOrderedField R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M x y : M hx : x ≠ 0 hy : y ≠ 0 ⊢ (∃ r, 0 < r ∧ r • x = y) ↔ SameRay R x y [PROOFSTEP] refine' ⟨fun h => _, fun h => h.exists_pos_left hx hy⟩ [GOAL] R : Type u_1 inst✝² : LinearOrderedField R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M x y : M hx : x ≠ 0 hy : y ≠ 0 h : ∃ r, 0 < r ∧ r • x = y ⊢ SameRay R x y [PROOFSTEP] rcases h with ⟨r, hr, rfl⟩ [GOAL] case intro.intro R : Type u_1 inst✝² : LinearOrderedField R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M x : M hx : x ≠ 0 r : R hr : 0 < r hy : r • x ≠ 0 ⊢ SameRay R x (r • x) [PROOFSTEP] exact SameRay.sameRay_pos_smul_right x hr [GOAL] R : Type u_1 inst✝² : LinearOrderedField R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M x y : M hx : x ≠ 0 ⊢ (∃ r, 0 < r ∧ r • x = y) ↔ SameRay R x y ∧ y ≠ 0 [PROOFSTEP] constructor [GOAL] case mp R : Type u_1 inst✝² : LinearOrderedField R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M x y : M hx : x ≠ 0 ⊢ (∃ r, 0 < r ∧ r • x = y) → SameRay R x y ∧ y ≠ 0 [PROOFSTEP] rintro ⟨r, hr, rfl⟩ [GOAL] case mp.intro.intro R : Type u_1 inst✝² : LinearOrderedField R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M x : M hx : x ≠ 0 r : R hr : 0 < r ⊢ SameRay R x (r • x) ∧ r • x ≠ 0 [PROOFSTEP] simp [hx, hr.le, hr.ne'] [GOAL] case mpr R : Type u_1 inst✝² : LinearOrderedField R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M x y : M hx : x ≠ 0 ⊢ SameRay R x y ∧ y ≠ 0 → ∃ r, 0 < r ∧ r • x = y [PROOFSTEP] rintro ⟨hxy, hy⟩ [GOAL] case mpr.intro R : Type u_1 inst✝² : LinearOrderedField R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M x y : M hx : x ≠ 0 hxy : SameRay R x y hy : y ≠ 0 ⊢ ∃ r, 0 < r ∧ r • x = y [PROOFSTEP] exact (exists_pos_left_iff_sameRay hx hy).2 hxy [GOAL] R : Type u_1 inst✝² : LinearOrderedField R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M x y : M hx : x ≠ 0 ⊢ (∃ r, 0 ≤ r ∧ r • x = y) ↔ SameRay R x y [PROOFSTEP] refine' ⟨fun h => _, fun h => h.exists_nonneg_left hx⟩ [GOAL] R : Type u_1 inst✝² : LinearOrderedField R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M x y : M hx : x ≠ 0 h : ∃ r, 0 ≤ r ∧ r • x = y ⊢ SameRay R x y [PROOFSTEP] rcases h with ⟨r, hr, rfl⟩ [GOAL] case intro.intro R : Type u_1 inst✝² : LinearOrderedField R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M x : M hx : x ≠ 0 r : R hr : 0 ≤ r ⊢ SameRay R x (r • x) [PROOFSTEP] exact SameRay.sameRay_nonneg_smul_right x hr [GOAL] R : Type u_1 inst✝² : LinearOrderedField R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M x y : M hx : x ≠ 0 hy : y ≠ 0 ⊢ (∃ r, 0 < r ∧ x = r • y) ↔ SameRay R x y [PROOFSTEP] rw [SameRay.sameRay_comm] [GOAL] R : Type u_1 inst✝² : LinearOrderedField R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M x y : M hx : x ≠ 0 hy : y ≠ 0 ⊢ (∃ r, 0 < r ∧ x = r • y) ↔ SameRay R y x [PROOFSTEP] simp_rw [eq_comm (a := x)] [GOAL] R : Type u_1 inst✝² : LinearOrderedField R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M x y : M hx : x ≠ 0 hy : y ≠ 0 ⊢ (∃ r, 0 < r ∧ r • y = x) ↔ SameRay R y x [PROOFSTEP] exact exists_pos_left_iff_sameRay hy hx [GOAL] R : Type u_1 inst✝² : LinearOrderedField R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M x y : M hy : y ≠ 0 ⊢ (∃ r, 0 < r ∧ x = r • y) ↔ SameRay R x y ∧ x ≠ 0 [PROOFSTEP] rw [SameRay.sameRay_comm] [GOAL] R : Type u_1 inst✝² : LinearOrderedField R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M x y : M hy : y ≠ 0 ⊢ (∃ r, 0 < r ∧ x = r • y) ↔ SameRay R y x ∧ x ≠ 0 [PROOFSTEP] simp_rw [eq_comm (a := x)] [GOAL] R : Type u_1 inst✝² : LinearOrderedField R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M x y : M hy : y ≠ 0 ⊢ (∃ r, 0 < r ∧ r • y = x) ↔ SameRay R y x ∧ x ≠ 0 [PROOFSTEP] exact exists_pos_left_iff_sameRay_and_ne_zero hy [GOAL] R : Type u_1 inst✝² : LinearOrderedField R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M x y : M hy : y ≠ 0 ⊢ (∃ r, 0 ≤ r ∧ x = r • y) ↔ SameRay R x y [PROOFSTEP] rw [SameRay.sameRay_comm] [GOAL] R : Type u_1 inst✝² : LinearOrderedField R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M x y : M hy : y ≠ 0 ⊢ (∃ r, 0 ≤ r ∧ x = r • y) ↔ SameRay R y x [PROOFSTEP] simp_rw [eq_comm (a := x)] [GOAL] R : Type u_1 inst✝² : LinearOrderedField R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M x y : M hy : y ≠ 0 ⊢ (∃ r, 0 ≤ r ∧ r • y = x) ↔ SameRay R y x [PROOFSTEP] exact exists_nonneg_left_iff_sameRay (R := R) hy
{"mathlib_filename": "Mathlib.LinearAlgebra.Ray", "llama_tokens": 27817}
{"mathlib_filename": "Mathlib.LinearAlgebra.FreeAlgebra", "llama_tokens": 0}
[GOAL] R : Type u_1 M : Type u_2 r : R x✝ y✝ : M inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M p p' : Submodule R M x y : M ⊢ Setoid.r x y ↔ -(x - y) ∈ p [PROOFSTEP] rw [leftRel_apply, sub_eq_add_neg, neg_add, neg_neg] [GOAL] R : Type u_1 M : Type u_2 r : R x✝ y✝ : M inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M p p' : Submodule R M x y : M ⊢ -x + y ∈ toAddSubgroup p ↔ -x + y ∈ p [PROOFSTEP] rfl [GOAL] R : Type u_1 M : Type u_2 r : R x y : M inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M p p' : Submodule R M ⊢ mk x = 0 ↔ x ∈ p [PROOFSTEP] simpa using (Quotient.eq' p : mk x = 0 ↔ _) [GOAL] R : Type u_1 M : Type u_2 r : R x✝ y✝ : M inst✝⁵ : Ring R inst✝⁴ : AddCommGroup M inst✝³ : Module R M p p' : Submodule R M S : Type u_3 inst✝² : SMul S R inst✝¹ : SMul S M inst✝ : IsScalarTower S R M P : Submodule R M a : S x y : M h : Setoid.r x y ⊢ -(fun x x_1 => x • x_1) a x + (fun x x_1 => x • x_1) a y ∈ toAddSubgroup P [PROOFSTEP] simpa using Submodule.smul_mem P (a • (1 : R)) (leftRel_apply.mp h) [GOAL] R : Type u_1 M : Type u_2 r : R x y : M inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M p p' : Submodule R M ⊢ Function.Surjective mk [PROOFSTEP] rintro ⟨x⟩ [GOAL] case mk R : Type u_1 M : Type u_2 r : R x✝ y : M inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M p p' : Submodule R M b✝ : M ⧸ p x : M ⊢ ∃ a, mk a = Quot.mk Setoid.r x [PROOFSTEP] exact ⟨x, rfl⟩ [GOAL] R : Type u_1 M : Type u_2 r : R x y : M inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M p p' : Submodule R M h : p < ⊤ ⊢ Nontrivial (M ⧸ p) [PROOFSTEP] obtain ⟨x, _, not_mem_s⟩ := SetLike.exists_of_lt h [GOAL] case intro.intro R : Type u_1 M : Type u_2 r : R x✝ y : M inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M p p' : Submodule R M h : p < ⊤ x : M left✝ : x ∈ ⊤ not_mem_s : ¬x ∈ p ⊢ Nontrivial (M ⧸ p) [PROOFSTEP] refine' ⟨⟨mk x, 0, _⟩⟩ [GOAL] case intro.intro R : Type u_1 M : Type u_2 r : R x✝ y : M inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M p p' : Submodule R M h : p < ⊤ x : M left✝ : x ∈ ⊤ not_mem_s : ¬x ∈ p ⊢ mk x ≠ 0 [PROOFSTEP] simpa using not_mem_s [GOAL] R : Type u_1 M : Type u_2 r : R x y : M inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M p p' : Submodule R M ⊢ Subsingleton (M ⧸ p) ↔ p = ⊤ [PROOFSTEP] constructor [GOAL] case mp R : Type u_1 M : Type u_2 r : R x y : M inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M p p' : Submodule R M ⊢ Subsingleton (M ⧸ p) → p = ⊤ [PROOFSTEP] rintro h [GOAL] case mp R : Type u_1 M : Type u_2 r : R x y : M inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M p p' : Submodule R M h : Subsingleton (M ⧸ p) ⊢ p = ⊤ [PROOFSTEP] refine' eq_top_iff.mpr fun x _ => _ [GOAL] case mp R : Type u_1 M : Type u_2 r : R x✝¹ y : M inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M p p' : Submodule R M h : Subsingleton (M ⧸ p) x : M x✝ : x ∈ ⊤ ⊢ x ∈ p [PROOFSTEP] have : x - 0 ∈ p := (Submodule.Quotient.eq p).mp (Subsingleton.elim _ _) [GOAL] case mp R : Type u_1 M : Type u_2 r : R x✝¹ y : M inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M p p' : Submodule R M h : Subsingleton (M ⧸ p) x : M x✝ : x ∈ ⊤ this : x - 0 ∈ p ⊢ x ∈ p [PROOFSTEP] rwa [sub_zero] at this [GOAL] case mpr R : Type u_1 M : Type u_2 r : R x y : M inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M p p' : Submodule R M ⊢ p = ⊤ → Subsingleton (M ⧸ p) [PROOFSTEP] rintro rfl [GOAL] case mpr R : Type u_1 M : Type u_2 r : R x y : M inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M p' : Submodule R M ⊢ Subsingleton (M ⧸ ⊤) [PROOFSTEP] infer_instance [GOAL] R : Type u_1 M : Type u_2 r : R x y : M inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M p p' : Submodule R M ⊢ p = ⊤ → Nonempty (Unique (M ⧸ p)) [PROOFSTEP] rintro rfl [GOAL] R : Type u_1 M : Type u_2 r : R x y : M inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M p' : Submodule R M ⊢ Nonempty (Unique (M ⧸ ⊤)) [PROOFSTEP] exact ⟨QuotientTop.unique⟩ [GOAL] R : Type u_1 M : Type u_2 r : R x y : M inst✝⁴ : Ring R inst✝³ : AddCommGroup M inst✝² : Module R M p p' : Submodule R M inst✝¹ : Fintype M S : Submodule R M inst✝ : DecidablePred fun x => x ∈ S ⊢ Fintype.card M = Fintype.card { x // x ∈ S } * Fintype.card (M ⧸ S) [PROOFSTEP] rw [mul_comm, ← Fintype.card_prod] [GOAL] R : Type u_1 M : Type u_2 r : R x y : M inst✝⁴ : Ring R inst✝³ : AddCommGroup M inst✝² : Module R M p p' : Submodule R M inst✝¹ : Fintype M S : Submodule R M inst✝ : DecidablePred fun x => x ∈ S ⊢ Fintype.card M = Fintype.card ((M ⧸ S) × { x // x ∈ S }) [PROOFSTEP] exact Fintype.card_congr AddSubgroup.addGroupEquivQuotientProdAddSubgroup [GOAL] R : Type u_1 M : Type u_2 r : R x y : M inst✝⁴ : Ring R inst✝³ : AddCommGroup M inst✝² : Module R M p p' : Submodule R M M₂ : Type u_3 inst✝¹ : AddCommGroup M₂ inst✝ : Module R M₂ ⊢ ∀ (x y : M), Quotient.mk (x + y) = Quotient.mk x + Quotient.mk y [PROOFSTEP] simp [GOAL] R : Type u_1 M : Type u_2 r : R x y : M inst✝⁴ : Ring R inst✝³ : AddCommGroup M inst✝² : Module R M p p' : Submodule R M M₂ : Type u_3 inst✝¹ : AddCommGroup M₂ inst✝ : Module R M₂ ⊢ ∀ (r : R) (x : M), AddHom.toFun { toFun := Quotient.mk, map_add' := (_ : ∀ (a a_1 : M), Quotient.mk a + Quotient.mk a_1 = Quotient.mk a + Quotient.mk a_1) } (r • x) = ↑(RingHom.id R) r • AddHom.toFun { toFun := Quotient.mk, map_add' := (_ : ∀ (a a_1 : M), Quotient.mk a + Quotient.mk a_1 = Quotient.mk a + Quotient.mk a_1) } x [PROOFSTEP] simp [GOAL] R : Type u_1 M : Type u_2 r : R x y : M inst✝⁴ : Ring R inst✝³ : AddCommGroup M inst✝² : Module R M p p' : Submodule R M M₂ : Type u_3 inst✝¹ : AddCommGroup M₂ inst✝ : Module R M₂ A : Submodule R M ⊢ Function.Surjective ↑(mkQ A) [PROOFSTEP] rintro ⟨x⟩ [GOAL] case mk R : Type u_1 M : Type u_2 r : R x✝ y : M inst✝⁴ : Ring R inst✝³ : AddCommGroup M inst✝² : Module R M p p' : Submodule R M M₂ : Type u_3 inst✝¹ : AddCommGroup M₂ inst✝ : Module R M₂ A : Submodule R M b✝ : M ⧸ A x : M ⊢ ∃ a, ↑(mkQ A) a = Quot.mk Setoid.r x [PROOFSTEP] exact ⟨x, rfl⟩ [GOAL] R : Type u_1 M : Type u_2 r : R x y : M inst✝⁵ : Ring R inst✝⁴ : AddCommGroup M inst✝³ : Module R M p p' : Submodule R M R₂ : Type u_3 M₂ : Type u_4 inst✝² : Ring R₂ inst✝¹ : AddCommGroup M₂ inst✝ : Module R₂ M₂ τ₁₂ : R →+* R₂ f : M →ₛₗ[τ₁₂] M₂ h : p ≤ ker f src✝ : M ⧸ toAddSubgroup p →+ M₂ := lift (toAddSubgroup p) (toAddMonoidHom f) h ⊢ ∀ (r : R) (x : M ⧸ p), AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (x y : M ⧸ toAddSubgroup p), ZeroHom.toFun (↑src✝) (x + y) = ZeroHom.toFun (↑src✝) x + ZeroHom.toFun (↑src✝) y) } (r • x) = ↑τ₁₂ r • AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (x y : M ⧸ toAddSubgroup p), ZeroHom.toFun (↑src✝) (x + y) = ZeroHom.toFun (↑src✝) x + ZeroHom.toFun (↑src✝) y) } x [PROOFSTEP] rintro a ⟨x⟩ [GOAL] case mk R : Type u_1 M : Type u_2 r : R x✝¹ y : M inst✝⁵ : Ring R inst✝⁴ : AddCommGroup M inst✝³ : Module R M p p' : Submodule R M R₂ : Type u_3 M₂ : Type u_4 inst✝² : Ring R₂ inst✝¹ : AddCommGroup M₂ inst✝ : Module R₂ M₂ τ₁₂ : R →+* R₂ f : M →ₛₗ[τ₁₂] M₂ h : p ≤ ker f src✝ : M ⧸ toAddSubgroup p →+ M₂ := lift (toAddSubgroup p) (toAddMonoidHom f) h a : R x✝ : M ⧸ p x : M ⊢ AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (x y : M ⧸ toAddSubgroup p), ZeroHom.toFun (↑src✝) (x + y) = ZeroHom.toFun (↑src✝) x + ZeroHom.toFun (↑src✝) y) } (a • Quot.mk Setoid.r x) = ↑τ₁₂ a • AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (x y : M ⧸ toAddSubgroup p), ZeroHom.toFun (↑src✝) (x + y) = ZeroHom.toFun (↑src✝) x + ZeroHom.toFun (↑src✝) y) } (Quot.mk Setoid.r x) [PROOFSTEP] exact f.map_smulₛₗ a x [GOAL] R : Type u_1 M : Type u_2 r : R x y : M inst✝⁵ : Ring R inst✝⁴ : AddCommGroup M inst✝³ : Module R M p p' : Submodule R M R₂ : Type u_3 M₂ : Type u_4 inst✝² : Ring R₂ inst✝¹ : AddCommGroup M₂ inst✝ : Module R₂ M₂ τ₁₂ : R →+* R₂ f : M →ₛₗ[τ₁₂] M₂ h : p ≤ ker f ⊢ comp (liftQ p f h) (mkQ p) = f [PROOFSTEP] ext [GOAL] case h R : Type u_1 M : Type u_2 r : R x y : M inst✝⁵ : Ring R inst✝⁴ : AddCommGroup M inst✝³ : Module R M p p' : Submodule R M R₂ : Type u_3 M₂ : Type u_4 inst✝² : Ring R₂ inst✝¹ : AddCommGroup M₂ inst✝ : Module R₂ M₂ τ₁₂ : R →+* R₂ f : M →ₛₗ[τ₁₂] M₂ h : p ≤ ker f x✝ : M ⊢ ↑(comp (liftQ p f h) (mkQ p)) x✝ = ↑f x✝ [PROOFSTEP] rfl [GOAL] R : Type u_1 M : Type u_2 r : R x✝ y : M inst✝⁵ : Ring R inst✝⁴ : AddCommGroup M inst✝³ : Module R M p p' : Submodule R M R₂ : Type u_3 M₂ : Type u_4 inst✝² : Ring R₂ inst✝¹ : AddCommGroup M₂ inst✝ : Module R₂ M₂ τ₁₂ : R →+* R₂ x : M f : M →ₛₗ[τ₁₂] M₂ h : ↑f x = 0 ⊢ span R {x} ≤ ker f [PROOFSTEP] rw [span_singleton_le_iff_mem, LinearMap.mem_ker, h] [GOAL] R : Type u_1 M : Type u_2 r : R x y : M inst✝⁵ : Ring R inst✝⁴ : AddCommGroup M inst✝³ : Module R M p p' : Submodule R M R₂ : Type u_3 M₂ : Type u_4 inst✝² : Ring R₂ inst✝¹ : AddCommGroup M₂ inst✝ : Module R₂ M₂ τ₁₂ : R →+* R₂ ⊢ ∀ (x : M ⧸ p), x ∈ range (mkQ p) [PROOFSTEP] rintro ⟨x⟩ [GOAL] case mk R : Type u_1 M : Type u_2 r : R x✝¹ y : M inst✝⁵ : Ring R inst✝⁴ : AddCommGroup M inst✝³ : Module R M p p' : Submodule R M R₂ : Type u_3 M₂ : Type u_4 inst✝² : Ring R₂ inst✝¹ : AddCommGroup M₂ inst✝ : Module R₂ M₂ τ₁₂ : R →+* R₂ x✝ : M ⧸ p x : M ⊢ Quot.mk Setoid.r x ∈ range (mkQ p) [PROOFSTEP] exact ⟨x, rfl⟩ [GOAL] R : Type u_1 M : Type u_2 r : R x y : M inst✝⁵ : Ring R inst✝⁴ : AddCommGroup M inst✝³ : Module R M p p' : Submodule R M R₂ : Type u_3 M₂ : Type u_4 inst✝² : Ring R₂ inst✝¹ : AddCommGroup M₂ inst✝ : Module R₂ M₂ τ₁₂ : R →+* R₂ ⊢ ker (mkQ p) = p [PROOFSTEP] ext [GOAL] case h R : Type u_1 M : Type u_2 r : R x y : M inst✝⁵ : Ring R inst✝⁴ : AddCommGroup M inst✝³ : Module R M p p' : Submodule R M R₂ : Type u_3 M₂ : Type u_4 inst✝² : Ring R₂ inst✝¹ : AddCommGroup M₂ inst✝ : Module R₂ M₂ τ₁₂ : R →+* R₂ x✝ : M ⊢ x✝ ∈ ker (mkQ p) ↔ x✝ ∈ p [PROOFSTEP] simp [GOAL] R : Type u_1 M : Type u_2 r : R x y : M inst✝⁵ : Ring R inst✝⁴ : AddCommGroup M inst✝³ : Module R M p p'✝ : Submodule R M R₂ : Type u_3 M₂ : Type u_4 inst✝² : Ring R₂ inst✝¹ : AddCommGroup M₂ inst✝ : Module R₂ M₂ τ₁₂ : R →+* R₂ p' : Submodule R (M ⧸ p) ⊢ p ≤ comap (mkQ p) p' [PROOFSTEP] simpa using (comap_mono bot_le : ker p.mkQ ≤ comap p.mkQ p') [GOAL] R : Type u_1 M : Type u_2 r : R x y : M inst✝⁵ : Ring R inst✝⁴ : AddCommGroup M inst✝³ : Module R M p p' : Submodule R M R₂ : Type u_3 M₂ : Type u_4 inst✝² : Ring R₂ inst✝¹ : AddCommGroup M₂ inst✝ : Module R₂ M₂ τ₁₂ : R →+* R₂ ⊢ map (mkQ p) p = ⊥ [PROOFSTEP] rw [eq_bot_iff, map_le_iff_le_comap, comap_bot, ker_mkQ] [GOAL] R : Type u_1 M : Type u_2 r : R x y : M inst✝⁵ : Ring R inst✝⁴ : AddCommGroup M inst✝³ : Module R M p p' : Submodule R M R₂ : Type u_3 M₂ : Type u_4 inst✝² : Ring R₂ inst✝¹ : AddCommGroup M₂ inst✝ : Module R₂ M₂ τ₁₂ : R →+* R₂ ⊢ comap (mkQ p) (map (mkQ p) p') = p ⊔ p' [PROOFSTEP] simp [comap_map_eq, sup_comm] [GOAL] R : Type u_1 M : Type u_2 r : R x y : M inst✝⁵ : Ring R inst✝⁴ : AddCommGroup M inst✝³ : Module R M p p' : Submodule R M R₂ : Type u_3 M₂ : Type u_4 inst✝² : Ring R₂ inst✝¹ : AddCommGroup M₂ inst✝ : Module R₂ M₂ τ₁₂ : R →+* R₂ ⊢ map (mkQ p) p' = ⊤ ↔ p ⊔ p' = ⊤ [PROOFSTEP] simp only [LinearMap.map_eq_top_iff p.range_mkQ, sup_comm, ker_mkQ] [GOAL] R : Type u_1 M : Type u_2 r : R x y : M inst✝⁵ : Ring R inst✝⁴ : AddCommGroup M inst✝³ : Module R M p p' : Submodule R M R₂ : Type u_3 M₂ : Type u_4 inst✝² : Ring R₂ inst✝¹ : AddCommGroup M₂ inst✝ : Module R₂ M₂ τ₁₂ : R →+* R₂ q : Submodule R₂ M₂ f : M →ₛₗ[τ₁₂] M₂ h : p ≤ comap f q ⊢ p ≤ ker (comp (mkQ q) f) [PROOFSTEP] simpa [ker_comp] using h [GOAL] R : Type u_1 M : Type u_2 r : R x y : M inst✝⁵ : Ring R inst✝⁴ : AddCommGroup M inst✝³ : Module R M p p' : Submodule R M R₂ : Type u_3 M₂ : Type u_4 inst✝² : Ring R₂ inst✝¹ : AddCommGroup M₂ inst✝ : Module R₂ M₂ τ₁₂ : R →+* R₂ q : Submodule R₂ M₂ f : M →ₛₗ[τ₁₂] M₂ h : p ≤ comap f q ⊢ comp (mapQ p q f h) (mkQ p) = comp (mkQ q) f [PROOFSTEP] ext x [GOAL] case h R : Type u_1 M : Type u_2 r : R x✝ y : M inst✝⁵ : Ring R inst✝⁴ : AddCommGroup M inst✝³ : Module R M p p' : Submodule R M R₂ : Type u_3 M₂ : Type u_4 inst✝² : Ring R₂ inst✝¹ : AddCommGroup M₂ inst✝ : Module R₂ M₂ τ₁₂ : R →+* R₂ q : Submodule R₂ M₂ f : M →ₛₗ[τ₁₂] M₂ h : p ≤ comap f q x : M ⊢ ↑(comp (mapQ p q f h) (mkQ p)) x = ↑(comp (mkQ q) f) x [PROOFSTEP] rfl [GOAL] R : Type u_1 M : Type u_2 r : R x y : M inst✝⁵ : Ring R inst✝⁴ : AddCommGroup M inst✝³ : Module R M p p' : Submodule R M R₂ : Type u_3 M₂ : Type u_4 inst✝² : Ring R₂ inst✝¹ : AddCommGroup M₂ inst✝ : Module R₂ M₂ τ₁₂ : R →+* R₂ q : Submodule R₂ M₂ ⊢ p ≤ comap 0 q [PROOFSTEP] simp [GOAL] R : Type u_1 M : Type u_2 r : R x y : M inst✝⁵ : Ring R inst✝⁴ : AddCommGroup M inst✝³ : Module R M p p' : Submodule R M R₂ : Type u_3 M₂ : Type u_4 inst✝² : Ring R₂ inst✝¹ : AddCommGroup M₂ inst✝ : Module R₂ M₂ τ₁₂ : R →+* R₂ q : Submodule R₂ M₂ h : optParam (p ≤ comap 0 q) (_ : p ≤ comap 0 q) ⊢ mapQ p q 0 h = 0 [PROOFSTEP] ext [GOAL] case h.h R : Type u_1 M : Type u_2 r : R x y : M inst✝⁵ : Ring R inst✝⁴ : AddCommGroup M inst✝³ : Module R M p p' : Submodule R M R₂ : Type u_3 M₂ : Type u_4 inst✝² : Ring R₂ inst✝¹ : AddCommGroup M₂ inst✝ : Module R₂ M₂ τ₁₂ : R →+* R₂ q : Submodule R₂ M₂ h : optParam (p ≤ comap 0 q) (_ : p ≤ comap 0 q) x✝ : M ⊢ ↑(comp (mapQ p q 0 h) (mkQ p)) x✝ = ↑(comp 0 (mkQ p)) x✝ [PROOFSTEP] simp [GOAL] R : Type u_1 M : Type u_2 r : R x y : M inst✝⁹ : Ring R inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M p p' : Submodule R M R₂ : Type u_3 M₂ : Type u_4 inst✝⁶ : Ring R₂ inst✝⁵ : AddCommGroup M₂ inst✝⁴ : Module R₂ M₂ τ₁₂ : R →+* R₂ q : Submodule R₂ M₂ R₃ : Type u_5 M₃ : Type u_6 inst✝³ : Ring R₃ inst✝² : AddCommGroup M₃ inst✝¹ : Module R₃ M₃ p₂ : Submodule R₂ M₂ p₃ : Submodule R₃ M₃ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ f : M →ₛₗ[τ₁₂] M₂ g : M₂ →ₛₗ[τ₂₃] M₃ hf : p ≤ comap f p₂ hg : p₂ ≤ comap g p₃ h : optParam (p ≤ comap f (comap g p₃)) (_ : p ≤ comap f (comap g p₃)) ⊢ mapQ p p₃ (comp g f) h = comp (mapQ p₂ p₃ g hg) (mapQ p p₂ f hf) [PROOFSTEP] ext [GOAL] case h.h R : Type u_1 M : Type u_2 r : R x y : M inst✝⁹ : Ring R inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M p p' : Submodule R M R₂ : Type u_3 M₂ : Type u_4 inst✝⁶ : Ring R₂ inst✝⁵ : AddCommGroup M₂ inst✝⁴ : Module R₂ M₂ τ₁₂ : R →+* R₂ q : Submodule R₂ M₂ R₃ : Type u_5 M₃ : Type u_6 inst✝³ : Ring R₃ inst✝² : AddCommGroup M₃ inst✝¹ : Module R₃ M₃ p₂ : Submodule R₂ M₂ p₃ : Submodule R₃ M₃ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ f : M →ₛₗ[τ₁₂] M₂ g : M₂ →ₛₗ[τ₂₃] M₃ hf : p ≤ comap f p₂ hg : p₂ ≤ comap g p₃ h : optParam (p ≤ comap f (comap g p₃)) (_ : p ≤ comap f (comap g p₃)) x✝ : M ⊢ ↑(comp (mapQ p p₃ (comp g f) h) (mkQ p)) x✝ = ↑(comp (comp (mapQ p₂ p₃ g hg) (mapQ p p₂ f hf)) (mkQ p)) x✝ [PROOFSTEP] simp [GOAL] R : Type u_1 M : Type u_2 r : R x y : M inst✝⁵ : Ring R inst✝⁴ : AddCommGroup M inst✝³ : Module R M p p' : Submodule R M R₂ : Type u_3 M₂ : Type u_4 inst✝² : Ring R₂ inst✝¹ : AddCommGroup M₂ inst✝ : Module R₂ M₂ τ₁₂ : R →+* R₂ q : Submodule R₂ M₂ ⊢ p ≤ comap LinearMap.id p [PROOFSTEP] rw [comap_id] [GOAL] R : Type u_1 M : Type u_2 r : R x y : M inst✝⁵ : Ring R inst✝⁴ : AddCommGroup M inst✝³ : Module R M p p' : Submodule R M R₂ : Type u_3 M₂ : Type u_4 inst✝² : Ring R₂ inst✝¹ : AddCommGroup M₂ inst✝ : Module R₂ M₂ τ₁₂ : R →+* R₂ q : Submodule R₂ M₂ h : optParam (p ≤ comap LinearMap.id p) (_ : p ≤ comap LinearMap.id p) ⊢ mapQ p p LinearMap.id h = LinearMap.id [PROOFSTEP] ext [GOAL] case h.h R : Type u_1 M : Type u_2 r : R x y : M inst✝⁵ : Ring R inst✝⁴ : AddCommGroup M inst✝³ : Module R M p p' : Submodule R M R₂ : Type u_3 M₂ : Type u_4 inst✝² : Ring R₂ inst✝¹ : AddCommGroup M₂ inst✝ : Module R₂ M₂ τ₁₂ : R →+* R₂ q : Submodule R₂ M₂ h : optParam (p ≤ comap LinearMap.id p) (_ : p ≤ comap LinearMap.id p) x✝ : M ⊢ ↑(comp (mapQ p p LinearMap.id h) (mkQ p)) x✝ = ↑(comp LinearMap.id (mkQ p)) x✝ [PROOFSTEP] simp [GOAL] R : Type u_1 M : Type u_2 r : R x y : M inst✝⁵ : Ring R inst✝⁴ : AddCommGroup M inst✝³ : Module R M p p' : Submodule R M R₂ : Type u_3 M₂ : Type u_4 inst✝² : Ring R₂ inst✝¹ : AddCommGroup M₂ inst✝ : Module R₂ M₂ τ₁₂ : R →+* R₂ q : Submodule R₂ M₂ f : M →ₗ[R] M h : p ≤ comap f p k : ℕ h' : optParam (p ≤ comap (f ^ k) p) (_ : p ≤ comap (f ^ k) p) ⊢ mapQ p p (f ^ k) h' = mapQ p p f h ^ k [PROOFSTEP] induction' k with k ih [GOAL] case zero R : Type u_1 M : Type u_2 r : R x y : M inst✝⁵ : Ring R inst✝⁴ : AddCommGroup M inst✝³ : Module R M p p' : Submodule R M R₂ : Type u_3 M₂ : Type u_4 inst✝² : Ring R₂ inst✝¹ : AddCommGroup M₂ inst✝ : Module R₂ M₂ τ₁₂ : R →+* R₂ q : Submodule R₂ M₂ f : M →ₗ[R] M h : p ≤ comap f p k : ℕ h'✝ : optParam (p ≤ comap (f ^ k) p) (_ : p ≤ comap (f ^ k) p) h' : optParam (p ≤ comap (f ^ Nat.zero) p) (_ : p ≤ comap (f ^ Nat.zero) p) ⊢ mapQ p p (f ^ Nat.zero) h' = mapQ p p f h ^ Nat.zero [PROOFSTEP] simp [LinearMap.one_eq_id] [GOAL] case succ R : Type u_1 M : Type u_2 r : R x y : M inst✝⁵ : Ring R inst✝⁴ : AddCommGroup M inst✝³ : Module R M p p' : Submodule R M R₂ : Type u_3 M₂ : Type u_4 inst✝² : Ring R₂ inst✝¹ : AddCommGroup M₂ inst✝ : Module R₂ M₂ τ₁₂ : R →+* R₂ q : Submodule R₂ M₂ f : M →ₗ[R] M h : p ≤ comap f p k✝ : ℕ h'✝ : optParam (p ≤ comap (f ^ k✝) p) (_ : p ≤ comap (f ^ k✝) p) k : ℕ ih : ∀ (h' : optParam (p ≤ comap (f ^ k) p) (_ : p ≤ comap (f ^ k) p)), mapQ p p (f ^ k) h' = mapQ p p f h ^ k h' : optParam (p ≤ comap (f ^ Nat.succ k) p) (_ : p ≤ comap (f ^ Nat.succ k) p) ⊢ mapQ p p (f ^ Nat.succ k) h' = mapQ p p f h ^ Nat.succ k [PROOFSTEP] simp only [LinearMap.iterate_succ] -- porting note: why does any of these `optParams` need to be applied? Why didn't `simp` handle -- all of this for us? [GOAL] case succ R : Type u_1 M : Type u_2 r : R x y : M inst✝⁵ : Ring R inst✝⁴ : AddCommGroup M inst✝³ : Module R M p p' : Submodule R M R₂ : Type u_3 M₂ : Type u_4 inst✝² : Ring R₂ inst✝¹ : AddCommGroup M₂ inst✝ : Module R₂ M₂ τ₁₂ : R →+* R₂ q : Submodule R₂ M₂ f : M →ₗ[R] M h : p ≤ comap f p k✝ : ℕ h'✝ : optParam (p ≤ comap (f ^ k✝) p) (_ : p ≤ comap (f ^ k✝) p) k : ℕ ih : ∀ (h' : optParam (p ≤ comap (f ^ k) p) (_ : p ≤ comap (f ^ k) p)), mapQ p p (f ^ k) h' = mapQ p p f h ^ k h' : optParam (p ≤ comap (f ^ Nat.succ k) p) (_ : p ≤ comap (f ^ Nat.succ k) p) ⊢ mapQ p p (comp (f ^ k) f) (_ : p ≤ comap (comp (f ^ k) f) p) = comp (mapQ p p f h ^ k) (mapQ p p f h) [PROOFSTEP] convert mapQ_comp p p p f (f ^ k) h (p.le_comap_pow_of_le_comap h k) (h.trans (comap_mono <| p.le_comap_pow_of_le_comap h k)) [GOAL] case h.e'_3.h.e'_20 R : Type u_1 M : Type u_2 r : R x y : M inst✝⁵ : Ring R inst✝⁴ : AddCommGroup M inst✝³ : Module R M p p' : Submodule R M R₂ : Type u_3 M₂ : Type u_4 inst✝² : Ring R₂ inst✝¹ : AddCommGroup M₂ inst✝ : Module R₂ M₂ τ₁₂ : R →+* R₂ q : Submodule R₂ M₂ f : M →ₗ[R] M h : p ≤ comap f p k✝ : ℕ h'✝ : optParam (p ≤ comap (f ^ k✝) p) (_ : p ≤ comap (f ^ k✝) p) k : ℕ ih : ∀ (h' : optParam (p ≤ comap (f ^ k) p) (_ : p ≤ comap (f ^ k) p)), mapQ p p (f ^ k) h' = mapQ p p f h ^ k h' : optParam (p ≤ comap (f ^ Nat.succ k) p) (_ : p ≤ comap (f ^ Nat.succ k) p) ⊢ mapQ p p f h ^ k = mapQ p p (f ^ k) (_ : p ≤ comap (f ^ k) p) [PROOFSTEP] exact (ih _).symm [GOAL] R : Type u_1 M : Type u_2 r : R x y : M inst✝⁵ : Ring R inst✝⁴ : AddCommGroup M inst✝³ : Module R M p p' : Submodule R M R₂ : Type u_3 M₂ : Type u_4 inst✝² : Ring R₂ inst✝¹ : AddCommGroup M₂ inst✝ : Module R₂ M₂ τ₁₂ : R →+* R₂ q : Submodule R₂ M₂ f : M →ₛₗ[τ₁₂] M₂ h : p ≤ ker f ⊢ comap (liftQ p f h) q ≤ map (mkQ p) (comap f q) [PROOFSTEP] rintro ⟨x⟩ hx [GOAL] case mk R : Type u_1 M : Type u_2 r : R x✝¹ y : M inst✝⁵ : Ring R inst✝⁴ : AddCommGroup M inst✝³ : Module R M p p' : Submodule R M R₂ : Type u_3 M₂ : Type u_4 inst✝² : Ring R₂ inst✝¹ : AddCommGroup M₂ inst✝ : Module R₂ M₂ τ₁₂ : R →+* R₂ q : Submodule R₂ M₂ f : M →ₛₗ[τ₁₂] M₂ h : p ≤ ker f x✝ : M ⧸ p x : M hx : Quot.mk Setoid.r x ∈ comap (liftQ p f h) q ⊢ Quot.mk Setoid.r x ∈ map (mkQ p) (comap f q) [PROOFSTEP] exact ⟨_, hx, rfl⟩ [GOAL] R : Type u_1 M : Type u_2 r : R x y : M inst✝⁵ : Ring R inst✝⁴ : AddCommGroup M inst✝³ : Module R M p p' : Submodule R M R₂ : Type u_3 M₂ : Type u_4 inst✝² : Ring R₂ inst✝¹ : AddCommGroup M₂ inst✝ : Module R₂ M₂ τ₁₂ : R →+* R₂ q : Submodule R₂ M₂ f : M →ₛₗ[τ₁₂] M₂ h : p ≤ ker f ⊢ map (mkQ p) (comap f q) ≤ comap (liftQ p f h) q [PROOFSTEP] rw [map_le_iff_le_comap, ← comap_comp, liftQ_mkQ] [GOAL] R : Type u_1 M : Type u_2 r : R x y : M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M p p' : Submodule R M R₂ : Type u_3 M₂ : Type u_4 inst✝³ : Ring R₂ inst✝² : AddCommGroup M₂ inst✝¹ : Module R₂ M₂ τ₁₂ : R →+* R₂ q✝ : Submodule R₂ M₂ inst✝ : RingHomSurjective τ₁₂ f : M →ₛₗ[τ₁₂] M₂ h : p ≤ ker f q : Submodule R (M ⧸ p) ⊢ map (liftQ p f h) q ≤ map f (comap (mkQ p) q) [PROOFSTEP] rintro _ ⟨⟨x⟩, hxq, rfl⟩ [GOAL] case intro.mk.intro R : Type u_1 M : Type u_2 r : R x✝ y : M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M p p' : Submodule R M R₂ : Type u_3 M₂ : Type u_4 inst✝³ : Ring R₂ inst✝² : AddCommGroup M₂ inst✝¹ : Module R₂ M₂ τ₁₂ : R →+* R₂ q✝ : Submodule R₂ M₂ inst✝ : RingHomSurjective τ₁₂ f : M →ₛₗ[τ₁₂] M₂ h : p ≤ ker f q : Submodule R (M ⧸ p) w✝ : M ⧸ p x : M hxq : Quot.mk Setoid.r x ∈ ↑q ⊢ ↑(liftQ p f h) (Quot.mk Setoid.r x) ∈ map f (comap (mkQ p) q) [PROOFSTEP] exact ⟨x, hxq, rfl⟩ [GOAL] R : Type u_1 M : Type u_2 r : R x y : M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M p p' : Submodule R M R₂ : Type u_3 M₂ : Type u_4 inst✝³ : Ring R₂ inst✝² : AddCommGroup M₂ inst✝¹ : Module R₂ M₂ τ₁₂ : R →+* R₂ q✝ : Submodule R₂ M₂ inst✝ : RingHomSurjective τ₁₂ f : M →ₛₗ[τ₁₂] M₂ h : p ≤ ker f q : Submodule R (M ⧸ p) ⊢ map f (comap (mkQ p) q) ≤ map (liftQ p f h) q [PROOFSTEP] rintro _ ⟨x, hxq, rfl⟩ [GOAL] case intro.intro R : Type u_1 M : Type u_2 r : R x✝ y : M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M p p' : Submodule R M R₂ : Type u_3 M₂ : Type u_4 inst✝³ : Ring R₂ inst✝² : AddCommGroup M₂ inst✝¹ : Module R₂ M₂ τ₁₂ : R →+* R₂ q✝ : Submodule R₂ M₂ inst✝ : RingHomSurjective τ₁₂ f : M →ₛₗ[τ₁₂] M₂ h : p ≤ ker f q : Submodule R (M ⧸ p) x : M hxq : x ∈ ↑(comap (mkQ p) q) ⊢ ↑f x ∈ map (liftQ p f h) q [PROOFSTEP] exact ⟨Quotient.mk x, hxq, rfl⟩ [GOAL] R : Type u_1 M : Type u_2 r : R x y : M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M p p' : Submodule R M R₂ : Type u_3 M₂ : Type u_4 inst✝³ : Ring R₂ inst✝² : AddCommGroup M₂ inst✝¹ : Module R₂ M₂ τ₁₂ : R →+* R₂ q : Submodule R₂ M₂ inst✝ : RingHomSurjective τ₁₂ f : M →ₛₗ[τ₁₂] M₂ h : p ≤ ker f ⊢ range (liftQ p f h) = range f [PROOFSTEP] simpa only [range_eq_map] using map_liftQ _ _ _ _ [GOAL] R : Type u_1 M : Type u_2 r : R x y : M inst✝⁵ : Ring R inst✝⁴ : AddCommGroup M inst✝³ : Module R M p p' : Submodule R M R₂ : Type u_3 M₂ : Type u_4 inst✝² : Ring R₂ inst✝¹ : AddCommGroup M₂ inst✝ : Module R₂ M₂ τ₁₂ : R →+* R₂ q : Submodule R₂ M₂ f : M →ₛₗ[τ₁₂] M₂ h : p ≤ ker f h' : ker f ≤ p ⊢ ker (liftQ p f h) = ⊥ [PROOFSTEP] rw [ker_liftQ, le_antisymm h h', mkQ_map_self] [GOAL] R : Type u_1 M : Type u_2 r : R x y : M inst✝⁵ : Ring R inst✝⁴ : AddCommGroup M inst✝³ : Module R M p p'✝ : Submodule R M R₂ : Type u_3 M₂ : Type u_4 inst✝² : Ring R₂ inst✝¹ : AddCommGroup M₂ inst✝ : Module R₂ M₂ τ₁₂ : R →+* R₂ q : Submodule R₂ M₂ p' : Submodule R (M ⧸ p) ⊢ p' ≤ range (mkQ p) [PROOFSTEP] simp [GOAL] R : Type u_1 M : Type u_2 r : R x y : M inst✝⁵ : Ring R inst✝⁴ : AddCommGroup M inst✝³ : Module R M p p' : Submodule R M R₂ : Type u_3 M₂ : Type u_4 inst✝² : Ring R₂ inst✝¹ : AddCommGroup M₂ inst✝ : Module R₂ M₂ τ₁₂ : R →+* R₂ q✝ : Submodule R₂ M₂ x✝ : { p' // p ≤ p' } q : Submodule R M hq : p ≤ q ⊢ ↑((fun p' => { val := comap (mkQ p) p', property := (_ : p ≤ comap (mkQ p) p') }) ((fun q => map (mkQ p) ↑q) { val := q, property := hq })) = ↑{ val := q, property := hq } [PROOFSTEP] simpa [comap_map_mkQ p] [GOAL] R : Type u_1 M : Type u_2 r : R x y : M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M p p' : Submodule R M R₂ : Type u_3 M₂ : Type u_4 inst✝³ : Ring R₂ inst✝² : AddCommGroup M₂ inst✝¹ : Module R₂ M₂ τ₁₂ : R →+* R₂ q : Submodule R₂ M₂ inst✝ : RingHomSurjective τ₁₂ f : M →ₛₗ[τ₁₂] M₂ s : Set M₂ h₀ : Set.Nonempty s h₁ : s ⊆ ↑(range f) ⊢ span R (↑f ⁻¹' s) = comap f (span R₂ s) [PROOFSTEP] suffices (span R₂ s).comap f ≤ span R (f ⁻¹' s) by exact le_antisymm (span_preimage_le f s) this [GOAL] R : Type u_1 M : Type u_2 r : R x y : M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M p p' : Submodule R M R₂ : Type u_3 M₂ : Type u_4 inst✝³ : Ring R₂ inst✝² : AddCommGroup M₂ inst✝¹ : Module R₂ M₂ τ₁₂ : R →+* R₂ q : Submodule R₂ M₂ inst✝ : RingHomSurjective τ₁₂ f : M →ₛₗ[τ₁₂] M₂ s : Set M₂ h₀ : Set.Nonempty s h₁ : s ⊆ ↑(range f) this : comap f (span R₂ s) ≤ span R (↑f ⁻¹' s) ⊢ span R (↑f ⁻¹' s) = comap f (span R₂ s) [PROOFSTEP] exact le_antisymm (span_preimage_le f s) this [GOAL] R : Type u_1 M : Type u_2 r : R x y : M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M p p' : Submodule R M R₂ : Type u_3 M₂ : Type u_4 inst✝³ : Ring R₂ inst✝² : AddCommGroup M₂ inst✝¹ : Module R₂ M₂ τ₁₂ : R →+* R₂ q : Submodule R₂ M₂ inst✝ : RingHomSurjective τ₁₂ f : M →ₛₗ[τ₁₂] M₂ s : Set M₂ h₀ : Set.Nonempty s h₁ : s ⊆ ↑(range f) ⊢ comap f (span R₂ s) ≤ span R (↑f ⁻¹' s) [PROOFSTEP] have hk : ker f ≤ span R (f ⁻¹' s) := by let y := Classical.choose h₀ have hy : y ∈ s := Classical.choose_spec h₀ rw [ker_le_iff] use y, h₁ hy rw [← Set.singleton_subset_iff] at hy exact Set.Subset.trans subset_span (span_mono (Set.preimage_mono hy)) [GOAL] R : Type u_1 M : Type u_2 r : R x y : M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M p p' : Submodule R M R₂ : Type u_3 M₂ : Type u_4 inst✝³ : Ring R₂ inst✝² : AddCommGroup M₂ inst✝¹ : Module R₂ M₂ τ₁₂ : R →+* R₂ q : Submodule R₂ M₂ inst✝ : RingHomSurjective τ₁₂ f : M →ₛₗ[τ₁₂] M₂ s : Set M₂ h₀ : Set.Nonempty s h₁ : s ⊆ ↑(range f) ⊢ ker f ≤ span R (↑f ⁻¹' s) [PROOFSTEP] let y := Classical.choose h₀ [GOAL] R : Type u_1 M : Type u_2 r : R x y✝ : M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M p p' : Submodule R M R₂ : Type u_3 M₂ : Type u_4 inst✝³ : Ring R₂ inst✝² : AddCommGroup M₂ inst✝¹ : Module R₂ M₂ τ₁₂ : R →+* R₂ q : Submodule R₂ M₂ inst✝ : RingHomSurjective τ₁₂ f : M →ₛₗ[τ₁₂] M₂ s : Set M₂ h₀ : Set.Nonempty s h₁ : s ⊆ ↑(range f) y : M₂ := Classical.choose h₀ ⊢ ker f ≤ span R (↑f ⁻¹' s) [PROOFSTEP] have hy : y ∈ s := Classical.choose_spec h₀ [GOAL] R : Type u_1 M : Type u_2 r : R x y✝ : M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M p p' : Submodule R M R₂ : Type u_3 M₂ : Type u_4 inst✝³ : Ring R₂ inst✝² : AddCommGroup M₂ inst✝¹ : Module R₂ M₂ τ₁₂ : R →+* R₂ q : Submodule R₂ M₂ inst✝ : RingHomSurjective τ₁₂ f : M →ₛₗ[τ₁₂] M₂ s : Set M₂ h₀ : Set.Nonempty s h₁ : s ⊆ ↑(range f) y : M₂ := Classical.choose h₀ hy : y ∈ s ⊢ ker f ≤ span R (↑f ⁻¹' s) [PROOFSTEP] rw [ker_le_iff] [GOAL] R : Type u_1 M : Type u_2 r : R x y✝ : M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M p p' : Submodule R M R₂ : Type u_3 M₂ : Type u_4 inst✝³ : Ring R₂ inst✝² : AddCommGroup M₂ inst✝¹ : Module R₂ M₂ τ₁₂ : R →+* R₂ q : Submodule R₂ M₂ inst✝ : RingHomSurjective τ₁₂ f : M →ₛₗ[τ₁₂] M₂ s : Set M₂ h₀ : Set.Nonempty s h₁ : s ⊆ ↑(range f) y : M₂ := Classical.choose h₀ hy : y ∈ s ⊢ ∃ y, y ∈ range f ∧ ↑f ⁻¹' {y} ⊆ ↑(span R (↑f ⁻¹' s)) [PROOFSTEP] use y, h₁ hy [GOAL] case right R : Type u_1 M : Type u_2 r : R x y✝ : M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M p p' : Submodule R M R₂ : Type u_3 M₂ : Type u_4 inst✝³ : Ring R₂ inst✝² : AddCommGroup M₂ inst✝¹ : Module R₂ M₂ τ₁₂ : R →+* R₂ q : Submodule R₂ M₂ inst✝ : RingHomSurjective τ₁₂ f : M →ₛₗ[τ₁₂] M₂ s : Set M₂ h₀ : Set.Nonempty s h₁ : s ⊆ ↑(range f) y : M₂ := Classical.choose h₀ hy : y ∈ s ⊢ ↑f ⁻¹' {y} ⊆ ↑(span R (↑f ⁻¹' s)) [PROOFSTEP] rw [← Set.singleton_subset_iff] at hy [GOAL] case right R : Type u_1 M : Type u_2 r : R x y✝ : M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M p p' : Submodule R M R₂ : Type u_3 M₂ : Type u_4 inst✝³ : Ring R₂ inst✝² : AddCommGroup M₂ inst✝¹ : Module R₂ M₂ τ₁₂ : R →+* R₂ q : Submodule R₂ M₂ inst✝ : RingHomSurjective τ₁₂ f : M →ₛₗ[τ₁₂] M₂ s : Set M₂ h₀ : Set.Nonempty s h₁ : s ⊆ ↑(range f) y : M₂ := Classical.choose h₀ hy : {y} ⊆ s ⊢ ↑f ⁻¹' {y} ⊆ ↑(span R (↑f ⁻¹' s)) [PROOFSTEP] exact Set.Subset.trans subset_span (span_mono (Set.preimage_mono hy)) [GOAL] R : Type u_1 M : Type u_2 r : R x y : M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M p p' : Submodule R M R₂ : Type u_3 M₂ : Type u_4 inst✝³ : Ring R₂ inst✝² : AddCommGroup M₂ inst✝¹ : Module R₂ M₂ τ₁₂ : R →+* R₂ q : Submodule R₂ M₂ inst✝ : RingHomSurjective τ₁₂ f : M →ₛₗ[τ₁₂] M₂ s : Set M₂ h₀ : Set.Nonempty s h₁ : s ⊆ ↑(range f) hk : ker f ≤ span R (↑f ⁻¹' s) ⊢ comap f (span R₂ s) ≤ span R (↑f ⁻¹' s) [PROOFSTEP] rw [← left_eq_sup] at hk [GOAL] R : Type u_1 M : Type u_2 r : R x y : M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M p p' : Submodule R M R₂ : Type u_3 M₂ : Type u_4 inst✝³ : Ring R₂ inst✝² : AddCommGroup M₂ inst✝¹ : Module R₂ M₂ τ₁₂ : R →+* R₂ q : Submodule R₂ M₂ inst✝ : RingHomSurjective τ₁₂ f : M →ₛₗ[τ₁₂] M₂ s : Set M₂ h₀ : Set.Nonempty s h₁ : s ⊆ ↑(range f) hk : span R (↑f ⁻¹' s) = span R (↑f ⁻¹' s) ⊔ ker f ⊢ comap f (span R₂ s) ≤ span R (↑f ⁻¹' s) [PROOFSTEP] rw [range_coe f] at h₁ [GOAL] R : Type u_1 M : Type u_2 r : R x y : M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M p p' : Submodule R M R₂ : Type u_3 M₂ : Type u_4 inst✝³ : Ring R₂ inst✝² : AddCommGroup M₂ inst✝¹ : Module R₂ M₂ τ₁₂ : R →+* R₂ q : Submodule R₂ M₂ inst✝ : RingHomSurjective τ₁₂ f : M →ₛₗ[τ₁₂] M₂ s : Set M₂ h₀ : Set.Nonempty s h₁ : s ⊆ Set.range ↑f hk : span R (↑f ⁻¹' s) = span R (↑f ⁻¹' s) ⊔ ker f ⊢ comap f (span R₂ s) ≤ span R (↑f ⁻¹' s) [PROOFSTEP] rw [hk, ← LinearMap.map_le_map_iff, map_span, map_comap_eq, Set.image_preimage_eq_of_subset h₁] [GOAL] R : Type u_1 M : Type u_2 r : R x y : M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M p p' : Submodule R M R₂ : Type u_3 M₂ : Type u_4 inst✝³ : Ring R₂ inst✝² : AddCommGroup M₂ inst✝¹ : Module R₂ M₂ τ₁₂ : R →+* R₂ q : Submodule R₂ M₂ inst✝ : RingHomSurjective τ₁₂ f : M →ₛₗ[τ₁₂] M₂ s : Set M₂ h₀ : Set.Nonempty s h₁ : s ⊆ Set.range ↑f hk : span R (↑f ⁻¹' s) = span R (↑f ⁻¹' s) ⊔ ker f ⊢ range f ⊓ span R₂ s ≤ span R₂ s [PROOFSTEP] exact inf_le_right [GOAL] R : Type u_1 M : Type u_2 r : R x✝ y : M inst✝⁷ : Ring R inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M p p' : Submodule R M R₂ : Type u_3 M₂ : Type u_4 inst✝⁴ : Ring R₂ inst✝³ : AddCommGroup M₂ inst✝² : Module R₂ M₂ τ₁₂ : R →+* R₂ q : Submodule R₂ M₂ N : Type u_5 inst✝¹ : AddCommGroup N inst✝ : Module R N P : Submodule R M Q : Submodule R N f : M ≃ₗ[R] N hf : map f P = Q src✝ : M ⧸ P →ₗ[R] N ⧸ Q := mapQ P Q ↑f (_ : ∀ (x : M), x ∈ P → x ∈ comap (↑f) Q) x : N hx : x ∈ Q ⊢ x ∈ comap (↑(LinearEquiv.symm f)) P [PROOFSTEP] rw [← hf, Submodule.mem_map] at hx [GOAL] R : Type u_1 M : Type u_2 r : R x✝ y : M inst✝⁷ : Ring R inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M p p' : Submodule R M R₂ : Type u_3 M₂ : Type u_4 inst✝⁴ : Ring R₂ inst✝³ : AddCommGroup M₂ inst✝² : Module R₂ M₂ τ₁₂ : R →+* R₂ q : Submodule R₂ M₂ N : Type u_5 inst✝¹ : AddCommGroup N inst✝ : Module R N P : Submodule R M Q : Submodule R N f : M ≃ₗ[R] N hf : map f P = Q src✝ : M ⧸ P →ₗ[R] N ⧸ Q := mapQ P Q ↑f (_ : ∀ (x : M), x ∈ P → x ∈ comap (↑f) Q) x : N hx : ∃ y, y ∈ P ∧ ↑f y = x ⊢ x ∈ comap (↑(LinearEquiv.symm f)) P [PROOFSTEP] obtain ⟨y, hy, rfl⟩ := hx [GOAL] case intro.intro R : Type u_1 M : Type u_2 r : R x y✝ : M inst✝⁷ : Ring R inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M p p' : Submodule R M R₂ : Type u_3 M₂ : Type u_4 inst✝⁴ : Ring R₂ inst✝³ : AddCommGroup M₂ inst✝² : Module R₂ M₂ τ₁₂ : R →+* R₂ q : Submodule R₂ M₂ N : Type u_5 inst✝¹ : AddCommGroup N inst✝ : Module R N P : Submodule R M Q : Submodule R N f : M ≃ₗ[R] N hf : map f P = Q src✝ : M ⧸ P →ₗ[R] N ⧸ Q := mapQ P Q ↑f (_ : ∀ (x : M), x ∈ P → x ∈ comap (↑f) Q) y : M hy : y ∈ P ⊢ ↑f y ∈ comap (↑(LinearEquiv.symm f)) P [PROOFSTEP] simpa [GOAL] R : Type u_1 M : Type u_2 r : R x✝ y : M inst✝⁷ : Ring R inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M p p' : Submodule R M R₂ : Type u_3 M₂ : Type u_4 inst✝⁴ : Ring R₂ inst✝³ : AddCommGroup M₂ inst✝² : Module R₂ M₂ τ₁₂ : R →+* R₂ q : Submodule R₂ M₂ N : Type u_5 inst✝¹ : AddCommGroup N inst✝ : Module R N P : Submodule R M Q : Submodule R N f : M ≃ₗ[R] N hf : map f P = Q src✝ : M ⧸ P →ₗ[R] N ⧸ Q := mapQ P Q ↑f (_ : ∀ (x : M), x ∈ P → x ∈ comap (↑f) Q) x : M ⧸ P ⊢ ∀ (a : M), ↑(mapQ Q P ↑(LinearEquiv.symm f) (_ : ∀ (x : N), x ∈ Q → x ∈ comap (↑(LinearEquiv.symm f)) P)) (AddHom.toFun { toAddHom := { toFun := ↑(mapQ P Q ↑f (_ : ∀ (x : M), x ∈ P → x ∈ comap (↑f) Q)), map_add' := (_ : ∀ (x y : M ⧸ P), AddHom.toFun src✝.toAddHom (x + y) = AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) }, map_smul' := (_ : ∀ (r : R) (x : M ⧸ P), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom (Quotient.mk'' a)) = Quotient.mk'' a [PROOFSTEP] simp [GOAL] R : Type u_1 M : Type u_2 r : R x✝ y : M inst✝⁷ : Ring R inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M p p' : Submodule R M R₂ : Type u_3 M₂ : Type u_4 inst✝⁴ : Ring R₂ inst✝³ : AddCommGroup M₂ inst✝² : Module R₂ M₂ τ₁₂ : R →+* R₂ q : Submodule R₂ M₂ N : Type u_5 inst✝¹ : AddCommGroup N inst✝ : Module R N P : Submodule R M Q : Submodule R N f : M ≃ₗ[R] N hf : map f P = Q src✝ : M ⧸ P →ₗ[R] N ⧸ Q := mapQ P Q ↑f (_ : ∀ (x : M), x ∈ P → x ∈ comap (↑f) Q) x : N ⧸ Q ⊢ ∀ (a : N), AddHom.toFun { toAddHom := { toFun := ↑(mapQ P Q ↑f (_ : ∀ (x : M), x ∈ P → x ∈ comap (↑f) Q)), map_add' := (_ : ∀ (x y : M ⧸ P), AddHom.toFun src✝.toAddHom (x + y) = AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) }, map_smul' := (_ : ∀ (r : R) (x : M ⧸ P), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom (↑(mapQ Q P ↑(LinearEquiv.symm f) (_ : ∀ (x : N), x ∈ Q → x ∈ comap (↑(LinearEquiv.symm f)) P)) (Quotient.mk'' a)) = Quotient.mk'' a [PROOFSTEP] simp [GOAL] R : Type u_1 M : Type u_2 r : R x y : M inst✝⁹ : Ring R inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M p p' : Submodule R M R₂ : Type u_3 M₂ : Type u_4 inst✝⁶ : Ring R₂ inst✝⁵ : AddCommGroup M₂ inst✝⁴ : Module R₂ M₂ τ₁₂ : R →+* R₂ q : Submodule R₂ M₂ N : Type u_5 O : Type u_6 inst✝³ : AddCommGroup N inst✝² : Module R N inst✝¹ : AddCommGroup O inst✝ : Module R O P : Submodule R M Q : Submodule R N S : Submodule R O e : M ≃ₗ[R] N f : N ≃ₗ[R] O he : map e P = Q hf : map f Q = S hef : map (LinearEquiv.trans e f) P = S ⊢ equiv P S (LinearEquiv.trans e f) hef = LinearEquiv.trans (equiv P Q e he) (equiv Q S f hf) [PROOFSTEP] ext -- `simp` can deal with `hef` depending on `e` and `f` [GOAL] case h R : Type u_1 M : Type u_2 r : R x y : M inst✝⁹ : Ring R inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M p p' : Submodule R M R₂ : Type u_3 M₂ : Type u_4 inst✝⁶ : Ring R₂ inst✝⁵ : AddCommGroup M₂ inst✝⁴ : Module R₂ M₂ τ₁₂ : R →+* R₂ q : Submodule R₂ M₂ N : Type u_5 O : Type u_6 inst✝³ : AddCommGroup N inst✝² : Module R N inst✝¹ : AddCommGroup O inst✝ : Module R O P : Submodule R M Q : Submodule R N S : Submodule R O e : M ≃ₗ[R] N f : N ≃ₗ[R] O he : map e P = Q hf : map f Q = S hef : map (LinearEquiv.trans e f) P = S x✝ : M ⧸ P ⊢ ↑(equiv P S (LinearEquiv.trans e f) hef) x✝ = ↑(LinearEquiv.trans (equiv P Q e he) (equiv Q S f hf)) x✝ [PROOFSTEP] simp only [Quotient.equiv_apply, LinearEquiv.trans_apply, LinearEquiv.coe_trans] -- `rw` can deal with `mapQ_comp` needing extra hypotheses coming from the RHS [GOAL] case h R : Type u_1 M : Type u_2 r : R x y : M inst✝⁹ : Ring R inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M p p' : Submodule R M R₂ : Type u_3 M₂ : Type u_4 inst✝⁶ : Ring R₂ inst✝⁵ : AddCommGroup M₂ inst✝⁴ : Module R₂ M₂ τ₁₂ : R →+* R₂ q : Submodule R₂ M₂ N : Type u_5 O : Type u_6 inst✝³ : AddCommGroup N inst✝² : Module R N inst✝¹ : AddCommGroup O inst✝ : Module R O P : Submodule R M Q : Submodule R N S : Submodule R O e : M ≃ₗ[R] N f : N ≃ₗ[R] O he : map e P = Q hf : map f Q = S hef : map (LinearEquiv.trans e f) P = S x✝ : M ⧸ P ⊢ ↑(mapQ P S (comp ↑f ↑e) (_ : P ≤ comap (comp ↑f ↑e) S)) x✝ = ↑(mapQ Q S ↑f (_ : ∀ (x : N), x ∈ Q → x ∈ comap (↑f) S)) (↑(mapQ P Q ↑e (_ : ∀ (x : M), x ∈ P → x ∈ comap (↑e) Q)) x✝) [PROOFSTEP] rw [mapQ_comp, LinearMap.comp_apply] [GOAL] R : Type u_1 M : Type u_2 R₂ : Type u_3 M₂ : Type u_4 R₃ : Type u_5 M₃ : Type u_6 inst✝¹⁰ : Ring R inst✝⁹ : Ring R₂ inst✝⁸ : Ring R₃ inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommGroup M₂ inst✝⁵ : AddCommMonoid M₃ inst✝⁴ : Module R M inst✝³ : Module R₂ M₂ inst✝² : Module R₃ M₃ τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ inst✝ : RingHomSurjective τ₁₂ f : M →ₛₗ[τ₁₂] M₂ x : M ⊢ ↑(comp (mkQ (range f)) f) x = ↑0 x [PROOFSTEP] simp [GOAL] R : Type u_1 M : Type u_2 R₂ : Type u_3 M₂ : Type u_4 R₃ : Type u_5 M₃ : Type u_6 inst✝¹⁰ : Ring R inst✝⁹ : Ring R₂ inst✝⁸ : Ring R₃ inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommGroup M₂ inst✝⁵ : AddCommMonoid M₃ inst✝⁴ : Module R M inst✝³ : Module R₂ M₂ inst✝² : Module R₃ M₃ τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ inst✝ : RingHomSurjective τ₁₂ f : M →ₛₗ[τ₁₂] M₂ g : M₂ →ₛₗ[τ₂₃] M₃ ⊢ ker g ≤ range f ↔ comp (mkQ (range f)) (Submodule.subtype (ker g)) = 0 [PROOFSTEP] rw [← range_le_ker_iff, Submodule.ker_mkQ, Submodule.range_subtype] [GOAL] R : Type u_1 M : Type u_2 R₂ : Type u_3 M₂ : Type u_4 R₃ : Type u_5 M₃ : Type u_6 inst✝¹⁰ : Ring R inst✝⁹ : Ring R₂ inst✝⁸ : Ring R₃ inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommGroup M₂ inst✝⁵ : AddCommMonoid M₃ inst✝⁴ : Module R M inst✝³ : Module R₂ M₂ inst✝² : Module R₃ M₃ τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ inst✝ : RingHomSurjective τ₁₂ f : M →ₛₗ[τ₁₂] M₂ h : ∀ (u v : M₂ →ₗ[R₂] M₂ ⧸ range f), comp u f = comp v f → u = v ⊢ range f = ⊤ [PROOFSTEP] have h₁ : (0 : M₂ →ₗ[R₂] M₂ ⧸ (range f)).comp f = 0 := zero_comp _ [GOAL] R : Type u_1 M : Type u_2 R₂ : Type u_3 M₂ : Type u_4 R₃ : Type u_5 M₃ : Type u_6 inst✝¹⁰ : Ring R inst✝⁹ : Ring R₂ inst✝⁸ : Ring R₃ inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommGroup M₂ inst✝⁵ : AddCommMonoid M₃ inst✝⁴ : Module R M inst✝³ : Module R₂ M₂ inst✝² : Module R₃ M₃ τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ inst✝ : RingHomSurjective τ₁₂ f : M →ₛₗ[τ₁₂] M₂ h : ∀ (u v : M₂ →ₗ[R₂] M₂ ⧸ range f), comp u f = comp v f → u = v h₁ : comp 0 f = 0 ⊢ range f = ⊤ [PROOFSTEP] rw [← Submodule.ker_mkQ (range f), ← h 0 f.range.mkQ (Eq.trans h₁ (range_mkQ_comp _).symm)] [GOAL] R : Type u_1 M : Type u_2 R₂ : Type u_3 M₂ : Type u_4 R₃ : Type u_5 M₃ : Type u_6 inst✝¹⁰ : Ring R inst✝⁹ : Ring R₂ inst✝⁸ : Ring R₃ inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommGroup M₂ inst✝⁵ : AddCommMonoid M₃ inst✝⁴ : Module R M inst✝³ : Module R₂ M₂ inst✝² : Module R₃ M₃ τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ inst✝ : RingHomSurjective τ₁₂ f : M →ₛₗ[τ₁₂] M₂ h : ∀ (u v : M₂ →ₗ[R₂] M₂ ⧸ range f), comp u f = comp v f → u = v h₁ : comp 0 f = 0 ⊢ ker 0 = ⊤ [PROOFSTEP] exact ker_zero [GOAL] R : Type u_1 M : Type u_2 r : R x y : M inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M p p' : Submodule R M h : p = p' a b : M ⊢ Setoid.r a b ↔ Setoid.r (↑(Equiv.refl M) a) (↑(Equiv.refl M) b) [PROOFSTEP] subst h [GOAL] R : Type u_1 M : Type u_2 r : R x y : M inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M p : Submodule R M a b : M ⊢ Setoid.r a b ↔ Setoid.r (↑(Equiv.refl M) a) (↑(Equiv.refl M) b) [PROOFSTEP] rfl [GOAL] R : Type u_1 M : Type u_2 r : R x y : M inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M p p' : Submodule R M h : p = p' src✝ : Quotient (quotientRel p) ≃ Quotient (quotientRel p') := Quotient.congr (Equiv.refl M) (_ : ∀ (a b : M), Setoid.r a b ↔ Setoid.r (↑(Equiv.refl M) a) (↑(Equiv.refl M) b)) ⊢ ∀ (x y : M ⧸ p), Equiv.toFun src✝ (x + y) = Equiv.toFun src✝ x + Equiv.toFun src✝ y [PROOFSTEP] rintro ⟨x⟩ ⟨y⟩ [GOAL] case mk.mk R : Type u_1 M : Type u_2 r : R x✝¹ y✝¹ : M inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M p p' : Submodule R M h : p = p' src✝ : Quotient (quotientRel p) ≃ Quotient (quotientRel p') := Quotient.congr (Equiv.refl M) (_ : ∀ (a b : M), Setoid.r a b ↔ Setoid.r (↑(Equiv.refl M) a) (↑(Equiv.refl M) b)) x✝ : M ⧸ p x : M y✝ : M ⧸ p y : M ⊢ Equiv.toFun src✝ (Quot.mk Setoid.r x + Quot.mk Setoid.r y) = Equiv.toFun src✝ (Quot.mk Setoid.r x) + Equiv.toFun src✝ (Quot.mk Setoid.r y) [PROOFSTEP] rfl [GOAL] R : Type u_1 M : Type u_2 r : R x y : M inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M p p' : Submodule R M h : p = p' src✝ : Quotient (quotientRel p) ≃ Quotient (quotientRel p') := Quotient.congr (Equiv.refl M) (_ : ∀ (a b : M), Setoid.r a b ↔ Setoid.r (↑(Equiv.refl M) a) (↑(Equiv.refl M) b)) ⊢ ∀ (r : R) (x : M ⧸ p), AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (x y : M ⧸ p), Equiv.toFun src✝ (x + y) = Equiv.toFun src✝ x + Equiv.toFun src✝ y) } (r • x) = ↑(RingHom.id R) r • AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (x y : M ⧸ p), Equiv.toFun src✝ (x + y) = Equiv.toFun src✝ x + Equiv.toFun src✝ y) } x [PROOFSTEP] rintro x ⟨y⟩ [GOAL] case mk R : Type u_1 M : Type u_2 r : R x✝¹ y✝ : M inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M p p' : Submodule R M h : p = p' src✝ : Quotient (quotientRel p) ≃ Quotient (quotientRel p') := Quotient.congr (Equiv.refl M) (_ : ∀ (a b : M), Setoid.r a b ↔ Setoid.r (↑(Equiv.refl M) a) (↑(Equiv.refl M) b)) x : R x✝ : M ⧸ p y : M ⊢ AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (x y : M ⧸ p), Equiv.toFun src✝ (x + y) = Equiv.toFun src✝ x + Equiv.toFun src✝ y) } (x • Quot.mk Setoid.r y) = ↑(RingHom.id R) x • AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (x y : M ⧸ p), Equiv.toFun src✝ (x + y) = Equiv.toFun src✝ x + Equiv.toFun src✝ y) } (Quot.mk Setoid.r y) [PROOFSTEP] rfl [GOAL] R : Type u_1 M : Type u_2 r : R x y : M inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M p p' P Q : Submodule R M hf : map (↑(LinearEquiv.refl R M)) P = Q ⊢ P = Q [PROOFSTEP] simpa using hf [GOAL] R : Type u_1 M : Type u_2 M₂ : Type u_3 r : R x✝ y✝ : M inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : AddCommGroup M₂ inst✝ : Module R M₂ p : Submodule R M q : Submodule R M₂ x y : { x // x ∈ compatibleMaps p q } ⊢ (fun f => mapQ p q ↑f (_ : ↑f ∈ compatibleMaps p q)) (x + y) = (fun f => mapQ p q ↑f (_ : ↑f ∈ compatibleMaps p q)) x + (fun f => mapQ p q ↑f (_ : ↑f ∈ compatibleMaps p q)) y [PROOFSTEP] ext [GOAL] case h.h R : Type u_1 M : Type u_2 M₂ : Type u_3 r : R x✝¹ y✝ : M inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : AddCommGroup M₂ inst✝ : Module R M₂ p : Submodule R M q : Submodule R M₂ x y : { x // x ∈ compatibleMaps p q } x✝ : M ⊢ ↑(LinearMap.comp ((fun f => mapQ p q ↑f (_ : ↑f ∈ compatibleMaps p q)) (x + y)) (mkQ p)) x✝ = ↑(LinearMap.comp ((fun f => mapQ p q ↑f (_ : ↑f ∈ compatibleMaps p q)) x + (fun f => mapQ p q ↑f (_ : ↑f ∈ compatibleMaps p q)) y) (mkQ p)) x✝ [PROOFSTEP] rfl [GOAL] R : Type u_1 M : Type u_2 M₂ : Type u_3 r : R x y : M inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : AddCommGroup M₂ inst✝ : Module R M₂ p : Submodule R M q : Submodule R M₂ c : R f : { x // x ∈ compatibleMaps p q } ⊢ AddHom.toFun { toFun := fun f => mapQ p q ↑f (_ : ↑f ∈ compatibleMaps p q), map_add' := (_ : ∀ (x y : { x // x ∈ compatibleMaps p q }), (fun f => mapQ p q ↑f (_ : ↑f ∈ compatibleMaps p q)) (x + y) = (fun f => mapQ p q ↑f (_ : ↑f ∈ compatibleMaps p q)) x + (fun f => mapQ p q ↑f (_ : ↑f ∈ compatibleMaps p q)) y) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := fun f => mapQ p q ↑f (_ : ↑f ∈ compatibleMaps p q), map_add' := (_ : ∀ (x y : { x // x ∈ compatibleMaps p q }), (fun f => mapQ p q ↑f (_ : ↑f ∈ compatibleMaps p q)) (x + y) = (fun f => mapQ p q ↑f (_ : ↑f ∈ compatibleMaps p q)) x + (fun f => mapQ p q ↑f (_ : ↑f ∈ compatibleMaps p q)) y) } f [PROOFSTEP] ext [GOAL] case h.h R : Type u_1 M : Type u_2 M₂ : Type u_3 r : R x y : M inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : AddCommGroup M₂ inst✝ : Module R M₂ p : Submodule R M q : Submodule R M₂ c : R f : { x // x ∈ compatibleMaps p q } x✝ : M ⊢ ↑(LinearMap.comp (AddHom.toFun { toFun := fun f => mapQ p q ↑f (_ : ↑f ∈ compatibleMaps p q), map_add' := (_ : ∀ (x y : { x // x ∈ compatibleMaps p q }), (fun f => mapQ p q ↑f (_ : ↑f ∈ compatibleMaps p q)) (x + y) = (fun f => mapQ p q ↑f (_ : ↑f ∈ compatibleMaps p q)) x + (fun f => mapQ p q ↑f (_ : ↑f ∈ compatibleMaps p q)) y) } (c • f)) (mkQ p)) x✝ = ↑(LinearMap.comp (↑(RingHom.id R) c • AddHom.toFun { toFun := fun f => mapQ p q ↑f (_ : ↑f ∈ compatibleMaps p q), map_add' := (_ : ∀ (x y : { x // x ∈ compatibleMaps p q }), (fun f => mapQ p q ↑f (_ : ↑f ∈ compatibleMaps p q)) (x + y) = (fun f => mapQ p q ↑f (_ : ↑f ∈ compatibleMaps p q)) x + (fun f => mapQ p q ↑f (_ : ↑f ∈ compatibleMaps p q)) y) } f) (mkQ p)) x✝ [PROOFSTEP] rfl
{"mathlib_filename": "Mathlib.LinearAlgebra.Quotient", "llama_tokens": 24541}
[GOAL] l : Type u_1 R : Type u_2 inst✝¹ : DecidableEq l inst✝ : CommRing R ⊢ (J l R)ᵀ = -J l R [PROOFSTEP] rw [J, fromBlocks_transpose, ← neg_one_smul R (fromBlocks _ _ _ _ : Matrix (l ⊕ l) (l ⊕ l) R), fromBlocks_smul, Matrix.transpose_zero, Matrix.transpose_one, transpose_neg] [GOAL] l : Type u_1 R : Type u_2 inst✝¹ : DecidableEq l inst✝ : CommRing R ⊢ fromBlocks 0 1 (-1ᵀ) 0 = fromBlocks (-1 • 0) (-1 • -1) (-1 • 1) (-1 • 0) [PROOFSTEP] simp [fromBlocks] [GOAL] l : Type u_1 R : Type u_2 inst✝² : DecidableEq l inst✝¹ : CommRing R inst✝ : Fintype l ⊢ J l R * J l R = -1 [PROOFSTEP] rw [J, fromBlocks_multiply] [GOAL] l : Type u_1 R : Type u_2 inst✝² : DecidableEq l inst✝¹ : CommRing R inst✝ : Fintype l ⊢ fromBlocks (0 * 0 + -1 * 1) (0 * -1 + -1 * 0) (1 * 0 + 0 * 1) (1 * -1 + 0 * 0) = -1 [PROOFSTEP] simp only [Matrix.zero_mul, Matrix.neg_mul, zero_add, neg_zero, Matrix.one_mul, add_zero] [GOAL] l : Type u_1 R : Type u_2 inst✝² : DecidableEq l inst✝¹ : CommRing R inst✝ : Fintype l ⊢ fromBlocks (-1) 0 0 (-1) = -1 [PROOFSTEP] rw [← neg_zero, ← Matrix.fromBlocks_neg, ← fromBlocks_one] [GOAL] l : Type u_1 R : Type u_2 inst✝² : DecidableEq l inst✝¹ : CommRing R inst✝ : Fintype l ⊢ (J l R)⁻¹ = -J l R [PROOFSTEP] refine' Matrix.inv_eq_right_inv _ [GOAL] l : Type u_1 R : Type u_2 inst✝² : DecidableEq l inst✝¹ : CommRing R inst✝ : Fintype l ⊢ J l R * -J l R = 1 [PROOFSTEP] rw [Matrix.mul_neg, J_squared] [GOAL] l : Type u_1 R : Type u_2 inst✝² : DecidableEq l inst✝¹ : CommRing R inst✝ : Fintype l ⊢ - -1 = 1 [PROOFSTEP] exact neg_neg 1 [GOAL] l : Type u_1 R : Type u_2 inst✝² : DecidableEq l inst✝¹ : CommRing R inst✝ : Fintype l ⊢ det (J l R) * det (J l R) = 1 [PROOFSTEP] rw [← det_mul, J_squared, ← one_smul R (-1 : Matrix _ _ R), smul_neg, ← neg_smul, det_smul, Fintype.card_sum, det_one, mul_one] [GOAL] l : Type u_1 R : Type u_2 inst✝² : DecidableEq l inst✝¹ : CommRing R inst✝ : Fintype l ⊢ (-1) ^ (Fintype.card l + Fintype.card l) = 1 [PROOFSTEP] apply Even.neg_one_pow [GOAL] case h l : Type u_1 R : Type u_2 inst✝² : DecidableEq l inst✝¹ : CommRing R inst✝ : Fintype l ⊢ Even (Fintype.card l + Fintype.card l) [PROOFSTEP] exact even_add_self _ [GOAL] l : Type u_1 R : Type u_2 inst✝² : DecidableEq l inst✝¹ : CommRing R inst✝ : Fintype l a b : Matrix (l ⊕ l) (l ⊕ l) R ha : a ∈ {A | A * J l R * Aᵀ = J l R} hb : b ∈ {A | A * J l R * Aᵀ = J l R} ⊢ a * b ∈ {A | A * J l R * Aᵀ = J l R} [PROOFSTEP] simp only [Set.mem_setOf_eq, transpose_mul] at * [GOAL] l : Type u_1 R : Type u_2 inst✝² : DecidableEq l inst✝¹ : CommRing R inst✝ : Fintype l a b : Matrix (l ⊕ l) (l ⊕ l) R ha : a * J l R * aᵀ = J l R hb : b * J l R * bᵀ = J l R ⊢ a * b * J l R * (bᵀ * aᵀ) = J l R [PROOFSTEP] rw [← Matrix.mul_assoc, a.mul_assoc, a.mul_assoc, hb] [GOAL] l : Type u_1 R : Type u_2 inst✝² : DecidableEq l inst✝¹ : CommRing R inst✝ : Fintype l a b : Matrix (l ⊕ l) (l ⊕ l) R ha : a * J l R * aᵀ = J l R hb : b * J l R * bᵀ = J l R ⊢ a * J l R * aᵀ = J l R [PROOFSTEP] exact ha [GOAL] l : Type u_1 R : Type u_2 inst✝² : DecidableEq l inst✝¹ : CommRing R inst✝ : Fintype l ⊢ 1 ∈ { carrier := {A | A * J l R * Aᵀ = J l R}, mul_mem' := (_ : ∀ {a b : Matrix (l ⊕ l) (l ⊕ l) R}, a ∈ {A | A * J l R * Aᵀ = J l R} → b ∈ {A | A * J l R * Aᵀ = J l R} → a * b ∈ {A | A * J l R * Aᵀ = J l R}) }.carrier [PROOFSTEP] simp [GOAL] l : Type u_1 R : Type u_2 inst✝² : DecidableEq l inst✝¹ : Fintype l inst✝ : CommRing R A : Matrix (l ⊕ l) (l ⊕ l) R ⊢ A ∈ symplecticGroup l R ↔ A * J l R * Aᵀ = J l R [PROOFSTEP] simp [symplecticGroup] [GOAL] l : Type u_1 R : Type u_2 inst✝² : DecidableEq l inst✝¹ : Fintype l inst✝ : CommRing R ⊢ J l R ∈ symplecticGroup l R [PROOFSTEP] rw [mem_iff, J, fromBlocks_multiply, fromBlocks_transpose, fromBlocks_multiply] [GOAL] l : Type u_1 R : Type u_2 inst✝² : DecidableEq l inst✝¹ : Fintype l inst✝ : CommRing R ⊢ fromBlocks ((0 * 0 + -1 * 1) * 0ᵀ + (0 * -1 + -1 * 0) * (-1)ᵀ) ((0 * 0 + -1 * 1) * 1ᵀ + (0 * -1 + -1 * 0) * 0ᵀ) ((1 * 0 + 0 * 1) * 0ᵀ + (1 * -1 + 0 * 0) * (-1)ᵀ) ((1 * 0 + 0 * 1) * 1ᵀ + (1 * -1 + 0 * 0) * 0ᵀ) = fromBlocks 0 (-1) 1 0 [PROOFSTEP] simp [GOAL] l : Type u_1 R : Type u_2 inst✝² : DecidableEq l inst✝¹ : Fintype l inst✝ : CommRing R A : Matrix (l ⊕ l) (l ⊕ l) R h : A ∈ symplecticGroup l R ⊢ -A ∈ symplecticGroup l R [PROOFSTEP] rw [mem_iff] at h ⊢ [GOAL] l : Type u_1 R : Type u_2 inst✝² : DecidableEq l inst✝¹ : Fintype l inst✝ : CommRing R A : Matrix (l ⊕ l) (l ⊕ l) R h : A * J l R * Aᵀ = J l R ⊢ -A * J l R * (-A)ᵀ = J l R [PROOFSTEP] simp [h] [GOAL] l : Type u_1 R : Type u_2 inst✝² : DecidableEq l inst✝¹ : Fintype l inst✝ : CommRing R A : Matrix (l ⊕ l) (l ⊕ l) R hA : A ∈ symplecticGroup l R ⊢ IsUnit (det A) [PROOFSTEP] rw [isUnit_iff_exists_inv] [GOAL] l : Type u_1 R : Type u_2 inst✝² : DecidableEq l inst✝¹ : Fintype l inst✝ : CommRing R A : Matrix (l ⊕ l) (l ⊕ l) R hA : A ∈ symplecticGroup l R ⊢ ∃ b, det A * b = 1 [PROOFSTEP] use A.det [GOAL] case h l : Type u_1 R : Type u_2 inst✝² : DecidableEq l inst✝¹ : Fintype l inst✝ : CommRing R A : Matrix (l ⊕ l) (l ⊕ l) R hA : A ∈ symplecticGroup l R ⊢ det A * det A = 1 [PROOFSTEP] refine' (isUnit_det_J l R).mul_left_cancel _ [GOAL] case h l : Type u_1 R : Type u_2 inst✝² : DecidableEq l inst✝¹ : Fintype l inst✝ : CommRing R A : Matrix (l ⊕ l) (l ⊕ l) R hA : A ∈ symplecticGroup l R ⊢ det (J l R) * (det A * det A) = det (J l R) * 1 [PROOFSTEP] rw [mul_one] [GOAL] case h l : Type u_1 R : Type u_2 inst✝² : DecidableEq l inst✝¹ : Fintype l inst✝ : CommRing R A : Matrix (l ⊕ l) (l ⊕ l) R hA : A ∈ symplecticGroup l R ⊢ det (J l R) * (det A * det A) = det (J l R) [PROOFSTEP] rw [mem_iff] at hA [GOAL] case h l : Type u_1 R : Type u_2 inst✝² : DecidableEq l inst✝¹ : Fintype l inst✝ : CommRing R A : Matrix (l ⊕ l) (l ⊕ l) R hA : A * J l R * Aᵀ = J l R ⊢ det (J l R) * (det A * det A) = det (J l R) [PROOFSTEP] apply_fun det at hA [GOAL] case h l : Type u_1 R : Type u_2 inst✝² : DecidableEq l inst✝¹ : Fintype l inst✝ : CommRing R A : Matrix (l ⊕ l) (l ⊕ l) R hA : det (A * J l R * Aᵀ) = det (J l R) ⊢ det (J l R) * (det A * det A) = det (J l R) [PROOFSTEP] simp only [det_mul, det_transpose] at hA [GOAL] case h l : Type u_1 R : Type u_2 inst✝² : DecidableEq l inst✝¹ : Fintype l inst✝ : CommRing R A : Matrix (l ⊕ l) (l ⊕ l) R hA : det A * det (J l R) * det A = det (J l R) ⊢ det (J l R) * (det A * det A) = det (J l R) [PROOFSTEP] rw [mul_comm A.det, mul_assoc] at hA [GOAL] case h l : Type u_1 R : Type u_2 inst✝² : DecidableEq l inst✝¹ : Fintype l inst✝ : CommRing R A : Matrix (l ⊕ l) (l ⊕ l) R hA : det (J l R) * (det A * det A) = det (J l R) ⊢ det (J l R) * (det A * det A) = det (J l R) [PROOFSTEP] exact hA [GOAL] l : Type u_1 R : Type u_2 inst✝² : DecidableEq l inst✝¹ : Fintype l inst✝ : CommRing R A : Matrix (l ⊕ l) (l ⊕ l) R hA : A ∈ symplecticGroup l R ⊢ Aᵀ ∈ symplecticGroup l R [PROOFSTEP] rw [mem_iff] at hA ⊢ [GOAL] l : Type u_1 R : Type u_2 inst✝² : DecidableEq l inst✝¹ : Fintype l inst✝ : CommRing R A : Matrix (l ⊕ l) (l ⊕ l) R hA : A * J l R * Aᵀ = J l R ⊢ Aᵀ * J l R * Aᵀᵀ = J l R [PROOFSTEP] rw [transpose_transpose] [GOAL] l : Type u_1 R : Type u_2 inst✝² : DecidableEq l inst✝¹ : Fintype l inst✝ : CommRing R A : Matrix (l ⊕ l) (l ⊕ l) R hA : A * J l R * Aᵀ = J l R ⊢ Aᵀ * J l R * A = J l R [PROOFSTEP] have huA := symplectic_det hA [GOAL] l : Type u_1 R : Type u_2 inst✝² : DecidableEq l inst✝¹ : Fintype l inst✝ : CommRing R A : Matrix (l ⊕ l) (l ⊕ l) R hA : A * J l R * Aᵀ = J l R huA : IsUnit (det A) ⊢ Aᵀ * J l R * A = J l R [PROOFSTEP] have huAT : IsUnit Aᵀ.det := by rw [Matrix.det_transpose] exact huA [GOAL] l : Type u_1 R : Type u_2 inst✝² : DecidableEq l inst✝¹ : Fintype l inst✝ : CommRing R A : Matrix (l ⊕ l) (l ⊕ l) R hA : A * J l R * Aᵀ = J l R huA : IsUnit (det A) ⊢ IsUnit (det Aᵀ) [PROOFSTEP] rw [Matrix.det_transpose] [GOAL] l : Type u_1 R : Type u_2 inst✝² : DecidableEq l inst✝¹ : Fintype l inst✝ : CommRing R A : Matrix (l ⊕ l) (l ⊕ l) R hA : A * J l R * Aᵀ = J l R huA : IsUnit (det A) ⊢ IsUnit (det A) [PROOFSTEP] exact huA [GOAL] l : Type u_1 R : Type u_2 inst✝² : DecidableEq l inst✝¹ : Fintype l inst✝ : CommRing R A : Matrix (l ⊕ l) (l ⊕ l) R hA : A * J l R * Aᵀ = J l R huA : IsUnit (det A) huAT : IsUnit (det Aᵀ) ⊢ Aᵀ * J l R * A = J l R [PROOFSTEP] calc Aᵀ * J l R * A = (-Aᵀ) * (J l R)⁻¹ * A := by rw [J_inv] simp _ = (-Aᵀ) * (A * J l R * Aᵀ)⁻¹ * A := by rw [hA] _ = -(Aᵀ * (Aᵀ⁻¹ * (J l R)⁻¹)) * A⁻¹ * A := by simp only [Matrix.mul_inv_rev, Matrix.mul_assoc, Matrix.neg_mul] _ = -(J l R)⁻¹ := by rw [mul_nonsing_inv_cancel_left _ _ huAT, nonsing_inv_mul_cancel_right _ _ huA] _ = J l R := by simp [J_inv] [GOAL] l : Type u_1 R : Type u_2 inst✝² : DecidableEq l inst✝¹ : Fintype l inst✝ : CommRing R A : Matrix (l ⊕ l) (l ⊕ l) R hA : A * J l R * Aᵀ = J l R huA : IsUnit (det A) huAT : IsUnit (det Aᵀ) ⊢ Aᵀ * J l R * A = -Aᵀ * (J l R)⁻¹ * A [PROOFSTEP] rw [J_inv] [GOAL] l : Type u_1 R : Type u_2 inst✝² : DecidableEq l inst✝¹ : Fintype l inst✝ : CommRing R A : Matrix (l ⊕ l) (l ⊕ l) R hA : A * J l R * Aᵀ = J l R huA : IsUnit (det A) huAT : IsUnit (det Aᵀ) ⊢ Aᵀ * J l R * A = -Aᵀ * -J l R * A [PROOFSTEP] simp [GOAL] l : Type u_1 R : Type u_2 inst✝² : DecidableEq l inst✝¹ : Fintype l inst✝ : CommRing R A : Matrix (l ⊕ l) (l ⊕ l) R hA : A * J l R * Aᵀ = J l R huA : IsUnit (det A) huAT : IsUnit (det Aᵀ) ⊢ -Aᵀ * (J l R)⁻¹ * A = -Aᵀ * (A * J l R * Aᵀ)⁻¹ * A [PROOFSTEP] rw [hA] [GOAL] l : Type u_1 R : Type u_2 inst✝² : DecidableEq l inst✝¹ : Fintype l inst✝ : CommRing R A : Matrix (l ⊕ l) (l ⊕ l) R hA : A * J l R * Aᵀ = J l R huA : IsUnit (det A) huAT : IsUnit (det Aᵀ) ⊢ -Aᵀ * (A * J l R * Aᵀ)⁻¹ * A = -(Aᵀ * (Aᵀ⁻¹ * (J l R)⁻¹)) * A⁻¹ * A [PROOFSTEP] simp only [Matrix.mul_inv_rev, Matrix.mul_assoc, Matrix.neg_mul] [GOAL] l : Type u_1 R : Type u_2 inst✝² : DecidableEq l inst✝¹ : Fintype l inst✝ : CommRing R A : Matrix (l ⊕ l) (l ⊕ l) R hA : A * J l R * Aᵀ = J l R huA : IsUnit (det A) huAT : IsUnit (det Aᵀ) ⊢ -(Aᵀ * (Aᵀ⁻¹ * (J l R)⁻¹)) * A⁻¹ * A = -(J l R)⁻¹ [PROOFSTEP] rw [mul_nonsing_inv_cancel_left _ _ huAT, nonsing_inv_mul_cancel_right _ _ huA] [GOAL] l : Type u_1 R : Type u_2 inst✝² : DecidableEq l inst✝¹ : Fintype l inst✝ : CommRing R A : Matrix (l ⊕ l) (l ⊕ l) R hA : A * J l R * Aᵀ = J l R huA : IsUnit (det A) huAT : IsUnit (det Aᵀ) ⊢ -(J l R)⁻¹ = J l R [PROOFSTEP] simp [J_inv] [GOAL] l : Type u_1 R : Type u_2 inst✝² : DecidableEq l inst✝¹ : Fintype l inst✝ : CommRing R A : Matrix (l ⊕ l) (l ⊕ l) R hA : Aᵀ ∈ symplecticGroup l R ⊢ A ∈ symplecticGroup l R [PROOFSTEP] simpa using transpose_mem hA [GOAL] l : Type u_1 R : Type u_2 inst✝² : DecidableEq l inst✝¹ : Fintype l inst✝ : CommRing R A : Matrix (l ⊕ l) (l ⊕ l) R ⊢ A ∈ symplecticGroup l R ↔ Aᵀ * J l R * A = J l R [PROOFSTEP] rw [← transpose_mem_iff, mem_iff, transpose_transpose] [GOAL] l : Type u_1 R : Type u_2 inst✝² : DecidableEq l inst✝¹ : Fintype l inst✝ : CommRing R A : Matrix (l ⊕ l) (l ⊕ l) R hA : A ∈ symplecticGroup l R ⊢ -(J l R * Aᵀ * J l R * A) = -J l R * (Aᵀ * J l R * A) [PROOFSTEP] simp only [Matrix.mul_assoc, Matrix.neg_mul] [GOAL] l : Type u_1 R : Type u_2 inst✝² : DecidableEq l inst✝¹ : Fintype l inst✝ : CommRing R A : Matrix (l ⊕ l) (l ⊕ l) R hA : A ∈ symplecticGroup l R ⊢ -J l R * (Aᵀ * J l R * A) = -J l R * J l R [PROOFSTEP] rw [mem_iff'] at hA [GOAL] l : Type u_1 R : Type u_2 inst✝² : DecidableEq l inst✝¹ : Fintype l inst✝ : CommRing R A : Matrix (l ⊕ l) (l ⊕ l) R hA : Aᵀ * J l R * A = J l R ⊢ -J l R * (Aᵀ * J l R * A) = -J l R * J l R [PROOFSTEP] rw [hA] [GOAL] l : Type u_1 R : Type u_2 inst✝² : DecidableEq l inst✝¹ : Fintype l inst✝ : CommRing R A : Matrix (l ⊕ l) (l ⊕ l) R hA : A ∈ symplecticGroup l R ⊢ -J l R * J l R = -1 • (J l R * J l R) [PROOFSTEP] simp only [Matrix.neg_mul, neg_smul, one_smul] [GOAL] l : Type u_1 R : Type u_2 inst✝² : DecidableEq l inst✝¹ : Fintype l inst✝ : CommRing R A : Matrix (l ⊕ l) (l ⊕ l) R hA : A ∈ symplecticGroup l R ⊢ -1 • (J l R * J l R) = -1 • -1 [PROOFSTEP] rw [J_squared] [GOAL] l : Type u_1 R : Type u_2 inst✝² : DecidableEq l inst✝¹ : Fintype l inst✝ : CommRing R A : Matrix (l ⊕ l) (l ⊕ l) R hA : A ∈ symplecticGroup l R ⊢ -1 • -1 = 1 [PROOFSTEP] simp only [neg_smul_neg, one_smul] [GOAL] l : Type u_1 R : Type u_2 inst✝² : DecidableEq l inst✝¹ : Fintype l inst✝ : CommRing R A✝ : Matrix (l ⊕ l) (l ⊕ l) R A : { x // x ∈ symplecticGroup l R } ⊢ ↑A⁻¹ = (↑A)⁻¹ [PROOFSTEP] refine' (coe_inv A).trans (inv_eq_left_inv _).symm [GOAL] l : Type u_1 R : Type u_2 inst✝² : DecidableEq l inst✝¹ : Fintype l inst✝ : CommRing R A✝ : Matrix (l ⊕ l) (l ⊕ l) R A : { x // x ∈ symplecticGroup l R } ⊢ -J l R * (↑A)ᵀ * J l R * ↑A = 1 [PROOFSTEP] simp [inv_left_mul_aux, coe_inv] [GOAL] l : Type u_1 R : Type u_2 inst✝² : DecidableEq l inst✝¹ : Fintype l inst✝ : CommRing R A✝ A : Matrix (l ⊕ l) (l ⊕ l) R hA : A ∈ symplecticGroup l R ⊢ -J l R * Aᵀ * J l R * A = 1 [PROOFSTEP] simp only [Matrix.neg_mul, inv_left_mul_aux hA] [GOAL] l : Type u_1 R : Type u_2 inst✝² : DecidableEq l inst✝¹ : Fintype l inst✝ : CommRing R A✝ : Matrix (l ⊕ l) (l ⊕ l) R src✝¹ : Inv { x // x ∈ symplecticGroup l R } := hasInv src✝ : Monoid { x // x ∈ symplecticGroup l R } := Submonoid.toMonoid (symplecticGroup l R) A : { x // x ∈ symplecticGroup l R } ⊢ A⁻¹ * A = 1 [PROOFSTEP] apply Subtype.ext [GOAL] case a l : Type u_1 R : Type u_2 inst✝² : DecidableEq l inst✝¹ : Fintype l inst✝ : CommRing R A✝ : Matrix (l ⊕ l) (l ⊕ l) R src✝¹ : Inv { x // x ∈ symplecticGroup l R } := hasInv src✝ : Monoid { x // x ∈ symplecticGroup l R } := Submonoid.toMonoid (symplecticGroup l R) A : { x // x ∈ symplecticGroup l R } ⊢ ↑(A⁻¹ * A) = ↑1 [PROOFSTEP] simp only [Submonoid.coe_one, Submonoid.coe_mul, Matrix.neg_mul, coe_inv] [GOAL] case a l : Type u_1 R : Type u_2 inst✝² : DecidableEq l inst✝¹ : Fintype l inst✝ : CommRing R A✝ : Matrix (l ⊕ l) (l ⊕ l) R src✝¹ : Inv { x // x ∈ symplecticGroup l R } := hasInv src✝ : Monoid { x // x ∈ symplecticGroup l R } := Submonoid.toMonoid (symplecticGroup l R) A : { x // x ∈ symplecticGroup l R } ⊢ -(J l R * (↑A)ᵀ * J l R * ↑A) = 1 [PROOFSTEP] exact inv_left_mul_aux A.2
{"mathlib_filename": "Mathlib.LinearAlgebra.SymplecticGroup", "llama_tokens": 7672}
[GOAL] K : Type u V : Type v inst✝⁴ : Ring K inst✝³ : AddCommGroup V inst✝² : Module K V V₂ : Type v' inst✝¹ : AddCommGroup V₂ inst✝ : Module K V₂ n : ℕ h : Module.rank K V = ↑n ⊢ finrank K V = n [PROOFSTEP] apply_fun toNat at h [GOAL] K : Type u V : Type v inst✝⁴ : Ring K inst✝³ : AddCommGroup V inst✝² : Module K V V₂ : Type v' inst✝¹ : AddCommGroup V₂ inst✝ : Module K V₂ n : ℕ h : ↑toNat (Module.rank K V) = ↑toNat ↑n ⊢ finrank K V = n [PROOFSTEP] rw [toNat_cast] at h [GOAL] K : Type u V : Type v inst✝⁴ : Ring K inst✝³ : AddCommGroup V inst✝² : Module K V V₂ : Type v' inst✝¹ : AddCommGroup V₂ inst✝ : Module K V₂ n : ℕ h : ↑toNat (Module.rank K V) = n ⊢ finrank K V = n [PROOFSTEP] exact_mod_cast h [GOAL] K : Type u V : Type v inst✝⁴ : Ring K inst✝³ : AddCommGroup V inst✝² : Module K V V₂ : Type v' inst✝¹ : AddCommGroup V₂ inst✝ : Module K V₂ n : ℕ h : Module.rank K V ≤ ↑n ⊢ finrank K V ≤ n [PROOFSTEP] rwa [← Cardinal.toNat_le_iff_le_of_lt_aleph0, toNat_cast] at h [GOAL] case hc K : Type u V : Type v inst✝⁴ : Ring K inst✝³ : AddCommGroup V inst✝² : Module K V V₂ : Type v' inst✝¹ : AddCommGroup V₂ inst✝ : Module K V₂ n : ℕ h : Module.rank K V ≤ ↑n ⊢ Module.rank K V < ℵ₀ [PROOFSTEP] exact h.trans_lt (nat_lt_aleph0 n) [GOAL] case hd K : Type u V : Type v inst✝⁴ : Ring K inst✝³ : AddCommGroup V inst✝² : Module K V V₂ : Type v' inst✝¹ : AddCommGroup V₂ inst✝ : Module K V₂ n : ℕ h : Module.rank K V ≤ ↑n ⊢ ↑n < ℵ₀ [PROOFSTEP] exact nat_lt_aleph0 n [GOAL] K : Type u V : Type v inst✝⁴ : Ring K inst✝³ : AddCommGroup V inst✝² : Module K V V₂ : Type v' inst✝¹ : AddCommGroup V₂ inst✝ : Module K V₂ n : ℕ h : Module.rank K V < ↑n ⊢ finrank K V < n [PROOFSTEP] rwa [← Cardinal.toNat_lt_iff_lt_of_lt_aleph0, toNat_cast] at h [GOAL] case hc K : Type u V : Type v inst✝⁴ : Ring K inst✝³ : AddCommGroup V inst✝² : Module K V V₂ : Type v' inst✝¹ : AddCommGroup V₂ inst✝ : Module K V₂ n : ℕ h : Module.rank K V < ↑n ⊢ Module.rank K V < ℵ₀ [PROOFSTEP] exact h.trans (nat_lt_aleph0 n) [GOAL] case hd K : Type u V : Type v inst✝⁴ : Ring K inst✝³ : AddCommGroup V inst✝² : Module K V V₂ : Type v' inst✝¹ : AddCommGroup V₂ inst✝ : Module K V₂ n : ℕ h : Module.rank K V < ↑n ⊢ ↑n < ℵ₀ [PROOFSTEP] exact nat_lt_aleph0 n [GOAL] K : Type u V : Type v inst✝⁴ : Ring K inst✝³ : AddCommGroup V inst✝² : Module K V V₂ : Type v' inst✝¹ : AddCommGroup V₂ inst✝ : Module K V₂ n : ℕ h : n < finrank K V ⊢ ↑n < Module.rank K V [PROOFSTEP] rwa [← Cardinal.toNat_lt_iff_lt_of_lt_aleph0, toNat_cast] [GOAL] case hc K : Type u V : Type v inst✝⁴ : Ring K inst✝³ : AddCommGroup V inst✝² : Module K V V₂ : Type v' inst✝¹ : AddCommGroup V₂ inst✝ : Module K V₂ n : ℕ h : n < finrank K V ⊢ ↑n < ℵ₀ [PROOFSTEP] exact nat_lt_aleph0 n [GOAL] case hd K : Type u V : Type v inst✝⁴ : Ring K inst✝³ : AddCommGroup V inst✝² : Module K V V₂ : Type v' inst✝¹ : AddCommGroup V₂ inst✝ : Module K V₂ n : ℕ h : n < finrank K V ⊢ Module.rank K V < ℵ₀ [PROOFSTEP] contrapose! h [GOAL] case hd K : Type u V : Type v inst✝⁴ : Ring K inst✝³ : AddCommGroup V inst✝² : Module K V V₂ : Type v' inst✝¹ : AddCommGroup V₂ inst✝ : Module K V₂ n : ℕ h : ℵ₀ ≤ Module.rank K V ⊢ finrank K V ≤ n [PROOFSTEP] rw [finrank, Cardinal.toNat_apply_of_aleph0_le h] [GOAL] case hd K : Type u V : Type v inst✝⁴ : Ring K inst✝³ : AddCommGroup V inst✝² : Module K V V₂ : Type v' inst✝¹ : AddCommGroup V₂ inst✝ : Module K V₂ n : ℕ h : ℵ₀ ≤ Module.rank K V ⊢ 0 ≤ n [PROOFSTEP] exact n.zero_le [GOAL] K : Type u V : Type v inst✝⁴ : Ring K inst✝³ : AddCommGroup V inst✝² : Module K V V₂ : Type v' inst✝¹ : AddCommGroup V₂ inst✝ : Module K V₂ h : 1 < finrank K V ⊢ 1 < Module.rank K V [PROOFSTEP] simpa using lt_rank_of_lt_finrank h [GOAL] K : Type u V : Type v inst✝⁴ : Ring K inst✝³ : AddCommGroup V inst✝² : Module K V V₂ : Type v' inst✝¹ : AddCommGroup V₂ inst✝ : Module K V₂ h : lift (Module.rank K V) ≤ lift (Module.rank K V₂) h' : Module.rank K V₂ < ℵ₀ ⊢ finrank K V ≤ finrank K V₂ [PROOFSTEP] simpa only [toNat_lift] using toNat_le_of_le_of_lt_aleph0 (lift_lt_aleph0.mpr h') h [GOAL] K : Type u V : Type v inst✝⁶ : Ring K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V V₂ : Type v' inst✝³ : AddCommGroup V₂ inst✝² : Module K V₂ inst✝¹ : Nontrivial K inst✝ : NoZeroSMulDivisors K V n : ℕ hn : finrank K V = Nat.succ n ⊢ 0 < finrank (?m.108424 hn) V [PROOFSTEP] rw [hn] [GOAL] K : Type u V : Type v inst✝⁶ : Ring K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V V₂ : Type v' inst✝³ : AddCommGroup V₂ inst✝² : Module K V₂ inst✝¹ : Nontrivial K inst✝ : NoZeroSMulDivisors K V n : ℕ hn : finrank K V = Nat.succ n ⊢ 0 < Nat.succ n [PROOFSTEP] exact n.succ_pos [GOAL] K : Type u V : Type v inst✝⁶ : Ring K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V V₂ : Type v' inst✝³ : AddCommGroup V₂ inst✝² : Module K V₂ inst✝¹ : Nontrivial K inst✝ : NoZeroSMulDivisors K V h : Subsingleton V ⊢ finrank K V = 0 [PROOFSTEP] by_contra h0 [GOAL] K : Type u V : Type v inst✝⁶ : Ring K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V V₂ : Type v' inst✝³ : AddCommGroup V₂ inst✝² : Module K V₂ inst✝¹ : Nontrivial K inst✝ : NoZeroSMulDivisors K V h : Subsingleton V h0 : ¬finrank K V = 0 ⊢ False [PROOFSTEP] obtain ⟨x, y, hxy⟩ := nontrivial_of_finrank_pos (Nat.pos_of_ne_zero h0) [GOAL] case mk.intro.intro K : Type u V : Type v inst✝⁶ : Ring K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V V₂ : Type v' inst✝³ : AddCommGroup V₂ inst✝² : Module K V₂ inst✝¹ : Nontrivial K inst✝ : NoZeroSMulDivisors K V h : Subsingleton V h0 : ¬finrank K V = 0 x y : V hxy : x ≠ y ⊢ False [PROOFSTEP] exact hxy (Subsingleton.elim _ _) [GOAL] K : Type u V : Type v inst✝⁵ : Ring K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : StrongRankCondition K ι : Type w b : Finset ι h : Basis { x // x ∈ b } K V ⊢ finrank K V = Finset.card b [PROOFSTEP] rw [finrank_eq_card_basis h, Fintype.card_coe] [GOAL] K : Type u V : Type v inst✝⁵ : Ring K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : StrongRankCondition K ⊢ Module.rank K K = ↑1 [PROOFSTEP] simp [GOAL] K : Type u V : Type v inst✝⁵ : Ring K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : StrongRankCondition K n : ℕ ⊢ finrank K (Fin n → K) = n [PROOFSTEP] simp [GOAL] K : Type u V : Type v inst✝⁴ : Ring K inst✝³ : StrongRankCondition K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : Free K V h : ∀ (s : Set V), Basis (↑s) K V → ¬Set.Finite s ⊢ finrank K V = 0 [PROOFSTEP] obtain ⟨_, ⟨b⟩⟩ := (Module.free_iff_set K V).mp ‹_› [GOAL] case intro.intro K : Type u V : Type v inst✝⁴ : Ring K inst✝³ : StrongRankCondition K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : Free K V h : ∀ (s : Set V), Basis (↑s) K V → ¬Set.Finite s w✝ : Set V b : Basis (↑w✝) K V ⊢ finrank K V = 0 [PROOFSTEP] exact dif_neg fun rank_lt => h _ b (b.finite_index_of_rank_lt_aleph0 rank_lt) [GOAL] K : Type u V : Type v inst✝⁴ : Ring K inst✝³ : StrongRankCondition K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : Free K V h : ∀ (s : Finset V), Basis (↑↑s) K V → False s : Set V b : Basis (↑s) K V hs : Set.Finite s ⊢ Basis (↑↑(Set.Finite.toFinset hs)) K V [PROOFSTEP] convert b [GOAL] case h.e'_1.h.e'_2 K : Type u V : Type v inst✝⁴ : Ring K inst✝³ : StrongRankCondition K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : Free K V h : ∀ (s : Finset V), Basis (↑↑s) K V → False s : Set V b : Basis (↑s) K V hs : Set.Finite s ⊢ ↑(Set.Finite.toFinset hs) = s [PROOFSTEP] simp [GOAL] K : Type u V : Type v inst✝⁹ : Ring K inst✝⁸ : AddCommGroup V inst✝⁷ : Module K V V₂ : Type v' inst✝⁶ : AddCommGroup V₂ inst✝⁵ : Module K V₂ R : Type u_1 M : Type u_2 M₂ : Type u_3 inst✝⁴ : Ring R inst✝³ : AddCommGroup M inst✝² : AddCommGroup M₂ inst✝¹ : Module R M inst✝ : Module R M₂ f : M ≃ₗ[R] M₂ ⊢ finrank R M = finrank R M₂ [PROOFSTEP] unfold finrank [GOAL] K : Type u V : Type v inst✝⁹ : Ring K inst✝⁸ : AddCommGroup V inst✝⁷ : Module K V V₂ : Type v' inst✝⁶ : AddCommGroup V₂ inst✝⁵ : Module K V₂ R : Type u_1 M : Type u_2 M₂ : Type u_3 inst✝⁴ : Ring R inst✝³ : AddCommGroup M inst✝² : AddCommGroup M₂ inst✝¹ : Module R M inst✝ : Module R M₂ f : M ≃ₗ[R] M₂ ⊢ ↑toNat (Module.rank R M) = ↑toNat (Module.rank R M₂) [PROOFSTEP] rw [← Cardinal.toNat_lift, f.lift_rank_eq, Cardinal.toNat_lift] [GOAL] K : Type u V : Type v inst✝⁴ : Ring K inst✝³ : AddCommGroup V inst✝² : Module K V V₂ : Type v' inst✝¹ : AddCommGroup V₂ inst✝ : Module K V₂ f : V →ₗ[K] V₂ hf : Injective ↑f ⊢ finrank K { x // x ∈ range f } = finrank K V [PROOFSTEP] rw [(LinearEquiv.ofInjective f hf).finrank_eq] [GOAL] K : Type u V : Type v inst✝² : Ring K inst✝¹ : AddCommGroup V inst✝ : Module K V ⊢ finrank K { x // x ∈ ⊤ } = finrank K V [PROOFSTEP] unfold finrank [GOAL] K : Type u V : Type v inst✝² : Ring K inst✝¹ : AddCommGroup V inst✝ : Module K V ⊢ ↑toNat (Module.rank K { x // x ∈ ⊤ }) = ↑toNat (Module.rank K V) [PROOFSTEP] simp [rank_top] [GOAL] K : Type u V : Type v inst✝⁴ : Ring K inst✝³ : AddCommGroup V inst✝² : Module K V V₂ : Type v' inst✝¹ : AddCommGroup V₂ inst✝ : Module K V₂ s t : Submodule K V le : s ≤ t lt : finrank K { x // x ∈ s } < finrank K { x // x ∈ t } h : s = t ⊢ finrank K { x // x ∈ s } = finrank K { x // x ∈ t } [PROOFSTEP] rw [h] [GOAL] K : Type u V : Type v inst✝⁴ : Ring K inst✝³ : AddCommGroup V inst✝² : Module K V V₂ : Type v' inst✝¹ : AddCommGroup V₂ inst✝ : Module K V₂ s : Submodule K V lt : finrank K { x // x ∈ s } < finrank K V ⊢ s < ⊤ [PROOFSTEP] rw [← finrank_top K V] at lt [GOAL] K : Type u V : Type v inst✝⁴ : Ring K inst✝³ : AddCommGroup V inst✝² : Module K V V₂ : Type v' inst✝¹ : AddCommGroup V₂ inst✝ : Module K V₂ s : Submodule K V lt : finrank K { x // x ∈ s } < finrank K { x // x ∈ ⊤ } ⊢ s < ⊤ [PROOFSTEP] exact lt_of_le_of_finrank_lt_finrank le_top lt [GOAL] K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V s : Set V inst✝ : Fintype ↑s ⊢ Module.rank K { x // x ∈ span K s } ≤ ↑(Finset.card (Set.toFinset s)) [PROOFSTEP] simpa using rank_span_le (K := K) s [GOAL] K : Type u V : Type v inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V s : Finset V ⊢ Finset.card (Set.toFinset ↑s) = Finset.card s [PROOFSTEP] simp [GOAL] K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V ι : Type u_1 inst✝ : Fintype ι b : ι → V ⊢ Set.finrank K (Set.range b) ≤ Fintype.card ι [PROOFSTEP] classical refine (finrank_span_le_card _).trans ?_ rw [Set.toFinset_range] exact Finset.card_image_le [GOAL] K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V ι : Type u_1 inst✝ : Fintype ι b : ι → V ⊢ Set.finrank K (Set.range b) ≤ Fintype.card ι [PROOFSTEP] refine (finrank_span_le_card _).trans ?_ [GOAL] K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V ι : Type u_1 inst✝ : Fintype ι b : ι → V ⊢ Finset.card (Set.toFinset (Set.range b)) ≤ Fintype.card ι [PROOFSTEP] rw [Set.toFinset_range] [GOAL] K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V ι : Type u_1 inst✝ : Fintype ι b : ι → V ⊢ Finset.card (Finset.image b Finset.univ) ≤ Fintype.card ι [PROOFSTEP] exact Finset.card_image_le [GOAL] K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V ι : Type u_1 inst✝ : Fintype ι b : ι → V hb : LinearIndependent K b ⊢ Module.rank K { x // x ∈ span K (Set.range b) } = ↑(Fintype.card ι) [PROOFSTEP] have : Module.rank K (span K (Set.range b)) = #(Set.range b) := rank_span hb [GOAL] K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V ι : Type u_1 inst✝ : Fintype ι b : ι → V hb : LinearIndependent K b this : Module.rank K { x // x ∈ span K (Set.range b) } = #↑(Set.range b) ⊢ Module.rank K { x // x ∈ span K (Set.range b) } = ↑(Fintype.card ι) [PROOFSTEP] rwa [← lift_inj, mk_range_eq_of_injective hb.injective, Cardinal.mk_fintype, lift_natCast, lift_eq_nat_iff] at this [GOAL] K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V s : Set V inst✝ : Fintype ↑s hs : LinearIndependent K Subtype.val ⊢ Module.rank K { x // x ∈ span K s } = ↑(Finset.card (Set.toFinset s)) [PROOFSTEP] have : Module.rank K (span K s) = #s := rank_span_set hs [GOAL] K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V s : Set V inst✝ : Fintype ↑s hs : LinearIndependent K Subtype.val this : Module.rank K { x // x ∈ span K s } = #↑s ⊢ Module.rank K { x // x ∈ span K s } = ↑(Finset.card (Set.toFinset s)) [PROOFSTEP] rwa [Cardinal.mk_fintype, ← Set.toFinset_card] at this [GOAL] K : Type u V : Type v inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V s : Finset V hs : LinearIndependent K Subtype.val ⊢ finrank K { x // x ∈ span K ↑s } = Finset.card s [PROOFSTEP] convert finrank_span_set_eq_card (s : Set V) hs [GOAL] case h.e'_3.h.e'_2 K : Type u V : Type v inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V s : Finset V hs : LinearIndependent K Subtype.val ⊢ s = Set.toFinset ↑s [PROOFSTEP] ext [GOAL] case h.e'_3.h.e'_2.a K : Type u V : Type v inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V s : Finset V hs : LinearIndependent K Subtype.val a✝ : V ⊢ a✝ ∈ s ↔ a✝ ∈ Set.toFinset ↑s [PROOFSTEP] simp [GOAL] K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V ι : Type u_1 inst✝ : Fintype ι b : ι → V spans : ⊤ ≤ span K (Set.range b) card_eq : Fintype.card ι = finrank K V s : Finset ι g : ι → K dependent : (Finset.sum s fun i => g i • b i) = 0 i : ι i_mem_s : i ∈ s ⊢ g i = 0 [PROOFSTEP] classical by_contra gx_ne_zero refine' not_le_of_gt (span_lt_top_of_card_lt_finrank (show (b '' (Set.univ \ { i })).toFinset.card < finrank K V from _)) _ · calc (b '' (Set.univ \ { i })).toFinset.card = ((Set.univ \ { i }).toFinset.image b).card := by rw [Set.toFinset_card, Fintype.card_ofFinset] _ ≤ (Set.univ \ { i }).toFinset.card := Finset.card_image_le _ = (Finset.univ.erase i).card := (congr_arg Finset.card (Finset.ext (by simp [and_comm]))) _ < Finset.univ.card := (Finset.card_erase_lt_of_mem (Finset.mem_univ i)) _ = finrank K V := card_eq refine' spans.trans (span_le.mpr _) rintro _ ⟨j, rfl, rfl⟩ -- The case that `j ≠ i` is easy because `b j ∈ b '' (univ \ {i})`. by_cases j_eq : j = i swap · refine' subset_span ⟨j, (Set.mem_diff _).mpr ⟨Set.mem_univ _, _⟩, rfl⟩ exact mt Set.mem_singleton_iff.mp j_eq rw [j_eq, SetLike.mem_coe, show b i = -((g i)⁻¹ • (s.erase i).sum fun j => g j • b j) from _] · refine' neg_mem (smul_mem _ _ (sum_mem fun k hk => _)) obtain ⟨k_ne_i, _⟩ := Finset.mem_erase.mp hk refine' smul_mem _ _ (subset_span ⟨k, _, rfl⟩) simp_all only [Set.mem_univ, Set.mem_diff, Set.mem_singleton_iff] -- To show `b i` is a weighted sum of the other `b j`s, we'll rewrite this sum -- to have the form of the assumption `dependent`. apply eq_neg_of_add_eq_zero_left calc (b i + (g i)⁻¹ • (s.erase i).sum fun j => g j • b j) = (g i)⁻¹ • (g i • b i + (s.erase i).sum fun j => g j • b j) := by rw [smul_add, ← mul_smul, inv_mul_cancel gx_ne_zero, one_smul] _ = (g i)⁻¹ • (0 : V) := (congr_arg _ ?_) _ = 0 := smul_zero _ -- And then it's just a bit of manipulation with finite sums. rwa [← Finset.insert_erase i_mem_s, Finset.sum_insert (Finset.not_mem_erase _ _)] at dependent [GOAL] K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V ι : Type u_1 inst✝ : Fintype ι b : ι → V spans : ⊤ ≤ span K (Set.range b) card_eq : Fintype.card ι = finrank K V s : Finset ι g : ι → K dependent : (Finset.sum s fun i => g i • b i) = 0 i : ι i_mem_s : i ∈ s ⊢ g i = 0 [PROOFSTEP] by_contra gx_ne_zero [GOAL] K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V ι : Type u_1 inst✝ : Fintype ι b : ι → V spans : ⊤ ≤ span K (Set.range b) card_eq : Fintype.card ι = finrank K V s : Finset ι g : ι → K dependent : (Finset.sum s fun i => g i • b i) = 0 i : ι i_mem_s : i ∈ s gx_ne_zero : ¬g i = 0 ⊢ False [PROOFSTEP] refine' not_le_of_gt (span_lt_top_of_card_lt_finrank (show (b '' (Set.univ \ { i })).toFinset.card < finrank K V from _)) _ [GOAL] case refine'_1 K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V ι : Type u_1 inst✝ : Fintype ι b : ι → V spans : ⊤ ≤ span K (Set.range b) card_eq : Fintype.card ι = finrank K V s : Finset ι g : ι → K dependent : (Finset.sum s fun i => g i • b i) = 0 i : ι i_mem_s : i ∈ s gx_ne_zero : ¬g i = 0 ⊢ Finset.card (Set.toFinset (b '' (Set.univ \ {i}))) < finrank K V [PROOFSTEP] calc (b '' (Set.univ \ { i })).toFinset.card = ((Set.univ \ { i }).toFinset.image b).card := by rw [Set.toFinset_card, Fintype.card_ofFinset] _ ≤ (Set.univ \ { i }).toFinset.card := Finset.card_image_le _ = (Finset.univ.erase i).card := (congr_arg Finset.card (Finset.ext (by simp [and_comm]))) _ < Finset.univ.card := (Finset.card_erase_lt_of_mem (Finset.mem_univ i)) _ = finrank K V := card_eq [GOAL] K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V ι : Type u_1 inst✝ : Fintype ι b : ι → V spans : ⊤ ≤ span K (Set.range b) card_eq : Fintype.card ι = finrank K V s : Finset ι g : ι → K dependent : (Finset.sum s fun i => g i • b i) = 0 i : ι i_mem_s : i ∈ s gx_ne_zero : ¬g i = 0 ⊢ Finset.card (Set.toFinset (b '' (Set.univ \ {i}))) = Finset.card (Finset.image b (Set.toFinset (Set.univ \ {i}))) [PROOFSTEP] rw [Set.toFinset_card, Fintype.card_ofFinset] [GOAL] K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V ι : Type u_1 inst✝ : Fintype ι b : ι → V spans : ⊤ ≤ span K (Set.range b) card_eq : Fintype.card ι = finrank K V s : Finset ι g : ι → K dependent : (Finset.sum s fun i => g i • b i) = 0 i : ι i_mem_s : i ∈ s gx_ne_zero : ¬g i = 0 ⊢ ∀ (a : ι), a ∈ Set.toFinset (Set.univ \ {i}) ↔ a ∈ Finset.erase Finset.univ i [PROOFSTEP] simp [and_comm] [GOAL] case refine'_2 K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V ι : Type u_1 inst✝ : Fintype ι b : ι → V spans : ⊤ ≤ span K (Set.range b) card_eq : Fintype.card ι = finrank K V s : Finset ι g : ι → K dependent : (Finset.sum s fun i => g i • b i) = 0 i : ι i_mem_s : i ∈ s gx_ne_zero : ¬g i = 0 ⊢ ⊤ ≤ span K (b '' (Set.univ \ {i})) [PROOFSTEP] refine' spans.trans (span_le.mpr _) [GOAL] case refine'_2 K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V ι : Type u_1 inst✝ : Fintype ι b : ι → V spans : ⊤ ≤ span K (Set.range b) card_eq : Fintype.card ι = finrank K V s : Finset ι g : ι → K dependent : (Finset.sum s fun i => g i • b i) = 0 i : ι i_mem_s : i ∈ s gx_ne_zero : ¬g i = 0 ⊢ Set.range b ⊆ ↑(span K (b '' (Set.univ \ {i}))) [PROOFSTEP] rintro _ ⟨j, rfl, rfl⟩ -- The case that `j ≠ i` is easy because `b j ∈ b '' (univ \ {i})`. [GOAL] case refine'_2.intro.refl K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V ι : Type u_1 inst✝ : Fintype ι b : ι → V spans : ⊤ ≤ span K (Set.range b) card_eq : Fintype.card ι = finrank K V s : Finset ι g : ι → K dependent : (Finset.sum s fun i => g i • b i) = 0 i : ι i_mem_s : i ∈ s gx_ne_zero : ¬g i = 0 j : ι ⊢ b j ∈ ↑(span K (b '' (Set.univ \ {i}))) [PROOFSTEP] by_cases j_eq : j = i [GOAL] case pos K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V ι : Type u_1 inst✝ : Fintype ι b : ι → V spans : ⊤ ≤ span K (Set.range b) card_eq : Fintype.card ι = finrank K V s : Finset ι g : ι → K dependent : (Finset.sum s fun i => g i • b i) = 0 i : ι i_mem_s : i ∈ s gx_ne_zero : ¬g i = 0 j : ι j_eq : j = i ⊢ b j ∈ ↑(span K (b '' (Set.univ \ {i}))) case neg K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V ι : Type u_1 inst✝ : Fintype ι b : ι → V spans : ⊤ ≤ span K (Set.range b) card_eq : Fintype.card ι = finrank K V s : Finset ι g : ι → K dependent : (Finset.sum s fun i => g i • b i) = 0 i : ι i_mem_s : i ∈ s gx_ne_zero : ¬g i = 0 j : ι j_eq : ¬j = i ⊢ b j ∈ ↑(span K (b '' (Set.univ \ {i}))) [PROOFSTEP] swap [GOAL] case neg K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V ι : Type u_1 inst✝ : Fintype ι b : ι → V spans : ⊤ ≤ span K (Set.range b) card_eq : Fintype.card ι = finrank K V s : Finset ι g : ι → K dependent : (Finset.sum s fun i => g i • b i) = 0 i : ι i_mem_s : i ∈ s gx_ne_zero : ¬g i = 0 j : ι j_eq : ¬j = i ⊢ b j ∈ ↑(span K (b '' (Set.univ \ {i}))) [PROOFSTEP] refine' subset_span ⟨j, (Set.mem_diff _).mpr ⟨Set.mem_univ _, _⟩, rfl⟩ [GOAL] case neg K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V ι : Type u_1 inst✝ : Fintype ι b : ι → V spans : ⊤ ≤ span K (Set.range b) card_eq : Fintype.card ι = finrank K V s : Finset ι g : ι → K dependent : (Finset.sum s fun i => g i • b i) = 0 i : ι i_mem_s : i ∈ s gx_ne_zero : ¬g i = 0 j : ι j_eq : ¬j = i ⊢ ¬j ∈ {i} [PROOFSTEP] exact mt Set.mem_singleton_iff.mp j_eq [GOAL] case pos K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V ι : Type u_1 inst✝ : Fintype ι b : ι → V spans : ⊤ ≤ span K (Set.range b) card_eq : Fintype.card ι = finrank K V s : Finset ι g : ι → K dependent : (Finset.sum s fun i => g i • b i) = 0 i : ι i_mem_s : i ∈ s gx_ne_zero : ¬g i = 0 j : ι j_eq : j = i ⊢ b j ∈ ↑(span K (b '' (Set.univ \ {i}))) [PROOFSTEP] rw [j_eq, SetLike.mem_coe, show b i = -((g i)⁻¹ • (s.erase i).sum fun j => g j • b j) from _] [GOAL] case pos K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V ι : Type u_1 inst✝ : Fintype ι b : ι → V spans : ⊤ ≤ span K (Set.range b) card_eq : Fintype.card ι = finrank K V s : Finset ι g : ι → K dependent : (Finset.sum s fun i => g i • b i) = 0 i : ι i_mem_s : i ∈ s gx_ne_zero : ¬g i = 0 j : ι j_eq : j = i ⊢ -((g i)⁻¹ • Finset.sum (Finset.erase s i) fun j => g j • b j) ∈ span K (b '' (Set.univ \ {i})) [PROOFSTEP] refine' neg_mem (smul_mem _ _ (sum_mem fun k hk => _)) [GOAL] case pos K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V ι : Type u_1 inst✝ : Fintype ι b : ι → V spans : ⊤ ≤ span K (Set.range b) card_eq : Fintype.card ι = finrank K V s : Finset ι g : ι → K dependent : (Finset.sum s fun i => g i • b i) = 0 i : ι i_mem_s : i ∈ s gx_ne_zero : ¬g i = 0 j : ι j_eq : j = i k : ι hk : k ∈ Finset.erase s i ⊢ g k • b k ∈ span K (b '' (Set.univ \ {i})) [PROOFSTEP] obtain ⟨k_ne_i, _⟩ := Finset.mem_erase.mp hk [GOAL] case pos.intro K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V ι : Type u_1 inst✝ : Fintype ι b : ι → V spans : ⊤ ≤ span K (Set.range b) card_eq : Fintype.card ι = finrank K V s : Finset ι g : ι → K dependent : (Finset.sum s fun i => g i • b i) = 0 i : ι i_mem_s : i ∈ s gx_ne_zero : ¬g i = 0 j : ι j_eq : j = i k : ι hk : k ∈ Finset.erase s i k_ne_i : k ≠ i right✝ : k ∈ s ⊢ g k • b k ∈ span K (b '' (Set.univ \ {i})) [PROOFSTEP] refine' smul_mem _ _ (subset_span ⟨k, _, rfl⟩) [GOAL] case pos.intro K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V ι : Type u_1 inst✝ : Fintype ι b : ι → V spans : ⊤ ≤ span K (Set.range b) card_eq : Fintype.card ι = finrank K V s : Finset ι g : ι → K dependent : (Finset.sum s fun i => g i • b i) = 0 i : ι i_mem_s : i ∈ s gx_ne_zero : ¬g i = 0 j : ι j_eq : j = i k : ι hk : k ∈ Finset.erase s i k_ne_i : k ≠ i right✝ : k ∈ s ⊢ k ∈ Set.univ \ {i} [PROOFSTEP] simp_all only [Set.mem_univ, Set.mem_diff, Set.mem_singleton_iff] -- To show `b i` is a weighted sum of the other `b j`s, we'll rewrite this sum -- to have the form of the assumption `dependent`. [GOAL] K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V ι : Type u_1 inst✝ : Fintype ι b : ι → V spans : ⊤ ≤ span K (Set.range b) card_eq : Fintype.card ι = finrank K V s : Finset ι g : ι → K dependent : (Finset.sum s fun i => g i • b i) = 0 i : ι i_mem_s : i ∈ s gx_ne_zero : ¬g i = 0 j : ι j_eq : j = i ⊢ b i = -((g i)⁻¹ • Finset.sum (Finset.erase s i) fun j => g j • b j) [PROOFSTEP] apply eq_neg_of_add_eq_zero_left [GOAL] case h K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V ι : Type u_1 inst✝ : Fintype ι b : ι → V spans : ⊤ ≤ span K (Set.range b) card_eq : Fintype.card ι = finrank K V s : Finset ι g : ι → K dependent : (Finset.sum s fun i => g i • b i) = 0 i : ι i_mem_s : i ∈ s gx_ne_zero : ¬g i = 0 j : ι j_eq : j = i ⊢ (b i + (g i)⁻¹ • Finset.sum (Finset.erase s i) fun j => g j • b j) = 0 [PROOFSTEP] calc (b i + (g i)⁻¹ • (s.erase i).sum fun j => g j • b j) = (g i)⁻¹ • (g i • b i + (s.erase i).sum fun j => g j • b j) := by rw [smul_add, ← mul_smul, inv_mul_cancel gx_ne_zero, one_smul] _ = (g i)⁻¹ • (0 : V) := (congr_arg _ ?_) _ = 0 := smul_zero _ -- And then it's just a bit of manipulation with finite sums. [GOAL] K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V ι : Type u_1 inst✝ : Fintype ι b : ι → V spans : ⊤ ≤ span K (Set.range b) card_eq : Fintype.card ι = finrank K V s : Finset ι g : ι → K dependent : (Finset.sum s fun i => g i • b i) = 0 i : ι i_mem_s : i ∈ s gx_ne_zero : ¬g i = 0 j : ι j_eq : j = i ⊢ (b i + (g i)⁻¹ • Finset.sum (Finset.erase s i) fun j => g j • b j) = (g i)⁻¹ • (g i • b i + Finset.sum (Finset.erase s i) fun j => g j • b j) [PROOFSTEP] rw [smul_add, ← mul_smul, inv_mul_cancel gx_ne_zero, one_smul] [GOAL] case h K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V ι : Type u_1 inst✝ : Fintype ι b : ι → V spans : ⊤ ≤ span K (Set.range b) card_eq : Fintype.card ι = finrank K V s : Finset ι g : ι → K dependent : (Finset.sum s fun i => g i • b i) = 0 i : ι i_mem_s : i ∈ s gx_ne_zero : ¬g i = 0 j : ι j_eq : j = i ⊢ (g i • b i + Finset.sum (Finset.erase s i) fun j => g j • b j) = 0 [PROOFSTEP] rwa [← Finset.insert_erase i_mem_s, Finset.sum_insert (Finset.not_mem_erase _ _)] at dependent [GOAL] K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V ι : Type u_1 inst✝ : Fintype ι b : ι → V ⊢ LinearIndependent K b ↔ Fintype.card ι = Set.finrank K (Set.range b) [PROOFSTEP] constructor [GOAL] case mp K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V ι : Type u_1 inst✝ : Fintype ι b : ι → V ⊢ LinearIndependent K b → Fintype.card ι = Set.finrank K (Set.range b) [PROOFSTEP] intro h [GOAL] case mp K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V ι : Type u_1 inst✝ : Fintype ι b : ι → V h : LinearIndependent K b ⊢ Fintype.card ι = Set.finrank K (Set.range b) [PROOFSTEP] exact (finrank_span_eq_card h).symm [GOAL] case mpr K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V ι : Type u_1 inst✝ : Fintype ι b : ι → V ⊢ Fintype.card ι = Set.finrank K (Set.range b) → LinearIndependent K b [PROOFSTEP] intro hc [GOAL] case mpr K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V ι : Type u_1 inst✝ : Fintype ι b : ι → V hc : Fintype.card ι = Set.finrank K (Set.range b) ⊢ LinearIndependent K b [PROOFSTEP] let f := Submodule.subtype (span K (Set.range b)) [GOAL] case mpr K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V ι : Type u_1 inst✝ : Fintype ι b : ι → V hc : Fintype.card ι = Set.finrank K (Set.range b) f : { x // x ∈ span K (Set.range b) } →ₗ[K] V := Submodule.subtype (span K (Set.range b)) ⊢ LinearIndependent K b [PROOFSTEP] let b' : ι → span K (Set.range b) := fun i => ⟨b i, mem_span.2 fun p hp => hp (Set.mem_range_self _)⟩ [GOAL] case mpr K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V ι : Type u_1 inst✝ : Fintype ι b : ι → V hc : Fintype.card ι = Set.finrank K (Set.range b) f : { x // x ∈ span K (Set.range b) } →ₗ[K] V := Submodule.subtype (span K (Set.range b)) b' : ι → { x // x ∈ span K (Set.range b) } := fun i => { val := b i, property := (_ : b i ∈ span K (Set.range b)) } ⊢ LinearIndependent K b [PROOFSTEP] have hs : ⊤ ≤ span K (Set.range b') := by intro x have h : span K (f '' Set.range b') = map f (span K (Set.range b')) := span_image f have hf : f '' Set.range b' = Set.range b := by ext x simp [Set.mem_image, Set.mem_range] rw [hf] at h have hx : (x : V) ∈ span K (Set.range b) := x.property conv at hx => arg 2 rw [h] simpa [mem_map] using hx [GOAL] K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V ι : Type u_1 inst✝ : Fintype ι b : ι → V hc : Fintype.card ι = Set.finrank K (Set.range b) f : { x // x ∈ span K (Set.range b) } →ₗ[K] V := Submodule.subtype (span K (Set.range b)) b' : ι → { x // x ∈ span K (Set.range b) } := fun i => { val := b i, property := (_ : b i ∈ span K (Set.range b)) } ⊢ ⊤ ≤ span K (Set.range b') [PROOFSTEP] intro x [GOAL] K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V ι : Type u_1 inst✝ : Fintype ι b : ι → V hc : Fintype.card ι = Set.finrank K (Set.range b) f : { x // x ∈ span K (Set.range b) } →ₗ[K] V := Submodule.subtype (span K (Set.range b)) b' : ι → { x // x ∈ span K (Set.range b) } := fun i => { val := b i, property := (_ : b i ∈ span K (Set.range b)) } x : { x // x ∈ span K (Set.range b) } ⊢ x ∈ ⊤ → x ∈ span K (Set.range b') [PROOFSTEP] have h : span K (f '' Set.range b') = map f (span K (Set.range b')) := span_image f [GOAL] K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V ι : Type u_1 inst✝ : Fintype ι b : ι → V hc : Fintype.card ι = Set.finrank K (Set.range b) f : { x // x ∈ span K (Set.range b) } →ₗ[K] V := Submodule.subtype (span K (Set.range b)) b' : ι → { x // x ∈ span K (Set.range b) } := fun i => { val := b i, property := (_ : b i ∈ span K (Set.range b)) } x : { x // x ∈ span K (Set.range b) } h : span K (↑f '' Set.range b') = Submodule.map f (span K (Set.range b')) ⊢ x ∈ ⊤ → x ∈ span K (Set.range b') [PROOFSTEP] have hf : f '' Set.range b' = Set.range b := by ext x simp [Set.mem_image, Set.mem_range] [GOAL] K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V ι : Type u_1 inst✝ : Fintype ι b : ι → V hc : Fintype.card ι = Set.finrank K (Set.range b) f : { x // x ∈ span K (Set.range b) } →ₗ[K] V := Submodule.subtype (span K (Set.range b)) b' : ι → { x // x ∈ span K (Set.range b) } := fun i => { val := b i, property := (_ : b i ∈ span K (Set.range b)) } x : { x // x ∈ span K (Set.range b) } h : span K (↑f '' Set.range b') = Submodule.map f (span K (Set.range b')) ⊢ ↑f '' Set.range b' = Set.range b [PROOFSTEP] ext x [GOAL] case h K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V ι : Type u_1 inst✝ : Fintype ι b : ι → V hc : Fintype.card ι = Set.finrank K (Set.range b) f : { x // x ∈ span K (Set.range b) } →ₗ[K] V := Submodule.subtype (span K (Set.range b)) b' : ι → { x // x ∈ span K (Set.range b) } := fun i => { val := b i, property := (_ : b i ∈ span K (Set.range b)) } x✝ : { x // x ∈ span K (Set.range b) } h : span K (↑f '' Set.range b') = Submodule.map f (span K (Set.range b')) x : V ⊢ x ∈ ↑f '' Set.range b' ↔ x ∈ Set.range b [PROOFSTEP] simp [Set.mem_image, Set.mem_range] [GOAL] K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V ι : Type u_1 inst✝ : Fintype ι b : ι → V hc : Fintype.card ι = Set.finrank K (Set.range b) f : { x // x ∈ span K (Set.range b) } →ₗ[K] V := Submodule.subtype (span K (Set.range b)) b' : ι → { x // x ∈ span K (Set.range b) } := fun i => { val := b i, property := (_ : b i ∈ span K (Set.range b)) } x : { x // x ∈ span K (Set.range b) } h : span K (↑f '' Set.range b') = Submodule.map f (span K (Set.range b')) hf : ↑f '' Set.range b' = Set.range b ⊢ x ∈ ⊤ → x ∈ span K (Set.range b') [PROOFSTEP] rw [hf] at h [GOAL] K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V ι : Type u_1 inst✝ : Fintype ι b : ι → V hc : Fintype.card ι = Set.finrank K (Set.range b) f : { x // x ∈ span K (Set.range b) } →ₗ[K] V := Submodule.subtype (span K (Set.range b)) b' : ι → { x // x ∈ span K (Set.range b) } := fun i => { val := b i, property := (_ : b i ∈ span K (Set.range b)) } x : { x // x ∈ span K (Set.range b) } h : span K (Set.range b) = Submodule.map f (span K (Set.range b')) hf : ↑f '' Set.range b' = Set.range b ⊢ x ∈ ⊤ → x ∈ span K (Set.range b') [PROOFSTEP] have hx : (x : V) ∈ span K (Set.range b) := x.property [GOAL] K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V ι : Type u_1 inst✝ : Fintype ι b : ι → V hc : Fintype.card ι = Set.finrank K (Set.range b) f : { x // x ∈ span K (Set.range b) } →ₗ[K] V := Submodule.subtype (span K (Set.range b)) b' : ι → { x // x ∈ span K (Set.range b) } := fun i => { val := b i, property := (_ : b i ∈ span K (Set.range b)) } x : { x // x ∈ span K (Set.range b) } h : span K (Set.range b) = Submodule.map f (span K (Set.range b')) hf : ↑f '' Set.range b' = Set.range b hx : ↑x ∈ span K (Set.range b) ⊢ x ∈ ⊤ → x ∈ span K (Set.range b') [PROOFSTEP] conv at hx => arg 2 rw [h] [GOAL] K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V ι : Type u_1 inst✝ : Fintype ι b : ι → V hc : Fintype.card ι = Set.finrank K (Set.range b) f : { x // x ∈ span K (Set.range b) } →ₗ[K] V := Submodule.subtype (span K (Set.range b)) b' : ι → { x // x ∈ span K (Set.range b) } := fun i => { val := b i, property := (_ : b i ∈ span K (Set.range b)) } x : { x // x ∈ span K (Set.range b) } h : span K (Set.range b) = Submodule.map f (span K (Set.range b')) hf : ↑f '' Set.range b' = Set.range b hx : ↑x ∈ span K (Set.range b) | ↑x ∈ span K (Set.range b) [PROOFSTEP] arg 2 rw [h] [GOAL] K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V ι : Type u_1 inst✝ : Fintype ι b : ι → V hc : Fintype.card ι = Set.finrank K (Set.range b) f : { x // x ∈ span K (Set.range b) } →ₗ[K] V := Submodule.subtype (span K (Set.range b)) b' : ι → { x // x ∈ span K (Set.range b) } := fun i => { val := b i, property := (_ : b i ∈ span K (Set.range b)) } x : { x // x ∈ span K (Set.range b) } h : span K (Set.range b) = Submodule.map f (span K (Set.range b')) hf : ↑f '' Set.range b' = Set.range b hx : ↑x ∈ span K (Set.range b) | ↑x ∈ span K (Set.range b) [PROOFSTEP] arg 2 rw [h] [GOAL] K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V ι : Type u_1 inst✝ : Fintype ι b : ι → V hc : Fintype.card ι = Set.finrank K (Set.range b) f : { x // x ∈ span K (Set.range b) } →ₗ[K] V := Submodule.subtype (span K (Set.range b)) b' : ι → { x // x ∈ span K (Set.range b) } := fun i => { val := b i, property := (_ : b i ∈ span K (Set.range b)) } x : { x // x ∈ span K (Set.range b) } h : span K (Set.range b) = Submodule.map f (span K (Set.range b')) hf : ↑f '' Set.range b' = Set.range b hx : ↑x ∈ span K (Set.range b) | ↑x ∈ span K (Set.range b) [PROOFSTEP] arg 2 [GOAL] K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V ι : Type u_1 inst✝ : Fintype ι b : ι → V hc : Fintype.card ι = Set.finrank K (Set.range b) f : { x // x ∈ span K (Set.range b) } →ₗ[K] V := Submodule.subtype (span K (Set.range b)) b' : ι → { x // x ∈ span K (Set.range b) } := fun i => { val := b i, property := (_ : b i ∈ span K (Set.range b)) } x : { x // x ∈ span K (Set.range b) } h : span K (Set.range b) = Submodule.map f (span K (Set.range b')) hf : ↑f '' Set.range b' = Set.range b hx : ↑x ∈ span K (Set.range b) | span K (Set.range b) [PROOFSTEP] rw [h] [GOAL] K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V ι : Type u_1 inst✝ : Fintype ι b : ι → V hc : Fintype.card ι = Set.finrank K (Set.range b) f : { x // x ∈ span K (Set.range b) } →ₗ[K] V := Submodule.subtype (span K (Set.range b)) b' : ι → { x // x ∈ span K (Set.range b) } := fun i => { val := b i, property := (_ : b i ∈ span K (Set.range b)) } x : { x // x ∈ span K (Set.range b) } h : span K (Set.range b) = Submodule.map f (span K (Set.range b')) hf : ↑f '' Set.range b' = Set.range b hx : ↑x ∈ Submodule.map f (span K (Set.range b')) ⊢ x ∈ ⊤ → x ∈ span K (Set.range b') [PROOFSTEP] simpa [mem_map] using hx [GOAL] case mpr K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V ι : Type u_1 inst✝ : Fintype ι b : ι → V hc : Fintype.card ι = Set.finrank K (Set.range b) f : { x // x ∈ span K (Set.range b) } →ₗ[K] V := Submodule.subtype (span K (Set.range b)) b' : ι → { x // x ∈ span K (Set.range b) } := fun i => { val := b i, property := (_ : b i ∈ span K (Set.range b)) } hs : ⊤ ≤ span K (Set.range b') ⊢ LinearIndependent K b [PROOFSTEP] have hi : LinearMap.ker f = ⊥ := ker_subtype _ [GOAL] case mpr K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V ι : Type u_1 inst✝ : Fintype ι b : ι → V hc : Fintype.card ι = Set.finrank K (Set.range b) f : { x // x ∈ span K (Set.range b) } →ₗ[K] V := Submodule.subtype (span K (Set.range b)) b' : ι → { x // x ∈ span K (Set.range b) } := fun i => { val := b i, property := (_ : b i ∈ span K (Set.range b)) } hs : ⊤ ≤ span K (Set.range b') hi : LinearMap.ker f = ⊥ ⊢ LinearIndependent K b [PROOFSTEP] convert (linearIndependent_of_top_le_span_of_card_eq_finrank hs hc).map' _ hi [GOAL] K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V ι : Type u_1 inst✝ : Fintype ι b : ι → V ⊢ LinearIndependent K b ↔ Fintype.card ι ≤ Set.finrank K (Set.range b) [PROOFSTEP] rw [linearIndependent_iff_card_eq_finrank_span, finrank_range_le_card.le_iff_eq] [GOAL] K : Type u V : Type v inst✝⁴ : Ring K inst✝³ : AddCommGroup V inst✝² : Module K V inst✝¹ : NoZeroSMulDivisors K V inst✝ : StrongRankCondition K v : V n : v ≠ 0 h : ∀ (w : V), ∃ c, c • v = w ⊢ finrank K V = 1 [PROOFSTEP] haveI := nontrivial_of_invariantBasisNumber K [GOAL] K : Type u V : Type v inst✝⁴ : Ring K inst✝³ : AddCommGroup V inst✝² : Module K V inst✝¹ : NoZeroSMulDivisors K V inst✝ : StrongRankCondition K v : V n : v ≠ 0 h : ∀ (w : V), ∃ c, c • v = w this : Nontrivial K ⊢ finrank K V = 1 [PROOFSTEP] obtain ⟨b⟩ := (Basis.basis_singleton_iff.{u} PUnit).mpr ⟨v, n, h⟩ [GOAL] case intro K : Type u V : Type v inst✝⁴ : Ring K inst✝³ : AddCommGroup V inst✝² : Module K V inst✝¹ : NoZeroSMulDivisors K V inst✝ : StrongRankCondition K v : V n : v ≠ 0 h : ∀ (w : V), ∃ c, c • v = w this : Nontrivial K b : Basis PUnit K V ⊢ finrank K V = 1 [PROOFSTEP] rw [finrank_eq_card_basis b, Fintype.card_punit] [GOAL] K : Type u V : Type v inst✝⁴ : Ring K inst✝³ : AddCommGroup V inst✝² : Module K V inst✝¹ : NoZeroSMulDivisors K V inst✝ : StrongRankCondition K v : V h : ∀ (w : V), ∃ c, c • v = w ⊢ finrank K V ≤ 1 [PROOFSTEP] haveI := nontrivial_of_invariantBasisNumber K [GOAL] K : Type u V : Type v inst✝⁴ : Ring K inst✝³ : AddCommGroup V inst✝² : Module K V inst✝¹ : NoZeroSMulDivisors K V inst✝ : StrongRankCondition K v : V h : ∀ (w : V), ∃ c, c • v = w this : Nontrivial K ⊢ finrank K V ≤ 1 [PROOFSTEP] rcases eq_or_ne v 0 with (rfl | hn) [GOAL] case inl K : Type u V : Type v inst✝⁴ : Ring K inst✝³ : AddCommGroup V inst✝² : Module K V inst✝¹ : NoZeroSMulDivisors K V inst✝ : StrongRankCondition K this : Nontrivial K h : ∀ (w : V), ∃ c, c • 0 = w ⊢ finrank K V ≤ 1 [PROOFSTEP] haveI := subsingleton_of_forall_eq (0 : V) fun w => by obtain ⟨c, rfl⟩ := h w simp [GOAL] K : Type u V : Type v inst✝⁴ : Ring K inst✝³ : AddCommGroup V inst✝² : Module K V inst✝¹ : NoZeroSMulDivisors K V inst✝ : StrongRankCondition K this : Nontrivial K h : ∀ (w : V), ∃ c, c • 0 = w w : V ⊢ w = 0 [PROOFSTEP] obtain ⟨c, rfl⟩ := h w [GOAL] case intro K : Type u V : Type v inst✝⁴ : Ring K inst✝³ : AddCommGroup V inst✝² : Module K V inst✝¹ : NoZeroSMulDivisors K V inst✝ : StrongRankCondition K this : Nontrivial K h : ∀ (w : V), ∃ c, c • 0 = w c : K ⊢ c • 0 = 0 [PROOFSTEP] simp [GOAL] case inl K : Type u V : Type v inst✝⁴ : Ring K inst✝³ : AddCommGroup V inst✝² : Module K V inst✝¹ : NoZeroSMulDivisors K V inst✝ : StrongRankCondition K this✝ : Nontrivial K h : ∀ (w : V), ∃ c, c • 0 = w this : Subsingleton V ⊢ finrank K V ≤ 1 [PROOFSTEP] rw [finrank_zero_of_subsingleton] [GOAL] case inl K : Type u V : Type v inst✝⁴ : Ring K inst✝³ : AddCommGroup V inst✝² : Module K V inst✝¹ : NoZeroSMulDivisors K V inst✝ : StrongRankCondition K this✝ : Nontrivial K h : ∀ (w : V), ∃ c, c • 0 = w this : Subsingleton V ⊢ 0 ≤ 1 [PROOFSTEP] exact zero_le_one [GOAL] case inr K : Type u V : Type v inst✝⁴ : Ring K inst✝³ : AddCommGroup V inst✝² : Module K V inst✝¹ : NoZeroSMulDivisors K V inst✝ : StrongRankCondition K v : V h : ∀ (w : V), ∃ c, c • v = w this : Nontrivial K hn : v ≠ 0 ⊢ finrank K V ≤ 1 [PROOFSTEP] exact (finrank_eq_one v hn h).le [GOAL] K : Type u V : Type v F : Type u_1 E : Type u_2 inst✝² : CommRing F inst✝¹ : Ring E inst✝ : Algebra F E ⊢ Module.rank F { x // x ∈ ⊤ } = Module.rank F { x // x ∈ ⊤ } [PROOFSTEP] rw [← Algebra.top_toSubmodule] [GOAL] K : Type u V : Type v F : Type u_1 E : Type u_2 inst✝² : CommRing F inst✝¹ : Ring E inst✝ : Algebra F E ⊢ Module.rank F { x // x ∈ ⊤ } = Module.rank F { x // x ∈ ↑Subalgebra.toSubmodule ⊤ } [PROOFSTEP] rfl [GOAL] K : Type u V : Type v F : Type u_1 E : Type u_2 inst✝² : CommRing F inst✝¹ : Ring E inst✝ : Algebra F E ⊢ finrank F { x // x ∈ ⊤ } = finrank F { x // x ∈ ⊤ } [PROOFSTEP] rw [← Algebra.top_toSubmodule] [GOAL] K : Type u V : Type v F : Type u_1 E : Type u_2 inst✝² : CommRing F inst✝¹ : Ring E inst✝ : Algebra F E ⊢ finrank F { x // x ∈ ⊤ } = finrank F { x // x ∈ ↑Subalgebra.toSubmodule ⊤ } [PROOFSTEP] rfl [GOAL] K : Type u V : Type v F : Type u_1 E : Type u_2 inst✝² : CommRing F inst✝¹ : Ring E inst✝ : Algebra F E ⊢ Module.rank F { x // x ∈ ⊤ } = Module.rank F E [PROOFSTEP] rw [subalgebra_top_rank_eq_submodule_top_rank] [GOAL] K : Type u V : Type v F : Type u_1 E : Type u_2 inst✝² : CommRing F inst✝¹ : Ring E inst✝ : Algebra F E ⊢ Module.rank F { x // x ∈ ⊤ } = Module.rank F E [PROOFSTEP] exact _root_.rank_top F E [GOAL] K : Type u V : Type v F : Type u_1 E : Type u_2 inst✝⁵ : CommRing F inst✝⁴ : Ring E inst✝³ : Algebra F E inst✝² : StrongRankCondition F inst✝¹ : NoZeroSMulDivisors F E inst✝ : Nontrivial E ⊢ Module.rank F { x // x ∈ span F {1} } = 1 [PROOFSTEP] letI := Module.nontrivial F E [GOAL] K : Type u V : Type v F : Type u_1 E : Type u_2 inst✝⁵ : CommRing F inst✝⁴ : Ring E inst✝³ : Algebra F E inst✝² : StrongRankCondition F inst✝¹ : NoZeroSMulDivisors F E inst✝ : Nontrivial E this : Nontrivial F := Module.nontrivial F E ⊢ Module.rank F { x // x ∈ span F {1} } = 1 [PROOFSTEP] rw [rank_span_set] [GOAL] K : Type u V : Type v F : Type u_1 E : Type u_2 inst✝⁵ : CommRing F inst✝⁴ : Ring E inst✝³ : Algebra F E inst✝² : StrongRankCondition F inst✝¹ : NoZeroSMulDivisors F E inst✝ : Nontrivial E this : Nontrivial F := Module.nontrivial F E ⊢ #↑{1} = 1 K : Type u V : Type v F : Type u_1 E : Type u_2 inst✝⁵ : CommRing F inst✝⁴ : Ring E inst✝³ : Algebra F E inst✝² : StrongRankCondition F inst✝¹ : NoZeroSMulDivisors F E inst✝ : Nontrivial E this : Nontrivial F := Module.nontrivial F E ⊢ LinearIndependent F fun x => ↑x [PROOFSTEP] exacts [mk_singleton _, linearIndependent_singleton one_ne_zero] [GOAL] K : Type u V : Type v F : Type u_1 E : Type u_2 inst✝⁵ : CommRing F inst✝⁴ : Ring E inst✝³ : Algebra F E inst✝² : StrongRankCondition F inst✝¹ : NoZeroSMulDivisors F E inst✝ : Nontrivial E ⊢ Module.rank F { x // x ∈ ⊥ } = ↑1 [PROOFSTEP] simp
{"mathlib_filename": "Mathlib.LinearAlgebra.Finrank", "llama_tokens": 21476}
[GOAL] ι : Type u_1 R : Type u_2 inst✝⁸ : CommRing R Ms : ι → Type u_3 inst✝⁷ : (i : ι) → AddCommGroup (Ms i) inst✝⁶ : (i : ι) → Module R (Ms i) N : Type u_4 inst✝⁵ : AddCommGroup N inst✝⁴ : Module R N Ns : ι → Type u_5 inst✝³ : (i : ι) → AddCommGroup (Ns i) inst✝² : (i : ι) → Module R (Ns i) inst✝¹ : Fintype ι inst✝ : DecidableEq ι p : (i : ι) → Submodule R (Ms i) q : Submodule R N f : (i : ι) → Ms i →ₗ[R] N hf : ∀ (i : ι), p i ≤ comap (f i) q x : (i : ι) → Ms i ⊢ (↑(piQuotientLift p q f hf) fun i => Quotient.mk (x i)) = Quotient.mk (↑(↑(lsum R (fun i => Ms i) R) f) x) [PROOFSTEP] rw [piQuotientLift, lsum_apply, sum_apply, ← mkQ_apply, lsum_apply, sum_apply, _root_.map_sum] [GOAL] ι : Type u_1 R : Type u_2 inst✝⁸ : CommRing R Ms : ι → Type u_3 inst✝⁷ : (i : ι) → AddCommGroup (Ms i) inst✝⁶ : (i : ι) → Module R (Ms i) N : Type u_4 inst✝⁵ : AddCommGroup N inst✝⁴ : Module R N Ns : ι → Type u_5 inst✝³ : (i : ι) → AddCommGroup (Ns i) inst✝² : (i : ι) → Module R (Ns i) inst✝¹ : Fintype ι inst✝ : DecidableEq ι p : (i : ι) → Submodule R (Ms i) q : Submodule R N f : (i : ι) → Ms i →ₗ[R] N hf : ∀ (i : ι), p i ≤ comap (f i) q x : (i : ι) → Ms i ⊢ (Finset.sum Finset.univ fun d => ↑(comp (mapQ (p d) q (f d) (_ : p d ≤ comap (f d) q)) (proj d)) fun i => Quotient.mk (x i)) = Finset.sum Finset.univ fun x_1 => ↑(mkQ q) (↑(comp (f x_1) (proj x_1)) x) [PROOFSTEP] simp only [coe_proj, mapQ_apply, mkQ_apply, comp_apply] [GOAL] ι : Type u_1 R : Type u_2 inst✝⁸ : CommRing R Ms : ι → Type u_3 inst✝⁷ : (i : ι) → AddCommGroup (Ms i) inst✝⁶ : (i : ι) → Module R (Ms i) N : Type u_4 inst✝⁵ : AddCommGroup N inst✝⁴ : Module R N Ns : ι → Type u_5 inst✝³ : (i : ι) → AddCommGroup (Ns i) inst✝² : (i : ι) → Module R (Ns i) inst✝¹ : Fintype ι inst✝ : DecidableEq ι p : (i : ι) → Submodule R (Ms i) q : Submodule R N f : (i : ι) → Ms i →ₗ[R] N hf : ∀ (i : ι), p i ≤ comap (f i) q i : ι x : Ms i ⧸ p i ⊢ ↑(piQuotientLift p q f hf) (Pi.single i x) = ↑(mapQ (p i) q (f i) (_ : p i ≤ comap (f i) q)) x [PROOFSTEP] simp_rw [piQuotientLift, lsum_apply, sum_apply, comp_apply, proj_apply] [GOAL] ι : Type u_1 R : Type u_2 inst✝⁸ : CommRing R Ms : ι → Type u_3 inst✝⁷ : (i : ι) → AddCommGroup (Ms i) inst✝⁶ : (i : ι) → Module R (Ms i) N : Type u_4 inst✝⁵ : AddCommGroup N inst✝⁴ : Module R N Ns : ι → Type u_5 inst✝³ : (i : ι) → AddCommGroup (Ns i) inst✝² : (i : ι) → Module R (Ns i) inst✝¹ : Fintype ι inst✝ : DecidableEq ι p : (i : ι) → Submodule R (Ms i) q : Submodule R N f : (i : ι) → Ms i →ₗ[R] N hf : ∀ (i : ι), p i ≤ comap (f i) q i : ι x : Ms i ⧸ p i ⊢ (Finset.sum Finset.univ fun x_1 => ↑(mapQ (p x_1) q (f x_1) (_ : p x_1 ≤ comap (f x_1) q)) (Pi.single i x x_1)) = ↑(mapQ (p i) q (f i) (_ : p i ≤ comap (f i) q)) x [PROOFSTEP] rw [Finset.sum_eq_single i] [GOAL] ι : Type u_1 R : Type u_2 inst✝⁸ : CommRing R Ms : ι → Type u_3 inst✝⁷ : (i : ι) → AddCommGroup (Ms i) inst✝⁶ : (i : ι) → Module R (Ms i) N : Type u_4 inst✝⁵ : AddCommGroup N inst✝⁴ : Module R N Ns : ι → Type u_5 inst✝³ : (i : ι) → AddCommGroup (Ns i) inst✝² : (i : ι) → Module R (Ns i) inst✝¹ : Fintype ι inst✝ : DecidableEq ι p : (i : ι) → Submodule R (Ms i) q : Submodule R N f : (i : ι) → Ms i →ₗ[R] N hf : ∀ (i : ι), p i ≤ comap (f i) q i : ι x : Ms i ⧸ p i ⊢ ↑(mapQ (p i) q (f i) (_ : p i ≤ comap (f i) q)) (Pi.single i x i) = ↑(mapQ (p i) q (f i) (_ : p i ≤ comap (f i) q)) x [PROOFSTEP] rw [Pi.single_eq_same] [GOAL] case h₀ ι : Type u_1 R : Type u_2 inst✝⁸ : CommRing R Ms : ι → Type u_3 inst✝⁷ : (i : ι) → AddCommGroup (Ms i) inst✝⁶ : (i : ι) → Module R (Ms i) N : Type u_4 inst✝⁵ : AddCommGroup N inst✝⁴ : Module R N Ns : ι → Type u_5 inst✝³ : (i : ι) → AddCommGroup (Ns i) inst✝² : (i : ι) → Module R (Ns i) inst✝¹ : Fintype ι inst✝ : DecidableEq ι p : (i : ι) → Submodule R (Ms i) q : Submodule R N f : (i : ι) → Ms i →ₗ[R] N hf : ∀ (i : ι), p i ≤ comap (f i) q i : ι x : Ms i ⧸ p i ⊢ ∀ (b : ι), b ∈ Finset.univ → b ≠ i → ↑(mapQ (p b) q (f b) (_ : p b ≤ comap (f b) q)) (Pi.single i x b) = 0 [PROOFSTEP] rintro j - hj [GOAL] case h₀ ι : Type u_1 R : Type u_2 inst✝⁸ : CommRing R Ms : ι → Type u_3 inst✝⁷ : (i : ι) → AddCommGroup (Ms i) inst✝⁶ : (i : ι) → Module R (Ms i) N : Type u_4 inst✝⁵ : AddCommGroup N inst✝⁴ : Module R N Ns : ι → Type u_5 inst✝³ : (i : ι) → AddCommGroup (Ns i) inst✝² : (i : ι) → Module R (Ns i) inst✝¹ : Fintype ι inst✝ : DecidableEq ι p : (i : ι) → Submodule R (Ms i) q : Submodule R N f : (i : ι) → Ms i →ₗ[R] N hf : ∀ (i : ι), p i ≤ comap (f i) q i : ι x : Ms i ⧸ p i j : ι hj : j ≠ i ⊢ ↑(mapQ (p j) q (f j) (_ : p j ≤ comap (f j) q)) (Pi.single i x j) = 0 [PROOFSTEP] rw [Pi.single_eq_of_ne hj, _root_.map_zero] [GOAL] case h₁ ι : Type u_1 R : Type u_2 inst✝⁸ : CommRing R Ms : ι → Type u_3 inst✝⁷ : (i : ι) → AddCommGroup (Ms i) inst✝⁶ : (i : ι) → Module R (Ms i) N : Type u_4 inst✝⁵ : AddCommGroup N inst✝⁴ : Module R N Ns : ι → Type u_5 inst✝³ : (i : ι) → AddCommGroup (Ns i) inst✝² : (i : ι) → Module R (Ns i) inst✝¹ : Fintype ι inst✝ : DecidableEq ι p : (i : ι) → Submodule R (Ms i) q : Submodule R N f : (i : ι) → Ms i →ₗ[R] N hf : ∀ (i : ι), p i ≤ comap (f i) q i : ι x : Ms i ⧸ p i ⊢ ¬i ∈ Finset.univ → ↑(mapQ (p i) q (f i) (_ : p i ≤ comap (f i) q)) (Pi.single i x i) = 0 [PROOFSTEP] intros [GOAL] case h₁ ι : Type u_1 R : Type u_2 inst✝⁸ : CommRing R Ms : ι → Type u_3 inst✝⁷ : (i : ι) → AddCommGroup (Ms i) inst✝⁶ : (i : ι) → Module R (Ms i) N : Type u_4 inst✝⁵ : AddCommGroup N inst✝⁴ : Module R N Ns : ι → Type u_5 inst✝³ : (i : ι) → AddCommGroup (Ns i) inst✝² : (i : ι) → Module R (Ns i) inst✝¹ : Fintype ι inst✝ : DecidableEq ι p : (i : ι) → Submodule R (Ms i) q : Submodule R N f : (i : ι) → Ms i →ₗ[R] N hf : ∀ (i : ι), p i ≤ comap (f i) q i : ι x : Ms i ⧸ p i a✝ : ¬i ∈ Finset.univ ⊢ ↑(mapQ (p i) q (f i) (_ : p i ≤ comap (f i) q)) (Pi.single i x i) = 0 [PROOFSTEP] have := Finset.mem_univ i [GOAL] case h₁ ι : Type u_1 R : Type u_2 inst✝⁸ : CommRing R Ms : ι → Type u_3 inst✝⁷ : (i : ι) → AddCommGroup (Ms i) inst✝⁶ : (i : ι) → Module R (Ms i) N : Type u_4 inst✝⁵ : AddCommGroup N inst✝⁴ : Module R N Ns : ι → Type u_5 inst✝³ : (i : ι) → AddCommGroup (Ns i) inst✝² : (i : ι) → Module R (Ns i) inst✝¹ : Fintype ι inst✝ : DecidableEq ι p : (i : ι) → Submodule R (Ms i) q : Submodule R N f : (i : ι) → Ms i →ₗ[R] N hf : ∀ (i : ι), p i ≤ comap (f i) q i : ι x : Ms i ⧸ p i a✝ : ¬i ∈ Finset.univ this : i ∈ Finset.univ ⊢ ↑(mapQ (p i) q (f i) (_ : p i ≤ comap (f i) q)) (Pi.single i x i) = 0 [PROOFSTEP] contradiction [GOAL] ι : Type u_1 R : Type u_2 inst✝⁶ : CommRing R Ms : ι → Type u_3 inst✝⁵ : (i : ι) → AddCommGroup (Ms i) inst✝⁴ : (i : ι) → Module R (Ms i) N : Type u_4 inst✝³ : AddCommGroup N inst✝² : Module R N Ns : ι → Type u_5 inst✝¹ : (i : ι) → AddCommGroup (Ns i) inst✝ : (i : ι) → Module R (Ns i) p : (i : ι) → Submodule R (Ms i) f : (i : ι) → Ms i →ₗ[R] Ns i hf : ∀ (i : ι), p i ≤ ker (f i) x : (i : ι) → Ms i hx : x ∈ pi Set.univ p ⊢ ↑(LinearMap.pi fun i => comp (f i) (proj i)) x = 0 [PROOFSTEP] ext i [GOAL] case h ι : Type u_1 R : Type u_2 inst✝⁶ : CommRing R Ms : ι → Type u_3 inst✝⁵ : (i : ι) → AddCommGroup (Ms i) inst✝⁴ : (i : ι) → Module R (Ms i) N : Type u_4 inst✝³ : AddCommGroup N inst✝² : Module R N Ns : ι → Type u_5 inst✝¹ : (i : ι) → AddCommGroup (Ns i) inst✝ : (i : ι) → Module R (Ns i) p : (i : ι) → Submodule R (Ms i) f : (i : ι) → Ms i →ₗ[R] Ns i hf : ∀ (i : ι), p i ≤ ker (f i) x : (i : ι) → Ms i hx : x ∈ pi Set.univ p i : ι ⊢ ↑(LinearMap.pi fun i => comp (f i) (proj i)) x i = OfNat.ofNat 0 i [PROOFSTEP] simpa using hf i (mem_pi.mp hx i (Set.mem_univ i)) [GOAL] ι : Type u_1 R : Type u_2 inst✝⁸ : CommRing R Ms : ι → Type u_3 inst✝⁷ : (i : ι) → AddCommGroup (Ms i) inst✝⁶ : (i : ι) → Module R (Ms i) N : Type u_4 inst✝⁵ : AddCommGroup N inst✝⁴ : Module R N Ns : ι → Type u_5 inst✝³ : (i : ι) → AddCommGroup (Ns i) inst✝² : (i : ι) → Module R (Ns i) inst✝¹ : Fintype ι inst✝ : DecidableEq ι p : (i : ι) → Submodule R (Ms i) x : ((i : ι) → Ms i) ⧸ pi Set.univ p x' : (i : ι) → Ms i ⊢ invFun p (toFun p (Quotient.mk'' x')) = Quotient.mk'' x' [PROOFSTEP] rw [Quotient.mk''_eq_mk x'] [GOAL] ι : Type u_1 R : Type u_2 inst✝⁸ : CommRing R Ms : ι → Type u_3 inst✝⁷ : (i : ι) → AddCommGroup (Ms i) inst✝⁶ : (i : ι) → Module R (Ms i) N : Type u_4 inst✝⁵ : AddCommGroup N inst✝⁴ : Module R N Ns : ι → Type u_5 inst✝³ : (i : ι) → AddCommGroup (Ns i) inst✝² : (i : ι) → Module R (Ns i) inst✝¹ : Fintype ι inst✝ : DecidableEq ι p : (i : ι) → Submodule R (Ms i) x : ((i : ι) → Ms i) ⧸ pi Set.univ p x' : (i : ι) → Ms i ⊢ invFun p (toFun p (Quotient.mk x')) = Quotient.mk x' [PROOFSTEP] dsimp only [toFun, invFun] [GOAL] ι : Type u_1 R : Type u_2 inst✝⁸ : CommRing R Ms : ι → Type u_3 inst✝⁷ : (i : ι) → AddCommGroup (Ms i) inst✝⁶ : (i : ι) → Module R (Ms i) N : Type u_4 inst✝⁵ : AddCommGroup N inst✝⁴ : Module R N Ns : ι → Type u_5 inst✝³ : (i : ι) → AddCommGroup (Ns i) inst✝² : (i : ι) → Module R (Ns i) inst✝¹ : Fintype ι inst✝ : DecidableEq ι p : (i : ι) → Submodule R (Ms i) x : ((i : ι) → Ms i) ⧸ pi Set.univ p x' : (i : ι) → Ms i ⊢ ↑(piQuotientLift p (pi Set.univ p) single (_ : ∀ (x : ι), p x ≤ comap (single x) (pi Set.univ p))) (↑(quotientPiLift p (fun i => mkQ (p i)) (_ : ∀ (i : ι), p i ≤ ker (mkQ (p i)))) (Quotient.mk x')) = Quotient.mk x' [PROOFSTEP] rw [quotientPiLift_mk p, funext fun i => (mkQ_apply (p i) (x' i)), piQuotientLift_mk p, lsum_single, id_apply] [GOAL] ι : Type u_1 R : Type u_2 inst✝⁸ : CommRing R Ms : ι → Type u_3 inst✝⁷ : (i : ι) → AddCommGroup (Ms i) inst✝⁶ : (i : ι) → Module R (Ms i) N : Type u_4 inst✝⁵ : AddCommGroup N inst✝⁴ : Module R N Ns : ι → Type u_5 inst✝³ : (i : ι) → AddCommGroup (Ns i) inst✝² : (i : ι) → Module R (Ns i) inst✝¹ : Fintype ι inst✝ : DecidableEq ι p : (i : ι) → Submodule R (Ms i) ⊢ Function.RightInverse (invFun p) (toFun p) [PROOFSTEP] dsimp only [toFun, invFun] [GOAL] ι : Type u_1 R : Type u_2 inst✝⁸ : CommRing R Ms : ι → Type u_3 inst✝⁷ : (i : ι) → AddCommGroup (Ms i) inst✝⁶ : (i : ι) → Module R (Ms i) N : Type u_4 inst✝⁵ : AddCommGroup N inst✝⁴ : Module R N Ns : ι → Type u_5 inst✝³ : (i : ι) → AddCommGroup (Ns i) inst✝² : (i : ι) → Module R (Ns i) inst✝¹ : Fintype ι inst✝ : DecidableEq ι p : (i : ι) → Submodule R (Ms i) ⊢ Function.RightInverse ↑(piQuotientLift p (pi Set.univ p) single (_ : ∀ (x : ι), p x ≤ comap (single x) (pi Set.univ p))) ↑(quotientPiLift p (fun i => mkQ (p i)) (_ : ∀ (i : ι), p i ≤ ker (mkQ (p i)))) [PROOFSTEP] rw [Function.rightInverse_iff_comp, ← coe_comp, ← @id_coe R] [GOAL] ι : Type u_1 R : Type u_2 inst✝⁸ : CommRing R Ms : ι → Type u_3 inst✝⁷ : (i : ι) → AddCommGroup (Ms i) inst✝⁶ : (i : ι) → Module R (Ms i) N : Type u_4 inst✝⁵ : AddCommGroup N inst✝⁴ : Module R N Ns : ι → Type u_5 inst✝³ : (i : ι) → AddCommGroup (Ns i) inst✝² : (i : ι) → Module R (Ns i) inst✝¹ : Fintype ι inst✝ : DecidableEq ι p : (i : ι) → Submodule R (Ms i) ⊢ ↑(comp (quotientPiLift p (fun i => mkQ (p i)) (_ : ∀ (i : ι), p i ≤ ker (mkQ (p i)))) (piQuotientLift p (pi Set.univ p) single (_ : ∀ (x : ι), p x ≤ comap (single x) (pi Set.univ p)))) = ↑LinearMap.id [PROOFSTEP] refine' congr_arg _ (pi_ext fun i x => Quotient.inductionOn' x fun x' => funext fun j => _) [GOAL] ι : Type u_1 R : Type u_2 inst✝⁸ : CommRing R Ms : ι → Type u_3 inst✝⁷ : (i : ι) → AddCommGroup (Ms i) inst✝⁶ : (i : ι) → Module R (Ms i) N : Type u_4 inst✝⁵ : AddCommGroup N inst✝⁴ : Module R N Ns : ι → Type u_5 inst✝³ : (i : ι) → AddCommGroup (Ns i) inst✝² : (i : ι) → Module R (Ns i) inst✝¹ : Fintype ι inst✝ : DecidableEq ι p : (i : ι) → Submodule R (Ms i) i : ι x : Ms i ⧸ p i x' : Ms i j : ι ⊢ ↑(comp (quotientPiLift p (fun i => mkQ (p i)) (_ : ∀ (i : ι), p i ≤ ker (mkQ (p i)))) (piQuotientLift p (pi Set.univ p) single (_ : ∀ (x : ι), p x ≤ comap (single x) (pi Set.univ p)))) (Pi.single i (Quotient.mk'' x')) j = ↑LinearMap.id (Pi.single i (Quotient.mk'' x')) j [PROOFSTEP] rw [comp_apply, piQuotientLift_single, Quotient.mk''_eq_mk, mapQ_apply, quotientPiLift_mk, id_apply] [GOAL] ι : Type u_1 R : Type u_2 inst✝⁸ : CommRing R Ms : ι → Type u_3 inst✝⁷ : (i : ι) → AddCommGroup (Ms i) inst✝⁶ : (i : ι) → Module R (Ms i) N : Type u_4 inst✝⁵ : AddCommGroup N inst✝⁴ : Module R N Ns : ι → Type u_5 inst✝³ : (i : ι) → AddCommGroup (Ns i) inst✝² : (i : ι) → Module R (Ns i) inst✝¹ : Fintype ι inst✝ : DecidableEq ι p : (i : ι) → Submodule R (Ms i) i : ι x : Ms i ⧸ p i x' : Ms i j : ι ⊢ (fun i_1 => ↑(mkQ (p i_1)) (↑(single i) x' i_1)) j = Pi.single i (Quotient.mk x') j [PROOFSTEP] by_cases hij : i = j [GOAL] case pos ι : Type u_1 R : Type u_2 inst✝⁸ : CommRing R Ms : ι → Type u_3 inst✝⁷ : (i : ι) → AddCommGroup (Ms i) inst✝⁶ : (i : ι) → Module R (Ms i) N : Type u_4 inst✝⁵ : AddCommGroup N inst✝⁴ : Module R N Ns : ι → Type u_5 inst✝³ : (i : ι) → AddCommGroup (Ns i) inst✝² : (i : ι) → Module R (Ns i) inst✝¹ : Fintype ι inst✝ : DecidableEq ι p : (i : ι) → Submodule R (Ms i) i : ι x : Ms i ⧸ p i x' : Ms i j : ι hij : i = j ⊢ (fun i_1 => ↑(mkQ (p i_1)) (↑(single i) x' i_1)) j = Pi.single i (Quotient.mk x') j [PROOFSTEP] simp only [mkQ_apply, coe_single] [GOAL] case neg ι : Type u_1 R : Type u_2 inst✝⁸ : CommRing R Ms : ι → Type u_3 inst✝⁷ : (i : ι) → AddCommGroup (Ms i) inst✝⁶ : (i : ι) → Module R (Ms i) N : Type u_4 inst✝⁵ : AddCommGroup N inst✝⁴ : Module R N Ns : ι → Type u_5 inst✝³ : (i : ι) → AddCommGroup (Ns i) inst✝² : (i : ι) → Module R (Ns i) inst✝¹ : Fintype ι inst✝ : DecidableEq ι p : (i : ι) → Submodule R (Ms i) i : ι x : Ms i ⧸ p i x' : Ms i j : ι hij : ¬i = j ⊢ (fun i_1 => ↑(mkQ (p i_1)) (↑(single i) x' i_1)) j = Pi.single i (Quotient.mk x') j [PROOFSTEP] simp only [mkQ_apply, coe_single] [GOAL] case pos ι : Type u_1 R : Type u_2 inst✝⁸ : CommRing R Ms : ι → Type u_3 inst✝⁷ : (i : ι) → AddCommGroup (Ms i) inst✝⁶ : (i : ι) → Module R (Ms i) N : Type u_4 inst✝⁵ : AddCommGroup N inst✝⁴ : Module R N Ns : ι → Type u_5 inst✝³ : (i : ι) → AddCommGroup (Ns i) inst✝² : (i : ι) → Module R (Ns i) inst✝¹ : Fintype ι inst✝ : DecidableEq ι p : (i : ι) → Submodule R (Ms i) i : ι x : Ms i ⧸ p i x' : Ms i j : ι hij : i = j ⊢ Quotient.mk (Pi.single i x' j) = Pi.single i (Quotient.mk x') j [PROOFSTEP] subst hij [GOAL] case pos ι : Type u_1 R : Type u_2 inst✝⁸ : CommRing R Ms : ι → Type u_3 inst✝⁷ : (i : ι) → AddCommGroup (Ms i) inst✝⁶ : (i : ι) → Module R (Ms i) N : Type u_4 inst✝⁵ : AddCommGroup N inst✝⁴ : Module R N Ns : ι → Type u_5 inst✝³ : (i : ι) → AddCommGroup (Ns i) inst✝² : (i : ι) → Module R (Ns i) inst✝¹ : Fintype ι inst✝ : DecidableEq ι p : (i : ι) → Submodule R (Ms i) i : ι x : Ms i ⧸ p i x' : Ms i ⊢ Quotient.mk (Pi.single i x' i) = Pi.single i (Quotient.mk x') i [PROOFSTEP] rw [Pi.single_eq_same, Pi.single_eq_same] [GOAL] case neg ι : Type u_1 R : Type u_2 inst✝⁸ : CommRing R Ms : ι → Type u_3 inst✝⁷ : (i : ι) → AddCommGroup (Ms i) inst✝⁶ : (i : ι) → Module R (Ms i) N : Type u_4 inst✝⁵ : AddCommGroup N inst✝⁴ : Module R N Ns : ι → Type u_5 inst✝³ : (i : ι) → AddCommGroup (Ns i) inst✝² : (i : ι) → Module R (Ns i) inst✝¹ : Fintype ι inst✝ : DecidableEq ι p : (i : ι) → Submodule R (Ms i) i : ι x : Ms i ⧸ p i x' : Ms i j : ι hij : ¬i = j ⊢ Quotient.mk (Pi.single i x' j) = Pi.single i (Quotient.mk x') j [PROOFSTEP] rw [Pi.single_eq_of_ne (Ne.symm hij), Pi.single_eq_of_ne (Ne.symm hij), Quotient.mk_zero]
{"mathlib_filename": "Mathlib.LinearAlgebra.QuotientPi", "llama_tokens": 8458}
[GOAL] R : Type u_1 inst✝³² : Semiring R S : Type u_2 inst✝³¹ : Semiring S R₂ : Type u_3 inst✝³⁰ : Semiring R₂ S₂ : Type u_4 inst✝²⁹ : Semiring S₂ M : Type u_5 N : Type u_6 P : Type u_7 M₂ : Type u_8 N₂ : Type u_9 P₂ : Type u_10 Nₗ : Type u_11 Pₗ : Type u_12 M' : Type u_13 N' : Type u_14 P' : Type u_15 inst✝²⁸ : AddCommMonoid M inst✝²⁷ : AddCommMonoid N inst✝²⁶ : AddCommMonoid P inst✝²⁵ : AddCommMonoid M₂ inst✝²⁴ : AddCommMonoid N₂ inst✝²³ : AddCommMonoid P₂ inst✝²² : AddCommMonoid Nₗ inst✝²¹ : AddCommMonoid Pₗ inst✝²⁰ : AddCommGroup M' inst✝¹⁹ : AddCommGroup N' inst✝¹⁸ : AddCommGroup P' inst✝¹⁷ : Module R M inst✝¹⁶ : Module S N inst✝¹⁵ : Module R₂ P inst✝¹⁴ : Module S₂ P inst✝¹³ : Module R M₂ inst✝¹² : Module S N₂ inst✝¹¹ : Module R P₂ inst✝¹⁰ : Module S₂ P₂ inst✝⁹ : Module R Pₗ inst✝⁸ : Module S Pₗ inst✝⁷ : Module R M' inst✝⁶ : Module S N' inst✝⁵ : Module R₂ P' inst✝⁴ : Module S₂ P' inst✝³ : SMulCommClass S₂ R₂ P inst✝² : SMulCommClass S R Pₗ inst✝¹ : SMulCommClass S₂ R₂ P' inst✝ : SMulCommClass S₂ R P₂ ρ₁₂ : R →+* R₂ σ₁₂ : S →+* S₂ f : M →ₛₗ[ρ₁₂] N →ₛₗ[σ₁₂] P n : N m₁ m₂ : M ⊢ (fun n m => ↑(↑f m) n) n (m₁ + m₂) = (fun n m => ↑(↑f m) n) n m₁ + (fun n m => ↑(↑f m) n) n m₂ [PROOFSTEP] simp only [map_add, add_apply] [GOAL] R : Type u_1 inst✝³² : Semiring R S : Type u_2 inst✝³¹ : Semiring S R₂ : Type u_3 inst✝³⁰ : Semiring R₂ S₂ : Type u_4 inst✝²⁹ : Semiring S₂ M : Type u_5 N : Type u_6 P : Type u_7 M₂ : Type u_8 N₂ : Type u_9 P₂ : Type u_10 Nₗ : Type u_11 Pₗ : Type u_12 M' : Type u_13 N' : Type u_14 P' : Type u_15 inst✝²⁸ : AddCommMonoid M inst✝²⁷ : AddCommMonoid N inst✝²⁶ : AddCommMonoid P inst✝²⁵ : AddCommMonoid M₂ inst✝²⁴ : AddCommMonoid N₂ inst✝²³ : AddCommMonoid P₂ inst✝²² : AddCommMonoid Nₗ inst✝²¹ : AddCommMonoid Pₗ inst✝²⁰ : AddCommGroup M' inst✝¹⁹ : AddCommGroup N' inst✝¹⁸ : AddCommGroup P' inst✝¹⁷ : Module R M inst✝¹⁶ : Module S N inst✝¹⁵ : Module R₂ P inst✝¹⁴ : Module S₂ P inst✝¹³ : Module R M₂ inst✝¹² : Module S N₂ inst✝¹¹ : Module R P₂ inst✝¹⁰ : Module S₂ P₂ inst✝⁹ : Module R Pₗ inst✝⁸ : Module S Pₗ inst✝⁷ : Module R M' inst✝⁶ : Module S N' inst✝⁵ : Module R₂ P' inst✝⁴ : Module S₂ P' inst✝³ : SMulCommClass S₂ R₂ P inst✝² : SMulCommClass S R Pₗ inst✝¹ : SMulCommClass S₂ R₂ P' inst✝ : SMulCommClass S₂ R P₂ ρ₁₂ : R →+* R₂ σ₁₂ : S →+* S₂ f : M →ₛₗ[ρ₁₂] N →ₛₗ[σ₁₂] P c : R n : N m : M ⊢ (fun n m => ↑(↑f m) n) n (c • m) = ↑ρ₁₂ c • (fun n m => ↑(↑f m) n) n m [PROOFSTEP] simp only [map_smulₛₗ, smul_apply] [GOAL] R : Type u_1 inst✝³² : Semiring R S : Type u_2 inst✝³¹ : Semiring S R₂ : Type u_3 inst✝³⁰ : Semiring R₂ S₂ : Type u_4 inst✝²⁹ : Semiring S₂ M : Type u_5 N : Type u_6 P : Type u_7 M₂ : Type u_8 N₂ : Type u_9 P₂ : Type u_10 Nₗ : Type u_11 Pₗ : Type u_12 M' : Type u_13 N' : Type u_14 P' : Type u_15 inst✝²⁸ : AddCommMonoid M inst✝²⁷ : AddCommMonoid N inst✝²⁶ : AddCommMonoid P inst✝²⁵ : AddCommMonoid M₂ inst✝²⁴ : AddCommMonoid N₂ inst✝²³ : AddCommMonoid P₂ inst✝²² : AddCommMonoid Nₗ inst✝²¹ : AddCommMonoid Pₗ inst✝²⁰ : AddCommGroup M' inst✝¹⁹ : AddCommGroup N' inst✝¹⁸ : AddCommGroup P' inst✝¹⁷ : Module R M inst✝¹⁶ : Module S N inst✝¹⁵ : Module R₂ P inst✝¹⁴ : Module S₂ P inst✝¹³ : Module R M₂ inst✝¹² : Module S N₂ inst✝¹¹ : Module R P₂ inst✝¹⁰ : Module S₂ P₂ inst✝⁹ : Module R Pₗ inst✝⁸ : Module S Pₗ inst✝⁷ : Module R M' inst✝⁶ : Module S N' inst✝⁵ : Module R₂ P' inst✝⁴ : Module S₂ P' inst✝³ : SMulCommClass S₂ R₂ P inst✝² : SMulCommClass S R Pₗ inst✝¹ : SMulCommClass S₂ R₂ P' inst✝ : SMulCommClass S₂ R P₂ ρ₁₂ : R →+* R₂ σ₁₂ : S →+* S₂ f g : M →ₛₗ[ρ₁₂] N →ₛₗ[σ₁₂] P H : flip f = flip g m : M n : N ⊢ ↑(↑(flip f) n) m = ↑(↑(flip g) n) m [PROOFSTEP] rw [H] [GOAL] R : Type u_1 inst✝³² : Semiring R S : Type u_2 inst✝³¹ : Semiring S R₂ : Type u_3 inst✝³⁰ : Semiring R₂ S₂ : Type u_4 inst✝²⁹ : Semiring S₂ M : Type u_5 N : Type u_6 P : Type u_7 M₂ : Type u_8 N₂ : Type u_9 P₂ : Type u_10 Nₗ : Type u_11 Pₗ : Type u_12 M' : Type u_13 N' : Type u_14 P' : Type u_15 inst✝²⁸ : AddCommMonoid M inst✝²⁷ : AddCommMonoid N inst✝²⁶ : AddCommMonoid P inst✝²⁵ : AddCommMonoid M₂ inst✝²⁴ : AddCommMonoid N₂ inst✝²³ : AddCommMonoid P₂ inst✝²² : AddCommMonoid Nₗ inst✝²¹ : AddCommMonoid Pₗ inst✝²⁰ : AddCommGroup M' inst✝¹⁹ : AddCommGroup N' inst✝¹⁸ : AddCommGroup P' inst✝¹⁷ : Module R M inst✝¹⁶ : Module S N inst✝¹⁵ : Module R₂ P inst✝¹⁴ : Module S₂ P inst✝¹³ : Module R M₂ inst✝¹² : Module S N₂ inst✝¹¹ : Module R P₂ inst✝¹⁰ : Module S₂ P₂ inst✝⁹ : Module R Pₗ inst✝⁸ : Module S Pₗ inst✝⁷ : Module R M' inst✝⁶ : Module S N' inst✝⁵ : Module R₂ P' inst✝⁴ : Module S₂ P' inst✝³ : SMulCommClass S₂ R₂ P inst✝² : SMulCommClass S R Pₗ inst✝¹ : SMulCommClass S₂ R₂ P' inst✝ : SMulCommClass S₂ R P₂ ρ₁₂ : R →+* R₂ σ₁₂ : S →+* S₂ f : M →ₛₗ[ρ₁₂] N →ₛₗ[σ₁₂] P q : Submodule S N m₁ m₂ : M x✝ : { x // x ∈ q } ⊢ ↑((fun m => domRestrict (↑f m) q) (m₁ + m₂)) x✝ = ↑((fun m => domRestrict (↑f m) q) m₁ + (fun m => domRestrict (↑f m) q) m₂) x✝ [PROOFSTEP] simp only [map_add, domRestrict_apply, add_apply] [GOAL] R : Type u_1 inst✝³² : Semiring R S : Type u_2 inst✝³¹ : Semiring S R₂ : Type u_3 inst✝³⁰ : Semiring R₂ S₂ : Type u_4 inst✝²⁹ : Semiring S₂ M : Type u_5 N : Type u_6 P : Type u_7 M₂ : Type u_8 N₂ : Type u_9 P₂ : Type u_10 Nₗ : Type u_11 Pₗ : Type u_12 M' : Type u_13 N' : Type u_14 P' : Type u_15 inst✝²⁸ : AddCommMonoid M inst✝²⁷ : AddCommMonoid N inst✝²⁶ : AddCommMonoid P inst✝²⁵ : AddCommMonoid M₂ inst✝²⁴ : AddCommMonoid N₂ inst✝²³ : AddCommMonoid P₂ inst✝²² : AddCommMonoid Nₗ inst✝²¹ : AddCommMonoid Pₗ inst✝²⁰ : AddCommGroup M' inst✝¹⁹ : AddCommGroup N' inst✝¹⁸ : AddCommGroup P' inst✝¹⁷ : Module R M inst✝¹⁶ : Module S N inst✝¹⁵ : Module R₂ P inst✝¹⁴ : Module S₂ P inst✝¹³ : Module R M₂ inst✝¹² : Module S N₂ inst✝¹¹ : Module R P₂ inst✝¹⁰ : Module S₂ P₂ inst✝⁹ : Module R Pₗ inst✝⁸ : Module S Pₗ inst✝⁷ : Module R M' inst✝⁶ : Module S N' inst✝⁵ : Module R₂ P' inst✝⁴ : Module S₂ P' inst✝³ : SMulCommClass S₂ R₂ P inst✝² : SMulCommClass S R Pₗ inst✝¹ : SMulCommClass S₂ R₂ P' inst✝ : SMulCommClass S₂ R P₂ ρ₁₂ : R →+* R₂ σ₁₂ : S →+* S₂ f : M →ₛₗ[ρ₁₂] N →ₛₗ[σ₁₂] P q : Submodule S N c : R m : M x✝ : { x // x ∈ q } ⊢ ↑(AddHom.toFun { toFun := fun m => domRestrict (↑f m) q, map_add' := (_ : ∀ (m₁ m₂ : M), (fun m => domRestrict (↑f m) q) (m₁ + m₂) = (fun m => domRestrict (↑f m) q) m₁ + (fun m => domRestrict (↑f m) q) m₂) } (c • m)) x✝ = ↑(↑ρ₁₂ c • AddHom.toFun { toFun := fun m => domRestrict (↑f m) q, map_add' := (_ : ∀ (m₁ m₂ : M), (fun m => domRestrict (↑f m) q) (m₁ + m₂) = (fun m => domRestrict (↑f m) q) m₁ + (fun m => domRestrict (↑f m) q) m₂) } m) x✝ [PROOFSTEP] simp only [f.map_smulₛₗ, domRestrict_apply, smul_apply] [GOAL] R : Type u_1 inst✝²³ : CommSemiring R R₂ : Type u_2 inst✝²² : CommSemiring R₂ R₃ : Type u_3 inst✝²¹ : CommSemiring R₃ R₄ : Type u_4 inst✝²⁰ : CommSemiring R₄ M : Type u_5 N : Type u_6 P : Type u_7 Q : Type u_8 Mₗ : Type u_9 Nₗ : Type u_10 Pₗ : Type u_11 Qₗ : Type u_12 Qₗ' : Type u_13 inst✝¹⁹ : AddCommMonoid M inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : AddCommMonoid P inst✝¹⁶ : AddCommMonoid Q inst✝¹⁵ : AddCommMonoid Mₗ inst✝¹⁴ : AddCommMonoid Nₗ inst✝¹³ : AddCommMonoid Pₗ inst✝¹² : AddCommMonoid Qₗ inst✝¹¹ : AddCommMonoid Qₗ' inst✝¹⁰ : Module R M inst✝⁹ : Module R₂ N inst✝⁸ : Module R₃ P inst✝⁷ : Module R₄ Q inst✝⁶ : Module R Mₗ inst✝⁵ : Module R Nₗ inst✝⁴ : Module R Pₗ inst✝³ : Module R Qₗ inst✝² : Module R Qₗ' σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ σ₄₂ : R₄ →+* R₂ σ₄₃ : R₄ →+* R₃ inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝ : RingHomCompTriple σ₄₂ σ₂₃ σ₄₃ f : M →ₛₗ[σ₁₃] N →ₛₗ[σ₂₃] P ⊢ compl₂ f id = f [PROOFSTEP] ext [GOAL] case h.h R : Type u_1 inst✝²³ : CommSemiring R R₂ : Type u_2 inst✝²² : CommSemiring R₂ R₃ : Type u_3 inst✝²¹ : CommSemiring R₃ R₄ : Type u_4 inst✝²⁰ : CommSemiring R₄ M : Type u_5 N : Type u_6 P : Type u_7 Q : Type u_8 Mₗ : Type u_9 Nₗ : Type u_10 Pₗ : Type u_11 Qₗ : Type u_12 Qₗ' : Type u_13 inst✝¹⁹ : AddCommMonoid M inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : AddCommMonoid P inst✝¹⁶ : AddCommMonoid Q inst✝¹⁵ : AddCommMonoid Mₗ inst✝¹⁴ : AddCommMonoid Nₗ inst✝¹³ : AddCommMonoid Pₗ inst✝¹² : AddCommMonoid Qₗ inst✝¹¹ : AddCommMonoid Qₗ' inst✝¹⁰ : Module R M inst✝⁹ : Module R₂ N inst✝⁸ : Module R₃ P inst✝⁷ : Module R₄ Q inst✝⁶ : Module R Mₗ inst✝⁵ : Module R Nₗ inst✝⁴ : Module R Pₗ inst✝³ : Module R Qₗ inst✝² : Module R Qₗ' σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ σ₄₂ : R₄ →+* R₂ σ₄₃ : R₄ →+* R₃ inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝ : RingHomCompTriple σ₄₂ σ₂₃ σ₄₃ f : M →ₛₗ[σ₁₃] N →ₛₗ[σ₂₃] P x✝¹ : M x✝ : N ⊢ ↑(↑(compl₂ f id) x✝¹) x✝ = ↑(↑f x✝¹) x✝ [PROOFSTEP] rw [compl₂_apply, id_coe, id.def] [GOAL] R : Type u_1 inst✝²³ : CommSemiring R R₂ : Type u_2 inst✝²² : CommSemiring R₂ R₃ : Type u_3 inst✝²¹ : CommSemiring R₃ R₄ : Type u_4 inst✝²⁰ : CommSemiring R₄ M : Type u_5 N : Type u_6 P : Type u_7 Q : Type u_8 Mₗ : Type u_9 Nₗ : Type u_10 Pₗ : Type u_11 Qₗ : Type u_12 Qₗ' : Type u_13 inst✝¹⁹ : AddCommMonoid M inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : AddCommMonoid P inst✝¹⁶ : AddCommMonoid Q inst✝¹⁵ : AddCommMonoid Mₗ inst✝¹⁴ : AddCommMonoid Nₗ inst✝¹³ : AddCommMonoid Pₗ inst✝¹² : AddCommMonoid Qₗ inst✝¹¹ : AddCommMonoid Qₗ' inst✝¹⁰ : Module R M inst✝⁹ : Module R₂ N inst✝⁸ : Module R₃ P inst✝⁷ : Module R₄ Q inst✝⁶ : Module R Mₗ inst✝⁵ : Module R Nₗ inst✝⁴ : Module R Pₗ inst✝³ : Module R Qₗ inst✝² : Module R Qₗ' σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ σ₄₂ : R₄ →+* R₂ σ₄₃ : R₄ →+* R₃ inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝ : RingHomCompTriple σ₄₂ σ₂₃ σ₄₃ f✝ : M →ₛₗ[σ₁₃] N →ₛₗ[σ₂₃] P f : Mₗ →ₗ[R] Nₗ →ₗ[R] Pₗ ⊢ compl₁₂ f id id = f [PROOFSTEP] ext [GOAL] case h.h R : Type u_1 inst✝²³ : CommSemiring R R₂ : Type u_2 inst✝²² : CommSemiring R₂ R₃ : Type u_3 inst✝²¹ : CommSemiring R₃ R₄ : Type u_4 inst✝²⁰ : CommSemiring R₄ M : Type u_5 N : Type u_6 P : Type u_7 Q : Type u_8 Mₗ : Type u_9 Nₗ : Type u_10 Pₗ : Type u_11 Qₗ : Type u_12 Qₗ' : Type u_13 inst✝¹⁹ : AddCommMonoid M inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : AddCommMonoid P inst✝¹⁶ : AddCommMonoid Q inst✝¹⁵ : AddCommMonoid Mₗ inst✝¹⁴ : AddCommMonoid Nₗ inst✝¹³ : AddCommMonoid Pₗ inst✝¹² : AddCommMonoid Qₗ inst✝¹¹ : AddCommMonoid Qₗ' inst✝¹⁰ : Module R M inst✝⁹ : Module R₂ N inst✝⁸ : Module R₃ P inst✝⁷ : Module R₄ Q inst✝⁶ : Module R Mₗ inst✝⁵ : Module R Nₗ inst✝⁴ : Module R Pₗ inst✝³ : Module R Qₗ inst✝² : Module R Qₗ' σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ σ₄₂ : R₄ →+* R₂ σ₄₃ : R₄ →+* R₃ inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝ : RingHomCompTriple σ₄₂ σ₂₃ σ₄₃ f✝ : M →ₛₗ[σ₁₃] N →ₛₗ[σ₂₃] P f : Mₗ →ₗ[R] Nₗ →ₗ[R] Pₗ x✝¹ : Mₗ x✝ : Nₗ ⊢ ↑(↑(compl₁₂ f id id) x✝¹) x✝ = ↑(↑f x✝¹) x✝ [PROOFSTEP] simp_rw [compl₁₂_apply, id_coe, id.def] [GOAL] R : Type u_1 inst✝²³ : CommSemiring R R₂ : Type u_2 inst✝²² : CommSemiring R₂ R₃ : Type u_3 inst✝²¹ : CommSemiring R₃ R₄ : Type u_4 inst✝²⁰ : CommSemiring R₄ M : Type u_5 N : Type u_6 P : Type u_7 Q : Type u_8 Mₗ : Type u_9 Nₗ : Type u_10 Pₗ : Type u_11 Qₗ : Type u_12 Qₗ' : Type u_13 inst✝¹⁹ : AddCommMonoid M inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : AddCommMonoid P inst✝¹⁶ : AddCommMonoid Q inst✝¹⁵ : AddCommMonoid Mₗ inst✝¹⁴ : AddCommMonoid Nₗ inst✝¹³ : AddCommMonoid Pₗ inst✝¹² : AddCommMonoid Qₗ inst✝¹¹ : AddCommMonoid Qₗ' inst✝¹⁰ : Module R M inst✝⁹ : Module R₂ N inst✝⁸ : Module R₃ P inst✝⁷ : Module R₄ Q inst✝⁶ : Module R Mₗ inst✝⁵ : Module R Nₗ inst✝⁴ : Module R Pₗ inst✝³ : Module R Qₗ inst✝² : Module R Qₗ' σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ σ₄₂ : R₄ →+* R₂ σ₄₃ : R₄ →+* R₃ inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝ : RingHomCompTriple σ₄₂ σ₂₃ σ₄₃ f : M →ₛₗ[σ₁₃] N →ₛₗ[σ₂₃] P f₁ f₂ : Mₗ →ₗ[R] Nₗ →ₗ[R] Pₗ g : Qₗ →ₗ[R] Mₗ g' : Qₗ' →ₗ[R] Nₗ hₗ : Function.Surjective ↑g hᵣ : Function.Surjective ↑g' ⊢ compl₁₂ f₁ g g' = compl₁₂ f₂ g g' ↔ f₁ = f₂ [PROOFSTEP] constructor [GOAL] case mp R : Type u_1 inst✝²³ : CommSemiring R R₂ : Type u_2 inst✝²² : CommSemiring R₂ R₃ : Type u_3 inst✝²¹ : CommSemiring R₃ R₄ : Type u_4 inst✝²⁰ : CommSemiring R₄ M : Type u_5 N : Type u_6 P : Type u_7 Q : Type u_8 Mₗ : Type u_9 Nₗ : Type u_10 Pₗ : Type u_11 Qₗ : Type u_12 Qₗ' : Type u_13 inst✝¹⁹ : AddCommMonoid M inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : AddCommMonoid P inst✝¹⁶ : AddCommMonoid Q inst✝¹⁵ : AddCommMonoid Mₗ inst✝¹⁴ : AddCommMonoid Nₗ inst✝¹³ : AddCommMonoid Pₗ inst✝¹² : AddCommMonoid Qₗ inst✝¹¹ : AddCommMonoid Qₗ' inst✝¹⁰ : Module R M inst✝⁹ : Module R₂ N inst✝⁸ : Module R₃ P inst✝⁷ : Module R₄ Q inst✝⁶ : Module R Mₗ inst✝⁵ : Module R Nₗ inst✝⁴ : Module R Pₗ inst✝³ : Module R Qₗ inst✝² : Module R Qₗ' σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ σ₄₂ : R₄ →+* R₂ σ₄₃ : R₄ →+* R₃ inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝ : RingHomCompTriple σ₄₂ σ₂₃ σ₄₃ f : M →ₛₗ[σ₁₃] N →ₛₗ[σ₂₃] P f₁ f₂ : Mₗ →ₗ[R] Nₗ →ₗ[R] Pₗ g : Qₗ →ₗ[R] Mₗ g' : Qₗ' →ₗ[R] Nₗ hₗ : Function.Surjective ↑g hᵣ : Function.Surjective ↑g' ⊢ compl₁₂ f₁ g g' = compl₁₂ f₂ g g' → f₁ = f₂ [PROOFSTEP] intro h [GOAL] case mpr R : Type u_1 inst✝²³ : CommSemiring R R₂ : Type u_2 inst✝²² : CommSemiring R₂ R₃ : Type u_3 inst✝²¹ : CommSemiring R₃ R₄ : Type u_4 inst✝²⁰ : CommSemiring R₄ M : Type u_5 N : Type u_6 P : Type u_7 Q : Type u_8 Mₗ : Type u_9 Nₗ : Type u_10 Pₗ : Type u_11 Qₗ : Type u_12 Qₗ' : Type u_13 inst✝¹⁹ : AddCommMonoid M inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : AddCommMonoid P inst✝¹⁶ : AddCommMonoid Q inst✝¹⁵ : AddCommMonoid Mₗ inst✝¹⁴ : AddCommMonoid Nₗ inst✝¹³ : AddCommMonoid Pₗ inst✝¹² : AddCommMonoid Qₗ inst✝¹¹ : AddCommMonoid Qₗ' inst✝¹⁰ : Module R M inst✝⁹ : Module R₂ N inst✝⁸ : Module R₃ P inst✝⁷ : Module R₄ Q inst✝⁶ : Module R Mₗ inst✝⁵ : Module R Nₗ inst✝⁴ : Module R Pₗ inst✝³ : Module R Qₗ inst✝² : Module R Qₗ' σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ σ₄₂ : R₄ →+* R₂ σ₄₃ : R₄ →+* R₃ inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝ : RingHomCompTriple σ₄₂ σ₂₃ σ₄₃ f : M →ₛₗ[σ₁₃] N →ₛₗ[σ₂₃] P f₁ f₂ : Mₗ →ₗ[R] Nₗ →ₗ[R] Pₗ g : Qₗ →ₗ[R] Mₗ g' : Qₗ' →ₗ[R] Nₗ hₗ : Function.Surjective ↑g hᵣ : Function.Surjective ↑g' ⊢ f₁ = f₂ → compl₁₂ f₁ g g' = compl₁₂ f₂ g g' [PROOFSTEP] intro h [GOAL] case mp R : Type u_1 inst✝²³ : CommSemiring R R₂ : Type u_2 inst✝²² : CommSemiring R₂ R₃ : Type u_3 inst✝²¹ : CommSemiring R₃ R₄ : Type u_4 inst✝²⁰ : CommSemiring R₄ M : Type u_5 N : Type u_6 P : Type u_7 Q : Type u_8 Mₗ : Type u_9 Nₗ : Type u_10 Pₗ : Type u_11 Qₗ : Type u_12 Qₗ' : Type u_13 inst✝¹⁹ : AddCommMonoid M inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : AddCommMonoid P inst✝¹⁶ : AddCommMonoid Q inst✝¹⁵ : AddCommMonoid Mₗ inst✝¹⁴ : AddCommMonoid Nₗ inst✝¹³ : AddCommMonoid Pₗ inst✝¹² : AddCommMonoid Qₗ inst✝¹¹ : AddCommMonoid Qₗ' inst✝¹⁰ : Module R M inst✝⁹ : Module R₂ N inst✝⁸ : Module R₃ P inst✝⁷ : Module R₄ Q inst✝⁶ : Module R Mₗ inst✝⁵ : Module R Nₗ inst✝⁴ : Module R Pₗ inst✝³ : Module R Qₗ inst✝² : Module R Qₗ' σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ σ₄₂ : R₄ →+* R₂ σ₄₃ : R₄ →+* R₃ inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝ : RingHomCompTriple σ₄₂ σ₂₃ σ₄₃ f : M →ₛₗ[σ₁₃] N →ₛₗ[σ₂₃] P f₁ f₂ : Mₗ →ₗ[R] Nₗ →ₗ[R] Pₗ g : Qₗ →ₗ[R] Mₗ g' : Qₗ' →ₗ[R] Nₗ hₗ : Function.Surjective ↑g hᵣ : Function.Surjective ↑g' h : compl₁₂ f₁ g g' = compl₁₂ f₂ g g' ⊢ f₁ = f₂ [PROOFSTEP] ext x y [GOAL] case mp.h.h R : Type u_1 inst✝²³ : CommSemiring R R₂ : Type u_2 inst✝²² : CommSemiring R₂ R₃ : Type u_3 inst✝²¹ : CommSemiring R₃ R₄ : Type u_4 inst✝²⁰ : CommSemiring R₄ M : Type u_5 N : Type u_6 P : Type u_7 Q : Type u_8 Mₗ : Type u_9 Nₗ : Type u_10 Pₗ : Type u_11 Qₗ : Type u_12 Qₗ' : Type u_13 inst✝¹⁹ : AddCommMonoid M inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : AddCommMonoid P inst✝¹⁶ : AddCommMonoid Q inst✝¹⁵ : AddCommMonoid Mₗ inst✝¹⁴ : AddCommMonoid Nₗ inst✝¹³ : AddCommMonoid Pₗ inst✝¹² : AddCommMonoid Qₗ inst✝¹¹ : AddCommMonoid Qₗ' inst✝¹⁰ : Module R M inst✝⁹ : Module R₂ N inst✝⁸ : Module R₃ P inst✝⁷ : Module R₄ Q inst✝⁶ : Module R Mₗ inst✝⁵ : Module R Nₗ inst✝⁴ : Module R Pₗ inst✝³ : Module R Qₗ inst✝² : Module R Qₗ' σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ σ₄₂ : R₄ →+* R₂ σ₄₃ : R₄ →+* R₃ inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝ : RingHomCompTriple σ₄₂ σ₂₃ σ₄₃ f : M →ₛₗ[σ₁₃] N →ₛₗ[σ₂₃] P f₁ f₂ : Mₗ →ₗ[R] Nₗ →ₗ[R] Pₗ g : Qₗ →ₗ[R] Mₗ g' : Qₗ' →ₗ[R] Nₗ hₗ : Function.Surjective ↑g hᵣ : Function.Surjective ↑g' h : compl₁₂ f₁ g g' = compl₁₂ f₂ g g' x : Mₗ y : Nₗ ⊢ ↑(↑f₁ x) y = ↑(↑f₂ x) y [PROOFSTEP] cases' hₗ x with x' hx [GOAL] case mp.h.h.intro R : Type u_1 inst✝²³ : CommSemiring R R₂ : Type u_2 inst✝²² : CommSemiring R₂ R₃ : Type u_3 inst✝²¹ : CommSemiring R₃ R₄ : Type u_4 inst✝²⁰ : CommSemiring R₄ M : Type u_5 N : Type u_6 P : Type u_7 Q : Type u_8 Mₗ : Type u_9 Nₗ : Type u_10 Pₗ : Type u_11 Qₗ : Type u_12 Qₗ' : Type u_13 inst✝¹⁹ : AddCommMonoid M inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : AddCommMonoid P inst✝¹⁶ : AddCommMonoid Q inst✝¹⁵ : AddCommMonoid Mₗ inst✝¹⁴ : AddCommMonoid Nₗ inst✝¹³ : AddCommMonoid Pₗ inst✝¹² : AddCommMonoid Qₗ inst✝¹¹ : AddCommMonoid Qₗ' inst✝¹⁰ : Module R M inst✝⁹ : Module R₂ N inst✝⁸ : Module R₃ P inst✝⁷ : Module R₄ Q inst✝⁶ : Module R Mₗ inst✝⁵ : Module R Nₗ inst✝⁴ : Module R Pₗ inst✝³ : Module R Qₗ inst✝² : Module R Qₗ' σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ σ₄₂ : R₄ →+* R₂ σ₄₃ : R₄ →+* R₃ inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝ : RingHomCompTriple σ₄₂ σ₂₃ σ₄₃ f : M →ₛₗ[σ₁₃] N →ₛₗ[σ₂₃] P f₁ f₂ : Mₗ →ₗ[R] Nₗ →ₗ[R] Pₗ g : Qₗ →ₗ[R] Mₗ g' : Qₗ' →ₗ[R] Nₗ hₗ : Function.Surjective ↑g hᵣ : Function.Surjective ↑g' h : compl₁₂ f₁ g g' = compl₁₂ f₂ g g' x : Mₗ y : Nₗ x' : Qₗ hx : ↑g x' = x ⊢ ↑(↑f₁ x) y = ↑(↑f₂ x) y [PROOFSTEP] subst hx [GOAL] case mp.h.h.intro R : Type u_1 inst✝²³ : CommSemiring R R₂ : Type u_2 inst✝²² : CommSemiring R₂ R₃ : Type u_3 inst✝²¹ : CommSemiring R₃ R₄ : Type u_4 inst✝²⁰ : CommSemiring R₄ M : Type u_5 N : Type u_6 P : Type u_7 Q : Type u_8 Mₗ : Type u_9 Nₗ : Type u_10 Pₗ : Type u_11 Qₗ : Type u_12 Qₗ' : Type u_13 inst✝¹⁹ : AddCommMonoid M inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : AddCommMonoid P inst✝¹⁶ : AddCommMonoid Q inst✝¹⁵ : AddCommMonoid Mₗ inst✝¹⁴ : AddCommMonoid Nₗ inst✝¹³ : AddCommMonoid Pₗ inst✝¹² : AddCommMonoid Qₗ inst✝¹¹ : AddCommMonoid Qₗ' inst✝¹⁰ : Module R M inst✝⁹ : Module R₂ N inst✝⁸ : Module R₃ P inst✝⁷ : Module R₄ Q inst✝⁶ : Module R Mₗ inst✝⁵ : Module R Nₗ inst✝⁴ : Module R Pₗ inst✝³ : Module R Qₗ inst✝² : Module R Qₗ' σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ σ₄₂ : R₄ →+* R₂ σ₄₃ : R₄ →+* R₃ inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝ : RingHomCompTriple σ₄₂ σ₂₃ σ₄₃ f : M →ₛₗ[σ₁₃] N →ₛₗ[σ₂₃] P f₁ f₂ : Mₗ →ₗ[R] Nₗ →ₗ[R] Pₗ g : Qₗ →ₗ[R] Mₗ g' : Qₗ' →ₗ[R] Nₗ hₗ : Function.Surjective ↑g hᵣ : Function.Surjective ↑g' h : compl₁₂ f₁ g g' = compl₁₂ f₂ g g' y : Nₗ x' : Qₗ ⊢ ↑(↑f₁ (↑g x')) y = ↑(↑f₂ (↑g x')) y [PROOFSTEP] cases' hᵣ y with y' hy [GOAL] case mp.h.h.intro.intro R : Type u_1 inst✝²³ : CommSemiring R R₂ : Type u_2 inst✝²² : CommSemiring R₂ R₃ : Type u_3 inst✝²¹ : CommSemiring R₃ R₄ : Type u_4 inst✝²⁰ : CommSemiring R₄ M : Type u_5 N : Type u_6 P : Type u_7 Q : Type u_8 Mₗ : Type u_9 Nₗ : Type u_10 Pₗ : Type u_11 Qₗ : Type u_12 Qₗ' : Type u_13 inst✝¹⁹ : AddCommMonoid M inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : AddCommMonoid P inst✝¹⁶ : AddCommMonoid Q inst✝¹⁵ : AddCommMonoid Mₗ inst✝¹⁴ : AddCommMonoid Nₗ inst✝¹³ : AddCommMonoid Pₗ inst✝¹² : AddCommMonoid Qₗ inst✝¹¹ : AddCommMonoid Qₗ' inst✝¹⁰ : Module R M inst✝⁹ : Module R₂ N inst✝⁸ : Module R₃ P inst✝⁷ : Module R₄ Q inst✝⁶ : Module R Mₗ inst✝⁵ : Module R Nₗ inst✝⁴ : Module R Pₗ inst✝³ : Module R Qₗ inst✝² : Module R Qₗ' σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ σ₄₂ : R₄ →+* R₂ σ₄₃ : R₄ →+* R₃ inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝ : RingHomCompTriple σ₄₂ σ₂₃ σ₄₃ f : M →ₛₗ[σ₁₃] N →ₛₗ[σ₂₃] P f₁ f₂ : Mₗ →ₗ[R] Nₗ →ₗ[R] Pₗ g : Qₗ →ₗ[R] Mₗ g' : Qₗ' →ₗ[R] Nₗ hₗ : Function.Surjective ↑g hᵣ : Function.Surjective ↑g' h : compl₁₂ f₁ g g' = compl₁₂ f₂ g g' y : Nₗ x' : Qₗ y' : Qₗ' hy : ↑g' y' = y ⊢ ↑(↑f₁ (↑g x')) y = ↑(↑f₂ (↑g x')) y [PROOFSTEP] subst hy [GOAL] case mp.h.h.intro.intro R : Type u_1 inst✝²³ : CommSemiring R R₂ : Type u_2 inst✝²² : CommSemiring R₂ R₃ : Type u_3 inst✝²¹ : CommSemiring R₃ R₄ : Type u_4 inst✝²⁰ : CommSemiring R₄ M : Type u_5 N : Type u_6 P : Type u_7 Q : Type u_8 Mₗ : Type u_9 Nₗ : Type u_10 Pₗ : Type u_11 Qₗ : Type u_12 Qₗ' : Type u_13 inst✝¹⁹ : AddCommMonoid M inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : AddCommMonoid P inst✝¹⁶ : AddCommMonoid Q inst✝¹⁵ : AddCommMonoid Mₗ inst✝¹⁴ : AddCommMonoid Nₗ inst✝¹³ : AddCommMonoid Pₗ inst✝¹² : AddCommMonoid Qₗ inst✝¹¹ : AddCommMonoid Qₗ' inst✝¹⁰ : Module R M inst✝⁹ : Module R₂ N inst✝⁸ : Module R₃ P inst✝⁷ : Module R₄ Q inst✝⁶ : Module R Mₗ inst✝⁵ : Module R Nₗ inst✝⁴ : Module R Pₗ inst✝³ : Module R Qₗ inst✝² : Module R Qₗ' σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ σ₄₂ : R₄ →+* R₂ σ₄₃ : R₄ →+* R₃ inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝ : RingHomCompTriple σ₄₂ σ₂₃ σ₄₃ f : M →ₛₗ[σ₁₃] N →ₛₗ[σ₂₃] P f₁ f₂ : Mₗ →ₗ[R] Nₗ →ₗ[R] Pₗ g : Qₗ →ₗ[R] Mₗ g' : Qₗ' →ₗ[R] Nₗ hₗ : Function.Surjective ↑g hᵣ : Function.Surjective ↑g' h : compl₁₂ f₁ g g' = compl₁₂ f₂ g g' x' : Qₗ y' : Qₗ' ⊢ ↑(↑f₁ (↑g x')) (↑g' y') = ↑(↑f₂ (↑g x')) (↑g' y') [PROOFSTEP] convert LinearMap.congr_fun₂ h x' y' using 0 [GOAL] case mpr R : Type u_1 inst✝²³ : CommSemiring R R₂ : Type u_2 inst✝²² : CommSemiring R₂ R₃ : Type u_3 inst✝²¹ : CommSemiring R₃ R₄ : Type u_4 inst✝²⁰ : CommSemiring R₄ M : Type u_5 N : Type u_6 P : Type u_7 Q : Type u_8 Mₗ : Type u_9 Nₗ : Type u_10 Pₗ : Type u_11 Qₗ : Type u_12 Qₗ' : Type u_13 inst✝¹⁹ : AddCommMonoid M inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : AddCommMonoid P inst✝¹⁶ : AddCommMonoid Q inst✝¹⁵ : AddCommMonoid Mₗ inst✝¹⁴ : AddCommMonoid Nₗ inst✝¹³ : AddCommMonoid Pₗ inst✝¹² : AddCommMonoid Qₗ inst✝¹¹ : AddCommMonoid Qₗ' inst✝¹⁰ : Module R M inst✝⁹ : Module R₂ N inst✝⁸ : Module R₃ P inst✝⁷ : Module R₄ Q inst✝⁶ : Module R Mₗ inst✝⁵ : Module R Nₗ inst✝⁴ : Module R Pₗ inst✝³ : Module R Qₗ inst✝² : Module R Qₗ' σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ σ₄₂ : R₄ →+* R₂ σ₄₃ : R₄ →+* R₃ inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝ : RingHomCompTriple σ₄₂ σ₂₃ σ₄₃ f : M →ₛₗ[σ₁₃] N →ₛₗ[σ₂₃] P f₁ f₂ : Mₗ →ₗ[R] Nₗ →ₗ[R] Pₗ g : Qₗ →ₗ[R] Mₗ g' : Qₗ' →ₗ[R] Nₗ hₗ : Function.Surjective ↑g hᵣ : Function.Surjective ↑g' h : f₁ = f₂ ⊢ compl₁₂ f₁ g g' = compl₁₂ f₂ g g' [PROOFSTEP] subst h [GOAL] case mpr R : Type u_1 inst✝²³ : CommSemiring R R₂ : Type u_2 inst✝²² : CommSemiring R₂ R₃ : Type u_3 inst✝²¹ : CommSemiring R₃ R₄ : Type u_4 inst✝²⁰ : CommSemiring R₄ M : Type u_5 N : Type u_6 P : Type u_7 Q : Type u_8 Mₗ : Type u_9 Nₗ : Type u_10 Pₗ : Type u_11 Qₗ : Type u_12 Qₗ' : Type u_13 inst✝¹⁹ : AddCommMonoid M inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : AddCommMonoid P inst✝¹⁶ : AddCommMonoid Q inst✝¹⁵ : AddCommMonoid Mₗ inst✝¹⁴ : AddCommMonoid Nₗ inst✝¹³ : AddCommMonoid Pₗ inst✝¹² : AddCommMonoid Qₗ inst✝¹¹ : AddCommMonoid Qₗ' inst✝¹⁰ : Module R M inst✝⁹ : Module R₂ N inst✝⁸ : Module R₃ P inst✝⁷ : Module R₄ Q inst✝⁶ : Module R Mₗ inst✝⁵ : Module R Nₗ inst✝⁴ : Module R Pₗ inst✝³ : Module R Qₗ inst✝² : Module R Qₗ' σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ σ₄₂ : R₄ →+* R₂ σ₄₃ : R₄ →+* R₃ inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝ : RingHomCompTriple σ₄₂ σ₂₃ σ₄₃ f : M →ₛₗ[σ₁₃] N →ₛₗ[σ₂₃] P f₁ : Mₗ →ₗ[R] Nₗ →ₗ[R] Pₗ g : Qₗ →ₗ[R] Mₗ g' : Qₗ' →ₗ[R] Nₗ hₗ : Function.Surjective ↑g hᵣ : Function.Surjective ↑g' ⊢ compl₁₂ f₁ g g' = compl₁₂ f₁ g g' [PROOFSTEP] rfl [GOAL] R : Type u_1 inst✝²³ : CommSemiring R R₂ : Type u_2 inst✝²² : CommSemiring R₂ R₃ : Type u_3 inst✝²¹ : CommSemiring R₃ R₄ : Type u_4 inst✝²⁰ : CommSemiring R₄ M : Type u_5 N : Type u_6 P : Type u_7 Q : Type u_8 Mₗ : Type u_9 Nₗ : Type u_10 Pₗ : Type u_11 Qₗ : Type u_12 Qₗ' : Type u_13 inst✝¹⁹ : AddCommMonoid M inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : AddCommMonoid P inst✝¹⁶ : AddCommMonoid Q inst✝¹⁵ : AddCommMonoid Mₗ inst✝¹⁴ : AddCommMonoid Nₗ inst✝¹³ : AddCommMonoid Pₗ inst✝¹² : AddCommMonoid Qₗ inst✝¹¹ : AddCommMonoid Qₗ' inst✝¹⁰ : Module R M inst✝⁹ : Module R₂ N inst✝⁸ : Module R₃ P inst✝⁷ : Module R₄ Q inst✝⁶ : Module R Mₗ inst✝⁵ : Module R Nₗ inst✝⁴ : Module R Pₗ inst✝³ : Module R Qₗ inst✝² : Module R Qₗ' σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ σ₄₂ : R₄ →+* R₂ σ₄₃ : R₄ →+* R₃ inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝ : RingHomCompTriple σ₄₂ σ₂₃ σ₄₃ f : M →ₛₗ[σ₁₃] N →ₛₗ[σ₂₃] P r s : R m : M ⊢ (fun x x_1 => x • x_1) s (r • m) = r • (fun x x_1 => x • x_1) s m [PROOFSTEP] simp only [smul_smul, smul_eq_mul, mul_comm]
{"mathlib_filename": "Mathlib.LinearAlgebra.BilinearMap", "llama_tokens": 13867}
[GOAL] R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R f g : R[X] s : Finset R degree_f_lt : degree f < ↑(Finset.card s) eval_f : ∀ (x : R), x ∈ s → eval x f = 0 ⊢ f = 0 [PROOFSTEP] rw [← mem_degreeLT] at degree_f_lt [GOAL] R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R f g : R[X] s : Finset R degree_f_lt : f ∈ degreeLT R (Finset.card s) eval_f : ∀ (x : R), x ∈ s → eval x f = 0 ⊢ f = 0 [PROOFSTEP] simp_rw [eval_eq_sum_degreeLTEquiv degree_f_lt] at eval_f [GOAL] R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R f g : R[X] s : Finset R degree_f_lt : f ∈ degreeLT R (Finset.card s) eval_f : ∀ (x : R), x ∈ s → ∑ x_1 : Fin (Finset.card s), ↑(degreeLTEquiv R (Finset.card s)) { val := f, property := degree_f_lt } x_1 * x ^ ↑x_1 = 0 ⊢ f = 0 [PROOFSTEP] rw [← degreeLTEquiv_eq_zero_iff_eq_zero degree_f_lt] [GOAL] R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R f g : R[X] s : Finset R degree_f_lt : f ∈ degreeLT R (Finset.card s) eval_f : ∀ (x : R), x ∈ s → ∑ x_1 : Fin (Finset.card s), ↑(degreeLTEquiv R (Finset.card s)) { val := f, property := degree_f_lt } x_1 * x ^ ↑x_1 = 0 ⊢ ↑(degreeLTEquiv R (Finset.card s)) { val := f, property := degree_f_lt } = 0 [PROOFSTEP] exact Matrix.eq_zero_of_forall_index_sum_mul_pow_eq_zero (Injective.comp (Embedding.subtype _).inj' (equivFinOfCardEq (card_coe _)).symm.injective) fun _ => eval_f _ (Finset.coe_mem _) [GOAL] R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R f g : R[X] s : Finset R degree_fg_lt : degree (f - g) < ↑(Finset.card s) eval_fg : ∀ (x : R), x ∈ s → eval x f = eval x g ⊢ f = g [PROOFSTEP] rw [← sub_eq_zero] [GOAL] R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R f g : R[X] s : Finset R degree_fg_lt : degree (f - g) < ↑(Finset.card s) eval_fg : ∀ (x : R), x ∈ s → eval x f = eval x g ⊢ f - g = 0 [PROOFSTEP] refine' eq_zero_of_degree_lt_of_eval_finset_eq_zero _ degree_fg_lt _ [GOAL] R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R f g : R[X] s : Finset R degree_fg_lt : degree (f - g) < ↑(Finset.card s) eval_fg : ∀ (x : R), x ∈ s → eval x f = eval x g ⊢ ∀ (x : R), x ∈ s → eval x (f - g) = 0 [PROOFSTEP] simp_rw [eval_sub, sub_eq_zero] [GOAL] R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R f g : R[X] s : Finset R degree_fg_lt : degree (f - g) < ↑(Finset.card s) eval_fg : ∀ (x : R), x ∈ s → eval x f = eval x g ⊢ ∀ (x : R), x ∈ s → eval x f = eval x g [PROOFSTEP] exact eval_fg [GOAL] R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R f g : R[X] s : Finset R degree_f_lt : degree f < ↑(Finset.card s) degree_g_lt : degree g < ↑(Finset.card s) eval_fg : ∀ (x : R), x ∈ s → eval x f = eval x g ⊢ f = g [PROOFSTEP] rw [← mem_degreeLT] at degree_f_lt degree_g_lt [GOAL] R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R f g : R[X] s : Finset R degree_f_lt : f ∈ degreeLT R (Finset.card s) degree_g_lt : g ∈ degreeLT R (Finset.card s) eval_fg : ∀ (x : R), x ∈ s → eval x f = eval x g ⊢ f = g [PROOFSTEP] refine' eq_of_degree_sub_lt_of_eval_finset_eq _ _ eval_fg [GOAL] R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R f g : R[X] s : Finset R degree_f_lt : f ∈ degreeLT R (Finset.card s) degree_g_lt : g ∈ degreeLT R (Finset.card s) eval_fg : ∀ (x : R), x ∈ s → eval x f = eval x g ⊢ degree (f - g) < ↑(Finset.card s) [PROOFSTEP] rw [← mem_degreeLT] [GOAL] R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R f g : R[X] s : Finset R degree_f_lt : f ∈ degreeLT R (Finset.card s) degree_g_lt : g ∈ degreeLT R (Finset.card s) eval_fg : ∀ (x : R), x ∈ s → eval x f = eval x g ⊢ f - g ∈ degreeLT R (Finset.card s) [PROOFSTEP] exact Submodule.sub_mem _ degree_f_lt degree_g_lt [GOAL] R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R f g : R[X] s : Finset R h_deg_le : degree f ≤ ↑(Finset.card s) h_deg_eq : degree f = degree g hlc : leadingCoeff f = leadingCoeff g h_eval : ∀ (x : R), x ∈ s → eval x f = eval x g ⊢ f = g [PROOFSTEP] rcases eq_or_ne f 0 with rfl | hf [GOAL] case inl R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R g : R[X] s : Finset R h_deg_le : degree 0 ≤ ↑(Finset.card s) h_deg_eq : degree 0 = degree g hlc : leadingCoeff 0 = leadingCoeff g h_eval : ∀ (x : R), x ∈ s → eval x 0 = eval x g ⊢ 0 = g [PROOFSTEP] rwa [degree_zero, eq_comm, degree_eq_bot, eq_comm] at h_deg_eq [GOAL] case inr R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R f g : R[X] s : Finset R h_deg_le : degree f ≤ ↑(Finset.card s) h_deg_eq : degree f = degree g hlc : leadingCoeff f = leadingCoeff g h_eval : ∀ (x : R), x ∈ s → eval x f = eval x g hf : f ≠ 0 ⊢ f = g [PROOFSTEP] exact eq_of_degree_sub_lt_of_eval_finset_eq s (lt_of_lt_of_le (degree_sub_lt h_deg_eq hf hlc) h_deg_le) h_eval [GOAL] R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R f g : R[X] ι : Type u_2 v : ι → R s : Finset ι hvs : Set.InjOn v ↑s degree_f_lt : degree f < ↑(card s) eval_f : ∀ (i : ι), i ∈ s → eval (v i) f = 0 ⊢ f = 0 [PROOFSTEP] classical rw [← card_image_of_injOn hvs] at degree_f_lt refine' eq_zero_of_degree_lt_of_eval_finset_eq_zero _ degree_f_lt _ intro x hx rcases mem_image.mp hx with ⟨_, hj, rfl⟩ exact eval_f _ hj [GOAL] R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R f g : R[X] ι : Type u_2 v : ι → R s : Finset ι hvs : Set.InjOn v ↑s degree_f_lt : degree f < ↑(card s) eval_f : ∀ (i : ι), i ∈ s → eval (v i) f = 0 ⊢ f = 0 [PROOFSTEP] rw [← card_image_of_injOn hvs] at degree_f_lt [GOAL] R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R f g : R[X] ι : Type u_2 v : ι → R s : Finset ι hvs : Set.InjOn v ↑s degree_f_lt : degree f < ↑(card (image v s)) eval_f : ∀ (i : ι), i ∈ s → eval (v i) f = 0 ⊢ f = 0 [PROOFSTEP] refine' eq_zero_of_degree_lt_of_eval_finset_eq_zero _ degree_f_lt _ [GOAL] R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R f g : R[X] ι : Type u_2 v : ι → R s : Finset ι hvs : Set.InjOn v ↑s degree_f_lt : degree f < ↑(card (image v s)) eval_f : ∀ (i : ι), i ∈ s → eval (v i) f = 0 ⊢ ∀ (x : R), x ∈ image v s → eval x f = 0 [PROOFSTEP] intro x hx [GOAL] R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R f g : R[X] ι : Type u_2 v : ι → R s : Finset ι hvs : Set.InjOn v ↑s degree_f_lt : degree f < ↑(card (image v s)) eval_f : ∀ (i : ι), i ∈ s → eval (v i) f = 0 x : R hx : x ∈ image v s ⊢ eval x f = 0 [PROOFSTEP] rcases mem_image.mp hx with ⟨_, hj, rfl⟩ [GOAL] case intro.intro R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R f g : R[X] ι : Type u_2 v : ι → R s : Finset ι hvs : Set.InjOn v ↑s degree_f_lt : degree f < ↑(card (image v s)) eval_f : ∀ (i : ι), i ∈ s → eval (v i) f = 0 w✝ : ι hj : w✝ ∈ s hx : v w✝ ∈ image v s ⊢ eval (v w✝) f = 0 [PROOFSTEP] exact eval_f _ hj [GOAL] R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R f g : R[X] ι : Type u_2 v : ι → R s : Finset ι hvs : Set.InjOn v ↑s degree_fg_lt : degree (f - g) < ↑(card s) eval_fg : ∀ (i : ι), i ∈ s → eval (v i) f = eval (v i) g ⊢ f = g [PROOFSTEP] rw [← sub_eq_zero] [GOAL] R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R f g : R[X] ι : Type u_2 v : ι → R s : Finset ι hvs : Set.InjOn v ↑s degree_fg_lt : degree (f - g) < ↑(card s) eval_fg : ∀ (i : ι), i ∈ s → eval (v i) f = eval (v i) g ⊢ f - g = 0 [PROOFSTEP] refine' eq_zero_of_degree_lt_of_eval_index_eq_zero _ hvs degree_fg_lt _ [GOAL] R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R f g : R[X] ι : Type u_2 v : ι → R s : Finset ι hvs : Set.InjOn v ↑s degree_fg_lt : degree (f - g) < ↑(card s) eval_fg : ∀ (i : ι), i ∈ s → eval (v i) f = eval (v i) g ⊢ ∀ (i : ι), i ∈ s → eval (v i) (f - g) = 0 [PROOFSTEP] simp_rw [eval_sub, sub_eq_zero] [GOAL] R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R f g : R[X] ι : Type u_2 v : ι → R s : Finset ι hvs : Set.InjOn v ↑s degree_fg_lt : degree (f - g) < ↑(card s) eval_fg : ∀ (i : ι), i ∈ s → eval (v i) f = eval (v i) g ⊢ ∀ (i : ι), i ∈ s → eval (v i) f = eval (v i) g [PROOFSTEP] exact eval_fg [GOAL] R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R f g : R[X] ι : Type u_2 v : ι → R s : Finset ι hvs : Set.InjOn v ↑s degree_f_lt : degree f < ↑(card s) degree_g_lt : degree g < ↑(card s) eval_fg : ∀ (i : ι), i ∈ s → eval (v i) f = eval (v i) g ⊢ f = g [PROOFSTEP] refine' eq_of_degree_sub_lt_of_eval_index_eq _ hvs _ eval_fg [GOAL] R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R f g : R[X] ι : Type u_2 v : ι → R s : Finset ι hvs : Set.InjOn v ↑s degree_f_lt : degree f < ↑(card s) degree_g_lt : degree g < ↑(card s) eval_fg : ∀ (i : ι), i ∈ s → eval (v i) f = eval (v i) g ⊢ degree (f - g) < ↑(card s) [PROOFSTEP] rw [← mem_degreeLT] at degree_f_lt degree_g_lt ⊢ [GOAL] R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R f g : R[X] ι : Type u_2 v : ι → R s : Finset ι hvs : Set.InjOn v ↑s degree_f_lt : f ∈ degreeLT R (card s) degree_g_lt : g ∈ degreeLT R (card s) eval_fg : ∀ (i : ι), i ∈ s → eval (v i) f = eval (v i) g ⊢ f - g ∈ degreeLT R (card s) [PROOFSTEP] exact Submodule.sub_mem _ degree_f_lt degree_g_lt [GOAL] R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R f g : R[X] ι : Type u_2 v : ι → R s : Finset ι hvs : Set.InjOn v ↑s h_deg_le : degree f ≤ ↑(card s) h_deg_eq : degree f = degree g hlc : leadingCoeff f = leadingCoeff g h_eval : ∀ (i : ι), i ∈ s → eval (v i) f = eval (v i) g ⊢ f = g [PROOFSTEP] rcases eq_or_ne f 0 with rfl | hf [GOAL] case inl R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R g : R[X] ι : Type u_2 v : ι → R s : Finset ι hvs : Set.InjOn v ↑s h_deg_le : degree 0 ≤ ↑(card s) h_deg_eq : degree 0 = degree g hlc : leadingCoeff 0 = leadingCoeff g h_eval : ∀ (i : ι), i ∈ s → eval (v i) 0 = eval (v i) g ⊢ 0 = g [PROOFSTEP] rwa [degree_zero, eq_comm, degree_eq_bot, eq_comm] at h_deg_eq [GOAL] case inr R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R f g : R[X] ι : Type u_2 v : ι → R s : Finset ι hvs : Set.InjOn v ↑s h_deg_le : degree f ≤ ↑(card s) h_deg_eq : degree f = degree g hlc : leadingCoeff f = leadingCoeff g h_eval : ∀ (i : ι), i ∈ s → eval (v i) f = eval (v i) g hf : f ≠ 0 ⊢ f = g [PROOFSTEP] exact eq_of_degree_sub_lt_of_eval_index_eq s hvs (lt_of_lt_of_le (degree_sub_lt h_deg_eq hf hlc) h_deg_le) h_eval [GOAL] F : Type u_1 inst✝ : Field F x y : F ⊢ basisDivisor x x = 0 [PROOFSTEP] simp only [basisDivisor, sub_self, inv_zero, map_zero, zero_mul] [GOAL] F : Type u_1 inst✝ : Field F x y : F hxy : basisDivisor x y = 0 ⊢ x = y [PROOFSTEP] simp_rw [basisDivisor, mul_eq_zero, X_sub_C_ne_zero, or_false_iff, C_eq_zero, inv_eq_zero, sub_eq_zero] at hxy [GOAL] F : Type u_1 inst✝ : Field F x y : F hxy : x = y ⊢ x = y [PROOFSTEP] exact hxy [GOAL] F : Type u_1 inst✝ : Field F x y : F ⊢ basisDivisor x y ≠ 0 ↔ x ≠ y [PROOFSTEP] rw [Ne.def, basisDivisor_eq_zero_iff] [GOAL] F : Type u_1 inst✝ : Field F x y : F hxy : x ≠ y ⊢ degree (basisDivisor x y) = 1 [PROOFSTEP] rw [basisDivisor, degree_mul, degree_X_sub_C, degree_C, zero_add] [GOAL] F : Type u_1 inst✝ : Field F x y : F hxy : x ≠ y ⊢ (x - y)⁻¹ ≠ 0 [PROOFSTEP] exact inv_ne_zero (sub_ne_zero_of_ne hxy) [GOAL] F : Type u_1 inst✝ : Field F x y : F ⊢ degree (basisDivisor x x) = ⊥ [PROOFSTEP] rw [basisDivisor_self, degree_zero] [GOAL] F : Type u_1 inst✝ : Field F x y : F ⊢ natDegree (basisDivisor x x) = 0 [PROOFSTEP] rw [basisDivisor_self, natDegree_zero] [GOAL] F : Type u_1 inst✝ : Field F x y : F ⊢ eval y (basisDivisor x y) = 0 [PROOFSTEP] simp only [basisDivisor, eval_mul, eval_C, eval_sub, eval_X, sub_self, mul_zero] [GOAL] F : Type u_1 inst✝ : Field F x y : F hxy : x ≠ y ⊢ eval x (basisDivisor x y) = 1 [PROOFSTEP] simp only [basisDivisor, eval_mul, eval_C, eval_sub, eval_X] [GOAL] F : Type u_1 inst✝ : Field F x y : F hxy : x ≠ y ⊢ (x - y)⁻¹ * (x - y) = 1 [PROOFSTEP] exact inv_mul_cancel (sub_ne_zero_of_ne hxy) [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s : Finset ι v : ι → F i✝ j i : ι ⊢ Lagrange.basis {i} v i = 1 [PROOFSTEP] rw [Lagrange.basis, erase_singleton, prod_empty] [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s : Finset ι v : ι → F i j : ι hij : i ≠ j ⊢ Lagrange.basis {i, j} v i = basisDivisor (v i) (v j) [PROOFSTEP] simp only [Lagrange.basis, hij, erase_insert_eq_erase, erase_eq_of_not_mem, mem_singleton, not_false_iff, prod_singleton] [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s : Finset ι v : ι → F i j : ι hij : i ≠ j ⊢ Lagrange.basis {i, j} v j = basisDivisor (v j) (v i) [PROOFSTEP] rw [pair_comm] [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s : Finset ι v : ι → F i j : ι hij : i ≠ j ⊢ Lagrange.basis {j, i} v j = basisDivisor (v j) (v i) [PROOFSTEP] exact basis_pair_left hij.symm [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s : Finset ι v : ι → F i j : ι hvs : Set.InjOn v ↑s hi : i ∈ s ⊢ Lagrange.basis s v i ≠ 0 [PROOFSTEP] simp_rw [Lagrange.basis, prod_ne_zero_iff, Ne.def, mem_erase] [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s : Finset ι v : ι → F i j : ι hvs : Set.InjOn v ↑s hi : i ∈ s ⊢ ∀ (a : ι), a ≠ i ∧ a ∈ s → ¬basisDivisor (v i) (v a) = 0 [PROOFSTEP] rintro j ⟨hij, hj⟩ [GOAL] case intro F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s : Finset ι v : ι → F i j✝ : ι hvs : Set.InjOn v ↑s hi : i ∈ s j : ι hij : j ≠ i hj : j ∈ s ⊢ ¬basisDivisor (v i) (v j) = 0 [PROOFSTEP] rw [basisDivisor_eq_zero_iff, hvs.eq_iff hi hj] [GOAL] case intro F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s : Finset ι v : ι → F i j✝ : ι hvs : Set.InjOn v ↑s hi : i ∈ s j : ι hij : j ≠ i hj : j ∈ s ⊢ ¬i = j [PROOFSTEP] exact hij.symm [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s : Finset ι v : ι → F i j : ι hvs : Set.InjOn v ↑s hi : i ∈ s ⊢ eval (v i) (Lagrange.basis s v i) = 1 [PROOFSTEP] rw [Lagrange.basis, eval_prod] [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s : Finset ι v : ι → F i j : ι hvs : Set.InjOn v ↑s hi : i ∈ s ⊢ ∏ j in Finset.erase s i, eval (v i) (basisDivisor (v i) (v j)) = 1 [PROOFSTEP] refine' prod_eq_one fun j H => _ [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s : Finset ι v : ι → F i j✝ : ι hvs : Set.InjOn v ↑s hi : i ∈ s j : ι H : j ∈ Finset.erase s i ⊢ eval (v i) (basisDivisor (v i) (v j)) = 1 [PROOFSTEP] rw [eval_basisDivisor_left_of_ne] [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s : Finset ι v : ι → F i j✝ : ι hvs : Set.InjOn v ↑s hi : i ∈ s j : ι H : j ∈ Finset.erase s i ⊢ v i ≠ v j [PROOFSTEP] rcases mem_erase.mp H with ⟨hij, hj⟩ [GOAL] case intro F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s : Finset ι v : ι → F i j✝ : ι hvs : Set.InjOn v ↑s hi : i ∈ s j : ι H : j ∈ Finset.erase s i hij : j ≠ i hj : j ∈ s ⊢ v i ≠ v j [PROOFSTEP] exact mt (hvs hi hj) hij.symm [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s : Finset ι v : ι → F i j : ι hij : i ≠ j hj : j ∈ s ⊢ eval (v j) (Lagrange.basis s v i) = 0 [PROOFSTEP] simp_rw [Lagrange.basis, eval_prod, prod_eq_zero_iff] [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s : Finset ι v : ι → F i j : ι hij : i ≠ j hj : j ∈ s ⊢ ∃ a, a ∈ Finset.erase s i ∧ eval (v j) (basisDivisor (v i) (v a)) = 0 [PROOFSTEP] exact ⟨j, ⟨mem_erase.mpr ⟨hij.symm, hj⟩, eval_basisDivisor_right⟩⟩ [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s : Finset ι v : ι → F i j : ι hvs : Set.InjOn v ↑s hi : i ∈ s ⊢ natDegree (Lagrange.basis s v i) = card s - 1 [PROOFSTEP] have H : ∀ j, j ∈ s.erase i → basisDivisor (v i) (v j) ≠ 0 := by simp_rw [Ne.def, mem_erase, basisDivisor_eq_zero_iff] exact fun j ⟨hij₁, hj⟩ hij₂ => hij₁ (hvs hj hi hij₂.symm) [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s : Finset ι v : ι → F i j : ι hvs : Set.InjOn v ↑s hi : i ∈ s ⊢ ∀ (j : ι), j ∈ Finset.erase s i → basisDivisor (v i) (v j) ≠ 0 [PROOFSTEP] simp_rw [Ne.def, mem_erase, basisDivisor_eq_zero_iff] [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s : Finset ι v : ι → F i j : ι hvs : Set.InjOn v ↑s hi : i ∈ s ⊢ ∀ (j : ι), j ≠ i ∧ j ∈ s → ¬v i = v j [PROOFSTEP] exact fun j ⟨hij₁, hj⟩ hij₂ => hij₁ (hvs hj hi hij₂.symm) [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s : Finset ι v : ι → F i j : ι hvs : Set.InjOn v ↑s hi : i ∈ s H : ∀ (j : ι), j ∈ Finset.erase s i → basisDivisor (v i) (v j) ≠ 0 ⊢ natDegree (Lagrange.basis s v i) = card s - 1 [PROOFSTEP] rw [← card_erase_of_mem hi, card_eq_sum_ones] [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s : Finset ι v : ι → F i j : ι hvs : Set.InjOn v ↑s hi : i ∈ s H : ∀ (j : ι), j ∈ Finset.erase s i → basisDivisor (v i) (v j) ≠ 0 ⊢ natDegree (Lagrange.basis s v i) = ∑ x in Finset.erase s i, 1 [PROOFSTEP] convert natDegree_prod _ _ H using 1 [GOAL] case h.e'_3 F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s : Finset ι v : ι → F i j : ι hvs : Set.InjOn v ↑s hi : i ∈ s H : ∀ (j : ι), j ∈ Finset.erase s i → basisDivisor (v i) (v j) ≠ 0 ⊢ ∑ x in Finset.erase s i, 1 = ∑ i_1 in Finset.erase s i, natDegree (basisDivisor (v i) (v i_1)) [PROOFSTEP] refine' sum_congr rfl fun j hj => (natDegree_basisDivisor_of_ne _).symm [GOAL] case h.e'_3 F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s : Finset ι v : ι → F i j✝ : ι hvs : Set.InjOn v ↑s hi : i ∈ s H : ∀ (j : ι), j ∈ Finset.erase s i → basisDivisor (v i) (v j) ≠ 0 j : ι hj : j ∈ Finset.erase s i ⊢ v i ≠ v j [PROOFSTEP] rw [Ne.def, ← basisDivisor_eq_zero_iff] [GOAL] case h.e'_3 F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s : Finset ι v : ι → F i j✝ : ι hvs : Set.InjOn v ↑s hi : i ∈ s H : ∀ (j : ι), j ∈ Finset.erase s i → basisDivisor (v i) (v j) ≠ 0 j : ι hj : j ∈ Finset.erase s i ⊢ ¬basisDivisor (v i) (v j) = 0 [PROOFSTEP] exact H _ hj [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s : Finset ι v : ι → F i j : ι hvs : Set.InjOn v ↑s hi : i ∈ s ⊢ degree (Lagrange.basis s v i) = ↑(card s - 1) [PROOFSTEP] rw [degree_eq_natDegree (basis_ne_zero hvs hi), natDegree_basis hvs hi] [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s : Finset ι v : ι → F i j : ι hvs : Set.InjOn v ↑s hs : Finset.Nonempty s ⊢ ∑ j in s, Lagrange.basis s v j = 1 [PROOFSTEP] refine' eq_of_degrees_lt_of_eval_index_eq s hvs (lt_of_le_of_lt (degree_sum_le _ _) _) _ _ [GOAL] case refine'_1 F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s : Finset ι v : ι → F i j : ι hvs : Set.InjOn v ↑s hs : Finset.Nonempty s ⊢ (sup s fun b => degree (Lagrange.basis s v b)) < ↑(card s) [PROOFSTEP] rw [Nat.cast_withBot, Finset.sup_lt_iff (WithBot.bot_lt_coe s.card)] [GOAL] case refine'_1 F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s : Finset ι v : ι → F i j : ι hvs : Set.InjOn v ↑s hs : Finset.Nonempty s ⊢ ∀ (b : ι), b ∈ s → degree (Lagrange.basis s v b) < ↑(card s) [PROOFSTEP] intro i hi [GOAL] case refine'_1 F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s : Finset ι v : ι → F i✝ j : ι hvs : Set.InjOn v ↑s hs : Finset.Nonempty s i : ι hi : i ∈ s ⊢ degree (Lagrange.basis s v i) < ↑(card s) [PROOFSTEP] rw [degree_basis hvs hi, Nat.cast_withBot, WithBot.coe_lt_coe] [GOAL] case refine'_1 F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s : Finset ι v : ι → F i✝ j : ι hvs : Set.InjOn v ↑s hs : Finset.Nonempty s i : ι hi : i ∈ s ⊢ card s - 1 < card s [PROOFSTEP] exact Nat.pred_lt (card_ne_zero_of_mem hi) [GOAL] case refine'_2 F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s : Finset ι v : ι → F i j : ι hvs : Set.InjOn v ↑s hs : Finset.Nonempty s ⊢ degree 1 < ↑(card s) [PROOFSTEP] rw [degree_one, ← WithBot.coe_zero, Nat.cast_withBot, WithBot.coe_lt_coe] [GOAL] case refine'_2 F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s : Finset ι v : ι → F i j : ι hvs : Set.InjOn v ↑s hs : Finset.Nonempty s ⊢ 0 < card s [PROOFSTEP] exact Nonempty.card_pos hs [GOAL] case refine'_3 F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s : Finset ι v : ι → F i j : ι hvs : Set.InjOn v ↑s hs : Finset.Nonempty s ⊢ ∀ (i : ι), i ∈ s → eval (v i) (∑ j in s, Lagrange.basis s v j) = eval (v i) 1 [PROOFSTEP] intro i hi [GOAL] case refine'_3 F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s : Finset ι v : ι → F i✝ j : ι hvs : Set.InjOn v ↑s hs : Finset.Nonempty s i : ι hi : i ∈ s ⊢ eval (v i) (∑ j in s, Lagrange.basis s v j) = eval (v i) 1 [PROOFSTEP] rw [eval_finset_sum, eval_one, ← add_sum_erase _ _ hi, eval_basis_self hvs hi, add_right_eq_self] [GOAL] case refine'_3 F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s : Finset ι v : ι → F i✝ j : ι hvs : Set.InjOn v ↑s hs : Finset.Nonempty s i : ι hi : i ∈ s ⊢ ∑ x in Finset.erase s i, eval (v i) (Lagrange.basis s v x) = 0 [PROOFSTEP] refine' sum_eq_zero fun j hj => _ [GOAL] case refine'_3 F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s : Finset ι v : ι → F i✝ j✝ : ι hvs : Set.InjOn v ↑s hs : Finset.Nonempty s i : ι hi : i ∈ s j : ι hj : j ∈ Finset.erase s i ⊢ eval (v i) (Lagrange.basis s v j) = 0 [PROOFSTEP] rcases mem_erase.mp hj with ⟨hij, _⟩ [GOAL] case refine'_3.intro F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s : Finset ι v : ι → F i✝ j✝ : ι hvs : Set.InjOn v ↑s hs : Finset.Nonempty s i : ι hi : i ∈ s j : ι hj : j ∈ Finset.erase s i hij : j ≠ i right✝ : j ∈ s ⊢ eval (v i) (Lagrange.basis s v j) = 0 [PROOFSTEP] rw [eval_basis_of_ne hij hi] [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s : Finset ι v : ι → F i j : ι x y : F hxy : x ≠ y ⊢ basisDivisor x y + basisDivisor y x = 1 [PROOFSTEP] classical rw [← sum_basis (Set.injOn_of_injective Function.injective_id _) ⟨x, mem_insert_self _ { y }⟩, sum_insert (not_mem_singleton.mpr hxy), sum_singleton, basis_pair_left hxy, basis_pair_right hxy, id, id] [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s : Finset ι v : ι → F i j : ι x y : F hxy : x ≠ y ⊢ basisDivisor x y + basisDivisor y x = 1 [PROOFSTEP] rw [← sum_basis (Set.injOn_of_injective Function.injective_id _) ⟨x, mem_insert_self _ { y }⟩, sum_insert (not_mem_singleton.mpr hxy), sum_singleton, basis_pair_left hxy, basis_pair_right hxy, id, id] [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s✝ t : Finset ι i j : ι v✝ r r' : ι → F s : Finset ι v f g : ι → F ⊢ (fun r => ∑ i in s, ↑C (r i) * Lagrange.basis s v i) (f + g) = (fun r => ∑ i in s, ↑C (r i) * Lagrange.basis s v i) f + (fun r => ∑ i in s, ↑C (r i) * Lagrange.basis s v i) g [PROOFSTEP] simp_rw [← Finset.sum_add_distrib] [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s✝ t : Finset ι i j : ι v✝ r r' : ι → F s : Finset ι v f g : ι → F ⊢ ∑ x in s, ↑C ((f + g) x) * Lagrange.basis s v x = ∑ x in s, (↑C (f x) * Lagrange.basis s v x + ↑C (g x) * Lagrange.basis s v x) [PROOFSTEP] have h : (fun x => C (f x) * Lagrange.basis s v x + C (g x) * Lagrange.basis s v x) = (fun x => C ((f + g) x) * Lagrange.basis s v x) := by simp_rw [← add_mul, ← C_add, Pi.add_apply] [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s✝ t : Finset ι i j : ι v✝ r r' : ι → F s : Finset ι v f g : ι → F ⊢ (fun x => ↑C (f x) * Lagrange.basis s v x + ↑C (g x) * Lagrange.basis s v x) = fun x => ↑C ((f + g) x) * Lagrange.basis s v x [PROOFSTEP] simp_rw [← add_mul, ← C_add, Pi.add_apply] [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s✝ t : Finset ι i j : ι v✝ r r' : ι → F s : Finset ι v f g : ι → F h : (fun x => ↑C (f x) * Lagrange.basis s v x + ↑C (g x) * Lagrange.basis s v x) = fun x => ↑C ((f + g) x) * Lagrange.basis s v x ⊢ ∑ x in s, ↑C ((f + g) x) * Lagrange.basis s v x = ∑ x in s, (↑C (f x) * Lagrange.basis s v x + ↑C (g x) * Lagrange.basis s v x) [PROOFSTEP] rw [h] [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s✝ t : Finset ι i j : ι v✝ r r' : ι → F s : Finset ι v : ι → F c : F f : ι → F ⊢ AddHom.toFun { toFun := fun r => ∑ i in s, ↑C (r i) * Lagrange.basis s v i, map_add' := (_ : ∀ (f g : ι → F), (fun r => ∑ i in s, ↑C (r i) * Lagrange.basis s v i) (f + g) = (fun r => ∑ i in s, ↑C (r i) * Lagrange.basis s v i) f + (fun r => ∑ i in s, ↑C (r i) * Lagrange.basis s v i) g) } (c • f) = ↑(RingHom.id F) c • AddHom.toFun { toFun := fun r => ∑ i in s, ↑C (r i) * Lagrange.basis s v i, map_add' := (_ : ∀ (f g : ι → F), (fun r => ∑ i in s, ↑C (r i) * Lagrange.basis s v i) (f + g) = (fun r => ∑ i in s, ↑C (r i) * Lagrange.basis s v i) f + (fun r => ∑ i in s, ↑C (r i) * Lagrange.basis s v i) g) } f [PROOFSTEP] simp_rw [Finset.smul_sum, C_mul', smul_smul, Pi.smul_apply, RingHom.id_apply, smul_eq_mul] [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s t : Finset ι i j : ι v r r' : ι → F ⊢ ↑(interpolate ∅ v) r = 0 [PROOFSTEP] rw [interpolate_apply, sum_empty] [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s t : Finset ι i j : ι v r r' : ι → F ⊢ ↑(interpolate {i} v) r = ↑C (r i) [PROOFSTEP] rw [interpolate_apply, sum_singleton, basis_singleton, mul_one] [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s t : Finset ι i j : ι v r r' : ι → F hvs : Set.InjOn v ↑s hs : Finset.Nonempty s ⊢ ↑(interpolate s v) 1 = 1 [PROOFSTEP] simp_rw [interpolate_apply, Pi.one_apply, map_one, one_mul] [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s t : Finset ι i j : ι v r r' : ι → F hvs : Set.InjOn v ↑s hs : Finset.Nonempty s ⊢ ∑ x in s, Lagrange.basis s v x = 1 [PROOFSTEP] exact sum_basis hvs hs [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s t : Finset ι i j : ι v r r' : ι → F hvs : Set.InjOn v ↑s hi : i ∈ s ⊢ eval (v i) (↑(interpolate s v) r) = r i [PROOFSTEP] rw [interpolate_apply, eval_finset_sum, ← add_sum_erase _ _ hi] [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s t : Finset ι i j : ι v r r' : ι → F hvs : Set.InjOn v ↑s hi : i ∈ s ⊢ eval (v i) (↑C (r i) * Lagrange.basis s v i) + ∑ x in Finset.erase s i, eval (v i) (↑C (r x) * Lagrange.basis s v x) = r i [PROOFSTEP] simp_rw [eval_mul, eval_C, eval_basis_self hvs hi, mul_one, add_right_eq_self] [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s t : Finset ι i j : ι v r r' : ι → F hvs : Set.InjOn v ↑s hi : i ∈ s ⊢ ∑ x in Finset.erase s i, r x * eval (v i) (Lagrange.basis s v x) = 0 [PROOFSTEP] refine' sum_eq_zero fun j H => _ [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s t : Finset ι i j✝ : ι v r r' : ι → F hvs : Set.InjOn v ↑s hi : i ∈ s j : ι H : j ∈ Finset.erase s i ⊢ r j * eval (v i) (Lagrange.basis s v j) = 0 [PROOFSTEP] rw [eval_basis_of_ne (mem_erase.mp H).1 hi, mul_zero] [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s t : Finset ι i j : ι v r r' : ι → F hvs : Set.InjOn v ↑s ⊢ degree (↑(interpolate s v) r) ≤ ↑(card s - 1) [PROOFSTEP] refine' (degree_sum_le _ _).trans _ [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s t : Finset ι i j : ι v r r' : ι → F hvs : Set.InjOn v ↑s ⊢ (sup s fun b => degree (↑C (r b) * Lagrange.basis s v b)) ≤ ↑(card s - 1) [PROOFSTEP] rw [Finset.sup_le_iff] [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s t : Finset ι i j : ι v r r' : ι → F hvs : Set.InjOn v ↑s ⊢ ∀ (b : ι), b ∈ s → degree (↑C (r b) * Lagrange.basis s v b) ≤ ↑(card s - 1) [PROOFSTEP] intro i hi [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s t : Finset ι i✝ j : ι v r r' : ι → F hvs : Set.InjOn v ↑s i : ι hi : i ∈ s ⊢ degree (↑C (r i) * Lagrange.basis s v i) ≤ ↑(card s - 1) [PROOFSTEP] rw [degree_mul, degree_basis hvs hi] [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s t : Finset ι i✝ j : ι v r r' : ι → F hvs : Set.InjOn v ↑s i : ι hi : i ∈ s ⊢ degree (↑C (r i)) + ↑(card s - 1) ≤ ↑(card s - 1) [PROOFSTEP] by_cases hr : r i = 0 [GOAL] case pos F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s t : Finset ι i✝ j : ι v r r' : ι → F hvs : Set.InjOn v ↑s i : ι hi : i ∈ s hr : r i = 0 ⊢ degree (↑C (r i)) + ↑(card s - 1) ≤ ↑(card s - 1) [PROOFSTEP] simpa only [hr, map_zero, degree_zero, WithBot.bot_add] using bot_le [GOAL] case neg F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s t : Finset ι i✝ j : ι v r r' : ι → F hvs : Set.InjOn v ↑s i : ι hi : i ∈ s hr : ¬r i = 0 ⊢ degree (↑C (r i)) + ↑(card s - 1) ≤ ↑(card s - 1) [PROOFSTEP] rw [degree_C hr, zero_add] [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s t : Finset ι i j : ι v r r' : ι → F hvs : Set.InjOn v ↑s ⊢ degree (↑(interpolate s v) r) < ↑(card s) [PROOFSTEP] rw [Nat.cast_withBot] [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s t : Finset ι i j : ι v r r' : ι → F hvs : Set.InjOn v ↑s ⊢ degree (↑(interpolate s v) r) < ↑(card s) [PROOFSTEP] rcases eq_empty_or_nonempty s with (rfl | h) [GOAL] case inl F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι t : Finset ι i j : ι v r r' : ι → F hvs : Set.InjOn v ↑∅ ⊢ degree (↑(interpolate ∅ v) r) < ↑(card ∅) [PROOFSTEP] rw [interpolate_empty, degree_zero, card_empty] [GOAL] case inl F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι t : Finset ι i j : ι v r r' : ι → F hvs : Set.InjOn v ↑∅ ⊢ ⊥ < ↑0 [PROOFSTEP] exact WithBot.bot_lt_coe _ [GOAL] case inr F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s t : Finset ι i j : ι v r r' : ι → F hvs : Set.InjOn v ↑s h : Finset.Nonempty s ⊢ degree (↑(interpolate s v) r) < ↑(card s) [PROOFSTEP] refine' lt_of_le_of_lt (degree_interpolate_le _ hvs) _ [GOAL] case inr F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s t : Finset ι i j : ι v r r' : ι → F hvs : Set.InjOn v ↑s h : Finset.Nonempty s ⊢ ↑(card s - 1) < ↑(card s) [PROOFSTEP] rw [Nat.cast_withBot, WithBot.coe_lt_coe] [GOAL] case inr F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s t : Finset ι i j : ι v r r' : ι → F hvs : Set.InjOn v ↑s h : Finset.Nonempty s ⊢ card s - 1 < card s [PROOFSTEP] exact Nat.sub_lt (Nonempty.card_pos h) zero_lt_one [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s t : Finset ι i j : ι v r r' : ι → F hvs : Set.InjOn v ↑s hi : i ∈ s ⊢ degree (↑(interpolate (Finset.erase s i) v) r) < ↑(card s - 1) [PROOFSTEP] rw [← Finset.card_erase_of_mem hi] [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s t : Finset ι i j : ι v r r' : ι → F hvs : Set.InjOn v ↑s hi : i ∈ s ⊢ degree (↑(interpolate (Finset.erase s i) v) r) < ↑(card (Finset.erase s i)) [PROOFSTEP] exact degree_interpolate_lt _ (Set.InjOn.mono (coe_subset.mpr (erase_subset _ _)) hvs) [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s t : Finset ι i j : ι v r r' : ι → F hvs : Set.InjOn v ↑s hrr' : ↑(interpolate s v) r = ↑(interpolate s v) r' x✝ : ι hi : x✝ ∈ s ⊢ r x✝ = r' x✝ [PROOFSTEP] rw [← eval_interpolate_at_node r hvs hi, hrr', eval_interpolate_at_node r' hvs hi] [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s t : Finset ι i✝ j : ι v r r' : ι → F hrr' : ∀ (i : ι), i ∈ s → r i = r' i i : ι hi : i ∈ s ⊢ ↑C (r i) * Lagrange.basis s v i = ↑C (r' i) * Lagrange.basis s v i [PROOFSTEP] rw [hrr' _ hi] [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s t : Finset ι i j : ι v r r' : ι → F f : F[X] hvs : Set.InjOn v ↑s degree_f_lt : degree f < ↑(card s) eval_f : ∀ (i : ι), i ∈ s → eval (v i) f = r i ⊢ f = ↑(interpolate s v) r [PROOFSTEP] rw [eq_interpolate hvs degree_f_lt] [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s t : Finset ι i j : ι v r r' : ι → F f : F[X] hvs : Set.InjOn v ↑s degree_f_lt : degree f < ↑(card s) eval_f : ∀ (i : ι), i ∈ s → eval (v i) f = r i ⊢ (↑(interpolate s v) fun i => eval (v i) f) = ↑(interpolate s v) r [PROOFSTEP] exact interpolate_eq_of_values_eq_on _ _ eval_f [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s t : Finset ι i j : ι v r r' : ι → F f : F[X] hvs : Set.InjOn v ↑s ⊢ (degree f < ↑(card s) ∧ ∀ (i : ι), i ∈ s → eval (v i) f = r i) ↔ f = ↑(interpolate s v) r [PROOFSTEP] constructor [GOAL] case mp F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s t : Finset ι i j : ι v r r' : ι → F f : F[X] hvs : Set.InjOn v ↑s ⊢ (degree f < ↑(card s) ∧ ∀ (i : ι), i ∈ s → eval (v i) f = r i) → f = ↑(interpolate s v) r [PROOFSTEP] intro h [GOAL] case mpr F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s t : Finset ι i j : ι v r r' : ι → F f : F[X] hvs : Set.InjOn v ↑s ⊢ f = ↑(interpolate s v) r → degree f < ↑(card s) ∧ ∀ (i : ι), i ∈ s → eval (v i) f = r i [PROOFSTEP] intro h [GOAL] case mp F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s t : Finset ι i j : ι v r r' : ι → F f : F[X] hvs : Set.InjOn v ↑s h : degree f < ↑(card s) ∧ ∀ (i : ι), i ∈ s → eval (v i) f = r i ⊢ f = ↑(interpolate s v) r [PROOFSTEP] exact eq_interpolate_of_eval_eq _ hvs h.1 h.2 [GOAL] case mpr F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s t : Finset ι i j : ι v r r' : ι → F f : F[X] hvs : Set.InjOn v ↑s h : f = ↑(interpolate s v) r ⊢ degree f < ↑(card s) ∧ ∀ (i : ι), i ∈ s → eval (v i) f = r i [PROOFSTEP] rw [h] [GOAL] case mpr F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s t : Finset ι i j : ι v r r' : ι → F f : F[X] hvs : Set.InjOn v ↑s h : f = ↑(interpolate s v) r ⊢ degree (↑(interpolate s v) r) < ↑(card s) ∧ ∀ (i : ι), i ∈ s → eval (v i) (↑(interpolate s v) r) = r i [PROOFSTEP] exact ⟨degree_interpolate_lt _ hvs, fun _ hi => eval_interpolate_at_node _ hvs hi⟩ [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s t : Finset ι i j : ι v r r' : ι → F hvs : Set.InjOn v ↑s c : F f : { x // x ∈ degreeLT F (card s) } ⊢ ∀ (x : { x // x ∈ s }), AddHom.toFun { toFun := fun f i => eval (v ↑i) ↑f, map_add' := (_ : ∀ (f g : { x // x ∈ degreeLT F (card s) }), (fun f i => eval (v ↑i) ↑f) (f + g) = (fun f i => eval (v ↑i) ↑f) f + (fun f i => eval (v ↑i) ↑f) g) } (c • f) x = (↑(RingHom.id F) c • AddHom.toFun { toFun := fun f i => eval (v ↑i) ↑f, map_add' := (_ : ∀ (f g : { x // x ∈ degreeLT F (card s) }), (fun f i => eval (v ↑i) ↑f) (f + g) = (fun f i => eval (v ↑i) ↑f) f + (fun f i => eval (v ↑i) ↑f) g) } f) x [PROOFSTEP] simp [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s t : Finset ι i j : ι v r r' : ι → F hvs : Set.InjOn v ↑s ⊢ Function.LeftInverse (fun r => { val := ↑(interpolate s v) fun x => if hx : x ∈ s then r { val := x, property := hx } else 0, property := (_ : (↑(interpolate s v) fun x => if hx : x ∈ s then r { val := x, property := hx } else 0) ∈ degreeLT F (card s)) }) { toAddHom := { toFun := fun f i => eval (v ↑i) ↑f, map_add' := (_ : ∀ (f g : { x // x ∈ degreeLT F (card s) }), (fun f i => eval (v ↑i) ↑f) (f + g) = (fun f i => eval (v ↑i) ↑f) f + (fun f i => eval (v ↑i) ↑f) g) }, map_smul' := (_ : ∀ (c : F) (f : { x // x ∈ degreeLT F (card s) }), AddHom.toFun { toFun := fun f i => eval (v ↑i) ↑f, map_add' := (_ : ∀ (f g : { x // x ∈ degreeLT F (card s) }), (fun f i => eval (v ↑i) ↑f) (f + g) = (fun f i => eval (v ↑i) ↑f) f + (fun f i => eval (v ↑i) ↑f) g) } (c • f) = ↑(RingHom.id F) c • AddHom.toFun { toFun := fun f i => eval (v ↑i) ↑f, map_add' := (_ : ∀ (f g : { x // x ∈ degreeLT F (card s) }), (fun f i => eval (v ↑i) ↑f) (f + g) = (fun f i => eval (v ↑i) ↑f) f + (fun f i => eval (v ↑i) ↑f) g) } f) }.toAddHom.toFun [PROOFSTEP] rintro ⟨f, hf⟩ [GOAL] case mk F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s t : Finset ι i j : ι v r r' : ι → F hvs : Set.InjOn v ↑s f : F[X] hf : f ∈ degreeLT F (card s) ⊢ (fun r => { val := ↑(interpolate s v) fun x => if hx : x ∈ s then r { val := x, property := hx } else 0, property := (_ : (↑(interpolate s v) fun x => if hx : x ∈ s then r { val := x, property := hx } else 0) ∈ degreeLT F (card s)) }) (AddHom.toFun { toAddHom := { toFun := fun f i => eval (v ↑i) ↑f, map_add' := (_ : ∀ (f g : { x // x ∈ degreeLT F (card s) }), (fun f i => eval (v ↑i) ↑f) (f + g) = (fun f i => eval (v ↑i) ↑f) f + (fun f i => eval (v ↑i) ↑f) g) }, map_smul' := (_ : ∀ (c : F) (f : { x // x ∈ degreeLT F (card s) }), AddHom.toFun { toFun := fun f i => eval (v ↑i) ↑f, map_add' := (_ : ∀ (f g : { x // x ∈ degreeLT F (card s) }), (fun f i => eval (v ↑i) ↑f) (f + g) = (fun f i => eval (v ↑i) ↑f) f + (fun f i => eval (v ↑i) ↑f) g) } (c • f) = ↑(RingHom.id F) c • AddHom.toFun { toFun := fun f i => eval (v ↑i) ↑f, map_add' := (_ : ∀ (f g : { x // x ∈ degreeLT F (card s) }), (fun f i => eval (v ↑i) ↑f) (f + g) = (fun f i => eval (v ↑i) ↑f) f + (fun f i => eval (v ↑i) ↑f) g) } f) }.toAddHom { val := f, property := hf }) = { val := f, property := hf } [PROOFSTEP] simp only [Subtype.mk_eq_mk, Subtype.coe_mk, dite_eq_ite] [GOAL] case mk F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s t : Finset ι i j : ι v r r' : ι → F hvs : Set.InjOn v ↑s f : F[X] hf : f ∈ degreeLT F (card s) ⊢ (↑(interpolate s v) fun x => if x ∈ s then eval (v x) f else 0) = f [PROOFSTEP] rw [mem_degreeLT] at hf [GOAL] case mk F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s t : Finset ι i j : ι v r r' : ι → F hvs : Set.InjOn v ↑s f : F[X] hf : degree f < ↑(card s) ⊢ (↑(interpolate s v) fun x => if x ∈ s then eval (v x) f else 0) = f [PROOFSTEP] conv => rhs; rw [eq_interpolate hvs hf] [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s t : Finset ι i j : ι v r r' : ι → F hvs : Set.InjOn v ↑s f : F[X] hf : degree f < ↑(card s) | (↑(interpolate s v) fun x => if x ∈ s then eval (v x) f else 0) = f [PROOFSTEP] rhs; rw [eq_interpolate hvs hf] [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s t : Finset ι i j : ι v r r' : ι → F hvs : Set.InjOn v ↑s f : F[X] hf : degree f < ↑(card s) | (↑(interpolate s v) fun x => if x ∈ s then eval (v x) f else 0) = f [PROOFSTEP] rhs; rw [eq_interpolate hvs hf] [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s t : Finset ι i j : ι v r r' : ι → F hvs : Set.InjOn v ↑s f : F[X] hf : degree f < ↑(card s) | (↑(interpolate s v) fun x => if x ∈ s then eval (v x) f else 0) = f [PROOFSTEP] rhs [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s t : Finset ι i j : ι v r r' : ι → F hvs : Set.InjOn v ↑s f : F[X] hf : degree f < ↑(card s) | f [PROOFSTEP] rw [eq_interpolate hvs hf] [GOAL] case mk F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s t : Finset ι i j : ι v r r' : ι → F hvs : Set.InjOn v ↑s f : F[X] hf : degree f < ↑(card s) ⊢ (↑(interpolate s v) fun x => if x ∈ s then eval (v x) f else 0) = ↑(interpolate s v) fun i => eval (v i) f [PROOFSTEP] exact interpolate_eq_of_values_eq_on _ _ fun _ hi => if_pos hi [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s t : Finset ι i j : ι v r r' : ι → F hvs : Set.InjOn v ↑s ⊢ Function.RightInverse (fun r => { val := ↑(interpolate s v) fun x => if hx : x ∈ s then r { val := x, property := hx } else 0, property := (_ : (↑(interpolate s v) fun x => if hx : x ∈ s then r { val := x, property := hx } else 0) ∈ degreeLT F (card s)) }) { toAddHom := { toFun := fun f i => eval (v ↑i) ↑f, map_add' := (_ : ∀ (f g : { x // x ∈ degreeLT F (card s) }), (fun f i => eval (v ↑i) ↑f) (f + g) = (fun f i => eval (v ↑i) ↑f) f + (fun f i => eval (v ↑i) ↑f) g) }, map_smul' := (_ : ∀ (c : F) (f : { x // x ∈ degreeLT F (card s) }), AddHom.toFun { toFun := fun f i => eval (v ↑i) ↑f, map_add' := (_ : ∀ (f g : { x // x ∈ degreeLT F (card s) }), (fun f i => eval (v ↑i) ↑f) (f + g) = (fun f i => eval (v ↑i) ↑f) f + (fun f i => eval (v ↑i) ↑f) g) } (c • f) = ↑(RingHom.id F) c • AddHom.toFun { toFun := fun f i => eval (v ↑i) ↑f, map_add' := (_ : ∀ (f g : { x // x ∈ degreeLT F (card s) }), (fun f i => eval (v ↑i) ↑f) (f + g) = (fun f i => eval (v ↑i) ↑f) f + (fun f i => eval (v ↑i) ↑f) g) } f) }.toAddHom.toFun [PROOFSTEP] intro f [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s t : Finset ι i j : ι v r r' : ι → F hvs : Set.InjOn v ↑s f : { x // x ∈ s } → F ⊢ AddHom.toFun { toAddHom := { toFun := fun f i => eval (v ↑i) ↑f, map_add' := (_ : ∀ (f g : { x // x ∈ degreeLT F (card s) }), (fun f i => eval (v ↑i) ↑f) (f + g) = (fun f i => eval (v ↑i) ↑f) f + (fun f i => eval (v ↑i) ↑f) g) }, map_smul' := (_ : ∀ (c : F) (f : { x // x ∈ degreeLT F (card s) }), AddHom.toFun { toFun := fun f i => eval (v ↑i) ↑f, map_add' := (_ : ∀ (f g : { x // x ∈ degreeLT F (card s) }), (fun f i => eval (v ↑i) ↑f) (f + g) = (fun f i => eval (v ↑i) ↑f) f + (fun f i => eval (v ↑i) ↑f) g) } (c • f) = ↑(RingHom.id F) c • AddHom.toFun { toFun := fun f i => eval (v ↑i) ↑f, map_add' := (_ : ∀ (f g : { x // x ∈ degreeLT F (card s) }), (fun f i => eval (v ↑i) ↑f) (f + g) = (fun f i => eval (v ↑i) ↑f) f + (fun f i => eval (v ↑i) ↑f) g) } f) }.toAddHom ((fun r => { val := ↑(interpolate s v) fun x => if hx : x ∈ s then r { val := x, property := hx } else 0, property := (_ : (↑(interpolate s v) fun x => if hx : x ∈ s then r { val := x, property := hx } else 0) ∈ degreeLT F (card s)) }) f) = f [PROOFSTEP] ext ⟨i, hi⟩ [GOAL] case h.mk F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s t : Finset ι i✝ j : ι v r r' : ι → F hvs : Set.InjOn v ↑s f : { x // x ∈ s } → F i : ι hi : i ∈ s ⊢ AddHom.toFun { toAddHom := { toFun := fun f i => eval (v ↑i) ↑f, map_add' := (_ : ∀ (f g : { x // x ∈ degreeLT F (card s) }), (fun f i => eval (v ↑i) ↑f) (f + g) = (fun f i => eval (v ↑i) ↑f) f + (fun f i => eval (v ↑i) ↑f) g) }, map_smul' := (_ : ∀ (c : F) (f : { x // x ∈ degreeLT F (card s) }), AddHom.toFun { toFun := fun f i => eval (v ↑i) ↑f, map_add' := (_ : ∀ (f g : { x // x ∈ degreeLT F (card s) }), (fun f i => eval (v ↑i) ↑f) (f + g) = (fun f i => eval (v ↑i) ↑f) f + (fun f i => eval (v ↑i) ↑f) g) } (c • f) = ↑(RingHom.id F) c • AddHom.toFun { toFun := fun f i => eval (v ↑i) ↑f, map_add' := (_ : ∀ (f g : { x // x ∈ degreeLT F (card s) }), (fun f i => eval (v ↑i) ↑f) (f + g) = (fun f i => eval (v ↑i) ↑f) f + (fun f i => eval (v ↑i) ↑f) g) } f) }.toAddHom ((fun r => { val := ↑(interpolate s v) fun x => if hx : x ∈ s then r { val := x, property := hx } else 0, property := (_ : (↑(interpolate s v) fun x => if hx : x ∈ s then r { val := x, property := hx } else 0) ∈ degreeLT F (card s)) }) f) { val := i, property := hi } = f { val := i, property := hi } [PROOFSTEP] simp only [Subtype.coe_mk, eval_interpolate_at_node _ hvs hi] [GOAL] case h.mk F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s t : Finset ι i✝ j : ι v r r' : ι → F hvs : Set.InjOn v ↑s f : { x // x ∈ s } → F i : ι hi : i ∈ s ⊢ (if hx : i ∈ s then f { val := i, property := hx } else 0) = f { val := i, property := hi } [PROOFSTEP] exact dif_pos hi [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s t : Finset ι i j : ι v r r' : ι → F hvt : Set.InjOn v ↑t hs : Finset.Nonempty s hst : s ⊆ t ⊢ ↑(interpolate t v) r = ∑ i in s, ↑(interpolate (insert i (t \ s)) v) r * Lagrange.basis s v i [PROOFSTEP] symm [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s t : Finset ι i j : ι v r r' : ι → F hvt : Set.InjOn v ↑t hs : Finset.Nonempty s hst : s ⊆ t ⊢ ∑ i in s, ↑(interpolate (insert i (t \ s)) v) r * Lagrange.basis s v i = ↑(interpolate t v) r [PROOFSTEP] refine' eq_interpolate_of_eval_eq _ hvt (lt_of_le_of_lt (degree_sum_le _ _) _) fun i hi => _ [GOAL] case refine'_1 F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s t : Finset ι i j : ι v r r' : ι → F hvt : Set.InjOn v ↑t hs : Finset.Nonempty s hst : s ⊆ t ⊢ (sup s fun b => degree (↑(interpolate (insert b (t \ s)) v) r * Lagrange.basis s v b)) < ↑(card t) [PROOFSTEP] simp_rw [Nat.cast_withBot, Finset.sup_lt_iff (WithBot.bot_lt_coe t.card), degree_mul] [GOAL] case refine'_1 F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s t : Finset ι i j : ι v r r' : ι → F hvt : Set.InjOn v ↑t hs : Finset.Nonempty s hst : s ⊆ t ⊢ ∀ (b : ι), b ∈ s → degree (↑(interpolate (insert b (t \ s)) v) r) + degree (Lagrange.basis s v b) < ↑(card t) [PROOFSTEP] intro i hi [GOAL] case refine'_1 F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s t : Finset ι i✝ j : ι v r r' : ι → F hvt : Set.InjOn v ↑t hs : Finset.Nonempty s hst : s ⊆ t i : ι hi : i ∈ s ⊢ degree (↑(interpolate (insert i (t \ s)) v) r) + degree (Lagrange.basis s v i) < ↑(card t) [PROOFSTEP] have hs : 1 ≤ s.card := Nonempty.card_pos ⟨_, hi⟩ [GOAL] case refine'_1 F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s t : Finset ι i✝ j : ι v r r' : ι → F hvt : Set.InjOn v ↑t hs✝ : Finset.Nonempty s hst : s ⊆ t i : ι hi : i ∈ s hs : 1 ≤ card s ⊢ degree (↑(interpolate (insert i (t \ s)) v) r) + degree (Lagrange.basis s v i) < ↑(card t) [PROOFSTEP] have hst' : s.card ≤ t.card := card_le_of_subset hst [GOAL] case refine'_1 F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s t : Finset ι i✝ j : ι v r r' : ι → F hvt : Set.InjOn v ↑t hs✝ : Finset.Nonempty s hst : s ⊆ t i : ι hi : i ∈ s hs : 1 ≤ card s hst' : card s ≤ card t ⊢ degree (↑(interpolate (insert i (t \ s)) v) r) + degree (Lagrange.basis s v i) < ↑(card t) [PROOFSTEP] have H : t.card = 1 + (t.card - s.card) + (s.card - 1) := by rw [add_assoc, tsub_add_tsub_cancel hst' hs, ← add_tsub_assoc_of_le (hs.trans hst'), Nat.succ_add_sub_one, zero_add] [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s t : Finset ι i✝ j : ι v r r' : ι → F hvt : Set.InjOn v ↑t hs✝ : Finset.Nonempty s hst : s ⊆ t i : ι hi : i ∈ s hs : 1 ≤ card s hst' : card s ≤ card t ⊢ card t = 1 + (card t - card s) + (card s - 1) [PROOFSTEP] rw [add_assoc, tsub_add_tsub_cancel hst' hs, ← add_tsub_assoc_of_le (hs.trans hst'), Nat.succ_add_sub_one, zero_add] [GOAL] case refine'_1 F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s t : Finset ι i✝ j : ι v r r' : ι → F hvt : Set.InjOn v ↑t hs✝ : Finset.Nonempty s hst : s ⊆ t i : ι hi : i ∈ s hs : 1 ≤ card s hst' : card s ≤ card t H : card t = 1 + (card t - card s) + (card s - 1) ⊢ degree (↑(interpolate (insert i (t \ s)) v) r) + degree (Lagrange.basis s v i) < ↑(card t) [PROOFSTEP] rw [degree_basis (Set.InjOn.mono hst hvt) hi, H, WithBot.coe_add, Nat.cast_withBot, WithBot.add_lt_add_iff_right (@WithBot.coe_ne_bot _ (s.card - 1))] [GOAL] case refine'_1 F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s t : Finset ι i✝ j : ι v r r' : ι → F hvt : Set.InjOn v ↑t hs✝ : Finset.Nonempty s hst : s ⊆ t i : ι hi : i ∈ s hs : 1 ≤ card s hst' : card s ≤ card t H : card t = 1 + (card t - card s) + (card s - 1) ⊢ degree (↑(interpolate (insert i (t \ s)) v) r) < ↑(1 + (card t - card s)) [PROOFSTEP] convert degree_interpolate_lt _ (hvt.mono (coe_subset.mpr (insert_subset_iff.mpr ⟨hst hi, sdiff_subset _ _⟩))) [GOAL] case h.e'_4.h.e'_1 F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s t : Finset ι i✝ j : ι v r r' : ι → F hvt : Set.InjOn v ↑t hs✝ : Finset.Nonempty s hst : s ⊆ t i : ι hi : i ∈ s hs : 1 ≤ card s hst' : card s ≤ card t H : card t = 1 + (card t - card s) + (card s - 1) ⊢ 1 + (card t - card s) = card (insert i (t \ s)) [PROOFSTEP] rw [card_insert_of_not_mem (not_mem_sdiff_of_mem_right hi), card_sdiff hst, add_comm] [GOAL] case refine'_2 F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s t : Finset ι i✝ j : ι v r r' : ι → F hvt : Set.InjOn v ↑t hs : Finset.Nonempty s hst : s ⊆ t i : ι hi : i ∈ t ⊢ eval (v i) (∑ i in s, ↑(interpolate (insert i (t \ s)) v) r * Lagrange.basis s v i) = r i [PROOFSTEP] simp_rw [eval_finset_sum, eval_mul] [GOAL] case refine'_2 F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s t : Finset ι i✝ j : ι v r r' : ι → F hvt : Set.InjOn v ↑t hs : Finset.Nonempty s hst : s ⊆ t i : ι hi : i ∈ t ⊢ ∑ x in s, eval (v i) (↑(interpolate (insert x (t \ s)) v) r) * eval (v i) (Lagrange.basis s v x) = r i [PROOFSTEP] by_cases hi' : i ∈ s [GOAL] case pos F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s t : Finset ι i✝ j : ι v r r' : ι → F hvt : Set.InjOn v ↑t hs : Finset.Nonempty s hst : s ⊆ t i : ι hi : i ∈ t hi' : i ∈ s ⊢ ∑ x in s, eval (v i) (↑(interpolate (insert x (t \ s)) v) r) * eval (v i) (Lagrange.basis s v x) = r i [PROOFSTEP] rw [← add_sum_erase _ _ hi', eval_basis_self (hvt.mono hst) hi', eval_interpolate_at_node _ (hvt.mono (coe_subset.mpr (insert_subset_iff.mpr ⟨hi, sdiff_subset _ _⟩))) (mem_insert_self _ _), mul_one, add_right_eq_self] [GOAL] case pos F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s t : Finset ι i✝ j : ι v r r' : ι → F hvt : Set.InjOn v ↑t hs : Finset.Nonempty s hst : s ⊆ t i : ι hi : i ∈ t hi' : i ∈ s ⊢ ∑ x in Finset.erase s i, eval (v i) (↑(interpolate (insert x (t \ s)) v) r) * eval (v i) (Lagrange.basis s v x) = 0 [PROOFSTEP] refine' sum_eq_zero fun j hj => _ [GOAL] case pos F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s t : Finset ι i✝ j✝ : ι v r r' : ι → F hvt : Set.InjOn v ↑t hs : Finset.Nonempty s hst : s ⊆ t i : ι hi : i ∈ t hi' : i ∈ s j : ι hj : j ∈ Finset.erase s i ⊢ eval (v i) (↑(interpolate (insert j (t \ s)) v) r) * eval (v i) (Lagrange.basis s v j) = 0 [PROOFSTEP] rcases mem_erase.mp hj with ⟨hij, _⟩ [GOAL] case pos.intro F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s t : Finset ι i✝ j✝ : ι v r r' : ι → F hvt : Set.InjOn v ↑t hs : Finset.Nonempty s hst : s ⊆ t i : ι hi : i ∈ t hi' : i ∈ s j : ι hj : j ∈ Finset.erase s i hij : j ≠ i right✝ : j ∈ s ⊢ eval (v i) (↑(interpolate (insert j (t \ s)) v) r) * eval (v i) (Lagrange.basis s v j) = 0 [PROOFSTEP] rw [eval_basis_of_ne hij hi', mul_zero] [GOAL] case neg F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s t : Finset ι i✝ j : ι v r r' : ι → F hvt : Set.InjOn v ↑t hs : Finset.Nonempty s hst : s ⊆ t i : ι hi : i ∈ t hi' : ¬i ∈ s ⊢ ∑ x in s, eval (v i) (↑(interpolate (insert x (t \ s)) v) r) * eval (v i) (Lagrange.basis s v x) = r i [PROOFSTEP] have H : (∑ j in s, eval (v i) (Lagrange.basis s v j)) = 1 := by rw [← eval_finset_sum, sum_basis (hvt.mono hst) hs, eval_one] [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s t : Finset ι i✝ j : ι v r r' : ι → F hvt : Set.InjOn v ↑t hs : Finset.Nonempty s hst : s ⊆ t i : ι hi : i ∈ t hi' : ¬i ∈ s ⊢ ∑ j in s, eval (v i) (Lagrange.basis s v j) = 1 [PROOFSTEP] rw [← eval_finset_sum, sum_basis (hvt.mono hst) hs, eval_one] [GOAL] case neg F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s t : Finset ι i✝ j : ι v r r' : ι → F hvt : Set.InjOn v ↑t hs : Finset.Nonempty s hst : s ⊆ t i : ι hi : i ∈ t hi' : ¬i ∈ s H : ∑ j in s, eval (v i) (Lagrange.basis s v j) = 1 ⊢ ∑ x in s, eval (v i) (↑(interpolate (insert x (t \ s)) v) r) * eval (v i) (Lagrange.basis s v x) = r i [PROOFSTEP] rw [← mul_one (r i), ← H, mul_sum] [GOAL] case neg F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s t : Finset ι i✝ j : ι v r r' : ι → F hvt : Set.InjOn v ↑t hs : Finset.Nonempty s hst : s ⊆ t i : ι hi : i ∈ t hi' : ¬i ∈ s H : ∑ j in s, eval (v i) (Lagrange.basis s v j) = 1 ⊢ ∑ x in s, eval (v i) (↑(interpolate (insert x (t \ s)) v) r) * eval (v i) (Lagrange.basis s v x) = ∑ x in s, r i * eval (v i) (Lagrange.basis s v x) [PROOFSTEP] refine' sum_congr rfl fun j hj => _ [GOAL] case neg F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s t : Finset ι i✝ j✝ : ι v r r' : ι → F hvt : Set.InjOn v ↑t hs : Finset.Nonempty s hst : s ⊆ t i : ι hi : i ∈ t hi' : ¬i ∈ s H : ∑ j in s, eval (v i) (Lagrange.basis s v j) = 1 j : ι hj : j ∈ s ⊢ eval (v i) (↑(interpolate (insert j (t \ s)) v) r) * eval (v i) (Lagrange.basis s v j) = r i * eval (v i) (Lagrange.basis s v j) [PROOFSTEP] congr [GOAL] case neg.e_a F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s t : Finset ι i✝ j✝ : ι v r r' : ι → F hvt : Set.InjOn v ↑t hs : Finset.Nonempty s hst : s ⊆ t i : ι hi : i ∈ t hi' : ¬i ∈ s H : ∑ j in s, eval (v i) (Lagrange.basis s v j) = 1 j : ι hj : j ∈ s ⊢ eval (v i) (↑(interpolate (insert j (t \ s)) v) r) = r i [PROOFSTEP] exact eval_interpolate_at_node _ (hvt.mono (insert_subset_iff.mpr ⟨hst hj, sdiff_subset _ _⟩)) (mem_insert.mpr (Or.inr (mem_sdiff.mpr ⟨hi, hi'⟩))) [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s t : Finset ι i j : ι v r r' : ι → F hvs : Set.InjOn v ↑s hi : i ∈ s hj : j ∈ s hij : i ≠ j ⊢ ↑(interpolate s v) r = ↑(interpolate (Finset.erase s j) v) r * basisDivisor (v i) (v j) + ↑(interpolate (Finset.erase s i) v) r * basisDivisor (v j) (v i) [PROOFSTEP] rw [interpolate_eq_sum_interpolate_insert_sdiff _ hvs ⟨i, mem_insert_self i { j }⟩ _, sum_insert (not_mem_singleton.mpr hij), sum_singleton, basis_pair_left hij, basis_pair_right hij, sdiff_insert_insert_of_mem_of_not_mem hi (not_mem_singleton.mpr hij), sdiff_singleton_eq_erase, pair_comm, sdiff_insert_insert_of_mem_of_not_mem hj (not_mem_singleton.mpr hij.symm), sdiff_singleton_eq_erase] [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 inst✝ : DecidableEq ι s t : Finset ι i j : ι v r r' : ι → F hvs : Set.InjOn v ↑s hi : i ∈ s hj : j ∈ s hij : i ≠ j ⊢ {i, j} ⊆ s [PROOFSTEP] exact insert_subset_iff.mpr ⟨hi, singleton_subset_iff.mpr hj⟩ [GOAL] F : Type u_1 inst✝ : Field F ι : Type u_2 s : Finset ι v : ι → F i : ι r : ι → F x : F ⊢ nodal ∅ v = 1 [PROOFSTEP] rfl [GOAL] F : Type u_1 inst✝ : Field F ι : Type u_2 s : Finset ι v : ι → F i : ι r : ι → F x : F ⊢ degree (nodal s v) = ↑(card s) [PROOFSTEP] simp_rw [nodal, degree_prod, degree_X_sub_C, sum_const, Nat.smul_one_eq_coe] [GOAL] F : Type u_1 inst✝ : Field F ι : Type u_2 s : Finset ι v : ι → F i : ι r : ι → F x✝ x : F ⊢ eval x (nodal s v) = ∏ i in s, (x - v i) [PROOFSTEP] simp_rw [nodal, eval_prod, eval_sub, eval_X, eval_C] [GOAL] F : Type u_1 inst✝ : Field F ι : Type u_2 s : Finset ι v : ι → F i : ι r : ι → F x : F hi : i ∈ s ⊢ eval (v i) (nodal s v) = 0 [PROOFSTEP] rw [eval_nodal, prod_eq_zero_iff] [GOAL] F : Type u_1 inst✝ : Field F ι : Type u_2 s : Finset ι v : ι → F i : ι r : ι → F x : F hi : i ∈ s ⊢ ∃ a, a ∈ s ∧ v i - v a = 0 [PROOFSTEP] exact ⟨i, hi, sub_eq_zero_of_eq rfl⟩ [GOAL] F : Type u_1 inst✝ : Field F ι : Type u_2 s : Finset ι v : ι → F i : ι r : ι → F x : F hx : ∀ (i : ι), i ∈ s → x ≠ v i ⊢ eval x (nodal s v) ≠ 0 [PROOFSTEP] simp_rw [nodal, eval_prod, prod_ne_zero_iff, eval_sub, eval_X, eval_C, sub_ne_zero] [GOAL] F : Type u_1 inst✝ : Field F ι : Type u_2 s : Finset ι v : ι → F i : ι r : ι → F x : F hx : ∀ (i : ι), i ∈ s → x ≠ v i ⊢ ∀ (a : ι), a ∈ s → x ≠ v a [PROOFSTEP] exact hx [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 s : Finset ι v : ι → F i : ι r : ι → F x : F inst✝ : DecidableEq ι hi : i ∈ s ⊢ nodal s v = (X - ↑C (v i)) * nodal (Finset.erase s i) v [PROOFSTEP] simp_rw [nodal, Finset.mul_prod_erase _ (fun x => X - C (v x)) hi] [GOAL] F : Type u_1 inst✝ : Field F ι : Type u_2 s : Finset ι v✝ : ι → F i : ι r : ι → F x : F v : ι → F hi : i ∈ s ⊢ nodal s v = (X - ↑C (v i)) * ?m.437432 v hi [PROOFSTEP] classical exact nodal_eq_mul_nodal_erase hi [GOAL] F : Type u_1 inst✝ : Field F ι : Type u_2 s : Finset ι v✝ : ι → F i : ι r : ι → F x : F v : ι → F hi : i ∈ s ⊢ nodal s v = (X - ↑C (v i)) * ?m.437432 v hi [PROOFSTEP] exact nodal_eq_mul_nodal_erase hi [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 s : Finset ι v : ι → F i : ι r : ι → F x : F inst✝ : DecidableEq ι hi : i ∈ s ⊢ nodal (Finset.erase s i) v = nodal s v / (X - ↑C (v i)) [PROOFSTEP] rw [nodal_eq_mul_nodal_erase hi, EuclideanDomain.mul_div_cancel_left] [GOAL] case a0 F : Type u_1 inst✝¹ : Field F ι : Type u_2 s : Finset ι v : ι → F i : ι r : ι → F x : F inst✝ : DecidableEq ι hi : i ∈ s ⊢ X - ↑C (v i) ≠ 0 [PROOFSTEP] exact X_sub_C_ne_zero _ [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 s : Finset ι v : ι → F i : ι r : ι → F x : F inst✝ : DecidableEq ι hi : ¬i ∈ s ⊢ nodal (insert i s) v = (X - ↑C (v i)) * nodal s v [PROOFSTEP] simp_rw [nodal, prod_insert hi] [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 s : Finset ι v : ι → F i : ι r : ι → F x : F inst✝ : DecidableEq ι ⊢ ↑derivative (nodal s v) = ∑ i in s, nodal (Finset.erase s i) v [PROOFSTEP] refine' Finset.induction_on s _ fun _ _ hit IH => _ [GOAL] case refine'_1 F : Type u_1 inst✝¹ : Field F ι : Type u_2 s : Finset ι v : ι → F i : ι r : ι → F x : F inst✝ : DecidableEq ι ⊢ ↑derivative (nodal ∅ v) = ∑ i in ∅, nodal (Finset.erase ∅ i) v [PROOFSTEP] rw [nodal_empty, derivative_one, sum_empty] [GOAL] case refine'_2 F : Type u_1 inst✝¹ : Field F ι : Type u_2 s : Finset ι v : ι → F i : ι r : ι → F x : F inst✝ : DecidableEq ι x✝¹ : ι x✝ : Finset ι hit : ¬x✝¹ ∈ x✝ IH : ↑derivative (nodal x✝ v) = ∑ i in x✝, nodal (Finset.erase x✝ i) v ⊢ ↑derivative (nodal (insert x✝¹ x✝) v) = ∑ i in insert x✝¹ x✝, nodal (Finset.erase (insert x✝¹ x✝) i) v [PROOFSTEP] rw [nodal_insert_eq_nodal hit, derivative_mul, IH, derivative_sub, derivative_X, derivative_C, sub_zero, one_mul, sum_insert hit, mul_sum, erase_insert hit, add_right_inj] [GOAL] case refine'_2 F : Type u_1 inst✝¹ : Field F ι : Type u_2 s : Finset ι v : ι → F i : ι r : ι → F x : F inst✝ : DecidableEq ι x✝¹ : ι x✝ : Finset ι hit : ¬x✝¹ ∈ x✝ IH : ↑derivative (nodal x✝ v) = ∑ i in x✝, nodal (Finset.erase x✝ i) v ⊢ ∑ x in x✝, (X - ↑C (v x✝¹)) * nodal (Finset.erase x✝ x) v = ∑ x in x✝, nodal (Finset.erase (insert x✝¹ x✝) x) v [PROOFSTEP] refine' sum_congr rfl fun j hjt => _ [GOAL] case refine'_2 F : Type u_1 inst✝¹ : Field F ι : Type u_2 s : Finset ι v : ι → F i : ι r : ι → F x : F inst✝ : DecidableEq ι x✝¹ : ι x✝ : Finset ι hit : ¬x✝¹ ∈ x✝ IH : ↑derivative (nodal x✝ v) = ∑ i in x✝, nodal (Finset.erase x✝ i) v j : ι hjt : j ∈ x✝ ⊢ (X - ↑C (v x✝¹)) * nodal (Finset.erase x✝ j) v = nodal (Finset.erase (insert x✝¹ x✝) j) v [PROOFSTEP] rw [nodal_erase_eq_nodal_div (mem_insert_of_mem hjt), nodal_insert_eq_nodal hit, EuclideanDomain.mul_div_assoc _ (X_sub_C_dvd_nodal v hjt), nodal_erase_eq_nodal_div hjt] [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 s : Finset ι v : ι → F i : ι r : ι → F x : F inst✝ : DecidableEq ι hi : i ∈ s ⊢ eval (v i) (↑derivative (nodal s v)) = eval (v i) (nodal (Finset.erase s i) v) [PROOFSTEP] rw [derivative_nodal, eval_finset_sum, ← add_sum_erase _ _ hi, add_right_eq_self] [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 s : Finset ι v : ι → F i : ι r : ι → F x : F inst✝ : DecidableEq ι hi : i ∈ s ⊢ ∑ x in Finset.erase s i, eval (v i) (nodal (Finset.erase s x) v) = 0 [PROOFSTEP] refine' sum_eq_zero fun j hj => _ [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 s : Finset ι v : ι → F i : ι r : ι → F x : F inst✝ : DecidableEq ι hi : i ∈ s j : ι hj : j ∈ Finset.erase s i ⊢ eval (v i) (nodal (Finset.erase s j) v) = 0 [PROOFSTEP] simp_rw [nodal, eval_prod, eval_sub, eval_X, eval_C, prod_eq_zero_iff, mem_erase] [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 s : Finset ι v : ι → F i : ι r : ι → F x : F inst✝ : DecidableEq ι hi : i ∈ s j : ι hj : j ∈ Finset.erase s i ⊢ ∃ a, (a ≠ j ∧ a ∈ s) ∧ v i - v a = 0 [PROOFSTEP] exact ⟨i, ⟨(mem_erase.mp hj).1.symm, hi⟩, sub_eq_zero_of_eq rfl⟩ [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 s : Finset ι v : ι → F i : ι r : ι → F x : F inst✝ : DecidableEq ι ⊢ nodalWeight s v i = (eval (v i) (nodal (Finset.erase s i) v))⁻¹ [PROOFSTEP] rw [eval_nodal, nodalWeight, prod_inv_distrib] [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 s : Finset ι v : ι → F i : ι r : ι → F x : F inst✝ : DecidableEq ι hi : i ∈ s ⊢ nodalWeight s v i = (eval (v i) (↑derivative (nodal s v)))⁻¹ [PROOFSTEP] rw [eval_nodal_derivative_eval_node_eq hi, nodalWeight_eq_eval_nodal_erase_inv] [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 s : Finset ι v : ι → F i : ι r : ι → F x : F inst✝ : DecidableEq ι hvs : Set.InjOn v ↑s hi : i ∈ s ⊢ nodalWeight s v i ≠ 0 [PROOFSTEP] rw [nodalWeight, prod_ne_zero_iff] [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 s : Finset ι v : ι → F i : ι r : ι → F x : F inst✝ : DecidableEq ι hvs : Set.InjOn v ↑s hi : i ∈ s ⊢ ∀ (a : ι), a ∈ Finset.erase s i → (v i - v a)⁻¹ ≠ 0 [PROOFSTEP] intro j hj [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 s : Finset ι v : ι → F i : ι r : ι → F x : F inst✝ : DecidableEq ι hvs : Set.InjOn v ↑s hi : i ∈ s j : ι hj : j ∈ Finset.erase s i ⊢ (v i - v j)⁻¹ ≠ 0 [PROOFSTEP] rcases mem_erase.mp hj with ⟨hij, hj⟩ [GOAL] case intro F : Type u_1 inst✝¹ : Field F ι : Type u_2 s : Finset ι v : ι → F i : ι r : ι → F x : F inst✝ : DecidableEq ι hvs : Set.InjOn v ↑s hi : i ∈ s j : ι hj✝ : j ∈ Finset.erase s i hij : j ≠ i hj : j ∈ s ⊢ (v i - v j)⁻¹ ≠ 0 [PROOFSTEP] refine' inv_ne_zero (sub_ne_zero_of_ne (mt (hvs.eq_iff hi hj).mp hij.symm)) [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 s : Finset ι v : ι → F i : ι r : ι → F x : F inst✝ : DecidableEq ι hi : i ∈ s ⊢ Lagrange.basis s v i = ↑C (nodalWeight s v i) * (nodal s v / (X - ↑C (v i))) [PROOFSTEP] simp_rw [Lagrange.basis, basisDivisor, nodalWeight, prod_mul_distrib, map_prod, ← nodal_erase_eq_nodal_div hi, nodal] [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 s : Finset ι v : ι → F i : ι r : ι → F x : F inst✝ : DecidableEq ι hi : i ∈ s hxi : x ≠ v i ⊢ eval x (Lagrange.basis s v i) = eval x (nodal s v) * (nodalWeight s v i * (x - v i)⁻¹) [PROOFSTEP] rw [mul_comm, basis_eq_prod_sub_inv_mul_nodal_div hi, eval_mul, eval_C, ← nodal_erase_eq_nodal_div hi, eval_nodal, eval_nodal, mul_assoc, ← mul_prod_erase _ _ hi, ← mul_assoc (x - v i)⁻¹, inv_mul_cancel (sub_ne_zero_of_ne hxi), one_mul] [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 s : Finset ι v : ι → F i : ι r : ι → F x : F inst✝ : DecidableEq ι j : ι hj : j ∈ s ⊢ ↑C (r j) * Lagrange.basis s v j = ↑C (nodalWeight s v j) * (nodal s v / (X - ↑C (v j))) * ↑C (r j) [PROOFSTEP] rw [mul_comm, basis_eq_prod_sub_inv_mul_nodal_div hj] [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 s : Finset ι v : ι → F i : ι r : ι → F x : F inst✝ : DecidableEq ι hx : ∀ (i : ι), i ∈ s → x ≠ v i ⊢ eval x (↑(interpolate s v) r) = eval x (nodal s v) * ∑ i in s, nodalWeight s v i * (x - v i)⁻¹ * r i [PROOFSTEP] simp_rw [interpolate_apply, mul_sum, eval_finset_sum, eval_mul, eval_C] [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 s : Finset ι v : ι → F i : ι r : ι → F x : F inst✝ : DecidableEq ι hx : ∀ (i : ι), i ∈ s → x ≠ v i ⊢ ∑ x_1 in s, r x_1 * eval x (Lagrange.basis s v x_1) = ∑ x_1 in s, eval x (nodal s v) * (nodalWeight s v x_1 * (x - v x_1)⁻¹ * r x_1) [PROOFSTEP] refine' sum_congr rfl fun i hi => _ [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 s : Finset ι v : ι → F i✝ : ι r : ι → F x : F inst✝ : DecidableEq ι hx : ∀ (i : ι), i ∈ s → x ≠ v i i : ι hi : i ∈ s ⊢ r i * eval x (Lagrange.basis s v i) = eval x (nodal s v) * (nodalWeight s v i * (x - v i)⁻¹ * r i) [PROOFSTEP] rw [← mul_assoc, mul_comm, eval_basis_not_at_node hi (hx _ hi)] [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 s : Finset ι v : ι → F i : ι r : ι → F x : F inst✝ : DecidableEq ι hvs : Set.InjOn v ↑s hx : ∀ (i : ι), i ∈ s → x ≠ v i hs : Finset.Nonempty s ⊢ eval x (nodal s v) * ∑ i in s, nodalWeight s v i * (x - v i)⁻¹ = 1 [PROOFSTEP] simpa only [Pi.one_apply, interpolate_one hvs hs, eval_one, mul_one] using (eval_interpolate_not_at_node 1 hx).symm [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 s : Finset ι v : ι → F i : ι r : ι → F x : F inst✝ : DecidableEq ι hvs : Set.InjOn v ↑s hs : Finset.Nonempty s hx : ∀ (i : ι), i ∈ s → x ≠ v i ⊢ eval x (↑(interpolate s v) r) = (∑ i in s, nodalWeight s v i * (x - v i)⁻¹ * r i) / ∑ i in s, nodalWeight s v i * (x - v i)⁻¹ [PROOFSTEP] rw [← div_one (eval x (interpolate s v r)), ← @eval_one _ _ x, ← interpolate_one hvs hs, eval_interpolate_not_at_node r hx, eval_interpolate_not_at_node 1 hx] [GOAL] F : Type u_1 inst✝¹ : Field F ι : Type u_2 s : Finset ι v : ι → F i : ι r : ι → F x : F inst✝ : DecidableEq ι hvs : Set.InjOn v ↑s hs : Finset.Nonempty s hx : ∀ (i : ι), i ∈ s → x ≠ v i ⊢ (eval x (nodal s fun i => v i) * ∑ i in s, nodalWeight s (fun i => v i) i * (x - v i)⁻¹ * r i) / (eval x (nodal s fun i => v i) * ∑ i in s, nodalWeight s (fun i => v i) i * (x - v i)⁻¹ * OfNat.ofNat 1 i) = (∑ i in s, nodalWeight s v i * (x - v i)⁻¹ * r i) / ∑ i in s, nodalWeight s v i * (x - v i)⁻¹ [PROOFSTEP] simp only [mul_div_mul_left _ _ (eval_nodal_not_at_node hx), Pi.one_apply, mul_one] [GOAL] F : Type u_1 inst✝² : Field F ι : Type u_2 s : Finset ι v : ι → F i : ι r : ι → F x : F inst✝¹ : DecidableEq ι G : Subgroup Fˣ inst✝ : Fintype { x // x ∈ G } ⊢ nodal (Set.toFinset ↑G) Units.val = X ^ Fintype.card { x // x ∈ G } - 1 [PROOFSTEP] have h : degree (1 : F[X]) < degree ((X : F[X]) ^ Fintype.card G) := by simp [Fintype.card_pos] [GOAL] F : Type u_1 inst✝² : Field F ι : Type u_2 s : Finset ι v : ι → F i : ι r : ι → F x : F inst✝¹ : DecidableEq ι G : Subgroup Fˣ inst✝ : Fintype { x // x ∈ G } ⊢ degree 1 < degree (X ^ Fintype.card { x // x ∈ G }) [PROOFSTEP] simp [Fintype.card_pos] [GOAL] F : Type u_1 inst✝² : Field F ι : Type u_2 s : Finset ι v : ι → F i : ι r : ι → F x : F inst✝¹ : DecidableEq ι G : Subgroup Fˣ inst✝ : Fintype { x // x ∈ G } h : degree 1 < degree (X ^ Fintype.card { x // x ∈ G }) ⊢ nodal (Set.toFinset ↑G) Units.val = X ^ Fintype.card { x // x ∈ G } - 1 [PROOFSTEP] apply eq_of_degree_le_of_eval_index_eq (v := ((↑) : Fˣ → F)) (G : Set Fˣ).toFinset [GOAL] case hvs F : Type u_1 inst✝² : Field F ι : Type u_2 s : Finset ι v : ι → F i : ι r : ι → F x : F inst✝¹ : DecidableEq ι G : Subgroup Fˣ inst✝ : Fintype { x // x ∈ G } h : degree 1 < degree (X ^ Fintype.card { x // x ∈ G }) ⊢ Set.InjOn Units.val ↑(Set.toFinset ↑G) [PROOFSTEP] exact Set.injOn_of_injective Units.ext _ [GOAL] case h_deg_le F : Type u_1 inst✝² : Field F ι : Type u_2 s : Finset ι v : ι → F i : ι r : ι → F x : F inst✝¹ : DecidableEq ι G : Subgroup Fˣ inst✝ : Fintype { x // x ∈ G } h : degree 1 < degree (X ^ Fintype.card { x // x ∈ G }) ⊢ degree (nodal (Set.toFinset ↑G) Units.val) ≤ ↑(card (Set.toFinset ↑G)) [PROOFSTEP] simp [GOAL] case h_deg_eq F : Type u_1 inst✝² : Field F ι : Type u_2 s : Finset ι v : ι → F i : ι r : ι → F x : F inst✝¹ : DecidableEq ι G : Subgroup Fˣ inst✝ : Fintype { x // x ∈ G } h : degree 1 < degree (X ^ Fintype.card { x // x ∈ G }) ⊢ degree (nodal (Set.toFinset ↑G) Units.val) = degree (X ^ Fintype.card { x // x ∈ G } - 1) [PROOFSTEP] rw [degree_sub_eq_left_of_degree_lt h, degree_nodal, Set.toFinset_card, degree_pow, degree_X, nsmul_eq_mul, mul_one, Nat.cast_inj] [GOAL] case h_deg_eq F : Type u_1 inst✝² : Field F ι : Type u_2 s : Finset ι v : ι → F i : ι r : ι → F x : F inst✝¹ : DecidableEq ι G : Subgroup Fˣ inst✝ : Fintype { x // x ∈ G } h : degree 1 < degree (X ^ Fintype.card { x // x ∈ G }) ⊢ Fintype.card ↑↑G = Fintype.card { x // x ∈ G } [PROOFSTEP] exact rfl [GOAL] case hlc F : Type u_1 inst✝² : Field F ι : Type u_2 s : Finset ι v : ι → F i : ι r : ι → F x : F inst✝¹ : DecidableEq ι G : Subgroup Fˣ inst✝ : Fintype { x // x ∈ G } h : degree 1 < degree (X ^ Fintype.card { x // x ∈ G }) ⊢ leadingCoeff (nodal (Set.toFinset ↑G) Units.val) = leadingCoeff (X ^ Fintype.card { x // x ∈ G } - 1) [PROOFSTEP] rw [nodal_monic, leadingCoeff_sub_of_degree_lt h, monic_X_pow] [GOAL] case h_eval F : Type u_1 inst✝² : Field F ι : Type u_2 s : Finset ι v : ι → F i : ι r : ι → F x : F inst✝¹ : DecidableEq ι G : Subgroup Fˣ inst✝ : Fintype { x // x ∈ G } h : degree 1 < degree (X ^ Fintype.card { x // x ∈ G }) ⊢ ∀ (i : Fˣ), i ∈ Set.toFinset ↑G → eval (↑i) (nodal (Set.toFinset ↑G) Units.val) = eval (↑i) (X ^ Fintype.card { x // x ∈ G } - 1) [PROOFSTEP] intros i hi [GOAL] case h_eval F : Type u_1 inst✝² : Field F ι : Type u_2 s : Finset ι v : ι → F i✝ : ι r : ι → F x : F inst✝¹ : DecidableEq ι G : Subgroup Fˣ inst✝ : Fintype { x // x ∈ G } h : degree 1 < degree (X ^ Fintype.card { x // x ∈ G }) i : Fˣ hi : i ∈ Set.toFinset ↑G ⊢ eval (↑i) (nodal (Set.toFinset ↑G) Units.val) = eval (↑i) (X ^ Fintype.card { x // x ∈ G } - 1) [PROOFSTEP] rw [eval_nodal_at_node hi] [GOAL] case h_eval F : Type u_1 inst✝² : Field F ι : Type u_2 s : Finset ι v : ι → F i✝ : ι r : ι → F x : F inst✝¹ : DecidableEq ι G : Subgroup Fˣ inst✝ : Fintype { x // x ∈ G } h : degree 1 < degree (X ^ Fintype.card { x // x ∈ G }) i : Fˣ hi : i ∈ Set.toFinset ↑G ⊢ 0 = eval (↑i) (X ^ Fintype.card { x // x ∈ G } - 1) [PROOFSTEP] replace hi : i ∈ G := by simpa using hi [GOAL] F : Type u_1 inst✝² : Field F ι : Type u_2 s : Finset ι v : ι → F i✝ : ι r : ι → F x : F inst✝¹ : DecidableEq ι G : Subgroup Fˣ inst✝ : Fintype { x // x ∈ G } h : degree 1 < degree (X ^ Fintype.card { x // x ∈ G }) i : Fˣ hi : i ∈ Set.toFinset ↑G ⊢ i ∈ G [PROOFSTEP] simpa using hi [GOAL] case h_eval F : Type u_1 inst✝² : Field F ι : Type u_2 s : Finset ι v : ι → F i✝ : ι r : ι → F x : F inst✝¹ : DecidableEq ι G : Subgroup Fˣ inst✝ : Fintype { x // x ∈ G } h : degree 1 < degree (X ^ Fintype.card { x // x ∈ G }) i : Fˣ hi : i ∈ G ⊢ 0 = eval (↑i) (X ^ Fintype.card { x // x ∈ G } - 1) [PROOFSTEP] obtain ⟨g, rfl⟩ : ∃ g : G, g.val = i := ⟨⟨i, hi⟩, rfl⟩ [GOAL] case h_eval.intro F : Type u_1 inst✝² : Field F ι : Type u_2 s : Finset ι v : ι → F i : ι r : ι → F x : F inst✝¹ : DecidableEq ι G : Subgroup Fˣ inst✝ : Fintype { x // x ∈ G } h : degree 1 < degree (X ^ Fintype.card { x // x ∈ G }) g : { x // x ∈ G } hi : ↑g ∈ G ⊢ 0 = eval (↑↑g) (X ^ Fintype.card { x // x ∈ G } - 1) [PROOFSTEP] simp [← Units.val_pow_eq_pow_val, ← Subgroup.coe_pow G]
{"mathlib_filename": "Mathlib.LinearAlgebra.Lagrange", "llama_tokens": 37701}
[GOAL] R : Type u_1 M : Type u_2 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M f : GeneralLinearGroup R M src✝ : M →ₗ[R] M := ↑f m : M ⊢ ↑(f.inv * ↑f) m = m [PROOFSTEP] erw [f.inv_val] [GOAL] R : Type u_1 M : Type u_2 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M f : GeneralLinearGroup R M src✝ : M →ₗ[R] M := ↑f m : M ⊢ ↑1 m = m [PROOFSTEP] simp [GOAL] R : Type u_1 M : Type u_2 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M f : GeneralLinearGroup R M src✝ : M →ₗ[R] M := ↑f m : M ⊢ ↑(↑f * f.inv) m = m [PROOFSTEP] erw [f.val_inv] [GOAL] R : Type u_1 M : Type u_2 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M f : GeneralLinearGroup R M src✝ : M →ₗ[R] M := ↑f m : M ⊢ ↑1 m = m [PROOFSTEP] simp [GOAL] R : Type u_1 M : Type u_2 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M f : GeneralLinearGroup R M ⊢ ofLinearEquiv (toLinearEquiv f) = f [PROOFSTEP] ext [GOAL] case a.h R : Type u_1 M : Type u_2 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M f : GeneralLinearGroup R M x✝ : M ⊢ ↑↑(ofLinearEquiv (toLinearEquiv f)) x✝ = ↑↑f x✝ [PROOFSTEP] rfl [GOAL] R : Type u_1 M : Type u_2 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M f : M ≃ₗ[R] M ⊢ toLinearEquiv (ofLinearEquiv f) = f [PROOFSTEP] ext [GOAL] case h R : Type u_1 M : Type u_2 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M f : M ≃ₗ[R] M x✝ : M ⊢ ↑(toLinearEquiv (ofLinearEquiv f)) x✝ = ↑f x✝ [PROOFSTEP] rfl [GOAL] R : Type u_1 M : Type u_2 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M x y : GeneralLinearGroup R M ⊢ Equiv.toFun { toFun := toLinearEquiv, invFun := ofLinearEquiv, left_inv := (_ : ∀ (f : GeneralLinearGroup R M), ofLinearEquiv (toLinearEquiv f) = f), right_inv := (_ : ∀ (f : M ≃ₗ[R] M), toLinearEquiv (ofLinearEquiv f) = f) } (x * y) = Equiv.toFun { toFun := toLinearEquiv, invFun := ofLinearEquiv, left_inv := (_ : ∀ (f : GeneralLinearGroup R M), ofLinearEquiv (toLinearEquiv f) = f), right_inv := (_ : ∀ (f : M ≃ₗ[R] M), toLinearEquiv (ofLinearEquiv f) = f) } x * Equiv.toFun { toFun := toLinearEquiv, invFun := ofLinearEquiv, left_inv := (_ : ∀ (f : GeneralLinearGroup R M), ofLinearEquiv (toLinearEquiv f) = f), right_inv := (_ : ∀ (f : M ≃ₗ[R] M), toLinearEquiv (ofLinearEquiv f) = f) } y [PROOFSTEP] ext [GOAL] case h R : Type u_1 M : Type u_2 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M x y : GeneralLinearGroup R M x✝ : M ⊢ ↑(Equiv.toFun { toFun := toLinearEquiv, invFun := ofLinearEquiv, left_inv := (_ : ∀ (f : GeneralLinearGroup R M), ofLinearEquiv (toLinearEquiv f) = f), right_inv := (_ : ∀ (f : M ≃ₗ[R] M), toLinearEquiv (ofLinearEquiv f) = f) } (x * y)) x✝ = ↑(Equiv.toFun { toFun := toLinearEquiv, invFun := ofLinearEquiv, left_inv := (_ : ∀ (f : GeneralLinearGroup R M), ofLinearEquiv (toLinearEquiv f) = f), right_inv := (_ : ∀ (f : M ≃ₗ[R] M), toLinearEquiv (ofLinearEquiv f) = f) } x * Equiv.toFun { toFun := toLinearEquiv, invFun := ofLinearEquiv, left_inv := (_ : ∀ (f : GeneralLinearGroup R M), ofLinearEquiv (toLinearEquiv f) = f), right_inv := (_ : ∀ (f : M ≃ₗ[R] M), toLinearEquiv (ofLinearEquiv f) = f) } y) x✝ [PROOFSTEP] rfl [GOAL] R : Type u_1 M : Type u_2 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M f : GeneralLinearGroup R M ⊢ ↑(↑(generalLinearEquiv R M) f) = ↑f [PROOFSTEP] ext [GOAL] case h R : Type u_1 M : Type u_2 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M f : GeneralLinearGroup R M x✝ : M ⊢ ↑↑(↑(generalLinearEquiv R M) f) x✝ = ↑↑f x✝ [PROOFSTEP] rfl
{"mathlib_filename": "Mathlib.LinearAlgebra.GeneralLinearGroup", "llama_tokens": 1779}
[GOAL] R : Type u_1 inst✝ : CommRing R ⊢ (Fin 3 → R) →ₗ[R] (Fin 3 → R) →ₗ[R] Fin 3 → R [PROOFSTEP] apply LinearMap.mk₂ R fun a b : Fin 3 → R => ![a 1 * b 2 - a 2 * b 1, a 2 * b 0 - a 0 * b 2, a 0 * b 1 - a 1 * b 0] [GOAL] case H1 R : Type u_1 inst✝ : CommRing R ⊢ ∀ (m₁ m₂ n : Fin 3 → R), ![(m₁ + m₂) 1 * n 2 - (m₁ + m₂) 2 * n 1, (m₁ + m₂) 2 * n 0 - (m₁ + m₂) 0 * n 2, (m₁ + m₂) 0 * n 1 - (m₁ + m₂) 1 * n 0] = ![m₁ 1 * n 2 - m₁ 2 * n 1, m₁ 2 * n 0 - m₁ 0 * n 2, m₁ 0 * n 1 - m₁ 1 * n 0] + ![m₂ 1 * n 2 - m₂ 2 * n 1, m₂ 2 * n 0 - m₂ 0 * n 2, m₂ 0 * n 1 - m₂ 1 * n 0] [PROOFSTEP] intros [GOAL] case H1 R : Type u_1 inst✝ : CommRing R m₁✝ m₂✝ n✝ : Fin 3 → R ⊢ ![(m₁✝ + m₂✝) 1 * n✝ 2 - (m₁✝ + m₂✝) 2 * n✝ 1, (m₁✝ + m₂✝) 2 * n✝ 0 - (m₁✝ + m₂✝) 0 * n✝ 2, (m₁✝ + m₂✝) 0 * n✝ 1 - (m₁✝ + m₂✝) 1 * n✝ 0] = ![m₁✝ 1 * n✝ 2 - m₁✝ 2 * n✝ 1, m₁✝ 2 * n✝ 0 - m₁✝ 0 * n✝ 2, m₁✝ 0 * n✝ 1 - m₁✝ 1 * n✝ 0] + ![m₂✝ 1 * n✝ 2 - m₂✝ 2 * n✝ 1, m₂✝ 2 * n✝ 0 - m₂✝ 0 * n✝ 2, m₂✝ 0 * n✝ 1 - m₂✝ 1 * n✝ 0] [PROOFSTEP] simp_rw [vec3_add, Pi.add_apply] [GOAL] case H1 R : Type u_1 inst✝ : CommRing R m₁✝ m₂✝ n✝ : Fin 3 → R ⊢ ![(m₁✝ 1 + m₂✝ 1) * n✝ 2 - (m₁✝ 2 + m₂✝ 2) * n✝ 1, (m₁✝ 2 + m₂✝ 2) * n✝ 0 - (m₁✝ 0 + m₂✝ 0) * n✝ 2, (m₁✝ 0 + m₂✝ 0) * n✝ 1 - (m₁✝ 1 + m₂✝ 1) * n✝ 0] = ![m₁✝ 1 * n✝ 2 - m₁✝ 2 * n✝ 1 + (m₂✝ 1 * n✝ 2 - m₂✝ 2 * n✝ 1), m₁✝ 2 * n✝ 0 - m₁✝ 0 * n✝ 2 + (m₂✝ 2 * n✝ 0 - m₂✝ 0 * n✝ 2), m₁✝ 0 * n✝ 1 - m₁✝ 1 * n✝ 0 + (m₂✝ 0 * n✝ 1 - m₂✝ 1 * n✝ 0)] [PROOFSTEP] apply vec3_eq [GOAL] case H1.h₀ R : Type u_1 inst✝ : CommRing R m₁✝ m₂✝ n✝ : Fin 3 → R ⊢ (m₁✝ 1 + m₂✝ 1) * n✝ 2 - (m₁✝ 2 + m₂✝ 2) * n✝ 1 = m₁✝ 1 * n✝ 2 - m₁✝ 2 * n✝ 1 + (m₂✝ 1 * n✝ 2 - m₂✝ 2 * n✝ 1) [PROOFSTEP] ring [GOAL] case H1.h₁ R : Type u_1 inst✝ : CommRing R m₁✝ m₂✝ n✝ : Fin 3 → R ⊢ (m₁✝ 2 + m₂✝ 2) * n✝ 0 - (m₁✝ 0 + m₂✝ 0) * n✝ 2 = m₁✝ 2 * n✝ 0 - m₁✝ 0 * n✝ 2 + (m₂✝ 2 * n✝ 0 - m₂✝ 0 * n✝ 2) [PROOFSTEP] ring [GOAL] case H1.h₂ R : Type u_1 inst✝ : CommRing R m₁✝ m₂✝ n✝ : Fin 3 → R ⊢ (m₁✝ 0 + m₂✝ 0) * n✝ 1 - (m₁✝ 1 + m₂✝ 1) * n✝ 0 = m₁✝ 0 * n✝ 1 - m₁✝ 1 * n✝ 0 + (m₂✝ 0 * n✝ 1 - m₂✝ 1 * n✝ 0) [PROOFSTEP] ring [GOAL] case H2 R : Type u_1 inst✝ : CommRing R ⊢ ∀ (c : R) (m n : Fin 3 → R), ![(c • m) 1 * n 2 - (c • m) 2 * n 1, (c • m) 2 * n 0 - (c • m) 0 * n 2, (c • m) 0 * n 1 - (c • m) 1 * n 0] = c • ![m 1 * n 2 - m 2 * n 1, m 2 * n 0 - m 0 * n 2, m 0 * n 1 - m 1 * n 0] [PROOFSTEP] intros [GOAL] case H2 R : Type u_1 inst✝ : CommRing R c✝ : R m✝ n✝ : Fin 3 → R ⊢ ![(c✝ • m✝) 1 * n✝ 2 - (c✝ • m✝) 2 * n✝ 1, (c✝ • m✝) 2 * n✝ 0 - (c✝ • m✝) 0 * n✝ 2, (c✝ • m✝) 0 * n✝ 1 - (c✝ • m✝) 1 * n✝ 0] = c✝ • ![m✝ 1 * n✝ 2 - m✝ 2 * n✝ 1, m✝ 2 * n✝ 0 - m✝ 0 * n✝ 2, m✝ 0 * n✝ 1 - m✝ 1 * n✝ 0] [PROOFSTEP] simp_rw [smul_vec3, Pi.smul_apply, smul_sub, smul_mul_assoc] [GOAL] case H3 R : Type u_1 inst✝ : CommRing R ⊢ ∀ (m n₁ n₂ : Fin 3 → R), ![m 1 * (n₁ + n₂) 2 - m 2 * (n₁ + n₂) 1, m 2 * (n₁ + n₂) 0 - m 0 * (n₁ + n₂) 2, m 0 * (n₁ + n₂) 1 - m 1 * (n₁ + n₂) 0] = ![m 1 * n₁ 2 - m 2 * n₁ 1, m 2 * n₁ 0 - m 0 * n₁ 2, m 0 * n₁ 1 - m 1 * n₁ 0] + ![m 1 * n₂ 2 - m 2 * n₂ 1, m 2 * n₂ 0 - m 0 * n₂ 2, m 0 * n₂ 1 - m 1 * n₂ 0] [PROOFSTEP] intros [GOAL] case H3 R : Type u_1 inst✝ : CommRing R m✝ n₁✝ n₂✝ : Fin 3 → R ⊢ ![m✝ 1 * (n₁✝ + n₂✝) 2 - m✝ 2 * (n₁✝ + n₂✝) 1, m✝ 2 * (n₁✝ + n₂✝) 0 - m✝ 0 * (n₁✝ + n₂✝) 2, m✝ 0 * (n₁✝ + n₂✝) 1 - m✝ 1 * (n₁✝ + n₂✝) 0] = ![m✝ 1 * n₁✝ 2 - m✝ 2 * n₁✝ 1, m✝ 2 * n₁✝ 0 - m✝ 0 * n₁✝ 2, m✝ 0 * n₁✝ 1 - m✝ 1 * n₁✝ 0] + ![m✝ 1 * n₂✝ 2 - m✝ 2 * n₂✝ 1, m✝ 2 * n₂✝ 0 - m✝ 0 * n₂✝ 2, m✝ 0 * n₂✝ 1 - m✝ 1 * n₂✝ 0] [PROOFSTEP] simp_rw [vec3_add, Pi.add_apply] [GOAL] case H3 R : Type u_1 inst✝ : CommRing R m✝ n₁✝ n₂✝ : Fin 3 → R ⊢ ![m✝ 1 * (n₁✝ 2 + n₂✝ 2) - m✝ 2 * (n₁✝ 1 + n₂✝ 1), m✝ 2 * (n₁✝ 0 + n₂✝ 0) - m✝ 0 * (n₁✝ 2 + n₂✝ 2), m✝ 0 * (n₁✝ 1 + n₂✝ 1) - m✝ 1 * (n₁✝ 0 + n₂✝ 0)] = ![m✝ 1 * n₁✝ 2 - m✝ 2 * n₁✝ 1 + (m✝ 1 * n₂✝ 2 - m✝ 2 * n₂✝ 1), m✝ 2 * n₁✝ 0 - m✝ 0 * n₁✝ 2 + (m✝ 2 * n₂✝ 0 - m✝ 0 * n₂✝ 2), m✝ 0 * n₁✝ 1 - m✝ 1 * n₁✝ 0 + (m✝ 0 * n₂✝ 1 - m✝ 1 * n₂✝ 0)] [PROOFSTEP] apply vec3_eq [GOAL] case H3.h₀ R : Type u_1 inst✝ : CommRing R m✝ n₁✝ n₂✝ : Fin 3 → R ⊢ m✝ 1 * (n₁✝ 2 + n₂✝ 2) - m✝ 2 * (n₁✝ 1 + n₂✝ 1) = m✝ 1 * n₁✝ 2 - m✝ 2 * n₁✝ 1 + (m✝ 1 * n₂✝ 2 - m✝ 2 * n₂✝ 1) [PROOFSTEP] ring [GOAL] case H3.h₁ R : Type u_1 inst✝ : CommRing R m✝ n₁✝ n₂✝ : Fin 3 → R ⊢ m✝ 2 * (n₁✝ 0 + n₂✝ 0) - m✝ 0 * (n₁✝ 2 + n₂✝ 2) = m✝ 2 * n₁✝ 0 - m✝ 0 * n₁✝ 2 + (m✝ 2 * n₂✝ 0 - m✝ 0 * n₂✝ 2) [PROOFSTEP] ring [GOAL] case H3.h₂ R : Type u_1 inst✝ : CommRing R m✝ n₁✝ n₂✝ : Fin 3 → R ⊢ m✝ 0 * (n₁✝ 1 + n₂✝ 1) - m✝ 1 * (n₁✝ 0 + n₂✝ 0) = m✝ 0 * n₁✝ 1 - m✝ 1 * n₁✝ 0 + (m✝ 0 * n₂✝ 1 - m✝ 1 * n₂✝ 0) [PROOFSTEP] ring [GOAL] case H4 R : Type u_1 inst✝ : CommRing R ⊢ ∀ (c : R) (m n : Fin 3 → R), ![m 1 * (c • n) 2 - m 2 * (c • n) 1, m 2 * (c • n) 0 - m 0 * (c • n) 2, m 0 * (c • n) 1 - m 1 * (c • n) 0] = c • ![m 1 * n 2 - m 2 * n 1, m 2 * n 0 - m 0 * n 2, m 0 * n 1 - m 1 * n 0] [PROOFSTEP] intros [GOAL] case H4 R : Type u_1 inst✝ : CommRing R c✝ : R m✝ n✝ : Fin 3 → R ⊢ ![m✝ 1 * (c✝ • n✝) 2 - m✝ 2 * (c✝ • n✝) 1, m✝ 2 * (c✝ • n✝) 0 - m✝ 0 * (c✝ • n✝) 2, m✝ 0 * (c✝ • n✝) 1 - m✝ 1 * (c✝ • n✝) 0] = c✝ • ![m✝ 1 * n✝ 2 - m✝ 2 * n✝ 1, m✝ 2 * n✝ 0 - m✝ 0 * n✝ 2, m✝ 0 * n✝ 1 - m✝ 1 * n✝ 0] [PROOFSTEP] simp_rw [smul_vec3, Pi.smul_apply, smul_sub, mul_smul_comm] [GOAL] R : Type u_1 inst✝ : CommRing R v w : Fin 3 → R ⊢ -↑(↑crossProduct v) w = ↑(↑crossProduct w) v [PROOFSTEP] simp [cross_apply, mul_comm] [GOAL] R : Type u_1 inst✝ : CommRing R v w : Fin 3 → R ⊢ ↑(↑crossProduct v) w + ↑(↑crossProduct w) v = 0 [PROOFSTEP] rw [add_eq_zero_iff_eq_neg, cross_anticomm] [GOAL] R : Type u_1 inst✝ : CommRing R v : Fin 3 → R ⊢ ↑(↑crossProduct v) v = 0 [PROOFSTEP] simp_rw [cross_apply, mul_comm, cons_eq_zero_iff] [GOAL] R : Type u_1 inst✝ : CommRing R v : Fin 3 → R ⊢ v 1 * v 2 - v 1 * v 2 = 0 ∧ v 0 * v 2 - v 0 * v 2 = 0 ∧ v 0 * v 1 - v 0 * v 1 = 0 ∧ ![] = 0 [PROOFSTEP] exact ⟨sub_self _, sub_self _, sub_self _, zero_empty.symm⟩ [GOAL] R : Type u_1 inst✝ : CommRing R v w : Fin 3 → R ⊢ v ⬝ᵥ ↑(↑crossProduct v) w = 0 [PROOFSTEP] rw [cross_apply, vec3_dotProduct] [GOAL] R : Type u_1 inst✝ : CommRing R v w : Fin 3 → R ⊢ v 0 * vecCons (v 1 * w 2 - v 2 * w 1) ![v 2 * w 0 - v 0 * w 2, v 0 * w 1 - v 1 * w 0] 0 + v 1 * vecCons (v 1 * w 2 - v 2 * w 1) ![v 2 * w 0 - v 0 * w 2, v 0 * w 1 - v 1 * w 0] 1 + v 2 * vecCons (v 1 * w 2 - v 2 * w 1) ![v 2 * w 0 - v 0 * w 2, v 0 * w 1 - v 1 * w 0] 2 = 0 [PROOFSTEP] norm_num [GOAL] R : Type u_1 inst✝ : CommRing R v w : Fin 3 → R ⊢ v 0 * (v 1 * w 2 - v 2 * w 1) + v 1 * (v 2 * w 0 - v 0 * w 2) + v 2 * (v 0 * w 1 - v 1 * w 0) = 0 [PROOFSTEP] ring [GOAL] R : Type u_1 inst✝ : CommRing R v w : Fin 3 → R ⊢ w ⬝ᵥ ↑(↑crossProduct v) w = 0 [PROOFSTEP] rw [← cross_anticomm, Matrix.dotProduct_neg, dot_self_cross, neg_zero] [GOAL] R : Type u_1 inst✝ : CommRing R u v w : Fin 3 → R ⊢ u ⬝ᵥ ↑(↑crossProduct v) w = v ⬝ᵥ ↑(↑crossProduct w) u [PROOFSTEP] simp_rw [cross_apply, vec3_dotProduct] [GOAL] R : Type u_1 inst✝ : CommRing R u v w : Fin 3 → R ⊢ u 0 * vecCons (v 1 * w 2 - v 2 * w 1) ![v 2 * w 0 - v 0 * w 2, v 0 * w 1 - v 1 * w 0] 0 + u 1 * vecCons (v 1 * w 2 - v 2 * w 1) ![v 2 * w 0 - v 0 * w 2, v 0 * w 1 - v 1 * w 0] 1 + u 2 * vecCons (v 1 * w 2 - v 2 * w 1) ![v 2 * w 0 - v 0 * w 2, v 0 * w 1 - v 1 * w 0] 2 = v 0 * vecCons (w 1 * u 2 - w 2 * u 1) ![w 2 * u 0 - w 0 * u 2, w 0 * u 1 - w 1 * u 0] 0 + v 1 * vecCons (w 1 * u 2 - w 2 * u 1) ![w 2 * u 0 - w 0 * u 2, w 0 * u 1 - w 1 * u 0] 1 + v 2 * vecCons (w 1 * u 2 - w 2 * u 1) ![w 2 * u 0 - w 0 * u 2, w 0 * u 1 - w 1 * u 0] 2 [PROOFSTEP] norm_num [GOAL] R : Type u_1 inst✝ : CommRing R u v w : Fin 3 → R ⊢ u 0 * (v 1 * w 2 - v 2 * w 1) + u 1 * (v 2 * w 0 - v 0 * w 2) + u 2 * (v 0 * w 1 - v 1 * w 0) = v 0 * (w 1 * u 2 - w 2 * u 1) + v 1 * (w 2 * u 0 - w 0 * u 2) + v 2 * (w 0 * u 1 - w 1 * u 0) [PROOFSTEP] ring [GOAL] R : Type u_1 inst✝ : CommRing R u v w : Fin 3 → R ⊢ u ⬝ᵥ ↑(↑crossProduct v) w = det ![u, v, w] [PROOFSTEP] rw [vec3_dotProduct, cross_apply, det_fin_three] [GOAL] R : Type u_1 inst✝ : CommRing R u v w : Fin 3 → R ⊢ u 0 * vecCons (v 1 * w 2 - v 2 * w 1) ![v 2 * w 0 - v 0 * w 2, v 0 * w 1 - v 1 * w 0] 0 + u 1 * vecCons (v 1 * w 2 - v 2 * w 1) ![v 2 * w 0 - v 0 * w 2, v 0 * w 1 - v 1 * w 0] 1 + u 2 * vecCons (v 1 * w 2 - v 2 * w 1) ![v 2 * w 0 - v 0 * w 2, v 0 * w 1 - v 1 * w 0] 2 = vecCons u ![v, w] 0 0 * vecCons u ![v, w] 1 1 * vecCons u ![v, w] 2 2 - vecCons u ![v, w] 0 0 * vecCons u ![v, w] 1 2 * vecCons u ![v, w] 2 1 - vecCons u ![v, w] 0 1 * vecCons u ![v, w] 1 0 * vecCons u ![v, w] 2 2 + vecCons u ![v, w] 0 1 * vecCons u ![v, w] 1 2 * vecCons u ![v, w] 2 0 + vecCons u ![v, w] 0 2 * vecCons u ![v, w] 1 0 * vecCons u ![v, w] 2 1 - vecCons u ![v, w] 0 2 * vecCons u ![v, w] 1 1 * vecCons u ![v, w] 2 0 [PROOFSTEP] norm_num [GOAL] R : Type u_1 inst✝ : CommRing R u v w : Fin 3 → R ⊢ u 0 * (v 1 * w 2 - v 2 * w 1) + u 1 * (v 2 * w 0 - v 0 * w 2) + u 2 * (v 0 * w 1 - v 1 * w 0) = u 0 * v 1 * w 2 - u 0 * v 2 * w 1 - u 1 * v 0 * w 2 + u 1 * v 2 * w 0 + u 2 * v 0 * w 1 - u 2 * v 1 * w 0 [PROOFSTEP] ring [GOAL] R : Type u_1 inst✝ : CommRing R u v w x : Fin 3 → R ⊢ ↑(↑crossProduct u) v ⬝ᵥ ↑(↑crossProduct w) x = u ⬝ᵥ w * v ⬝ᵥ x - u ⬝ᵥ x * v ⬝ᵥ w [PROOFSTEP] simp_rw [cross_apply, vec3_dotProduct] [GOAL] R : Type u_1 inst✝ : CommRing R u v w x : Fin 3 → R ⊢ vecCons (u 1 * v 2 - u 2 * v 1) ![u 2 * v 0 - u 0 * v 2, u 0 * v 1 - u 1 * v 0] 0 * vecCons (w 1 * x 2 - w 2 * x 1) ![w 2 * x 0 - w 0 * x 2, w 0 * x 1 - w 1 * x 0] 0 + vecCons (u 1 * v 2 - u 2 * v 1) ![u 2 * v 0 - u 0 * v 2, u 0 * v 1 - u 1 * v 0] 1 * vecCons (w 1 * x 2 - w 2 * x 1) ![w 2 * x 0 - w 0 * x 2, w 0 * x 1 - w 1 * x 0] 1 + vecCons (u 1 * v 2 - u 2 * v 1) ![u 2 * v 0 - u 0 * v 2, u 0 * v 1 - u 1 * v 0] 2 * vecCons (w 1 * x 2 - w 2 * x 1) ![w 2 * x 0 - w 0 * x 2, w 0 * x 1 - w 1 * x 0] 2 = (u 0 * w 0 + u 1 * w 1 + u 2 * w 2) * (v 0 * x 0 + v 1 * x 1 + v 2 * x 2) - (u 0 * x 0 + u 1 * x 1 + u 2 * x 2) * (v 0 * w 0 + v 1 * w 1 + v 2 * w 2) [PROOFSTEP] norm_num [GOAL] R : Type u_1 inst✝ : CommRing R u v w x : Fin 3 → R ⊢ (u 1 * v 2 - u 2 * v 1) * (w 1 * x 2 - w 2 * x 1) + (u 2 * v 0 - u 0 * v 2) * (w 2 * x 0 - w 0 * x 2) + (u 0 * v 1 - u 1 * v 0) * (w 0 * x 1 - w 1 * x 0) = (u 0 * w 0 + u 1 * w 1 + u 2 * w 2) * (v 0 * x 0 + v 1 * x 1 + v 2 * x 2) - (u 0 * x 0 + u 1 * x 1 + u 2 * x 2) * (v 0 * w 0 + v 1 * w 1 + v 2 * w 2) [PROOFSTEP] ring [GOAL] R : Type u_1 inst✝ : CommRing R u v w : Fin 3 → R ⊢ ↑(↑crossProduct u) (↑(↑crossProduct v) w) = ↑(↑crossProduct (↑(↑crossProduct u) v)) w + ↑(↑crossProduct v) (↑(↑crossProduct u) w) [PROOFSTEP] simp_rw [cross_apply, vec3_add] [GOAL] R : Type u_1 inst✝ : CommRing R u v w : Fin 3 → R ⊢ ![u 1 * vecCons (v 1 * w 2 - v 2 * w 1) ![v 2 * w 0 - v 0 * w 2, v 0 * w 1 - v 1 * w 0] 2 - u 2 * vecCons (v 1 * w 2 - v 2 * w 1) ![v 2 * w 0 - v 0 * w 2, v 0 * w 1 - v 1 * w 0] 1, u 2 * vecCons (v 1 * w 2 - v 2 * w 1) ![v 2 * w 0 - v 0 * w 2, v 0 * w 1 - v 1 * w 0] 0 - u 0 * vecCons (v 1 * w 2 - v 2 * w 1) ![v 2 * w 0 - v 0 * w 2, v 0 * w 1 - v 1 * w 0] 2, u 0 * vecCons (v 1 * w 2 - v 2 * w 1) ![v 2 * w 0 - v 0 * w 2, v 0 * w 1 - v 1 * w 0] 1 - u 1 * vecCons (v 1 * w 2 - v 2 * w 1) ![v 2 * w 0 - v 0 * w 2, v 0 * w 1 - v 1 * w 0] 0] = ![vecCons (u 1 * v 2 - u 2 * v 1) ![u 2 * v 0 - u 0 * v 2, u 0 * v 1 - u 1 * v 0] 1 * w 2 - vecCons (u 1 * v 2 - u 2 * v 1) ![u 2 * v 0 - u 0 * v 2, u 0 * v 1 - u 1 * v 0] 2 * w 1 + (v 1 * vecCons (u 1 * w 2 - u 2 * w 1) ![u 2 * w 0 - u 0 * w 2, u 0 * w 1 - u 1 * w 0] 2 - v 2 * vecCons (u 1 * w 2 - u 2 * w 1) ![u 2 * w 0 - u 0 * w 2, u 0 * w 1 - u 1 * w 0] 1), vecCons (u 1 * v 2 - u 2 * v 1) ![u 2 * v 0 - u 0 * v 2, u 0 * v 1 - u 1 * v 0] 2 * w 0 - vecCons (u 1 * v 2 - u 2 * v 1) ![u 2 * v 0 - u 0 * v 2, u 0 * v 1 - u 1 * v 0] 0 * w 2 + (v 2 * vecCons (u 1 * w 2 - u 2 * w 1) ![u 2 * w 0 - u 0 * w 2, u 0 * w 1 - u 1 * w 0] 0 - v 0 * vecCons (u 1 * w 2 - u 2 * w 1) ![u 2 * w 0 - u 0 * w 2, u 0 * w 1 - u 1 * w 0] 2), vecCons (u 1 * v 2 - u 2 * v 1) ![u 2 * v 0 - u 0 * v 2, u 0 * v 1 - u 1 * v 0] 0 * w 1 - vecCons (u 1 * v 2 - u 2 * v 1) ![u 2 * v 0 - u 0 * v 2, u 0 * v 1 - u 1 * v 0] 1 * w 0 + (v 0 * vecCons (u 1 * w 2 - u 2 * w 1) ![u 2 * w 0 - u 0 * w 2, u 0 * w 1 - u 1 * w 0] 1 - v 1 * vecCons (u 1 * w 2 - u 2 * w 1) ![u 2 * w 0 - u 0 * w 2, u 0 * w 1 - u 1 * w 0] 0)] [PROOFSTEP] apply vec3_eq [GOAL] case h₀ R : Type u_1 inst✝ : CommRing R u v w : Fin 3 → R ⊢ u 1 * vecCons (v 1 * w 2 - v 2 * w 1) ![v 2 * w 0 - v 0 * w 2, v 0 * w 1 - v 1 * w 0] 2 - u 2 * vecCons (v 1 * w 2 - v 2 * w 1) ![v 2 * w 0 - v 0 * w 2, v 0 * w 1 - v 1 * w 0] 1 = vecCons (u 1 * v 2 - u 2 * v 1) ![u 2 * v 0 - u 0 * v 2, u 0 * v 1 - u 1 * v 0] 1 * w 2 - vecCons (u 1 * v 2 - u 2 * v 1) ![u 2 * v 0 - u 0 * v 2, u 0 * v 1 - u 1 * v 0] 2 * w 1 + (v 1 * vecCons (u 1 * w 2 - u 2 * w 1) ![u 2 * w 0 - u 0 * w 2, u 0 * w 1 - u 1 * w 0] 2 - v 2 * vecCons (u 1 * w 2 - u 2 * w 1) ![u 2 * w 0 - u 0 * w 2, u 0 * w 1 - u 1 * w 0] 1) [PROOFSTEP] norm_num [GOAL] case h₁ R : Type u_1 inst✝ : CommRing R u v w : Fin 3 → R ⊢ u 2 * vecCons (v 1 * w 2 - v 2 * w 1) ![v 2 * w 0 - v 0 * w 2, v 0 * w 1 - v 1 * w 0] 0 - u 0 * vecCons (v 1 * w 2 - v 2 * w 1) ![v 2 * w 0 - v 0 * w 2, v 0 * w 1 - v 1 * w 0] 2 = vecCons (u 1 * v 2 - u 2 * v 1) ![u 2 * v 0 - u 0 * v 2, u 0 * v 1 - u 1 * v 0] 2 * w 0 - vecCons (u 1 * v 2 - u 2 * v 1) ![u 2 * v 0 - u 0 * v 2, u 0 * v 1 - u 1 * v 0] 0 * w 2 + (v 2 * vecCons (u 1 * w 2 - u 2 * w 1) ![u 2 * w 0 - u 0 * w 2, u 0 * w 1 - u 1 * w 0] 0 - v 0 * vecCons (u 1 * w 2 - u 2 * w 1) ![u 2 * w 0 - u 0 * w 2, u 0 * w 1 - u 1 * w 0] 2) [PROOFSTEP] norm_num [GOAL] case h₂ R : Type u_1 inst✝ : CommRing R u v w : Fin 3 → R ⊢ u 0 * vecCons (v 1 * w 2 - v 2 * w 1) ![v 2 * w 0 - v 0 * w 2, v 0 * w 1 - v 1 * w 0] 1 - u 1 * vecCons (v 1 * w 2 - v 2 * w 1) ![v 2 * w 0 - v 0 * w 2, v 0 * w 1 - v 1 * w 0] 0 = vecCons (u 1 * v 2 - u 2 * v 1) ![u 2 * v 0 - u 0 * v 2, u 0 * v 1 - u 1 * v 0] 0 * w 1 - vecCons (u 1 * v 2 - u 2 * v 1) ![u 2 * v 0 - u 0 * v 2, u 0 * v 1 - u 1 * v 0] 1 * w 0 + (v 0 * vecCons (u 1 * w 2 - u 2 * w 1) ![u 2 * w 0 - u 0 * w 2, u 0 * w 1 - u 1 * w 0] 1 - v 1 * vecCons (u 1 * w 2 - u 2 * w 1) ![u 2 * w 0 - u 0 * w 2, u 0 * w 1 - u 1 * w 0] 0) [PROOFSTEP] norm_num [GOAL] case h₀ R : Type u_1 inst✝ : CommRing R u v w : Fin 3 → R ⊢ u 1 * (v 0 * w 1 - v 1 * w 0) - u 2 * (v 2 * w 0 - v 0 * w 2) = (u 2 * v 0 - u 0 * v 2) * w 2 - (u 0 * v 1 - u 1 * v 0) * w 1 + (v 1 * (u 0 * w 1 - u 1 * w 0) - v 2 * (u 2 * w 0 - u 0 * w 2)) [PROOFSTEP] ring [GOAL] case h₁ R : Type u_1 inst✝ : CommRing R u v w : Fin 3 → R ⊢ u 2 * (v 1 * w 2 - v 2 * w 1) - u 0 * (v 0 * w 1 - v 1 * w 0) = (u 0 * v 1 - u 1 * v 0) * w 0 - (u 1 * v 2 - u 2 * v 1) * w 2 + (v 2 * (u 1 * w 2 - u 2 * w 1) - v 0 * (u 0 * w 1 - u 1 * w 0)) [PROOFSTEP] ring [GOAL] case h₂ R : Type u_1 inst✝ : CommRing R u v w : Fin 3 → R ⊢ u 0 * (v 2 * w 0 - v 0 * w 2) - u 1 * (v 1 * w 2 - v 2 * w 1) = (u 1 * v 2 - u 2 * v 1) * w 1 - (u 2 * v 0 - u 0 * v 2) * w 0 + (v 0 * (u 2 * w 0 - u 0 * w 2) - v 1 * (u 1 * w 2 - u 2 * w 1)) [PROOFSTEP] ring
{"mathlib_filename": "Mathlib.LinearAlgebra.CrossProduct", "llama_tokens": 10557}
[GOAL] R : Type u_1 inst✝ : CommRing R n : ℕ v0 : R v : Fin n → R ⊢ vandermonde (Fin.cons v0 v) = Fin.cons (fun j => v0 ^ ↑j) fun i => Fin.cons 1 fun j => v i * vandermonde v i j [PROOFSTEP] ext i j [GOAL] case a.h R : Type u_1 inst✝ : CommRing R n : ℕ v0 : R v : Fin n → R i j : Fin (n + 1) ⊢ vandermonde (Fin.cons v0 v) i j = Fin.cons (fun j => v0 ^ ↑j) (fun i => Fin.cons 1 fun j => v i * vandermonde v i j) i j [PROOFSTEP] refine' Fin.cases (by simp) (fun i => _) i [GOAL] R : Type u_1 inst✝ : CommRing R n : ℕ v0 : R v : Fin n → R i j : Fin (n + 1) ⊢ vandermonde (Fin.cons v0 v) 0 j = Fin.cons (fun j => v0 ^ ↑j) (fun i => Fin.cons 1 fun j => v i * vandermonde v i j) 0 j [PROOFSTEP] simp [GOAL] case a.h R : Type u_1 inst✝ : CommRing R n : ℕ v0 : R v : Fin n → R i✝ j : Fin (n + 1) i : Fin n ⊢ vandermonde (Fin.cons v0 v) (Fin.succ i) j = Fin.cons (fun j => v0 ^ ↑j) (fun i => Fin.cons 1 fun j => v i * vandermonde v i j) (Fin.succ i) j [PROOFSTEP] refine' Fin.cases (by simp) (fun j => _) j [GOAL] R : Type u_1 inst✝ : CommRing R n : ℕ v0 : R v : Fin n → R i✝ j : Fin (n + 1) i : Fin n ⊢ vandermonde (Fin.cons v0 v) (Fin.succ i) 0 = Fin.cons (fun j => v0 ^ ↑j) (fun i => Fin.cons 1 fun j => v i * vandermonde v i j) (Fin.succ i) 0 [PROOFSTEP] simp [GOAL] case a.h R : Type u_1 inst✝ : CommRing R n : ℕ v0 : R v : Fin n → R i✝ j✝ : Fin (n + 1) i j : Fin n ⊢ vandermonde (Fin.cons v0 v) (Fin.succ i) (Fin.succ j) = Fin.cons (fun j => v0 ^ ↑j) (fun i => Fin.cons 1 fun j => v i * vandermonde v i j) (Fin.succ i) (Fin.succ j) [PROOFSTEP] simp [pow_succ] [GOAL] R : Type u_1 inst✝ : CommRing R n : ℕ v : Fin (Nat.succ n) → R ⊢ vandermonde v = Fin.cons (fun j => v 0 ^ ↑j) fun i => Fin.cons 1 fun j => v (Fin.succ i) * vandermonde (Fin.tail v) i j [PROOFSTEP] conv_lhs => rw [← Fin.cons_self_tail v, vandermonde_cons] [GOAL] R : Type u_1 inst✝ : CommRing R n : ℕ v : Fin (Nat.succ n) → R | vandermonde v [PROOFSTEP] rw [← Fin.cons_self_tail v, vandermonde_cons] [GOAL] R : Type u_1 inst✝ : CommRing R n : ℕ v : Fin (Nat.succ n) → R | vandermonde v [PROOFSTEP] rw [← Fin.cons_self_tail v, vandermonde_cons] [GOAL] R : Type u_1 inst✝ : CommRing R n : ℕ v : Fin (Nat.succ n) → R | vandermonde v [PROOFSTEP] rw [← Fin.cons_self_tail v, vandermonde_cons] [GOAL] R : Type u_1 inst✝ : CommRing R n : ℕ v w : Fin n → R i j : Fin n ⊢ (vandermonde v * (vandermonde w)ᵀ) i j = ∑ k : Fin n, (v i * w j) ^ ↑k [PROOFSTEP] simp only [vandermonde_apply, Matrix.mul_apply, Matrix.transpose_apply, mul_pow] [GOAL] R : Type u_1 inst✝ : CommRing R n : ℕ v : Fin n → R i j : Fin n ⊢ ((vandermonde v)ᵀ * vandermonde v) i j = ∑ k : Fin n, v k ^ (↑i + ↑j) [PROOFSTEP] simp only [vandermonde_apply, Matrix.mul_apply, Matrix.transpose_apply, pow_add] [GOAL] R : Type u_1 inst✝ : CommRing R n : ℕ v : Fin n → R ⊢ det (vandermonde v) = ∏ i : Fin n, ∏ j in Ioi i, (v j - v i) [PROOFSTEP] unfold vandermonde [GOAL] R : Type u_1 inst✝ : CommRing R n : ℕ v : Fin n → R ⊢ (det fun i j => v i ^ ↑j) = ∏ i : Fin n, ∏ j in Ioi i, (v j - v i) [PROOFSTEP] induction' n with n ih [GOAL] case zero R : Type u_1 inst✝ : CommRing R n : ℕ v✝ : Fin n → R v : Fin Nat.zero → R ⊢ (det fun i j => v i ^ ↑j) = ∏ i : Fin Nat.zero, ∏ j in Ioi i, (v j - v i) [PROOFSTEP] exact det_eq_one_of_card_eq_zero (Fintype.card_fin 0) [GOAL] case succ R : Type u_1 inst✝ : CommRing R n✝ : ℕ v✝ : Fin n✝ → R n : ℕ ih : ∀ (v : Fin n → R), (det fun i j => v i ^ ↑j) = ∏ i : Fin n, ∏ j in Ioi i, (v j - v i) v : Fin (Nat.succ n) → R ⊢ (det fun i j => v i ^ ↑j) = ∏ i : Fin (Nat.succ n), ∏ j in Ioi i, (v j - v i) [PROOFSTEP] calc det (of fun i j : Fin n.succ => v i ^ (j : ℕ)) = det (of fun i j : Fin n.succ => Matrix.vecCons (v 0 ^ (j : ℕ)) (fun i => v (Fin.succ i) ^ (j : ℕ) - v 0 ^ (j : ℕ)) i) := det_eq_of_forall_row_eq_smul_add_const (Matrix.vecCons 0 1) 0 (Fin.cons_zero _ _) ?_ _ = det (of fun i j : Fin n => Matrix.vecCons (v 0 ^ (j.succ : ℕ)) (fun i : Fin n => v (Fin.succ i) ^ (j.succ : ℕ) - v 0 ^ (j.succ : ℕ)) (Fin.succAbove 0 i)) := by simp_rw [det_succ_column_zero, Fin.sum_univ_succ, of_apply, Matrix.cons_val_zero, submatrix, of_apply, Matrix.cons_val_succ, Fin.val_zero, pow_zero, one_mul, sub_self, mul_zero, zero_mul, Finset.sum_const_zero, add_zero] _ = det (of fun i j : Fin n => (v (Fin.succ i) - v 0) * ∑ k in Finset.range (j + 1 : ℕ), v i.succ ^ k * v 0 ^ (j - k : ℕ) : Matrix _ _ R) := by congr ext i j rw [Fin.succAbove_zero, Matrix.cons_val_succ, Fin.val_succ, mul_comm] exact (geom_sum₂_mul (v i.succ) (v 0) (j + 1 : ℕ)).symm _ = (Finset.prod Finset.univ (fun i => v (Fin.succ i) - v 0)) * det fun i j : Fin n => ∑ k in Finset.range (j + 1 : ℕ), v i.succ ^ k * v 0 ^ (j - k : ℕ) := (det_mul_column (fun i => v (Fin.succ i) - v 0) _) _ = (Finset.prod Finset.univ (fun i => v (Fin.succ i) - v 0)) * det fun i j : Fin n => v (Fin.succ i) ^ (j : ℕ) := (congr_arg _ ?_) _ = ∏ i : Fin n.succ, Finset.prod (Ioi i) (fun j => v j - v i) := by simp_rw [Fin.prod_univ_succ, Fin.prod_Ioi_zero, Fin.prod_Ioi_succ] have h := ih (v ∘ Fin.succ) unfold Function.comp at h rw [h] [GOAL] R : Type u_1 inst✝ : CommRing R n✝ : ℕ v✝ : Fin n✝ → R n : ℕ ih : ∀ (v : Fin n → R), (det fun i j => v i ^ ↑j) = ∏ i : Fin n, ∏ j in Ioi i, (v j - v i) v : Fin (Nat.succ n) → R ⊢ det (↑of fun i j => vecCons (v 0 ^ ↑j) (fun i => v (Fin.succ i) ^ ↑j - v 0 ^ ↑j) i) = det (↑of fun i j => vecCons (v 0 ^ ↑(Fin.succ j)) (fun i => v (Fin.succ i) ^ ↑(Fin.succ j) - v 0 ^ ↑(Fin.succ j)) (Fin.succAbove 0 i)) [PROOFSTEP] simp_rw [det_succ_column_zero, Fin.sum_univ_succ, of_apply, Matrix.cons_val_zero, submatrix, of_apply, Matrix.cons_val_succ, Fin.val_zero, pow_zero, one_mul, sub_self, mul_zero, zero_mul, Finset.sum_const_zero, add_zero] [GOAL] R : Type u_1 inst✝ : CommRing R n✝ : ℕ v✝ : Fin n✝ → R n : ℕ ih : ∀ (v : Fin n → R), (det fun i j => v i ^ ↑j) = ∏ i : Fin n, ∏ j in Ioi i, (v j - v i) v : Fin (Nat.succ n) → R ⊢ det (↑of fun i j => vecCons (v 0 ^ ↑(Fin.succ j)) (fun i => v (Fin.succ i) ^ ↑(Fin.succ j) - v 0 ^ ↑(Fin.succ j)) (Fin.succAbove 0 i)) = det (↑of fun i j => (v (Fin.succ i) - v 0) * ∑ k in range (↑j + 1), v (Fin.succ i) ^ k * v 0 ^ (↑j - k)) [PROOFSTEP] congr [GOAL] case e_M.h.e_6.h R : Type u_1 inst✝ : CommRing R n✝ : ℕ v✝ : Fin n✝ → R n : ℕ ih : ∀ (v : Fin n → R), (det fun i j => v i ^ ↑j) = ∏ i : Fin n, ∏ j in Ioi i, (v j - v i) v : Fin (Nat.succ n) → R ⊢ (fun i j => vecCons (v 0 ^ ↑(Fin.succ j)) (fun i => v (Fin.succ i) ^ ↑(Fin.succ j) - v 0 ^ ↑(Fin.succ j)) (Fin.succAbove 0 i)) = fun i j => (v (Fin.succ i) - v 0) * ∑ k in range (↑j + 1), v (Fin.succ i) ^ k * v 0 ^ (↑j - k) [PROOFSTEP] ext i j [GOAL] case e_M.h.e_6.h.h.h R : Type u_1 inst✝ : CommRing R n✝ : ℕ v✝ : Fin n✝ → R n : ℕ ih : ∀ (v : Fin n → R), (det fun i j => v i ^ ↑j) = ∏ i : Fin n, ∏ j in Ioi i, (v j - v i) v : Fin (Nat.succ n) → R i j : Fin n ⊢ vecCons (v 0 ^ ↑(Fin.succ j)) (fun i => v (Fin.succ i) ^ ↑(Fin.succ j) - v 0 ^ ↑(Fin.succ j)) (Fin.succAbove 0 i) = (v (Fin.succ i) - v 0) * ∑ k in range (↑j + 1), v (Fin.succ i) ^ k * v 0 ^ (↑j - k) [PROOFSTEP] rw [Fin.succAbove_zero, Matrix.cons_val_succ, Fin.val_succ, mul_comm] [GOAL] case e_M.h.e_6.h.h.h R : Type u_1 inst✝ : CommRing R n✝ : ℕ v✝ : Fin n✝ → R n : ℕ ih : ∀ (v : Fin n → R), (det fun i j => v i ^ ↑j) = ∏ i : Fin n, ∏ j in Ioi i, (v j - v i) v : Fin (Nat.succ n) → R i j : Fin n ⊢ v (Fin.succ i) ^ (↑j + 1) - v 0 ^ (↑j + 1) = (∑ k in range (↑j + 1), v (Fin.succ i) ^ k * v 0 ^ (↑j - k)) * (v (Fin.succ i) - v 0) [PROOFSTEP] exact (geom_sum₂_mul (v i.succ) (v 0) (j + 1 : ℕ)).symm [GOAL] R : Type u_1 inst✝ : CommRing R n✝ : ℕ v✝ : Fin n✝ → R n : ℕ ih : ∀ (v : Fin n → R), (det fun i j => v i ^ ↑j) = ∏ i : Fin n, ∏ j in Ioi i, (v j - v i) v : Fin (Nat.succ n) → R ⊢ ((∏ i : Fin n, (v (Fin.succ i) - v 0)) * det fun i j => v (Fin.succ i) ^ ↑j) = ∏ i : Fin (Nat.succ n), ∏ j in Ioi i, (v j - v i) [PROOFSTEP] simp_rw [Fin.prod_univ_succ, Fin.prod_Ioi_zero, Fin.prod_Ioi_succ] [GOAL] R : Type u_1 inst✝ : CommRing R n✝ : ℕ v✝ : Fin n✝ → R n : ℕ ih : ∀ (v : Fin n → R), (det fun i j => v i ^ ↑j) = ∏ i : Fin n, ∏ j in Ioi i, (v j - v i) v : Fin (Nat.succ n) → R ⊢ ((∏ i : Fin n, (v (Fin.succ i) - v 0)) * det fun i j => v (Fin.succ i) ^ ↑j) = (∏ j : Fin n, (v (Fin.succ j) - v 0)) * ∏ x : Fin n, ∏ j in Ioi x, (v (Fin.succ j) - v (Fin.succ x)) [PROOFSTEP] have h := ih (v ∘ Fin.succ) [GOAL] R : Type u_1 inst✝ : CommRing R n✝ : ℕ v✝ : Fin n✝ → R n : ℕ ih : ∀ (v : Fin n → R), (det fun i j => v i ^ ↑j) = ∏ i : Fin n, ∏ j in Ioi i, (v j - v i) v : Fin (Nat.succ n) → R h : (det fun i j => (v ∘ Fin.succ) i ^ ↑j) = ∏ i : Fin n, ∏ j in Ioi i, ((v ∘ Fin.succ) j - (v ∘ Fin.succ) i) ⊢ ((∏ i : Fin n, (v (Fin.succ i) - v 0)) * det fun i j => v (Fin.succ i) ^ ↑j) = (∏ j : Fin n, (v (Fin.succ j) - v 0)) * ∏ x : Fin n, ∏ j in Ioi x, (v (Fin.succ j) - v (Fin.succ x)) [PROOFSTEP] unfold Function.comp at h [GOAL] R : Type u_1 inst✝ : CommRing R n✝ : ℕ v✝ : Fin n✝ → R n : ℕ ih : ∀ (v : Fin n → R), (det fun i j => v i ^ ↑j) = ∏ i : Fin n, ∏ j in Ioi i, (v j - v i) v : Fin (Nat.succ n) → R h : (det fun i j => v (Fin.succ i) ^ ↑j) = ∏ i : Fin n, ∏ j in Ioi i, (v (Fin.succ j) - v (Fin.succ i)) ⊢ ((∏ i : Fin n, (v (Fin.succ i) - v 0)) * det fun i j => v (Fin.succ i) ^ ↑j) = (∏ j : Fin n, (v (Fin.succ j) - v 0)) * ∏ x : Fin n, ∏ j in Ioi x, (v (Fin.succ j) - v (Fin.succ x)) [PROOFSTEP] rw [h] [GOAL] case succ.calc_1 R : Type u_1 inst✝ : CommRing R n✝ : ℕ v✝ : Fin n✝ → R n : ℕ ih : ∀ (v : Fin n → R), (det fun i j => v i ^ ↑j) = ∏ i : Fin n, ∏ j in Ioi i, (v j - v i) v : Fin (Nat.succ n) → R ⊢ ∀ (i j : Fin (Nat.succ n)), ↑of (fun i j => v i ^ ↑j) i j = ↑of (fun i j => vecCons (v 0 ^ ↑j) (fun i => v (Fin.succ i) ^ ↑j - v 0 ^ ↑j) i) i j + vecCons 0 1 i * ↑of (fun i j => vecCons (v 0 ^ ↑j) (fun i => v (Fin.succ i) ^ ↑j - v 0 ^ ↑j) i) 0 j [PROOFSTEP] intro i j [GOAL] case succ.calc_1 R : Type u_1 inst✝ : CommRing R n✝ : ℕ v✝ : Fin n✝ → R n : ℕ ih : ∀ (v : Fin n → R), (det fun i j => v i ^ ↑j) = ∏ i : Fin n, ∏ j in Ioi i, (v j - v i) v : Fin (Nat.succ n) → R i j : Fin (Nat.succ n) ⊢ ↑of (fun i j => v i ^ ↑j) i j = ↑of (fun i j => vecCons (v 0 ^ ↑j) (fun i => v (Fin.succ i) ^ ↑j - v 0 ^ ↑j) i) i j + vecCons 0 1 i * ↑of (fun i j => vecCons (v 0 ^ ↑j) (fun i => v (Fin.succ i) ^ ↑j - v 0 ^ ↑j) i) 0 j [PROOFSTEP] simp_rw [of_apply] [GOAL] case succ.calc_1 R : Type u_1 inst✝ : CommRing R n✝ : ℕ v✝ : Fin n✝ → R n : ℕ ih : ∀ (v : Fin n → R), (det fun i j => v i ^ ↑j) = ∏ i : Fin n, ∏ j in Ioi i, (v j - v i) v : Fin (Nat.succ n) → R i j : Fin (Nat.succ n) ⊢ v i ^ ↑j = vecCons (v 0 ^ ↑j) (fun i => v (Fin.succ i) ^ ↑j - v 0 ^ ↑j) i + vecCons 0 1 i * vecCons (v 0 ^ ↑j) (fun i => v (Fin.succ i) ^ ↑j - v 0 ^ ↑j) 0 [PROOFSTEP] rw [Matrix.cons_val_zero] [GOAL] case succ.calc_1 R : Type u_1 inst✝ : CommRing R n✝ : ℕ v✝ : Fin n✝ → R n : ℕ ih : ∀ (v : Fin n → R), (det fun i j => v i ^ ↑j) = ∏ i : Fin n, ∏ j in Ioi i, (v j - v i) v : Fin (Nat.succ n) → R i j : Fin (Nat.succ n) ⊢ v i ^ ↑j = vecCons (v 0 ^ ↑j) (fun i => v (Fin.succ i) ^ ↑j - v 0 ^ ↑j) i + vecCons 0 1 i * v 0 ^ ↑j [PROOFSTEP] refine' Fin.cases _ (fun i => _) i [GOAL] case succ.calc_1.refine'_1 R : Type u_1 inst✝ : CommRing R n✝ : ℕ v✝ : Fin n✝ → R n : ℕ ih : ∀ (v : Fin n → R), (det fun i j => v i ^ ↑j) = ∏ i : Fin n, ∏ j in Ioi i, (v j - v i) v : Fin (Nat.succ n) → R i j : Fin (Nat.succ n) ⊢ v 0 ^ ↑j = vecCons (v 0 ^ ↑j) (fun i => v (Fin.succ i) ^ ↑j - v 0 ^ ↑j) 0 + vecCons 0 1 0 * v 0 ^ ↑j [PROOFSTEP] simp [GOAL] case succ.calc_1.refine'_2 R : Type u_1 inst✝ : CommRing R n✝ : ℕ v✝ : Fin n✝ → R n : ℕ ih : ∀ (v : Fin n → R), (det fun i j => v i ^ ↑j) = ∏ i : Fin n, ∏ j in Ioi i, (v j - v i) v : Fin (Nat.succ n) → R i✝ j : Fin (Nat.succ n) i : Fin n ⊢ v (Fin.succ i) ^ ↑j = vecCons (v 0 ^ ↑j) (fun i => v (Fin.succ i) ^ ↑j - v 0 ^ ↑j) (Fin.succ i) + vecCons 0 1 (Fin.succ i) * v 0 ^ ↑j [PROOFSTEP] rw [Matrix.cons_val_succ, Matrix.cons_val_succ, Pi.one_apply] [GOAL] case succ.calc_1.refine'_2 R : Type u_1 inst✝ : CommRing R n✝ : ℕ v✝ : Fin n✝ → R n : ℕ ih : ∀ (v : Fin n → R), (det fun i j => v i ^ ↑j) = ∏ i : Fin n, ∏ j in Ioi i, (v j - v i) v : Fin (Nat.succ n) → R i✝ j : Fin (Nat.succ n) i : Fin n ⊢ v (Fin.succ i) ^ ↑j = v (Fin.succ i) ^ ↑j - v 0 ^ ↑j + 1 * v 0 ^ ↑j [PROOFSTEP] ring [GOAL] case succ.calc_2 R : Type u_1 inst✝ : CommRing R n✝ : ℕ v✝ : Fin n✝ → R n : ℕ ih : ∀ (v : Fin n → R), (det fun i j => v i ^ ↑j) = ∏ i : Fin n, ∏ j in Ioi i, (v j - v i) v : Fin (Nat.succ n) → R ⊢ (det fun i j => ∑ k in range (↑j + 1), v (Fin.succ i) ^ k * v 0 ^ (↑j - k)) = det fun i j => v (Fin.succ i) ^ ↑j [PROOFSTEP] cases n [GOAL] case succ.calc_2.zero R : Type u_1 inst✝ : CommRing R n : ℕ v✝ : Fin n → R ih : ∀ (v : Fin Nat.zero → R), (det fun i j => v i ^ ↑j) = ∏ i : Fin Nat.zero, ∏ j in Ioi i, (v j - v i) v : Fin (Nat.succ Nat.zero) → R ⊢ (det fun i j => ∑ k in range (↑j + 1), v (Fin.succ i) ^ k * v 0 ^ (↑j - k)) = det fun i j => v (Fin.succ i) ^ ↑j [PROOFSTEP] rw [det_eq_one_of_card_eq_zero (Fintype.card_fin 0), det_eq_one_of_card_eq_zero (Fintype.card_fin 0)] [GOAL] case succ.calc_2.succ R : Type u_1 inst✝ : CommRing R n : ℕ v✝ : Fin n → R n✝ : ℕ ih : ∀ (v : Fin (Nat.succ n✝) → R), (det fun i j => v i ^ ↑j) = ∏ i : Fin (Nat.succ n✝), ∏ j in Ioi i, (v j - v i) v : Fin (Nat.succ (Nat.succ n✝)) → R ⊢ (det fun i j => ∑ k in range (↑j + 1), v (Fin.succ i) ^ k * v 0 ^ (↑j - k)) = det fun i j => v (Fin.succ i) ^ ↑j [PROOFSTEP] apply det_eq_of_forall_col_eq_smul_add_pred fun _ => v 0 [GOAL] case succ.calc_2.succ.A_zero R : Type u_1 inst✝ : CommRing R n : ℕ v✝ : Fin n → R n✝ : ℕ ih : ∀ (v : Fin (Nat.succ n✝) → R), (det fun i j => v i ^ ↑j) = ∏ i : Fin (Nat.succ n✝), ∏ j in Ioi i, (v j - v i) v : Fin (Nat.succ (Nat.succ n✝)) → R ⊢ ∀ (i : Fin (n✝ + 1)), ∑ k in range (↑0 + 1), v (Fin.succ i) ^ k * v 0 ^ (↑0 - k) = v (Fin.succ i) ^ ↑0 [PROOFSTEP] intro j [GOAL] case succ.calc_2.succ.A_zero R : Type u_1 inst✝ : CommRing R n : ℕ v✝ : Fin n → R n✝ : ℕ ih : ∀ (v : Fin (Nat.succ n✝) → R), (det fun i j => v i ^ ↑j) = ∏ i : Fin (Nat.succ n✝), ∏ j in Ioi i, (v j - v i) v : Fin (Nat.succ (Nat.succ n✝)) → R j : Fin (n✝ + 1) ⊢ ∑ k in range (↑0 + 1), v (Fin.succ j) ^ k * v 0 ^ (↑0 - k) = v (Fin.succ j) ^ ↑0 [PROOFSTEP] simp [GOAL] case succ.calc_2.succ.A_succ R : Type u_1 inst✝ : CommRing R n : ℕ v✝ : Fin n → R n✝ : ℕ ih : ∀ (v : Fin (Nat.succ n✝) → R), (det fun i j => v i ^ ↑j) = ∏ i : Fin (Nat.succ n✝), ∏ j in Ioi i, (v j - v i) v : Fin (Nat.succ (Nat.succ n✝)) → R ⊢ ∀ (i : Fin (n✝ + 1)) (j : Fin n✝), ∑ k in range (↑(Fin.succ j) + 1), v (Fin.succ i) ^ k * v 0 ^ (↑(Fin.succ j) - k) = v (Fin.succ i) ^ ↑(Fin.succ j) + v 0 * ∑ k in range (↑(Fin.castSucc j) + 1), v (Fin.succ i) ^ k * v 0 ^ (↑(Fin.castSucc j) - k) [PROOFSTEP] intro i j [GOAL] case succ.calc_2.succ.A_succ R : Type u_1 inst✝ : CommRing R n : ℕ v✝ : Fin n → R n✝ : ℕ ih : ∀ (v : Fin (Nat.succ n✝) → R), (det fun i j => v i ^ ↑j) = ∏ i : Fin (Nat.succ n✝), ∏ j in Ioi i, (v j - v i) v : Fin (Nat.succ (Nat.succ n✝)) → R i : Fin (n✝ + 1) j : Fin n✝ ⊢ ∑ k in range (↑(Fin.succ j) + 1), v (Fin.succ i) ^ k * v 0 ^ (↑(Fin.succ j) - k) = v (Fin.succ i) ^ ↑(Fin.succ j) + v 0 * ∑ k in range (↑(Fin.castSucc j) + 1), v (Fin.succ i) ^ k * v 0 ^ (↑(Fin.castSucc j) - k) [PROOFSTEP] simp only [smul_eq_mul, Pi.add_apply, Fin.val_succ, Fin.coe_castSucc, Pi.smul_apply] [GOAL] case succ.calc_2.succ.A_succ R : Type u_1 inst✝ : CommRing R n : ℕ v✝ : Fin n → R n✝ : ℕ ih : ∀ (v : Fin (Nat.succ n✝) → R), (det fun i j => v i ^ ↑j) = ∏ i : Fin (Nat.succ n✝), ∏ j in Ioi i, (v j - v i) v : Fin (Nat.succ (Nat.succ n✝)) → R i : Fin (n✝ + 1) j : Fin n✝ ⊢ ∑ x in range (↑j + 1 + 1), v (Fin.succ i) ^ x * v 0 ^ (↑j + 1 - x) = v (Fin.succ i) ^ (↑j + 1) + v 0 * ∑ x in range (↑j + 1), v (Fin.succ i) ^ x * v 0 ^ (↑j - x) [PROOFSTEP] rw [Finset.sum_range_succ, add_comm, tsub_self, pow_zero, mul_one, Finset.mul_sum] [GOAL] case succ.calc_2.succ.A_succ R : Type u_1 inst✝ : CommRing R n : ℕ v✝ : Fin n → R n✝ : ℕ ih : ∀ (v : Fin (Nat.succ n✝) → R), (det fun i j => v i ^ ↑j) = ∏ i : Fin (Nat.succ n✝), ∏ j in Ioi i, (v j - v i) v : Fin (Nat.succ (Nat.succ n✝)) → R i : Fin (n✝ + 1) j : Fin n✝ ⊢ v (Fin.succ i) ^ (↑j + 1) + ∑ x in range (↑j + 1), v (Fin.succ i) ^ x * v 0 ^ (↑j + 1 - x) = v (Fin.succ i) ^ (↑j + 1) + ∑ x in range (↑j + 1), v 0 * (v (Fin.succ i) ^ x * v 0 ^ (↑j - x)) [PROOFSTEP] congr 1 [GOAL] case succ.calc_2.succ.A_succ.e_a R : Type u_1 inst✝ : CommRing R n : ℕ v✝ : Fin n → R n✝ : ℕ ih : ∀ (v : Fin (Nat.succ n✝) → R), (det fun i j => v i ^ ↑j) = ∏ i : Fin (Nat.succ n✝), ∏ j in Ioi i, (v j - v i) v : Fin (Nat.succ (Nat.succ n✝)) → R i : Fin (n✝ + 1) j : Fin n✝ ⊢ ∑ x in range (↑j + 1), v (Fin.succ i) ^ x * v 0 ^ (↑j + 1 - x) = ∑ x in range (↑j + 1), v 0 * (v (Fin.succ i) ^ x * v 0 ^ (↑j - x)) [PROOFSTEP] refine' Finset.sum_congr rfl fun i' hi' => _ [GOAL] case succ.calc_2.succ.A_succ.e_a R : Type u_1 inst✝ : CommRing R n : ℕ v✝ : Fin n → R n✝ : ℕ ih : ∀ (v : Fin (Nat.succ n✝) → R), (det fun i j => v i ^ ↑j) = ∏ i : Fin (Nat.succ n✝), ∏ j in Ioi i, (v j - v i) v : Fin (Nat.succ (Nat.succ n✝)) → R i : Fin (n✝ + 1) j : Fin n✝ i' : ℕ hi' : i' ∈ range (↑j + 1) ⊢ v (Fin.succ i) ^ i' * v 0 ^ (↑j + 1 - i') = v 0 * (v (Fin.succ i) ^ i' * v 0 ^ (↑j - i')) [PROOFSTEP] rw [mul_left_comm (v 0), Nat.succ_sub, pow_succ] [GOAL] case succ.calc_2.succ.A_succ.e_a R : Type u_1 inst✝ : CommRing R n : ℕ v✝ : Fin n → R n✝ : ℕ ih : ∀ (v : Fin (Nat.succ n✝) → R), (det fun i j => v i ^ ↑j) = ∏ i : Fin (Nat.succ n✝), ∏ j in Ioi i, (v j - v i) v : Fin (Nat.succ (Nat.succ n✝)) → R i : Fin (n✝ + 1) j : Fin n✝ i' : ℕ hi' : i' ∈ range (↑j + 1) ⊢ i' ≤ ↑j [PROOFSTEP] exact Nat.lt_succ_iff.mp (Finset.mem_range.mp hi') [GOAL] R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R n : ℕ v : Fin n → R ⊢ det (vandermonde v) = 0 ↔ ∃ i j, v i = v j ∧ i ≠ j [PROOFSTEP] constructor [GOAL] case mp R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R n : ℕ v : Fin n → R ⊢ det (vandermonde v) = 0 → ∃ i j, v i = v j ∧ i ≠ j [PROOFSTEP] simp only [det_vandermonde v, Finset.prod_eq_zero_iff, sub_eq_zero, forall_exists_index] [GOAL] case mp R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R n : ℕ v : Fin n → R ⊢ ∀ (x : Fin n), (x ∈ univ ∧ ∃ a, a ∈ Ioi x ∧ v a = v x) → ∃ i j, v i = v j ∧ i ≠ j [PROOFSTEP] rintro i ⟨_, j, h₁, h₂⟩ [GOAL] case mp.intro.intro.intro R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R n : ℕ v : Fin n → R i : Fin n left✝ : i ∈ univ j : Fin n h₁ : j ∈ Ioi i h₂ : v j = v i ⊢ ∃ i j, v i = v j ∧ i ≠ j [PROOFSTEP] exact ⟨j, i, h₂, (mem_Ioi.mp h₁).ne'⟩ [GOAL] case mpr R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R n : ℕ v : Fin n → R ⊢ (∃ i j, v i = v j ∧ i ≠ j) → det (vandermonde v) = 0 [PROOFSTEP] simp only [Ne.def, forall_exists_index, and_imp] [GOAL] case mpr R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R n : ℕ v : Fin n → R ⊢ ∀ (x x_1 : Fin n), v x = v x_1 → ¬x = x_1 → det (vandermonde v) = 0 [PROOFSTEP] refine' fun i j h₁ h₂ => Matrix.det_zero_of_row_eq h₂ (funext fun k => _) [GOAL] case mpr R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R n : ℕ v : Fin n → R i j : Fin n h₁ : v i = v j h₂ : ¬i = j k : Fin n ⊢ vandermonde v i k = vandermonde v j k [PROOFSTEP] rw [vandermonde_apply, vandermonde_apply, h₁] [GOAL] R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R n : ℕ v : Fin n → R ⊢ det (vandermonde v) ≠ 0 ↔ Function.Injective v [PROOFSTEP] unfold Function.Injective [GOAL] R : Type u_1 inst✝¹ : CommRing R inst✝ : IsDomain R n : ℕ v : Fin n → R ⊢ det (vandermonde v) ≠ 0 ↔ ∀ ⦃a₁ a₂ : Fin n⦄, v a₁ = v a₂ → a₁ = a₂ [PROOFSTEP] simp only [det_vandermonde_eq_zero_iff, Ne.def, not_exists, not_and, Classical.not_not] [GOAL] R✝ : Type u_1 inst✝² : CommRing R✝ R : Type u_2 inst✝¹ : CommRing R inst✝ : IsDomain R n : ℕ f v : Fin n → R hf : Function.Injective f hfv : ∀ (j : Fin n), ∑ i : Fin n, v i * f j ^ ↑i = 0 ⊢ v = 0 [PROOFSTEP] apply eq_zero_of_forall_index_sum_pow_mul_eq_zero hf [GOAL] R✝ : Type u_1 inst✝² : CommRing R✝ R : Type u_2 inst✝¹ : CommRing R inst✝ : IsDomain R n : ℕ f v : Fin n → R hf : Function.Injective f hfv : ∀ (j : Fin n), ∑ i : Fin n, v i * f j ^ ↑i = 0 ⊢ ∀ (j : Fin n), ∑ i : Fin n, f j ^ ↑i * v i = 0 [PROOFSTEP] simp_rw [mul_comm] [GOAL] R✝ : Type u_1 inst✝² : CommRing R✝ R : Type u_2 inst✝¹ : CommRing R inst✝ : IsDomain R n : ℕ f v : Fin n → R hf : Function.Injective f hfv : ∀ (j : Fin n), ∑ i : Fin n, v i * f j ^ ↑i = 0 ⊢ ∀ (j : Fin n), ∑ x : Fin n, v x * f j ^ ↑x = 0 [PROOFSTEP] exact hfv
{"mathlib_filename": "Mathlib.LinearAlgebra.Vandermonde", "llama_tokens": 11556}
[GOAL] R : Type u_1 inst✝⁴ : StrictOrderedCommSemiring R M : Type u_2 inst✝³ : AddCommMonoid M inst✝² : Module R M N : Type u_3 inst✝¹ : AddCommMonoid N inst✝ : Module R N ι : Type u_4 ⊢ map ι (LinearEquiv.refl R M) = Equiv.refl (Orientation R M ι) [PROOFSTEP] rw [Orientation.map, AlternatingMap.domLCongr_refl, Module.Ray.map_refl] [GOAL] R : Type u_1 inst✝⁶ : StrictOrderedCommSemiring R M : Type u_2 inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M N : Type u_3 inst✝³ : AddCommMonoid N inst✝² : Module R N ι : Type u_4 inst✝¹ : Nontrivial R inst✝ : IsEmpty ι ⊢ 1 ≠ AddMonoid.toZero.1 [PROOFSTEP] exact one_ne_zero [GOAL] R : Type u_1 inst✝⁵ : StrictOrderedCommSemiring R M : Type u_2 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M N : Type u_3 inst✝² : AddCommMonoid N inst✝¹ : Module R N ι : Type u_4 inst✝ : IsEmpty ι x : Orientation R M ι f : M ≃ₗ[R] M ⊢ ↑(map ι f) x = x [PROOFSTEP] induction' x using Module.Ray.ind with g hg [GOAL] case h R : Type u_1 inst✝⁵ : StrictOrderedCommSemiring R M : Type u_2 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M N : Type u_3 inst✝² : AddCommMonoid N inst✝¹ : Module R N ι : Type u_4 inst✝ : IsEmpty ι f : M ≃ₗ[R] M g : AlternatingMap R M R ι hg : g ≠ 0 ⊢ ↑(map ι f) (rayOfNeZero R g hg) = rayOfNeZero R g hg [PROOFSTEP] rw [Orientation.map_apply] [GOAL] case h R : Type u_1 inst✝⁵ : StrictOrderedCommSemiring R M : Type u_2 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M N : Type u_3 inst✝² : AddCommMonoid N inst✝¹ : Module R N ι : Type u_4 inst✝ : IsEmpty ι f : M ≃ₗ[R] M g : AlternatingMap R M R ι hg : g ≠ 0 ⊢ rayOfNeZero R (AlternatingMap.compLinearMap g ↑(LinearEquiv.symm f)) (_ : ¬AlternatingMap.compLinearMap g ↑(LinearEquiv.symm f) = 0) = rayOfNeZero R g hg [PROOFSTEP] congr [GOAL] case h.e_v R : Type u_1 inst✝⁵ : StrictOrderedCommSemiring R M : Type u_2 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M N : Type u_3 inst✝² : AddCommMonoid N inst✝¹ : Module R N ι : Type u_4 inst✝ : IsEmpty ι f : M ≃ₗ[R] M g : AlternatingMap R M R ι hg : g ≠ 0 ⊢ AlternatingMap.compLinearMap g ↑(LinearEquiv.symm f) = g [PROOFSTEP] ext i [GOAL] case h.e_v.H R : Type u_1 inst✝⁵ : StrictOrderedCommSemiring R M : Type u_2 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M N : Type u_3 inst✝² : AddCommMonoid N inst✝¹ : Module R N ι : Type u_4 inst✝ : IsEmpty ι f : M ≃ₗ[R] M g : AlternatingMap R M R ι hg : g ≠ 0 i : ι → M ⊢ ↑(AlternatingMap.compLinearMap g ↑(LinearEquiv.symm f)) i = ↑g i [PROOFSTEP] rw [AlternatingMap.compLinearMap_apply] [GOAL] case h.e_v.H R : Type u_1 inst✝⁵ : StrictOrderedCommSemiring R M : Type u_2 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M N : Type u_3 inst✝² : AddCommMonoid N inst✝¹ : Module R N ι : Type u_4 inst✝ : IsEmpty ι f : M ≃ₗ[R] M g : AlternatingMap R M R ι hg : g ≠ 0 i : ι → M ⊢ (↑g fun i_1 => ↑↑(LinearEquiv.symm f) (i i_1)) = ↑g i [PROOFSTEP] congr [GOAL] case h.e_v.H.h.e_6.h R : Type u_1 inst✝⁵ : StrictOrderedCommSemiring R M : Type u_2 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M N : Type u_3 inst✝² : AddCommMonoid N inst✝¹ : Module R N ι : Type u_4 inst✝ : IsEmpty ι f : M ≃ₗ[R] M g : AlternatingMap R M R ι hg : g ≠ 0 i : ι → M ⊢ (fun i_1 => ↑↑(LinearEquiv.symm f) (i i_1)) = i [PROOFSTEP] simp only [LinearEquiv.coe_coe, eq_iff_true_of_subsingleton] [GOAL] R : Type u_1 inst✝⁵ : StrictOrderedCommRing R M : Type u_2 N : Type u_3 inst✝⁴ : AddCommGroup M inst✝³ : AddCommGroup N inst✝² : Module R M inst✝¹ : Module R N ι : Type u_4 inst✝ : Finite ι e : Basis ι R M x : Orientation R M ι f : M ≃ₗ[R] M ⊢ ↑(Orientation.map ι f) x = (↑LinearEquiv.det f)⁻¹ • x [PROOFSTEP] cases nonempty_fintype ι [GOAL] case intro R : Type u_1 inst✝⁵ : StrictOrderedCommRing R M : Type u_2 N : Type u_3 inst✝⁴ : AddCommGroup M inst✝³ : AddCommGroup N inst✝² : Module R M inst✝¹ : Module R N ι : Type u_4 inst✝ : Finite ι e : Basis ι R M x : Orientation R M ι f : M ≃ₗ[R] M val✝ : Fintype ι ⊢ ↑(Orientation.map ι f) x = (↑LinearEquiv.det f)⁻¹ • x [PROOFSTEP] letI := Classical.decEq ι [GOAL] case intro R : Type u_1 inst✝⁵ : StrictOrderedCommRing R M : Type u_2 N : Type u_3 inst✝⁴ : AddCommGroup M inst✝³ : AddCommGroup N inst✝² : Module R M inst✝¹ : Module R N ι : Type u_4 inst✝ : Finite ι e : Basis ι R M x : Orientation R M ι f : M ≃ₗ[R] M val✝ : Fintype ι this : DecidableEq ι := Classical.decEq ι ⊢ ↑(Orientation.map ι f) x = (↑LinearEquiv.det f)⁻¹ • x [PROOFSTEP] induction' x using Module.Ray.ind with g hg [GOAL] case intro.h R : Type u_1 inst✝⁵ : StrictOrderedCommRing R M : Type u_2 N : Type u_3 inst✝⁴ : AddCommGroup M inst✝³ : AddCommGroup N inst✝² : Module R M inst✝¹ : Module R N ι : Type u_4 inst✝ : Finite ι e : Basis ι R M f : M ≃ₗ[R] M val✝ : Fintype ι this : DecidableEq ι := Classical.decEq ι g : AlternatingMap R M R ι hg : g ≠ 0 ⊢ ↑(Orientation.map ι f) (rayOfNeZero R g hg) = (↑LinearEquiv.det f)⁻¹ • rayOfNeZero R g hg [PROOFSTEP] rw [Orientation.map_apply, smul_rayOfNeZero, ray_eq_iff, Units.smul_def, (g.compLinearMap f.symm).eq_smul_basis_det e, g.eq_smul_basis_det e, AlternatingMap.compLinearMap_apply, AlternatingMap.smul_apply, show (fun i ↦ (LinearEquiv.symm f).toLinearMap (e i)) = (LinearEquiv.symm f).toLinearMap ∘ e by rfl, Basis.det_comp, Basis.det_self, mul_one, smul_eq_mul, mul_comm, mul_smul, LinearEquiv.coe_inv_det] [GOAL] R : Type u_1 inst✝⁵ : StrictOrderedCommRing R M : Type u_2 N : Type u_3 inst✝⁴ : AddCommGroup M inst✝³ : AddCommGroup N inst✝² : Module R M inst✝¹ : Module R N ι : Type u_4 inst✝ : Finite ι e : Basis ι R M f : M ≃ₗ[R] M val✝ : Fintype ι this : DecidableEq ι := Classical.decEq ι g : AlternatingMap R M R ι hg : g ≠ 0 ⊢ (fun i => ↑↑(LinearEquiv.symm f) (↑e i)) = ↑↑(LinearEquiv.symm f) ∘ ↑e [PROOFSTEP] rfl [GOAL] R : Type u_1 inst✝⁷ : StrictOrderedCommRing R M : Type u_2 N : Type u_3 inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup N inst✝⁴ : Module R M inst✝³ : Module R N ι : Type u_4 inst✝² : Fintype ι inst✝¹ : DecidableEq ι inst✝ : Nontrivial R e : Basis ι R M f : M ≃ₗ[R] N ⊢ Basis.orientation (Basis.map e f) = ↑(Orientation.map ι f) (Basis.orientation e) [PROOFSTEP] simp_rw [Basis.orientation, Orientation.map_apply, Basis.det_map'] [GOAL] R : Type u_1 inst✝⁷ : StrictOrderedCommRing R M : Type u_2 N : Type u_3 inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup N inst✝⁴ : Module R M inst✝³ : Module R N ι : Type u_4 inst✝² : Fintype ι inst✝¹ : DecidableEq ι inst✝ : Nontrivial R e : Basis ι R M w : ι → Rˣ ⊢ Basis.orientation (unitsSMul e w) = (∏ i : ι, w i)⁻¹ • Basis.orientation e [PROOFSTEP] rw [Basis.orientation, Basis.orientation, smul_rayOfNeZero, ray_eq_iff, e.det.eq_smul_basis_det (e.unitsSMul w), det_unitsSMul_self, Units.smul_def, smul_smul] [GOAL] R : Type u_1 inst✝⁷ : StrictOrderedCommRing R M : Type u_2 N : Type u_3 inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup N inst✝⁴ : Module R M inst✝³ : Module R N ι : Type u_4 inst✝² : Fintype ι inst✝¹ : DecidableEq ι inst✝ : Nontrivial R e : Basis ι R M w : ι → Rˣ ⊢ SameRay R (det (unitsSMul e w)) ((↑(∏ i : ι, w i)⁻¹ * ∏ i : ι, ↑(w i)) • det (unitsSMul e w)) [PROOFSTEP] norm_cast [GOAL] R : Type u_1 inst✝⁷ : StrictOrderedCommRing R M : Type u_2 N : Type u_3 inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup N inst✝⁴ : Module R M inst✝³ : Module R N ι : Type u_4 inst✝² : Fintype ι inst✝¹ : DecidableEq ι inst✝ : Nontrivial R e : Basis ι R M w : ι → Rˣ ⊢ SameRay R (det (unitsSMul e w)) (↑((∏ i : ι, w i)⁻¹ * ∏ i : ι, w i) • det (unitsSMul e w)) [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝⁷ : StrictOrderedCommRing R M : Type u_2 N : Type u_3 inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup N inst✝⁴ : Module R M inst✝³ : Module R N ι : Type u_4 inst✝² : Fintype ι inst✝¹ : DecidableEq ι inst✝ : Nontrivial R e : Basis ι R M w : ι → Rˣ ⊢ SameRay R (det (unitsSMul e w)) (det (unitsSMul e w)) [PROOFSTEP] exact SameRay.rfl [GOAL] R : Type u_1 inst✝⁸ : StrictOrderedCommRing R M : Type u_2 N : Type u_3 inst✝⁷ : AddCommGroup M inst✝⁶ : AddCommGroup N inst✝⁵ : Module R M inst✝⁴ : Module R N ι : Type u_4 inst✝³ : Fintype ι inst✝² : DecidableEq ι inst✝¹ : Nontrivial R inst✝ : IsEmpty ι b : Basis ι R M ⊢ Basis.orientation b = positiveOrientation [PROOFSTEP] rw [Basis.orientation] [GOAL] R : Type u_1 inst✝⁸ : StrictOrderedCommRing R M : Type u_2 N : Type u_3 inst✝⁷ : AddCommGroup M inst✝⁶ : AddCommGroup N inst✝⁵ : Module R M inst✝⁴ : Module R N ι : Type u_4 inst✝³ : Fintype ι inst✝² : DecidableEq ι inst✝¹ : Nontrivial R inst✝ : IsEmpty ι b : Basis ι R M ⊢ rayOfNeZero R (det b) (_ : det b ≠ 0) = positiveOrientation [PROOFSTEP] congr [GOAL] case e_v R : Type u_1 inst✝⁸ : StrictOrderedCommRing R M : Type u_2 N : Type u_3 inst✝⁷ : AddCommGroup M inst✝⁶ : AddCommGroup N inst✝⁵ : Module R M inst✝⁴ : Module R N ι : Type u_4 inst✝³ : Fintype ι inst✝² : DecidableEq ι inst✝¹ : Nontrivial R inst✝ : IsEmpty ι b : Basis ι R M ⊢ det b = ↑AlternatingMap.constLinearEquivOfIsEmpty 1 [PROOFSTEP] exact b.det_isEmpty [GOAL] R : Type u_1 inst✝⁴ : LinearOrderedCommRing R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M ι : Type u_3 inst✝¹ : Nontrivial R inst✝ : IsEmpty ι o : Orientation R M ι ⊢ o = positiveOrientation ∨ o = -positiveOrientation [PROOFSTEP] induction' o using Module.Ray.ind with x hx [GOAL] case h R : Type u_1 inst✝⁴ : LinearOrderedCommRing R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M ι : Type u_3 inst✝¹ : Nontrivial R inst✝ : IsEmpty ι x : AlternatingMap R M R ι hx : x ≠ 0 ⊢ rayOfNeZero R x hx = positiveOrientation ∨ rayOfNeZero R x hx = -positiveOrientation [PROOFSTEP] dsimp [positiveOrientation] [GOAL] case h R : Type u_1 inst✝⁴ : LinearOrderedCommRing R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M ι : Type u_3 inst✝¹ : Nontrivial R inst✝ : IsEmpty ι x : AlternatingMap R M R ι hx : x ≠ 0 ⊢ rayOfNeZero R x hx = rayOfNeZero R (AlternatingMap.constOfIsEmpty R M ι 1) (_ : ↑AlternatingMap.constLinearEquivOfIsEmpty 1 ≠ ↑AlternatingMap.constLinearEquivOfIsEmpty AddMonoid.toZero.1) ∨ rayOfNeZero R x hx = rayOfNeZero R (-AlternatingMap.constOfIsEmpty R M ι 1) (_ : ¬-AlternatingMap.constOfIsEmpty R M ι 1 = 0) [PROOFSTEP] simp only [ray_eq_iff, sameRay_neg_swap] [GOAL] case h R : Type u_1 inst✝⁴ : LinearOrderedCommRing R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M ι : Type u_3 inst✝¹ : Nontrivial R inst✝ : IsEmpty ι x : AlternatingMap R M R ι hx : x ≠ 0 ⊢ SameRay R x (AlternatingMap.constOfIsEmpty R M ι 1) ∨ SameRay R x (-AlternatingMap.constOfIsEmpty R M ι 1) [PROOFSTEP] rw [sameRay_or_sameRay_neg_iff_not_linearIndependent] [GOAL] case h R : Type u_1 inst✝⁴ : LinearOrderedCommRing R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M ι : Type u_3 inst✝¹ : Nontrivial R inst✝ : IsEmpty ι x : AlternatingMap R M R ι hx : x ≠ 0 ⊢ ¬LinearIndependent R ![x, AlternatingMap.constOfIsEmpty R M ι 1] [PROOFSTEP] intro h [GOAL] case h R : Type u_1 inst✝⁴ : LinearOrderedCommRing R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M ι : Type u_3 inst✝¹ : Nontrivial R inst✝ : IsEmpty ι x : AlternatingMap R M R ι hx : x ≠ 0 h : LinearIndependent R ![x, AlternatingMap.constOfIsEmpty R M ι 1] ⊢ False [PROOFSTEP] set f : AlternatingMap R M R ι ≃ₗ[R] R := AlternatingMap.constLinearEquivOfIsEmpty.symm [GOAL] case h R : Type u_1 inst✝⁴ : LinearOrderedCommRing R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M ι : Type u_3 inst✝¹ : Nontrivial R inst✝ : IsEmpty ι x : AlternatingMap R M R ι hx : x ≠ 0 h : LinearIndependent R ![x, AlternatingMap.constOfIsEmpty R M ι 1] f : AlternatingMap R M R ι ≃ₗ[R] R := LinearEquiv.symm AlternatingMap.constLinearEquivOfIsEmpty ⊢ False [PROOFSTEP] have H : LinearIndependent R ![f x, 1] := by convert h.map' f.toLinearMap f.ker ext i fin_cases i <;> simp [GOAL] R : Type u_1 inst✝⁴ : LinearOrderedCommRing R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M ι : Type u_3 inst✝¹ : Nontrivial R inst✝ : IsEmpty ι x : AlternatingMap R M R ι hx : x ≠ 0 h : LinearIndependent R ![x, AlternatingMap.constOfIsEmpty R M ι 1] f : AlternatingMap R M R ι ≃ₗ[R] R := LinearEquiv.symm AlternatingMap.constLinearEquivOfIsEmpty ⊢ LinearIndependent R ![↑f x, 1] [PROOFSTEP] convert h.map' f.toLinearMap f.ker [GOAL] case h.e'_4 R : Type u_1 inst✝⁴ : LinearOrderedCommRing R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M ι : Type u_3 inst✝¹ : Nontrivial R inst✝ : IsEmpty ι x : AlternatingMap R M R ι hx : x ≠ 0 h : LinearIndependent R ![x, AlternatingMap.constOfIsEmpty R M ι 1] f : AlternatingMap R M R ι ≃ₗ[R] R := LinearEquiv.symm AlternatingMap.constLinearEquivOfIsEmpty ⊢ ![↑f x, 1] = ↑↑f ∘ ![x, AlternatingMap.constOfIsEmpty R M ι 1] [PROOFSTEP] ext i [GOAL] case h.e'_4.h R : Type u_1 inst✝⁴ : LinearOrderedCommRing R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M ι : Type u_3 inst✝¹ : Nontrivial R inst✝ : IsEmpty ι x : AlternatingMap R M R ι hx : x ≠ 0 h : LinearIndependent R ![x, AlternatingMap.constOfIsEmpty R M ι 1] f : AlternatingMap R M R ι ≃ₗ[R] R := LinearEquiv.symm AlternatingMap.constLinearEquivOfIsEmpty i : Fin (Nat.succ (Nat.succ 0)) ⊢ Matrix.vecCons (↑f x) ![1] i = (↑↑f ∘ ![x, AlternatingMap.constOfIsEmpty R M ι 1]) i [PROOFSTEP] fin_cases i [GOAL] case h.e'_4.h.head R : Type u_1 inst✝⁴ : LinearOrderedCommRing R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M ι : Type u_3 inst✝¹ : Nontrivial R inst✝ : IsEmpty ι x : AlternatingMap R M R ι hx : x ≠ 0 h : LinearIndependent R ![x, AlternatingMap.constOfIsEmpty R M ι 1] f : AlternatingMap R M R ι ≃ₗ[R] R := LinearEquiv.symm AlternatingMap.constLinearEquivOfIsEmpty ⊢ Matrix.vecCons (↑f x) ![1] { val := 0, isLt := (_ : 0 < Nat.succ (Nat.succ 0)) } = (↑↑f ∘ ![x, AlternatingMap.constOfIsEmpty R M ι 1]) { val := 0, isLt := (_ : 0 < Nat.succ (Nat.succ 0)) } [PROOFSTEP] simp [GOAL] case h.e'_4.h.tail.head R : Type u_1 inst✝⁴ : LinearOrderedCommRing R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M ι : Type u_3 inst✝¹ : Nontrivial R inst✝ : IsEmpty ι x : AlternatingMap R M R ι hx : x ≠ 0 h : LinearIndependent R ![x, AlternatingMap.constOfIsEmpty R M ι 1] f : AlternatingMap R M R ι ≃ₗ[R] R := LinearEquiv.symm AlternatingMap.constLinearEquivOfIsEmpty ⊢ Matrix.vecCons (↑f x) ![1] { val := 1, isLt := (_ : (fun a => a < Nat.succ (Nat.succ 0)) 1) } = (↑↑f ∘ ![x, AlternatingMap.constOfIsEmpty R M ι 1]) { val := 1, isLt := (_ : (fun a => a < Nat.succ (Nat.succ 0)) 1) } [PROOFSTEP] simp [GOAL] case h R : Type u_1 inst✝⁴ : LinearOrderedCommRing R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M ι : Type u_3 inst✝¹ : Nontrivial R inst✝ : IsEmpty ι x : AlternatingMap R M R ι hx : x ≠ 0 h : LinearIndependent R ![x, AlternatingMap.constOfIsEmpty R M ι 1] f : AlternatingMap R M R ι ≃ₗ[R] R := LinearEquiv.symm AlternatingMap.constLinearEquivOfIsEmpty H : LinearIndependent R ![↑f x, 1] ⊢ False [PROOFSTEP] rw [linearIndependent_iff'] at H [GOAL] case h R : Type u_1 inst✝⁴ : LinearOrderedCommRing R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M ι : Type u_3 inst✝¹ : Nontrivial R inst✝ : IsEmpty ι x : AlternatingMap R M R ι hx : x ≠ 0 h : LinearIndependent R ![x, AlternatingMap.constOfIsEmpty R M ι 1] f : AlternatingMap R M R ι ≃ₗ[R] R := LinearEquiv.symm AlternatingMap.constLinearEquivOfIsEmpty H : ∀ (s : Finset (Fin (Nat.succ (Nat.succ 0)))) (g : Fin (Nat.succ (Nat.succ 0)) → R), ∑ i in s, g i • Matrix.vecCons (↑f x) ![1] i = 0 → ∀ (i : Fin (Nat.succ (Nat.succ 0))), i ∈ s → g i = 0 ⊢ False [PROOFSTEP] simpa using H Finset.univ ![1, -f x] (by simp [Fin.sum_univ_succ]) 0 (by simp) [GOAL] R : Type u_1 inst✝⁴ : LinearOrderedCommRing R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M ι : Type u_3 inst✝¹ : Nontrivial R inst✝ : IsEmpty ι x : AlternatingMap R M R ι hx : x ≠ 0 h : LinearIndependent R ![x, AlternatingMap.constOfIsEmpty R M ι 1] f : AlternatingMap R M R ι ≃ₗ[R] R := LinearEquiv.symm AlternatingMap.constLinearEquivOfIsEmpty H : ∀ (s : Finset (Fin (Nat.succ (Nat.succ 0)))) (g : Fin (Nat.succ (Nat.succ 0)) → R), ∑ i in s, g i • Matrix.vecCons (↑f x) ![1] i = 0 → ∀ (i : Fin (Nat.succ (Nat.succ 0))), i ∈ s → g i = 0 ⊢ ∑ i : Fin (Nat.succ (Nat.succ 0)), Matrix.vecCons 1 ![-↑f x] i • Matrix.vecCons (↑f x) ![1] i = 0 [PROOFSTEP] simp [Fin.sum_univ_succ] [GOAL] R : Type u_1 inst✝⁴ : LinearOrderedCommRing R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M ι : Type u_3 inst✝¹ : Nontrivial R inst✝ : IsEmpty ι x : AlternatingMap R M R ι hx : x ≠ 0 h : LinearIndependent R ![x, AlternatingMap.constOfIsEmpty R M ι 1] f : AlternatingMap R M R ι ≃ₗ[R] R := LinearEquiv.symm AlternatingMap.constLinearEquivOfIsEmpty H : ∀ (s : Finset (Fin (Nat.succ (Nat.succ 0)))) (g : Fin (Nat.succ (Nat.succ 0)) → R), ∑ i in s, g i • Matrix.vecCons (↑f x) ![1] i = 0 → ∀ (i : Fin (Nat.succ (Nat.succ 0))), i ∈ s → g i = 0 ⊢ 0 ∈ Finset.univ [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝⁴ : LinearOrderedCommRing R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M ι : Type u_3 inst✝¹ : Fintype ι inst✝ : DecidableEq ι e₁ e₂ : Basis ι R M ⊢ SameRay R (det e₁) (det e₂) ↔ SameRay R (↑(det e₁) ↑e₂ • det e₂) (det e₂) [PROOFSTEP] rw [← e₁.det.eq_smul_basis_det e₂] [GOAL] R : Type u_1 inst✝⁴ : LinearOrderedCommRing R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M ι : Type u_3 inst✝¹ : Fintype ι inst✝ : DecidableEq ι e : Basis ι R M x : Orientation R M ι ⊢ x = Basis.orientation e ∨ x = -Basis.orientation e [PROOFSTEP] induction' x using Module.Ray.ind with x hx [GOAL] case h R : Type u_1 inst✝⁴ : LinearOrderedCommRing R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M ι : Type u_3 inst✝¹ : Fintype ι inst✝ : DecidableEq ι e : Basis ι R M x : AlternatingMap R M R ι hx : x ≠ 0 ⊢ rayOfNeZero R x hx = Basis.orientation e ∨ rayOfNeZero R x hx = -Basis.orientation e [PROOFSTEP] rw [← x.map_basis_ne_zero_iff e] at hx [GOAL] case h R : Type u_1 inst✝⁴ : LinearOrderedCommRing R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M ι : Type u_3 inst✝¹ : Fintype ι inst✝ : DecidableEq ι e : Basis ι R M x : AlternatingMap R M R ι hx✝ : x ≠ 0 hx : ↑x ↑e ≠ 0 ⊢ rayOfNeZero R x hx✝ = Basis.orientation e ∨ rayOfNeZero R x hx✝ = -Basis.orientation e [PROOFSTEP] rwa [Basis.orientation, ray_eq_iff, neg_rayOfNeZero, ray_eq_iff, x.eq_smul_basis_det e, sameRay_neg_smul_left_iff_of_ne e.det_ne_zero hx, sameRay_smul_left_iff_of_ne e.det_ne_zero hx, lt_or_lt_iff_ne, ne_comm] [GOAL] R : Type u_1 inst✝⁴ : LinearOrderedCommRing R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M ι : Type u_3 inst✝¹ : Fintype ι inst✝ : DecidableEq ι e : Basis ι R M f : M ≃ₗ[R] M ⊢ Basis.orientation (Basis.map e f) = Basis.orientation e ↔ 0 < ↑LinearMap.det ↑f [PROOFSTEP] rw [orientation_map, e.map_orientation_eq_det_inv_smul, units_inv_smul, units_smul_eq_self_iff, LinearEquiv.coe_det] [GOAL] R : Type u_1 inst✝⁴ : LinearOrderedCommRing R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M ι : Type u_3 inst✝¹ : Fintype ι inst✝ : DecidableEq ι e : Basis ι R M f : M ≃ₗ[R] M ⊢ Basis.orientation (Basis.map e f) = -Basis.orientation e ↔ ↑LinearMap.det ↑f < 0 [PROOFSTEP] rw [orientation_map, e.map_orientation_eq_det_inv_smul, units_inv_smul, units_smul_eq_neg_iff, LinearEquiv.coe_det] [GOAL] R : Type u_1 inst✝⁵ : LinearOrderedCommRing R M : Type u_2 inst✝⁴ : AddCommGroup M inst✝³ : Module R M ι : Type u_3 inst✝² : Fintype ι inst✝¹ : DecidableEq ι inst✝ : Nontrivial R e : Basis ι R M i : ι ⊢ Basis.orientation (unitsSMul e (Function.update 1 i (-1))) = -Basis.orientation e [PROOFSTEP] rw [orientation_unitsSMul, Finset.prod_update_of_mem (Finset.mem_univ _)] [GOAL] R : Type u_1 inst✝⁵ : LinearOrderedCommRing R M : Type u_2 inst✝⁴ : AddCommGroup M inst✝³ : Module R M ι : Type u_3 inst✝² : Fintype ι inst✝¹ : DecidableEq ι inst✝ : Nontrivial R e : Basis ι R M i : ι ⊢ (-1 * ∏ x in Finset.univ \ {i}, OfNat.ofNat 1 x)⁻¹ • Basis.orientation e = -Basis.orientation e [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝⁶ : LinearOrderedCommRing R M : Type u_2 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M ι : Type u_3 inst✝³ : Fintype ι inst✝² : DecidableEq ι inst✝¹ : Nontrivial R inst✝ : Nonempty ι e : Basis ι R M x : Orientation R M ι ⊢ Basis.orientation (adjustToOrientation e x) = x [PROOFSTEP] rw [adjustToOrientation] [GOAL] R : Type u_1 inst✝⁶ : LinearOrderedCommRing R M : Type u_2 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M ι : Type u_3 inst✝³ : Fintype ι inst✝² : DecidableEq ι inst✝¹ : Nontrivial R inst✝ : Nonempty ι e : Basis ι R M x : Orientation R M ι ⊢ Basis.orientation (if Basis.orientation e = x then e else unitsSMul e (Function.update 1 (Classical.arbitrary ι) (-1))) = x [PROOFSTEP] split_ifs with h [GOAL] case pos R : Type u_1 inst✝⁶ : LinearOrderedCommRing R M : Type u_2 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M ι : Type u_3 inst✝³ : Fintype ι inst✝² : DecidableEq ι inst✝¹ : Nontrivial R inst✝ : Nonempty ι e : Basis ι R M x : Orientation R M ι h : Basis.orientation e = x ⊢ Basis.orientation e = x [PROOFSTEP] exact h [GOAL] case neg R : Type u_1 inst✝⁶ : LinearOrderedCommRing R M : Type u_2 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M ι : Type u_3 inst✝³ : Fintype ι inst✝² : DecidableEq ι inst✝¹ : Nontrivial R inst✝ : Nonempty ι e : Basis ι R M x : Orientation R M ι h : ¬Basis.orientation e = x ⊢ Basis.orientation (unitsSMul e (Function.update 1 (Classical.arbitrary ι) (-1))) = x [PROOFSTEP] rw [orientation_neg_single, eq_comm, ← orientation_ne_iff_eq_neg, ne_comm] [GOAL] case neg R : Type u_1 inst✝⁶ : LinearOrderedCommRing R M : Type u_2 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M ι : Type u_3 inst✝³ : Fintype ι inst✝² : DecidableEq ι inst✝¹ : Nontrivial R inst✝ : Nonempty ι e : Basis ι R M x : Orientation R M ι h : ¬Basis.orientation e = x ⊢ Basis.orientation e ≠ x [PROOFSTEP] exact h [GOAL] R : Type u_1 inst✝⁶ : LinearOrderedCommRing R M : Type u_2 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M ι : Type u_3 inst✝³ : Fintype ι inst✝² : DecidableEq ι inst✝¹ : Nontrivial R inst✝ : Nonempty ι e : Basis ι R M x : Orientation R M ι i : ι ⊢ ↑(adjustToOrientation e x) i = ↑e i ∨ ↑(adjustToOrientation e x) i = -↑e i [PROOFSTEP] rw [adjustToOrientation] [GOAL] R : Type u_1 inst✝⁶ : LinearOrderedCommRing R M : Type u_2 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M ι : Type u_3 inst✝³ : Fintype ι inst✝² : DecidableEq ι inst✝¹ : Nontrivial R inst✝ : Nonempty ι e : Basis ι R M x : Orientation R M ι i : ι ⊢ ↑(if Basis.orientation e = x then e else unitsSMul e (Function.update 1 (Classical.arbitrary ι) (-1))) i = ↑e i ∨ ↑(if Basis.orientation e = x then e else unitsSMul e (Function.update 1 (Classical.arbitrary ι) (-1))) i = -↑e i [PROOFSTEP] split_ifs with h [GOAL] case pos R : Type u_1 inst✝⁶ : LinearOrderedCommRing R M : Type u_2 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M ι : Type u_3 inst✝³ : Fintype ι inst✝² : DecidableEq ι inst✝¹ : Nontrivial R inst✝ : Nonempty ι e : Basis ι R M x : Orientation R M ι i : ι h : Basis.orientation e = x ⊢ ↑e i = ↑e i ∨ ↑e i = -↑e i [PROOFSTEP] simp [GOAL] case neg R : Type u_1 inst✝⁶ : LinearOrderedCommRing R M : Type u_2 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M ι : Type u_3 inst✝³ : Fintype ι inst✝² : DecidableEq ι inst✝¹ : Nontrivial R inst✝ : Nonempty ι e : Basis ι R M x : Orientation R M ι i : ι h : ¬Basis.orientation e = x ⊢ ↑(unitsSMul e (Function.update 1 (Classical.arbitrary ι) (-1))) i = ↑e i ∨ ↑(unitsSMul e (Function.update 1 (Classical.arbitrary ι) (-1))) i = -↑e i [PROOFSTEP] by_cases hi : i = Classical.arbitrary ι [GOAL] case pos R : Type u_1 inst✝⁶ : LinearOrderedCommRing R M : Type u_2 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M ι : Type u_3 inst✝³ : Fintype ι inst✝² : DecidableEq ι inst✝¹ : Nontrivial R inst✝ : Nonempty ι e : Basis ι R M x : Orientation R M ι i : ι h : ¬Basis.orientation e = x hi : i = Classical.arbitrary ι ⊢ ↑(unitsSMul e (Function.update 1 (Classical.arbitrary ι) (-1))) i = ↑e i ∨ ↑(unitsSMul e (Function.update 1 (Classical.arbitrary ι) (-1))) i = -↑e i [PROOFSTEP] simp [unitsSMul_apply, hi] [GOAL] case neg R : Type u_1 inst✝⁶ : LinearOrderedCommRing R M : Type u_2 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M ι : Type u_3 inst✝³ : Fintype ι inst✝² : DecidableEq ι inst✝¹ : Nontrivial R inst✝ : Nonempty ι e : Basis ι R M x : Orientation R M ι i : ι h : ¬Basis.orientation e = x hi : ¬i = Classical.arbitrary ι ⊢ ↑(unitsSMul e (Function.update 1 (Classical.arbitrary ι) (-1))) i = ↑e i ∨ ↑(unitsSMul e (Function.update 1 (Classical.arbitrary ι) (-1))) i = -↑e i [PROOFSTEP] simp [unitsSMul_apply, hi] [GOAL] R : Type u_1 inst✝⁶ : LinearOrderedCommRing R M : Type u_2 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M ι : Type u_3 inst✝³ : Fintype ι inst✝² : DecidableEq ι inst✝¹ : Nontrivial R inst✝ : Nonempty ι e : Basis ι R M x : Orientation R M ι ⊢ det (adjustToOrientation e x) = det e ∨ det (adjustToOrientation e x) = -det e [PROOFSTEP] dsimp [Basis.adjustToOrientation] [GOAL] R : Type u_1 inst✝⁶ : LinearOrderedCommRing R M : Type u_2 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M ι : Type u_3 inst✝³ : Fintype ι inst✝² : DecidableEq ι inst✝¹ : Nontrivial R inst✝ : Nonempty ι e : Basis ι R M x : Orientation R M ι ⊢ det (if Basis.orientation e = x then e else unitsSMul e (Function.update 1 (Classical.arbitrary ι) (-1))) = det e ∨ det (if Basis.orientation e = x then e else unitsSMul e (Function.update 1 (Classical.arbitrary ι) (-1))) = -det e [PROOFSTEP] split_ifs [GOAL] case pos R : Type u_1 inst✝⁶ : LinearOrderedCommRing R M : Type u_2 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M ι : Type u_3 inst✝³ : Fintype ι inst✝² : DecidableEq ι inst✝¹ : Nontrivial R inst✝ : Nonempty ι e : Basis ι R M x : Orientation R M ι h✝ : Basis.orientation e = x ⊢ det e = det e ∨ det e = -det e [PROOFSTEP] left [GOAL] case pos.h R : Type u_1 inst✝⁶ : LinearOrderedCommRing R M : Type u_2 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M ι : Type u_3 inst✝³ : Fintype ι inst✝² : DecidableEq ι inst✝¹ : Nontrivial R inst✝ : Nonempty ι e : Basis ι R M x : Orientation R M ι h✝ : Basis.orientation e = x ⊢ det e = det e [PROOFSTEP] rfl [GOAL] case neg R : Type u_1 inst✝⁶ : LinearOrderedCommRing R M : Type u_2 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M ι : Type u_3 inst✝³ : Fintype ι inst✝² : DecidableEq ι inst✝¹ : Nontrivial R inst✝ : Nonempty ι e : Basis ι R M x : Orientation R M ι h✝ : ¬Basis.orientation e = x ⊢ det (unitsSMul e (Function.update 1 (Classical.arbitrary ι) (-1))) = det e ∨ det (unitsSMul e (Function.update 1 (Classical.arbitrary ι) (-1))) = -det e [PROOFSTEP] right [GOAL] case neg.h R : Type u_1 inst✝⁶ : LinearOrderedCommRing R M : Type u_2 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M ι : Type u_3 inst✝³ : Fintype ι inst✝² : DecidableEq ι inst✝¹ : Nontrivial R inst✝ : Nonempty ι e : Basis ι R M x : Orientation R M ι h✝ : ¬Basis.orientation e = x ⊢ det (unitsSMul e (Function.update 1 (Classical.arbitrary ι) (-1))) = -det e [PROOFSTEP] simp [e.det_unitsSMul, ← Units.coe_prod, Finset.prod_update_of_mem] [GOAL] case neg.h R : Type u_1 inst✝⁶ : LinearOrderedCommRing R M : Type u_2 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M ι : Type u_3 inst✝³ : Fintype ι inst✝² : DecidableEq ι inst✝¹ : Nontrivial R inst✝ : Nonempty ι e : Basis ι R M x : Orientation R M ι h✝ : ¬Basis.orientation e = x ⊢ -1 • det e = -det e [PROOFSTEP] ext [GOAL] case neg.h.H R : Type u_1 inst✝⁶ : LinearOrderedCommRing R M : Type u_2 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M ι : Type u_3 inst✝³ : Fintype ι inst✝² : DecidableEq ι inst✝¹ : Nontrivial R inst✝ : Nonempty ι e : Basis ι R M x : Orientation R M ι h✝ : ¬Basis.orientation e = x x✝ : ι → M ⊢ ↑(-1 • det e) x✝ = ↑(-det e) x✝ [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝⁶ : LinearOrderedCommRing R M : Type u_2 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M ι : Type u_3 inst✝³ : Fintype ι inst✝² : DecidableEq ι inst✝¹ : Nontrivial R inst✝ : Nonempty ι e : Basis ι R M x : Orientation R M ι v : ι → M ⊢ |↑(det (adjustToOrientation e x)) v| = |↑(det e) v| [PROOFSTEP] cases' e.det_adjustToOrientation x with h h [GOAL] case inl R : Type u_1 inst✝⁶ : LinearOrderedCommRing R M : Type u_2 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M ι : Type u_3 inst✝³ : Fintype ι inst✝² : DecidableEq ι inst✝¹ : Nontrivial R inst✝ : Nonempty ι e : Basis ι R M x : Orientation R M ι v : ι → M h : det (adjustToOrientation e x) = det e ⊢ |↑(det (adjustToOrientation e x)) v| = |↑(det e) v| [PROOFSTEP] simp [h] [GOAL] case inr R : Type u_1 inst✝⁶ : LinearOrderedCommRing R M : Type u_2 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M ι : Type u_3 inst✝³ : Fintype ι inst✝² : DecidableEq ι inst✝¹ : Nontrivial R inst✝ : Nonempty ι e : Basis ι R M x : Orientation R M ι v : ι → M h : det (adjustToOrientation e x) = -det e ⊢ |↑(det (adjustToOrientation e x)) v| = |↑(det e) v| [PROOFSTEP] simp [h] [GOAL] R : Type u_1 inst✝³ : LinearOrderedField R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M ι : Type u_3 inst✝ : Fintype ι _i : FiniteDimensional R M x₁ x₂ : Orientation R M ι h : Fintype.card ι = finrank R M ⊢ x₁ = x₂ ∨ x₁ = -x₂ [PROOFSTEP] have e := (finBasis R M).reindex (Fintype.equivFinOfCardEq h).symm [GOAL] R : Type u_1 inst✝³ : LinearOrderedField R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M ι : Type u_3 inst✝ : Fintype ι _i : FiniteDimensional R M x₁ x₂ : Orientation R M ι h : Fintype.card ι = finrank R M e : Basis ι R M ⊢ x₁ = x₂ ∨ x₁ = -x₂ [PROOFSTEP] letI := Classical.decEq ι [GOAL] R : Type u_1 inst✝³ : LinearOrderedField R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M ι : Type u_3 inst✝ : Fintype ι _i : FiniteDimensional R M x₁ x₂ : Orientation R M ι h : Fintype.card ι = finrank R M e : Basis ι R M this : DecidableEq ι := Classical.decEq ι ⊢ x₁ = x₂ ∨ x₁ = -x₂ [PROOFSTEP] have orientation_neg_neg : ∀ f : Basis ι R M, - -Basis.orientation f = Basis.orientation f := by simp [GOAL] R : Type u_1 inst✝³ : LinearOrderedField R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M ι : Type u_3 inst✝ : Fintype ι _i : FiniteDimensional R M x₁ x₂ : Orientation R M ι h : Fintype.card ι = finrank R M e : Basis ι R M this : DecidableEq ι := Classical.decEq ι ⊢ ∀ (f : Basis ι R M), - -Basis.orientation f = Basis.orientation f [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝³ : LinearOrderedField R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M ι : Type u_3 inst✝ : Fintype ι _i : FiniteDimensional R M x₁ x₂ : Orientation R M ι h : Fintype.card ι = finrank R M e : Basis ι R M this : DecidableEq ι := Classical.decEq ι orientation_neg_neg : ∀ (f : Basis ι R M), - -Basis.orientation f = Basis.orientation f ⊢ x₁ = x₂ ∨ x₁ = -x₂ [PROOFSTEP] rcases e.orientation_eq_or_eq_neg x₁ with (h₁ | h₁) [GOAL] case inl R : Type u_1 inst✝³ : LinearOrderedField R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M ι : Type u_3 inst✝ : Fintype ι _i : FiniteDimensional R M x₁ x₂ : Orientation R M ι h : Fintype.card ι = finrank R M e : Basis ι R M this : DecidableEq ι := Classical.decEq ι orientation_neg_neg : ∀ (f : Basis ι R M), - -Basis.orientation f = Basis.orientation f h₁ : x₁ = Basis.orientation e ⊢ x₁ = x₂ ∨ x₁ = -x₂ [PROOFSTEP] rcases e.orientation_eq_or_eq_neg x₂ with (h₂ | h₂) [GOAL] case inr R : Type u_1 inst✝³ : LinearOrderedField R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M ι : Type u_3 inst✝ : Fintype ι _i : FiniteDimensional R M x₁ x₂ : Orientation R M ι h : Fintype.card ι = finrank R M e : Basis ι R M this : DecidableEq ι := Classical.decEq ι orientation_neg_neg : ∀ (f : Basis ι R M), - -Basis.orientation f = Basis.orientation f h₁ : x₁ = -Basis.orientation e ⊢ x₁ = x₂ ∨ x₁ = -x₂ [PROOFSTEP] rcases e.orientation_eq_or_eq_neg x₂ with (h₂ | h₂) [GOAL] case inl.inl R : Type u_1 inst✝³ : LinearOrderedField R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M ι : Type u_3 inst✝ : Fintype ι _i : FiniteDimensional R M x₁ x₂ : Orientation R M ι h : Fintype.card ι = finrank R M e : Basis ι R M this : DecidableEq ι := Classical.decEq ι orientation_neg_neg : ∀ (f : Basis ι R M), - -Basis.orientation f = Basis.orientation f h₁ : x₁ = Basis.orientation e h₂ : x₂ = Basis.orientation e ⊢ x₁ = x₂ ∨ x₁ = -x₂ [PROOFSTEP] simp [h₁, h₂, orientation_neg_neg] [GOAL] case inl.inr R : Type u_1 inst✝³ : LinearOrderedField R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M ι : Type u_3 inst✝ : Fintype ι _i : FiniteDimensional R M x₁ x₂ : Orientation R M ι h : Fintype.card ι = finrank R M e : Basis ι R M this : DecidableEq ι := Classical.decEq ι orientation_neg_neg : ∀ (f : Basis ι R M), - -Basis.orientation f = Basis.orientation f h₁ : x₁ = Basis.orientation e h₂ : x₂ = -Basis.orientation e ⊢ x₁ = x₂ ∨ x₁ = -x₂ [PROOFSTEP] simp [h₁, h₂, orientation_neg_neg] [GOAL] case inr.inl R : Type u_1 inst✝³ : LinearOrderedField R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M ι : Type u_3 inst✝ : Fintype ι _i : FiniteDimensional R M x₁ x₂ : Orientation R M ι h : Fintype.card ι = finrank R M e : Basis ι R M this : DecidableEq ι := Classical.decEq ι orientation_neg_neg : ∀ (f : Basis ι R M), - -Basis.orientation f = Basis.orientation f h₁ : x₁ = -Basis.orientation e h₂ : x₂ = Basis.orientation e ⊢ x₁ = x₂ ∨ x₁ = -x₂ [PROOFSTEP] simp [h₁, h₂, orientation_neg_neg] [GOAL] case inr.inr R : Type u_1 inst✝³ : LinearOrderedField R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M ι : Type u_3 inst✝ : Fintype ι _i : FiniteDimensional R M x₁ x₂ : Orientation R M ι h : Fintype.card ι = finrank R M e : Basis ι R M this : DecidableEq ι := Classical.decEq ι orientation_neg_neg : ∀ (f : Basis ι R M), - -Basis.orientation f = Basis.orientation f h₁ : x₁ = -Basis.orientation e h₂ : x₂ = -Basis.orientation e ⊢ x₁ = x₂ ∨ x₁ = -x₂ [PROOFSTEP] simp [h₁, h₂, orientation_neg_neg] [GOAL] R : Type u_1 inst✝³ : LinearOrderedField R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M ι : Type u_3 inst✝ : Fintype ι _i : FiniteDimensional R M x : Orientation R M ι f : M ≃ₗ[R] M h : Fintype.card ι = finrank R M ⊢ ↑(map ι f) x = x ↔ 0 < ↑LinearMap.det ↑f [PROOFSTEP] cases isEmpty_or_nonempty ι [GOAL] case inl R : Type u_1 inst✝³ : LinearOrderedField R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M ι : Type u_3 inst✝ : Fintype ι _i : FiniteDimensional R M x : Orientation R M ι f : M ≃ₗ[R] M h : Fintype.card ι = finrank R M h✝ : IsEmpty ι ⊢ ↑(map ι f) x = x ↔ 0 < ↑LinearMap.det ↑f [PROOFSTEP] have H : finrank R M = 0 := by refine' h.symm.trans _ convert @Fintype.card_of_isEmpty ι _ [GOAL] R : Type u_1 inst✝³ : LinearOrderedField R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M ι : Type u_3 inst✝ : Fintype ι _i : FiniteDimensional R M x : Orientation R M ι f : M ≃ₗ[R] M h : Fintype.card ι = finrank R M h✝ : IsEmpty ι ⊢ finrank R M = 0 [PROOFSTEP] refine' h.symm.trans _ [GOAL] R : Type u_1 inst✝³ : LinearOrderedField R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M ι : Type u_3 inst✝ : Fintype ι _i : FiniteDimensional R M x : Orientation R M ι f : M ≃ₗ[R] M h : Fintype.card ι = finrank R M h✝ : IsEmpty ι ⊢ Fintype.card ι = 0 [PROOFSTEP] convert @Fintype.card_of_isEmpty ι _ [GOAL] case inl R : Type u_1 inst✝³ : LinearOrderedField R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M ι : Type u_3 inst✝ : Fintype ι _i : FiniteDimensional R M x : Orientation R M ι f : M ≃ₗ[R] M h : Fintype.card ι = finrank R M h✝ : IsEmpty ι H : finrank R M = 0 ⊢ ↑(map ι f) x = x ↔ 0 < ↑LinearMap.det ↑f [PROOFSTEP] simp [LinearMap.det_eq_one_of_finrank_eq_zero H] [GOAL] case inr R : Type u_1 inst✝³ : LinearOrderedField R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M ι : Type u_3 inst✝ : Fintype ι _i : FiniteDimensional R M x : Orientation R M ι f : M ≃ₗ[R] M h : Fintype.card ι = finrank R M h✝ : Nonempty ι ⊢ ↑(map ι f) x = x ↔ 0 < ↑LinearMap.det ↑f [PROOFSTEP] rw [map_eq_det_inv_smul _ _ h, units_inv_smul, units_smul_eq_self_iff, LinearEquiv.coe_det] [GOAL] R : Type u_1 inst✝³ : LinearOrderedField R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M ι : Type u_3 inst✝ : Fintype ι _i : FiniteDimensional R M x : Orientation R M ι f : M ≃ₗ[R] M h : Fintype.card ι = finrank R M ⊢ ↑(map ι f) x = -x ↔ ↑LinearMap.det ↑f < 0 [PROOFSTEP] cases isEmpty_or_nonempty ι [GOAL] case inl R : Type u_1 inst✝³ : LinearOrderedField R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M ι : Type u_3 inst✝ : Fintype ι _i : FiniteDimensional R M x : Orientation R M ι f : M ≃ₗ[R] M h : Fintype.card ι = finrank R M h✝ : IsEmpty ι ⊢ ↑(map ι f) x = -x ↔ ↑LinearMap.det ↑f < 0 [PROOFSTEP] have H : finrank R M = 0 := by refine' h.symm.trans _ convert @Fintype.card_of_isEmpty ι _ [GOAL] R : Type u_1 inst✝³ : LinearOrderedField R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M ι : Type u_3 inst✝ : Fintype ι _i : FiniteDimensional R M x : Orientation R M ι f : M ≃ₗ[R] M h : Fintype.card ι = finrank R M h✝ : IsEmpty ι ⊢ finrank R M = 0 [PROOFSTEP] refine' h.symm.trans _ [GOAL] R : Type u_1 inst✝³ : LinearOrderedField R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M ι : Type u_3 inst✝ : Fintype ι _i : FiniteDimensional R M x : Orientation R M ι f : M ≃ₗ[R] M h : Fintype.card ι = finrank R M h✝ : IsEmpty ι ⊢ Fintype.card ι = 0 [PROOFSTEP] convert @Fintype.card_of_isEmpty ι _ [GOAL] case inl R : Type u_1 inst✝³ : LinearOrderedField R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M ι : Type u_3 inst✝ : Fintype ι _i : FiniteDimensional R M x : Orientation R M ι f : M ≃ₗ[R] M h : Fintype.card ι = finrank R M h✝ : IsEmpty ι H : finrank R M = 0 ⊢ ↑(map ι f) x = -x ↔ ↑LinearMap.det ↑f < 0 [PROOFSTEP] simp [LinearMap.det_eq_one_of_finrank_eq_zero H, Module.Ray.ne_neg_self x] [GOAL] case inr R : Type u_1 inst✝³ : LinearOrderedField R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M ι : Type u_3 inst✝ : Fintype ι _i : FiniteDimensional R M x : Orientation R M ι f : M ≃ₗ[R] M h : Fintype.card ι = finrank R M h✝ : Nonempty ι ⊢ ↑(map ι f) x = -x ↔ ↑LinearMap.det ↑f < 0 [PROOFSTEP] have H : 0 < finrank R M := by rw [← h] exact Fintype.card_pos [GOAL] R : Type u_1 inst✝³ : LinearOrderedField R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M ι : Type u_3 inst✝ : Fintype ι _i : FiniteDimensional R M x : Orientation R M ι f : M ≃ₗ[R] M h : Fintype.card ι = finrank R M h✝ : Nonempty ι ⊢ 0 < finrank R M [PROOFSTEP] rw [← h] [GOAL] R : Type u_1 inst✝³ : LinearOrderedField R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M ι : Type u_3 inst✝ : Fintype ι _i : FiniteDimensional R M x : Orientation R M ι f : M ≃ₗ[R] M h : Fintype.card ι = finrank R M h✝ : Nonempty ι ⊢ 0 < Fintype.card ι [PROOFSTEP] exact Fintype.card_pos [GOAL] case inr R : Type u_1 inst✝³ : LinearOrderedField R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M ι : Type u_3 inst✝ : Fintype ι _i : FiniteDimensional R M x : Orientation R M ι f : M ≃ₗ[R] M h : Fintype.card ι = finrank R M h✝ : Nonempty ι H : 0 < finrank R M ⊢ ↑(map ι f) x = -x ↔ ↑LinearMap.det ↑f < 0 [PROOFSTEP] haveI : FiniteDimensional R M := finiteDimensional_of_finrank H [GOAL] case inr R : Type u_1 inst✝³ : LinearOrderedField R M : Type u_2 inst✝² : AddCommGroup M inst✝¹ : Module R M ι : Type u_3 inst✝ : Fintype ι _i : FiniteDimensional R M x : Orientation R M ι f : M ≃ₗ[R] M h : Fintype.card ι = finrank R M h✝ : Nonempty ι H : 0 < finrank R M this : FiniteDimensional R M ⊢ ↑(map ι f) x = -x ↔ ↑LinearMap.det ↑f < 0 [PROOFSTEP] rw [map_eq_det_inv_smul _ _ h, units_inv_smul, units_smul_eq_neg_iff, LinearEquiv.coe_det]
{"mathlib_filename": "Mathlib.LinearAlgebra.Orientation", "llama_tokens": 19080}
[GOAL] n : Type u inst✝³ : DecidableEq n inst✝² : Fintype n α : Type v inst✝¹ : CommRing α inst✝ : StarRing α A : Matrix n n α ⊢ A ∈ unitaryGroup n α ↔ A * star A = 1 [PROOFSTEP] refine' ⟨And.right, fun hA => ⟨_, hA⟩⟩ [GOAL] n : Type u inst✝³ : DecidableEq n inst✝² : Fintype n α : Type v inst✝¹ : CommRing α inst✝ : StarRing α A : Matrix n n α hA : A * star A = 1 ⊢ star A * A = 1 [PROOFSTEP] simpa only [mul_eq_one_comm] using hA [GOAL] n : Type u inst✝³ : DecidableEq n inst✝² : Fintype n α : Type v inst✝¹ : CommRing α inst✝ : StarRing α A : Matrix n n α ⊢ A ∈ unitaryGroup n α ↔ star A * A = 1 [PROOFSTEP] refine' ⟨And.left, fun hA => ⟨hA, _⟩⟩ [GOAL] n : Type u inst✝³ : DecidableEq n inst✝² : Fintype n α : Type v inst✝¹ : CommRing α inst✝ : StarRing α A : Matrix n n α hA : star A * A = 1 ⊢ A * star A = 1 [PROOFSTEP] rwa [mul_eq_one_comm] at hA [GOAL] n : Type u inst✝³ : DecidableEq n inst✝² : Fintype n α : Type v inst✝¹ : CommRing α inst✝ : StarRing α A✝ A : Matrix n n α hA : A ∈ unitaryGroup n α ⊢ det A ∈ unitary α [PROOFSTEP] constructor [GOAL] case left n : Type u inst✝³ : DecidableEq n inst✝² : Fintype n α : Type v inst✝¹ : CommRing α inst✝ : StarRing α A✝ A : Matrix n n α hA : A ∈ unitaryGroup n α ⊢ star (det A) * det A = 1 [PROOFSTEP] simpa [star, det_transpose] using congr_arg det hA.1 [GOAL] case right n : Type u inst✝³ : DecidableEq n inst✝² : Fintype n α : Type v inst✝¹ : CommRing α inst✝ : StarRing α A✝ A : Matrix n n α hA : A ∈ unitaryGroup n α ⊢ det A * star (det A) = 1 [PROOFSTEP] simpa [star, det_transpose] using congr_arg det hA.2 [GOAL] n : Type u inst✝³ : DecidableEq n inst✝² : Fintype n α : Type v inst✝¹ : CommRing α inst✝ : StarRing α A✝ : Matrix n n α A : { x // x ∈ unitaryGroup n α } src✝ : (fun x => (n → α) →ₗ[α] n → α) ↑A := ↑Matrix.toLin' ↑A x : n → α ⊢ ↑(comp (toLin' A⁻¹) (toLin' A)) x = ↑(toLin' (A⁻¹ * A)) x [PROOFSTEP] rw [← toLin'_mul] [GOAL] n : Type u inst✝³ : DecidableEq n inst✝² : Fintype n α : Type v inst✝¹ : CommRing α inst✝ : StarRing α A✝ : Matrix n n α A : { x // x ∈ unitaryGroup n α } src✝ : (fun x => (n → α) →ₗ[α] n → α) ↑A := ↑Matrix.toLin' ↑A x : n → α ⊢ ↑(toLin' (A⁻¹ * A)) x = x [PROOFSTEP] rw [mul_left_inv, toLin'_one, id_apply] [GOAL] n : Type u inst✝³ : DecidableEq n inst✝² : Fintype n α : Type v inst✝¹ : CommRing α inst✝ : StarRing α A✝ : Matrix n n α A : { x // x ∈ unitaryGroup n α } src✝ : (fun x => (n → α) →ₗ[α] n → α) ↑A := ↑Matrix.toLin' ↑A x : n → α ⊢ ↑(comp (toLin' A) (toLin' A⁻¹)) x = ↑(toLin' (A * A⁻¹)) x [PROOFSTEP] rw [← toLin'_mul] [GOAL] n : Type u inst✝³ : DecidableEq n inst✝² : Fintype n α : Type v inst✝¹ : CommRing α inst✝ : StarRing α A✝ : Matrix n n α A : { x // x ∈ unitaryGroup n α } src✝ : (fun x => (n → α) →ₗ[α] n → α) ↑A := ↑Matrix.toLin' ↑A x : n → α ⊢ ↑(toLin' (A * A⁻¹)) x = x [PROOFSTEP] rw [mul_right_inv, toLin'_one, id_apply] [GOAL] n : Type u inst✝³ : DecidableEq n inst✝² : Fintype n α : Type v inst✝¹ : CommRing α inst✝ : StarRing α A : Matrix n n α ⊢ ↑(toGL 1) = ↑1 [PROOFSTEP] simp only [coe_toGL, toLin'_one] [GOAL] n : Type u inst✝³ : DecidableEq n inst✝² : Fintype n α : Type v inst✝¹ : CommRing α inst✝ : StarRing α A : Matrix n n α ⊢ LinearMap.id = ↑1 [PROOFSTEP] rfl [GOAL] n : Type u inst✝³ : DecidableEq n inst✝² : Fintype n α : Type v inst✝¹ : CommRing α inst✝ : StarRing α A✝ : Matrix n n α A B : { x // x ∈ unitaryGroup n α } ⊢ ↑(toGL (A * B)) = ↑(toGL A * toGL B) [PROOFSTEP] simp only [coe_toGL, toLin'_mul] [GOAL] n : Type u inst✝³ : DecidableEq n inst✝² : Fintype n α : Type v inst✝¹ : CommRing α inst✝ : StarRing α A✝ : Matrix n n α A B : { x // x ∈ unitaryGroup n α } ⊢ comp (toLin' A) (toLin' B) = ↑(toGL A * toGL B) [PROOFSTEP] rfl [GOAL] n : Type u inst✝⁴ : DecidableEq n inst✝³ : Fintype n α : Type v inst✝² : CommRing α inst✝¹ : StarRing α A✝ : Matrix n n α β : Type v inst✝ : CommRing β A : Matrix n n β ⊢ A ∈ orthogonalGroup n β ↔ A * star A = 1 [PROOFSTEP] refine' ⟨And.right, fun hA => ⟨_, hA⟩⟩ [GOAL] n : Type u inst✝⁴ : DecidableEq n inst✝³ : Fintype n α : Type v inst✝² : CommRing α inst✝¹ : StarRing α A✝ : Matrix n n α β : Type v inst✝ : CommRing β A : Matrix n n β hA : A * star A = 1 ⊢ star A * A = 1 [PROOFSTEP] simpa only [mul_eq_one_comm] using hA [GOAL] n : Type u inst✝⁴ : DecidableEq n inst✝³ : Fintype n α : Type v inst✝² : CommRing α inst✝¹ : StarRing α A✝ : Matrix n n α β : Type v inst✝ : CommRing β A : Matrix n n β ⊢ A ∈ orthogonalGroup n β ↔ star A * A = 1 [PROOFSTEP] refine' ⟨And.left, fun hA => ⟨hA, _⟩⟩ [GOAL] n : Type u inst✝⁴ : DecidableEq n inst✝³ : Fintype n α : Type v inst✝² : CommRing α inst✝¹ : StarRing α A✝ : Matrix n n α β : Type v inst✝ : CommRing β A : Matrix n n β hA : star A * A = 1 ⊢ A * star A = 1 [PROOFSTEP] rwa [mul_eq_one_comm] at hA
{"mathlib_filename": "Mathlib.LinearAlgebra.UnitaryGroup", "llama_tokens": 2497}
[GOAL] C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J ⊢ OpenEmbedding ↑(ι D.toGlueData i).base [PROOFSTEP] rw [← show _ = (𝖣.ι i).base from 𝖣.ι_gluedIso_inv (PresheafedSpace.forget _) _] -- Porting note : added this erewrite [GOAL] C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J ⊢ OpenEmbedding ↑(ι (mapGlueData D.toGlueData (forget C)) i ≫ (gluedIso D.toGlueData (forget C)).inv) [PROOFSTEP] erw [coe_comp] [GOAL] C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J ⊢ OpenEmbedding (↑(gluedIso D.toGlueData (forget C)).inv ∘ ↑(ι (mapGlueData D.toGlueData (forget C)) i)) [PROOFSTEP] refine OpenEmbedding.comp (TopCat.homeoOfIso (𝖣.gluedIso (PresheafedSpace.forget _)).symm).openEmbedding (D.toTopGlueData.ι_openEmbedding i) [GOAL] C : Type u inst✝ : Category.{v, u} C D : GlueData C i j k : D.J S : Set ↑↑(V D.toGlueData (i, j)) ⊢ ↑pullback.snd.base '' (↑pullback.fst.base ⁻¹' S) = ↑(f D.toGlueData i k).base ⁻¹' (↑(f D.toGlueData i j).base '' S) [PROOFSTEP] have eq₁ : _ = (π₁ i, j, k).base := PreservesPullback.iso_hom_fst (forget C) _ _ [GOAL] C : Type u inst✝ : Category.{v, u} C D : GlueData C i j k : D.J S : Set ↑↑(V D.toGlueData (i, j)) eq₁ : (PreservesPullback.iso (forget C) (f D.toGlueData i j) (f D.toGlueData i k)).hom ≫ pullback.fst = pullback.fst.base ⊢ ↑pullback.snd.base '' (↑pullback.fst.base ⁻¹' S) = ↑(f D.toGlueData i k).base ⁻¹' (↑(f D.toGlueData i j).base '' S) [PROOFSTEP] have eq₂ : _ = (π₂ i, j, k).base := PreservesPullback.iso_hom_snd (forget C) _ _ [GOAL] C : Type u inst✝ : Category.{v, u} C D : GlueData C i j k : D.J S : Set ↑↑(V D.toGlueData (i, j)) eq₁ : (PreservesPullback.iso (forget C) (f D.toGlueData i j) (f D.toGlueData i k)).hom ≫ pullback.fst = pullback.fst.base eq₂ : (PreservesPullback.iso (forget C) (f D.toGlueData i j) (f D.toGlueData i k)).hom ≫ pullback.snd = pullback.snd.base ⊢ ↑pullback.snd.base '' (↑pullback.fst.base ⁻¹' S) = ↑(f D.toGlueData i k).base ⁻¹' (↑(f D.toGlueData i j).base '' S) [PROOFSTEP] rw [← eq₁, ← eq₂] -- Porting note : `rw` to `erw` on `coe_comp` [GOAL] C : Type u inst✝ : Category.{v, u} C D : GlueData C i j k : D.J S : Set ↑↑(V D.toGlueData (i, j)) eq₁ : (PreservesPullback.iso (forget C) (f D.toGlueData i j) (f D.toGlueData i k)).hom ≫ pullback.fst = pullback.fst.base eq₂ : (PreservesPullback.iso (forget C) (f D.toGlueData i j) (f D.toGlueData i k)).hom ≫ pullback.snd = pullback.snd.base ⊢ ↑((PreservesPullback.iso (forget C) (f D.toGlueData i j) (f D.toGlueData i k)).hom ≫ pullback.snd) '' (↑((PreservesPullback.iso (forget C) (f D.toGlueData i j) (f D.toGlueData i k)).hom ≫ pullback.fst) ⁻¹' S) = ↑(f D.toGlueData i k).base ⁻¹' (↑(f D.toGlueData i j).base '' S) [PROOFSTEP] erw [coe_comp] [GOAL] C : Type u inst✝ : Category.{v, u} C D : GlueData C i j k : D.J S : Set ↑↑(V D.toGlueData (i, j)) eq₁ : (PreservesPullback.iso (forget C) (f D.toGlueData i j) (f D.toGlueData i k)).hom ≫ pullback.fst = pullback.fst.base eq₂ : (PreservesPullback.iso (forget C) (f D.toGlueData i j) (f D.toGlueData i k)).hom ≫ pullback.snd = pullback.snd.base ⊢ ↑pullback.snd ∘ ↑(PreservesPullback.iso (forget C) (f D.toGlueData i j) (f D.toGlueData i k)).hom '' (↑((PreservesPullback.iso (forget C) (f D.toGlueData i j) (f D.toGlueData i k)).hom ≫ pullback.fst) ⁻¹' S) = ↑(f D.toGlueData i k).base ⁻¹' (↑(f D.toGlueData i j).base '' S) [PROOFSTEP] rw [Set.image_comp] -- Porting note : `rw` to `erw` on `coe_comp` [GOAL] C : Type u inst✝ : Category.{v, u} C D : GlueData C i j k : D.J S : Set ↑↑(V D.toGlueData (i, j)) eq₁ : (PreservesPullback.iso (forget C) (f D.toGlueData i j) (f D.toGlueData i k)).hom ≫ pullback.fst = pullback.fst.base eq₂ : (PreservesPullback.iso (forget C) (f D.toGlueData i j) (f D.toGlueData i k)).hom ≫ pullback.snd = pullback.snd.base ⊢ ↑pullback.snd '' (↑(PreservesPullback.iso (forget C) (f D.toGlueData i j) (f D.toGlueData i k)).hom '' (↑((PreservesPullback.iso (forget C) (f D.toGlueData i j) (f D.toGlueData i k)).hom ≫ pullback.fst) ⁻¹' S)) = ↑(f D.toGlueData i k).base ⁻¹' (↑(f D.toGlueData i j).base '' S) [PROOFSTEP] erw [coe_comp] [GOAL] C : Type u inst✝ : Category.{v, u} C D : GlueData C i j k : D.J S : Set ↑↑(V D.toGlueData (i, j)) eq₁ : (PreservesPullback.iso (forget C) (f D.toGlueData i j) (f D.toGlueData i k)).hom ≫ pullback.fst = pullback.fst.base eq₂ : (PreservesPullback.iso (forget C) (f D.toGlueData i j) (f D.toGlueData i k)).hom ≫ pullback.snd = pullback.snd.base ⊢ ↑pullback.snd '' (↑(PreservesPullback.iso (forget C) (f D.toGlueData i j) (f D.toGlueData i k)).hom '' (↑pullback.fst ∘ ↑(PreservesPullback.iso (forget C) (f D.toGlueData i j) (f D.toGlueData i k)).hom ⁻¹' S)) = ↑(f D.toGlueData i k).base ⁻¹' (↑(f D.toGlueData i j).base '' S) [PROOFSTEP] rw [Set.preimage_comp, Set.image_preimage_eq, TopCat.pullback_snd_image_fst_preimage] [GOAL] C : Type u inst✝ : Category.{v, u} C D : GlueData C i j k : D.J S : Set ↑↑(V D.toGlueData (i, j)) eq₁ : (PreservesPullback.iso (forget C) (f D.toGlueData i j) (f D.toGlueData i k)).hom ≫ pullback.fst = pullback.fst.base eq₂ : (PreservesPullback.iso (forget C) (f D.toGlueData i j) (f D.toGlueData i k)).hom ≫ pullback.snd = pullback.snd.base ⊢ ↑((forget C).map (f D.toGlueData i k)) ⁻¹' (↑((forget C).map (f D.toGlueData i j)) '' S) = ↑(f D.toGlueData i k).base ⁻¹' (↑(f D.toGlueData i j).base '' S) case h C : Type u inst✝ : Category.{v, u} C D : GlueData C i j k : D.J S : Set ↑↑(V D.toGlueData (i, j)) eq₁ : (PreservesPullback.iso (forget C) (f D.toGlueData i j) (f D.toGlueData i k)).hom ≫ pullback.fst = pullback.fst.base eq₂ : (PreservesPullback.iso (forget C) (f D.toGlueData i j) (f D.toGlueData i k)).hom ≫ pullback.snd = pullback.snd.base ⊢ Function.Surjective ↑(PreservesPullback.iso (forget C) (f D.toGlueData i j) (f D.toGlueData i k)).hom [PROOFSTEP] rfl [GOAL] case h C : Type u inst✝ : Category.{v, u} C D : GlueData C i j k : D.J S : Set ↑↑(V D.toGlueData (i, j)) eq₁ : (PreservesPullback.iso (forget C) (f D.toGlueData i j) (f D.toGlueData i k)).hom ≫ pullback.fst = pullback.fst.base eq₂ : (PreservesPullback.iso (forget C) (f D.toGlueData i j) (f D.toGlueData i k)).hom ≫ pullback.snd = pullback.snd.base ⊢ Function.Surjective ↑(PreservesPullback.iso (forget C) (f D.toGlueData i j) (f D.toGlueData i k)).hom [PROOFSTEP] rw [← TopCat.epi_iff_surjective] [GOAL] case h C : Type u inst✝ : Category.{v, u} C D : GlueData C i j k : D.J S : Set ↑↑(V D.toGlueData (i, j)) eq₁ : (PreservesPullback.iso (forget C) (f D.toGlueData i j) (f D.toGlueData i k)).hom ≫ pullback.fst = pullback.fst.base eq₂ : (PreservesPullback.iso (forget C) (f D.toGlueData i j) (f D.toGlueData i k)).hom ≫ pullback.snd = pullback.snd.base ⊢ Epi (PreservesPullback.iso (forget C) (f D.toGlueData i j) (f D.toGlueData i k)).hom [PROOFSTEP] infer_instance [GOAL] C : Type u inst✝ : Category.{v, u} C D : GlueData C i j k : D.J U : Opens ↑↑(V D.toGlueData (i, j)) ⊢ op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑pullback.fst.base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑pullback.fst.base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData i k).base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i j))).obj U)) [PROOFSTEP] delta IsOpenImmersion.openFunctor [GOAL] C : Type u inst✝ : Category.{v, u} C D : GlueData C i j k : D.J U : Opens ↑↑(V D.toGlueData (i, j)) ⊢ op ((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd.base)).obj { unop := { carrier := ↑pullback.fst.base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑pullback.fst.base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData i k).base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(f D.toGlueData i j).base)).obj U)) [PROOFSTEP] dsimp only [Functor.op, IsOpenMap.functor, Opens.map, unop_op] [GOAL] C : Type u inst✝ : Category.{v, u} C D : GlueData C i j k : D.J U : Opens ↑↑(V D.toGlueData (i, j)) ⊢ op { carrier := ↑pullback.snd.base '' ↑{ carrier := ↑pullback.fst.base ⁻¹' ↑U, is_open' := (_ : IsOpen (↑pullback.fst.base ⁻¹' ↑U)) }, is_open' := (_ : IsOpen (↑pullback.snd.base '' ↑{ carrier := ↑pullback.fst.base ⁻¹' ↑U, is_open' := (_ : IsOpen (↑pullback.fst.base ⁻¹' ↑U)) })) } = op { carrier := ↑(f D.toGlueData i k).base ⁻¹' ↑{ carrier := ↑(f D.toGlueData i j).base '' ↑U, is_open' := (_ : IsOpen (↑(f D.toGlueData i j).base '' ↑U)) }, is_open' := (_ : IsOpen (↑(f D.toGlueData i k).base ⁻¹' ↑{ carrier := ↑(f D.toGlueData i j).base '' ↑U, is_open' := (_ : IsOpen (↑(f D.toGlueData i j).base '' ↑U)) })) } [PROOFSTEP] congr [GOAL] case e_x.e_carrier C : Type u inst✝ : Category.{v, u} C D : GlueData C i j k : D.J U : Opens ↑↑(V D.toGlueData (i, j)) ⊢ ↑pullback.snd.base '' ↑{ carrier := ↑pullback.fst.base ⁻¹' ↑U, is_open' := (_ : IsOpen (↑pullback.fst.base ⁻¹' ↑U)) } = ↑(f D.toGlueData i k).base ⁻¹' ↑{ carrier := ↑(f D.toGlueData i j).base '' ↑U, is_open' := (_ : IsOpen (↑(f D.toGlueData i j).base '' ↑U)) } [PROOFSTEP] apply pullback_base [GOAL] C : Type u inst✝ : Category.{v, u} C D : GlueData C i j k : D.J U : Opens ↑↑(V D.toGlueData (i, j)) ⊢ IsOpenImmersion.invApp (_ : IsOpenImmersion (f D.toGlueData i j)) U ≫ NatTrans.app (f D.toGlueData i k).c (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i j))).obj U)) = NatTrans.app pullback.fst.c (op U) ≫ IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd) { unop := { carrier := ↑pullback.fst.base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑pullback.fst.base ⁻¹' ↑(op U).unop)) } }.unop ≫ (V D.toGlueData (i, k)).presheaf.map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑pullback.fst.base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑pullback.fst.base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData i k).base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i j))).obj U)))) [PROOFSTEP] have := PresheafedSpace.congr_app (@pullback.condition _ _ _ _ _ (D.f i j) (D.f i k) _) [GOAL] C : Type u inst✝ : Category.{v, u} C D : GlueData C i j k : D.J U : Opens ↑↑(V D.toGlueData (i, j)) this : ∀ (U : (Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i))ᵒᵖ), NatTrans.app (pullback.fst ≫ f D.toGlueData i j).c U = NatTrans.app (pullback.snd ≫ f D.toGlueData i k).c U ≫ (pullback (f D.toGlueData i j) (f D.toGlueData i k)).presheaf.map (eqToHom (_ : (Opens.map (pullback.snd ≫ f D.toGlueData i k).base).op.obj U = (Opens.map (pullback.fst ≫ f D.toGlueData i j).base).op.obj U)) ⊢ IsOpenImmersion.invApp (_ : IsOpenImmersion (f D.toGlueData i j)) U ≫ NatTrans.app (f D.toGlueData i k).c (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i j))).obj U)) = NatTrans.app pullback.fst.c (op U) ≫ IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd) { unop := { carrier := ↑pullback.fst.base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑pullback.fst.base ⁻¹' ↑(op U).unop)) } }.unop ≫ (V D.toGlueData (i, k)).presheaf.map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑pullback.fst.base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑pullback.fst.base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData i k).base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i j))).obj U)))) [PROOFSTEP] dsimp only [comp_c_app] at this [GOAL] C : Type u inst✝ : Category.{v, u} C D : GlueData C i j k : D.J U : Opens ↑↑(V D.toGlueData (i, j)) this : ∀ (U : (Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i))ᵒᵖ), NatTrans.app (f D.toGlueData i j).c U ≫ NatTrans.app pullback.fst.c (op ((Opens.map (f D.toGlueData i j).base).obj U.unop)) = (NatTrans.app (f D.toGlueData i k).c U ≫ NatTrans.app pullback.snd.c (op ((Opens.map (f D.toGlueData i k).base).obj U.unop))) ≫ (pullback (f D.toGlueData i j) (f D.toGlueData i k)).presheaf.map (eqToHom (_ : (Opens.map (pullback.snd ≫ f D.toGlueData i k).base).op.obj U = (Opens.map (pullback.fst ≫ f D.toGlueData i j).base).op.obj U)) ⊢ IsOpenImmersion.invApp (_ : IsOpenImmersion (f D.toGlueData i j)) U ≫ NatTrans.app (f D.toGlueData i k).c (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i j))).obj U)) = NatTrans.app pullback.fst.c (op U) ≫ IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd) { unop := { carrier := ↑pullback.fst.base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑pullback.fst.base ⁻¹' ↑(op U).unop)) } }.unop ≫ (V D.toGlueData (i, k)).presheaf.map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑pullback.fst.base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑pullback.fst.base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData i k).base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i j))).obj U)))) [PROOFSTEP] rw [← cancel_epi (inv ((D.f_open i j).invApp U)), IsIso.inv_hom_id_assoc, IsOpenImmersion.inv_invApp] [GOAL] C : Type u inst✝ : Category.{v, u} C D : GlueData C i j k : D.J U : Opens ↑↑(V D.toGlueData (i, j)) this : ∀ (U : (Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i))ᵒᵖ), NatTrans.app (f D.toGlueData i j).c U ≫ NatTrans.app pullback.fst.c (op ((Opens.map (f D.toGlueData i j).base).obj U.unop)) = (NatTrans.app (f D.toGlueData i k).c U ≫ NatTrans.app pullback.snd.c (op ((Opens.map (f D.toGlueData i k).base).obj U.unop))) ≫ (pullback (f D.toGlueData i j) (f D.toGlueData i k)).presheaf.map (eqToHom (_ : (Opens.map (pullback.snd ≫ f D.toGlueData i k).base).op.obj U = (Opens.map (pullback.fst ≫ f D.toGlueData i j).base).op.obj U)) ⊢ NatTrans.app (f D.toGlueData i k).c (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i j))).obj U)) = (NatTrans.app (f D.toGlueData i j).c (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i j))).obj U)) ≫ (V D.toGlueData (i, j)).presheaf.map (eqToHom (_ : op ((Opens.map (f D.toGlueData i j).base).obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i j))).obj U)).unop) = op U))) ≫ NatTrans.app pullback.fst.c (op U) ≫ IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd) { unop := { carrier := ↑pullback.fst.base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑pullback.fst.base ⁻¹' ↑(op U).unop)) } }.unop ≫ (V D.toGlueData (i, k)).presheaf.map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑pullback.fst.base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑pullback.fst.base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData i k).base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i j))).obj U)))) [PROOFSTEP] simp_rw [Category.assoc] [GOAL] C : Type u inst✝ : Category.{v, u} C D : GlueData C i j k : D.J U : Opens ↑↑(V D.toGlueData (i, j)) this : ∀ (U : (Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i))ᵒᵖ), NatTrans.app (f D.toGlueData i j).c U ≫ NatTrans.app pullback.fst.c (op ((Opens.map (f D.toGlueData i j).base).obj U.unop)) = (NatTrans.app (f D.toGlueData i k).c U ≫ NatTrans.app pullback.snd.c (op ((Opens.map (f D.toGlueData i k).base).obj U.unop))) ≫ (pullback (f D.toGlueData i j) (f D.toGlueData i k)).presheaf.map (eqToHom (_ : (Opens.map (pullback.snd ≫ f D.toGlueData i k).base).op.obj U = (Opens.map (pullback.fst ≫ f D.toGlueData i j).base).op.obj U)) ⊢ NatTrans.app (f D.toGlueData i k).c (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i j))).obj U)) = NatTrans.app (f D.toGlueData i j).c (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i j))).obj U)) ≫ (V D.toGlueData (i, j)).presheaf.map (eqToHom (_ : op ((Opens.map (f D.toGlueData i j).base).obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i j))).obj U)).unop) = op U)) ≫ NatTrans.app pullback.fst.c (op U) ≫ IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd) { carrier := ↑pullback.fst.base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑pullback.fst.base ⁻¹' ↑(op U).unop)) } ≫ (V D.toGlueData (i, k)).presheaf.map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑pullback.fst.base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑pullback.fst.base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData i k).base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i j))).obj U)))) [PROOFSTEP] erw [(π₁ i, j, k).c.naturality_assoc, reassoc_of% this, ← Functor.map_comp_assoc, IsOpenImmersion.inv_naturality_assoc, IsOpenImmersion.app_invApp_assoc, ← (D.V (i, k)).presheaf.map_comp, ← (D.V (i, k)).presheaf.map_comp] -- Porting note : need to provide an explicit argument, otherwise Lean does not know which -- category we are talking about [GOAL] C : Type u inst✝ : Category.{v, u} C D : GlueData C i j k : D.J U : Opens ↑↑(V D.toGlueData (i, j)) this : ∀ (U : (Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i))ᵒᵖ), NatTrans.app (f D.toGlueData i j).c U ≫ NatTrans.app pullback.fst.c (op ((Opens.map (f D.toGlueData i j).base).obj U.unop)) = (NatTrans.app (f D.toGlueData i k).c U ≫ NatTrans.app pullback.snd.c (op ((Opens.map (f D.toGlueData i k).base).obj U.unop))) ≫ (pullback (f D.toGlueData i j) (f D.toGlueData i k)).presheaf.map (eqToHom (_ : (Opens.map (pullback.snd ≫ f D.toGlueData i k).base).op.obj U = (Opens.map (pullback.fst ≫ f D.toGlueData i j).base).op.obj U)) ⊢ NatTrans.app (f D.toGlueData i k).c (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i j))).obj U)) = NatTrans.app (f D.toGlueData i k).c (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i j))).obj U)) ≫ (V D.toGlueData (i, k)).presheaf.map ((homOfLE (_ : ↑pullback.snd.base '' (↑pullback.snd.base ⁻¹' ((Opens.map (f D.toGlueData i k).base).obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i j))).obj U)).unop).carrier) ⊆ ((Opens.map (f D.toGlueData i k).base).obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i j))).obj U)).unop).carrier)).op ≫ (IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).op.map (eqToHom (_ : (Opens.map (pullback.snd ≫ f D.toGlueData i k).base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i j))).obj U)) = (Opens.map (pullback.fst ≫ f D.toGlueData i j).base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i j))).obj U))) ≫ (Opens.map pullback.fst.base).op.map (eqToHom (_ : op ((Opens.map (f D.toGlueData i j).base).obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i j))).obj U)).unop) = op U))) ≫ eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑pullback.fst.base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑pullback.fst.base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData i k).base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i j))).obj U)))) [PROOFSTEP] convert (Category.comp_id ((f D.toGlueData i k).c.app _)).symm [GOAL] case h.e'_3.h.h.e'_7 C : Type u inst✝ : Category.{v, u} C D : GlueData C i j k : D.J U : Opens ↑↑(V D.toGlueData (i, j)) this : ∀ (U : (Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i))ᵒᵖ), NatTrans.app (f D.toGlueData i j).c U ≫ NatTrans.app pullback.fst.c (op ((Opens.map (f D.toGlueData i j).base).obj U.unop)) = (NatTrans.app (f D.toGlueData i k).c U ≫ NatTrans.app pullback.snd.c (op ((Opens.map (f D.toGlueData i k).base).obj U.unop))) ≫ (pullback (f D.toGlueData i j) (f D.toGlueData i k)).presheaf.map (eqToHom (_ : (Opens.map (pullback.snd ≫ f D.toGlueData i k).base).op.obj U = (Opens.map (pullback.fst ≫ f D.toGlueData i j).base).op.obj U)) ⊢ (V D.toGlueData (i, k)).presheaf.map ((homOfLE (_ : ↑pullback.snd.base '' (↑pullback.snd.base ⁻¹' ((Opens.map (f D.toGlueData i k).base).obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i j))).obj U)).unop).carrier) ⊆ ((Opens.map (f D.toGlueData i k).base).obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i j))).obj U)).unop).carrier)).op ≫ (IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).op.map (eqToHom (_ : (Opens.map (pullback.snd ≫ f D.toGlueData i k).base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i j))).obj U)) = (Opens.map (pullback.fst ≫ f D.toGlueData i j).base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i j))).obj U))) ≫ (Opens.map pullback.fst.base).op.map (eqToHom (_ : op ((Opens.map (f D.toGlueData i j).base).obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i j))).obj U)).unop) = op U))) ≫ eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑pullback.fst.base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑pullback.fst.base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData i k).base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i j))).obj U)))) = 𝟙 (((f D.toGlueData i k).base _* (V D.toGlueData (i, k)).presheaf).obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i j))).obj U))) [PROOFSTEP] erw [(D.V (i, k)).presheaf.map_id] [GOAL] case h.e'_3.h.h.e'_7 C : Type u inst✝ : Category.{v, u} C D : GlueData C i j k : D.J U : Opens ↑↑(V D.toGlueData (i, j)) this : ∀ (U : (Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i))ᵒᵖ), NatTrans.app (f D.toGlueData i j).c U ≫ NatTrans.app pullback.fst.c (op ((Opens.map (f D.toGlueData i j).base).obj U.unop)) = (NatTrans.app (f D.toGlueData i k).c U ≫ NatTrans.app pullback.snd.c (op ((Opens.map (f D.toGlueData i k).base).obj U.unop))) ≫ (pullback (f D.toGlueData i j) (f D.toGlueData i k)).presheaf.map (eqToHom (_ : (Opens.map (pullback.snd ≫ f D.toGlueData i k).base).op.obj U = (Opens.map (pullback.fst ≫ f D.toGlueData i j).base).op.obj U)) ⊢ 𝟙 ((V D.toGlueData (i, k)).presheaf.obj (op ((Opens.map (f D.toGlueData i k).base).obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i j))).obj U)).unop))) = 𝟙 (((f D.toGlueData i k).base _* (V D.toGlueData (i, k)).presheaf).obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i j))).obj U))) [PROOFSTEP] rfl [GOAL] C : Type u inst✝ : Category.{v, u} C D : GlueData C i j k : D.J U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k)) ⊢ ∃ eq, IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd) U ≫ NatTrans.app (t D.toGlueData k i).c (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)) ≫ (V D.toGlueData (k, i)).presheaf.map (eqToHom eq) = NatTrans.app (t' D.toGlueData k i j).c (op U) ≫ IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.fst) { unop := { carrier := ↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop)) } }.unop [PROOFSTEP] fconstructor -- Porting note: I don't know what the magic was in Lean3 proof, it just skipped the proof of `eq` [GOAL] case w C : Type u inst✝ : Category.{v, u} C D : GlueData C i j k : D.J U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k)) ⊢ (Opens.map (t D.toGlueData k i).base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)) = op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj { unop := { carrier := ↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop)) } }.unop) [PROOFSTEP] delta IsOpenImmersion.openFunctor [GOAL] case w C : Type u inst✝ : Category.{v, u} C D : GlueData C i j k : D.J U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k)) ⊢ (Opens.map (t D.toGlueData k i).base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑pullback.snd.base)).obj U)) = op ((IsOpenMap.functor (_ : IsOpenMap ↑pullback.fst.base)).obj { unop := { carrier := ↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop)) } }.unop) [PROOFSTEP] dsimp only [Functor.op, Opens.map, IsOpenMap.functor, unop_op, Opens.coe_mk] [GOAL] case w C : Type u inst✝ : Category.{v, u} C D : GlueData C i j k : D.J U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k)) ⊢ op { carrier := ↑(t D.toGlueData k i).base ⁻¹' (↑pullback.snd.base '' ↑U), is_open' := (_ : IsOpen (↑(t D.toGlueData k i).base ⁻¹' ↑{ carrier := ↑pullback.snd.base '' ↑U, is_open' := (_ : IsOpen (↑pullback.snd.base '' ↑U)) })) } = op { carrier := ↑pullback.fst.base '' (↑(t' D.toGlueData k i j).base ⁻¹' ↑U), is_open' := (_ : IsOpen (↑pullback.fst.base '' ↑{ carrier := ↑(t' D.toGlueData k i j).base ⁻¹' ↑U, is_open' := (_ : IsOpen (↑(t' D.toGlueData k i j).base ⁻¹' ↑U)) })) } [PROOFSTEP] congr [GOAL] case w.e_x.e_carrier C : Type u inst✝ : Category.{v, u} C D : GlueData C i j k : D.J U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k)) ⊢ ↑(t D.toGlueData k i).base ⁻¹' (↑pullback.snd.base '' ↑U) = ↑pullback.fst.base '' (↑(t' D.toGlueData k i j).base ⁻¹' ↑U) [PROOFSTEP] have := (𝖣.t_fac k i j).symm [GOAL] case w.e_x.e_carrier C : Type u inst✝ : Category.{v, u} C D : GlueData C i j k : D.J U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k)) this : pullback.fst ≫ t D.toGlueData k i = t' D.toGlueData k i j ≫ pullback.snd ⊢ ↑(t D.toGlueData k i).base ⁻¹' (↑pullback.snd.base '' ↑U) = ↑pullback.fst.base '' (↑(t' D.toGlueData k i j).base ⁻¹' ↑U) [PROOFSTEP] rw [← IsIso.inv_comp_eq] at this [GOAL] case w.e_x.e_carrier C : Type u inst✝ : Category.{v, u} C D : GlueData C i j k : D.J U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k)) this : inv (t' D.toGlueData k i j) ≫ pullback.fst ≫ t D.toGlueData k i = pullback.snd ⊢ ↑(t D.toGlueData k i).base ⁻¹' (↑pullback.snd.base '' ↑U) = ↑pullback.fst.base '' (↑(t' D.toGlueData k i j).base ⁻¹' ↑U) [PROOFSTEP] replace this := (congr_arg ((PresheafedSpace.Hom.base ·)) this).symm [GOAL] case w.e_x.e_carrier C : Type u inst✝ : Category.{v, u} C D : GlueData C i j k : D.J U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k)) this : pullback.snd.base = (inv (t' D.toGlueData k i j) ≫ pullback.fst ≫ t D.toGlueData k i).base ⊢ ↑(t D.toGlueData k i).base ⁻¹' (↑pullback.snd.base '' ↑U) = ↑pullback.fst.base '' (↑(t' D.toGlueData k i j).base ⁻¹' ↑U) [PROOFSTEP] replace this := congr_arg (ContinuousMap.toFun ·) this [GOAL] case w.e_x.e_carrier C : Type u inst✝ : Category.{v, u} C D : GlueData C i j k : D.J U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k)) this : (fun x => x.toFun) pullback.snd.base = (fun x => x.toFun) (inv (t' D.toGlueData k i j) ≫ pullback.fst ≫ t D.toGlueData k i).base ⊢ ↑(t D.toGlueData k i).base ⁻¹' (↑pullback.snd.base '' ↑U) = ↑pullback.fst.base '' (↑(t' D.toGlueData k i j).base ⁻¹' ↑U) [PROOFSTEP] dsimp at this [GOAL] case w.e_x.e_carrier C : Type u inst✝ : Category.{v, u} C D : GlueData C i j k : D.J U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k)) this : ↑pullback.snd.base = ↑((inv (t' D.toGlueData k i j)).base ≫ pullback.fst.base ≫ (t D.toGlueData k i).base) ⊢ ↑(t D.toGlueData k i).base ⁻¹' (↑pullback.snd.base '' ↑U) = ↑pullback.fst.base '' (↑(t' D.toGlueData k i j).base ⁻¹' ↑U) [PROOFSTEP] rw [coe_comp, coe_comp] at this [GOAL] case w.e_x.e_carrier C : Type u inst✝ : Category.{v, u} C D : GlueData C i j k : D.J U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k)) this : ↑pullback.snd.base = (↑(t D.toGlueData k i).base ∘ ↑pullback.fst.base) ∘ ↑(inv (t' D.toGlueData k i j)).base ⊢ ↑(t D.toGlueData k i).base ⁻¹' (↑pullback.snd.base '' ↑U) = ↑pullback.fst.base '' (↑(t' D.toGlueData k i j).base ⁻¹' ↑U) [PROOFSTEP] rw [this, Set.image_comp, Set.image_comp, Set.preimage_image_eq] [GOAL] case w.e_x.e_carrier C : Type u inst✝ : Category.{v, u} C D : GlueData C i j k : D.J U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k)) this : ↑pullback.snd.base = (↑(t D.toGlueData k i).base ∘ ↑pullback.fst.base) ∘ ↑(inv (t' D.toGlueData k i j)).base ⊢ ↑pullback.fst.base '' (↑(inv (t' D.toGlueData k i j)).base '' ↑U) = ↑pullback.fst.base '' (↑(t' D.toGlueData k i j).base ⁻¹' ↑U) case w.e_x.e_carrier.h C : Type u inst✝ : Category.{v, u} C D : GlueData C i j k : D.J U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k)) this : ↑pullback.snd.base = (↑(t D.toGlueData k i).base ∘ ↑pullback.fst.base) ∘ ↑(inv (t' D.toGlueData k i j)).base ⊢ Function.Injective ↑(t D.toGlueData k i).base [PROOFSTEP] swap [GOAL] case w.e_x.e_carrier.h C : Type u inst✝ : Category.{v, u} C D : GlueData C i j k : D.J U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k)) this : ↑pullback.snd.base = (↑(t D.toGlueData k i).base ∘ ↑pullback.fst.base) ∘ ↑(inv (t' D.toGlueData k i j)).base ⊢ Function.Injective ↑(t D.toGlueData k i).base [PROOFSTEP] refine Function.HasLeftInverse.injective ⟨(D.t i k).base, fun x => ?_⟩ [GOAL] case w.e_x.e_carrier.h C : Type u inst✝ : Category.{v, u} C D : GlueData C i j k : D.J U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k)) this : ↑pullback.snd.base = (↑(t D.toGlueData k i).base ∘ ↑pullback.fst.base) ∘ ↑(inv (t' D.toGlueData k i j)).base x : ↑↑(V D.toGlueData (k, i)) ⊢ ↑(t D.toGlueData i k).base (↑(t D.toGlueData k i).base x) = x [PROOFSTEP] rw [← comp_apply, ← comp_base, D.t_inv, id_base, id_apply] [GOAL] case w.e_x.e_carrier C : Type u inst✝ : Category.{v, u} C D : GlueData C i j k : D.J U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k)) this : ↑pullback.snd.base = (↑(t D.toGlueData k i).base ∘ ↑pullback.fst.base) ∘ ↑(inv (t' D.toGlueData k i j)).base ⊢ ↑pullback.fst.base '' (↑(inv (t' D.toGlueData k i j)).base '' ↑U) = ↑pullback.fst.base '' (↑(t' D.toGlueData k i j).base ⁻¹' ↑U) [PROOFSTEP] refine congr_arg (_ '' ·) ?_ [GOAL] case w.e_x.e_carrier C : Type u inst✝ : Category.{v, u} C D : GlueData C i j k : D.J U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k)) this : ↑pullback.snd.base = (↑(t D.toGlueData k i).base ∘ ↑pullback.fst.base) ∘ ↑(inv (t' D.toGlueData k i j)).base ⊢ ↑(inv (t' D.toGlueData k i j)).base '' ↑U = ↑(t' D.toGlueData k i j).base ⁻¹' ↑U [PROOFSTEP] refine congr_fun ?_ _ [GOAL] case w.e_x.e_carrier C : Type u inst✝ : Category.{v, u} C D : GlueData C i j k : D.J U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k)) this : ↑pullback.snd.base = (↑(t D.toGlueData k i).base ∘ ↑pullback.fst.base) ∘ ↑(inv (t' D.toGlueData k i j)).base ⊢ Set.image ↑(inv (t' D.toGlueData k i j)).base = Set.preimage ↑(t' D.toGlueData k i j).base [PROOFSTEP] refine Set.image_eq_preimage_of_inverse ?_ ?_ [GOAL] case w.e_x.e_carrier.refine_1 C : Type u inst✝ : Category.{v, u} C D : GlueData C i j k : D.J U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k)) this : ↑pullback.snd.base = (↑(t D.toGlueData k i).base ∘ ↑pullback.fst.base) ∘ ↑(inv (t' D.toGlueData k i j)).base ⊢ Function.LeftInverse ↑(t' D.toGlueData k i j).base ↑(inv (t' D.toGlueData k i j)).base [PROOFSTEP] intro x [GOAL] case w.e_x.e_carrier.refine_1 C : Type u inst✝ : Category.{v, u} C D : GlueData C i j k : D.J U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k)) this : ↑pullback.snd.base = (↑(t D.toGlueData k i).base ∘ ↑pullback.fst.base) ∘ ↑(inv (t' D.toGlueData k i j)).base x : (CategoryTheory.forget TopCat).obj ↑(pullback (f D.toGlueData i j) (f D.toGlueData i k)) ⊢ ↑(t' D.toGlueData k i j).base (↑(inv (t' D.toGlueData k i j)).base x) = x [PROOFSTEP] rw [← comp_apply, ← comp_base, IsIso.inv_hom_id, id_base, id_apply] [GOAL] case w.e_x.e_carrier.refine_2 C : Type u inst✝ : Category.{v, u} C D : GlueData C i j k : D.J U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k)) this : ↑pullback.snd.base = (↑(t D.toGlueData k i).base ∘ ↑pullback.fst.base) ∘ ↑(inv (t' D.toGlueData k i j)).base ⊢ Function.RightInverse ↑(t' D.toGlueData k i j).base ↑(inv (t' D.toGlueData k i j)).base [PROOFSTEP] intro x [GOAL] case w.e_x.e_carrier.refine_2 C : Type u inst✝ : Category.{v, u} C D : GlueData C i j k : D.J U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k)) this : ↑pullback.snd.base = (↑(t D.toGlueData k i).base ∘ ↑pullback.fst.base) ∘ ↑(inv (t' D.toGlueData k i j)).base x : (CategoryTheory.forget TopCat).obj ↑(pullback (f D.toGlueData k i) (f D.toGlueData k j)) ⊢ ↑(inv (t' D.toGlueData k i j)).base (↑(t' D.toGlueData k i j).base x) = x [PROOFSTEP] rw [← comp_apply, ← comp_base, IsIso.hom_inv_id, id_base, id_apply] [GOAL] case h C : Type u inst✝ : Category.{v, u} C D : GlueData C i j k : D.J U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k)) ⊢ IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd) U ≫ NatTrans.app (t D.toGlueData k i).c (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)) ≫ (V D.toGlueData (k, i)).presheaf.map (eqToHom (_ : (Opens.map (t D.toGlueData k i).base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)) = op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj { unop := { carrier := ↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop)) } }.unop))) = NatTrans.app (t' D.toGlueData k i j).c (op U) ≫ IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.fst) { unop := { carrier := ↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop)) } }.unop [PROOFSTEP] rw [← IsIso.eq_inv_comp, IsOpenImmersion.inv_invApp, Category.assoc, (D.t' k i j).c.naturality_assoc] [GOAL] case h C : Type u inst✝ : Category.{v, u} C D : GlueData C i j k : D.J U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k)) ⊢ NatTrans.app (t D.toGlueData k i).c (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)) ≫ (V D.toGlueData (k, i)).presheaf.map (eqToHom (_ : (Opens.map (t D.toGlueData k i).base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)) = op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj { unop := { carrier := ↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop)) } }.unop))) = NatTrans.app pullback.snd.c (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)) ≫ NatTrans.app (t' D.toGlueData k i j).c ((Opens.map pullback.snd.base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U))) ≫ ((t' D.toGlueData k i j).base _* (pullback (f D.toGlueData k i) (f D.toGlueData k j)).presheaf).map (eqToHom (_ : op ((Opens.map pullback.snd.base).obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)).unop) = op U)) ≫ IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.fst) { unop := { carrier := ↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop)) } }.unop [PROOFSTEP] simp_rw [← Category.assoc] [GOAL] case h C : Type u inst✝ : Category.{v, u} C D : GlueData C i j k : D.J U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k)) ⊢ NatTrans.app (t D.toGlueData k i).c (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)) ≫ (V D.toGlueData (k, i)).presheaf.map (eqToHom (_ : (Opens.map (t D.toGlueData k i).base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)) = op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj { unop := { carrier := ↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop)) } }.unop))) = ((NatTrans.app pullback.snd.c (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)) ≫ NatTrans.app (t' D.toGlueData k i j).c ((Opens.map pullback.snd.base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)))) ≫ ((t' D.toGlueData k i j).base _* (pullback (f D.toGlueData k i) (f D.toGlueData k j)).presheaf).map (eqToHom (_ : op ((Opens.map pullback.snd.base).obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)).unop) = op U))) ≫ IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.fst) { carrier := ↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop)) } [PROOFSTEP] erw [← comp_c_app] [GOAL] case h C : Type u inst✝ : Category.{v, u} C D : GlueData C i j k : D.J U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k)) ⊢ NatTrans.app (t D.toGlueData k i).c (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)) ≫ (V D.toGlueData (k, i)).presheaf.map (eqToHom (_ : (Opens.map (t D.toGlueData k i).base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)) = op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj { unop := { carrier := ↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop)) } }.unop))) = (NatTrans.app (t' D.toGlueData k i j ≫ pullback.snd).c (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)) ≫ ((t' D.toGlueData k i j).base _* (pullback (f D.toGlueData k i) (f D.toGlueData k j)).presheaf).map (eqToHom (_ : op ((Opens.map pullback.snd.base).obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)).unop) = op U))) ≫ IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.fst) { carrier := ↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop)) } [PROOFSTEP] rw [congr_app (D.t_fac k i j), comp_c_app] [GOAL] case h C : Type u inst✝ : Category.{v, u} C D : GlueData C i j k : D.J U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k)) ⊢ NatTrans.app (t D.toGlueData k i).c (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)) ≫ (V D.toGlueData (k, i)).presheaf.map (eqToHom (_ : (Opens.map (t D.toGlueData k i).base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)) = op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj { unop := { carrier := ↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop)) } }.unop))) = (((NatTrans.app (t D.toGlueData k i).c (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)) ≫ NatTrans.app pullback.fst.c (op ((Opens.map (t D.toGlueData k i).base).obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)).unop))) ≫ (pullback (f D.toGlueData k i) (f D.toGlueData k j)).presheaf.map (eqToHom (_ : (Opens.map (pullback.fst ≫ t D.toGlueData k i).base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)) = (Opens.map (t' D.toGlueData k i j ≫ pullback.snd).base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U))))) ≫ ((t' D.toGlueData k i j).base _* (pullback (f D.toGlueData k i) (f D.toGlueData k j)).presheaf).map (eqToHom (_ : op ((Opens.map pullback.snd.base).obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)).unop) = op U))) ≫ IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.fst) { carrier := ↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop)) } [PROOFSTEP] simp_rw [Category.assoc] [GOAL] case h C : Type u inst✝ : Category.{v, u} C D : GlueData C i j k : D.J U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k)) ⊢ NatTrans.app (t D.toGlueData k i).c (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)) ≫ (V D.toGlueData (k, i)).presheaf.map (eqToHom (_ : (Opens.map (t D.toGlueData k i).base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)) = op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj { unop := { carrier := ↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop)) } }.unop))) = NatTrans.app (t D.toGlueData k i).c (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)) ≫ NatTrans.app pullback.fst.c (op ((Opens.map (t D.toGlueData k i).base).obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)).unop)) ≫ (pullback (f D.toGlueData k i) (f D.toGlueData k j)).presheaf.map (eqToHom (_ : (Opens.map (pullback.fst ≫ t D.toGlueData k i).base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)) = (Opens.map (t' D.toGlueData k i j ≫ pullback.snd).base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)))) ≫ ((t' D.toGlueData k i j).base _* (pullback (f D.toGlueData k i) (f D.toGlueData k j)).presheaf).map (eqToHom (_ : op ((Opens.map pullback.snd.base).obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)).unop) = op U)) ≫ IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.fst) { carrier := ↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop)) } [PROOFSTEP] erw [IsOpenImmersion.inv_naturality, IsOpenImmersion.inv_naturality_assoc, IsOpenImmersion.app_inv_app'_assoc] [GOAL] case h C : Type u inst✝ : Category.{v, u} C D : GlueData C i j k : D.J U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k)) ⊢ NatTrans.app (t D.toGlueData k i).c (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)) ≫ (V D.toGlueData (k, i)).presheaf.map (eqToHom (_ : (Opens.map (t D.toGlueData k i).base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)) = op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj { unop := { carrier := ↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop)) } }.unop))) = NatTrans.app (t D.toGlueData k i).c (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)) ≫ (V D.toGlueData (k, i)).presheaf.map (eqToHom (_ : (IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj ((Opens.map pullback.fst.base).obj ((Opens.map (t D.toGlueData k i).base).obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)).unop)) = (Opens.map (t D.toGlueData k i).base).obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)).unop)).op ≫ (V D.toGlueData (k, i)).presheaf.map ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).op.map (eqToHom (_ : (Opens.map (pullback.fst ≫ t D.toGlueData k i).base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)) = (Opens.map (t' D.toGlueData k i j ≫ pullback.snd).base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U))))) ≫ (V D.toGlueData (k, i)).presheaf.map ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).op.map ((Opens.map (t' D.toGlueData k i j).base).op.map (eqToHom (_ : op ((Opens.map pullback.snd.base).obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)).unop) = op U)))) case h.hU C : Type u inst✝ : Category.{v, u} C D : GlueData C i j k : D.J U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k)) ⊢ ↑((Opens.map (t D.toGlueData k i).base).obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)).unop) ⊆ Set.range ↑pullback.fst.base [PROOFSTEP] simp_rw [← (𝖣.V (k, i)).presheaf.map_comp, eqToHom_map (Functor.op _), eqToHom_op, eqToHom_trans] [GOAL] case h.hU C : Type u inst✝ : Category.{v, u} C D : GlueData C i j k : D.J U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k)) ⊢ ↑((Opens.map (t D.toGlueData k i).base).obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)).unop) ⊆ Set.range ↑pullback.fst.base [PROOFSTEP] rintro x ⟨y, -, eq⟩ [GOAL] case h.hU.intro.intro C : Type u inst✝ : Category.{v, u} C D : GlueData C i j k : D.J U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k)) x : ↑↑(V D.toGlueData (k, i)) y : (CategoryTheory.forget TopCat).obj ↑(pullback (f D.toGlueData i j) (f D.toGlueData i k)) eq : ↑pullback.snd.base y = ↑(t D.toGlueData k i).base x ⊢ x ∈ Set.range ↑pullback.fst.base [PROOFSTEP] replace eq := ConcreteCategory.congr_arg (𝖣.t i k).base eq [GOAL] case h.hU.intro.intro C : Type u inst✝ : Category.{v, u} C D : GlueData C i j k : D.J U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k)) x : ↑↑(V D.toGlueData (k, i)) y : (CategoryTheory.forget TopCat).obj ↑(pullback (f D.toGlueData i j) (f D.toGlueData i k)) eq : ↑(t D.toGlueData i k).base (↑pullback.snd.base y) = ↑(t D.toGlueData i k).base (↑(t D.toGlueData k i).base x) ⊢ x ∈ Set.range ↑pullback.fst.base [PROOFSTEP] change ((π₂ i, j, k) ≫ D.t i k).base y = (D.t k i ≫ D.t i k).base x at eq [GOAL] case h.hU.intro.intro C : Type u inst✝ : Category.{v, u} C D : GlueData C i j k : D.J U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k)) x : ↑↑(V D.toGlueData (k, i)) y : (CategoryTheory.forget TopCat).obj ↑(pullback (f D.toGlueData i j) (f D.toGlueData i k)) eq : ↑(pullback.snd ≫ t D.toGlueData i k).base y = ↑(t D.toGlueData k i ≫ t D.toGlueData i k).base x ⊢ x ∈ Set.range ↑pullback.fst.base [PROOFSTEP] rw [𝖣.t_inv, id_base, TopCat.id_app] at eq [GOAL] case h.hU.intro.intro C : Type u inst✝ : Category.{v, u} C D : GlueData C i j k : D.J U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k)) x : ↑↑(V D.toGlueData (k, i)) y : (CategoryTheory.forget TopCat).obj ↑(pullback (f D.toGlueData i j) (f D.toGlueData i k)) eq : ↑(pullback.snd ≫ t D.toGlueData i k).base y = x ⊢ x ∈ Set.range ↑pullback.fst.base [PROOFSTEP] subst eq [GOAL] case h.hU.intro.intro C : Type u inst✝ : Category.{v, u} C D : GlueData C i j k : D.J U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k)) y : (CategoryTheory.forget TopCat).obj ↑(pullback (f D.toGlueData i j) (f D.toGlueData i k)) ⊢ ↑(pullback.snd ≫ t D.toGlueData i k).base y ∈ Set.range ↑pullback.fst.base [PROOFSTEP] use(inv (D.t' k i j)).base y [GOAL] case h C : Type u inst✝ : Category.{v, u} C D : GlueData C i j k : D.J U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k)) y : (CategoryTheory.forget TopCat).obj ↑(pullback (f D.toGlueData i j) (f D.toGlueData i k)) ⊢ ↑pullback.fst.base (↑(inv (t' D.toGlueData k i j)).base y) = ↑(pullback.snd ≫ t D.toGlueData i k).base y [PROOFSTEP] change (inv (D.t' k i j) ≫ π₁ k, i, j).base y = _ [GOAL] case h C : Type u inst✝ : Category.{v, u} C D : GlueData C i j k : D.J U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k)) y : (CategoryTheory.forget TopCat).obj ↑(pullback (f D.toGlueData i j) (f D.toGlueData i k)) ⊢ ↑(inv (t' D.toGlueData k i j) ≫ pullback.fst).base y = ↑(pullback.snd ≫ t D.toGlueData i k).base y [PROOFSTEP] congr 2 [GOAL] case h.e_a.e_self C : Type u inst✝ : Category.{v, u} C D : GlueData C i j k : D.J U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k)) y : (CategoryTheory.forget TopCat).obj ↑(pullback (f D.toGlueData i j) (f D.toGlueData i k)) ⊢ inv (t' D.toGlueData k i j) ≫ pullback.fst = pullback.snd ≫ t D.toGlueData i k [PROOFSTEP] rw [IsIso.inv_comp_eq, 𝖣.t_fac_assoc, 𝖣.t_inv, Category.comp_id] [GOAL] C : Type u inst✝ : Category.{v, u} C D : GlueData C i j k : D.J U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k)) ⊢ IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd) U ≫ NatTrans.app (t D.toGlueData k i).c (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)) = NatTrans.app (t' D.toGlueData k i j).c (op U) ≫ IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.fst) { unop := { carrier := ↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop)) } }.unop ≫ (V D.toGlueData (k, i)).presheaf.map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj { unop := { carrier := ↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (t D.toGlueData k i).base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)))) [PROOFSTEP] have e := (D.snd_invApp_t_app' i j k U).choose_spec [GOAL] C : Type u inst✝ : Category.{v, u} C D : GlueData C i j k : D.J U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k)) e : IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd) U ≫ NatTrans.app (t D.toGlueData k i).c (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)) ≫ (V D.toGlueData (k, i)).presheaf.map (eqToHom (_ : (Opens.map (t D.toGlueData k i).base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)) = op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj { unop := { carrier := ↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop)) } }.unop))) = NatTrans.app (t' D.toGlueData k i j).c (op U) ≫ IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.fst) { unop := { carrier := ↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop)) } }.unop ⊢ IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd) U ≫ NatTrans.app (t D.toGlueData k i).c (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)) = NatTrans.app (t' D.toGlueData k i j).c (op U) ≫ IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.fst) { unop := { carrier := ↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop)) } }.unop ≫ (V D.toGlueData (k, i)).presheaf.map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj { unop := { carrier := ↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (t D.toGlueData k i).base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)))) [PROOFSTEP] replace e := reassoc_of% e [GOAL] C : Type u inst✝ : Category.{v, u} C D : GlueData C i j k : D.J U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k)) e : ∀ {Z : C} (h : (V D.toGlueData (k, i)).presheaf.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj { unop := { carrier := ↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop)) } }.unop)) ⟶ Z), IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd) U ≫ NatTrans.app (t D.toGlueData k i).c (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)) ≫ (V D.toGlueData (k, i)).presheaf.map (eqToHom (_ : (Opens.map (t D.toGlueData k i).base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)) = op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj { unop := { carrier := ↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop)) } }.unop))) ≫ h = NatTrans.app (t' D.toGlueData k i j).c (op U) ≫ IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.fst) { carrier := ↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop)) } ≫ h ⊢ IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd) U ≫ NatTrans.app (t D.toGlueData k i).c (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)) = NatTrans.app (t' D.toGlueData k i j).c (op U) ≫ IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.fst) { unop := { carrier := ↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop)) } }.unop ≫ (V D.toGlueData (k, i)).presheaf.map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj { unop := { carrier := ↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (t D.toGlueData k i).base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)))) [PROOFSTEP] rw [← e] [GOAL] C : Type u inst✝ : Category.{v, u} C D : GlueData C i j k : D.J U : Opens ↑↑(pullback (f D.toGlueData i j) (f D.toGlueData i k)) e : ∀ {Z : C} (h : (V D.toGlueData (k, i)).presheaf.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj { unop := { carrier := ↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop)) } }.unop)) ⟶ Z), IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd) U ≫ NatTrans.app (t D.toGlueData k i).c (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)) ≫ (V D.toGlueData (k, i)).presheaf.map (eqToHom (_ : (Opens.map (t D.toGlueData k i).base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)) = op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj { unop := { carrier := ↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop)) } }.unop))) ≫ h = NatTrans.app (t' D.toGlueData k i j).c (op U) ≫ IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.fst) { carrier := ↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop)) } ≫ h ⊢ IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd) U ≫ NatTrans.app (t D.toGlueData k i).c (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)) = IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd) U ≫ NatTrans.app (t D.toGlueData k i).c (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)) ≫ (V D.toGlueData (k, i)).presheaf.map (eqToHom (_ : (Opens.map (t D.toGlueData k i).base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)) = op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj { unop := { carrier := ↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop)) } }.unop))) ≫ (V D.toGlueData (k, i)).presheaf.map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj { unop := { carrier := ↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(t' D.toGlueData k i j).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (t D.toGlueData k i).base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj U)))) [PROOFSTEP] simp [eqToHom_map] [GOAL] C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ (Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U) = (IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData j i))).obj ((Opens.map (t D.toGlueData j i).base).obj ((Opens.map (f D.toGlueData i j).base).obj U)) [PROOFSTEP] ext1 [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ ↑((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)) = ↑((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData j i))).obj ((Opens.map (t D.toGlueData j i).base).obj ((Opens.map (f D.toGlueData i j).base).obj U))) [PROOFSTEP] dsimp only [Opens.map_coe, IsOpenMap.functor_obj_coe] [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ ↑(ι D.toGlueData j).base ⁻¹' (↑(ι D.toGlueData i).base '' ↑U) = ↑(f D.toGlueData j i).base '' (↑(t D.toGlueData j i).base ⁻¹' (↑(f D.toGlueData i j).base ⁻¹' ↑U)) [PROOFSTEP] rw [← show _ = (𝖣.ι i).base from 𝖣.ι_gluedIso_inv (PresheafedSpace.forget _) i, ← show _ = (𝖣.ι j).base from 𝖣.ι_gluedIso_inv (PresheafedSpace.forget _) j] -- Porting note : change `rw` to `erw` on `coe_comp` [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ ↑(ι (mapGlueData D.toGlueData (forget C)) j ≫ (gluedIso D.toGlueData (forget C)).inv) ⁻¹' (↑(ι (mapGlueData D.toGlueData (forget C)) i ≫ (gluedIso D.toGlueData (forget C)).inv) '' ↑U) = ↑(f D.toGlueData j i).base '' (↑(t D.toGlueData j i).base ⁻¹' (↑(f D.toGlueData i j).base ⁻¹' ↑U)) [PROOFSTEP] erw [coe_comp, coe_comp, coe_comp] [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ (↑(preservesColimitIso (forget C) (MultispanIndex.multispan (diagram D.toGlueData))).inv ∘ ↑(HasColimit.isoOfNatIso (diagramIso D.toGlueData (forget C))).inv) ∘ ↑(ι (mapGlueData D.toGlueData (forget C)) j) ⁻¹' (↑(gluedIso D.toGlueData (forget C)).inv ∘ ↑(ι (mapGlueData D.toGlueData (forget C)) i) '' ↑U) = ↑(f D.toGlueData j i).base '' (↑(t D.toGlueData j i).base ⁻¹' (↑(f D.toGlueData i j).base ⁻¹' ↑U)) [PROOFSTEP] rw [Set.image_comp, Set.preimage_comp] [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ ↑(ι (mapGlueData D.toGlueData (forget C)) j) ⁻¹' (↑(preservesColimitIso (forget C) (MultispanIndex.multispan (diagram D.toGlueData))).inv ∘ ↑(HasColimit.isoOfNatIso (diagramIso D.toGlueData (forget C))).inv ⁻¹' (↑(gluedIso D.toGlueData (forget C)).inv '' (↑(ι (mapGlueData D.toGlueData (forget C)) i) '' ↑U))) = ↑(f D.toGlueData j i).base '' (↑(t D.toGlueData j i).base ⁻¹' (↑(f D.toGlueData i j).base ⁻¹' ↑U)) [PROOFSTEP] erw [Set.preimage_image_eq] [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ ↑(ι (mapGlueData D.toGlueData (forget C)) j) ⁻¹' (↑(ι (mapGlueData D.toGlueData (forget C)) i) '' ↑U) = ↑(f D.toGlueData j i).base '' (↑(t D.toGlueData j i).base ⁻¹' (↑(f D.toGlueData i j).base ⁻¹' ↑U)) [PROOFSTEP] refine' Eq.trans (D.toTopGlueData.preimage_image_eq_image' _ _ _) _ [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ ↑(t (toTopGlueData D).toGlueData i j ≫ f (toTopGlueData D).toGlueData j i) '' (↑(f (toTopGlueData D).toGlueData i j) ⁻¹' ↑U) = ↑(f D.toGlueData j i).base '' (↑(t D.toGlueData j i).base ⁻¹' (↑(f D.toGlueData i j).base ⁻¹' ↑U)) [PROOFSTEP] dsimp [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ ↑((t D.toGlueData i j).base ≫ (f D.toGlueData j i).base) '' (↑(f D.toGlueData i j).base ⁻¹' ↑U) = ↑(f D.toGlueData j i).base '' (↑(t D.toGlueData j i).base ⁻¹' (↑(f D.toGlueData i j).base ⁻¹' ↑U)) [PROOFSTEP] rw [coe_comp, Set.image_comp] [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ ↑(f D.toGlueData j i).base '' (↑(t D.toGlueData i j).base '' (↑(f D.toGlueData i j).base ⁻¹' ↑U)) = ↑(f D.toGlueData j i).base '' (↑(t D.toGlueData j i).base ⁻¹' (↑(f D.toGlueData i j).base ⁻¹' ↑U)) [PROOFSTEP] refine congr_arg (_ '' ·) ?_ [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ ↑(t D.toGlueData i j).base '' (↑(f D.toGlueData i j).base ⁻¹' ↑U) = ↑(t D.toGlueData j i).base ⁻¹' (↑(f D.toGlueData i j).base ⁻¹' ↑U) [PROOFSTEP] rw [Set.eq_preimage_iff_image_eq, ← Set.image_comp] [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ ↑(t D.toGlueData j i).base ∘ ↑(t D.toGlueData i j).base '' (↑(f D.toGlueData i j).base ⁻¹' ↑U) = ↑(f D.toGlueData i j).base ⁻¹' ↑U case h.hf C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ Function.Bijective ↑(t D.toGlueData j i).base [PROOFSTEP] swap [GOAL] case h.hf C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ Function.Bijective ↑(t D.toGlueData j i).base [PROOFSTEP] apply CategoryTheory.ConcreteCategory.bijective_of_isIso [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ ↑(t D.toGlueData j i).base ∘ ↑(t D.toGlueData i j).base '' (↑(f D.toGlueData i j).base ⁻¹' ↑U) = ↑(f D.toGlueData i j).base ⁻¹' ↑U [PROOFSTEP] change (D.t i j ≫ D.t j i).base '' _ = _ [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ ↑(t D.toGlueData i j ≫ t D.toGlueData j i).base '' (↑(f D.toGlueData i j).base ⁻¹' ↑U) = ↑(f D.toGlueData i j).base ⁻¹' ↑U [PROOFSTEP] rw [𝖣.t_inv] [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ ↑(𝟙 (V D.toGlueData (i, j))).base '' (↑(f D.toGlueData i j).base ⁻¹' ↑U) = ↑(f D.toGlueData i j).base ⁻¹' ↑U [PROOFSTEP] simp [GOAL] case h.h C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ Function.Injective (↑(preservesColimitIso (forget C) (MultispanIndex.multispan (diagram D.toGlueData))).inv ∘ ↑(HasColimit.isoOfNatIso (diagramIso D.toGlueData (forget C))).inv) [PROOFSTEP] rw [← coe_comp, ← TopCat.mono_iff_injective] [GOAL] case h.h C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ Mono ((HasColimit.isoOfNatIso (diagramIso D.toGlueData (forget C))).inv ≫ (preservesColimitIso (forget C) (MultispanIndex.multispan (diagram D.toGlueData))).inv) [PROOFSTEP] infer_instance [GOAL] C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j k : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ ∃ eq, opensImagePreimageMap D i j U ≫ NatTrans.app (f D.toGlueData j k).c (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) = NatTrans.app (pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).c (op U) ≫ IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd) { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom eq) [PROOFSTEP] constructor [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j k : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ opensImagePreimageMap D i j U ≫ NatTrans.app (f D.toGlueData j k).c (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) = NatTrans.app (pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).c (op U) ≫ IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd) { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom ?w) case w C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j k : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) [PROOFSTEP] delta opensImagePreimageMap [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j k : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ (NatTrans.app (f D.toGlueData i j).c (op U) ≫ NatTrans.app (t D.toGlueData j i).c ((Opens.map (f D.toGlueData i j).base).op.obj (op U)) ≫ IsOpenImmersion.invApp (_ : IsOpenImmersion (f D.toGlueData j i)) { unop := { carrier := ↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop, is_open' := (_ : IsOpen (↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop)) } }.unop ≫ (CategoryTheory.GlueData.U D.toGlueData j).presheaf.map (eqToHom (_ : (Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U) = (IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData j i))).obj ((Opens.map (t D.toGlueData j i).base).obj ((Opens.map (f D.toGlueData i j).base).obj U)))).op) ≫ NatTrans.app (f D.toGlueData j k).c (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) = NatTrans.app (pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).c (op U) ≫ IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd) { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom ?w) case w C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j k : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) [PROOFSTEP] simp_rw [Category.assoc] [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j k : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ NatTrans.app (f D.toGlueData i j).c (op U) ≫ NatTrans.app (t D.toGlueData j i).c ((Opens.map (f D.toGlueData i j).base).op.obj (op U)) ≫ IsOpenImmersion.invApp (_ : IsOpenImmersion (f D.toGlueData j i)) { carrier := ↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop, is_open' := (_ : IsOpen (↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop)) } ≫ (CategoryTheory.GlueData.U D.toGlueData j).presheaf.map (eqToHom (_ : (Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U) = (IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData j i))).obj ((Opens.map (t D.toGlueData j i).base).obj ((Opens.map (f D.toGlueData i j).base).obj U)))).op ≫ NatTrans.app (f D.toGlueData j k).c (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) = NatTrans.app (pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).c (op U) ≫ IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd) { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom ?w) case w C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j k : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) [PROOFSTEP] rw [(D.f j k).c.naturality, f_invApp_f_app_assoc] [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j k : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ NatTrans.app (f D.toGlueData i j).c (op U) ≫ NatTrans.app (t D.toGlueData j i).c ((Opens.map (f D.toGlueData i j).base).op.obj (op U)) ≫ NatTrans.app pullback.fst.c (op { carrier := ↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop, is_open' := (_ : IsOpen (↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop)) }) ≫ IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd) { carrier := ↑pullback.fst.base ⁻¹' ↑(op { carrier := ↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop, is_open' := (_ : IsOpen (↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop)) }).unop, is_open' := (_ : IsOpen (↑pullback.fst.base ⁻¹' ↑(op { carrier := ↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop, is_open' := (_ : IsOpen (↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop)) }).unop)) } ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑pullback.fst.base ⁻¹' ↑(op { carrier := ↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop, is_open' := (_ : IsOpen (↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop)) }).unop, is_open' := (_ : IsOpen (↑pullback.fst.base ⁻¹' ↑(op { carrier := ↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop, is_open' := (_ : IsOpen (↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop)) }).unop)) } }.unop) = (Opens.map (f D.toGlueData j k).base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData j i))).obj { carrier := ↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop, is_open' := (_ : IsOpen (↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop)) })))) ≫ ((f D.toGlueData j k).base _* (V D.toGlueData (j, k)).presheaf).map (eqToHom (_ : (Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U) = (IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData j i))).obj ((Opens.map (t D.toGlueData j i).base).obj ((Opens.map (f D.toGlueData i j).base).obj U)))).op = NatTrans.app (pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).c (op U) ≫ IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd) { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom ?w) case w C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j k : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) case w C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j k : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) case w C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j k : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) [PROOFSTEP] erw [← (D.V (j, k)).presheaf.map_comp] [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j k : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ NatTrans.app (f D.toGlueData i j).c (op U) ≫ NatTrans.app (t D.toGlueData j i).c ((Opens.map (f D.toGlueData i j).base).op.obj (op U)) ≫ NatTrans.app pullback.fst.c (op { carrier := ↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop, is_open' := (_ : IsOpen (↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop)) }) ≫ IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd) { carrier := ↑pullback.fst.base ⁻¹' ↑(op { carrier := ↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop, is_open' := (_ : IsOpen (↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop)) }).unop, is_open' := (_ : IsOpen (↑pullback.fst.base ⁻¹' ↑(op { carrier := ↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop, is_open' := (_ : IsOpen (↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop)) }).unop)) } ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑pullback.fst.base ⁻¹' ↑(op { carrier := ↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop, is_open' := (_ : IsOpen (↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop)) }).unop, is_open' := (_ : IsOpen (↑pullback.fst.base ⁻¹' ↑(op { carrier := ↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop, is_open' := (_ : IsOpen (↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop)) }).unop)) } }.unop) = (Opens.map (f D.toGlueData j k).base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData j i))).obj { carrier := ↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop, is_open' := (_ : IsOpen (↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop)) }))) ≫ (Opens.map (f D.toGlueData j k).base).op.map (eqToHom (_ : (Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U) = (IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData j i))).obj ((Opens.map (t D.toGlueData j i).base).obj ((Opens.map (f D.toGlueData i j).base).obj U)))).op) = NatTrans.app (pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).c (op U) ≫ IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd) { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom ?w) case w C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j k : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) case w C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j k : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) case w C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j k : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) case w C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j k : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) [PROOFSTEP] simp_rw [← Category.assoc] [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j k : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ (((NatTrans.app (f D.toGlueData i j).c (op U) ≫ NatTrans.app (t D.toGlueData j i).c ((Opens.map (f D.toGlueData i j).base).op.obj (op U))) ≫ NatTrans.app pullback.fst.c (op { carrier := ↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop, is_open' := (_ : IsOpen (↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop)) })) ≫ IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd) { carrier := ↑pullback.fst.base ⁻¹' ↑(op { carrier := ↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop, is_open' := (_ : IsOpen (↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop)) }).unop, is_open' := (_ : IsOpen (↑pullback.fst.base ⁻¹' ↑(op { carrier := ↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop, is_open' := (_ : IsOpen (↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop)) }).unop)) }) ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑pullback.fst.base ⁻¹' ↑(op { carrier := ↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop, is_open' := (_ : IsOpen (↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop)) }).unop, is_open' := (_ : IsOpen (↑pullback.fst.base ⁻¹' ↑(op { carrier := ↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop, is_open' := (_ : IsOpen (↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop)) }).unop)) } }.unop) = (Opens.map (f D.toGlueData j k).base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData j i))).obj { carrier := ↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop, is_open' := (_ : IsOpen (↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop)) }))) ≫ (Opens.map (f D.toGlueData j k).base).op.map (eqToHom (_ : (Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U) = (IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData j i))).obj ((Opens.map (t D.toGlueData j i).base).obj ((Opens.map (f D.toGlueData i j).base).obj U)))).op) = (NatTrans.app (pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).c (op U) ≫ IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd) { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) }) ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom ?w) case w C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j k : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) case w C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j k : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) case w C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j k : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) case w C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j k : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) [PROOFSTEP] erw [← comp_c_app, ← comp_c_app] [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j k : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ (NatTrans.app (pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).c (op U) ≫ IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd) { carrier := ↑pullback.fst.base ⁻¹' ↑(op { carrier := ↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop, is_open' := (_ : IsOpen (↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop)) }).unop, is_open' := (_ : IsOpen (↑pullback.fst.base ⁻¹' ↑(op { carrier := ↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop, is_open' := (_ : IsOpen (↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop)) }).unop)) }) ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑pullback.fst.base ⁻¹' ↑(op { carrier := ↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop, is_open' := (_ : IsOpen (↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop)) }).unop, is_open' := (_ : IsOpen (↑pullback.fst.base ⁻¹' ↑(op { carrier := ↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop, is_open' := (_ : IsOpen (↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop)) }).unop)) } }.unop) = (Opens.map (f D.toGlueData j k).base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData j i))).obj { carrier := ↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop, is_open' := (_ : IsOpen (↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop)) }))) ≫ (Opens.map (f D.toGlueData j k).base).op.map (eqToHom (_ : (Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U) = (IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData j i))).obj ((Opens.map (t D.toGlueData j i).base).obj ((Opens.map (f D.toGlueData i j).base).obj U)))).op) = (NatTrans.app (pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).c (op U) ≫ IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd) { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) }) ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom ?w) case w C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j k : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) case w C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j k : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) case w C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j k : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) case w C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j k : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) case w C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j k : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) case w C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j k : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) [PROOFSTEP] simp_rw [Category.assoc] [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j k : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ NatTrans.app (pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).c (op U) ≫ IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd) { carrier := ↑pullback.fst.base ⁻¹' ↑(op { carrier := ↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop, is_open' := (_ : IsOpen (↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop)) }).unop, is_open' := (_ : IsOpen (↑pullback.fst.base ⁻¹' ↑(op { carrier := ↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop, is_open' := (_ : IsOpen (↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop)) }).unop)) } ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑pullback.fst.base ⁻¹' ↑(op { carrier := ↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop, is_open' := (_ : IsOpen (↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop)) }).unop, is_open' := (_ : IsOpen (↑pullback.fst.base ⁻¹' ↑(op { carrier := ↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop, is_open' := (_ : IsOpen (↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop)) }).unop)) } }.unop) = (Opens.map (f D.toGlueData j k).base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData j i))).obj { carrier := ↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop, is_open' := (_ : IsOpen (↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop)) }))) ≫ (Opens.map (f D.toGlueData j k).base).op.map (eqToHom (_ : (Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U) = (IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData j i))).obj ((Opens.map (t D.toGlueData j i).base).obj ((Opens.map (f D.toGlueData i j).base).obj U)))).op) = NatTrans.app (pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).c (op U) ≫ IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd) { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom ?w) case w C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j k : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) case w C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j k : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) case w C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j k : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) case w C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j k : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) case w C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j k : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) case w C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j k : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) [PROOFSTEP] dsimp only [Functor.op, unop_op, Quiver.Hom.unop_op] [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j k : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ NatTrans.app (pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).c (op U) ≫ IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd) { carrier := ↑pullback.fst.base ⁻¹' ↑{ carrier := ↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).obj U), is_open' := (_ : IsOpen (↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop)) }, is_open' := (_ : IsOpen (↑pullback.fst.base ⁻¹' ↑{ carrier := ↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).obj U), is_open' := (_ : IsOpen (↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop)) })) } ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { carrier := ↑pullback.fst.base ⁻¹' ↑{ carrier := ↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).obj U), is_open' := (_ : IsOpen (↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop)) }, is_open' := (_ : IsOpen (↑pullback.fst.base ⁻¹' ↑{ carrier := ↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).obj U), is_open' := (_ : IsOpen (↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop)) })) }) = op ((Opens.map (f D.toGlueData j k).base).obj ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData j i))).obj { carrier := ↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).obj U), is_open' := (_ : IsOpen (↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop)) }))) ≫ ((Opens.map (f D.toGlueData j k).base).map (eqToHom (_ : (Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U) = (IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData j i))).obj ((Opens.map (t D.toGlueData j i).base).obj ((Opens.map (f D.toGlueData i j).base).obj U))))).op) = NatTrans.app (pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).c (op U) ≫ IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd) { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑U, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑U)) } ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom ?w) case w C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j k : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) case w C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j k : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) case w C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j k : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) case w C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j k : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) case w C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j k : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) case w C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j k : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) [PROOFSTEP] rw [eqToHom_map (Opens.map _), eqToHom_op, eqToHom_trans] [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j k : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ NatTrans.app (pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).c (op U) ≫ IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd) { carrier := ↑pullback.fst.base ⁻¹' ↑{ carrier := ↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).obj U), is_open' := (_ : IsOpen (↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop)) }, is_open' := (_ : IsOpen (↑pullback.fst.base ⁻¹' ↑{ carrier := ↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).obj U), is_open' := (_ : IsOpen (↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop)) })) } ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { carrier := ↑pullback.fst.base ⁻¹' ↑{ carrier := ↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).obj U), is_open' := (_ : IsOpen (↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop)) }, is_open' := (_ : IsOpen (↑pullback.fst.base ⁻¹' ↑{ carrier := ↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).obj U), is_open' := (_ : IsOpen (↑(t D.toGlueData j i).base ⁻¹' ↑((Opens.map (f D.toGlueData i j).base).op.obj (op U)).unop)) })) }) = op ((Opens.map (f D.toGlueData j k).base).obj ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) = NatTrans.app (pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).c (op U) ≫ IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd) { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑U, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑U)) } ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom ?w) case w C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j k : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) case w C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j k : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) case w C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j k : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) case w C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j k : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) case w C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j k : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) case w C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j k : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) case w C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j k : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) case w C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j k : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) case w C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j k : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) [PROOFSTEP] congr [GOAL] C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j k : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) X' : C f' : ((f D.toGlueData j k).base _* (V D.toGlueData (j, k)).presheaf).obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) ⟶ X' ⊢ opensImagePreimageMap D i j U ≫ NatTrans.app (f D.toGlueData j k).c (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) ≫ f' = NatTrans.app (pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).c (op U) ≫ IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd) { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫ f' [PROOFSTEP] simpa only [Category.assoc] using congr_arg (· ≫ f') (opensImagePreimageMap_app D i j k U) [GOAL] C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) j : WalkingMultispan (diagram D.toGlueData).fstFrom (diagram D.toGlueData).sndFrom ⊢ (CategoryTheory.GlueData.U D.toGlueData i).presheaf.obj (op U) ⟶ (diagramOverOpen D U).obj (op j) [PROOFSTEP] rcases j with (⟨j, k⟩ | j) [GOAL] case left.mk C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) j k : D.J ⊢ (CategoryTheory.GlueData.U D.toGlueData i).presheaf.obj (op U) ⟶ (diagramOverOpen D U).obj (op (WalkingMultispan.left (j, k))) [PROOFSTEP] refine' D.opensImagePreimageMap i j U ≫ (D.f j k).c.app _ ≫ (D.V (j, k)).presheaf.map (eqToHom _) [GOAL] case left.mk C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) j k : D.J ⊢ (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.left (j, k))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)) [PROOFSTEP] rw [Functor.op_obj] [GOAL] case left.mk C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) j k : D.J ⊢ op ((Opens.map (f D.toGlueData j k).base).obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))).unop) = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.left (j, k))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)) [PROOFSTEP] congr 1 [GOAL] case left.mk.e_x C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) j k : D.J ⊢ (Opens.map (f D.toGlueData j k).base).obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))).unop = (Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.left (j, k))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U) [PROOFSTEP] ext1 [GOAL] case left.mk.e_x.h C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) j k : D.J ⊢ ↑((Opens.map (f D.toGlueData j k).base).obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))).unop) = ↑((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.left (j, k))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)) [PROOFSTEP] dsimp only [Functor.op_obj, Opens.map_coe, unop_op, IsOpenMap.functor_obj_coe] [GOAL] case left.mk.e_x.h C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) j k : D.J ⊢ ↑(f D.toGlueData j k).base ⁻¹' (↑(ι D.toGlueData j).base ⁻¹' (↑(ι D.toGlueData i).base '' ↑U)) = ↑(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (WalkingMultispan.left (j, k))).base ⁻¹' (↑(ι D.toGlueData i).base '' ↑U) [PROOFSTEP] rw [Set.preimage_preimage] [GOAL] case left.mk.e_x.h C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) j k : D.J ⊢ (fun x => ↑(ι D.toGlueData j).base (↑(f D.toGlueData j k).base x)) ⁻¹' (↑(ι D.toGlueData i).base '' ↑U) = ↑(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (WalkingMultispan.left (j, k))).base ⁻¹' (↑(ι D.toGlueData i).base '' ↑U) [PROOFSTEP] change (D.f j k ≫ 𝖣.ι j).base ⁻¹' _ = _ -- Porting note : used to be `congr 3` [GOAL] case left.mk.e_x.h C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) j k : D.J ⊢ ↑(f D.toGlueData j k ≫ ι D.toGlueData j).base ⁻¹' (↑(ι D.toGlueData i).base '' ↑U) = ↑(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (WalkingMultispan.left (j, k))).base ⁻¹' (↑(ι D.toGlueData i).base '' ↑U) [PROOFSTEP] refine congr_arg (· ⁻¹' _) ?_ [GOAL] case left.mk.e_x.h C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) j k : D.J ⊢ ↑(f D.toGlueData j k ≫ ι D.toGlueData j).base = ↑(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (WalkingMultispan.left (j, k))).base [PROOFSTEP] convert congr_arg (ContinuousMap.toFun (α := D.V ⟨j, k⟩) (β := D.glued) ·) ?_ [GOAL] case left.mk.e_x.h.convert_3 C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) j k : D.J ⊢ (f D.toGlueData j k ≫ ι D.toGlueData j).base = (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (WalkingMultispan.left (j, k))).base [PROOFSTEP] refine congr_arg (PresheafedSpace.Hom.base (C := C) ·) ?_ [GOAL] case left.mk.e_x.h.convert_3 C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) j k : D.J ⊢ f D.toGlueData j k ≫ ι D.toGlueData j = colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (WalkingMultispan.left (j, k)) [PROOFSTEP] exact colimit.w 𝖣.diagram.multispan (WalkingMultispan.Hom.fst (j, k)) [GOAL] case right C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) j : (diagram D.toGlueData).R ⊢ (CategoryTheory.GlueData.U D.toGlueData i).presheaf.obj (op U) ⟶ (diagramOverOpen D U).obj (op (WalkingMultispan.right j)) [PROOFSTEP] exact D.opensImagePreimageMap i j U [GOAL] C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) X Y : (WalkingMultispan (diagram D.toGlueData).fstFrom (diagram D.toGlueData).sndFrom)ᵒᵖ f' : X ⟶ Y ⊢ ((Functor.const (WalkingMultispan (diagram D.toGlueData).fstFrom (diagram D.toGlueData).sndFrom)ᵒᵖ).obj ((CategoryTheory.GlueData.U D.toGlueData i).presheaf.obj (op U))).map f' ≫ (fun j => ιInvAppπApp D U j.unop) Y = (fun j => ιInvAppπApp D U j.unop) X ≫ (diagramOverOpen D U).map f' [PROOFSTEP] induction X using Opposite.rec' with | h X => ?_ [GOAL] C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) X Y : (WalkingMultispan (diagram D.toGlueData).fstFrom (diagram D.toGlueData).sndFrom)ᵒᵖ f' : X ⟶ Y ⊢ ((Functor.const (WalkingMultispan (diagram D.toGlueData).fstFrom (diagram D.toGlueData).sndFrom)ᵒᵖ).obj ((CategoryTheory.GlueData.U D.toGlueData i).presheaf.obj (op U))).map f' ≫ (fun j => ιInvAppπApp D U j.unop) Y = (fun j => ιInvAppπApp D U j.unop) X ≫ (diagramOverOpen D U).map f' [PROOFSTEP] induction X using Opposite.rec' with | h X => ?_ [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) Y : (WalkingMultispan (diagram D.toGlueData).fstFrom (diagram D.toGlueData).sndFrom)ᵒᵖ X : WalkingMultispan (diagram D.toGlueData).fstFrom (diagram D.toGlueData).sndFrom f' : op X ⟶ Y ⊢ ((Functor.const (WalkingMultispan (diagram D.toGlueData).fstFrom (diagram D.toGlueData).sndFrom)ᵒᵖ).obj ((CategoryTheory.GlueData.U D.toGlueData i).presheaf.obj (op U))).map f' ≫ (fun j => ιInvAppπApp D U j.unop) Y = (fun j => ιInvAppπApp D U j.unop) (op X) ≫ (diagramOverOpen D U).map f' [PROOFSTEP] induction Y using Opposite.rec' with | h Y => ?_ [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) Y : (WalkingMultispan (diagram D.toGlueData).fstFrom (diagram D.toGlueData).sndFrom)ᵒᵖ X : WalkingMultispan (diagram D.toGlueData).fstFrom (diagram D.toGlueData).sndFrom f' : op X ⟶ Y ⊢ ((Functor.const (WalkingMultispan (diagram D.toGlueData).fstFrom (diagram D.toGlueData).sndFrom)ᵒᵖ).obj ((CategoryTheory.GlueData.U D.toGlueData i).presheaf.obj (op U))).map f' ≫ (fun j => ιInvAppπApp D U j.unop) Y = (fun j => ιInvAppπApp D U j.unop) (op X) ≫ (diagramOverOpen D U).map f' [PROOFSTEP] induction Y using Opposite.rec' with | h Y => ?_ [GOAL] case h.h C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) X Y : WalkingMultispan (diagram D.toGlueData).fstFrom (diagram D.toGlueData).sndFrom f' : op X ⟶ op Y ⊢ ((Functor.const (WalkingMultispan (diagram D.toGlueData).fstFrom (diagram D.toGlueData).sndFrom)ᵒᵖ).obj ((CategoryTheory.GlueData.U D.toGlueData i).presheaf.obj (op U))).map f' ≫ (fun j => ιInvAppπApp D U j.unop) (op Y) = (fun j => ιInvAppπApp D U j.unop) (op X) ≫ (diagramOverOpen D U).map f' [PROOFSTEP] let f : Y ⟶ X := f'.unop [GOAL] case h.h C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) X Y : WalkingMultispan (diagram D.toGlueData).fstFrom (diagram D.toGlueData).sndFrom f' : op X ⟶ op Y f : Y ⟶ X := f'.unop ⊢ ((Functor.const (WalkingMultispan (diagram D.toGlueData).fstFrom (diagram D.toGlueData).sndFrom)ᵒᵖ).obj ((CategoryTheory.GlueData.U D.toGlueData i).presheaf.obj (op U))).map f' ≫ (fun j => ιInvAppπApp D U j.unop) (op Y) = (fun j => ιInvAppπApp D U j.unop) (op X) ≫ (diagramOverOpen D U).map f' [PROOFSTEP] have : f' = f.op := rfl [GOAL] case h.h C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) X Y : WalkingMultispan (diagram D.toGlueData).fstFrom (diagram D.toGlueData).sndFrom f' : op X ⟶ op Y f : Y ⟶ X := f'.unop this : f' = f.op ⊢ ((Functor.const (WalkingMultispan (diagram D.toGlueData).fstFrom (diagram D.toGlueData).sndFrom)ᵒᵖ).obj ((CategoryTheory.GlueData.U D.toGlueData i).presheaf.obj (op U))).map f' ≫ (fun j => ιInvAppπApp D U j.unop) (op Y) = (fun j => ιInvAppπApp D U j.unop) (op X) ≫ (diagramOverOpen D U).map f' [PROOFSTEP] clear_value f [GOAL] case h.h C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) X Y : WalkingMultispan (diagram D.toGlueData).fstFrom (diagram D.toGlueData).sndFrom f' : op X ⟶ op Y f : Y ⟶ X this : f' = f.op ⊢ ((Functor.const (WalkingMultispan (diagram D.toGlueData).fstFrom (diagram D.toGlueData).sndFrom)ᵒᵖ).obj ((CategoryTheory.GlueData.U D.toGlueData i).presheaf.obj (op U))).map f' ≫ (fun j => ιInvAppπApp D U j.unop) (op Y) = (fun j => ιInvAppπApp D U j.unop) (op X) ≫ (diagramOverOpen D U).map f' [PROOFSTEP] subst this [GOAL] case h.h C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) X Y : WalkingMultispan (diagram D.toGlueData).fstFrom (diagram D.toGlueData).sndFrom f : Y ⟶ X ⊢ ((Functor.const (WalkingMultispan (diagram D.toGlueData).fstFrom (diagram D.toGlueData).sndFrom)ᵒᵖ).obj ((CategoryTheory.GlueData.U D.toGlueData i).presheaf.obj (op U))).map f.op ≫ (fun j => ιInvAppπApp D U j.unop) (op Y) = (fun j => ιInvAppπApp D U j.unop) (op X) ≫ (diagramOverOpen D U).map f.op [PROOFSTEP] rcases f with (_ | ⟨j, k⟩ | ⟨j, k⟩) [GOAL] case h.h.id C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) X : WalkingMultispan (diagram D.toGlueData).fstFrom (diagram D.toGlueData).sndFrom ⊢ ((Functor.const (WalkingMultispan (diagram D.toGlueData).fstFrom (diagram D.toGlueData).sndFrom)ᵒᵖ).obj ((CategoryTheory.GlueData.U D.toGlueData i).presheaf.obj (op U))).map (WalkingMultispan.Hom.id X).op ≫ (fun j => ιInvAppπApp D U j.unop) (op X) = (fun j => ιInvAppπApp D U j.unop) (op X) ≫ (diagramOverOpen D U).map (WalkingMultispan.Hom.id X).op [PROOFSTEP] erw [Category.id_comp, CategoryTheory.Functor.map_id] [GOAL] case h.h.id C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) X : WalkingMultispan (diagram D.toGlueData).fstFrom (diagram D.toGlueData).sndFrom ⊢ (fun j => ιInvAppπApp D U j.unop) (op X) = (fun j => ιInvAppπApp D U j.unop) (op X) ≫ 𝟙 ((diagramOverOpen D U).obj (op X)) [PROOFSTEP] rw [Category.comp_id] [GOAL] case h.h.fst.mk C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) j k : D.J ⊢ ((Functor.const (WalkingMultispan (diagram D.toGlueData).fstFrom (diagram D.toGlueData).sndFrom)ᵒᵖ).obj ((CategoryTheory.GlueData.U D.toGlueData i).presheaf.obj (op U))).map (WalkingMultispan.Hom.fst (j, k)).op ≫ (fun j => ιInvAppπApp D U j.unop) (op (WalkingMultispan.left (j, k))) = (fun j => ιInvAppπApp D U j.unop) (op (WalkingMultispan.right (MultispanIndex.fstFrom (diagram D.toGlueData) (j, k)))) ≫ (diagramOverOpen D U).map (WalkingMultispan.Hom.fst (j, k)).op [PROOFSTEP] erw [Category.id_comp] [GOAL] case h.h.fst.mk C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) j k : D.J ⊢ (fun j => ιInvAppπApp D U j.unop) (op (WalkingMultispan.left (j, k))) = (fun j => ιInvAppπApp D U j.unop) (op (WalkingMultispan.right (MultispanIndex.fstFrom (diagram D.toGlueData) (j, k)))) ≫ (diagramOverOpen D U).map (WalkingMultispan.Hom.fst (j, k)).op [PROOFSTEP] congr 1 [GOAL] case h.h.snd.mk C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) j k : D.J ⊢ ((Functor.const (WalkingMultispan (diagram D.toGlueData).fstFrom (diagram D.toGlueData).sndFrom)ᵒᵖ).obj ((CategoryTheory.GlueData.U D.toGlueData i).presheaf.obj (op U))).map (WalkingMultispan.Hom.snd (j, k)).op ≫ (fun j => ιInvAppπApp D U j.unop) (op (WalkingMultispan.left (j, k))) = (fun j => ιInvAppπApp D U j.unop) (op (WalkingMultispan.right (MultispanIndex.sndFrom (diagram D.toGlueData) (j, k)))) ≫ (diagramOverOpen D U).map (WalkingMultispan.Hom.snd (j, k)).op [PROOFSTEP] erw [Category.id_comp] -- It remains to show that the blue is equal to red + green in the original diagram. -- The proof strategy is illustrated in ![this diagram](https://i.imgur.com/mBzV1Rx.png) -- where we prove red = pink = light-blue = green = blue. [GOAL] case h.h.snd.mk C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) j k : D.J ⊢ (fun j => ιInvAppπApp D U j.unop) (op (WalkingMultispan.left (j, k))) = (fun j => ιInvAppπApp D U j.unop) (op (WalkingMultispan.right (MultispanIndex.sndFrom (diagram D.toGlueData) (j, k)))) ≫ (diagramOverOpen D U).map (WalkingMultispan.Hom.snd (j, k)).op [PROOFSTEP] change D.opensImagePreimageMap i j U ≫ (D.f j k).c.app _ ≫ (D.V (j, k)).presheaf.map (eqToHom _) = D.opensImagePreimageMap _ _ _ ≫ ((D.f k j).c.app _ ≫ (D.t j k).c.app _) ≫ (D.V (j, k)).presheaf.map (eqToHom _) [GOAL] case h.h.snd.mk C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) j k : D.J ⊢ opensImagePreimageMap D i j U ≫ NatTrans.app (f D.toGlueData j k).c (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.left (j, k))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) = opensImagePreimageMap D i k U ≫ (NatTrans.app (f D.toGlueData k j).c (op ((Opens.map (ι D.toGlueData k).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) ≫ NatTrans.app (t D.toGlueData j k).c ((Opens.map (f D.toGlueData k j).base).op.obj (op ((Opens.map (ι D.toGlueData k).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : (Opens.map ((MultispanIndex.multispan (diagram D.toGlueData)).map (WalkingMultispan.Hom.snd (j, k)).op.unop).base).op.obj (op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.right (MultispanIndex.sndFrom (diagram D.toGlueData) (j, k)))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.left (j, k))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) [PROOFSTEP] erw [opensImagePreimageMap_app_assoc] [GOAL] case h.h.snd.mk C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) j k : D.J ⊢ NatTrans.app (pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).c (op U) ≫ IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd) { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.left (j, k))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) = opensImagePreimageMap D i k U ≫ (NatTrans.app (f D.toGlueData k j).c (op ((Opens.map (ι D.toGlueData k).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) ≫ NatTrans.app (t D.toGlueData j k).c ((Opens.map (f D.toGlueData k j).base).op.obj (op ((Opens.map (ι D.toGlueData k).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : (Opens.map ((MultispanIndex.multispan (diagram D.toGlueData)).map (WalkingMultispan.Hom.snd (j, k)).op.unop).base).op.obj (op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.right (MultispanIndex.sndFrom (diagram D.toGlueData) (j, k)))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.left (j, k))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) [PROOFSTEP] simp_rw [Category.assoc] [GOAL] case h.h.snd.mk C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) j k : D.J ⊢ NatTrans.app (pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).c (op U) ≫ IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd) { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.left (j, k))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) = opensImagePreimageMap D i k U ≫ NatTrans.app (f D.toGlueData k j).c (op ((Opens.map (ι D.toGlueData k).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) ≫ NatTrans.app (t D.toGlueData j k).c ((Opens.map (f D.toGlueData k j).base).op.obj (op ((Opens.map (ι D.toGlueData k).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : (Opens.map ((MultispanIndex.multispan (diagram D.toGlueData)).map (WalkingMultispan.Hom.snd (j, k)).op.unop).base).op.obj (op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.right (MultispanIndex.sndFrom (diagram D.toGlueData) (j, k)))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.left (j, k))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) [PROOFSTEP] erw [opensImagePreimageMap_app_assoc, (D.t j k).c.naturality_assoc] [GOAL] case h.h.snd.mk C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) j k : D.J ⊢ NatTrans.app (pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).c (op U) ≫ IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd) { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.left (j, k))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) = NatTrans.app (pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).c (op U) ≫ IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd) { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop ≫ NatTrans.app (t D.toGlueData j k).c (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop)) ≫ ((t D.toGlueData j k).base _* (V D.toGlueData (j, k)).presheaf).map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData k j).base).op.obj (op ((Opens.map (ι D.toGlueData k).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : (Opens.map ((MultispanIndex.multispan (diagram D.toGlueData)).map (WalkingMultispan.Hom.snd (j, k)).op.unop).base).op.obj (op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.right (MultispanIndex.sndFrom (diagram D.toGlueData) (j, k)))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.left (j, k))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) [PROOFSTEP] rw [snd_invApp_t_app_assoc] [GOAL] case h.h.snd.mk C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) j k : D.J ⊢ NatTrans.app (pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).c (op U) ≫ IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd) { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.left (j, k))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) = NatTrans.app (pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).c (op U) ≫ NatTrans.app (t' D.toGlueData j k i).c (op { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop) ≫ IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.fst) { carrier := ↑(t' D.toGlueData j k i).base ⁻¹' ↑(op { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop).unop, is_open' := (_ : IsOpen (↑(t' D.toGlueData j k i).base ⁻¹' ↑(op { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop).unop)) } ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj { unop := { carrier := ↑(t' D.toGlueData j k i).base ⁻¹' ↑(op { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop).unop, is_open' := (_ : IsOpen (↑(t' D.toGlueData j k i).base ⁻¹' ↑(op { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop).unop)) } }.unop) = (Opens.map (t D.toGlueData j k).base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop)))) ≫ ((t D.toGlueData j k).base _* (V D.toGlueData (j, k)).presheaf).map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData k j).base).op.obj (op ((Opens.map (ι D.toGlueData k).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : (Opens.map ((MultispanIndex.multispan (diagram D.toGlueData)).map (WalkingMultispan.Hom.snd (j, k)).op.unop).base).op.obj (op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.right (MultispanIndex.sndFrom (diagram D.toGlueData) (j, k)))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.left (j, k))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) [PROOFSTEP] erw [← PresheafedSpace.comp_c_app_assoc] -- light-blue = green is relatively easy since the part that differs does not involve -- partial inverses. [GOAL] case h.h.snd.mk C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) j k : D.J ⊢ NatTrans.app (pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).c (op U) ≫ IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd) { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.left (j, k))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) = NatTrans.app (t' D.toGlueData j k i ≫ pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).c (op U) ≫ IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.fst) { carrier := ↑(t' D.toGlueData j k i).base ⁻¹' ↑(op { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop).unop, is_open' := (_ : IsOpen (↑(t' D.toGlueData j k i).base ⁻¹' ↑(op { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop).unop)) } ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj { unop := { carrier := ↑(t' D.toGlueData j k i).base ⁻¹' ↑(op { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop).unop, is_open' := (_ : IsOpen (↑(t' D.toGlueData j k i).base ⁻¹' ↑(op { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop).unop)) } }.unop) = (Opens.map (t D.toGlueData j k).base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop)))) ≫ ((t D.toGlueData j k).base _* (V D.toGlueData (j, k)).presheaf).map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData k j).base).op.obj (op ((Opens.map (ι D.toGlueData k).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : (Opens.map ((MultispanIndex.multispan (diagram D.toGlueData)).map (WalkingMultispan.Hom.snd (j, k)).op.unop).base).op.obj (op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.right (MultispanIndex.sndFrom (diagram D.toGlueData) (j, k)))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.left (j, k))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) [PROOFSTEP] have : D.t' j k i ≫ (π₁ k, i, j) ≫ D.t k i ≫ 𝖣.f i k = (pullbackSymmetry _ _).hom ≫ (π₁ j, i, k) ≫ D.t j i ≫ D.f i j := by rw [← 𝖣.t_fac_assoc, 𝖣.t'_comp_eq_pullbackSymmetry_assoc, pullbackSymmetry_hom_comp_snd_assoc, pullback.condition, 𝖣.t_fac_assoc] [GOAL] C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) j k : D.J ⊢ t' D.toGlueData j k i ≫ pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k = (pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫ pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j [PROOFSTEP] rw [← 𝖣.t_fac_assoc, 𝖣.t'_comp_eq_pullbackSymmetry_assoc, pullbackSymmetry_hom_comp_snd_assoc, pullback.condition, 𝖣.t_fac_assoc] [GOAL] case h.h.snd.mk C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) j k : D.J this : t' D.toGlueData j k i ≫ pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k = (pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫ pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j ⊢ NatTrans.app (pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).c (op U) ≫ IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd) { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.left (j, k))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) = NatTrans.app (t' D.toGlueData j k i ≫ pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).c (op U) ≫ IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.fst) { carrier := ↑(t' D.toGlueData j k i).base ⁻¹' ↑(op { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop).unop, is_open' := (_ : IsOpen (↑(t' D.toGlueData j k i).base ⁻¹' ↑(op { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop).unop)) } ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj { unop := { carrier := ↑(t' D.toGlueData j k i).base ⁻¹' ↑(op { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop).unop, is_open' := (_ : IsOpen (↑(t' D.toGlueData j k i).base ⁻¹' ↑(op { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop).unop)) } }.unop) = (Opens.map (t D.toGlueData j k).base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop)))) ≫ ((t D.toGlueData j k).base _* (V D.toGlueData (j, k)).presheaf).map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData k j).base).op.obj (op ((Opens.map (ι D.toGlueData k).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : (Opens.map ((MultispanIndex.multispan (diagram D.toGlueData)).map (WalkingMultispan.Hom.snd (j, k)).op.unop).base).op.obj (op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.right (MultispanIndex.sndFrom (diagram D.toGlueData) (j, k)))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.left (j, k))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) [PROOFSTEP] rw [congr_app this] [GOAL] case h.h.snd.mk C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) j k : D.J this : t' D.toGlueData j k i ≫ pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k = (pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫ pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j ⊢ NatTrans.app (pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).c (op U) ≫ IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd) { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.left (j, k))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) = (NatTrans.app ((pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫ pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).c (op U) ≫ (pullback (f D.toGlueData j k) (f D.toGlueData j i)).presheaf.map (eqToHom (_ : (Opens.map ((pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫ pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base).op.obj (op U) = (Opens.map (t' D.toGlueData j k i ≫ pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base).op.obj (op U)))) ≫ IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.fst) { carrier := ↑(t' D.toGlueData j k i).base ⁻¹' ↑(op { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop).unop, is_open' := (_ : IsOpen (↑(t' D.toGlueData j k i).base ⁻¹' ↑(op { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop).unop)) } ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj { unop := { carrier := ↑(t' D.toGlueData j k i).base ⁻¹' ↑(op { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop).unop, is_open' := (_ : IsOpen (↑(t' D.toGlueData j k i).base ⁻¹' ↑(op { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop).unop)) } }.unop) = (Opens.map (t D.toGlueData j k).base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop)))) ≫ ((t D.toGlueData j k).base _* (V D.toGlueData (j, k)).presheaf).map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData k j).base).op.obj (op ((Opens.map (ι D.toGlueData k).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : (Opens.map ((MultispanIndex.multispan (diagram D.toGlueData)).map (WalkingMultispan.Hom.snd (j, k)).op.unop).base).op.obj (op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.right (MultispanIndex.sndFrom (diagram D.toGlueData) (j, k)))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.left (j, k))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) [PROOFSTEP] erw [PresheafedSpace.comp_c_app_assoc (pullbackSymmetry _ _).hom] [GOAL] case h.h.snd.mk C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) j k : D.J this : t' D.toGlueData j k i ≫ pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k = (pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫ pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j ⊢ NatTrans.app (pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).c (op U) ≫ IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd) { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.left (j, k))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) = (NatTrans.app (pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).c (op U) ≫ NatTrans.app (pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom.c (op ((Opens.map (pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base).obj (op U).unop)) ≫ (pullback (f D.toGlueData j k) (f D.toGlueData j i)).presheaf.map (eqToHom (_ : (Opens.map ((pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫ pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base).op.obj (op U) = (Opens.map (t' D.toGlueData j k i ≫ pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base).op.obj (op U)))) ≫ IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.fst) { carrier := ↑(t' D.toGlueData j k i).base ⁻¹' ↑(op { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop).unop, is_open' := (_ : IsOpen (↑(t' D.toGlueData j k i).base ⁻¹' ↑(op { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop).unop)) } ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj { unop := { carrier := ↑(t' D.toGlueData j k i).base ⁻¹' ↑(op { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop).unop, is_open' := (_ : IsOpen (↑(t' D.toGlueData j k i).base ⁻¹' ↑(op { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop).unop)) } }.unop) = (Opens.map (t D.toGlueData j k).base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop)))) ≫ ((t D.toGlueData j k).base _* (V D.toGlueData (j, k)).presheaf).map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData k j).base).op.obj (op ((Opens.map (ι D.toGlueData k).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : (Opens.map ((MultispanIndex.multispan (diagram D.toGlueData)).map (WalkingMultispan.Hom.snd (j, k)).op.unop).base).op.obj (op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.right (MultispanIndex.sndFrom (diagram D.toGlueData) (j, k)))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.left (j, k))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) [PROOFSTEP] simp_rw [Category.assoc] [GOAL] case h.h.snd.mk C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) j k : D.J this : t' D.toGlueData j k i ≫ pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k = (pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫ pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j ⊢ NatTrans.app (pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).c (op U) ≫ IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd) { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.left (j, k))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) = NatTrans.app (pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).c (op U) ≫ NatTrans.app (pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom.c (op ((Opens.map (pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base).obj (op U).unop)) ≫ (pullback (f D.toGlueData j k) (f D.toGlueData j i)).presheaf.map (eqToHom (_ : (Opens.map ((pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫ pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base).op.obj (op U) = (Opens.map (t' D.toGlueData j k i ≫ pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base).op.obj (op U))) ≫ IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.fst) { carrier := ↑(t' D.toGlueData j k i).base ⁻¹' ↑(op { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) }).unop, is_open' := (_ : IsOpen (↑(t' D.toGlueData j k i).base ⁻¹' ↑(op { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) }).unop)) } ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj { unop := { carrier := ↑(t' D.toGlueData j k i).base ⁻¹' ↑(op { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop).unop, is_open' := (_ : IsOpen (↑(t' D.toGlueData j k i).base ⁻¹' ↑(op { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop).unop)) } }.unop) = (Opens.map (t D.toGlueData j k).base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop)))) ≫ ((t D.toGlueData j k).base _* (V D.toGlueData (j, k)).presheaf).map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData k j).base).op.obj (op ((Opens.map (ι D.toGlueData k).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : (Opens.map ((MultispanIndex.multispan (diagram D.toGlueData)).map (WalkingMultispan.Hom.snd (j, k)).op.unop).base).op.obj (op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.right (MultispanIndex.sndFrom (diagram D.toGlueData) (j, k)))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.left (j, k))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) [PROOFSTEP] congr 1 [GOAL] case h.h.snd.mk.e_a C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) j k : D.J this : t' D.toGlueData j k i ≫ pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k = (pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫ pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j ⊢ IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd) { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.left (j, k))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) = NatTrans.app (pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom.c (op ((Opens.map (pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base).obj (op U).unop)) ≫ (pullback (f D.toGlueData j k) (f D.toGlueData j i)).presheaf.map (eqToHom (_ : (Opens.map ((pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫ pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base).op.obj (op U) = (Opens.map (t' D.toGlueData j k i ≫ pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base).op.obj (op U))) ≫ IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.fst) { carrier := ↑(t' D.toGlueData j k i).base ⁻¹' ↑(op { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) }).unop, is_open' := (_ : IsOpen (↑(t' D.toGlueData j k i).base ⁻¹' ↑(op { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) }).unop)) } ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj { unop := { carrier := ↑(t' D.toGlueData j k i).base ⁻¹' ↑(op { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop).unop, is_open' := (_ : IsOpen (↑(t' D.toGlueData j k i).base ⁻¹' ↑(op { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop).unop)) } }.unop) = (Opens.map (t D.toGlueData j k).base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop)))) ≫ ((t D.toGlueData j k).base _* (V D.toGlueData (j, k)).presheaf).map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData k j).base).op.obj (op ((Opens.map (ι D.toGlueData k).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : (Opens.map ((MultispanIndex.multispan (diagram D.toGlueData)).map (WalkingMultispan.Hom.snd (j, k)).op.unop).base).op.obj (op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.right (MultispanIndex.sndFrom (diagram D.toGlueData) (j, k)))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.left (j, k))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) [PROOFSTEP] rw [← IsIso.eq_inv_comp] [GOAL] case h.h.snd.mk.e_a C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) j k : D.J this : t' D.toGlueData j k i ≫ pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k = (pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫ pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j ⊢ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.left (j, k))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) = inv (IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.snd) { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) }) ≫ NatTrans.app (pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom.c (op ((Opens.map (pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base).obj (op U).unop)) ≫ (pullback (f D.toGlueData j k) (f D.toGlueData j i)).presheaf.map (eqToHom (_ : (Opens.map ((pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫ pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base).op.obj (op U) = (Opens.map (t' D.toGlueData j k i ≫ pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base).op.obj (op U))) ≫ IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.fst) { carrier := ↑(t' D.toGlueData j k i).base ⁻¹' ↑(op { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) }).unop, is_open' := (_ : IsOpen (↑(t' D.toGlueData j k i).base ⁻¹' ↑(op { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) }).unop)) } ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj { unop := { carrier := ↑(t' D.toGlueData j k i).base ⁻¹' ↑(op { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop).unop, is_open' := (_ : IsOpen (↑(t' D.toGlueData j k i).base ⁻¹' ↑(op { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop).unop)) } }.unop) = (Opens.map (t D.toGlueData j k).base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop)))) ≫ ((t D.toGlueData j k).base _* (V D.toGlueData (j, k)).presheaf).map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData k j).base).op.obj (op ((Opens.map (ι D.toGlueData k).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : (Opens.map ((MultispanIndex.multispan (diagram D.toGlueData)).map (WalkingMultispan.Hom.snd (j, k)).op.unop).base).op.obj (op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.right (MultispanIndex.sndFrom (diagram D.toGlueData) (j, k)))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.left (j, k))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) [PROOFSTEP] erw [IsOpenImmersion.inv_invApp] [GOAL] case h.h.snd.mk.e_a C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) j k : D.J this : t' D.toGlueData j k i ≫ pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k = (pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫ pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j ⊢ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.left (j, k))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) = (NatTrans.app pullback.snd.c (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) })) ≫ (pullback (f D.toGlueData j i) (f D.toGlueData j k)).presheaf.map (eqToHom (_ : op ((Opens.map pullback.snd.base).obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) })).unop) = op { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) }))) ≫ NatTrans.app (pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom.c (op ((Opens.map (pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base).obj (op U).unop)) ≫ (pullback (f D.toGlueData j k) (f D.toGlueData j i)).presheaf.map (eqToHom (_ : (Opens.map ((pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫ pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base).op.obj (op U) = (Opens.map (t' D.toGlueData j k i ≫ pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base).op.obj (op U))) ≫ IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.fst) { carrier := ↑(t' D.toGlueData j k i).base ⁻¹' ↑(op { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) }).unop, is_open' := (_ : IsOpen (↑(t' D.toGlueData j k i).base ⁻¹' ↑(op { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) }).unop)) } ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj { unop := { carrier := ↑(t' D.toGlueData j k i).base ⁻¹' ↑(op { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop).unop, is_open' := (_ : IsOpen (↑(t' D.toGlueData j k i).base ⁻¹' ↑(op { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop).unop)) } }.unop) = (Opens.map (t D.toGlueData j k).base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop)))) ≫ ((t D.toGlueData j k).base _* (V D.toGlueData (j, k)).presheaf).map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData k j).base).op.obj (op ((Opens.map (ι D.toGlueData k).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : (Opens.map ((MultispanIndex.multispan (diagram D.toGlueData)).map (WalkingMultispan.Hom.snd (j, k)).op.unop).base).op.obj (op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.right (MultispanIndex.sndFrom (diagram D.toGlueData) (j, k)))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.left (j, k))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) [PROOFSTEP] simp_rw [Category.assoc] [GOAL] case h.h.snd.mk.e_a C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) j k : D.J this : t' D.toGlueData j k i ≫ pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k = (pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫ pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j ⊢ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.left (j, k))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) = NatTrans.app pullback.snd.c (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) })) ≫ (pullback (f D.toGlueData j i) (f D.toGlueData j k)).presheaf.map (eqToHom (_ : op ((Opens.map pullback.snd.base).obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) })).unop) = op { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) })) ≫ NatTrans.app (pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom.c (op ((Opens.map (pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base).obj (op U).unop)) ≫ (pullback (f D.toGlueData j k) (f D.toGlueData j i)).presheaf.map (eqToHom (_ : (Opens.map ((pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫ pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base).op.obj (op U) = (Opens.map (t' D.toGlueData j k i ≫ pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base).op.obj (op U))) ≫ IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.fst) { carrier := ↑(t' D.toGlueData j k i).base ⁻¹' ↑(op { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) }).unop, is_open' := (_ : IsOpen (↑(t' D.toGlueData j k i).base ⁻¹' ↑(op { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) }).unop)) } ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj { unop := { carrier := ↑(t' D.toGlueData j k i).base ⁻¹' ↑(op { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop).unop, is_open' := (_ : IsOpen (↑(t' D.toGlueData j k i).base ⁻¹' ↑(op { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop).unop)) } }.unop) = (Opens.map (t D.toGlueData j k).base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop)))) ≫ ((t D.toGlueData j k).base _* (V D.toGlueData (j, k)).presheaf).map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData k j).base).op.obj (op ((Opens.map (ι D.toGlueData k).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : (Opens.map ((MultispanIndex.multispan (diagram D.toGlueData)).map (WalkingMultispan.Hom.snd (j, k)).op.unop).base).op.obj (op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.right (MultispanIndex.sndFrom (diagram D.toGlueData) (j, k)))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.left (j, k))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) [PROOFSTEP] erw [NatTrans.naturality_assoc, ← PresheafedSpace.comp_c_app_assoc, congr_app (pullbackSymmetry_hom_comp_snd _ _)] [GOAL] case h.h.snd.mk.e_a C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) j k : D.J this : t' D.toGlueData j k i ≫ pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k = (pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫ pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j ⊢ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.left (j, k))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) = (NatTrans.app pullback.fst.c (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) })) ≫ (pullback (f D.toGlueData j k) (f D.toGlueData j i)).presheaf.map (eqToHom (_ : (Opens.map pullback.fst.base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) })) = (Opens.map ((pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫ pullback.snd).base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) }))))) ≫ ((pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom.base _* (pullback (f D.toGlueData j k) (f D.toGlueData j i)).presheaf).map (eqToHom (_ : op ((Opens.map pullback.snd.base).obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) })).unop) = op { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) })) ≫ (pullback (f D.toGlueData j k) (f D.toGlueData j i)).presheaf.map (eqToHom (_ : (Opens.map ((pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫ pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base).op.obj (op U) = (Opens.map (t' D.toGlueData j k i ≫ pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base).op.obj (op U))) ≫ IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.fst) { carrier := ↑(t' D.toGlueData j k i).base ⁻¹' ↑(op { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) }).unop, is_open' := (_ : IsOpen (↑(t' D.toGlueData j k i).base ⁻¹' ↑(op { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) }).unop)) } ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj { unop := { carrier := ↑(t' D.toGlueData j k i).base ⁻¹' ↑(op { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop).unop, is_open' := (_ : IsOpen (↑(t' D.toGlueData j k i).base ⁻¹' ↑(op { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop).unop)) } }.unop) = (Opens.map (t D.toGlueData j k).base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop)))) ≫ ((t D.toGlueData j k).base _* (V D.toGlueData (j, k)).presheaf).map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData k j).base).op.obj (op ((Opens.map (ι D.toGlueData k).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : (Opens.map ((MultispanIndex.multispan (diagram D.toGlueData)).map (WalkingMultispan.Hom.snd (j, k)).op.unop).base).op.obj (op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.right (MultispanIndex.sndFrom (diagram D.toGlueData) (j, k)))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.left (j, k))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) [PROOFSTEP] simp_rw [Category.assoc] [GOAL] case h.h.snd.mk.e_a C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) j k : D.J this : t' D.toGlueData j k i ≫ pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k = (pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫ pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j ⊢ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.left (j, k))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) = NatTrans.app pullback.fst.c (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) })) ≫ (pullback (f D.toGlueData j k) (f D.toGlueData j i)).presheaf.map (eqToHom (_ : (Opens.map pullback.fst.base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) })) = (Opens.map ((pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫ pullback.snd).base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) })))) ≫ ((pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom.base _* (pullback (f D.toGlueData j k) (f D.toGlueData j i)).presheaf).map (eqToHom (_ : op ((Opens.map pullback.snd.base).obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) })).unop) = op { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) })) ≫ (pullback (f D.toGlueData j k) (f D.toGlueData j i)).presheaf.map (eqToHom (_ : (Opens.map ((pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫ pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base).op.obj (op U) = (Opens.map (t' D.toGlueData j k i ≫ pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base).op.obj (op U))) ≫ IsOpenImmersion.invApp (_ : IsOpenImmersion pullback.fst) { carrier := ↑(t' D.toGlueData j k i).base ⁻¹' ↑(op { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) }).unop, is_open' := (_ : IsOpen (↑(t' D.toGlueData j k i).base ⁻¹' ↑(op { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) }).unop)) } ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj { unop := { carrier := ↑(t' D.toGlueData j k i).base ⁻¹' ↑(op { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop).unop, is_open' := (_ : IsOpen (↑(t' D.toGlueData j k i).base ⁻¹' ↑(op { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop).unop)) } }.unop) = (Opens.map (t D.toGlueData j k).base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop)))) ≫ ((t D.toGlueData j k).base _* (V D.toGlueData (j, k)).presheaf).map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData k j).base).op.obj (op ((Opens.map (ι D.toGlueData k).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : (Opens.map ((MultispanIndex.multispan (diagram D.toGlueData)).map (WalkingMultispan.Hom.snd (j, k)).op.unop).base).op.obj (op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.right (MultispanIndex.sndFrom (diagram D.toGlueData) (j, k)))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.left (j, k))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) [PROOFSTEP] erw [IsOpenImmersion.inv_naturality_assoc, IsOpenImmersion.inv_naturality_assoc, IsOpenImmersion.inv_naturality_assoc, IsOpenImmersion.app_invApp_assoc] [GOAL] case h.h.snd.mk.e_a C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) j k : D.J this : t' D.toGlueData j k i ≫ pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k = (pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫ pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j ⊢ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.left (j, k))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) = (V D.toGlueData (j, k)).presheaf.map (homOfLE (_ : ↑pullback.fst.base '' (↑pullback.fst.base ⁻¹' ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) }).carrier) ⊆ ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) }).carrier)).op ≫ (V D.toGlueData (j, k)).presheaf.map ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).op.map (eqToHom (_ : (Opens.map pullback.fst.base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) })) = (Opens.map ((pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫ pullback.snd).base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) }))))) ≫ (V D.toGlueData (j, k)).presheaf.map ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).op.map ((Opens.map (pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom.base).op.map (eqToHom (_ : op ((Opens.map pullback.snd.base).obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) })).unop) = op { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) })))) ≫ (V D.toGlueData (j, k)).presheaf.map ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).op.map (eqToHom (_ : (Opens.map ((pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫ pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base).op.obj (op U) = (Opens.map (t' D.toGlueData j k i ≫ pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base).op.obj (op U)))) ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj { unop := { carrier := ↑(t' D.toGlueData j k i).base ⁻¹' ↑(op { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop).unop, is_open' := (_ : IsOpen (↑(t' D.toGlueData j k i).base ⁻¹' ↑(op { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop).unop)) } }.unop) = (Opens.map (t D.toGlueData j k).base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop)))) ≫ ((t D.toGlueData j k).base _* (V D.toGlueData (j, k)).presheaf).map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData k j).base).op.obj (op ((Opens.map (ι D.toGlueData k).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : (Opens.map ((MultispanIndex.multispan (diagram D.toGlueData)).map (WalkingMultispan.Hom.snd (j, k)).op.unop).base).op.obj (op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.right (MultispanIndex.sndFrom (diagram D.toGlueData) (j, k)))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.left (j, k))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) [PROOFSTEP] repeat' erw [← (D.V (j, k)).presheaf.map_comp] -- Porting note : was just `congr` [GOAL] case h.h.snd.mk.e_a C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) j k : D.J this : t' D.toGlueData j k i ≫ pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k = (pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫ pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j ⊢ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.left (j, k))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) = (V D.toGlueData (j, k)).presheaf.map (homOfLE (_ : ↑pullback.fst.base '' (↑pullback.fst.base ⁻¹' ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) }).carrier) ⊆ ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) }).carrier)).op ≫ (V D.toGlueData (j, k)).presheaf.map ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).op.map (eqToHom (_ : (Opens.map pullback.fst.base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) })) = (Opens.map ((pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫ pullback.snd).base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) }))))) ≫ (V D.toGlueData (j, k)).presheaf.map ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).op.map ((Opens.map (pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom.base).op.map (eqToHom (_ : op ((Opens.map pullback.snd.base).obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) })).unop) = op { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) })))) ≫ (V D.toGlueData (j, k)).presheaf.map ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).op.map (eqToHom (_ : (Opens.map ((pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫ pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base).op.obj (op U) = (Opens.map (t' D.toGlueData j k i ≫ pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base).op.obj (op U)))) ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj { unop := { carrier := ↑(t' D.toGlueData j k i).base ⁻¹' ↑(op { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop).unop, is_open' := (_ : IsOpen (↑(t' D.toGlueData j k i).base ⁻¹' ↑(op { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop).unop)) } }.unop) = (Opens.map (t D.toGlueData j k).base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop)))) ≫ ((t D.toGlueData j k).base _* (V D.toGlueData (j, k)).presheaf).map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData k j).base).op.obj (op ((Opens.map (ι D.toGlueData k).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : (Opens.map ((MultispanIndex.multispan (diagram D.toGlueData)).map (WalkingMultispan.Hom.snd (j, k)).op.unop).base).op.obj (op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.right (MultispanIndex.sndFrom (diagram D.toGlueData) (j, k)))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.left (j, k))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) [PROOFSTEP] erw [← (D.V (j, k)).presheaf.map_comp] -- Porting note : was just `congr` [GOAL] case h.h.snd.mk.e_a C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) j k : D.J this : t' D.toGlueData j k i ≫ pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k = (pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫ pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j ⊢ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) ≫ eqToHom (_ : (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.left (j, k))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) = (V D.toGlueData (j, k)).presheaf.map (homOfLE (_ : ↑pullback.fst.base '' (↑pullback.fst.base ⁻¹' ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) }).carrier) ⊆ ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) }).carrier)).op ≫ (V D.toGlueData (j, k)).presheaf.map ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).op.map (eqToHom (_ : (Opens.map pullback.fst.base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) })) = (Opens.map ((pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫ pullback.snd).base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) }))))) ≫ (V D.toGlueData (j, k)).presheaf.map ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).op.map ((Opens.map (pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom.base).op.map (eqToHom (_ : op ((Opens.map pullback.snd.base).obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) })).unop) = op { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) })))) ≫ (V D.toGlueData (j, k)).presheaf.map ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).op.map (eqToHom (_ : (Opens.map ((pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫ pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base).op.obj (op U) = (Opens.map (t' D.toGlueData j k i ≫ pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base).op.obj (op U)))) ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj { unop := { carrier := ↑(t' D.toGlueData j k i).base ⁻¹' ↑(op { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop).unop, is_open' := (_ : IsOpen (↑(t' D.toGlueData j k i).base ⁻¹' ↑(op { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop).unop)) } }.unop) = (Opens.map (t D.toGlueData j k).base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop)))) ≫ ((t D.toGlueData j k).base _* (V D.toGlueData (j, k)).presheaf).map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData k j).base).op.obj (op ((Opens.map (ι D.toGlueData k).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : (Opens.map ((MultispanIndex.multispan (diagram D.toGlueData)).map (WalkingMultispan.Hom.snd (j, k)).op.unop).base).op.obj (op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.right (MultispanIndex.sndFrom (diagram D.toGlueData) (j, k)))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.left (j, k))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) [PROOFSTEP] erw [← (D.V (j, k)).presheaf.map_comp] -- Porting note : was just `congr` [GOAL] case h.h.snd.mk.e_a C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) j k : D.J this : t' D.toGlueData j k i ≫ pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k = (pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫ pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j ⊢ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) ≫ eqToHom (_ : (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.left (j, k))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) = (V D.toGlueData (j, k)).presheaf.map (homOfLE (_ : ↑pullback.fst.base '' (↑pullback.fst.base ⁻¹' ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) }).carrier) ⊆ ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) }).carrier)).op ≫ (V D.toGlueData (j, k)).presheaf.map ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).op.map (eqToHom (_ : (Opens.map pullback.fst.base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) })) = (Opens.map ((pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫ pullback.snd).base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) }))))) ≫ (V D.toGlueData (j, k)).presheaf.map ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).op.map ((Opens.map (pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom.base).op.map (eqToHom (_ : op ((Opens.map pullback.snd.base).obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) })).unop) = op { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) })))) ≫ (V D.toGlueData (j, k)).presheaf.map ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).op.map (eqToHom (_ : (Opens.map ((pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫ pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base).op.obj (op U) = (Opens.map (t' D.toGlueData j k i ≫ pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base).op.obj (op U)))) ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj { unop := { carrier := ↑(t' D.toGlueData j k i).base ⁻¹' ↑(op { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop).unop, is_open' := (_ : IsOpen (↑(t' D.toGlueData j k i).base ⁻¹' ↑(op { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop).unop)) } }.unop) = (Opens.map (t D.toGlueData j k).base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop)))) ≫ (V D.toGlueData (j, k)).presheaf.map ((Opens.map (t D.toGlueData j k).base).op.map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData k j).base).op.obj (op ((Opens.map (ι D.toGlueData k).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫ eqToHom (_ : (Opens.map ((MultispanIndex.multispan (diagram D.toGlueData)).map (WalkingMultispan.Hom.snd (j, k)).op.unop).base).op.obj (op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.right (MultispanIndex.sndFrom (diagram D.toGlueData) (j, k)))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.left (j, k))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) [PROOFSTEP] erw [← (D.V (j, k)).presheaf.map_comp] -- Porting note : was just `congr` [GOAL] case h.h.snd.mk.e_a C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) j k : D.J this : t' D.toGlueData j k i ≫ pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k = (pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫ pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j ⊢ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) ≫ eqToHom (_ : (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.left (j, k))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) = (V D.toGlueData (j, k)).presheaf.map (homOfLE (_ : ↑pullback.fst.base '' (↑pullback.fst.base ⁻¹' ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) }).carrier) ⊆ ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) }).carrier)).op ≫ (V D.toGlueData (j, k)).presheaf.map ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).op.map (eqToHom (_ : (Opens.map pullback.fst.base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) })) = (Opens.map ((pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫ pullback.snd).base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) }))))) ≫ (V D.toGlueData (j, k)).presheaf.map ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).op.map ((Opens.map (pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom.base).op.map (eqToHom (_ : op ((Opens.map pullback.snd.base).obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) })).unop) = op { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) })))) ≫ (V D.toGlueData (j, k)).presheaf.map ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).op.map (eqToHom (_ : (Opens.map ((pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫ pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base).op.obj (op U) = (Opens.map (t' D.toGlueData j k i ≫ pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base).op.obj (op U)))) ≫ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj { unop := { carrier := ↑(t' D.toGlueData j k i).base ⁻¹' ↑(op { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop).unop, is_open' := (_ : IsOpen (↑(t' D.toGlueData j k i).base ⁻¹' ↑(op { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop).unop)) } }.unop) = (Opens.map (t D.toGlueData j k).base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop))) ≫ (Opens.map (t D.toGlueData j k).base).op.map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData k j).base).op.obj (op ((Opens.map (ι D.toGlueData k).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫ eqToHom (_ : (Opens.map ((MultispanIndex.multispan (diagram D.toGlueData)).map (WalkingMultispan.Hom.snd (j, k)).op.unop).base).op.obj (op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.right (MultispanIndex.sndFrom (diagram D.toGlueData) (j, k)))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.left (j, k))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) [PROOFSTEP] erw [← (D.V (j, k)).presheaf.map_comp] -- Porting note : was just `congr` [GOAL] case h.h.snd.mk.e_a C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) j k : D.J this : t' D.toGlueData j k i ≫ pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k = (pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫ pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j ⊢ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) ≫ eqToHom (_ : (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.left (j, k))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) = (V D.toGlueData (j, k)).presheaf.map (homOfLE (_ : ↑pullback.fst.base '' (↑pullback.fst.base ⁻¹' ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) }).carrier) ⊆ ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) }).carrier)).op ≫ (V D.toGlueData (j, k)).presheaf.map ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).op.map (eqToHom (_ : (Opens.map pullback.fst.base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) })) = (Opens.map ((pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫ pullback.snd).base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) }))))) ≫ (V D.toGlueData (j, k)).presheaf.map ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).op.map ((Opens.map (pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom.base).op.map (eqToHom (_ : op ((Opens.map pullback.snd.base).obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) })).unop) = op { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) })))) ≫ (V D.toGlueData (j, k)).presheaf.map ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).op.map (eqToHom (_ : (Opens.map ((pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫ pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base).op.obj (op U) = (Opens.map (t' D.toGlueData j k i ≫ pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base).op.obj (op U))) ≫ eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj { unop := { carrier := ↑(t' D.toGlueData j k i).base ⁻¹' ↑(op { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop).unop, is_open' := (_ : IsOpen (↑(t' D.toGlueData j k i).base ⁻¹' ↑(op { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop).unop)) } }.unop) = (Opens.map (t D.toGlueData j k).base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop))) ≫ (Opens.map (t D.toGlueData j k).base).op.map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData k j).base).op.obj (op ((Opens.map (ι D.toGlueData k).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫ eqToHom (_ : (Opens.map ((MultispanIndex.multispan (diagram D.toGlueData)).map (WalkingMultispan.Hom.snd (j, k)).op.unop).base).op.obj (op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.right (MultispanIndex.sndFrom (diagram D.toGlueData) (j, k)))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.left (j, k))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) [PROOFSTEP] erw [← (D.V (j, k)).presheaf.map_comp] -- Porting note : was just `congr` [GOAL] case h.h.snd.mk.e_a C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) j k : D.J this : t' D.toGlueData j k i ≫ pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k = (pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫ pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j ⊢ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) ≫ eqToHom (_ : (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.left (j, k))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) = (V D.toGlueData (j, k)).presheaf.map (homOfLE (_ : ↑pullback.fst.base '' (↑pullback.fst.base ⁻¹' ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) }).carrier) ⊆ ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) }).carrier)).op ≫ (V D.toGlueData (j, k)).presheaf.map ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).op.map (eqToHom (_ : (Opens.map pullback.fst.base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) })) = (Opens.map ((pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫ pullback.snd).base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) }))))) ≫ (V D.toGlueData (j, k)).presheaf.map ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).op.map ((Opens.map (pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom.base).op.map (eqToHom (_ : op ((Opens.map pullback.snd.base).obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) })).unop) = op { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) }))) ≫ (IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).op.map (eqToHom (_ : (Opens.map ((pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫ pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base).op.obj (op U) = (Opens.map (t' D.toGlueData j k i ≫ pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base).op.obj (op U))) ≫ eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj { unop := { carrier := ↑(t' D.toGlueData j k i).base ⁻¹' ↑(op { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop).unop, is_open' := (_ : IsOpen (↑(t' D.toGlueData j k i).base ⁻¹' ↑(op { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop).unop)) } }.unop) = (Opens.map (t D.toGlueData j k).base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop))) ≫ (Opens.map (t D.toGlueData j k).base).op.map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData k j).base).op.obj (op ((Opens.map (ι D.toGlueData k).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫ eqToHom (_ : (Opens.map ((MultispanIndex.multispan (diagram D.toGlueData)).map (WalkingMultispan.Hom.snd (j, k)).op.unop).base).op.obj (op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.right (MultispanIndex.sndFrom (diagram D.toGlueData) (j, k)))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.left (j, k))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) [PROOFSTEP] erw [← (D.V (j, k)).presheaf.map_comp] -- Porting note : was just `congr` [GOAL] case h.h.snd.mk.e_a C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) j k : D.J this : t' D.toGlueData j k i ≫ pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k = (pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫ pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j ⊢ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) ≫ eqToHom (_ : (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.left (j, k))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) = (V D.toGlueData (j, k)).presheaf.map (homOfLE (_ : ↑pullback.fst.base '' (↑pullback.fst.base ⁻¹' ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) }).carrier) ⊆ ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) }).carrier)).op ≫ (V D.toGlueData (j, k)).presheaf.map ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).op.map (eqToHom (_ : (Opens.map pullback.fst.base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) })) = (Opens.map ((pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫ pullback.snd).base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) })))) ≫ (IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).op.map ((Opens.map (pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom.base).op.map (eqToHom (_ : op ((Opens.map pullback.snd.base).obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) })).unop) = op { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) }))) ≫ (IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).op.map (eqToHom (_ : (Opens.map ((pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫ pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base).op.obj (op U) = (Opens.map (t' D.toGlueData j k i ≫ pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base).op.obj (op U))) ≫ eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj { unop := { carrier := ↑(t' D.toGlueData j k i).base ⁻¹' ↑(op { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop).unop, is_open' := (_ : IsOpen (↑(t' D.toGlueData j k i).base ⁻¹' ↑(op { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop).unop)) } }.unop) = (Opens.map (t D.toGlueData j k).base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop))) ≫ (Opens.map (t D.toGlueData j k).base).op.map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData k j).base).op.obj (op ((Opens.map (ι D.toGlueData k).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫ eqToHom (_ : (Opens.map ((MultispanIndex.multispan (diagram D.toGlueData)).map (WalkingMultispan.Hom.snd (j, k)).op.unop).base).op.obj (op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.right (MultispanIndex.sndFrom (diagram D.toGlueData) (j, k)))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.left (j, k))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) [PROOFSTEP] erw [← (D.V (j, k)).presheaf.map_comp] -- Porting note : was just `congr` [GOAL] case h.h.snd.mk.e_a C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) j k : D.J this : t' D.toGlueData j k i ≫ pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k = (pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫ pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j ⊢ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) ≫ eqToHom (_ : (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.left (j, k))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) = (V D.toGlueData (j, k)).presheaf.map ((homOfLE (_ : ↑pullback.fst.base '' (↑pullback.fst.base ⁻¹' ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) }).carrier) ⊆ ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) }).carrier)).op ≫ (IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).op.map (eqToHom (_ : (Opens.map pullback.fst.base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) })) = (Opens.map ((pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫ pullback.snd).base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) })))) ≫ (IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).op.map ((Opens.map (pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom.base).op.map (eqToHom (_ : op ((Opens.map pullback.snd.base).obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) })).unop) = op { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) }))) ≫ (IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).op.map (eqToHom (_ : (Opens.map ((pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫ pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base).op.obj (op U) = (Opens.map (t' D.toGlueData j k i ≫ pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base).op.obj (op U))) ≫ eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj { unop := { carrier := ↑(t' D.toGlueData j k i).base ⁻¹' ↑(op { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop).unop, is_open' := (_ : IsOpen (↑(t' D.toGlueData j k i).base ⁻¹' ↑(op { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop).unop)) } }.unop) = (Opens.map (t D.toGlueData j k).base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop))) ≫ (Opens.map (t D.toGlueData j k).base).op.map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData k j).base).op.obj (op ((Opens.map (ι D.toGlueData k).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫ eqToHom (_ : (Opens.map ((MultispanIndex.multispan (diagram D.toGlueData)).map (WalkingMultispan.Hom.snd (j, k)).op.unop).base).op.obj (op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.right (MultispanIndex.sndFrom (diagram D.toGlueData) (j, k)))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.left (j, k))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) [PROOFSTEP] erw [← (D.V (j, k)).presheaf.map_comp] -- Porting note : was just `congr` [GOAL] case h.h.snd.mk.e_a C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) j k : D.J this : t' D.toGlueData j k i ≫ pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k = (pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫ pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j ⊢ (V D.toGlueData (j, k)).presheaf.map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) ≫ eqToHom (_ : (Opens.map (f D.toGlueData j k).base).op.obj (op ((Opens.map (ι D.toGlueData j).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.left (j, k))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) = (V D.toGlueData (j, k)).presheaf.map ((homOfLE (_ : ↑pullback.fst.base '' (↑pullback.fst.base ⁻¹' ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) }).carrier) ⊆ ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) }).carrier)).op ≫ (IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).op.map (eqToHom (_ : (Opens.map pullback.fst.base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) })) = (Opens.map ((pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫ pullback.snd).base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) })))) ≫ (IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).op.map ((Opens.map (pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom.base).op.map (eqToHom (_ : op ((Opens.map pullback.snd.base).obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) })).unop) = op { carrier := ↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base ⁻¹' ↑(op U).unop)) }))) ≫ (IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).op.map (eqToHom (_ : (Opens.map ((pullbackSymmetry (f D.toGlueData j k) (f D.toGlueData j i)).hom ≫ pullback.fst ≫ t D.toGlueData j i ≫ f D.toGlueData i j).base).op.obj (op U) = (Opens.map (t' D.toGlueData j k i ≫ pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base).op.obj (op U))) ≫ eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.fst)).obj { unop := { carrier := ↑(t' D.toGlueData j k i).base ⁻¹' ↑(op { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop).unop, is_open' := (_ : IsOpen (↑(t' D.toGlueData j k i).base ⁻¹' ↑(op { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop).unop)) } }.unop) = (Opens.map (t D.toGlueData j k).base).op.obj (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop))) ≫ (Opens.map (t D.toGlueData j k).base).op.map (eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion pullback.snd)).obj { unop := { carrier := ↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop, is_open' := (_ : IsOpen (↑(pullback.fst ≫ t D.toGlueData k i ≫ f D.toGlueData i k).base ⁻¹' ↑(op U).unop)) } }.unop) = (Opens.map (f D.toGlueData k j).base).op.obj (op ((Opens.map (ι D.toGlueData k).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))))) ≫ eqToHom (_ : (Opens.map ((MultispanIndex.multispan (diagram D.toGlueData)).map (WalkingMultispan.Hom.snd (j, k)).op.unop).base).op.obj (op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.right (MultispanIndex.sndFrom (diagram D.toGlueData) (j, k)))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.left (j, k))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) [PROOFSTEP] exact congr_arg ((D.V (j, k)).presheaf.map ·) rfl [GOAL] C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ ∃ eq, ιInvApp D U ≫ diagramOverOpenπ D U i = (CategoryTheory.GlueData.U D.toGlueData i).presheaf.map (eqToHom eq) [PROOFSTEP] fconstructor -- Porting note: I don't know what the magic was in Lean3 proof, it just skipped the proof of `eq` [GOAL] case w C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ op U = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.right i)).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)) [PROOFSTEP] congr [GOAL] case w.e_x C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ U = (Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.right i)).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U) [PROOFSTEP] ext1 [GOAL] case w.e_x.h C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ ↑U = ↑((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.right i)).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)) [PROOFSTEP] change _ = _ ⁻¹' (_ '' _) [GOAL] case w.e_x.h C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ ↑U = (fun x => ↑(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.right i)).unop).base x) ⁻¹' ((fun a => ↑(ι D.toGlueData i).base a) '' ↑U) [PROOFSTEP] ext1 x [GOAL] case w.e_x.h.h C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) x : ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ x ∈ ↑U ↔ x ∈ (fun x => ↑(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.right i)).unop).base x) ⁻¹' ((fun a => ↑(ι D.toGlueData i).base a) '' ↑U) [PROOFSTEP] simp only [SetLike.mem_coe, diagram_l, diagram_r, unop_op, Set.mem_preimage, Set.mem_image] [GOAL] case w.e_x.h.h C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) x : ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ x ∈ U ↔ ∃ x_1, x_1 ∈ U ∧ ↑(ι D.toGlueData i).base x_1 = ↑(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (WalkingMultispan.right i)).base x [PROOFSTEP] refine ⟨fun h => ⟨_, h, rfl⟩, ?_⟩ [GOAL] case w.e_x.h.h C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) x : ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ (∃ x_1, x_1 ∈ U ∧ ↑(ι D.toGlueData i).base x_1 = ↑(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (WalkingMultispan.right i)).base x) → x ∈ U [PROOFSTEP] rintro ⟨y, h1, h2⟩ [GOAL] case w.e_x.h.h.intro.intro C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) x : ↑↑(CategoryTheory.GlueData.U D.toGlueData i) y : (CategoryTheory.forget TopCat).obj ↑(CategoryTheory.GlueData.U D.toGlueData i) h1 : y ∈ U h2 : ↑(ι D.toGlueData i).base y = ↑(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (WalkingMultispan.right i)).base x ⊢ x ∈ U [PROOFSTEP] convert h1 using 1 [GOAL] case h.e'_4.h C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) x : ↑↑(CategoryTheory.GlueData.U D.toGlueData i) y : (CategoryTheory.forget TopCat).obj ↑(CategoryTheory.GlueData.U D.toGlueData i) h1 : y ∈ U h2 : ↑(ι D.toGlueData i).base y = ↑(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (WalkingMultispan.right i)).base x e_1✝ : ↑↑(CategoryTheory.GlueData.U D.toGlueData i) = (CategoryTheory.forget TopCat).obj ↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ x = y [PROOFSTEP] delta ι Multicoequalizer.π at h2 [GOAL] case h.e'_4.h C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) x : ↑↑(CategoryTheory.GlueData.U D.toGlueData i) y : (CategoryTheory.forget TopCat).obj ↑(CategoryTheory.GlueData.U D.toGlueData i) h1 : y ∈ U h2 : ↑(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (WalkingMultispan.right i)).base y = ↑(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (WalkingMultispan.right i)).base x e_1✝ : ↑↑(CategoryTheory.GlueData.U D.toGlueData i) = (CategoryTheory.forget TopCat).obj ↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ x = y [PROOFSTEP] apply_fun (D.ι _).base [GOAL] case h.e'_4.h C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) x : ↑↑(CategoryTheory.GlueData.U D.toGlueData i) y : (CategoryTheory.forget TopCat).obj ↑(CategoryTheory.GlueData.U D.toGlueData i) h1 : y ∈ U h2 : ↑(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (WalkingMultispan.right i)).base y = ↑(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (WalkingMultispan.right i)).base x e_1✝ : ↑↑(CategoryTheory.GlueData.U D.toGlueData i) = (CategoryTheory.forget TopCat).obj ↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ ↑(ι D.toGlueData i).base x = ↑(ι D.toGlueData i).base y [PROOFSTEP] exact h2.symm [GOAL] case h.e'_4.h.inj C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) x : ↑↑(CategoryTheory.GlueData.U D.toGlueData i) y : (CategoryTheory.forget TopCat).obj ↑(CategoryTheory.GlueData.U D.toGlueData i) h1 : y ∈ U h2 : ↑(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (WalkingMultispan.right i)).base y = ↑(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (WalkingMultispan.right i)).base x e_1✝ : ↑↑(CategoryTheory.GlueData.U D.toGlueData i) = (CategoryTheory.forget TopCat).obj ↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ Function.Injective ↑(ι D.toGlueData i).base [PROOFSTEP] have := D.ι_gluedIso_inv (PresheafedSpace.forget _) i [GOAL] case h.e'_4.h.inj C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) x : ↑↑(CategoryTheory.GlueData.U D.toGlueData i) y : (CategoryTheory.forget TopCat).obj ↑(CategoryTheory.GlueData.U D.toGlueData i) h1 : y ∈ U h2 : ↑(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (WalkingMultispan.right i)).base y = ↑(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (WalkingMultispan.right i)).base x e_1✝ : ↑↑(CategoryTheory.GlueData.U D.toGlueData i) = (CategoryTheory.forget TopCat).obj ↑(CategoryTheory.GlueData.U D.toGlueData i) this : ι (mapGlueData D.toGlueData (forget C)) i ≫ (gluedIso D.toGlueData (forget C)).inv = (forget C).map (ι D.toGlueData i) ⊢ Function.Injective ↑(ι D.toGlueData i).base [PROOFSTEP] dsimp at this [GOAL] case h.e'_4.h.inj C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) x : ↑↑(CategoryTheory.GlueData.U D.toGlueData i) y : (CategoryTheory.forget TopCat).obj ↑(CategoryTheory.GlueData.U D.toGlueData i) h1 : y ∈ U h2 : ↑(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (WalkingMultispan.right i)).base y = ↑(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (WalkingMultispan.right i)).base x e_1✝ : ↑↑(CategoryTheory.GlueData.U D.toGlueData i) = (CategoryTheory.forget TopCat).obj ↑(CategoryTheory.GlueData.U D.toGlueData i) this : ι (mapGlueData D.toGlueData (forget C)) i ≫ (gluedIso D.toGlueData (forget C)).inv = (ι D.toGlueData i).base ⊢ Function.Injective ↑(ι D.toGlueData i).base [PROOFSTEP] rw [← this, coe_comp] [GOAL] case h.e'_4.h.inj C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) x : ↑↑(CategoryTheory.GlueData.U D.toGlueData i) y : (CategoryTheory.forget TopCat).obj ↑(CategoryTheory.GlueData.U D.toGlueData i) h1 : y ∈ U h2 : ↑(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (WalkingMultispan.right i)).base y = ↑(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (WalkingMultispan.right i)).base x e_1✝ : ↑↑(CategoryTheory.GlueData.U D.toGlueData i) = (CategoryTheory.forget TopCat).obj ↑(CategoryTheory.GlueData.U D.toGlueData i) this : ι (mapGlueData D.toGlueData (forget C)) i ≫ (gluedIso D.toGlueData (forget C)).inv = (ι D.toGlueData i).base ⊢ Function.Injective (↑(gluedIso D.toGlueData (forget C)).inv ∘ ↑(ι (mapGlueData D.toGlueData (forget C)) i)) [PROOFSTEP] refine Function.Injective.comp ?_ (TopCat.GlueData.ι_injective D.toTopGlueData i) [GOAL] case h.e'_4.h.inj C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) x : ↑↑(CategoryTheory.GlueData.U D.toGlueData i) y : (CategoryTheory.forget TopCat).obj ↑(CategoryTheory.GlueData.U D.toGlueData i) h1 : y ∈ U h2 : ↑(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (WalkingMultispan.right i)).base y = ↑(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (WalkingMultispan.right i)).base x e_1✝ : ↑↑(CategoryTheory.GlueData.U D.toGlueData i) = (CategoryTheory.forget TopCat).obj ↑(CategoryTheory.GlueData.U D.toGlueData i) this : ι (mapGlueData D.toGlueData (forget C)) i ≫ (gluedIso D.toGlueData (forget C)).inv = (ι D.toGlueData i).base ⊢ Function.Injective ↑(gluedIso D.toGlueData (forget C)).inv [PROOFSTEP] rw [← TopCat.mono_iff_injective] [GOAL] case h.e'_4.h.inj C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) x : ↑↑(CategoryTheory.GlueData.U D.toGlueData i) y : (CategoryTheory.forget TopCat).obj ↑(CategoryTheory.GlueData.U D.toGlueData i) h1 : y ∈ U h2 : ↑(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (WalkingMultispan.right i)).base y = ↑(colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (WalkingMultispan.right i)).base x e_1✝ : ↑↑(CategoryTheory.GlueData.U D.toGlueData i) = (CategoryTheory.forget TopCat).obj ↑(CategoryTheory.GlueData.U D.toGlueData i) this : ι (mapGlueData D.toGlueData (forget C)) i ≫ (gluedIso D.toGlueData (forget C)).inv = (ι D.toGlueData i).base ⊢ Mono (gluedIso D.toGlueData (forget C)).inv [PROOFSTEP] infer_instance [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ ιInvApp D U ≫ diagramOverOpenπ D U i = (CategoryTheory.GlueData.U D.toGlueData i).presheaf.map (eqToHom (_ : op U = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.right i)).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) [PROOFSTEP] delta ιInvApp [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ limit.lift (diagramOverOpen D U) { pt := (CategoryTheory.GlueData.U D.toGlueData i).presheaf.obj (op U), π := NatTrans.mk fun j => ιInvAppπApp D U j.unop } ≫ diagramOverOpenπ D U i = (CategoryTheory.GlueData.U D.toGlueData i).presheaf.map (eqToHom (_ : op U = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.right i)).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) [PROOFSTEP] rw [limit.lift_π] [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ NatTrans.app { pt := (CategoryTheory.GlueData.U D.toGlueData i).presheaf.obj (op U), π := NatTrans.mk fun j => ιInvAppπApp D U j.unop }.π (op (WalkingMultispan.right i)) = (CategoryTheory.GlueData.U D.toGlueData i).presheaf.map (eqToHom (_ : op U = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.right i)).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) [PROOFSTEP] change D.opensImagePreimageMap i i U = _ [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ opensImagePreimageMap D i i U = (CategoryTheory.GlueData.U D.toGlueData i).presheaf.map (eqToHom (_ : op U = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.right i)).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) [PROOFSTEP] dsimp [opensImagePreimageMap] [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ NatTrans.app (f D.toGlueData i i).c (op U) ≫ NatTrans.app (t D.toGlueData i i).c (op ((Opens.map (f D.toGlueData i i).base).obj U)) ≫ IsOpenImmersion.invApp (_ : IsOpenImmersion (f D.toGlueData i i)) { carrier := ↑(t D.toGlueData i i).base ⁻¹' ↑((Opens.map (f D.toGlueData i i).base).obj U), is_open' := (_ : IsOpen (↑(t D.toGlueData i i).base ⁻¹' ↑((Opens.map (f D.toGlueData i i).base).op.obj (op U)).unop)) } ≫ (CategoryTheory.GlueData.U D.toGlueData i).presheaf.map (eqToHom (_ : (Opens.map (ι D.toGlueData i).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U) = (IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i i))).obj ((Opens.map (t D.toGlueData i i).base).obj ((Opens.map (f D.toGlueData i i).base).obj U)))).op = (CategoryTheory.GlueData.U D.toGlueData i).presheaf.map (eqToHom (_ : op U = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (WalkingMultispan.right i)).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) [PROOFSTEP] rw [congr_app (D.t_id _), id_c_app, ← Functor.map_comp] [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ NatTrans.app (f D.toGlueData i i).c (op U) ≫ (V D.toGlueData (i, i)).presheaf.map (𝟙 (op ((Opens.map (f D.toGlueData i i).base).obj U)) ≫ eqToHom (_ : (Opens.map (𝟙 (V D.toGlueData (i, i))).base).op.obj (op ((Opens.map (f D.toGlueData i i).base).obj U)) = (Opens.map (t D.toGlueData i i).base).op.obj (op ((Opens.map (f D.toGlueData i i).base).obj U)))) ≫ IsOpenImmersion.invApp (_ : IsOpenImmersion (f D.toGlueData i i)) { carrier := ↑(t D.toGlueData i i).base ⁻¹' ↑((Opens.map (f D.toGlueData i i).base).obj U), is_open' := (_ : IsOpen (↑(t D.toGlueData i i).base ⁻¹' ↑((Opens.map (f D.toGlueData i i).base).op.obj (op U)).unop)) } ≫ (CategoryTheory.GlueData.U D.toGlueData i).presheaf.map (eqToHom (_ : (Opens.map (ι D.toGlueData i).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U) = (IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i i))).obj ((Opens.map (t D.toGlueData i i).base).obj ((Opens.map (f D.toGlueData i i).base).obj U)))).op = (CategoryTheory.GlueData.U D.toGlueData i).presheaf.map (eqToHom (_ : op U = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (WalkingMultispan.right i)).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) [PROOFSTEP] erw [IsOpenImmersion.inv_naturality_assoc, IsOpenImmersion.app_inv_app'_assoc] [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ (CategoryTheory.GlueData.U D.toGlueData i).presheaf.map (eqToHom (_ : (IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i i))).obj ((Opens.map (f D.toGlueData i i).base).obj U) = U)).op ≫ (CategoryTheory.GlueData.U D.toGlueData i).presheaf.map ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i i))).op.map (𝟙 (op ((Opens.map (f D.toGlueData i i).base).obj U)) ≫ eqToHom (_ : (Opens.map (𝟙 (V D.toGlueData (i, i))).base).op.obj (op ((Opens.map (f D.toGlueData i i).base).obj U)) = (Opens.map (t D.toGlueData i i).base).op.obj (op ((Opens.map (f D.toGlueData i i).base).obj U))))) ≫ (CategoryTheory.GlueData.U D.toGlueData i).presheaf.map (eqToHom (_ : (Opens.map (ι D.toGlueData i).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U) = (IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i i))).obj ((Opens.map (t D.toGlueData i i).base).obj ((Opens.map (f D.toGlueData i i).base).obj U)))).op = (CategoryTheory.GlueData.U D.toGlueData i).presheaf.map (eqToHom (_ : op U = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (WalkingMultispan.right i)).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) [PROOFSTEP] simp only [eqToHom_op, eqToHom_trans, eqToHom_map (Functor.op _), ← Functor.map_comp] [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ (CategoryTheory.GlueData.U D.toGlueData i).presheaf.map (eqToHom (_ : op U = op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i i))).obj ((Opens.map (f D.toGlueData i i).base).obj U))) ≫ (IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i i))).op.map (𝟙 (op ((Opens.map (f D.toGlueData i i).base).obj U)) ≫ eqToHom (_ : (Opens.map (𝟙 (V D.toGlueData (i, i))).base).op.obj (op ((Opens.map (f D.toGlueData i i).base).obj U)) = (Opens.map (t D.toGlueData i i).base).op.obj (op ((Opens.map (f D.toGlueData i i).base).obj U)))) ≫ eqToHom (_ : op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i i))).obj ((Opens.map (t D.toGlueData i i).base).obj ((Opens.map (f D.toGlueData i i).base).obj U))) = op ((Opens.map (ι D.toGlueData i).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) = (CategoryTheory.GlueData.U D.toGlueData i).presheaf.map (eqToHom (_ : op U = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (WalkingMultispan.right i)).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) [PROOFSTEP] rfl [GOAL] case h.hU C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ ↑U ⊆ Set.range ↑(f D.toGlueData i i).base [PROOFSTEP] rw [Set.range_iff_surjective.mpr _] [GOAL] case h.hU C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ ↑U ⊆ Set.univ [PROOFSTEP] simp [GOAL] C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ Function.Surjective ↑(f D.toGlueData i i).base [PROOFSTEP] rw [← TopCat.epi_iff_surjective] [GOAL] C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ Epi (f D.toGlueData i i).base [PROOFSTEP] infer_instance [GOAL] C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ diagramOverOpenπ D U i ≫ ιInvAppπEqMap D U ≫ ιInvApp D U ≫ diagramOverOpenπ D U j = diagramOverOpenπ D U j [PROOFSTEP] rw [← @cancel_mono (f := (componentwiseDiagram 𝖣.diagram.multispan _).map (Quiver.Hom.op (WalkingMultispan.Hom.snd (i, j))) ≫ 𝟙 _) _ _ (by rw [Category.comp_id] apply (config := { allowSynthFailures := true }) mono_comp change Mono ((_ ≫ D.f j i).c.app _) rw [comp_c_app] apply (config := { allowSynthFailures := true }) mono_comp erw [D.ι_image_preimage_eq i j U] · infer_instance · have : IsIso (D.t i j).c := by apply c_isIso_of_iso infer_instance)] [GOAL] C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ Mono ((componentwiseDiagram (MultispanIndex.multispan (diagram D.toGlueData)) ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)).map (WalkingMultispan.Hom.snd (i, j)).op ≫ 𝟙 ((componentwiseDiagram (MultispanIndex.multispan (diagram D.toGlueData)) ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)).obj (op (WalkingMultispan.left (i, j))))) [PROOFSTEP] rw [Category.comp_id] [GOAL] C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ Mono ((componentwiseDiagram (MultispanIndex.multispan (diagram D.toGlueData)) ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)).map (WalkingMultispan.Hom.snd (i, j)).op) [PROOFSTEP] apply (config := { allowSynthFailures := true }) mono_comp [GOAL] case inst C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ Mono (NatTrans.app ((MultispanIndex.multispan (diagram D.toGlueData)).map (WalkingMultispan.Hom.snd (i, j)).op.unop).c (op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.right (MultispanIndex.sndFrom (diagram D.toGlueData) (i, j)))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) [PROOFSTEP] change Mono ((_ ≫ D.f j i).c.app _) [GOAL] case inst C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ Mono (NatTrans.app (t D.toGlueData i j ≫ f D.toGlueData j i).c (op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.right (MultispanIndex.sndFrom (diagram D.toGlueData) (i, j)))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) [PROOFSTEP] rw [comp_c_app] [GOAL] case inst C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ Mono (NatTrans.app (f D.toGlueData j i).c (op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.right (MultispanIndex.sndFrom (diagram D.toGlueData) (i, j)))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) ≫ NatTrans.app (t D.toGlueData i j).c (op ((Opens.map (f D.toGlueData j i).base).obj (op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.right (MultispanIndex.sndFrom (diagram D.toGlueData) (i, j)))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))).unop))) [PROOFSTEP] apply (config := { allowSynthFailures := true }) mono_comp [GOAL] case inst C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ Mono (NatTrans.app (f D.toGlueData j i).c (op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.right (MultispanIndex.sndFrom (diagram D.toGlueData) (i, j)))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) case inst C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ Mono (NatTrans.app (t D.toGlueData i j).c (op ((Opens.map (f D.toGlueData j i).base).obj (op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.right (MultispanIndex.sndFrom (diagram D.toGlueData) (i, j)))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))).unop))) [PROOFSTEP] erw [D.ι_image_preimage_eq i j U] [GOAL] case inst C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ Mono (NatTrans.app (f D.toGlueData j i).c (op ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData j i))).obj ((Opens.map (t D.toGlueData j i).base).obj ((Opens.map (f D.toGlueData i j).base).obj U))))) [PROOFSTEP] infer_instance [GOAL] case inst C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ Mono (NatTrans.app (t D.toGlueData i j).c (op ((Opens.map (f D.toGlueData j i).base).obj (op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.right (MultispanIndex.sndFrom (diagram D.toGlueData) (i, j)))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))).unop))) [PROOFSTEP] have : IsIso (D.t i j).c := by apply c_isIso_of_iso [GOAL] C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ IsIso (t D.toGlueData i j).c [PROOFSTEP] apply c_isIso_of_iso [GOAL] case inst C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) this : IsIso (t D.toGlueData i j).c ⊢ Mono (NatTrans.app (t D.toGlueData i j).c (op ((Opens.map (f D.toGlueData j i).base).obj (op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.right (MultispanIndex.sndFrom (diagram D.toGlueData) (i, j)))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))).unop))) [PROOFSTEP] infer_instance [GOAL] C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ (diagramOverOpenπ D U i ≫ ιInvAppπEqMap D U ≫ ιInvApp D U ≫ diagramOverOpenπ D U j) ≫ (componentwiseDiagram (MultispanIndex.multispan (diagram D.toGlueData)) ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)).map (WalkingMultispan.Hom.snd (i, j)).op ≫ 𝟙 ((componentwiseDiagram (MultispanIndex.multispan (diagram D.toGlueData)) ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)).obj (op (WalkingMultispan.left (i, j)))) = diagramOverOpenπ D U j ≫ (componentwiseDiagram (MultispanIndex.multispan (diagram D.toGlueData)) ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)).map (WalkingMultispan.Hom.snd (i, j)).op ≫ 𝟙 ((componentwiseDiagram (MultispanIndex.multispan (diagram D.toGlueData)) ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)).obj (op (WalkingMultispan.left (i, j)))) [PROOFSTEP] simp_rw [Category.assoc] [GOAL] C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ diagramOverOpenπ D U i ≫ ιInvAppπEqMap D U ≫ ιInvApp D U ≫ diagramOverOpenπ D U j ≫ (componentwiseDiagram (MultispanIndex.multispan (diagram D.toGlueData)) ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)).map (WalkingMultispan.Hom.snd (i, j)).op ≫ 𝟙 ((componentwiseDiagram (MultispanIndex.multispan (diagram D.toGlueData)) ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)).obj (op (WalkingMultispan.left (i, j)))) = diagramOverOpenπ D U j ≫ (componentwiseDiagram (MultispanIndex.multispan (diagram D.toGlueData)) ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)).map (WalkingMultispan.Hom.snd (i, j)).op ≫ 𝟙 ((componentwiseDiagram (MultispanIndex.multispan (diagram D.toGlueData)) ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)).obj (op (WalkingMultispan.left (i, j)))) [PROOFSTEP] rw [limit.w_assoc] [GOAL] C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ diagramOverOpenπ D U i ≫ ιInvAppπEqMap D U ≫ ιInvApp D U ≫ limit.π (diagramOverOpen D U) (op (WalkingMultispan.left (i, j))) ≫ 𝟙 ((componentwiseDiagram (MultispanIndex.multispan (diagram D.toGlueData)) ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)).obj (op (WalkingMultispan.left (i, j)))) = limit.π (diagramOverOpen D U) (op (WalkingMultispan.left (i, j))) ≫ 𝟙 ((componentwiseDiagram (MultispanIndex.multispan (diagram D.toGlueData)) ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)).obj (op (WalkingMultispan.left (i, j)))) [PROOFSTEP] erw [limit.lift_π_assoc] [GOAL] C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ diagramOverOpenπ D U i ≫ ιInvAppπEqMap D U ≫ NatTrans.app { pt := (CategoryTheory.GlueData.U D.toGlueData i).presheaf.obj (op U), π := NatTrans.mk fun j => ιInvAppπApp D U j.unop }.π (op (WalkingMultispan.left (i, j))) ≫ 𝟙 ((componentwiseDiagram (MultispanIndex.multispan (diagram D.toGlueData)) ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)).obj (op (WalkingMultispan.left (i, j)))) = limit.π (diagramOverOpen D U) (op (WalkingMultispan.left (i, j))) ≫ 𝟙 ((componentwiseDiagram (MultispanIndex.multispan (diagram D.toGlueData)) ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)).obj (op (WalkingMultispan.left (i, j)))) [PROOFSTEP] rw [Category.comp_id, Category.comp_id] [GOAL] C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ diagramOverOpenπ D U i ≫ ιInvAppπEqMap D U ≫ NatTrans.app { pt := (CategoryTheory.GlueData.U D.toGlueData i).presheaf.obj (op U), π := NatTrans.mk fun j => ιInvAppπApp D U j.unop }.π (op (WalkingMultispan.left (i, j))) = limit.π (diagramOverOpen D U) (op (WalkingMultispan.left (i, j))) [PROOFSTEP] change _ ≫ _ ≫ (_ ≫ _) ≫ _ = _ [GOAL] C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ diagramOverOpenπ D U i ≫ ιInvAppπEqMap D U ≫ (NatTrans.app (f D.toGlueData i i).c (op U) ≫ NatTrans.app (t D.toGlueData i i).c ((Opens.map (f D.toGlueData i i).base).op.obj (op U)) ≫ IsOpenImmersion.invApp (_ : IsOpenImmersion (f D.toGlueData i i)) { unop := { carrier := ↑(t D.toGlueData i i).base ⁻¹' ↑((Opens.map (f D.toGlueData i i).base).op.obj (op U)).unop, is_open' := (_ : IsOpen (↑(t D.toGlueData i i).base ⁻¹' ↑((Opens.map (f D.toGlueData i i).base).op.obj (op U)).unop)) } }.unop ≫ (CategoryTheory.GlueData.U D.toGlueData i).presheaf.map (eqToHom (_ : (Opens.map (ι D.toGlueData i).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U) = (IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i i))).obj ((Opens.map (t D.toGlueData i i).base).obj ((Opens.map (f D.toGlueData i i).base).obj U)))).op) ≫ NatTrans.app (f D.toGlueData i j).c (op ((Opens.map (ι D.toGlueData i).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) ≫ (V D.toGlueData (i, j)).presheaf.map (eqToHom (_ : (Opens.map (f D.toGlueData i j).base).op.obj (op ((Opens.map (ι D.toGlueData i).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.left (i, j))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) = limit.π (diagramOverOpen D U) (op (WalkingMultispan.left (i, j))) [PROOFSTEP] rw [congr_app (D.t_id _), id_c_app] [GOAL] C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ diagramOverOpenπ D U i ≫ ιInvAppπEqMap D U ≫ (NatTrans.app (f D.toGlueData i i).c (op U) ≫ ((V D.toGlueData (i, i)).presheaf.map (𝟙 ((Opens.map (f D.toGlueData i i).base).op.obj (op U))) ≫ (V D.toGlueData (i, i)).presheaf.map (eqToHom (_ : (Opens.map (𝟙 (V D.toGlueData (i, i))).base).op.obj ((Opens.map (f D.toGlueData i i).base).op.obj (op U)) = (Opens.map (t D.toGlueData i i).base).op.obj ((Opens.map (f D.toGlueData i i).base).op.obj (op U))))) ≫ IsOpenImmersion.invApp (_ : IsOpenImmersion (f D.toGlueData i i)) { unop := { carrier := ↑(t D.toGlueData i i).base ⁻¹' ↑((Opens.map (f D.toGlueData i i).base).op.obj (op U)).unop, is_open' := (_ : IsOpen (↑(t D.toGlueData i i).base ⁻¹' ↑((Opens.map (f D.toGlueData i i).base).op.obj (op U)).unop)) } }.unop ≫ (CategoryTheory.GlueData.U D.toGlueData i).presheaf.map (eqToHom (_ : (Opens.map (ι D.toGlueData i).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U) = (IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i i))).obj ((Opens.map (t D.toGlueData i i).base).obj ((Opens.map (f D.toGlueData i i).base).obj U)))).op) ≫ NatTrans.app (f D.toGlueData i j).c (op ((Opens.map (ι D.toGlueData i).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) ≫ (V D.toGlueData (i, j)).presheaf.map (eqToHom (_ : (Opens.map (f D.toGlueData i j).base).op.obj (op ((Opens.map (ι D.toGlueData i).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.left (i, j))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) = limit.π (diagramOverOpen D U) (op (WalkingMultispan.left (i, j))) [PROOFSTEP] simp_rw [Category.assoc] [GOAL] C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ diagramOverOpenπ D U i ≫ ιInvAppπEqMap D U ≫ NatTrans.app (f D.toGlueData i i).c (op U) ≫ (V D.toGlueData (i, i)).presheaf.map (𝟙 ((Opens.map (f D.toGlueData i i).base).op.obj (op U))) ≫ (V D.toGlueData (i, i)).presheaf.map (eqToHom (_ : (Opens.map (𝟙 (V D.toGlueData (i, i))).base).op.obj ((Opens.map (f D.toGlueData i i).base).op.obj (op U)) = (Opens.map (t D.toGlueData i i).base).op.obj ((Opens.map (f D.toGlueData i i).base).op.obj (op U)))) ≫ IsOpenImmersion.invApp (_ : IsOpenImmersion (f D.toGlueData i i)) { carrier := ↑(t D.toGlueData i i).base ⁻¹' ↑((Opens.map (f D.toGlueData i i).base).op.obj (op U)).unop, is_open' := (_ : IsOpen (↑(t D.toGlueData i i).base ⁻¹' ↑((Opens.map (f D.toGlueData i i).base).op.obj (op U)).unop)) } ≫ (CategoryTheory.GlueData.U D.toGlueData i).presheaf.map (eqToHom (_ : (Opens.map (ι D.toGlueData i).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U) = (IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i i))).obj ((Opens.map (t D.toGlueData i i).base).obj ((Opens.map (f D.toGlueData i i).base).obj U)))).op ≫ NatTrans.app (f D.toGlueData i j).c (op ((Opens.map (ι D.toGlueData i).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) ≫ (V D.toGlueData (i, j)).presheaf.map (eqToHom (_ : (Opens.map (f D.toGlueData i j).base).op.obj (op ((Opens.map (ι D.toGlueData i).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.left (i, j))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) = limit.π (diagramOverOpen D U) (op (WalkingMultispan.left (i, j))) [PROOFSTEP] rw [← Functor.map_comp_assoc] -- Porting note : change `rw` to `erw` [GOAL] C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ diagramOverOpenπ D U i ≫ ιInvAppπEqMap D U ≫ NatTrans.app (f D.toGlueData i i).c (op U) ≫ (V D.toGlueData (i, i)).presheaf.map (𝟙 ((Opens.map (f D.toGlueData i i).base).op.obj (op U)) ≫ eqToHom (_ : (Opens.map (𝟙 (V D.toGlueData (i, i))).base).op.obj ((Opens.map (f D.toGlueData i i).base).op.obj (op U)) = (Opens.map (t D.toGlueData i i).base).op.obj ((Opens.map (f D.toGlueData i i).base).op.obj (op U)))) ≫ IsOpenImmersion.invApp (_ : IsOpenImmersion (f D.toGlueData i i)) { carrier := ↑(t D.toGlueData i i).base ⁻¹' ↑((Opens.map (f D.toGlueData i i).base).op.obj (op U)).unop, is_open' := (_ : IsOpen (↑(t D.toGlueData i i).base ⁻¹' ↑((Opens.map (f D.toGlueData i i).base).op.obj (op U)).unop)) } ≫ (CategoryTheory.GlueData.U D.toGlueData i).presheaf.map (eqToHom (_ : (Opens.map (ι D.toGlueData i).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U) = (IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i i))).obj ((Opens.map (t D.toGlueData i i).base).obj ((Opens.map (f D.toGlueData i i).base).obj U)))).op ≫ NatTrans.app (f D.toGlueData i j).c (op ((Opens.map (ι D.toGlueData i).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) ≫ (V D.toGlueData (i, j)).presheaf.map (eqToHom (_ : (Opens.map (f D.toGlueData i j).base).op.obj (op ((Opens.map (ι D.toGlueData i).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.left (i, j))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) = limit.π (diagramOverOpen D U) (op (WalkingMultispan.left (i, j))) [PROOFSTEP] erw [IsOpenImmersion.inv_naturality_assoc] [GOAL] C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ diagramOverOpenπ D U i ≫ ιInvAppπEqMap D U ≫ NatTrans.app (f D.toGlueData i i).c (op U) ≫ IsOpenImmersion.invApp (_ : IsOpenImmersion (f D.toGlueData i i)) ((Opens.map (f D.toGlueData i i).base).op.obj (op U)).unop ≫ (CategoryTheory.GlueData.U D.toGlueData i).presheaf.map ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i i))).op.map (𝟙 ((Opens.map (f D.toGlueData i i).base).op.obj (op U)) ≫ eqToHom (_ : (Opens.map (𝟙 (V D.toGlueData (i, i))).base).op.obj ((Opens.map (f D.toGlueData i i).base).op.obj (op U)) = (Opens.map (t D.toGlueData i i).base).op.obj ((Opens.map (f D.toGlueData i i).base).op.obj (op U))))) ≫ (CategoryTheory.GlueData.U D.toGlueData i).presheaf.map (eqToHom (_ : (Opens.map (ι D.toGlueData i).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U) = (IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i i))).obj ((Opens.map (t D.toGlueData i i).base).obj ((Opens.map (f D.toGlueData i i).base).obj U)))).op ≫ NatTrans.app (f D.toGlueData i j).c (op ((Opens.map (ι D.toGlueData i).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) ≫ (V D.toGlueData (i, j)).presheaf.map (eqToHom (_ : (Opens.map (f D.toGlueData i j).base).op.obj (op ((Opens.map (ι D.toGlueData i).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.left (i, j))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) = limit.π (diagramOverOpen D U) (op (WalkingMultispan.left (i, j))) [PROOFSTEP] erw [IsOpenImmersion.app_invApp_assoc] [GOAL] C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ diagramOverOpenπ D U i ≫ ιInvAppπEqMap D U ≫ (CategoryTheory.GlueData.U D.toGlueData i).presheaf.map (homOfLE (_ : ↑(f D.toGlueData i i).base '' (↑(f D.toGlueData i i).base ⁻¹' U.carrier) ⊆ U.carrier)).op ≫ (CategoryTheory.GlueData.U D.toGlueData i).presheaf.map ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i i))).op.map (𝟙 ((Opens.map (f D.toGlueData i i).base).op.obj (op U)) ≫ eqToHom (_ : (Opens.map (𝟙 (V D.toGlueData (i, i))).base).op.obj ((Opens.map (f D.toGlueData i i).base).op.obj (op U)) = (Opens.map (t D.toGlueData i i).base).op.obj ((Opens.map (f D.toGlueData i i).base).op.obj (op U))))) ≫ (CategoryTheory.GlueData.U D.toGlueData i).presheaf.map (eqToHom (_ : (Opens.map (ι D.toGlueData i).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U) = (IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i i))).obj ((Opens.map (t D.toGlueData i i).base).obj ((Opens.map (f D.toGlueData i i).base).obj U)))).op ≫ NatTrans.app (f D.toGlueData i j).c (op ((Opens.map (ι D.toGlueData i).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) ≫ (V D.toGlueData (i, j)).presheaf.map (eqToHom (_ : (Opens.map (f D.toGlueData i j).base).op.obj (op ((Opens.map (ι D.toGlueData i).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.left (i, j))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) = limit.π (diagramOverOpen D U) (op (WalkingMultispan.left (i, j))) [PROOFSTEP] iterate 3 rw [← Functor.map_comp_assoc] [GOAL] C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ diagramOverOpenπ D U i ≫ ιInvAppπEqMap D U ≫ (CategoryTheory.GlueData.U D.toGlueData i).presheaf.map (homOfLE (_ : ↑(f D.toGlueData i i).base '' (↑(f D.toGlueData i i).base ⁻¹' U.carrier) ⊆ U.carrier)).op ≫ (CategoryTheory.GlueData.U D.toGlueData i).presheaf.map ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i i))).op.map (𝟙 ((Opens.map (f D.toGlueData i i).base).op.obj (op U)) ≫ eqToHom (_ : (Opens.map (𝟙 (V D.toGlueData (i, i))).base).op.obj ((Opens.map (f D.toGlueData i i).base).op.obj (op U)) = (Opens.map (t D.toGlueData i i).base).op.obj ((Opens.map (f D.toGlueData i i).base).op.obj (op U))))) ≫ (CategoryTheory.GlueData.U D.toGlueData i).presheaf.map (eqToHom (_ : (Opens.map (ι D.toGlueData i).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U) = (IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i i))).obj ((Opens.map (t D.toGlueData i i).base).obj ((Opens.map (f D.toGlueData i i).base).obj U)))).op ≫ NatTrans.app (f D.toGlueData i j).c (op ((Opens.map (ι D.toGlueData i).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) ≫ (V D.toGlueData (i, j)).presheaf.map (eqToHom (_ : (Opens.map (f D.toGlueData i j).base).op.obj (op ((Opens.map (ι D.toGlueData i).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.left (i, j))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) = limit.π (diagramOverOpen D U) (op (WalkingMultispan.left (i, j))) [PROOFSTEP] rw [← Functor.map_comp_assoc] [GOAL] C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ diagramOverOpenπ D U i ≫ (CategoryTheory.GlueData.U D.toGlueData i).presheaf.map ((eqToIso (_ : op U = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.right i)).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))).inv ≫ (homOfLE (_ : ↑(f D.toGlueData i i).base '' (↑(f D.toGlueData i i).base ⁻¹' U.carrier) ⊆ U.carrier)).op) ≫ (CategoryTheory.GlueData.U D.toGlueData i).presheaf.map ((IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i i))).op.map (𝟙 ((Opens.map (f D.toGlueData i i).base).op.obj (op U)) ≫ eqToHom (_ : (Opens.map (𝟙 (V D.toGlueData (i, i))).base).op.obj ((Opens.map (f D.toGlueData i i).base).op.obj (op U)) = (Opens.map (t D.toGlueData i i).base).op.obj ((Opens.map (f D.toGlueData i i).base).op.obj (op U))))) ≫ (CategoryTheory.GlueData.U D.toGlueData i).presheaf.map (eqToHom (_ : (Opens.map (ι D.toGlueData i).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U) = (IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i i))).obj ((Opens.map (t D.toGlueData i i).base).obj ((Opens.map (f D.toGlueData i i).base).obj U)))).op ≫ NatTrans.app (f D.toGlueData i j).c (op ((Opens.map (ι D.toGlueData i).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) ≫ (V D.toGlueData (i, j)).presheaf.map (eqToHom (_ : (Opens.map (f D.toGlueData i j).base).op.obj (op ((Opens.map (ι D.toGlueData i).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.left (i, j))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) = limit.π (diagramOverOpen D U) (op (WalkingMultispan.left (i, j))) [PROOFSTEP] rw [← Functor.map_comp_assoc] [GOAL] C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ diagramOverOpenπ D U i ≫ (CategoryTheory.GlueData.U D.toGlueData i).presheaf.map (((eqToIso (_ : op U = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.right i)).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))).inv ≫ (homOfLE (_ : ↑(f D.toGlueData i i).base '' (↑(f D.toGlueData i i).base ⁻¹' U.carrier) ⊆ U.carrier)).op) ≫ (IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i i))).op.map (𝟙 ((Opens.map (f D.toGlueData i i).base).op.obj (op U)) ≫ eqToHom (_ : (Opens.map (𝟙 (V D.toGlueData (i, i))).base).op.obj ((Opens.map (f D.toGlueData i i).base).op.obj (op U)) = (Opens.map (t D.toGlueData i i).base).op.obj ((Opens.map (f D.toGlueData i i).base).op.obj (op U))))) ≫ (CategoryTheory.GlueData.U D.toGlueData i).presheaf.map (eqToHom (_ : (Opens.map (ι D.toGlueData i).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U) = (IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i i))).obj ((Opens.map (t D.toGlueData i i).base).obj ((Opens.map (f D.toGlueData i i).base).obj U)))).op ≫ NatTrans.app (f D.toGlueData i j).c (op ((Opens.map (ι D.toGlueData i).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) ≫ (V D.toGlueData (i, j)).presheaf.map (eqToHom (_ : (Opens.map (f D.toGlueData i j).base).op.obj (op ((Opens.map (ι D.toGlueData i).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.left (i, j))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) = limit.π (diagramOverOpen D U) (op (WalkingMultispan.left (i, j))) [PROOFSTEP] rw [← Functor.map_comp_assoc] [GOAL] C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ diagramOverOpenπ D U i ≫ (CategoryTheory.GlueData.U D.toGlueData i).presheaf.map ((((eqToIso (_ : op U = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.right i)).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))).inv ≫ (homOfLE (_ : ↑(f D.toGlueData i i).base '' (↑(f D.toGlueData i i).base ⁻¹' U.carrier) ⊆ U.carrier)).op) ≫ (IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i i))).op.map (𝟙 ((Opens.map (f D.toGlueData i i).base).op.obj (op U)) ≫ eqToHom (_ : (Opens.map (𝟙 (V D.toGlueData (i, i))).base).op.obj ((Opens.map (f D.toGlueData i i).base).op.obj (op U)) = (Opens.map (t D.toGlueData i i).base).op.obj ((Opens.map (f D.toGlueData i i).base).op.obj (op U))))) ≫ (eqToHom (_ : (Opens.map (ι D.toGlueData i).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U) = (IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i i))).obj ((Opens.map (t D.toGlueData i i).base).obj ((Opens.map (f D.toGlueData i i).base).obj U)))).op) ≫ NatTrans.app (f D.toGlueData i j).c (op ((Opens.map (ι D.toGlueData i).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) ≫ (V D.toGlueData (i, j)).presheaf.map (eqToHom (_ : (Opens.map (f D.toGlueData i j).base).op.obj (op ((Opens.map (ι D.toGlueData i).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.left (i, j))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) = limit.π (diagramOverOpen D U) (op (WalkingMultispan.left (i, j))) [PROOFSTEP] rw [NatTrans.naturality_assoc] [GOAL] C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ diagramOverOpenπ D U i ≫ NatTrans.app (f D.toGlueData i j).c (op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.right i)).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) ≫ ((f D.toGlueData i j).base _* (V D.toGlueData (i, j)).presheaf).map ((((eqToIso (_ : op U = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.right i)).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))).inv ≫ (homOfLE (_ : ↑(f D.toGlueData i i).base '' (↑(f D.toGlueData i i).base ⁻¹' U.carrier) ⊆ U.carrier)).op) ≫ (IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i i))).op.map (𝟙 ((Opens.map (f D.toGlueData i i).base).op.obj (op U)) ≫ eqToHom (_ : (Opens.map (𝟙 (V D.toGlueData (i, i))).base).op.obj ((Opens.map (f D.toGlueData i i).base).op.obj (op U)) = (Opens.map (t D.toGlueData i i).base).op.obj ((Opens.map (f D.toGlueData i i).base).op.obj (op U))))) ≫ (eqToHom (_ : (Opens.map (ι D.toGlueData i).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U) = (IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i i))).obj ((Opens.map (t D.toGlueData i i).base).obj ((Opens.map (f D.toGlueData i i).base).obj U)))).op) ≫ (V D.toGlueData (i, j)).presheaf.map (eqToHom (_ : (Opens.map (f D.toGlueData i j).base).op.obj (op ((Opens.map (ι D.toGlueData i).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.left (i, j))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) = limit.π (diagramOverOpen D U) (op (WalkingMultispan.left (i, j))) [PROOFSTEP] erw [← (D.V (i, j)).presheaf.map_comp] [GOAL] C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ diagramOverOpenπ D U i ≫ NatTrans.app (f D.toGlueData i j).c (op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.right i)).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) ≫ (V D.toGlueData (i, j)).presheaf.map ((Opens.map (f D.toGlueData i j).base).op.map ((((eqToIso (_ : op U = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.right i)).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))).inv ≫ (homOfLE (_ : ↑(f D.toGlueData i i).base '' (↑(f D.toGlueData i i).base ⁻¹' U.carrier) ⊆ U.carrier)).op) ≫ (IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i i))).op.map (𝟙 ((Opens.map (f D.toGlueData i i).base).op.obj (op U)) ≫ eqToHom (_ : (Opens.map (𝟙 (V D.toGlueData (i, i))).base).op.obj ((Opens.map (f D.toGlueData i i).base).op.obj (op U)) = (Opens.map (t D.toGlueData i i).base).op.obj ((Opens.map (f D.toGlueData i i).base).op.obj (op U))))) ≫ (eqToHom (_ : (Opens.map (ι D.toGlueData i).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U) = (IsOpenImmersion.openFunctor (_ : IsOpenImmersion (f D.toGlueData i i))).obj ((Opens.map (t D.toGlueData i i).base).obj ((Opens.map (f D.toGlueData i i).base).obj U)))).op) ≫ eqToHom (_ : (Opens.map (f D.toGlueData i j).base).op.obj (op ((Opens.map (ι D.toGlueData i).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.left (i, j))).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) = limit.π (diagramOverOpen D U) (op (WalkingMultispan.left (i, j))) [PROOFSTEP] convert limit.w (componentwiseDiagram 𝖣.diagram.multispan _) (Quiver.Hom.op (WalkingMultispan.Hom.fst (i, j))) [GOAL] C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ diagramOverOpenπ D U i ≫ ιInvAppπEqMap D U ≫ ιInvApp D U = 𝟙 (limit (diagramOverOpen D U)) [PROOFSTEP] ext j [GOAL] case w C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) j : (WalkingMultispan (diagram D.toGlueData).fstFrom (diagram D.toGlueData).sndFrom)ᵒᵖ ⊢ (diagramOverOpenπ D U i ≫ ιInvAppπEqMap D U ≫ ιInvApp D U) ≫ limit.π (diagramOverOpen D U) j = 𝟙 (limit (diagramOverOpen D U)) ≫ limit.π (diagramOverOpen D U) j [PROOFSTEP] induction j using Opposite.rec' with | h j => ?_ [GOAL] case w C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) j : (WalkingMultispan (diagram D.toGlueData).fstFrom (diagram D.toGlueData).sndFrom)ᵒᵖ ⊢ (diagramOverOpenπ D U i ≫ ιInvAppπEqMap D U ≫ ιInvApp D U) ≫ limit.π (diagramOverOpen D U) j = 𝟙 (limit (diagramOverOpen D U)) ≫ limit.π (diagramOverOpen D U) j [PROOFSTEP] induction j using Opposite.rec' with | h j => ?_ [GOAL] case w.h C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) j : WalkingMultispan (diagram D.toGlueData).fstFrom (diagram D.toGlueData).sndFrom ⊢ (diagramOverOpenπ D U i ≫ ιInvAppπEqMap D U ≫ ιInvApp D U) ≫ limit.π (diagramOverOpen D U) (op j) = 𝟙 (limit (diagramOverOpen D U)) ≫ limit.π (diagramOverOpen D U) (op j) [PROOFSTEP] rcases j with (⟨j, k⟩ | ⟨j⟩) [GOAL] case w.h.left.mk C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) j k : D.J ⊢ (diagramOverOpenπ D U i ≫ ιInvAppπEqMap D U ≫ ιInvApp D U) ≫ limit.π (diagramOverOpen D U) (op (WalkingMultispan.left (j, k))) = 𝟙 (limit (diagramOverOpen D U)) ≫ limit.π (diagramOverOpen D U) (op (WalkingMultispan.left (j, k))) [PROOFSTEP] rw [← limit.w (componentwiseDiagram 𝖣.diagram.multispan _) (Quiver.Hom.op (WalkingMultispan.Hom.fst (j, k))), ← Category.assoc, Category.id_comp] [GOAL] case w.h.left.mk C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) j k : D.J ⊢ ((diagramOverOpenπ D U i ≫ ιInvAppπEqMap D U ≫ ιInvApp D U) ≫ limit.π (componentwiseDiagram (MultispanIndex.multispan (diagram D.toGlueData)) ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)) (op (WalkingMultispan.right (MultispanIndex.fstFrom (diagram D.toGlueData) (j, k))))) ≫ (componentwiseDiagram (MultispanIndex.multispan (diagram D.toGlueData)) ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)).map (WalkingMultispan.Hom.fst (j, k)).op = limit.π (componentwiseDiagram (MultispanIndex.multispan (diagram D.toGlueData)) ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)) (op (WalkingMultispan.right (MultispanIndex.fstFrom (diagram D.toGlueData) (j, k)))) ≫ (componentwiseDiagram (MultispanIndex.multispan (diagram D.toGlueData)) ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)).map (WalkingMultispan.Hom.fst (j, k)).op [PROOFSTEP] congr 1 [GOAL] case w.h.left.mk.e_a C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) j k : D.J ⊢ (diagramOverOpenπ D U i ≫ ιInvAppπEqMap D U ≫ ιInvApp D U) ≫ limit.π (componentwiseDiagram (MultispanIndex.multispan (diagram D.toGlueData)) ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)) (op (WalkingMultispan.right (MultispanIndex.fstFrom (diagram D.toGlueData) (j, k)))) = limit.π (componentwiseDiagram (MultispanIndex.multispan (diagram D.toGlueData)) ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)) (op (WalkingMultispan.right (MultispanIndex.fstFrom (diagram D.toGlueData) (j, k)))) [PROOFSTEP] simp_rw [Category.assoc] [GOAL] case w.h.left.mk.e_a C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) j k : D.J ⊢ diagramOverOpenπ D U i ≫ ιInvAppπEqMap D U ≫ ιInvApp D U ≫ limit.π (componentwiseDiagram (MultispanIndex.multispan (diagram D.toGlueData)) ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)) (op (WalkingMultispan.right (MultispanIndex.fstFrom (diagram D.toGlueData) (j, k)))) = limit.π (componentwiseDiagram (MultispanIndex.multispan (diagram D.toGlueData)) ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)) (op (WalkingMultispan.right (MultispanIndex.fstFrom (diagram D.toGlueData) (j, k)))) [PROOFSTEP] apply π_ιInvApp_π [GOAL] case w.h.right C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) j : (diagram D.toGlueData).R ⊢ (diagramOverOpenπ D U i ≫ ιInvAppπEqMap D U ≫ ιInvApp D U) ≫ limit.π (diagramOverOpen D U) (op (WalkingMultispan.right j)) = 𝟙 (limit (diagramOverOpen D U)) ≫ limit.π (diagramOverOpen D U) (op (WalkingMultispan.right j)) [PROOFSTEP] simp_rw [Category.assoc] [GOAL] case w.h.right C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) j : (diagram D.toGlueData).R ⊢ diagramOverOpenπ D U i ≫ ιInvAppπEqMap D U ≫ ιInvApp D U ≫ limit.π (diagramOverOpen D U) (op (WalkingMultispan.right j)) = 𝟙 (limit (diagramOverOpen D U)) ≫ limit.π (diagramOverOpen D U) (op (WalkingMultispan.right j)) [PROOFSTEP] rw [Category.id_comp] [GOAL] case w.h.right C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) j : (diagram D.toGlueData).R ⊢ diagramOverOpenπ D U i ≫ ιInvAppπEqMap D U ≫ ιInvApp D U ≫ limit.π (diagramOverOpen D U) (op (WalkingMultispan.right j)) = limit.π (diagramOverOpen D U) (op (WalkingMultispan.right j)) [PROOFSTEP] apply π_ιInvApp_π [GOAL] C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ IsIso (diagramOverOpenπ D U i) [PROOFSTEP] use D.ιInvAppπEqMap U ≫ D.ιInvApp U [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ diagramOverOpenπ D U i ≫ ιInvAppπEqMap D U ≫ ιInvApp D U = 𝟙 (limit (diagramOverOpen D U)) ∧ (ιInvAppπEqMap D U ≫ ιInvApp D U) ≫ diagramOverOpenπ D U i = 𝟙 ((diagramOverOpen D U).obj (op (WalkingMultispan.right i))) [PROOFSTEP] constructor [GOAL] case h.left C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ diagramOverOpenπ D U i ≫ ιInvAppπEqMap D U ≫ ιInvApp D U = 𝟙 (limit (diagramOverOpen D U)) [PROOFSTEP] apply π_ιInvApp_eq_id [GOAL] case h.right C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ (ιInvAppπEqMap D U ≫ ιInvApp D U) ≫ diagramOverOpenπ D U i = 𝟙 ((diagramOverOpen D U).obj (op (WalkingMultispan.right i))) [PROOFSTEP] rw [Category.assoc, (D.ιInvApp_π _).choose_spec] [GOAL] case h.right C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ ιInvAppπEqMap D U ≫ (CategoryTheory.GlueData.U D.toGlueData i).presheaf.map (eqToHom (_ : op U = op ((Opens.map (colimit.ι (MultispanIndex.multispan (diagram D.toGlueData)) (op (WalkingMultispan.right i)).unop).base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)))) = 𝟙 ((diagramOverOpen D U).obj (op (WalkingMultispan.right i))) [PROOFSTEP] exact Iso.inv_hom_id ((D.U i).presheaf.mapIso (eqToIso _)) [GOAL] C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ IsIso (NatTrans.app (ι D.toGlueData i).c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U))) [PROOFSTEP] erw [← colimitPresheafObjIsoComponentwiseLimit_hom_π] [GOAL] C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i : D.J U : Opens ↑↑(CategoryTheory.GlueData.U D.toGlueData i) ⊢ IsIso ((colimitPresheafObjIsoComponentwiseLimit (MultispanIndex.multispan (diagram D.toGlueData)) ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)).hom ≫ limit.π (componentwiseDiagram (MultispanIndex.multispan (diagram D.toGlueData)) ((IsOpenMap.functor (_ : IsOpenMap ↑(ι D.toGlueData i).base)).obj U)) (op (WalkingMultispan.right i))) [PROOFSTEP] infer_instance [GOAL] C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j : D.J s : PullbackCone (ι D.toGlueData i) (ι D.toGlueData j) ⊢ { l // l ≫ PullbackCone.fst (vPullbackCone D.toGlueData i j) = PullbackCone.fst s ∧ l ≫ PullbackCone.snd (vPullbackCone D.toGlueData i j) = PullbackCone.snd s ∧ ∀ {m : s.pt ⟶ (vPullbackCone D.toGlueData i j).pt}, m ≫ PullbackCone.fst (vPullbackCone D.toGlueData i j) = PullbackCone.fst s → m ≫ PullbackCone.snd (vPullbackCone D.toGlueData i j) = PullbackCone.snd s → m = l } [PROOFSTEP] refine' ⟨_, _, _, _⟩ [GOAL] case refine'_1 C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j : D.J s : PullbackCone (ι D.toGlueData i) (ι D.toGlueData j) ⊢ s.pt ⟶ (vPullbackCone D.toGlueData i j).pt [PROOFSTEP] refine' PresheafedSpace.IsOpenImmersion.lift (D.f i j) s.fst _ [GOAL] case refine'_1 C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j : D.J s : PullbackCone (ι D.toGlueData i) (ι D.toGlueData j) ⊢ Set.range ↑(PullbackCone.fst s).base ⊆ Set.range ↑(f D.toGlueData i j).base [PROOFSTEP] erw [← D.toTopGlueData.preimage_range j i] [GOAL] case refine'_1 C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j : D.J s : PullbackCone (ι D.toGlueData i) (ι D.toGlueData j) ⊢ Set.range ↑(PullbackCone.fst s).base ⊆ ↑(ι (toTopGlueData D).toGlueData i) ⁻¹' Set.range ↑(ι (toTopGlueData D).toGlueData j) [PROOFSTEP] have : s.fst.base ≫ D.toTopGlueData.ι i = s.snd.base ≫ D.toTopGlueData.ι j := by rw [← 𝖣.ι_gluedIso_hom (PresheafedSpace.forget _) _, ← 𝖣.ι_gluedIso_hom (PresheafedSpace.forget _) _] have := congr_arg PresheafedSpace.Hom.base s.condition rw [comp_base, comp_base] at this replace this := reassoc_of% this exact this _ [GOAL] C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j : D.J s : PullbackCone (ι D.toGlueData i) (ι D.toGlueData j) ⊢ (PullbackCone.fst s).base ≫ ι (toTopGlueData D).toGlueData i = (PullbackCone.snd s).base ≫ ι (toTopGlueData D).toGlueData j [PROOFSTEP] rw [← 𝖣.ι_gluedIso_hom (PresheafedSpace.forget _) _, ← 𝖣.ι_gluedIso_hom (PresheafedSpace.forget _) _] [GOAL] C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j : D.J s : PullbackCone (ι D.toGlueData i) (ι D.toGlueData j) ⊢ (PullbackCone.fst s).base ≫ (forget C).map (ι D.toGlueData i) ≫ (gluedIso D.toGlueData (forget C)).hom = (PullbackCone.snd s).base ≫ (forget C).map (ι D.toGlueData j) ≫ (gluedIso D.toGlueData (forget C)).hom [PROOFSTEP] have := congr_arg PresheafedSpace.Hom.base s.condition [GOAL] C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j : D.J s : PullbackCone (ι D.toGlueData i) (ι D.toGlueData j) this : (PullbackCone.fst s ≫ ι D.toGlueData i).base = (PullbackCone.snd s ≫ ι D.toGlueData j).base ⊢ (PullbackCone.fst s).base ≫ (forget C).map (ι D.toGlueData i) ≫ (gluedIso D.toGlueData (forget C)).hom = (PullbackCone.snd s).base ≫ (forget C).map (ι D.toGlueData j) ≫ (gluedIso D.toGlueData (forget C)).hom [PROOFSTEP] rw [comp_base, comp_base] at this [GOAL] C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j : D.J s : PullbackCone (ι D.toGlueData i) (ι D.toGlueData j) this : (PullbackCone.fst s).base ≫ (ι D.toGlueData i).base = (PullbackCone.snd s).base ≫ (ι D.toGlueData j).base ⊢ (PullbackCone.fst s).base ≫ (forget C).map (ι D.toGlueData i) ≫ (gluedIso D.toGlueData (forget C)).hom = (PullbackCone.snd s).base ≫ (forget C).map (ι D.toGlueData j) ≫ (gluedIso D.toGlueData (forget C)).hom [PROOFSTEP] replace this := reassoc_of% this [GOAL] C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j : D.J s : PullbackCone (ι D.toGlueData i) (ι D.toGlueData j) this : ∀ {Z : TopCat} (h : ↑(glued D.toGlueData) ⟶ Z), (PullbackCone.fst s).base ≫ (ι D.toGlueData i).base ≫ h = (PullbackCone.snd s).base ≫ (ι D.toGlueData j).base ≫ h ⊢ (PullbackCone.fst s).base ≫ (forget C).map (ι D.toGlueData i) ≫ (gluedIso D.toGlueData (forget C)).hom = (PullbackCone.snd s).base ≫ (forget C).map (ι D.toGlueData j) ≫ (gluedIso D.toGlueData (forget C)).hom [PROOFSTEP] exact this _ [GOAL] case refine'_1 C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j : D.J s : PullbackCone (ι D.toGlueData i) (ι D.toGlueData j) this : (PullbackCone.fst s).base ≫ ι (toTopGlueData D).toGlueData i = (PullbackCone.snd s).base ≫ ι (toTopGlueData D).toGlueData j ⊢ Set.range ↑(PullbackCone.fst s).base ⊆ ↑(ι (toTopGlueData D).toGlueData i) ⁻¹' Set.range ↑(ι (toTopGlueData D).toGlueData j) [PROOFSTEP] rw [← Set.image_subset_iff, ← Set.image_univ, ← Set.image_comp, Set.image_univ] -- Porting note : change `rw` to `erw` [GOAL] case refine'_1 C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j : D.J s : PullbackCone (ι D.toGlueData i) (ι D.toGlueData j) this : (PullbackCone.fst s).base ≫ ι (toTopGlueData D).toGlueData i = (PullbackCone.snd s).base ≫ ι (toTopGlueData D).toGlueData j ⊢ Set.range (↑(ι (toTopGlueData D).toGlueData i) ∘ ↑(PullbackCone.fst s).base) ⊆ Set.range ↑(ι (toTopGlueData D).toGlueData j) [PROOFSTEP] erw [← coe_comp] [GOAL] case refine'_1 C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j : D.J s : PullbackCone (ι D.toGlueData i) (ι D.toGlueData j) this : (PullbackCone.fst s).base ≫ ι (toTopGlueData D).toGlueData i = (PullbackCone.snd s).base ≫ ι (toTopGlueData D).toGlueData j ⊢ Set.range ↑((PullbackCone.fst s).base ≫ ι (toTopGlueData D).toGlueData i) ⊆ Set.range ↑(ι (toTopGlueData D).toGlueData j) [PROOFSTEP] rw [this, coe_comp, ← Set.image_univ, Set.image_comp] [GOAL] case refine'_1 C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j : D.J s : PullbackCone (ι D.toGlueData i) (ι D.toGlueData j) this : (PullbackCone.fst s).base ≫ ι (toTopGlueData D).toGlueData i = (PullbackCone.snd s).base ≫ ι (toTopGlueData D).toGlueData j ⊢ ↑(ι (toTopGlueData D).toGlueData j) '' (↑(PullbackCone.snd s).base '' Set.univ) ⊆ Set.range ↑(ι (toTopGlueData D).toGlueData j) [PROOFSTEP] exact Set.image_subset_range _ _ [GOAL] case refine'_2 C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j : D.J s : PullbackCone (ι D.toGlueData i) (ι D.toGlueData j) ⊢ IsOpenImmersion.lift (f D.toGlueData i j) (PullbackCone.fst s) (_ : Set.range ↑(PullbackCone.fst s).base ⊆ Set.range ↑(f D.toGlueData i j).base) ≫ PullbackCone.fst (vPullbackCone D.toGlueData i j) = PullbackCone.fst s [PROOFSTEP] apply IsOpenImmersion.lift_fac [GOAL] case refine'_3 C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j : D.J s : PullbackCone (ι D.toGlueData i) (ι D.toGlueData j) ⊢ IsOpenImmersion.lift (f D.toGlueData i j) (PullbackCone.fst s) (_ : Set.range ↑(PullbackCone.fst s).base ⊆ Set.range ↑(f D.toGlueData i j).base) ≫ PullbackCone.snd (vPullbackCone D.toGlueData i j) = PullbackCone.snd s [PROOFSTEP] rw [← cancel_mono (𝖣.ι j), Category.assoc, ← (𝖣.vPullbackCone i j).condition] [GOAL] case refine'_3 C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j : D.J s : PullbackCone (ι D.toGlueData i) (ι D.toGlueData j) ⊢ IsOpenImmersion.lift (f D.toGlueData i j) (PullbackCone.fst s) (_ : Set.range ↑(PullbackCone.fst s).base ⊆ Set.range ↑(f D.toGlueData i j).base) ≫ PullbackCone.fst (vPullbackCone D.toGlueData i j) ≫ ι D.toGlueData i = PullbackCone.snd s ≫ ι D.toGlueData j [PROOFSTEP] conv_rhs => rw [← s.condition] [GOAL] C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j : D.J s : PullbackCone (ι D.toGlueData i) (ι D.toGlueData j) | PullbackCone.snd s ≫ ι D.toGlueData j [PROOFSTEP] rw [← s.condition] [GOAL] C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j : D.J s : PullbackCone (ι D.toGlueData i) (ι D.toGlueData j) | PullbackCone.snd s ≫ ι D.toGlueData j [PROOFSTEP] rw [← s.condition] [GOAL] C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j : D.J s : PullbackCone (ι D.toGlueData i) (ι D.toGlueData j) | PullbackCone.snd s ≫ ι D.toGlueData j [PROOFSTEP] rw [← s.condition] [GOAL] case refine'_3 C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j : D.J s : PullbackCone (ι D.toGlueData i) (ι D.toGlueData j) ⊢ IsOpenImmersion.lift (f D.toGlueData i j) (PullbackCone.fst s) (_ : Set.range ↑(PullbackCone.fst s).base ⊆ Set.range ↑(f D.toGlueData i j).base) ≫ PullbackCone.fst (vPullbackCone D.toGlueData i j) ≫ ι D.toGlueData i = PullbackCone.fst s ≫ ι D.toGlueData i [PROOFSTEP] erw [IsOpenImmersion.lift_fac_assoc] [GOAL] case refine'_4 C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j : D.J s : PullbackCone (ι D.toGlueData i) (ι D.toGlueData j) ⊢ ∀ {m : s.pt ⟶ (vPullbackCone D.toGlueData i j).pt}, m ≫ PullbackCone.fst (vPullbackCone D.toGlueData i j) = PullbackCone.fst s → m ≫ PullbackCone.snd (vPullbackCone D.toGlueData i j) = PullbackCone.snd s → m = IsOpenImmersion.lift (f D.toGlueData i j) (PullbackCone.fst s) (_ : Set.range ↑(PullbackCone.fst s).base ⊆ Set.range ↑(f D.toGlueData i j).base) [PROOFSTEP] intro m e₁ _ [GOAL] case refine'_4 C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j : D.J s : PullbackCone (ι D.toGlueData i) (ι D.toGlueData j) m : s.pt ⟶ (vPullbackCone D.toGlueData i j).pt e₁ : m ≫ PullbackCone.fst (vPullbackCone D.toGlueData i j) = PullbackCone.fst s a✝ : m ≫ PullbackCone.snd (vPullbackCone D.toGlueData i j) = PullbackCone.snd s ⊢ m = IsOpenImmersion.lift (f D.toGlueData i j) (PullbackCone.fst s) (_ : Set.range ↑(PullbackCone.fst s).base ⊆ Set.range ↑(f D.toGlueData i j).base) [PROOFSTEP] rw [← cancel_mono (D.f i j)] [GOAL] case refine'_4 C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j : D.J s : PullbackCone (ι D.toGlueData i) (ι D.toGlueData j) m : s.pt ⟶ (vPullbackCone D.toGlueData i j).pt e₁ : m ≫ PullbackCone.fst (vPullbackCone D.toGlueData i j) = PullbackCone.fst s a✝ : m ≫ PullbackCone.snd (vPullbackCone D.toGlueData i j) = PullbackCone.snd s ⊢ m ≫ f D.toGlueData i j = IsOpenImmersion.lift (f D.toGlueData i j) (PullbackCone.fst s) (_ : Set.range ↑(PullbackCone.fst s).base ⊆ Set.range ↑(f D.toGlueData i j).base) ≫ f D.toGlueData i j [PROOFSTEP] erw [e₁] [GOAL] case refine'_4 C : Type u inst✝¹ : Category.{v, u} C D : GlueData C inst✝ : HasLimits C i j : D.J s : PullbackCone (ι D.toGlueData i) (ι D.toGlueData j) m : s.pt ⟶ (vPullbackCone D.toGlueData i j).pt e₁ : m ≫ PullbackCone.fst (vPullbackCone D.toGlueData i j) = PullbackCone.fst s a✝ : m ≫ PullbackCone.snd (vPullbackCone D.toGlueData i j) = PullbackCone.snd s ⊢ PullbackCone.fst s = IsOpenImmersion.lift (f D.toGlueData i j) (PullbackCone.fst s) (_ : Set.range ↑(PullbackCone.fst s).base ⊆ Set.range ↑(f D.toGlueData i j).base) ≫ f D.toGlueData i j [PROOFSTEP] rw [IsOpenImmersion.lift_fac] [GOAL] C : Type u inst✝² : Category.{v, u} C inst✝¹ : HasProducts C D : GlueData C inst✝ : HasLimits C i : D.J ⊢ IsOpenImmersion (ι D.toGlueData i) [PROOFSTEP] rw [← D.ι_isoPresheafedSpace_inv] -- Porting note : was `inferInstance` [GOAL] C : Type u inst✝² : Category.{v, u} C inst✝¹ : HasProducts C D : GlueData C inst✝ : HasLimits C i : D.J ⊢ IsOpenImmersion (ι (toPresheafedSpaceGlueData D).toGlueData i ≫ (isoPresheafedSpace D).inv) [PROOFSTEP] refine PresheafedSpace.IsOpenImmersion.comp (hf := ?_) (hg := inferInstance) [GOAL] C : Type u inst✝² : Category.{v, u} C inst✝¹ : HasProducts C D : GlueData C inst✝ : HasLimits C i : D.J ⊢ PresheafedSpace.IsOpenImmersion (ι (toPresheafedSpaceGlueData D).toGlueData i) [PROOFSTEP] apply PresheafedSpace.GlueData.ιIsOpenImmersion [GOAL] C : Type u inst✝ : Category.{v, u} C D : GlueData i : D.J ⊢ IsOpenImmersion (ι D.toGlueData i) [PROOFSTEP] delta IsOpenImmersion [GOAL] C : Type u inst✝ : Category.{v, u} C D : GlueData i : D.J ⊢ SheafedSpace.IsOpenImmersion (ι D.toGlueData i).val [PROOFSTEP] rw [← D.ι_isoSheafedSpace_inv] [GOAL] C : Type u inst✝ : Category.{v, u} C D : GlueData i : D.J ⊢ SheafedSpace.IsOpenImmersion (ι (toSheafedSpaceGlueData D).toGlueData i ≫ (isoSheafedSpace D).inv) [PROOFSTEP] apply (config := { allowSynthFailures := true }) PresheafedSpace.IsOpenImmersion.comp [GOAL] case hf C : Type u inst✝ : Category.{v, u} C D : GlueData i : D.J ⊢ PresheafedSpace.IsOpenImmersion (ι (toSheafedSpaceGlueData D).toGlueData i) [PROOFSTEP] exact (D.toSheafedSpaceGlueData).ιIsOpenImmersion i
{"mathlib_filename": "Mathlib.AlgebraicGeometry.PresheafedSpace.Gluing", "llama_tokens": 183876}
[GOAL] R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : AddCommGroup N inst✝¹ : Module R N inst✝ : IsReflexive R M e : N ≃ₗ[R] Dual R M ⊢ ↑(trans e (dualMap (symm (flip e)))) = Dual.eval R N [PROOFSTEP] ext [GOAL] case h.h R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : AddCommGroup N inst✝¹ : Module R N inst✝ : IsReflexive R M e : N ≃ₗ[R] Dual R M x✝¹ : N x✝ : Dual R N ⊢ ↑(↑↑(trans e (dualMap (symm (flip e)))) x✝¹) x✝ = ↑(↑(Dual.eval R N) x✝¹) x✝ [PROOFSTEP] simp [GOAL] R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : AddCommGroup N inst✝¹ : Module R N inst✝ : IsReflexive R M e : N ≃ₗ[R] Dual R M ⊢ IsReflexive R N [PROOFSTEP] constructor [GOAL] case bijective_dual_eval' R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : AddCommGroup N inst✝¹ : Module R N inst✝ : IsReflexive R M e : N ≃ₗ[R] Dual R M ⊢ Function.Bijective ↑(Dual.eval R N) [PROOFSTEP] rw [← trans_dualMap_symm_flip e] [GOAL] case bijective_dual_eval' R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : AddCommGroup N inst✝¹ : Module R N inst✝ : IsReflexive R M e : N ≃ₗ[R] Dual R M ⊢ Function.Bijective ↑↑(trans e (dualMap (symm (flip e)))) [PROOFSTEP] exact LinearEquiv.bijective _ [GOAL] R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : AddCommGroup N inst✝¹ : Module R N inst✝ : IsReflexive R M e : N ≃ₗ[R] Dual R M h : optParam (IsReflexive R N) (_ : IsReflexive R N) ⊢ flip (flip e) = e [PROOFSTEP] ext [GOAL] case h.h R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : AddCommGroup N inst✝¹ : Module R N inst✝ : IsReflexive R M e : N ≃ₗ[R] Dual R M h : optParam (IsReflexive R N) (_ : IsReflexive R N) x✝¹ : N x✝ : M ⊢ ↑(↑(flip (flip e)) x✝¹) x✝ = ↑(↑e x✝¹) x✝ [PROOFSTEP] rfl
{"mathlib_filename": "Mathlib.LinearAlgebra.PerfectPairing", "llama_tokens": 1109}
[GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁶ : CommSemiring R inst✝⁵ : CommSemiring R₁ inst✝⁴ : AddCommMonoid M₁ inst✝³ : Module R₁ M₁ inst✝² : CommSemiring R₂ inst✝¹ : AddCommMonoid M₂ inst✝ : Module R₂ M₂ I₁ : R₁ →+* R I₂ : R₂ →+* R I₁' : R₁ →+* R B : M₁ →ₛₗ[I₁] M₂ →ₛₗ[I₂] R x : M₂ ⊢ IsOrtho B 0 x [PROOFSTEP] dsimp only [IsOrtho] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁶ : CommSemiring R inst✝⁵ : CommSemiring R₁ inst✝⁴ : AddCommMonoid M₁ inst✝³ : Module R₁ M₁ inst✝² : CommSemiring R₂ inst✝¹ : AddCommMonoid M₂ inst✝ : Module R₂ M₂ I₁ : R₁ →+* R I₂ : R₂ →+* R I₁' : R₁ →+* R B : M₁ →ₛₗ[I₁] M₂ →ₛₗ[I₂] R x : M₂ ⊢ ↑(↑B 0) x = 0 [PROOFSTEP] rw [map_zero B, zero_apply] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁶ : CommSemiring R inst✝⁵ : CommSemiring R₁ inst✝⁴ : AddCommMonoid M₁ inst✝³ : Module R₁ M₁ inst✝² : CommSemiring R₂ inst✝¹ : AddCommMonoid M₂ inst✝ : Module R₂ M₂ I₁ : R₁ →+* R I₂ : R₂ →+* R I₁' : R₁ →+* R B : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₁'] R x y : M₁ ⊢ IsOrtho B x y ↔ IsOrtho (flip B) y x [PROOFSTEP] simp_rw [isOrtho_def, flip_apply] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁶ : CommSemiring R inst✝⁵ : CommSemiring R₁ inst✝⁴ : AddCommMonoid M₁ inst✝³ : Module R₁ M₁ inst✝² : CommSemiring R₂ inst✝¹ : AddCommMonoid M₂ inst✝ : Module R₂ M₂ I₁ : R₁ →+* R I₂ : R₂ →+* R I₁' : R₁ →+* R B : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₁'] R v : n → M₁ ⊢ IsOrthoᵢ B v ↔ IsOrthoᵢ (flip B) v [PROOFSTEP] simp_rw [isOrthoᵢ_def] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁶ : CommSemiring R inst✝⁵ : CommSemiring R₁ inst✝⁴ : AddCommMonoid M₁ inst✝³ : Module R₁ M₁ inst✝² : CommSemiring R₂ inst✝¹ : AddCommMonoid M₂ inst✝ : Module R₂ M₂ I₁ : R₁ →+* R I₂ : R₂ →+* R I₁' : R₁ →+* R B : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₁'] R v : n → M₁ ⊢ (∀ (i j : n), i ≠ j → ↑(↑B (v i)) (v j) = 0) ↔ ∀ (i j : n), i ≠ j → ↑(↑(flip B) (v i)) (v j) = 0 [PROOFSTEP] constructor [GOAL] case mp R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁶ : CommSemiring R inst✝⁵ : CommSemiring R₁ inst✝⁴ : AddCommMonoid M₁ inst✝³ : Module R₁ M₁ inst✝² : CommSemiring R₂ inst✝¹ : AddCommMonoid M₂ inst✝ : Module R₂ M₂ I₁ : R₁ →+* R I₂ : R₂ →+* R I₁' : R₁ →+* R B : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₁'] R v : n → M₁ ⊢ (∀ (i j : n), i ≠ j → ↑(↑B (v i)) (v j) = 0) → ∀ (i j : n), i ≠ j → ↑(↑(flip B) (v i)) (v j) = 0 [PROOFSTEP] intro h i j hij [GOAL] case mpr R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁶ : CommSemiring R inst✝⁵ : CommSemiring R₁ inst✝⁴ : AddCommMonoid M₁ inst✝³ : Module R₁ M₁ inst✝² : CommSemiring R₂ inst✝¹ : AddCommMonoid M₂ inst✝ : Module R₂ M₂ I₁ : R₁ →+* R I₂ : R₂ →+* R I₁' : R₁ →+* R B : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₁'] R v : n → M₁ ⊢ (∀ (i j : n), i ≠ j → ↑(↑(flip B) (v i)) (v j) = 0) → ∀ (i j : n), i ≠ j → ↑(↑B (v i)) (v j) = 0 [PROOFSTEP] intro h i j hij [GOAL] case mp R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁶ : CommSemiring R inst✝⁵ : CommSemiring R₁ inst✝⁴ : AddCommMonoid M₁ inst✝³ : Module R₁ M₁ inst✝² : CommSemiring R₂ inst✝¹ : AddCommMonoid M₂ inst✝ : Module R₂ M₂ I₁ : R₁ →+* R I₂ : R₂ →+* R I₁' : R₁ →+* R B : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₁'] R v : n → M₁ h : ∀ (i j : n), i ≠ j → ↑(↑B (v i)) (v j) = 0 i j : n hij : i ≠ j ⊢ ↑(↑(flip B) (v i)) (v j) = 0 [PROOFSTEP] rw [flip_apply] [GOAL] case mp R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁶ : CommSemiring R inst✝⁵ : CommSemiring R₁ inst✝⁴ : AddCommMonoid M₁ inst✝³ : Module R₁ M₁ inst✝² : CommSemiring R₂ inst✝¹ : AddCommMonoid M₂ inst✝ : Module R₂ M₂ I₁ : R₁ →+* R I₂ : R₂ →+* R I₁' : R₁ →+* R B : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₁'] R v : n → M₁ h : ∀ (i j : n), i ≠ j → ↑(↑B (v i)) (v j) = 0 i j : n hij : i ≠ j ⊢ ↑(↑B (v j)) (v i) = 0 [PROOFSTEP] exact h j i (Ne.symm hij) [GOAL] case mpr R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁶ : CommSemiring R inst✝⁵ : CommSemiring R₁ inst✝⁴ : AddCommMonoid M₁ inst✝³ : Module R₁ M₁ inst✝² : CommSemiring R₂ inst✝¹ : AddCommMonoid M₂ inst✝ : Module R₂ M₂ I₁ : R₁ →+* R I₂ : R₂ →+* R I₁' : R₁ →+* R B : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₁'] R v : n → M₁ h : ∀ (i j : n), i ≠ j → ↑(↑(flip B) (v i)) (v j) = 0 i j : n hij : i ≠ j ⊢ ↑(↑B (v i)) (v j) = 0 [PROOFSTEP] simp_rw [flip_apply] at h [GOAL] case mpr R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁶ : CommSemiring R inst✝⁵ : CommSemiring R₁ inst✝⁴ : AddCommMonoid M₁ inst✝³ : Module R₁ M₁ inst✝² : CommSemiring R₂ inst✝¹ : AddCommMonoid M₂ inst✝ : Module R₂ M₂ I₁ : R₁ →+* R I₂ : R₂ →+* R I₁' : R₁ →+* R B : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₁'] R v : n → M₁ h : ∀ (i j : n), i ≠ j → ↑(↑B (v j)) (v i) = 0 i j : n hij : i ≠ j ⊢ ↑(↑B (v i)) (v j) = 0 [PROOFSTEP] exact h j i (Ne.symm hij) [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁶ : Field K inst✝⁵ : Field K₁ inst✝⁴ : AddCommGroup V₁ inst✝³ : Module K₁ V₁ inst✝² : Field K₂ inst✝¹ : AddCommGroup V₂ inst✝ : Module K₂ V₂ I₁ : K₁ →+* K I₂ : K₂ →+* K I₁' : K₁ →+* K J₁ J₂ : K →+* K B : V₁ →ₛₗ[I₁] V₂ →ₛₗ[I₂] K x : V₁ y : V₂ a : K₁ ha : a ≠ 0 ⊢ IsOrtho B x y ↔ IsOrtho B (a • x) y [PROOFSTEP] dsimp only [IsOrtho] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁶ : Field K inst✝⁵ : Field K₁ inst✝⁴ : AddCommGroup V₁ inst✝³ : Module K₁ V₁ inst✝² : Field K₂ inst✝¹ : AddCommGroup V₂ inst✝ : Module K₂ V₂ I₁ : K₁ →+* K I₂ : K₂ →+* K I₁' : K₁ →+* K J₁ J₂ : K →+* K B : V₁ →ₛₗ[I₁] V₂ →ₛₗ[I₂] K x : V₁ y : V₂ a : K₁ ha : a ≠ 0 ⊢ ↑(↑B x) y = 0 ↔ ↑(↑B (a • x)) y = 0 [PROOFSTEP] constructor [GOAL] case mp R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁶ : Field K inst✝⁵ : Field K₁ inst✝⁴ : AddCommGroup V₁ inst✝³ : Module K₁ V₁ inst✝² : Field K₂ inst✝¹ : AddCommGroup V₂ inst✝ : Module K₂ V₂ I₁ : K₁ →+* K I₂ : K₂ →+* K I₁' : K₁ →+* K J₁ J₂ : K →+* K B : V₁ →ₛₗ[I₁] V₂ →ₛₗ[I₂] K x : V₁ y : V₂ a : K₁ ha : a ≠ 0 ⊢ ↑(↑B x) y = 0 → ↑(↑B (a • x)) y = 0 [PROOFSTEP] intro H [GOAL] case mpr R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁶ : Field K inst✝⁵ : Field K₁ inst✝⁴ : AddCommGroup V₁ inst✝³ : Module K₁ V₁ inst✝² : Field K₂ inst✝¹ : AddCommGroup V₂ inst✝ : Module K₂ V₂ I₁ : K₁ →+* K I₂ : K₂ →+* K I₁' : K₁ →+* K J₁ J₂ : K →+* K B : V₁ →ₛₗ[I₁] V₂ →ₛₗ[I₂] K x : V₁ y : V₂ a : K₁ ha : a ≠ 0 ⊢ ↑(↑B (a • x)) y = 0 → ↑(↑B x) y = 0 [PROOFSTEP] intro H [GOAL] case mp R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁶ : Field K inst✝⁵ : Field K₁ inst✝⁴ : AddCommGroup V₁ inst✝³ : Module K₁ V₁ inst✝² : Field K₂ inst✝¹ : AddCommGroup V₂ inst✝ : Module K₂ V₂ I₁ : K₁ →+* K I₂ : K₂ →+* K I₁' : K₁ →+* K J₁ J₂ : K →+* K B : V₁ →ₛₗ[I₁] V₂ →ₛₗ[I₂] K x : V₁ y : V₂ a : K₁ ha : a ≠ 0 H : ↑(↑B x) y = 0 ⊢ ↑(↑B (a • x)) y = 0 [PROOFSTEP] rw [map_smulₛₗ₂, H, smul_zero] [GOAL] case mpr R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁶ : Field K inst✝⁵ : Field K₁ inst✝⁴ : AddCommGroup V₁ inst✝³ : Module K₁ V₁ inst✝² : Field K₂ inst✝¹ : AddCommGroup V₂ inst✝ : Module K₂ V₂ I₁ : K₁ →+* K I₂ : K₂ →+* K I₁' : K₁ →+* K J₁ J₂ : K →+* K B : V₁ →ₛₗ[I₁] V₂ →ₛₗ[I₂] K x : V₁ y : V₂ a : K₁ ha : a ≠ 0 H : ↑(↑B (a • x)) y = 0 ⊢ ↑(↑B x) y = 0 [PROOFSTEP] rw [map_smulₛₗ₂, smul_eq_zero] at H [GOAL] case mpr R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁶ : Field K inst✝⁵ : Field K₁ inst✝⁴ : AddCommGroup V₁ inst✝³ : Module K₁ V₁ inst✝² : Field K₂ inst✝¹ : AddCommGroup V₂ inst✝ : Module K₂ V₂ I₁ : K₁ →+* K I₂ : K₂ →+* K I₁' : K₁ →+* K J₁ J₂ : K →+* K B : V₁ →ₛₗ[I₁] V₂ →ₛₗ[I₂] K x : V₁ y : V₂ a : K₁ ha : a ≠ 0 H : ↑I₁ a = 0 ∨ ↑(↑B x) y = 0 ⊢ ↑(↑B x) y = 0 [PROOFSTEP] cases' H with H H [GOAL] case mpr.inl R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁶ : Field K inst✝⁵ : Field K₁ inst✝⁴ : AddCommGroup V₁ inst✝³ : Module K₁ V₁ inst✝² : Field K₂ inst✝¹ : AddCommGroup V₂ inst✝ : Module K₂ V₂ I₁ : K₁ →+* K I₂ : K₂ →+* K I₁' : K₁ →+* K J₁ J₂ : K →+* K B : V₁ →ₛₗ[I₁] V₂ →ₛₗ[I₂] K x : V₁ y : V₂ a : K₁ ha : a ≠ 0 H : ↑I₁ a = 0 ⊢ ↑(↑B x) y = 0 [PROOFSTEP] rw [map_eq_zero I₁] at H [GOAL] case mpr.inl R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁶ : Field K inst✝⁵ : Field K₁ inst✝⁴ : AddCommGroup V₁ inst✝³ : Module K₁ V₁ inst✝² : Field K₂ inst✝¹ : AddCommGroup V₂ inst✝ : Module K₂ V₂ I₁ : K₁ →+* K I₂ : K₂ →+* K I₁' : K₁ →+* K J₁ J₂ : K →+* K B : V₁ →ₛₗ[I₁] V₂ →ₛₗ[I₂] K x : V₁ y : V₂ a : K₁ ha : a ≠ 0 H : a = 0 ⊢ ↑(↑B x) y = 0 [PROOFSTEP] trivial [GOAL] case mpr.inr R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁶ : Field K inst✝⁵ : Field K₁ inst✝⁴ : AddCommGroup V₁ inst✝³ : Module K₁ V₁ inst✝² : Field K₂ inst✝¹ : AddCommGroup V₂ inst✝ : Module K₂ V₂ I₁ : K₁ →+* K I₂ : K₂ →+* K I₁' : K₁ →+* K J₁ J₂ : K →+* K B : V₁ →ₛₗ[I₁] V₂ →ₛₗ[I₂] K x : V₁ y : V₂ a : K₁ ha : a ≠ 0 H : ↑(↑B x) y = 0 ⊢ ↑(↑B x) y = 0 [PROOFSTEP] exact H [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁶ : Field K inst✝⁵ : Field K₁ inst✝⁴ : AddCommGroup V₁ inst✝³ : Module K₁ V₁ inst✝² : Field K₂ inst✝¹ : AddCommGroup V₂ inst✝ : Module K₂ V₂ I₁ : K₁ →+* K I₂ : K₂ →+* K I₁' : K₁ →+* K J₁ J₂ : K →+* K B : V₁ →ₛₗ[I₁] V₂ →ₛₗ[I₂] K x : V₁ y : V₂ a : K₂ ha : a ≠ 0 ⊢ IsOrtho B x y ↔ IsOrtho B x (a • y) [PROOFSTEP] dsimp only [IsOrtho] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁶ : Field K inst✝⁵ : Field K₁ inst✝⁴ : AddCommGroup V₁ inst✝³ : Module K₁ V₁ inst✝² : Field K₂ inst✝¹ : AddCommGroup V₂ inst✝ : Module K₂ V₂ I₁ : K₁ →+* K I₂ : K₂ →+* K I₁' : K₁ →+* K J₁ J₂ : K →+* K B : V₁ →ₛₗ[I₁] V₂ →ₛₗ[I₂] K x : V₁ y : V₂ a : K₂ ha : a ≠ 0 ⊢ ↑(↑B x) y = 0 ↔ ↑(↑B x) (a • y) = 0 [PROOFSTEP] constructor [GOAL] case mp R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁶ : Field K inst✝⁵ : Field K₁ inst✝⁴ : AddCommGroup V₁ inst✝³ : Module K₁ V₁ inst✝² : Field K₂ inst✝¹ : AddCommGroup V₂ inst✝ : Module K₂ V₂ I₁ : K₁ →+* K I₂ : K₂ →+* K I₁' : K₁ →+* K J₁ J₂ : K →+* K B : V₁ →ₛₗ[I₁] V₂ →ₛₗ[I₂] K x : V₁ y : V₂ a : K₂ ha : a ≠ 0 ⊢ ↑(↑B x) y = 0 → ↑(↑B x) (a • y) = 0 [PROOFSTEP] intro H [GOAL] case mpr R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁶ : Field K inst✝⁵ : Field K₁ inst✝⁴ : AddCommGroup V₁ inst✝³ : Module K₁ V₁ inst✝² : Field K₂ inst✝¹ : AddCommGroup V₂ inst✝ : Module K₂ V₂ I₁ : K₁ →+* K I₂ : K₂ →+* K I₁' : K₁ →+* K J₁ J₂ : K →+* K B : V₁ →ₛₗ[I₁] V₂ →ₛₗ[I₂] K x : V₁ y : V₂ a : K₂ ha : a ≠ 0 ⊢ ↑(↑B x) (a • y) = 0 → ↑(↑B x) y = 0 [PROOFSTEP] intro H [GOAL] case mp R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁶ : Field K inst✝⁵ : Field K₁ inst✝⁴ : AddCommGroup V₁ inst✝³ : Module K₁ V₁ inst✝² : Field K₂ inst✝¹ : AddCommGroup V₂ inst✝ : Module K₂ V₂ I₁ : K₁ →+* K I₂ : K₂ →+* K I₁' : K₁ →+* K J₁ J₂ : K →+* K B : V₁ →ₛₗ[I₁] V₂ →ₛₗ[I₂] K x : V₁ y : V₂ a : K₂ ha : a ≠ 0 H : ↑(↑B x) y = 0 ⊢ ↑(↑B x) (a • y) = 0 [PROOFSTEP] rw [map_smulₛₗ, H, smul_zero] [GOAL] case mpr R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁶ : Field K inst✝⁵ : Field K₁ inst✝⁴ : AddCommGroup V₁ inst✝³ : Module K₁ V₁ inst✝² : Field K₂ inst✝¹ : AddCommGroup V₂ inst✝ : Module K₂ V₂ I₁ : K₁ →+* K I₂ : K₂ →+* K I₁' : K₁ →+* K J₁ J₂ : K →+* K B : V₁ →ₛₗ[I₁] V₂ →ₛₗ[I₂] K x : V₁ y : V₂ a : K₂ ha : a ≠ 0 H : ↑(↑B x) (a • y) = 0 ⊢ ↑(↑B x) y = 0 [PROOFSTEP] rw [map_smulₛₗ, smul_eq_zero] at H [GOAL] case mpr R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁶ : Field K inst✝⁵ : Field K₁ inst✝⁴ : AddCommGroup V₁ inst✝³ : Module K₁ V₁ inst✝² : Field K₂ inst✝¹ : AddCommGroup V₂ inst✝ : Module K₂ V₂ I₁ : K₁ →+* K I₂ : K₂ →+* K I₁' : K₁ →+* K J₁ J₂ : K →+* K B : V₁ →ₛₗ[I₁] V₂ →ₛₗ[I₂] K x : V₁ y : V₂ a : K₂ ha : a ≠ 0 H : ↑I₂ a = 0 ∨ ↑(↑B x) y = 0 ⊢ ↑(↑B x) y = 0 [PROOFSTEP] cases' H with H H [GOAL] case mpr.inl R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁶ : Field K inst✝⁵ : Field K₁ inst✝⁴ : AddCommGroup V₁ inst✝³ : Module K₁ V₁ inst✝² : Field K₂ inst✝¹ : AddCommGroup V₂ inst✝ : Module K₂ V₂ I₁ : K₁ →+* K I₂ : K₂ →+* K I₁' : K₁ →+* K J₁ J₂ : K →+* K B : V₁ →ₛₗ[I₁] V₂ →ₛₗ[I₂] K x : V₁ y : V₂ a : K₂ ha : a ≠ 0 H : ↑I₂ a = 0 ⊢ ↑(↑B x) y = 0 [PROOFSTEP] simp at H [GOAL] case mpr.inl R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁶ : Field K inst✝⁵ : Field K₁ inst✝⁴ : AddCommGroup V₁ inst✝³ : Module K₁ V₁ inst✝² : Field K₂ inst✝¹ : AddCommGroup V₂ inst✝ : Module K₂ V₂ I₁ : K₁ →+* K I₂ : K₂ →+* K I₁' : K₁ →+* K J₁ J₂ : K →+* K B : V₁ →ₛₗ[I₁] V₂ →ₛₗ[I₂] K x : V₁ y : V₂ a : K₂ ha : a ≠ 0 H : a = 0 ⊢ ↑(↑B x) y = 0 [PROOFSTEP] exfalso [GOAL] case mpr.inl.h R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁶ : Field K inst✝⁵ : Field K₁ inst✝⁴ : AddCommGroup V₁ inst✝³ : Module K₁ V₁ inst✝² : Field K₂ inst✝¹ : AddCommGroup V₂ inst✝ : Module K₂ V₂ I₁ : K₁ →+* K I₂ : K₂ →+* K I₁' : K₁ →+* K J₁ J₂ : K →+* K B : V₁ →ₛₗ[I₁] V₂ →ₛₗ[I₂] K x : V₁ y : V₂ a : K₂ ha : a ≠ 0 H : a = 0 ⊢ False [PROOFSTEP] exact ha H [GOAL] case mpr.inr R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁶ : Field K inst✝⁵ : Field K₁ inst✝⁴ : AddCommGroup V₁ inst✝³ : Module K₁ V₁ inst✝² : Field K₂ inst✝¹ : AddCommGroup V₂ inst✝ : Module K₂ V₂ I₁ : K₁ →+* K I₂ : K₂ →+* K I₁' : K₁ →+* K J₁ J₂ : K →+* K B : V₁ →ₛₗ[I₁] V₂ →ₛₗ[I₂] K x : V₁ y : V₂ a : K₂ ha : a ≠ 0 H : ↑(↑B x) y = 0 ⊢ ↑(↑B x) y = 0 [PROOFSTEP] exact H [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁶ : Field K inst✝⁵ : Field K₁ inst✝⁴ : AddCommGroup V₁ inst✝³ : Module K₁ V₁ inst✝² : Field K₂ inst✝¹ : AddCommGroup V₂ inst✝ : Module K₂ V₂ I₁ : K₁ →+* K I₂ : K₂ →+* K I₁' : K₁ →+* K J₁ J₂ : K →+* K B : V₁ →ₛₗ[I₁] V₁ →ₛₗ[I₁'] K v : n → V₁ hv₁ : IsOrthoᵢ B v hv₂ : ∀ (i : n), ¬IsOrtho B (v i) (v i) ⊢ LinearIndependent K₁ v [PROOFSTEP] classical rw [linearIndependent_iff'] intro s w hs i hi have : B (s.sum fun i : n ↦ w i • v i) (v i) = 0 := by rw [hs, map_zero, zero_apply] have hsum : (s.sum fun j : n ↦ I₁ (w j) * B (v j) (v i)) = I₁ (w i) * B (v i) (v i) := by apply Finset.sum_eq_single_of_mem i hi intro j _hj hij rw [isOrthoᵢ_def.1 hv₁ _ _ hij, mul_zero] simp_rw [B.map_sum₂, map_smulₛₗ₂, smul_eq_mul, hsum] at this apply (map_eq_zero I₁).mp exact eq_zero_of_ne_zero_of_mul_right_eq_zero (hv₂ i) this [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁶ : Field K inst✝⁵ : Field K₁ inst✝⁴ : AddCommGroup V₁ inst✝³ : Module K₁ V₁ inst✝² : Field K₂ inst✝¹ : AddCommGroup V₂ inst✝ : Module K₂ V₂ I₁ : K₁ →+* K I₂ : K₂ →+* K I₁' : K₁ →+* K J₁ J₂ : K →+* K B : V₁ →ₛₗ[I₁] V₁ →ₛₗ[I₁'] K v : n → V₁ hv₁ : IsOrthoᵢ B v hv₂ : ∀ (i : n), ¬IsOrtho B (v i) (v i) ⊢ LinearIndependent K₁ v [PROOFSTEP] rw [linearIndependent_iff'] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁶ : Field K inst✝⁵ : Field K₁ inst✝⁴ : AddCommGroup V₁ inst✝³ : Module K₁ V₁ inst✝² : Field K₂ inst✝¹ : AddCommGroup V₂ inst✝ : Module K₂ V₂ I₁ : K₁ →+* K I₂ : K₂ →+* K I₁' : K₁ →+* K J₁ J₂ : K →+* K B : V₁ →ₛₗ[I₁] V₁ →ₛₗ[I₁'] K v : n → V₁ hv₁ : IsOrthoᵢ B v hv₂ : ∀ (i : n), ¬IsOrtho B (v i) (v i) ⊢ ∀ (s : Finset n) (g : n → K₁), ∑ i in s, g i • v i = 0 → ∀ (i : n), i ∈ s → g i = 0 [PROOFSTEP] intro s w hs i hi [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁶ : Field K inst✝⁵ : Field K₁ inst✝⁴ : AddCommGroup V₁ inst✝³ : Module K₁ V₁ inst✝² : Field K₂ inst✝¹ : AddCommGroup V₂ inst✝ : Module K₂ V₂ I₁ : K₁ →+* K I₂ : K₂ →+* K I₁' : K₁ →+* K J₁ J₂ : K →+* K B : V₁ →ₛₗ[I₁] V₁ →ₛₗ[I₁'] K v : n → V₁ hv₁ : IsOrthoᵢ B v hv₂ : ∀ (i : n), ¬IsOrtho B (v i) (v i) s : Finset n w : n → K₁ hs : ∑ i in s, w i • v i = 0 i : n hi : i ∈ s ⊢ w i = 0 [PROOFSTEP] have : B (s.sum fun i : n ↦ w i • v i) (v i) = 0 := by rw [hs, map_zero, zero_apply] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁶ : Field K inst✝⁵ : Field K₁ inst✝⁴ : AddCommGroup V₁ inst✝³ : Module K₁ V₁ inst✝² : Field K₂ inst✝¹ : AddCommGroup V₂ inst✝ : Module K₂ V₂ I₁ : K₁ →+* K I₂ : K₂ →+* K I₁' : K₁ →+* K J₁ J₂ : K →+* K B : V₁ →ₛₗ[I₁] V₁ →ₛₗ[I₁'] K v : n → V₁ hv₁ : IsOrthoᵢ B v hv₂ : ∀ (i : n), ¬IsOrtho B (v i) (v i) s : Finset n w : n → K₁ hs : ∑ i in s, w i • v i = 0 i : n hi : i ∈ s ⊢ ↑(↑B (∑ i in s, w i • v i)) (v i) = 0 [PROOFSTEP] rw [hs, map_zero, zero_apply] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁶ : Field K inst✝⁵ : Field K₁ inst✝⁴ : AddCommGroup V₁ inst✝³ : Module K₁ V₁ inst✝² : Field K₂ inst✝¹ : AddCommGroup V₂ inst✝ : Module K₂ V₂ I₁ : K₁ →+* K I₂ : K₂ →+* K I₁' : K₁ →+* K J₁ J₂ : K →+* K B : V₁ →ₛₗ[I₁] V₁ →ₛₗ[I₁'] K v : n → V₁ hv₁ : IsOrthoᵢ B v hv₂ : ∀ (i : n), ¬IsOrtho B (v i) (v i) s : Finset n w : n → K₁ hs : ∑ i in s, w i • v i = 0 i : n hi : i ∈ s this : ↑(↑B (∑ i in s, w i • v i)) (v i) = 0 ⊢ w i = 0 [PROOFSTEP] have hsum : (s.sum fun j : n ↦ I₁ (w j) * B (v j) (v i)) = I₁ (w i) * B (v i) (v i) := by apply Finset.sum_eq_single_of_mem i hi intro j _hj hij rw [isOrthoᵢ_def.1 hv₁ _ _ hij, mul_zero] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁶ : Field K inst✝⁵ : Field K₁ inst✝⁴ : AddCommGroup V₁ inst✝³ : Module K₁ V₁ inst✝² : Field K₂ inst✝¹ : AddCommGroup V₂ inst✝ : Module K₂ V₂ I₁ : K₁ →+* K I₂ : K₂ →+* K I₁' : K₁ →+* K J₁ J₂ : K →+* K B : V₁ →ₛₗ[I₁] V₁ →ₛₗ[I₁'] K v : n → V₁ hv₁ : IsOrthoᵢ B v hv₂ : ∀ (i : n), ¬IsOrtho B (v i) (v i) s : Finset n w : n → K₁ hs : ∑ i in s, w i • v i = 0 i : n hi : i ∈ s this : ↑(↑B (∑ i in s, w i • v i)) (v i) = 0 ⊢ ∑ j in s, ↑I₁ (w j) * ↑(↑B (v j)) (v i) = ↑I₁ (w i) * ↑(↑B (v i)) (v i) [PROOFSTEP] apply Finset.sum_eq_single_of_mem i hi [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁶ : Field K inst✝⁵ : Field K₁ inst✝⁴ : AddCommGroup V₁ inst✝³ : Module K₁ V₁ inst✝² : Field K₂ inst✝¹ : AddCommGroup V₂ inst✝ : Module K₂ V₂ I₁ : K₁ →+* K I₂ : K₂ →+* K I₁' : K₁ →+* K J₁ J₂ : K →+* K B : V₁ →ₛₗ[I₁] V₁ →ₛₗ[I₁'] K v : n → V₁ hv₁ : IsOrthoᵢ B v hv₂ : ∀ (i : n), ¬IsOrtho B (v i) (v i) s : Finset n w : n → K₁ hs : ∑ i in s, w i • v i = 0 i : n hi : i ∈ s this : ↑(↑B (∑ i in s, w i • v i)) (v i) = 0 ⊢ ∀ (b : n), b ∈ s → b ≠ i → ↑I₁ (w b) * ↑(↑B (v b)) (v i) = 0 [PROOFSTEP] intro j _hj hij [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁶ : Field K inst✝⁵ : Field K₁ inst✝⁴ : AddCommGroup V₁ inst✝³ : Module K₁ V₁ inst✝² : Field K₂ inst✝¹ : AddCommGroup V₂ inst✝ : Module K₂ V₂ I₁ : K₁ →+* K I₂ : K₂ →+* K I₁' : K₁ →+* K J₁ J₂ : K →+* K B : V₁ →ₛₗ[I₁] V₁ →ₛₗ[I₁'] K v : n → V₁ hv₁ : IsOrthoᵢ B v hv₂ : ∀ (i : n), ¬IsOrtho B (v i) (v i) s : Finset n w : n → K₁ hs : ∑ i in s, w i • v i = 0 i : n hi : i ∈ s this : ↑(↑B (∑ i in s, w i • v i)) (v i) = 0 j : n _hj : j ∈ s hij : j ≠ i ⊢ ↑I₁ (w j) * ↑(↑B (v j)) (v i) = 0 [PROOFSTEP] rw [isOrthoᵢ_def.1 hv₁ _ _ hij, mul_zero] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁶ : Field K inst✝⁵ : Field K₁ inst✝⁴ : AddCommGroup V₁ inst✝³ : Module K₁ V₁ inst✝² : Field K₂ inst✝¹ : AddCommGroup V₂ inst✝ : Module K₂ V₂ I₁ : K₁ →+* K I₂ : K₂ →+* K I₁' : K₁ →+* K J₁ J₂ : K →+* K B : V₁ →ₛₗ[I₁] V₁ →ₛₗ[I₁'] K v : n → V₁ hv₁ : IsOrthoᵢ B v hv₂ : ∀ (i : n), ¬IsOrtho B (v i) (v i) s : Finset n w : n → K₁ hs : ∑ i in s, w i • v i = 0 i : n hi : i ∈ s this : ↑(↑B (∑ i in s, w i • v i)) (v i) = 0 hsum : ∑ j in s, ↑I₁ (w j) * ↑(↑B (v j)) (v i) = ↑I₁ (w i) * ↑(↑B (v i)) (v i) ⊢ w i = 0 [PROOFSTEP] simp_rw [B.map_sum₂, map_smulₛₗ₂, smul_eq_mul, hsum] at this [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁶ : Field K inst✝⁵ : Field K₁ inst✝⁴ : AddCommGroup V₁ inst✝³ : Module K₁ V₁ inst✝² : Field K₂ inst✝¹ : AddCommGroup V₂ inst✝ : Module K₂ V₂ I₁ : K₁ →+* K I₂ : K₂ →+* K I₁' : K₁ →+* K J₁ J₂ : K →+* K B : V₁ →ₛₗ[I₁] V₁ →ₛₗ[I₁'] K v : n → V₁ hv₁ : IsOrthoᵢ B v hv₂ : ∀ (i : n), ¬IsOrtho B (v i) (v i) s : Finset n w : n → K₁ hs : ∑ i in s, w i • v i = 0 i : n hi : i ∈ s hsum : ∑ j in s, ↑I₁ (w j) * ↑(↑B (v j)) (v i) = ↑I₁ (w i) * ↑(↑B (v i)) (v i) this : ↑I₁ (w i) * ↑(↑B (v i)) (v i) = 0 ⊢ w i = 0 [PROOFSTEP] apply (map_eq_zero I₁).mp [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁶ : Field K inst✝⁵ : Field K₁ inst✝⁴ : AddCommGroup V₁ inst✝³ : Module K₁ V₁ inst✝² : Field K₂ inst✝¹ : AddCommGroup V₂ inst✝ : Module K₂ V₂ I₁ : K₁ →+* K I₂ : K₂ →+* K I₁' : K₁ →+* K J₁ J₂ : K →+* K B : V₁ →ₛₗ[I₁] V₁ →ₛₗ[I₁'] K v : n → V₁ hv₁ : IsOrthoᵢ B v hv₂ : ∀ (i : n), ¬IsOrtho B (v i) (v i) s : Finset n w : n → K₁ hs : ∑ i in s, w i • v i = 0 i : n hi : i ∈ s hsum : ∑ j in s, ↑I₁ (w j) * ↑(↑B (v j)) (v i) = ↑I₁ (w i) * ↑(↑B (v i)) (v i) this : ↑I₁ (w i) * ↑(↑B (v i)) (v i) = 0 ⊢ ↑I₁ (w i) = 0 [PROOFSTEP] exact eq_zero_of_ne_zero_of_mul_right_eq_zero (hv₂ i) this [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝³ : CommSemiring R inst✝² : CommSemiring R₁ inst✝¹ : AddCommMonoid M₁ inst✝ : Module R₁ M₁ I₁ I₂ : R₁ →+* R B : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] R H✝ H : IsRefl B p : Submodule R₁ M₁ x✝¹ x✝ : { x // x ∈ p } ⊢ ↑(↑(domRestrict₁₂ B p p) x✝¹) x✝ = 0 → ↑(↑(domRestrict₁₂ B p p) x✝) x✝¹ = 0 [PROOFSTEP] simp_rw [domRestrict₁₂_apply] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝³ : CommSemiring R inst✝² : CommSemiring R₁ inst✝¹ : AddCommMonoid M₁ inst✝ : Module R₁ M₁ I₁ I₂ : R₁ →+* R B : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] R H✝ H : IsRefl B p : Submodule R₁ M₁ x✝¹ x✝ : { x // x ∈ p } ⊢ ↑(↑B ↑x✝¹) ↑x✝ = 0 → ↑(↑B ↑x✝) ↑x✝¹ = 0 [PROOFSTEP] exact H _ _ [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝³ : CommSemiring R inst✝² : CommSemiring R₁ inst✝¹ : AddCommMonoid M₁ inst✝ : Module R₁ M₁ I₁ I₂ : R₁ →+* R B : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] R H✝ H : IsRefl B h : ker B = ⊥ ⊢ ker (flip B) = ⊥ [PROOFSTEP] refine' ker_eq_bot'.mpr fun _ hx ↦ ker_eq_bot'.mp h _ _ [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝³ : CommSemiring R inst✝² : CommSemiring R₁ inst✝¹ : AddCommMonoid M₁ inst✝ : Module R₁ M₁ I₁ I₂ : R₁ →+* R B : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] R H✝ H : IsRefl B h : ker B = ⊥ x✝ : M₁ hx : ↑(flip B) x✝ = 0 ⊢ ↑B x✝ = 0 [PROOFSTEP] ext [GOAL] case h R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝³ : CommSemiring R inst✝² : CommSemiring R₁ inst✝¹ : AddCommMonoid M₁ inst✝ : Module R₁ M₁ I₁ I₂ : R₁ →+* R B : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] R H✝ H : IsRefl B h : ker B = ⊥ x✝¹ : M₁ hx : ↑(flip B) x✝¹ = 0 x✝ : M₁ ⊢ ↑(↑B x✝¹) x✝ = ↑0 x✝ [PROOFSTEP] exact H _ _ (LinearMap.congr_fun hx _) [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝³ : CommSemiring R inst✝² : CommSemiring R₁ inst✝¹ : AddCommMonoid M₁ inst✝ : Module R₁ M₁ I₁ I₂ : R₁ →+* R B : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] R H✝ H : IsRefl B ⊢ ker B = ⊥ ↔ ker (flip B) = ⊥ [PROOFSTEP] refine' ⟨ker_flip_eq_bot H, fun h ↦ _⟩ [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝³ : CommSemiring R inst✝² : CommSemiring R₁ inst✝¹ : AddCommMonoid M₁ inst✝ : Module R₁ M₁ I₁ I₂ : R₁ →+* R B : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] R H✝ H : IsRefl B h : ker (flip B) = ⊥ ⊢ ker B = ⊥ [PROOFSTEP] exact (congr_arg _ B.flip_flip.symm).trans (ker_flip_eq_bot (flip_isRefl_iff.mpr H) h) [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M I : R →+* R B : M →ₛₗ[I] M →ₗ[R] R H : IsSymm B x y : M H1 : ↑(↑B x) y = 0 ⊢ ↑(↑B y) x = 0 [PROOFSTEP] rw [← H.eq] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M I : R →+* R B : M →ₛₗ[I] M →ₗ[R] R H : IsSymm B x y : M H1 : ↑(↑B x) y = 0 ⊢ ↑I (↑(↑B x) y) = 0 [PROOFSTEP] simp [H1] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M I : R →+* R B : M →ₛₗ[I] M →ₗ[R] R H : IsSymm B p : Submodule R M x✝¹ x✝ : { x // x ∈ p } ⊢ ↑I (↑(↑(domRestrict₁₂ B p p) x✝¹) x✝) = ↑(↑(domRestrict₁₂ B p p) x✝) x✝¹ [PROOFSTEP] simp_rw [domRestrict₁₂_apply] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M I : R →+* R B : M →ₛₗ[I] M →ₗ[R] R H : IsSymm B p : Submodule R M x✝¹ x✝ : { x // x ∈ p } ⊢ ↑I (↑(↑B ↑x✝¹) ↑x✝) = ↑(↑B ↑x✝) ↑x✝¹ [PROOFSTEP] exact H _ _ [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M I : R →+* R B✝ : M →ₛₗ[I] M →ₗ[R] R B : M →ₗ[R] M →ₗ[R] R ⊢ IsSymm B ↔ B = flip B [PROOFSTEP] constructor [GOAL] case mp R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M I : R →+* R B✝ : M →ₛₗ[I] M →ₗ[R] R B : M →ₗ[R] M →ₗ[R] R ⊢ IsSymm B → B = flip B [PROOFSTEP] intro h [GOAL] case mpr R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M I : R →+* R B✝ : M →ₛₗ[I] M →ₗ[R] R B : M →ₗ[R] M →ₗ[R] R ⊢ B = flip B → IsSymm B [PROOFSTEP] intro h [GOAL] case mp R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M I : R →+* R B✝ : M →ₛₗ[I] M →ₗ[R] R B : M →ₗ[R] M →ₗ[R] R h : IsSymm B ⊢ B = flip B [PROOFSTEP] ext [GOAL] case mp.h.h R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M I : R →+* R B✝ : M →ₛₗ[I] M →ₗ[R] R B : M →ₗ[R] M →ₗ[R] R h : IsSymm B x✝¹ x✝ : M ⊢ ↑(↑B x✝¹) x✝ = ↑(↑(flip B) x✝¹) x✝ [PROOFSTEP] rw [← h, flip_apply, RingHom.id_apply] [GOAL] case mpr R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M I : R →+* R B✝ : M →ₛₗ[I] M →ₗ[R] R B : M →ₗ[R] M →ₗ[R] R h : B = flip B ⊢ IsSymm B [PROOFSTEP] intro x y [GOAL] case mpr R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M I : R →+* R B✝ : M →ₛₗ[I] M →ₗ[R] R B : M →ₗ[R] M →ₗ[R] R h : B = flip B x y : M ⊢ ↑(RingHom.id R) (↑(↑B x) y) = ↑(↑B y) x [PROOFSTEP] conv_lhs => rw [h] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M I : R →+* R B✝ : M →ₛₗ[I] M →ₗ[R] R B : M →ₗ[R] M →ₗ[R] R h : B = flip B x y : M | ↑(RingHom.id R) (↑(↑B x) y) [PROOFSTEP] rw [h] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M I : R →+* R B✝ : M →ₛₗ[I] M →ₗ[R] R B : M →ₗ[R] M →ₗ[R] R h : B = flip B x y : M | ↑(RingHom.id R) (↑(↑B x) y) [PROOFSTEP] rw [h] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M I : R →+* R B✝ : M →ₛₗ[I] M →ₗ[R] R B : M →ₗ[R] M →ₗ[R] R h : B = flip B x y : M | ↑(RingHom.id R) (↑(↑B x) y) [PROOFSTEP] rw [h] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝³ : CommRing R inst✝² : CommSemiring R₁ inst✝¹ : AddCommMonoid M₁ inst✝ : Module R₁ M₁ I₁ I₂ I : R₁ →+* R B : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] R H : IsAlt B x y : M₁ ⊢ -↑(↑B x) y = ↑(↑B y) x [PROOFSTEP] have H1 : B (y + x) (y + x) = 0 := self_eq_zero H (y + x) [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝³ : CommRing R inst✝² : CommSemiring R₁ inst✝¹ : AddCommMonoid M₁ inst✝ : Module R₁ M₁ I₁ I₂ I : R₁ →+* R B : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] R H : IsAlt B x y : M₁ H1 : ↑(↑B (y + x)) (y + x) = 0 ⊢ -↑(↑B x) y = ↑(↑B y) x [PROOFSTEP] simp [map_add, self_eq_zero H] at H1 [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝³ : CommRing R inst✝² : CommSemiring R₁ inst✝¹ : AddCommMonoid M₁ inst✝ : Module R₁ M₁ I₁ I₂ I : R₁ →+* R B : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] R H : IsAlt B x y : M₁ H1 : ↑(↑B x) y + ↑(↑B y) x = 0 ⊢ -↑(↑B x) y = ↑(↑B y) x [PROOFSTEP] rw [add_eq_zero_iff_neg_eq] at H1 [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝³ : CommRing R inst✝² : CommSemiring R₁ inst✝¹ : AddCommMonoid M₁ inst✝ : Module R₁ M₁ I₁ I₂ I : R₁ →+* R B : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] R H : IsAlt B x y : M₁ H1 : -↑(↑B x) y = ↑(↑B y) x ⊢ -↑(↑B x) y = ↑(↑B y) x [PROOFSTEP] exact H1 [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝³ : CommRing R inst✝² : CommSemiring R₁ inst✝¹ : AddCommMonoid M₁ inst✝ : Module R₁ M₁ I₁ I₂ I : R₁ →+* R B : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] R H : IsAlt B ⊢ IsRefl B [PROOFSTEP] intro x y h [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝³ : CommRing R inst✝² : CommSemiring R₁ inst✝¹ : AddCommMonoid M₁ inst✝ : Module R₁ M₁ I₁ I₂ I : R₁ →+* R B : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] R H : IsAlt B x y : M₁ h : ↑(↑B x) y = 0 ⊢ ↑(↑B y) x = 0 [PROOFSTEP] rw [← neg H, h, neg_zero] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁵ : CommRing R inst✝⁴ : CommSemiring R₁ inst✝³ : AddCommMonoid M₁ inst✝² : Module R₁ M₁ I₁ I₂ I : R₁ →+* R B✝ : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] R inst✝¹ : NoZeroDivisors R inst✝ : CharZero R B : M₁ →ₛₗ[I] M₁ →ₛₗ[I] R ⊢ IsAlt B ↔ B = -flip B [PROOFSTEP] constructor [GOAL] case mp R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁵ : CommRing R inst✝⁴ : CommSemiring R₁ inst✝³ : AddCommMonoid M₁ inst✝² : Module R₁ M₁ I₁ I₂ I : R₁ →+* R B✝ : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] R inst✝¹ : NoZeroDivisors R inst✝ : CharZero R B : M₁ →ₛₗ[I] M₁ →ₛₗ[I] R ⊢ IsAlt B → B = -flip B [PROOFSTEP] intro h [GOAL] case mpr R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁵ : CommRing R inst✝⁴ : CommSemiring R₁ inst✝³ : AddCommMonoid M₁ inst✝² : Module R₁ M₁ I₁ I₂ I : R₁ →+* R B✝ : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] R inst✝¹ : NoZeroDivisors R inst✝ : CharZero R B : M₁ →ₛₗ[I] M₁ →ₛₗ[I] R ⊢ B = -flip B → IsAlt B [PROOFSTEP] intro h [GOAL] case mp R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁵ : CommRing R inst✝⁴ : CommSemiring R₁ inst✝³ : AddCommMonoid M₁ inst✝² : Module R₁ M₁ I₁ I₂ I : R₁ →+* R B✝ : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] R inst✝¹ : NoZeroDivisors R inst✝ : CharZero R B : M₁ →ₛₗ[I] M₁ →ₛₗ[I] R h : IsAlt B ⊢ B = -flip B [PROOFSTEP] ext [GOAL] case mp.h.h R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁵ : CommRing R inst✝⁴ : CommSemiring R₁ inst✝³ : AddCommMonoid M₁ inst✝² : Module R₁ M₁ I₁ I₂ I : R₁ →+* R B✝ : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] R inst✝¹ : NoZeroDivisors R inst✝ : CharZero R B : M₁ →ₛₗ[I] M₁ →ₛₗ[I] R h : IsAlt B x✝¹ x✝ : M₁ ⊢ ↑(↑B x✝¹) x✝ = ↑(↑(-flip B) x✝¹) x✝ [PROOFSTEP] simp_rw [neg_apply, flip_apply] [GOAL] case mp.h.h R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁵ : CommRing R inst✝⁴ : CommSemiring R₁ inst✝³ : AddCommMonoid M₁ inst✝² : Module R₁ M₁ I₁ I₂ I : R₁ →+* R B✝ : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] R inst✝¹ : NoZeroDivisors R inst✝ : CharZero R B : M₁ →ₛₗ[I] M₁ →ₛₗ[I] R h : IsAlt B x✝¹ x✝ : M₁ ⊢ ↑(↑B x✝¹) x✝ = -↑(↑B x✝) x✝¹ [PROOFSTEP] exact (h.neg _ _).symm [GOAL] case mpr R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁵ : CommRing R inst✝⁴ : CommSemiring R₁ inst✝³ : AddCommMonoid M₁ inst✝² : Module R₁ M₁ I₁ I₂ I : R₁ →+* R B✝ : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] R inst✝¹ : NoZeroDivisors R inst✝ : CharZero R B : M₁ →ₛₗ[I] M₁ →ₛₗ[I] R h : B = -flip B ⊢ IsAlt B [PROOFSTEP] intro x [GOAL] case mpr R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁵ : CommRing R inst✝⁴ : CommSemiring R₁ inst✝³ : AddCommMonoid M₁ inst✝² : Module R₁ M₁ I₁ I₂ I : R₁ →+* R B✝ : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] R inst✝¹ : NoZeroDivisors R inst✝ : CharZero R B : M₁ →ₛₗ[I] M₁ →ₛₗ[I] R h : B = -flip B x : M₁ ⊢ ↑(↑B x) x = 0 [PROOFSTEP] let h' := congr_fun₂ h x x [GOAL] case mpr R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁵ : CommRing R inst✝⁴ : CommSemiring R₁ inst✝³ : AddCommMonoid M₁ inst✝² : Module R₁ M₁ I₁ I₂ I : R₁ →+* R B✝ : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] R inst✝¹ : NoZeroDivisors R inst✝ : CharZero R B : M₁ →ₛₗ[I] M₁ →ₛₗ[I] R h : B = -flip B x : M₁ h' : ↑(↑B x) x = ↑(↑(-flip B) x) x := congr_fun₂ h x x ⊢ ↑(↑B x) x = 0 [PROOFSTEP] simp only [neg_apply, flip_apply, ← add_eq_zero_iff_eq_neg] at h' [GOAL] case mpr R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁵ : CommRing R inst✝⁴ : CommSemiring R₁ inst✝³ : AddCommMonoid M₁ inst✝² : Module R₁ M₁ I₁ I₂ I : R₁ →+* R B✝ : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] R inst✝¹ : NoZeroDivisors R inst✝ : CharZero R B : M₁ →ₛₗ[I] M₁ →ₛₗ[I] R h : B = -flip B x : M₁ h' : ↑(↑B x) x + ↑(↑B x) x = 0 ⊢ ↑(↑B x) x = 0 [PROOFSTEP] exact add_self_eq_zero.mp h' [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n✝ : Type u_18 inst✝³ : CommRing R inst✝² : CommRing R₁ inst✝¹ : AddCommGroup M₁ inst✝ : Module R₁ M₁ I₁ I₂ : R₁ →+* R B✝ : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] R N : Submodule R₁ M₁ B : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] R a✝ b✝ : M₁ hx : a✝ ∈ {m | ∀ (n : M₁), n ∈ N → LinearMap.IsOrtho B n m} hy : b✝ ∈ {m | ∀ (n : M₁), n ∈ N → LinearMap.IsOrtho B n m} n : M₁ hn : n ∈ N ⊢ LinearMap.IsOrtho B n (a✝ + b✝) [PROOFSTEP] rw [LinearMap.IsOrtho, map_add, show B n _ = 0 from hx n hn, show B n _ = 0 from hy n hn, zero_add] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n✝ : Type u_18 inst✝³ : CommRing R inst✝² : CommRing R₁ inst✝¹ : AddCommGroup M₁ inst✝ : Module R₁ M₁ I₁ I₂ : R₁ →+* R B✝ : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] R N : Submodule R₁ M₁ B : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] R c : R₁ x : M₁ hx : x ∈ { toAddSubsemigroup := { carrier := {m | ∀ (n : M₁), n ∈ N → LinearMap.IsOrtho B n m}, add_mem' := (_ : ∀ {a b : M₁}, a ∈ {m | ∀ (n : M₁), n ∈ N → LinearMap.IsOrtho B n m} → b ∈ {m | ∀ (n : M₁), n ∈ N → LinearMap.IsOrtho B n m} → ∀ (n : M₁), n ∈ N → LinearMap.IsOrtho B n (a + b)) }, zero_mem' := (_ : ∀ (x : M₁), x ∈ N → LinearMap.IsOrtho B x 0) }.toAddSubsemigroup.carrier n : M₁ hn : n ∈ N ⊢ LinearMap.IsOrtho B n (c • x) [PROOFSTEP] rw [LinearMap.IsOrtho, LinearMap.map_smulₛₗ, show B n x = 0 from hx n hn, smul_zero] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V inst✝² : Field K₁ inst✝¹ : AddCommGroup V₁ inst✝ : Module K₁ V₁ J : K →+* K J₁ J₁' : K₁ →+* K B : V₁ →ₛₗ[J₁] V₁ →ₛₗ[J₁'] K x : V₁ hx : ¬IsOrtho B x x ⊢ Submodule.span K₁ {x} ⊓ Submodule.orthogonalBilin (Submodule.span K₁ {x}) B = ⊥ [PROOFSTEP] rw [← Finset.coe_singleton] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V inst✝² : Field K₁ inst✝¹ : AddCommGroup V₁ inst✝ : Module K₁ V₁ J : K →+* K J₁ J₁' : K₁ →+* K B : V₁ →ₛₗ[J₁] V₁ →ₛₗ[J₁'] K x : V₁ hx : ¬IsOrtho B x x ⊢ Submodule.span K₁ ↑{x} ⊓ Submodule.orthogonalBilin (Submodule.span K₁ ↑{x}) B = ⊥ [PROOFSTEP] refine' eq_bot_iff.2 fun y h ↦ _ [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V inst✝² : Field K₁ inst✝¹ : AddCommGroup V₁ inst✝ : Module K₁ V₁ J : K →+* K J₁ J₁' : K₁ →+* K B : V₁ →ₛₗ[J₁] V₁ →ₛₗ[J₁'] K x : V₁ hx : ¬IsOrtho B x x y : V₁ h : y ∈ Submodule.span K₁ ↑{x} ⊓ Submodule.orthogonalBilin (Submodule.span K₁ ↑{x}) B ⊢ y ∈ ⊥ [PROOFSTEP] rcases mem_span_finset.1 h.1 with ⟨μ, rfl⟩ [GOAL] case intro R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V inst✝² : Field K₁ inst✝¹ : AddCommGroup V₁ inst✝ : Module K₁ V₁ J : K →+* K J₁ J₁' : K₁ →+* K B : V₁ →ₛₗ[J₁] V₁ →ₛₗ[J₁'] K x : V₁ hx : ¬IsOrtho B x x μ : V₁ → K₁ h : ∑ i in {x}, μ i • i ∈ Submodule.span K₁ ↑{x} ⊓ Submodule.orthogonalBilin (Submodule.span K₁ ↑{x}) B ⊢ ∑ i in {x}, μ i • i ∈ ⊥ [PROOFSTEP] replace h := h.2 x (by simp [Submodule.mem_span] : x ∈ Submodule.span K₁ ({ x } : Finset V₁)) [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V inst✝² : Field K₁ inst✝¹ : AddCommGroup V₁ inst✝ : Module K₁ V₁ J : K →+* K J₁ J₁' : K₁ →+* K B : V₁ →ₛₗ[J₁] V₁ →ₛₗ[J₁'] K x : V₁ hx : ¬IsOrtho B x x μ : V₁ → K₁ h : ∑ i in {x}, μ i • i ∈ Submodule.span K₁ ↑{x} ⊓ Submodule.orthogonalBilin (Submodule.span K₁ ↑{x}) B ⊢ x ∈ Submodule.span K₁ ↑{x} [PROOFSTEP] simp [Submodule.mem_span] [GOAL] case intro R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V inst✝² : Field K₁ inst✝¹ : AddCommGroup V₁ inst✝ : Module K₁ V₁ J : K →+* K J₁ J₁' : K₁ →+* K B : V₁ →ₛₗ[J₁] V₁ →ₛₗ[J₁'] K x : V₁ hx : ¬IsOrtho B x x μ : V₁ → K₁ h : IsOrtho B x (∑ i in {x}, μ i • i) ⊢ ∑ i in {x}, μ i • i ∈ ⊥ [PROOFSTEP] rw [Finset.sum_singleton] at h ⊢ [GOAL] case intro R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V inst✝² : Field K₁ inst✝¹ : AddCommGroup V₁ inst✝ : Module K₁ V₁ J : K →+* K J₁ J₁' : K₁ →+* K B : V₁ →ₛₗ[J₁] V₁ →ₛₗ[J₁'] K x : V₁ hx : ¬IsOrtho B x x μ : V₁ → K₁ h : IsOrtho B x (μ x • x) ⊢ μ x • x ∈ ⊥ [PROOFSTEP] suffices hμzero : μ x = 0 [GOAL] case intro R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V inst✝² : Field K₁ inst✝¹ : AddCommGroup V₁ inst✝ : Module K₁ V₁ J : K →+* K J₁ J₁' : K₁ →+* K B : V₁ →ₛₗ[J₁] V₁ →ₛₗ[J₁'] K x : V₁ hx : ¬IsOrtho B x x μ : V₁ → K₁ h : IsOrtho B x (μ x • x) hμzero : μ x = 0 ⊢ μ x • x ∈ ⊥ [PROOFSTEP] rw [hμzero, zero_smul, Submodule.mem_bot] [GOAL] case hμzero R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V inst✝² : Field K₁ inst✝¹ : AddCommGroup V₁ inst✝ : Module K₁ V₁ J : K →+* K J₁ J₁' : K₁ →+* K B : V₁ →ₛₗ[J₁] V₁ →ₛₗ[J₁'] K x : V₁ hx : ¬IsOrtho B x x μ : V₁ → K₁ h : IsOrtho B x (μ x • x) ⊢ μ x = 0 [PROOFSTEP] rw [isOrtho_def, map_smulₛₗ, smul_eq_mul] at h [GOAL] case hμzero R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V inst✝² : Field K₁ inst✝¹ : AddCommGroup V₁ inst✝ : Module K₁ V₁ J : K →+* K J₁ J₁' : K₁ →+* K B : V₁ →ₛₗ[J₁] V₁ →ₛₗ[J₁'] K x : V₁ hx : ¬IsOrtho B x x μ : V₁ → K₁ h : ↑J₁' (μ x) * ↑(↑B x) x = 0 ⊢ μ x = 0 [PROOFSTEP] exact Or.elim (zero_eq_mul.mp h.symm) (fun y ↦ by simpa using y) (fun hfalse ↦ False.elim $ hx hfalse) [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V inst✝² : Field K₁ inst✝¹ : AddCommGroup V₁ inst✝ : Module K₁ V₁ J : K →+* K J₁ J₁' : K₁ →+* K B : V₁ →ₛₗ[J₁] V₁ →ₛₗ[J₁'] K x : V₁ hx : ¬IsOrtho B x x μ : V₁ → K₁ h : ↑J₁' (μ x) * ↑(↑B x) x = 0 y : ↑J₁' (μ x) = 0 ⊢ μ x = 0 [PROOFSTEP] simpa using y [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V inst✝² : Field K₁ inst✝¹ : AddCommGroup V₁ inst✝ : Module K₁ V₁ J : K →+* K J₁ J₁' : K₁ →+* K B : V →ₗ[K] V →ₛₗ[J] K x : V ⊢ Submodule.orthogonalBilin (Submodule.span K {x}) B = ker (↑B x) [PROOFSTEP] ext y [GOAL] case h R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V inst✝² : Field K₁ inst✝¹ : AddCommGroup V₁ inst✝ : Module K₁ V₁ J : K →+* K J₁ J₁' : K₁ →+* K B : V →ₗ[K] V →ₛₗ[J] K x y : V ⊢ y ∈ Submodule.orthogonalBilin (Submodule.span K {x}) B ↔ y ∈ ker (↑B x) [PROOFSTEP] simp_rw [Submodule.mem_orthogonalBilin_iff, LinearMap.mem_ker, Submodule.mem_span_singleton] [GOAL] case h R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V inst✝² : Field K₁ inst✝¹ : AddCommGroup V₁ inst✝ : Module K₁ V₁ J : K →+* K J₁ J₁' : K₁ →+* K B : V →ₗ[K] V →ₛₗ[J] K x y : V ⊢ (∀ (n : V), (∃ a, a • x = n) → IsOrtho B n y) ↔ ↑(↑B x) y = 0 [PROOFSTEP] constructor [GOAL] case h.mp R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V inst✝² : Field K₁ inst✝¹ : AddCommGroup V₁ inst✝ : Module K₁ V₁ J : K →+* K J₁ J₁' : K₁ →+* K B : V →ₗ[K] V →ₛₗ[J] K x y : V ⊢ (∀ (n : V), (∃ a, a • x = n) → IsOrtho B n y) → ↑(↑B x) y = 0 [PROOFSTEP] exact fun h ↦ h x ⟨1, one_smul _ _⟩ [GOAL] case h.mpr R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V inst✝² : Field K₁ inst✝¹ : AddCommGroup V₁ inst✝ : Module K₁ V₁ J : K →+* K J₁ J₁' : K₁ →+* K B : V →ₗ[K] V →ₛₗ[J] K x y : V ⊢ ↑(↑B x) y = 0 → ∀ (n : V), (∃ a, a • x = n) → IsOrtho B n y [PROOFSTEP] rintro h _ ⟨z, rfl⟩ [GOAL] case h.mpr.intro R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V inst✝² : Field K₁ inst✝¹ : AddCommGroup V₁ inst✝ : Module K₁ V₁ J : K →+* K J₁ J₁' : K₁ →+* K B : V →ₗ[K] V →ₛₗ[J] K x y : V h : ↑(↑B x) y = 0 z : K ⊢ IsOrtho B (z • x) y [PROOFSTEP] rw [isOrtho_def, map_smulₛₗ₂, smul_eq_zero] [GOAL] case h.mpr.intro R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V inst✝² : Field K₁ inst✝¹ : AddCommGroup V₁ inst✝ : Module K₁ V₁ J : K →+* K J₁ J₁' : K₁ →+* K B : V →ₗ[K] V →ₛₗ[J] K x y : V h : ↑(↑B x) y = 0 z : K ⊢ ↑(RingHom.id K) z = 0 ∨ ↑(↑B x) y = 0 [PROOFSTEP] exact Or.intro_right _ h [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V inst✝² : Field K₁ inst✝¹ : AddCommGroup V₁ inst✝ : Module K₁ V₁ J : K →+* K J₁ J₁' : K₁ →+* K B : V →ₗ[K] V →ₗ[K] K x : V hx : ¬IsOrtho B x x ⊢ Submodule.span K {x} ⊔ Submodule.orthogonalBilin (Submodule.span K {x}) B = ⊤ [PROOFSTEP] rw [orthogonal_span_singleton_eq_to_lin_ker] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V inst✝² : Field K₁ inst✝¹ : AddCommGroup V₁ inst✝ : Module K₁ V₁ J : K →+* K J₁ J₁' : K₁ →+* K B : V →ₗ[K] V →ₗ[K] K x : V hx : ¬IsOrtho B x x ⊢ Submodule.span K {x} ⊔ ker (↑B x) = ⊤ [PROOFSTEP] exact (B x).span_singleton_sup_ker_eq_top hx [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁶ : CommSemiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid M₁ inst✝² : Module R M₁ inst✝¹ : AddCommMonoid M₂ inst✝ : Module R M₂ I : R →+* R B F : M →ₗ[R] M →ₛₗ[I] R B' : M₁ →ₗ[R] M₁ →ₛₗ[I] R B'' : M₂ →ₗ[R] M₂ →ₛₗ[I] R f f' : M →ₗ[R] M₁ g g' : M₁ →ₗ[R] M ⊢ IsAdjointPair B B' f g ↔ comp B' f = compl₂ B g [PROOFSTEP] constructor [GOAL] case mp R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁶ : CommSemiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid M₁ inst✝² : Module R M₁ inst✝¹ : AddCommMonoid M₂ inst✝ : Module R M₂ I : R →+* R B F : M →ₗ[R] M →ₛₗ[I] R B' : M₁ →ₗ[R] M₁ →ₛₗ[I] R B'' : M₂ →ₗ[R] M₂ →ₛₗ[I] R f f' : M →ₗ[R] M₁ g g' : M₁ →ₗ[R] M ⊢ IsAdjointPair B B' f g → comp B' f = compl₂ B g [PROOFSTEP] intro h [GOAL] case mpr R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁶ : CommSemiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid M₁ inst✝² : Module R M₁ inst✝¹ : AddCommMonoid M₂ inst✝ : Module R M₂ I : R →+* R B F : M →ₗ[R] M →ₛₗ[I] R B' : M₁ →ₗ[R] M₁ →ₛₗ[I] R B'' : M₂ →ₗ[R] M₂ →ₛₗ[I] R f f' : M →ₗ[R] M₁ g g' : M₁ →ₗ[R] M ⊢ comp B' f = compl₂ B g → IsAdjointPair B B' f g [PROOFSTEP] intro h [GOAL] case mp R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁶ : CommSemiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid M₁ inst✝² : Module R M₁ inst✝¹ : AddCommMonoid M₂ inst✝ : Module R M₂ I : R →+* R B F : M →ₗ[R] M →ₛₗ[I] R B' : M₁ →ₗ[R] M₁ →ₛₗ[I] R B'' : M₂ →ₗ[R] M₂ →ₛₗ[I] R f f' : M →ₗ[R] M₁ g g' : M₁ →ₗ[R] M h : IsAdjointPair B B' f g ⊢ comp B' f = compl₂ B g [PROOFSTEP] ext x y [GOAL] case mp.h.h R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁶ : CommSemiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid M₁ inst✝² : Module R M₁ inst✝¹ : AddCommMonoid M₂ inst✝ : Module R M₂ I : R →+* R B F : M →ₗ[R] M →ₛₗ[I] R B' : M₁ →ₗ[R] M₁ →ₛₗ[I] R B'' : M₂ →ₗ[R] M₂ →ₛₗ[I] R f f' : M →ₗ[R] M₁ g g' : M₁ →ₗ[R] M h : IsAdjointPair B B' f g x : M y : M₁ ⊢ ↑(↑(comp B' f) x) y = ↑(↑(compl₂ B g) x) y [PROOFSTEP] rw [comp_apply, compl₂_apply] [GOAL] case mp.h.h R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁶ : CommSemiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid M₁ inst✝² : Module R M₁ inst✝¹ : AddCommMonoid M₂ inst✝ : Module R M₂ I : R →+* R B F : M →ₗ[R] M →ₛₗ[I] R B' : M₁ →ₗ[R] M₁ →ₛₗ[I] R B'' : M₂ →ₗ[R] M₂ →ₛₗ[I] R f f' : M →ₗ[R] M₁ g g' : M₁ →ₗ[R] M h : IsAdjointPair B B' f g x : M y : M₁ ⊢ ↑(↑B' (↑f x)) y = ↑(↑B x) (↑g y) [PROOFSTEP] exact h x y [GOAL] case mpr R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁶ : CommSemiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid M₁ inst✝² : Module R M₁ inst✝¹ : AddCommMonoid M₂ inst✝ : Module R M₂ I : R →+* R B F : M →ₗ[R] M →ₛₗ[I] R B' : M₁ →ₗ[R] M₁ →ₛₗ[I] R B'' : M₂ →ₗ[R] M₂ →ₛₗ[I] R f f' : M →ₗ[R] M₁ g g' : M₁ →ₗ[R] M h : comp B' f = compl₂ B g ⊢ IsAdjointPair B B' f g [PROOFSTEP] intro _ _ [GOAL] case mpr R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁶ : CommSemiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid M₁ inst✝² : Module R M₁ inst✝¹ : AddCommMonoid M₂ inst✝ : Module R M₂ I : R →+* R B F : M →ₗ[R] M →ₛₗ[I] R B' : M₁ →ₗ[R] M₁ →ₛₗ[I] R B'' : M₂ →ₗ[R] M₂ →ₛₗ[I] R f f' : M →ₗ[R] M₁ g g' : M₁ →ₗ[R] M h : comp B' f = compl₂ B g x✝ : M y✝ : M₁ ⊢ ↑(↑B' (↑f x✝)) y✝ = ↑(↑B x✝) (↑g y✝) [PROOFSTEP] rw [← compl₂_apply, ← comp_apply, h] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁶ : CommSemiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid M₁ inst✝² : Module R M₁ inst✝¹ : AddCommMonoid M₂ inst✝ : Module R M₂ I : R →+* R B F : M →ₗ[R] M →ₛₗ[I] R B' : M₁ →ₗ[R] M₁ →ₛₗ[I] R B'' : M₂ →ₗ[R] M₂ →ₛₗ[I] R f f' : M →ₗ[R] M₁ g g' : M₁ →ₗ[R] M x✝¹ : M x✝ : M₁ ⊢ ↑(↑B' (↑0 x✝¹)) x✝ = ↑(↑B x✝¹) (↑0 x✝) [PROOFSTEP] simp only [zero_apply, map_zero] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁶ : CommSemiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid M₁ inst✝² : Module R M₁ inst✝¹ : AddCommMonoid M₂ inst✝ : Module R M₂ I : R →+* R B F : M →ₗ[R] M →ₛₗ[I] R B' : M₁ →ₗ[R] M₁ →ₛₗ[I] R B'' : M₂ →ₗ[R] M₂ →ₛₗ[I] R f f' : M →ₗ[R] M₁ g g' : M₁ →ₗ[R] M h : IsAdjointPair B B' f g h' : IsAdjointPair B B' f' g' x : M x✝ : M₁ ⊢ ↑(↑B' (↑(f + f') x)) x✝ = ↑(↑B x) (↑(g + g') x✝) [PROOFSTEP] rw [f.add_apply, g.add_apply, B'.map_add₂, (B x).map_add, h, h'] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁶ : CommSemiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid M₁ inst✝² : Module R M₁ inst✝¹ : AddCommMonoid M₂ inst✝ : Module R M₂ I : R →+* R B F : M →ₗ[R] M →ₛₗ[I] R B' : M₁ →ₗ[R] M₁ →ₛₗ[I] R B'' : M₂ →ₗ[R] M₂ →ₛₗ[I] R f f'✝ : M →ₗ[R] M₁ g g'✝ : M₁ →ₗ[R] M f' : M₁ →ₗ[R] M₂ g' : M₂ →ₗ[R] M₁ h : IsAdjointPair B B' f g h' : IsAdjointPair B' B'' f' g' x✝¹ : M x✝ : M₂ ⊢ ↑(↑B'' (↑(LinearMap.comp f' f) x✝¹)) x✝ = ↑(↑B x✝¹) (↑(LinearMap.comp g g') x✝) [PROOFSTEP] rw [LinearMap.comp_apply, LinearMap.comp_apply, h', h] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : AddCommGroup M₁ inst✝ : Module R M₁ B F : M →ₗ[R] M →ₗ[R] R B' : M₁ →ₗ[R] M₁ →ₗ[R] R f f' : M →ₗ[R] M₁ g g' : M₁ →ₗ[R] M h : IsAdjointPair B B' f g h' : IsAdjointPair B B' f' g' x : M x✝ : M₁ ⊢ ↑(↑B' (↑(f - f') x)) x✝ = ↑(↑B x) (↑(g - g') x✝) [PROOFSTEP] rw [f.sub_apply, g.sub_apply, B'.map_sub₂, (B x).map_sub, h, h'] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : AddCommGroup M₁ inst✝ : Module R M₁ B F : M →ₗ[R] M →ₗ[R] R B' : M₁ →ₗ[R] M₁ →ₗ[R] R f f' : M →ₗ[R] M₁ g g' : M₁ →ₗ[R] M c : R h : IsAdjointPair B B' f g x✝¹ : M x✝ : M₁ ⊢ ↑(↑B' (↑(c • f) x✝¹)) x✝ = ↑(↑B x✝¹) (↑(c • g) x✝) [PROOFSTEP] simp [h _] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : AddCommGroup M₁ inst✝ : Module R M₁ B F : M →ₗ[R] M →ₗ[R] R e : M₁ ≃ₗ[R] M f : Module.End R M ⊢ IsPairSelfAdjoint B F f ↔ IsPairSelfAdjoint (compl₁₂ B ↑e ↑e) (compl₁₂ F ↑e ↑e) (↑(LinearEquiv.conj (LinearEquiv.symm e)) f) [PROOFSTEP] have hₗ : (F.compl₁₂ (↑e : M₁ →ₗ[R] M) (↑e : M₁ →ₗ[R] M)).comp (e.symm.conj f) = (F.comp f).compl₁₂ (↑e : M₁ →ₗ[R] M) (↑e : M₁ →ₗ[R] M) := by ext simp only [LinearEquiv.symm_conj_apply, coe_comp, LinearEquiv.coe_coe, compl₁₂_apply, LinearEquiv.apply_symm_apply, Function.comp_apply] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : AddCommGroup M₁ inst✝ : Module R M₁ B F : M →ₗ[R] M →ₗ[R] R e : M₁ ≃ₗ[R] M f : Module.End R M ⊢ comp (compl₁₂ F ↑e ↑e) (↑(LinearEquiv.conj (LinearEquiv.symm e)) f) = compl₁₂ (comp F f) ↑e ↑e [PROOFSTEP] ext [GOAL] case h.h R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : AddCommGroup M₁ inst✝ : Module R M₁ B F : M →ₗ[R] M →ₗ[R] R e : M₁ ≃ₗ[R] M f : Module.End R M x✝¹ x✝ : M₁ ⊢ ↑(↑(comp (compl₁₂ F ↑e ↑e) (↑(LinearEquiv.conj (LinearEquiv.symm e)) f)) x✝¹) x✝ = ↑(↑(compl₁₂ (comp F f) ↑e ↑e) x✝¹) x✝ [PROOFSTEP] simp only [LinearEquiv.symm_conj_apply, coe_comp, LinearEquiv.coe_coe, compl₁₂_apply, LinearEquiv.apply_symm_apply, Function.comp_apply] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : AddCommGroup M₁ inst✝ : Module R M₁ B F : M →ₗ[R] M →ₗ[R] R e : M₁ ≃ₗ[R] M f : Module.End R M hₗ : comp (compl₁₂ F ↑e ↑e) (↑(LinearEquiv.conj (LinearEquiv.symm e)) f) = compl₁₂ (comp F f) ↑e ↑e ⊢ IsPairSelfAdjoint B F f ↔ IsPairSelfAdjoint (compl₁₂ B ↑e ↑e) (compl₁₂ F ↑e ↑e) (↑(LinearEquiv.conj (LinearEquiv.symm e)) f) [PROOFSTEP] have hᵣ : (B.compl₁₂ (↑e : M₁ →ₗ[R] M) (↑e : M₁ →ₗ[R] M)).compl₂ (e.symm.conj f) = (B.compl₂ f).compl₁₂ (↑e : M₁ →ₗ[R] M) (↑e : M₁ →ₗ[R] M) := by ext simp only [LinearEquiv.symm_conj_apply, compl₂_apply, coe_comp, LinearEquiv.coe_coe, compl₁₂_apply, LinearEquiv.apply_symm_apply, Function.comp_apply] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : AddCommGroup M₁ inst✝ : Module R M₁ B F : M →ₗ[R] M →ₗ[R] R e : M₁ ≃ₗ[R] M f : Module.End R M hₗ : comp (compl₁₂ F ↑e ↑e) (↑(LinearEquiv.conj (LinearEquiv.symm e)) f) = compl₁₂ (comp F f) ↑e ↑e ⊢ compl₂ (compl₁₂ B ↑e ↑e) (↑(LinearEquiv.conj (LinearEquiv.symm e)) f) = compl₁₂ (compl₂ B f) ↑e ↑e [PROOFSTEP] ext [GOAL] case h.h R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : AddCommGroup M₁ inst✝ : Module R M₁ B F : M →ₗ[R] M →ₗ[R] R e : M₁ ≃ₗ[R] M f : Module.End R M hₗ : comp (compl₁₂ F ↑e ↑e) (↑(LinearEquiv.conj (LinearEquiv.symm e)) f) = compl₁₂ (comp F f) ↑e ↑e x✝¹ x✝ : M₁ ⊢ ↑(↑(compl₂ (compl₁₂ B ↑e ↑e) (↑(LinearEquiv.conj (LinearEquiv.symm e)) f)) x✝¹) x✝ = ↑(↑(compl₁₂ (compl₂ B f) ↑e ↑e) x✝¹) x✝ [PROOFSTEP] simp only [LinearEquiv.symm_conj_apply, compl₂_apply, coe_comp, LinearEquiv.coe_coe, compl₁₂_apply, LinearEquiv.apply_symm_apply, Function.comp_apply] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : AddCommGroup M₁ inst✝ : Module R M₁ B F : M →ₗ[R] M →ₗ[R] R e : M₁ ≃ₗ[R] M f : Module.End R M hₗ : comp (compl₁₂ F ↑e ↑e) (↑(LinearEquiv.conj (LinearEquiv.symm e)) f) = compl₁₂ (comp F f) ↑e ↑e hᵣ : compl₂ (compl₁₂ B ↑e ↑e) (↑(LinearEquiv.conj (LinearEquiv.symm e)) f) = compl₁₂ (compl₂ B f) ↑e ↑e ⊢ IsPairSelfAdjoint B F f ↔ IsPairSelfAdjoint (compl₁₂ B ↑e ↑e) (compl₁₂ F ↑e ↑e) (↑(LinearEquiv.conj (LinearEquiv.symm e)) f) [PROOFSTEP] have he : Function.Surjective (⇑(↑e : M₁ →ₗ[R] M) : M₁ → M) := e.surjective [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : AddCommGroup M₁ inst✝ : Module R M₁ B F : M →ₗ[R] M →ₗ[R] R e : M₁ ≃ₗ[R] M f : Module.End R M hₗ : comp (compl₁₂ F ↑e ↑e) (↑(LinearEquiv.conj (LinearEquiv.symm e)) f) = compl₁₂ (comp F f) ↑e ↑e hᵣ : compl₂ (compl₁₂ B ↑e ↑e) (↑(LinearEquiv.conj (LinearEquiv.symm e)) f) = compl₁₂ (compl₂ B f) ↑e ↑e he : Function.Surjective ↑↑e ⊢ IsPairSelfAdjoint B F f ↔ IsPairSelfAdjoint (compl₁₂ B ↑e ↑e) (compl₁₂ F ↑e ↑e) (↑(LinearEquiv.conj (LinearEquiv.symm e)) f) [PROOFSTEP] simp_rw [IsPairSelfAdjoint, isAdjointPair_iff_comp_eq_compl₂, hₗ, hᵣ, compl₁₂_inj he he] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : AddCommGroup M₁ inst✝ : Module R M₁ B F : M →ₗ[R] M →ₗ[R] R f : Module.End R M ⊢ (∀ (x y : M), ↑(↑B (↑f x)) y = ↑(↑B x) (↑(-f) y)) ↔ ∀ (x y : M), ↑(↑B (↑f x)) y = ↑(↑(-B) x) (↑f y) [PROOFSTEP] simp [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : AddCommGroup M₁ inst✝ : Module R M₁ B F : M →ₗ[R] M →ₗ[R] R f : Module.End R M ⊢ f ∈ skewAdjointSubmodule B ↔ IsSkewAdjoint B f [PROOFSTEP] rw [isSkewAdjoint_iff_neg_self_adjoint] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : AddCommGroup M₁ inst✝ : Module R M₁ B F : M →ₗ[R] M →ₗ[R] R f : Module.End R M ⊢ f ∈ skewAdjointSubmodule B ↔ IsAdjointPair (-B) B f f [PROOFSTEP] exact Iff.rfl [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝¹⁴ : CommSemiring R inst✝¹³ : CommSemiring R₁ inst✝¹² : AddCommMonoid M₁ inst✝¹¹ : Module R₁ M₁ inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ I₁ : R₁ →+* R I₂ : R₂ →+* R I₁' : R₁ →+* R inst✝⁷ : AddCommMonoid Mₗ₁ inst✝⁶ : AddCommMonoid Mₗ₂ inst✝⁵ : AddCommMonoid Mₗ₁' inst✝⁴ : AddCommMonoid Mₗ₂' inst✝³ : Module R Mₗ₁ inst✝² : Module R Mₗ₂ inst✝¹ : Module R Mₗ₁' inst✝ : Module R Mₗ₂' B : Mₗ₁ →ₗ[R] Mₗ₂ →ₗ[R] R e₁ : Mₗ₁ ≃ₗ[R] Mₗ₁' e₂ : Mₗ₂ ≃ₗ[R] Mₗ₂' h : SeparatingLeft B ⊢ SeparatingLeft (↑(LinearEquiv.arrowCongr e₁ (LinearEquiv.arrowCongr e₂ (LinearEquiv.refl R R))) B) [PROOFSTEP] intro x hx [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝¹⁴ : CommSemiring R inst✝¹³ : CommSemiring R₁ inst✝¹² : AddCommMonoid M₁ inst✝¹¹ : Module R₁ M₁ inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ I₁ : R₁ →+* R I₂ : R₂ →+* R I₁' : R₁ →+* R inst✝⁷ : AddCommMonoid Mₗ₁ inst✝⁶ : AddCommMonoid Mₗ₂ inst✝⁵ : AddCommMonoid Mₗ₁' inst✝⁴ : AddCommMonoid Mₗ₂' inst✝³ : Module R Mₗ₁ inst✝² : Module R Mₗ₂ inst✝¹ : Module R Mₗ₁' inst✝ : Module R Mₗ₂' B : Mₗ₁ →ₗ[R] Mₗ₂ →ₗ[R] R e₁ : Mₗ₁ ≃ₗ[R] Mₗ₁' e₂ : Mₗ₂ ≃ₗ[R] Mₗ₂' h : SeparatingLeft B x : Mₗ₁' hx : ∀ (y : Mₗ₂'), ↑(↑(↑(LinearEquiv.arrowCongr e₁ (LinearEquiv.arrowCongr e₂ (LinearEquiv.refl R R))) B) x) y = 0 ⊢ x = 0 [PROOFSTEP] rw [← e₁.symm.map_eq_zero_iff] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝¹⁴ : CommSemiring R inst✝¹³ : CommSemiring R₁ inst✝¹² : AddCommMonoid M₁ inst✝¹¹ : Module R₁ M₁ inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ I₁ : R₁ →+* R I₂ : R₂ →+* R I₁' : R₁ →+* R inst✝⁷ : AddCommMonoid Mₗ₁ inst✝⁶ : AddCommMonoid Mₗ₂ inst✝⁵ : AddCommMonoid Mₗ₁' inst✝⁴ : AddCommMonoid Mₗ₂' inst✝³ : Module R Mₗ₁ inst✝² : Module R Mₗ₂ inst✝¹ : Module R Mₗ₁' inst✝ : Module R Mₗ₂' B : Mₗ₁ →ₗ[R] Mₗ₂ →ₗ[R] R e₁ : Mₗ₁ ≃ₗ[R] Mₗ₁' e₂ : Mₗ₂ ≃ₗ[R] Mₗ₂' h : SeparatingLeft B x : Mₗ₁' hx : ∀ (y : Mₗ₂'), ↑(↑(↑(LinearEquiv.arrowCongr e₁ (LinearEquiv.arrowCongr e₂ (LinearEquiv.refl R R))) B) x) y = 0 ⊢ ↑(LinearEquiv.symm e₁) x = 0 [PROOFSTEP] refine' h (e₁.symm x) fun y ↦ _ [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝¹⁴ : CommSemiring R inst✝¹³ : CommSemiring R₁ inst✝¹² : AddCommMonoid M₁ inst✝¹¹ : Module R₁ M₁ inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ I₁ : R₁ →+* R I₂ : R₂ →+* R I₁' : R₁ →+* R inst✝⁷ : AddCommMonoid Mₗ₁ inst✝⁶ : AddCommMonoid Mₗ₂ inst✝⁵ : AddCommMonoid Mₗ₁' inst✝⁴ : AddCommMonoid Mₗ₂' inst✝³ : Module R Mₗ₁ inst✝² : Module R Mₗ₂ inst✝¹ : Module R Mₗ₁' inst✝ : Module R Mₗ₂' B : Mₗ₁ →ₗ[R] Mₗ₂ →ₗ[R] R e₁ : Mₗ₁ ≃ₗ[R] Mₗ₁' e₂ : Mₗ₂ ≃ₗ[R] Mₗ₂' h : SeparatingLeft B x : Mₗ₁' hx : ∀ (y : Mₗ₂'), ↑(↑(↑(LinearEquiv.arrowCongr e₁ (LinearEquiv.arrowCongr e₂ (LinearEquiv.refl R R))) B) x) y = 0 y : Mₗ₂ ⊢ ↑(↑B (↑(LinearEquiv.symm e₁) x)) y = 0 [PROOFSTEP] specialize hx (e₂ y) [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝¹⁴ : CommSemiring R inst✝¹³ : CommSemiring R₁ inst✝¹² : AddCommMonoid M₁ inst✝¹¹ : Module R₁ M₁ inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ I₁ : R₁ →+* R I₂ : R₂ →+* R I₁' : R₁ →+* R inst✝⁷ : AddCommMonoid Mₗ₁ inst✝⁶ : AddCommMonoid Mₗ₂ inst✝⁵ : AddCommMonoid Mₗ₁' inst✝⁴ : AddCommMonoid Mₗ₂' inst✝³ : Module R Mₗ₁ inst✝² : Module R Mₗ₂ inst✝¹ : Module R Mₗ₁' inst✝ : Module R Mₗ₂' B : Mₗ₁ →ₗ[R] Mₗ₂ →ₗ[R] R e₁ : Mₗ₁ ≃ₗ[R] Mₗ₁' e₂ : Mₗ₂ ≃ₗ[R] Mₗ₂' h : SeparatingLeft B x : Mₗ₁' y : Mₗ₂ hx : ↑(↑(↑(LinearEquiv.arrowCongr e₁ (LinearEquiv.arrowCongr e₂ (LinearEquiv.refl R R))) B) x) (↑e₂ y) = 0 ⊢ ↑(↑B (↑(LinearEquiv.symm e₁) x)) y = 0 [PROOFSTEP] simp only [LinearEquiv.arrowCongr_apply, LinearEquiv.symm_apply_apply, LinearEquiv.map_eq_zero_iff] at hx [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝¹⁴ : CommSemiring R inst✝¹³ : CommSemiring R₁ inst✝¹² : AddCommMonoid M₁ inst✝¹¹ : Module R₁ M₁ inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ I₁ : R₁ →+* R I₂ : R₂ →+* R I₁' : R₁ →+* R inst✝⁷ : AddCommMonoid Mₗ₁ inst✝⁶ : AddCommMonoid Mₗ₂ inst✝⁵ : AddCommMonoid Mₗ₁' inst✝⁴ : AddCommMonoid Mₗ₂' inst✝³ : Module R Mₗ₁ inst✝² : Module R Mₗ₂ inst✝¹ : Module R Mₗ₁' inst✝ : Module R Mₗ₂' B : Mₗ₁ →ₗ[R] Mₗ₂ →ₗ[R] R e₁ : Mₗ₁ ≃ₗ[R] Mₗ₁' e₂ : Mₗ₂ ≃ₗ[R] Mₗ₂' h : SeparatingLeft B x : Mₗ₁' y : Mₗ₂ hx : ↑(↑B (↑(LinearEquiv.symm e₁) x)) y = 0 ⊢ ↑(↑B (↑(LinearEquiv.symm e₁) x)) y = 0 [PROOFSTEP] exact hx [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝¹⁴ : CommSemiring R inst✝¹³ : CommSemiring R₁ inst✝¹² : AddCommMonoid M₁ inst✝¹¹ : Module R₁ M₁ inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ I₁ : R₁ →+* R I₂ : R₂ →+* R I₁' : R₁ →+* R inst✝⁷ : AddCommMonoid Mₗ₁ inst✝⁶ : AddCommMonoid Mₗ₂ inst✝⁵ : AddCommMonoid Mₗ₁' inst✝⁴ : AddCommMonoid Mₗ₂' inst✝³ : Module R Mₗ₁ inst✝² : Module R Mₗ₂ inst✝¹ : Module R Mₗ₁' inst✝ : Module R Mₗ₂' B : Mₗ₁ →ₗ[R] Mₗ₂ →ₗ[R] R e₁ : Mₗ₁ ≃ₗ[R] Mₗ₁' e₂ : Mₗ₂ ≃ₗ[R] Mₗ₂' h : SeparatingLeft (↑(LinearEquiv.arrowCongr e₁ (LinearEquiv.arrowCongr e₂ (LinearEquiv.refl R R))) B) ⊢ SeparatingLeft B [PROOFSTEP] convert h.congr e₁.symm e₂.symm [GOAL] case h.e'_15 R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝¹⁴ : CommSemiring R inst✝¹³ : CommSemiring R₁ inst✝¹² : AddCommMonoid M₁ inst✝¹¹ : Module R₁ M₁ inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ I₁ : R₁ →+* R I₂ : R₂ →+* R I₁' : R₁ →+* R inst✝⁷ : AddCommMonoid Mₗ₁ inst✝⁶ : AddCommMonoid Mₗ₂ inst✝⁵ : AddCommMonoid Mₗ₁' inst✝⁴ : AddCommMonoid Mₗ₂' inst✝³ : Module R Mₗ₁ inst✝² : Module R Mₗ₂ inst✝¹ : Module R Mₗ₁' inst✝ : Module R Mₗ₂' B : Mₗ₁ →ₗ[R] Mₗ₂ →ₗ[R] R e₁ : Mₗ₁ ≃ₗ[R] Mₗ₁' e₂ : Mₗ₂ ≃ₗ[R] Mₗ₂' h : SeparatingLeft (↑(LinearEquiv.arrowCongr e₁ (LinearEquiv.arrowCongr e₂ (LinearEquiv.refl R R))) B) ⊢ B = ↑(LinearEquiv.arrowCongr (LinearEquiv.symm e₁) (LinearEquiv.arrowCongr (LinearEquiv.symm e₂) (LinearEquiv.refl R R))) (↑(LinearEquiv.arrowCongr e₁ (LinearEquiv.arrowCongr e₂ (LinearEquiv.refl R R))) B) [PROOFSTEP] ext x y [GOAL] case h.e'_15.h.h R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝¹⁴ : CommSemiring R inst✝¹³ : CommSemiring R₁ inst✝¹² : AddCommMonoid M₁ inst✝¹¹ : Module R₁ M₁ inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ I₁ : R₁ →+* R I₂ : R₂ →+* R I₁' : R₁ →+* R inst✝⁷ : AddCommMonoid Mₗ₁ inst✝⁶ : AddCommMonoid Mₗ₂ inst✝⁵ : AddCommMonoid Mₗ₁' inst✝⁴ : AddCommMonoid Mₗ₂' inst✝³ : Module R Mₗ₁ inst✝² : Module R Mₗ₂ inst✝¹ : Module R Mₗ₁' inst✝ : Module R Mₗ₂' B : Mₗ₁ →ₗ[R] Mₗ₂ →ₗ[R] R e₁ : Mₗ₁ ≃ₗ[R] Mₗ₁' e₂ : Mₗ₂ ≃ₗ[R] Mₗ₂' h : SeparatingLeft (↑(LinearEquiv.arrowCongr e₁ (LinearEquiv.arrowCongr e₂ (LinearEquiv.refl R R))) B) x : Mₗ₁ y : Mₗ₂ ⊢ ↑(↑B x) y = ↑(↑(↑(LinearEquiv.arrowCongr (LinearEquiv.symm e₁) (LinearEquiv.arrowCongr (LinearEquiv.symm e₂) (LinearEquiv.refl R R))) (↑(LinearEquiv.arrowCongr e₁ (LinearEquiv.arrowCongr e₂ (LinearEquiv.refl R R))) B)) x) y [PROOFSTEP] simp [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁶ : CommSemiring R inst✝⁵ : CommSemiring R₁ inst✝⁴ : AddCommMonoid M₁ inst✝³ : Module R₁ M₁ inst✝² : CommSemiring R₂ inst✝¹ : AddCommMonoid M₂ inst✝ : Module R₂ M₂ I₁ : R₁ →+* R I₂ : R₂ →+* R I₁' : R₁ →+* R B : M₁ →ₛₗ[I₁] M₂ →ₛₗ[I₂] R ⊢ SeparatingLeft (flip B) ↔ SeparatingRight B [PROOFSTEP] rw [← flip_separatingRight, flip_flip] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁶ : CommSemiring R inst✝⁵ : CommSemiring R₁ inst✝⁴ : AddCommMonoid M₁ inst✝³ : Module R₁ M₁ inst✝² : CommSemiring R₂ inst✝¹ : AddCommMonoid M₂ inst✝ : Module R₂ M₂ I₁ : R₁ →+* R I₂ : R₂ →+* R I₁' : R₁ →+* R B : M₁ →ₛₗ[I₁] M₂ →ₛₗ[I₂] R ⊢ SeparatingLeft B ↔ ∀ (x : M₁), ↑B x = 0 → x = 0 [PROOFSTEP] constructor [GOAL] case mp R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁶ : CommSemiring R inst✝⁵ : CommSemiring R₁ inst✝⁴ : AddCommMonoid M₁ inst✝³ : Module R₁ M₁ inst✝² : CommSemiring R₂ inst✝¹ : AddCommMonoid M₂ inst✝ : Module R₂ M₂ I₁ : R₁ →+* R I₂ : R₂ →+* R I₁' : R₁ →+* R B : M₁ →ₛₗ[I₁] M₂ →ₛₗ[I₂] R ⊢ SeparatingLeft B → ∀ (x : M₁), ↑B x = 0 → x = 0 [PROOFSTEP] intro h x hB [GOAL] case mpr R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁶ : CommSemiring R inst✝⁵ : CommSemiring R₁ inst✝⁴ : AddCommMonoid M₁ inst✝³ : Module R₁ M₁ inst✝² : CommSemiring R₂ inst✝¹ : AddCommMonoid M₂ inst✝ : Module R₂ M₂ I₁ : R₁ →+* R I₂ : R₂ →+* R I₁' : R₁ →+* R B : M₁ →ₛₗ[I₁] M₂ →ₛₗ[I₂] R ⊢ (∀ (x : M₁), ↑B x = 0 → x = 0) → SeparatingLeft B [PROOFSTEP] intro h x hB [GOAL] case mp R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁶ : CommSemiring R inst✝⁵ : CommSemiring R₁ inst✝⁴ : AddCommMonoid M₁ inst✝³ : Module R₁ M₁ inst✝² : CommSemiring R₂ inst✝¹ : AddCommMonoid M₂ inst✝ : Module R₂ M₂ I₁ : R₁ →+* R I₂ : R₂ →+* R I₁' : R₁ →+* R B : M₁ →ₛₗ[I₁] M₂ →ₛₗ[I₂] R h : SeparatingLeft B x : M₁ hB : ↑B x = 0 ⊢ x = 0 [PROOFSTEP] simpa only [hB, zero_apply, eq_self_iff_true, forall_const] using h x [GOAL] case mpr R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁶ : CommSemiring R inst✝⁵ : CommSemiring R₁ inst✝⁴ : AddCommMonoid M₁ inst✝³ : Module R₁ M₁ inst✝² : CommSemiring R₂ inst✝¹ : AddCommMonoid M₂ inst✝ : Module R₂ M₂ I₁ : R₁ →+* R I₂ : R₂ →+* R I₁' : R₁ →+* R B : M₁ →ₛₗ[I₁] M₂ →ₛₗ[I₂] R h : ∀ (x : M₁), ↑B x = 0 → x = 0 x : M₁ hB : ∀ (y : M₂), ↑(↑B x) y = 0 ⊢ x = 0 [PROOFSTEP] have h' : B x = 0 := by ext rw [zero_apply] exact hB _ [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁶ : CommSemiring R inst✝⁵ : CommSemiring R₁ inst✝⁴ : AddCommMonoid M₁ inst✝³ : Module R₁ M₁ inst✝² : CommSemiring R₂ inst✝¹ : AddCommMonoid M₂ inst✝ : Module R₂ M₂ I₁ : R₁ →+* R I₂ : R₂ →+* R I₁' : R₁ →+* R B : M₁ →ₛₗ[I₁] M₂ →ₛₗ[I₂] R h : ∀ (x : M₁), ↑B x = 0 → x = 0 x : M₁ hB : ∀ (y : M₂), ↑(↑B x) y = 0 ⊢ ↑B x = 0 [PROOFSTEP] ext [GOAL] case h R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁶ : CommSemiring R inst✝⁵ : CommSemiring R₁ inst✝⁴ : AddCommMonoid M₁ inst✝³ : Module R₁ M₁ inst✝² : CommSemiring R₂ inst✝¹ : AddCommMonoid M₂ inst✝ : Module R₂ M₂ I₁ : R₁ →+* R I₂ : R₂ →+* R I₁' : R₁ →+* R B : M₁ →ₛₗ[I₁] M₂ →ₛₗ[I₂] R h : ∀ (x : M₁), ↑B x = 0 → x = 0 x : M₁ hB : ∀ (y : M₂), ↑(↑B x) y = 0 x✝ : M₂ ⊢ ↑(↑B x) x✝ = ↑0 x✝ [PROOFSTEP] rw [zero_apply] [GOAL] case h R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁶ : CommSemiring R inst✝⁵ : CommSemiring R₁ inst✝⁴ : AddCommMonoid M₁ inst✝³ : Module R₁ M₁ inst✝² : CommSemiring R₂ inst✝¹ : AddCommMonoid M₂ inst✝ : Module R₂ M₂ I₁ : R₁ →+* R I₂ : R₂ →+* R I₁' : R₁ →+* R B : M₁ →ₛₗ[I₁] M₂ →ₛₗ[I₂] R h : ∀ (x : M₁), ↑B x = 0 → x = 0 x : M₁ hB : ∀ (y : M₂), ↑(↑B x) y = 0 x✝ : M₂ ⊢ ↑(↑B x) x✝ = 0 [PROOFSTEP] exact hB _ [GOAL] case mpr R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁶ : CommSemiring R inst✝⁵ : CommSemiring R₁ inst✝⁴ : AddCommMonoid M₁ inst✝³ : Module R₁ M₁ inst✝² : CommSemiring R₂ inst✝¹ : AddCommMonoid M₂ inst✝ : Module R₂ M₂ I₁ : R₁ →+* R I₂ : R₂ →+* R I₁' : R₁ →+* R B : M₁ →ₛₗ[I₁] M₂ →ₛₗ[I₂] R h : ∀ (x : M₁), ↑B x = 0 → x = 0 x : M₁ hB : ∀ (y : M₂), ↑(↑B x) y = 0 h' : ↑B x = 0 ⊢ x = 0 [PROOFSTEP] exact h x h' [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁶ : CommSemiring R inst✝⁵ : CommSemiring R₁ inst✝⁴ : AddCommMonoid M₁ inst✝³ : Module R₁ M₁ inst✝² : CommSemiring R₂ inst✝¹ : AddCommMonoid M₂ inst✝ : Module R₂ M₂ I₁ : R₁ →+* R I₂ : R₂ →+* R I₁' : R₁ →+* R B : M₁ →ₛₗ[I₁] M₂ →ₛₗ[I₂] R ⊢ SeparatingRight B ↔ ∀ (y : M₂), ↑(flip B) y = 0 → y = 0 [PROOFSTEP] rw [← flip_separatingLeft, separatingLeft_iff_linear_nontrivial] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝⁶ : CommSemiring R inst✝⁵ : CommSemiring R₁ inst✝⁴ : AddCommMonoid M₁ inst✝³ : Module R₁ M₁ inst✝² : CommSemiring R₂ inst✝¹ : AddCommMonoid M₂ inst✝ : Module R₂ M₂ I₁ : R₁ →+* R I₂ : R₂ →+* R I₁' : R₁ →+* R B : M₁ →ₛₗ[I₁] M₂ →ₛₗ[I₂] R ⊢ SeparatingRight B ↔ ker (flip B) = ⊥ [PROOFSTEP] rw [← flip_separatingLeft, separatingLeft_iff_ker_eq_bot] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I I' : R →+* R B : M →ₗ[R] M →ₗ[R] R hB : IsRefl B hB' : SeparatingLeft B ⊢ Nondegenerate B [PROOFSTEP] refine' ⟨hB', _⟩ [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I I' : R →+* R B : M →ₗ[R] M →ₗ[R] R hB : IsRefl B hB' : SeparatingLeft B ⊢ SeparatingRight B [PROOFSTEP] rw [separatingRight_iff_flip_ker_eq_bot, hB.ker_eq_bot_iff_ker_flip_eq_bot.mp] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I I' : R →+* R B : M →ₗ[R] M →ₗ[R] R hB : IsRefl B hB' : SeparatingLeft B ⊢ ker B = ⊥ [PROOFSTEP] rwa [← separatingLeft_iff_ker_eq_bot] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I I' : R →+* R B : M →ₗ[R] M →ₗ[R] R hB : IsRefl B hB' : SeparatingRight B ⊢ Nondegenerate B [PROOFSTEP] refine' ⟨_, hB'⟩ [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I I' : R →+* R B : M →ₗ[R] M →ₗ[R] R hB : IsRefl B hB' : SeparatingRight B ⊢ SeparatingLeft B [PROOFSTEP] rw [separatingLeft_iff_ker_eq_bot, hB.ker_eq_bot_iff_ker_flip_eq_bot.mpr] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I I' : R →+* R B : M →ₗ[R] M →ₗ[R] R hB : IsRefl B hB' : SeparatingRight B ⊢ ker (flip B) = ⊥ [PROOFSTEP] rwa [← separatingRight_iff_flip_ker_eq_bot] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I I' : R →+* R B : M →ₗ[R] M →ₗ[R] R hB : IsRefl B W : Submodule R M hW : Disjoint W (Submodule.orthogonalBilin W B) ⊢ Nondegenerate (domRestrict₁₂ B W W) [PROOFSTEP] refine' (hB.domRestrict W).nondegenerate_of_separatingLeft _ [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I I' : R →+* R B : M →ₗ[R] M →ₗ[R] R hB : IsRefl B W : Submodule R M hW : Disjoint W (Submodule.orthogonalBilin W B) ⊢ SeparatingLeft (domRestrict₁₂ B W W) [PROOFSTEP] rintro ⟨x, hx⟩ b₁ [GOAL] case mk R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I I' : R →+* R B : M →ₗ[R] M →ₗ[R] R hB : IsRefl B W : Submodule R M hW : Disjoint W (Submodule.orthogonalBilin W B) x : M hx : x ∈ W b₁ : ∀ (y : { x // x ∈ W }), ↑(↑(domRestrict₁₂ B W W) { val := x, property := hx }) y = 0 ⊢ { val := x, property := hx } = 0 [PROOFSTEP] rw [Submodule.mk_eq_zero, ← Submodule.mem_bot R] [GOAL] case mk R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I I' : R →+* R B : M →ₗ[R] M →ₗ[R] R hB : IsRefl B W : Submodule R M hW : Disjoint W (Submodule.orthogonalBilin W B) x : M hx : x ∈ W b₁ : ∀ (y : { x // x ∈ W }), ↑(↑(domRestrict₁₂ B W W) { val := x, property := hx }) y = 0 ⊢ x ∈ ⊥ [PROOFSTEP] refine' hW.le_bot ⟨hx, fun y hy ↦ _⟩ [GOAL] case mk R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I I' : R →+* R B : M →ₗ[R] M →ₗ[R] R hB : IsRefl B W : Submodule R M hW : Disjoint W (Submodule.orthogonalBilin W B) x : M hx : x ∈ W b₁ : ∀ (y : { x // x ∈ W }), ↑(↑(domRestrict₁₂ B W W) { val := x, property := hx }) y = 0 y : M hy : y ∈ W ⊢ IsOrtho B y x [PROOFSTEP] specialize b₁ ⟨y, hy⟩ [GOAL] case mk R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I I' : R →+* R B : M →ₗ[R] M →ₗ[R] R hB : IsRefl B W : Submodule R M hW : Disjoint W (Submodule.orthogonalBilin W B) x : M hx : x ∈ W y : M hy : y ∈ W b₁ : ↑(↑(domRestrict₁₂ B W W) { val := x, property := hx }) { val := y, property := hy } = 0 ⊢ IsOrtho B y x [PROOFSTEP] simp_rw [domRestrict₁₂_apply] at b₁ [GOAL] case mk R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I I' : R →+* R B : M →ₗ[R] M →ₗ[R] R hB : IsRefl B W : Submodule R M hW : Disjoint W (Submodule.orthogonalBilin W B) x : M hx : x ∈ W y : M hy : y ∈ W b₁ : ↑(↑B x) y = 0 ⊢ IsOrtho B y x [PROOFSTEP] rw [hB.ortho_comm] [GOAL] case mk R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I I' : R →+* R B : M →ₗ[R] M →ₗ[R] R hB : IsRefl B W : Submodule R M hW : Disjoint W (Submodule.orthogonalBilin W B) x : M hx : x ∈ W y : M hy : y ∈ W b₁ : ↑(↑B x) y = 0 ⊢ IsOrtho B x y [PROOFSTEP] exact b₁ [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝³ : CommRing R inst✝² : AddCommGroup M inst✝¹ : Module R M I I' : R →+* R inst✝ : Nontrivial R B : M →ₛₗ[I] M →ₛₗ[I'] R v : Basis n R M h : IsOrthoᵢ B ↑v hB : SeparatingLeft B i : n ⊢ ¬IsOrtho B (↑v i) (↑v i) [PROOFSTEP] intro ho [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝³ : CommRing R inst✝² : AddCommGroup M inst✝¹ : Module R M I I' : R →+* R inst✝ : Nontrivial R B : M →ₛₗ[I] M →ₛₗ[I'] R v : Basis n R M h : IsOrthoᵢ B ↑v hB : SeparatingLeft B i : n ho : IsOrtho B (↑v i) (↑v i) ⊢ False [PROOFSTEP] refine' v.ne_zero i (hB (v i) fun m ↦ _) [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝³ : CommRing R inst✝² : AddCommGroup M inst✝¹ : Module R M I I' : R →+* R inst✝ : Nontrivial R B : M →ₛₗ[I] M →ₛₗ[I'] R v : Basis n R M h : IsOrthoᵢ B ↑v hB : SeparatingLeft B i : n ho : IsOrtho B (↑v i) (↑v i) m : M ⊢ ↑(↑B (↑v i)) m = 0 [PROOFSTEP] obtain ⟨vi, rfl⟩ := v.repr.symm.surjective m [GOAL] case intro R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝³ : CommRing R inst✝² : AddCommGroup M inst✝¹ : Module R M I I' : R →+* R inst✝ : Nontrivial R B : M →ₛₗ[I] M →ₛₗ[I'] R v : Basis n R M h : IsOrthoᵢ B ↑v hB : SeparatingLeft B i : n ho : IsOrtho B (↑v i) (↑v i) vi : n →₀ R ⊢ ↑(↑B (↑v i)) (↑(LinearEquiv.symm v.repr) vi) = 0 [PROOFSTEP] rw [Basis.repr_symm_apply, Finsupp.total_apply, Finsupp.sum, map_sum] [GOAL] case intro R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝³ : CommRing R inst✝² : AddCommGroup M inst✝¹ : Module R M I I' : R →+* R inst✝ : Nontrivial R B : M →ₛₗ[I] M →ₛₗ[I'] R v : Basis n R M h : IsOrthoᵢ B ↑v hB : SeparatingLeft B i : n ho : IsOrtho B (↑v i) (↑v i) vi : n →₀ R ⊢ ∑ i_1 in vi.support, ↑(↑B (↑v i)) (↑vi i_1 • ↑v i_1) = 0 [PROOFSTEP] apply Finset.sum_eq_zero [GOAL] case intro.h R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝³ : CommRing R inst✝² : AddCommGroup M inst✝¹ : Module R M I I' : R →+* R inst✝ : Nontrivial R B : M →ₛₗ[I] M →ₛₗ[I'] R v : Basis n R M h : IsOrthoᵢ B ↑v hB : SeparatingLeft B i : n ho : IsOrtho B (↑v i) (↑v i) vi : n →₀ R ⊢ ∀ (x : n), x ∈ vi.support → ↑(↑B (↑v i)) (↑vi x • ↑v x) = 0 [PROOFSTEP] rintro j - [GOAL] case intro.h R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝³ : CommRing R inst✝² : AddCommGroup M inst✝¹ : Module R M I I' : R →+* R inst✝ : Nontrivial R B : M →ₛₗ[I] M →ₛₗ[I'] R v : Basis n R M h : IsOrthoᵢ B ↑v hB : SeparatingLeft B i : n ho : IsOrtho B (↑v i) (↑v i) vi : n →₀ R j : n ⊢ ↑(↑B (↑v i)) (↑vi j • ↑v j) = 0 [PROOFSTEP] rw [map_smulₛₗ] [GOAL] case intro.h R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝³ : CommRing R inst✝² : AddCommGroup M inst✝¹ : Module R M I I' : R →+* R inst✝ : Nontrivial R B : M →ₛₗ[I] M →ₛₗ[I'] R v : Basis n R M h : IsOrthoᵢ B ↑v hB : SeparatingLeft B i : n ho : IsOrtho B (↑v i) (↑v i) vi : n →₀ R j : n ⊢ ↑I' (↑vi j) • ↑(↑B (↑v i)) (↑v j) = 0 [PROOFSTEP] suffices : B (v i) (v j) = 0 [GOAL] case intro.h R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝³ : CommRing R inst✝² : AddCommGroup M inst✝¹ : Module R M I I' : R →+* R inst✝ : Nontrivial R B : M →ₛₗ[I] M →ₛₗ[I'] R v : Basis n R M h : IsOrthoᵢ B ↑v hB : SeparatingLeft B i : n ho : IsOrtho B (↑v i) (↑v i) vi : n →₀ R j : n this : ↑(↑B (↑v i)) (↑v j) = 0 ⊢ ↑I' (↑vi j) • ↑(↑B (↑v i)) (↑v j) = 0 [PROOFSTEP] rw [this, smul_eq_mul, mul_zero] [GOAL] case this R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝³ : CommRing R inst✝² : AddCommGroup M inst✝¹ : Module R M I I' : R →+* R inst✝ : Nontrivial R B : M →ₛₗ[I] M →ₛₗ[I'] R v : Basis n R M h : IsOrthoᵢ B ↑v hB : SeparatingLeft B i : n ho : IsOrtho B (↑v i) (↑v i) vi : n →₀ R j : n ⊢ ↑(↑B (↑v i)) (↑v j) = 0 [PROOFSTEP] obtain rfl | hij := eq_or_ne i j [GOAL] case this.inl R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝³ : CommRing R inst✝² : AddCommGroup M inst✝¹ : Module R M I I' : R →+* R inst✝ : Nontrivial R B : M →ₛₗ[I] M →ₛₗ[I'] R v : Basis n R M h : IsOrthoᵢ B ↑v hB : SeparatingLeft B i : n ho : IsOrtho B (↑v i) (↑v i) vi : n →₀ R ⊢ ↑(↑B (↑v i)) (↑v i) = 0 [PROOFSTEP] exact ho [GOAL] case this.inr R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝³ : CommRing R inst✝² : AddCommGroup M inst✝¹ : Module R M I I' : R →+* R inst✝ : Nontrivial R B : M →ₛₗ[I] M →ₛₗ[I'] R v : Basis n R M h : IsOrthoᵢ B ↑v hB : SeparatingLeft B i : n ho : IsOrtho B (↑v i) (↑v i) vi : n →₀ R j : n hij : i ≠ j ⊢ ↑(↑B (↑v i)) (↑v j) = 0 [PROOFSTEP] exact h hij [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝³ : CommRing R inst✝² : AddCommGroup M inst✝¹ : Module R M I I' : R →+* R inst✝ : Nontrivial R B : M →ₛₗ[I] M →ₛₗ[I'] R v : Basis n R M h : IsOrthoᵢ B ↑v hB : SeparatingRight B i : n ⊢ ¬IsOrtho B (↑v i) (↑v i) [PROOFSTEP] rw [isOrthoᵢ_flip] at h [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝³ : CommRing R inst✝² : AddCommGroup M inst✝¹ : Module R M I I' : R →+* R inst✝ : Nontrivial R B : M →ₛₗ[I] M →ₛₗ[I'] R v : Basis n R M h : IsOrthoᵢ (flip B) ↑v hB : SeparatingRight B i : n ⊢ ¬IsOrtho B (↑v i) (↑v i) [PROOFSTEP] rw [isOrtho_flip] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝³ : CommRing R inst✝² : AddCommGroup M inst✝¹ : Module R M I I' : R →+* R inst✝ : Nontrivial R B : M →ₛₗ[I] M →ₛₗ[I'] R v : Basis n R M h : IsOrthoᵢ (flip B) ↑v hB : SeparatingRight B i : n ⊢ ¬IsOrtho (flip B) (↑v i) (↑v i) [PROOFSTEP] exact h.not_isOrtho_basis_self_of_separatingLeft (flip_separatingLeft.mpr hB) i [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝³ : CommRing R inst✝² : AddCommGroup M inst✝¹ : Module R M I I' : R →+* R inst✝ : NoZeroDivisors R B : M →ₗ[R] M →ₗ[R] R v : Basis n R M hO : IsOrthoᵢ B ↑v h : ∀ (i : n), ¬IsOrtho B (↑v i) (↑v i) ⊢ SeparatingLeft B [PROOFSTEP] intro m hB [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝³ : CommRing R inst✝² : AddCommGroup M inst✝¹ : Module R M I I' : R →+* R inst✝ : NoZeroDivisors R B : M →ₗ[R] M →ₗ[R] R v : Basis n R M hO : IsOrthoᵢ B ↑v h : ∀ (i : n), ¬IsOrtho B (↑v i) (↑v i) m : M hB : ∀ (y : M), ↑(↑B m) y = 0 ⊢ m = 0 [PROOFSTEP] obtain ⟨vi, rfl⟩ := v.repr.symm.surjective m [GOAL] case intro R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝³ : CommRing R inst✝² : AddCommGroup M inst✝¹ : Module R M I I' : R →+* R inst✝ : NoZeroDivisors R B : M →ₗ[R] M →ₗ[R] R v : Basis n R M hO : IsOrthoᵢ B ↑v h : ∀ (i : n), ¬IsOrtho B (↑v i) (↑v i) vi : n →₀ R hB : ∀ (y : M), ↑(↑B (↑(LinearEquiv.symm v.repr) vi)) y = 0 ⊢ ↑(LinearEquiv.symm v.repr) vi = 0 [PROOFSTEP] rw [LinearEquiv.map_eq_zero_iff] [GOAL] case intro R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝³ : CommRing R inst✝² : AddCommGroup M inst✝¹ : Module R M I I' : R →+* R inst✝ : NoZeroDivisors R B : M →ₗ[R] M →ₗ[R] R v : Basis n R M hO : IsOrthoᵢ B ↑v h : ∀ (i : n), ¬IsOrtho B (↑v i) (↑v i) vi : n →₀ R hB : ∀ (y : M), ↑(↑B (↑(LinearEquiv.symm v.repr) vi)) y = 0 ⊢ vi = 0 [PROOFSTEP] ext i [GOAL] case intro.h R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝³ : CommRing R inst✝² : AddCommGroup M inst✝¹ : Module R M I I' : R →+* R inst✝ : NoZeroDivisors R B : M →ₗ[R] M →ₗ[R] R v : Basis n R M hO : IsOrthoᵢ B ↑v h : ∀ (i : n), ¬IsOrtho B (↑v i) (↑v i) vi : n →₀ R hB : ∀ (y : M), ↑(↑B (↑(LinearEquiv.symm v.repr) vi)) y = 0 i : n ⊢ ↑vi i = ↑0 i [PROOFSTEP] rw [Finsupp.zero_apply] [GOAL] case intro.h R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝³ : CommRing R inst✝² : AddCommGroup M inst✝¹ : Module R M I I' : R →+* R inst✝ : NoZeroDivisors R B : M →ₗ[R] M →ₗ[R] R v : Basis n R M hO : IsOrthoᵢ B ↑v h : ∀ (i : n), ¬IsOrtho B (↑v i) (↑v i) vi : n →₀ R hB : ∀ (y : M), ↑(↑B (↑(LinearEquiv.symm v.repr) vi)) y = 0 i : n ⊢ ↑vi i = 0 [PROOFSTEP] specialize hB (v i) [GOAL] case intro.h R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝³ : CommRing R inst✝² : AddCommGroup M inst✝¹ : Module R M I I' : R →+* R inst✝ : NoZeroDivisors R B : M →ₗ[R] M →ₗ[R] R v : Basis n R M hO : IsOrthoᵢ B ↑v h : ∀ (i : n), ¬IsOrtho B (↑v i) (↑v i) vi : n →₀ R i : n hB : ↑(↑B (↑(LinearEquiv.symm v.repr) vi)) (↑v i) = 0 ⊢ ↑vi i = 0 [PROOFSTEP] simp_rw [Basis.repr_symm_apply, Finsupp.total_apply, Finsupp.sum, map_sum₂, map_smulₛₗ₂, smul_eq_mul] at hB [GOAL] case intro.h R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝³ : CommRing R inst✝² : AddCommGroup M inst✝¹ : Module R M I I' : R →+* R inst✝ : NoZeroDivisors R B : M →ₗ[R] M →ₗ[R] R v : Basis n R M hO : IsOrthoᵢ B ↑v h : ∀ (i : n), ¬IsOrtho B (↑v i) (↑v i) vi : n →₀ R i : n hB : ∑ x in vi.support, ↑(RingHom.id R) (↑vi x) * ↑(↑B (↑v x)) (↑v i) = 0 ⊢ ↑vi i = 0 [PROOFSTEP] rw [Finset.sum_eq_single i] at hB [GOAL] case intro.h R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝³ : CommRing R inst✝² : AddCommGroup M inst✝¹ : Module R M I I' : R →+* R inst✝ : NoZeroDivisors R B : M →ₗ[R] M →ₗ[R] R v : Basis n R M hO : IsOrthoᵢ B ↑v h : ∀ (i : n), ¬IsOrtho B (↑v i) (↑v i) vi : n →₀ R i : n hB : ↑(RingHom.id R) (↑vi i) * ↑(↑B (↑v i)) (↑v i) = 0 ⊢ ↑vi i = 0 [PROOFSTEP] exact eq_zero_of_ne_zero_of_mul_right_eq_zero (h i) hB [GOAL] case intro.h.h₀ R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝³ : CommRing R inst✝² : AddCommGroup M inst✝¹ : Module R M I I' : R →+* R inst✝ : NoZeroDivisors R B : M →ₗ[R] M →ₗ[R] R v : Basis n R M hO : IsOrthoᵢ B ↑v h : ∀ (i : n), ¬IsOrtho B (↑v i) (↑v i) vi : n →₀ R i : n hB : ∑ x in vi.support, ↑(RingHom.id R) (↑vi x) * ↑(↑B (↑v x)) (↑v i) = 0 ⊢ ∀ (b : n), b ∈ vi.support → b ≠ i → ↑(RingHom.id R) (↑vi b) * ↑(↑B (↑v b)) (↑v i) = 0 [PROOFSTEP] intro j _hj hij [GOAL] case intro.h.h₀ R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝³ : CommRing R inst✝² : AddCommGroup M inst✝¹ : Module R M I I' : R →+* R inst✝ : NoZeroDivisors R B : M →ₗ[R] M →ₗ[R] R v : Basis n R M hO : IsOrthoᵢ B ↑v h : ∀ (i : n), ¬IsOrtho B (↑v i) (↑v i) vi : n →₀ R i : n hB : ∑ x in vi.support, ↑(RingHom.id R) (↑vi x) * ↑(↑B (↑v x)) (↑v i) = 0 j : n _hj : j ∈ vi.support hij : j ≠ i ⊢ ↑(RingHom.id R) (↑vi j) * ↑(↑B (↑v j)) (↑v i) = 0 [PROOFSTEP] replace hij : B (v j) (v i) = 0 := hO hij [GOAL] case intro.h.h₀ R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝³ : CommRing R inst✝² : AddCommGroup M inst✝¹ : Module R M I I' : R →+* R inst✝ : NoZeroDivisors R B : M →ₗ[R] M →ₗ[R] R v : Basis n R M hO : IsOrthoᵢ B ↑v h : ∀ (i : n), ¬IsOrtho B (↑v i) (↑v i) vi : n →₀ R i : n hB : ∑ x in vi.support, ↑(RingHom.id R) (↑vi x) * ↑(↑B (↑v x)) (↑v i) = 0 j : n _hj : j ∈ vi.support hij : ↑(↑B (↑v j)) (↑v i) = 0 ⊢ ↑(RingHom.id R) (↑vi j) * ↑(↑B (↑v j)) (↑v i) = 0 [PROOFSTEP] rw [hij, RingHom.id_apply, mul_zero] [GOAL] case intro.h.h₁ R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝³ : CommRing R inst✝² : AddCommGroup M inst✝¹ : Module R M I I' : R →+* R inst✝ : NoZeroDivisors R B : M →ₗ[R] M →ₗ[R] R v : Basis n R M hO : IsOrthoᵢ B ↑v h : ∀ (i : n), ¬IsOrtho B (↑v i) (↑v i) vi : n →₀ R i : n hB : ∑ x in vi.support, ↑(RingHom.id R) (↑vi x) * ↑(↑B (↑v x)) (↑v i) = 0 ⊢ ¬i ∈ vi.support → ↑(RingHom.id R) (↑vi i) * ↑(↑B (↑v i)) (↑v i) = 0 [PROOFSTEP] intro hi [GOAL] case intro.h.h₁ R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝³ : CommRing R inst✝² : AddCommGroup M inst✝¹ : Module R M I I' : R →+* R inst✝ : NoZeroDivisors R B : M →ₗ[R] M →ₗ[R] R v : Basis n R M hO : IsOrthoᵢ B ↑v h : ∀ (i : n), ¬IsOrtho B (↑v i) (↑v i) vi : n →₀ R i : n hB : ∑ x in vi.support, ↑(RingHom.id R) (↑vi x) * ↑(↑B (↑v x)) (↑v i) = 0 hi : ¬i ∈ vi.support ⊢ ↑(RingHom.id R) (↑vi i) * ↑(↑B (↑v i)) (↑v i) = 0 [PROOFSTEP] replace hi : vi i = 0 := Finsupp.not_mem_support_iff.mp hi [GOAL] case intro.h.h₁ R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝³ : CommRing R inst✝² : AddCommGroup M inst✝¹ : Module R M I I' : R →+* R inst✝ : NoZeroDivisors R B : M →ₗ[R] M →ₗ[R] R v : Basis n R M hO : IsOrthoᵢ B ↑v h : ∀ (i : n), ¬IsOrtho B (↑v i) (↑v i) vi : n →₀ R i : n hB : ∑ x in vi.support, ↑(RingHom.id R) (↑vi x) * ↑(↑B (↑v x)) (↑v i) = 0 hi : ↑vi i = 0 ⊢ ↑(RingHom.id R) (↑vi i) * ↑(↑B (↑v i)) (↑v i) = 0 [PROOFSTEP] rw [hi, RingHom.id_apply, zero_mul] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝³ : CommRing R inst✝² : AddCommGroup M inst✝¹ : Module R M I I' : R →+* R inst✝ : NoZeroDivisors R B : M →ₗ[R] M →ₗ[R] R v : Basis n R M hO : IsOrthoᵢ B ↑v h : ∀ (i : n), ¬IsOrtho B (↑v i) (↑v i) ⊢ SeparatingRight B [PROOFSTEP] rw [isOrthoᵢ_flip] at hO [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝³ : CommRing R inst✝² : AddCommGroup M inst✝¹ : Module R M I I' : R →+* R inst✝ : NoZeroDivisors R B : M →ₗ[R] M →ₗ[R] R v : Basis n R M hO : IsOrthoᵢ (flip B) ↑v h : ∀ (i : n), ¬IsOrtho B (↑v i) (↑v i) ⊢ SeparatingRight B [PROOFSTEP] rw [← flip_separatingLeft] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝³ : CommRing R inst✝² : AddCommGroup M inst✝¹ : Module R M I I' : R →+* R inst✝ : NoZeroDivisors R B : M →ₗ[R] M →ₗ[R] R v : Basis n R M hO : IsOrthoᵢ (flip B) ↑v h : ∀ (i : n), ¬IsOrtho B (↑v i) (↑v i) ⊢ SeparatingLeft (flip B) [PROOFSTEP] refine' IsOrthoᵢ.separatingLeft_of_not_isOrtho_basis_self v hO fun i ↦ _ [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝³ : CommRing R inst✝² : AddCommGroup M inst✝¹ : Module R M I I' : R →+* R inst✝ : NoZeroDivisors R B : M →ₗ[R] M →ₗ[R] R v : Basis n R M hO : IsOrthoᵢ (flip B) ↑v h : ∀ (i : n), ¬IsOrtho B (↑v i) (↑v i) i : n ⊢ ¬IsOrtho (flip B) (↑v i) (↑v i) [PROOFSTEP] rw [isOrtho_flip] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 Mₗ₁ : Type u_8 Mₗ₁' : Type u_9 Mₗ₂ : Type u_10 Mₗ₂' : Type u_11 K : Type u_12 K₁ : Type u_13 K₂ : Type u_14 V : Type u_15 V₁ : Type u_16 V₂ : Type u_17 n : Type u_18 inst✝³ : CommRing R inst✝² : AddCommGroup M inst✝¹ : Module R M I I' : R →+* R inst✝ : NoZeroDivisors R B : M →ₗ[R] M →ₗ[R] R v : Basis n R M hO : IsOrthoᵢ (flip B) ↑v h : ∀ (i : n), ¬IsOrtho B (↑v i) (↑v i) i : n ⊢ ¬IsOrtho (flip (flip B)) (↑v i) (↑v i) [PROOFSTEP] exact h i
{"mathlib_filename": "Mathlib.LinearAlgebra.SesquilinearForm", "llama_tokens": 73350}
[GOAL] R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M ιι : Type u_3 ι : ιι → Type u_4 ai : ιι a : ⨂[R] (x : ι ai), M bi : ιι b : ⨂[R] (x : ι bi), M hi : ai = bi h : ↑(reindex R M (Equiv.cast (_ : ι { fst := ai, snd := a }.fst = ι { fst := bi, snd := b }.fst))) a = b ⊢ { fst := ai, snd := a } = { fst := bi, snd := b } [PROOFSTEP] subst hi [GOAL] R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M ιι : Type u_3 ι : ιι → Type u_4 ai : ιι a b : ⨂[R] (x : ι ai), M h : ↑(reindex R M (Equiv.cast (_ : ι { fst := ai, snd := a }.fst = ι { fst := ai, snd := b }.fst))) a = b ⊢ { fst := ai, snd := a } = { fst := ai, snd := b } [PROOFSTEP] simp_all [GOAL] R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M a b : GradedMonoid fun n => ⨂[R] (x : Fin n), M h : a.fst = b.fst h2 : ↑(cast R M h) a.snd = b.snd ⊢ a = b [PROOFSTEP] refine' gradedMonoid_eq_of_reindex_cast h _ [GOAL] R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M a b : GradedMonoid fun n => ⨂[R] (x : Fin n), M h : a.fst = b.fst h2 : ↑(cast R M h) a.snd = b.snd ⊢ ↑(reindex R M (Equiv.cast (_ : Fin a.fst = Fin b.fst))) a.snd = b.snd [PROOFSTEP] rw [cast] at h2 [GOAL] R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M a b : GradedMonoid fun n => ⨂[R] (x : Fin n), M h : a.fst = b.fst h2 : ↑(reindex R M (Fin.castIso h).toEquiv) a.snd = b.snd ⊢ ↑(reindex R M (Equiv.cast (_ : Fin a.fst = Fin b.fst))) a.snd = b.snd [PROOFSTEP] rw [← Fin.castIso_to_equiv, ← h2] [GOAL] R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M i j : ℕ h : i = j ⊢ ↑(cast R M h) = _root_.cast (_ : (⨂[R]^i) M = (⨂[R]^j) M) [PROOFSTEP] subst h [GOAL] R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M i : ℕ ⊢ ↑(cast R M (_ : i = i)) = _root_.cast (_ : (⨂[R]^i) M = (⨂[R]^i) M) [PROOFSTEP] rw [cast_refl] [GOAL] R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M i : ℕ ⊢ ↑(LinearEquiv.refl R ((⨂[R]^i) M)) = _root_.cast (_ : (⨂[R]^i) M = (⨂[R]^i) M) [PROOFSTEP] rfl [GOAL] R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M na nb : ℕ a : Fin na → M b : Fin nb → M ⊢ GradedMonoid.GMul.mul (↑(tprod R) a) (↑(tprod R) b) = ↑(tprod R) (Fin.append a b) [PROOFSTEP] dsimp [gMul_def, mulEquiv] [GOAL] R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M na nb : ℕ a : Fin na → M b : Fin nb → M ⊢ ↑(reindex R M finSumFinEquiv) (↑(tmulEquiv R M) (↑(tprod R) a ⊗ₜ[R] ↑(tprod R) b)) = ↑(tprod R) (Fin.append a b) [PROOFSTEP] rw [tmulEquiv_apply R M a b] [GOAL] R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M na nb : ℕ a : Fin na → M b : Fin nb → M ⊢ ↑(reindex R M finSumFinEquiv) (⨂ₜ[R] (i : Fin na ⊕ Fin nb), Sum.elim a b i) = ↑(tprod R) (Fin.append a b) [PROOFSTEP] refine' (reindex_tprod _ _).trans _ [GOAL] R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M na nb : ℕ a : Fin na → M b : Fin nb → M ⊢ (⨂ₜ[R] (i : Fin (na + nb)), Sum.elim a b (↑finSumFinEquiv.symm i)) = ↑(tprod R) (Fin.append a b) [PROOFSTEP] congr 1 [GOAL] case h.e_6.h R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M na nb : ℕ a : Fin na → M b : Fin nb → M ⊢ (fun i => Sum.elim a b (↑finSumFinEquiv.symm i)) = Fin.append a b [PROOFSTEP] dsimp only [Fin.append, finSumFinEquiv, Equiv.coe_fn_symm_mk] [GOAL] case h.e_6.h R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M na nb : ℕ a : Fin na → M b : Fin nb → M ⊢ (fun i => Sum.elim a b (Fin.addCases Sum.inl Sum.inr i)) = Fin.addCases a b [PROOFSTEP] apply funext [GOAL] case h.e_6.h.h R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M na nb : ℕ a : Fin na → M b : Fin nb → M ⊢ ∀ (x : Fin (na + nb)), Sum.elim a b (Fin.addCases Sum.inl Sum.inr x) = Fin.addCases a b x [PROOFSTEP] apply Fin.addCases [GOAL] case h.e_6.h.h.left R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M na nb : ℕ a : Fin na → M b : Fin nb → M ⊢ ∀ (i : Fin na), Sum.elim a b (Fin.addCases Sum.inl Sum.inr (Fin.castAdd nb i)) = Fin.addCases a b (Fin.castAdd nb i) [PROOFSTEP] simp [GOAL] case h.e_6.h.h.right R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M na nb : ℕ a : Fin na → M b : Fin nb → M ⊢ ∀ (i : Fin nb), Sum.elim a b (Fin.addCases Sum.inl Sum.inr (Fin.natAdd na i)) = Fin.addCases a b (Fin.natAdd na i) [PROOFSTEP] simp [GOAL] R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M n : ℕ a : (⨂[R]^n) M ⊢ ↑(cast R M (_ : 0 + n = n)) (GradedMonoid.GMul.mul GradedMonoid.GOne.one a) = a [PROOFSTEP] rw [gMul_def, gOne_def] [GOAL] R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M n : ℕ a : (⨂[R]^n) M ⊢ ↑(cast R M (_ : 0 + n = n)) (↑mulEquiv (↑(tprod R) Fin.elim0' ⊗ₜ[R] a)) = a [PROOFSTEP] induction' a using PiTensorProduct.induction_on with r a x y hx hy [GOAL] case C1 R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M n : ℕ r : R a : Fin n → M ⊢ ↑(cast R M (_ : 0 + n = n)) (↑mulEquiv (↑(tprod R) Fin.elim0' ⊗ₜ[R] (r • ↑(tprod R) a))) = r • ↑(tprod R) a [PROOFSTEP] rw [TensorProduct.tmul_smul, LinearEquiv.map_smul, LinearEquiv.map_smul, ← gMul_def, tprod_mul_tprod, cast_tprod] [GOAL] case C1 R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M n : ℕ r : R a : Fin n → M ⊢ r • ↑(tprod R) (Fin.append Fin.elim0' a ∘ ↑(Fin.castIso (_ : n = 0 + n))) = r • ↑(tprod R) a [PROOFSTEP] congr 2 with i [GOAL] case C1.e_a.h.e_6.h.h R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M n : ℕ r : R a : Fin n → M i : Fin n ⊢ (Fin.append Fin.elim0' a ∘ ↑(Fin.castIso (_ : n = 0 + n))) i = a i [PROOFSTEP] rw [Fin.elim0'_append] [GOAL] case C1.e_a.h.e_6.h.h R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M n : ℕ r : R a : Fin n → M i : Fin n ⊢ ((a ∘ ↑(Fin.castIso (_ : 0 + n = n))) ∘ ↑(Fin.castIso (_ : n = 0 + n))) i = a i [PROOFSTEP] refine' congr_arg a (Fin.ext _) [GOAL] case C1.e_a.h.e_6.h.h R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M n : ℕ r : R a : Fin n → M i : Fin n ⊢ ↑(↑(Fin.castIso (_ : 0 + n = n)) (↑(Fin.castIso (_ : n = 0 + n)) i)) = ↑i [PROOFSTEP] simp [GOAL] case Cp R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M n : ℕ x y : ⨂[R] (i : Fin n), M hx : ↑(cast R M (_ : 0 + n = n)) (↑mulEquiv (↑(tprod R) Fin.elim0' ⊗ₜ[R] x)) = x hy : ↑(cast R M (_ : 0 + n = n)) (↑mulEquiv (↑(tprod R) Fin.elim0' ⊗ₜ[R] y)) = y ⊢ ↑(cast R M (_ : 0 + n = n)) (↑mulEquiv (↑(tprod R) Fin.elim0' ⊗ₜ[R] (x + y))) = x + y [PROOFSTEP] rw [TensorProduct.tmul_add, map_add, map_add, hx, hy] [GOAL] R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M n : ℕ a : (⨂[R]^n) M ⊢ ↑(cast R M (_ : n + 0 = n)) (GradedMonoid.GMul.mul a GradedMonoid.GOne.one) = a [PROOFSTEP] rw [gMul_def, gOne_def] [GOAL] R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M n : ℕ a : (⨂[R]^n) M ⊢ ↑(cast R M (_ : n + 0 = n)) (↑mulEquiv (a ⊗ₜ[R] ↑(tprod R) Fin.elim0')) = a [PROOFSTEP] induction' a using PiTensorProduct.induction_on with r a x y hx hy [GOAL] case C1 R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M n : ℕ r : R a : Fin n → M ⊢ ↑(cast R M (_ : n + 0 = n)) (↑mulEquiv ((r • ↑(tprod R) a) ⊗ₜ[R] ↑(tprod R) Fin.elim0')) = r • ↑(tprod R) a [PROOFSTEP] rw [← TensorProduct.smul_tmul', LinearEquiv.map_smul, LinearEquiv.map_smul, ← gMul_def, tprod_mul_tprod R a _, cast_tprod] [GOAL] case C1 R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M n : ℕ r : R a : Fin n → M ⊢ r • ↑(tprod R) (Fin.append a Fin.elim0' ∘ ↑(Fin.castIso (_ : n = n + 0))) = r • ↑(tprod R) a [PROOFSTEP] congr 2 with i [GOAL] case C1.e_a.h.e_6.h.h R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M n : ℕ r : R a : Fin n → M i : Fin n ⊢ (Fin.append a Fin.elim0' ∘ ↑(Fin.castIso (_ : n = n + 0))) i = a i [PROOFSTEP] rw [Fin.append_elim0'] [GOAL] case C1.e_a.h.e_6.h.h R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M n : ℕ r : R a : Fin n → M i : Fin n ⊢ ((a ∘ ↑(Fin.castIso (_ : n + 0 = n))) ∘ ↑(Fin.castIso (_ : n = n + 0))) i = a i [PROOFSTEP] refine' congr_arg a (Fin.ext _) [GOAL] case C1.e_a.h.e_6.h.h R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M n : ℕ r : R a : Fin n → M i : Fin n ⊢ ↑(↑(Fin.castIso (_ : n + 0 = n)) (↑(Fin.castIso (_ : n = n + 0)) i)) = ↑i [PROOFSTEP] simp [GOAL] case Cp R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M n : ℕ x y : ⨂[R] (i : Fin n), M hx : ↑(cast R M (_ : n + 0 = n)) (↑mulEquiv (x ⊗ₜ[R] ↑(tprod R) Fin.elim0')) = x hy : ↑(cast R M (_ : n + 0 = n)) (↑mulEquiv (y ⊗ₜ[R] ↑(tprod R) Fin.elim0')) = y ⊢ ↑(cast R M (_ : n + 0 = n)) (↑mulEquiv ((x + y) ⊗ₜ[R] ↑(tprod R) Fin.elim0')) = x + y [PROOFSTEP] rw [TensorProduct.add_tmul, map_add, map_add, hx, hy] [GOAL] R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M na nb nc : ℕ a : (⨂[R]^na) M b : (⨂[R]^nb) M c : (⨂[R]^nc) M ⊢ ↑(cast R M (_ : na + nb + nc = na + (nb + nc))) (GradedMonoid.GMul.mul (GradedMonoid.GMul.mul a b) c) = GradedMonoid.GMul.mul a (GradedMonoid.GMul.mul b c) [PROOFSTEP] let mul : ∀ n m : ℕ, (⨂[R]^n) M →ₗ[R] (⨂[R]^m) M →ₗ[R] (⨂[R]^(n + m)) M := fun n m => (TensorProduct.mk R _ _).compr₂ ↑(mulEquiv : _ ≃ₗ[R] (⨂[R]^(n + m)) M) -- replace `a`, `b`, `c` with `tprod R a`, `tprod R b`, `tprod R c` [GOAL] R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M na nb nc : ℕ a : (⨂[R]^na) M b : (⨂[R]^nb) M c : (⨂[R]^nc) M mul : (n m : ℕ) → (⨂[R]^n) M →ₗ[R] (⨂[R]^m) M →ₗ[R] (⨂[R]^(n + m)) M := fun n m => LinearMap.compr₂ (TensorProduct.mk R ((⨂[R]^n) M) ((⨂[R]^m) M)) ↑mulEquiv ⊢ ↑(cast R M (_ : na + nb + nc = na + (nb + nc))) (GradedMonoid.GMul.mul (GradedMonoid.GMul.mul a b) c) = GradedMonoid.GMul.mul a (GradedMonoid.GMul.mul b c) [PROOFSTEP] let e : (⨂[R]^(na + nb + nc)) M ≃ₗ[R] (⨂[R]^(na + (nb + nc))) M := cast R M (add_assoc _ _ _) [GOAL] R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M na nb nc : ℕ a : (⨂[R]^na) M b : (⨂[R]^nb) M c : (⨂[R]^nc) M mul : (n m : ℕ) → (⨂[R]^n) M →ₗ[R] (⨂[R]^m) M →ₗ[R] (⨂[R]^(n + m)) M := fun n m => LinearMap.compr₂ (TensorProduct.mk R ((⨂[R]^n) M) ((⨂[R]^m) M)) ↑mulEquiv e : (⨂[R]^(na + nb + nc)) M ≃ₗ[R] (⨂[R]^(na + (nb + nc))) M := cast R M (_ : na + nb + nc = na + (nb + nc)) ⊢ ↑(cast R M (_ : na + nb + nc = na + (nb + nc))) (GradedMonoid.GMul.mul (GradedMonoid.GMul.mul a b) c) = GradedMonoid.GMul.mul a (GradedMonoid.GMul.mul b c) [PROOFSTEP] let lhs : (⨂[R]^na) M →ₗ[R] (⨂[R]^nb) M →ₗ[R] (⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M := (LinearMap.llcomp R _ _ _ ((mul _ nc).compr₂ e.toLinearMap)).comp (mul na nb) [GOAL] R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M na nb nc : ℕ a : (⨂[R]^na) M b : (⨂[R]^nb) M c : (⨂[R]^nc) M mul : (n m : ℕ) → (⨂[R]^n) M →ₗ[R] (⨂[R]^m) M →ₗ[R] (⨂[R]^(n + m)) M := fun n m => LinearMap.compr₂ (TensorProduct.mk R ((⨂[R]^n) M) ((⨂[R]^m) M)) ↑mulEquiv e : (⨂[R]^(na + nb + nc)) M ≃ₗ[R] (⨂[R]^(na + (nb + nc))) M := cast R M (_ : na + nb + nc = na + (nb + nc)) lhs : (⨂[R]^na) M →ₗ[R] (⨂[R]^nb) M →ₗ[R] (⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M := LinearMap.comp (↑(LinearMap.llcomp R ((⨂[R]^nb) M) ((⨂[R]^(na + nb)) M) ((⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M)) (LinearMap.compr₂ (mul (na + nb) nc) ↑e)) (mul na nb) ⊢ ↑(cast R M (_ : na + nb + nc = na + (nb + nc))) (GradedMonoid.GMul.mul (GradedMonoid.GMul.mul a b) c) = GradedMonoid.GMul.mul a (GradedMonoid.GMul.mul b c) [PROOFSTEP] have lhs_eq : ∀ a b c, lhs a b c = e (a ₜ* b ₜ* c) := fun _ _ _ => rfl [GOAL] R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M na nb nc : ℕ a : (⨂[R]^na) M b : (⨂[R]^nb) M c : (⨂[R]^nc) M mul : (n m : ℕ) → (⨂[R]^n) M →ₗ[R] (⨂[R]^m) M →ₗ[R] (⨂[R]^(n + m)) M := fun n m => LinearMap.compr₂ (TensorProduct.mk R ((⨂[R]^n) M) ((⨂[R]^m) M)) ↑mulEquiv e : (⨂[R]^(na + nb + nc)) M ≃ₗ[R] (⨂[R]^(na + (nb + nc))) M := cast R M (_ : na + nb + nc = na + (nb + nc)) lhs : (⨂[R]^na) M →ₗ[R] (⨂[R]^nb) M →ₗ[R] (⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M := LinearMap.comp (↑(LinearMap.llcomp R ((⨂[R]^nb) M) ((⨂[R]^(na + nb)) M) ((⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M)) (LinearMap.compr₂ (mul (na + nb) nc) ↑e)) (mul na nb) lhs_eq : ∀ (a : (⨂[R]^na) M) (b : (⨂[R]^nb) M) (c : (⨂[R]^nc) M), ↑(↑(↑lhs a) b) c = ↑e (GradedMonoid.GMul.mul (GradedMonoid.GMul.mul a b) c) ⊢ ↑(cast R M (_ : na + nb + nc = na + (nb + nc))) (GradedMonoid.GMul.mul (GradedMonoid.GMul.mul a b) c) = GradedMonoid.GMul.mul a (GradedMonoid.GMul.mul b c) [PROOFSTEP] let rhs : (⨂[R]^na) M →ₗ[R] (⨂[R]^nb) M →ₗ[R] (⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M := (LinearMap.llcomp R _ _ _ (LinearMap.lflip (R := R)) <| (LinearMap.llcomp R _ _ _ (mul na _).flip).comp (mul nb nc)).flip [GOAL] R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M na nb nc : ℕ a : (⨂[R]^na) M b : (⨂[R]^nb) M c : (⨂[R]^nc) M mul : (n m : ℕ) → (⨂[R]^n) M →ₗ[R] (⨂[R]^m) M →ₗ[R] (⨂[R]^(n + m)) M := fun n m => LinearMap.compr₂ (TensorProduct.mk R ((⨂[R]^n) M) ((⨂[R]^m) M)) ↑mulEquiv e : (⨂[R]^(na + nb + nc)) M ≃ₗ[R] (⨂[R]^(na + (nb + nc))) M := cast R M (_ : na + nb + nc = na + (nb + nc)) lhs : (⨂[R]^na) M →ₗ[R] (⨂[R]^nb) M →ₗ[R] (⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M := LinearMap.comp (↑(LinearMap.llcomp R ((⨂[R]^nb) M) ((⨂[R]^(na + nb)) M) ((⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M)) (LinearMap.compr₂ (mul (na + nb) nc) ↑e)) (mul na nb) lhs_eq : ∀ (a : (⨂[R]^na) M) (b : (⨂[R]^nb) M) (c : (⨂[R]^nc) M), ↑(↑(↑lhs a) b) c = ↑e (GradedMonoid.GMul.mul (GradedMonoid.GMul.mul a b) c) rhs : (⨂[R]^na) M →ₗ[R] (⨂[R]^nb) M →ₗ[R] (⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M := LinearMap.flip (↑(↑(LinearMap.llcomp R ((⨂[R]^nb) M) ((⨂[R]^nc) M →ₗ[R] (⨂[R]^na) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M) ((⨂[R]^na) M →ₗ[R] (⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M)) LinearMap.lflip) (LinearMap.comp (↑(LinearMap.llcomp R ((⨂[R]^nc) M) ((⨂[R]^(nb + nc)) M) ((⨂[R]^na) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M)) (LinearMap.flip (mul na (nb + nc)))) (mul nb nc))) ⊢ ↑(cast R M (_ : na + nb + nc = na + (nb + nc))) (GradedMonoid.GMul.mul (GradedMonoid.GMul.mul a b) c) = GradedMonoid.GMul.mul a (GradedMonoid.GMul.mul b c) [PROOFSTEP] have rhs_eq : ∀ a b c, rhs a b c = a ₜ* (b ₜ* c) := fun _ _ _ => rfl [GOAL] R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M na nb nc : ℕ a : (⨂[R]^na) M b : (⨂[R]^nb) M c : (⨂[R]^nc) M mul : (n m : ℕ) → (⨂[R]^n) M →ₗ[R] (⨂[R]^m) M →ₗ[R] (⨂[R]^(n + m)) M := fun n m => LinearMap.compr₂ (TensorProduct.mk R ((⨂[R]^n) M) ((⨂[R]^m) M)) ↑mulEquiv e : (⨂[R]^(na + nb + nc)) M ≃ₗ[R] (⨂[R]^(na + (nb + nc))) M := cast R M (_ : na + nb + nc = na + (nb + nc)) lhs : (⨂[R]^na) M →ₗ[R] (⨂[R]^nb) M →ₗ[R] (⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M := LinearMap.comp (↑(LinearMap.llcomp R ((⨂[R]^nb) M) ((⨂[R]^(na + nb)) M) ((⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M)) (LinearMap.compr₂ (mul (na + nb) nc) ↑e)) (mul na nb) lhs_eq : ∀ (a : (⨂[R]^na) M) (b : (⨂[R]^nb) M) (c : (⨂[R]^nc) M), ↑(↑(↑lhs a) b) c = ↑e (GradedMonoid.GMul.mul (GradedMonoid.GMul.mul a b) c) rhs : (⨂[R]^na) M →ₗ[R] (⨂[R]^nb) M →ₗ[R] (⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M := LinearMap.flip (↑(↑(LinearMap.llcomp R ((⨂[R]^nb) M) ((⨂[R]^nc) M →ₗ[R] (⨂[R]^na) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M) ((⨂[R]^na) M →ₗ[R] (⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M)) LinearMap.lflip) (LinearMap.comp (↑(LinearMap.llcomp R ((⨂[R]^nc) M) ((⨂[R]^(nb + nc)) M) ((⨂[R]^na) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M)) (LinearMap.flip (mul na (nb + nc)))) (mul nb nc))) rhs_eq : ∀ (a : (⨂[R]^na) M) (b : (⨂[R]^nb) M) (c : (⨂[R]^nc) M), ↑(↑(↑rhs a) b) c = GradedMonoid.GMul.mul a (GradedMonoid.GMul.mul b c) ⊢ ↑(cast R M (_ : na + nb + nc = na + (nb + nc))) (GradedMonoid.GMul.mul (GradedMonoid.GMul.mul a b) c) = GradedMonoid.GMul.mul a (GradedMonoid.GMul.mul b c) [PROOFSTEP] suffices : lhs = rhs [GOAL] R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M na nb nc : ℕ a : (⨂[R]^na) M b : (⨂[R]^nb) M c : (⨂[R]^nc) M mul : (n m : ℕ) → (⨂[R]^n) M →ₗ[R] (⨂[R]^m) M →ₗ[R] (⨂[R]^(n + m)) M := fun n m => LinearMap.compr₂ (TensorProduct.mk R ((⨂[R]^n) M) ((⨂[R]^m) M)) ↑mulEquiv e : (⨂[R]^(na + nb + nc)) M ≃ₗ[R] (⨂[R]^(na + (nb + nc))) M := cast R M (_ : na + nb + nc = na + (nb + nc)) lhs : (⨂[R]^na) M →ₗ[R] (⨂[R]^nb) M →ₗ[R] (⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M := LinearMap.comp (↑(LinearMap.llcomp R ((⨂[R]^nb) M) ((⨂[R]^(na + nb)) M) ((⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M)) (LinearMap.compr₂ (mul (na + nb) nc) ↑e)) (mul na nb) lhs_eq : ∀ (a : (⨂[R]^na) M) (b : (⨂[R]^nb) M) (c : (⨂[R]^nc) M), ↑(↑(↑lhs a) b) c = ↑e (GradedMonoid.GMul.mul (GradedMonoid.GMul.mul a b) c) rhs : (⨂[R]^na) M →ₗ[R] (⨂[R]^nb) M →ₗ[R] (⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M := LinearMap.flip (↑(↑(LinearMap.llcomp R ((⨂[R]^nb) M) ((⨂[R]^nc) M →ₗ[R] (⨂[R]^na) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M) ((⨂[R]^na) M →ₗ[R] (⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M)) LinearMap.lflip) (LinearMap.comp (↑(LinearMap.llcomp R ((⨂[R]^nc) M) ((⨂[R]^(nb + nc)) M) ((⨂[R]^na) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M)) (LinearMap.flip (mul na (nb + nc)))) (mul nb nc))) rhs_eq : ∀ (a : (⨂[R]^na) M) (b : (⨂[R]^nb) M) (c : (⨂[R]^nc) M), ↑(↑(↑rhs a) b) c = GradedMonoid.GMul.mul a (GradedMonoid.GMul.mul b c) this : lhs = rhs ⊢ ↑(cast R M (_ : na + nb + nc = na + (nb + nc))) (GradedMonoid.GMul.mul (GradedMonoid.GMul.mul a b) c) = GradedMonoid.GMul.mul a (GradedMonoid.GMul.mul b c) case this R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M na nb nc : ℕ a : (⨂[R]^na) M b : (⨂[R]^nb) M c : (⨂[R]^nc) M mul : (n m : ℕ) → (⨂[R]^n) M →ₗ[R] (⨂[R]^m) M →ₗ[R] (⨂[R]^(n + m)) M := fun n m => LinearMap.compr₂ (TensorProduct.mk R ((⨂[R]^n) M) ((⨂[R]^m) M)) ↑mulEquiv e : (⨂[R]^(na + nb + nc)) M ≃ₗ[R] (⨂[R]^(na + (nb + nc))) M := cast R M (_ : na + nb + nc = na + (nb + nc)) lhs : (⨂[R]^na) M →ₗ[R] (⨂[R]^nb) M →ₗ[R] (⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M := LinearMap.comp (↑(LinearMap.llcomp R ((⨂[R]^nb) M) ((⨂[R]^(na + nb)) M) ((⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M)) (LinearMap.compr₂ (mul (na + nb) nc) ↑e)) (mul na nb) lhs_eq : ∀ (a : (⨂[R]^na) M) (b : (⨂[R]^nb) M) (c : (⨂[R]^nc) M), ↑(↑(↑lhs a) b) c = ↑e (GradedMonoid.GMul.mul (GradedMonoid.GMul.mul a b) c) rhs : (⨂[R]^na) M →ₗ[R] (⨂[R]^nb) M →ₗ[R] (⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M := LinearMap.flip (↑(↑(LinearMap.llcomp R ((⨂[R]^nb) M) ((⨂[R]^nc) M →ₗ[R] (⨂[R]^na) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M) ((⨂[R]^na) M →ₗ[R] (⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M)) LinearMap.lflip) (LinearMap.comp (↑(LinearMap.llcomp R ((⨂[R]^nc) M) ((⨂[R]^(nb + nc)) M) ((⨂[R]^na) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M)) (LinearMap.flip (mul na (nb + nc)))) (mul nb nc))) rhs_eq : ∀ (a : (⨂[R]^na) M) (b : (⨂[R]^nb) M) (c : (⨂[R]^nc) M), ↑(↑(↑rhs a) b) c = GradedMonoid.GMul.mul a (GradedMonoid.GMul.mul b c) ⊢ lhs = rhs [PROOFSTEP] exact LinearMap.congr_fun (LinearMap.congr_fun (LinearMap.congr_fun this a) b) c [GOAL] case this R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M na nb nc : ℕ a : (⨂[R]^na) M b : (⨂[R]^nb) M c : (⨂[R]^nc) M mul : (n m : ℕ) → (⨂[R]^n) M →ₗ[R] (⨂[R]^m) M →ₗ[R] (⨂[R]^(n + m)) M := fun n m => LinearMap.compr₂ (TensorProduct.mk R ((⨂[R]^n) M) ((⨂[R]^m) M)) ↑mulEquiv e : (⨂[R]^(na + nb + nc)) M ≃ₗ[R] (⨂[R]^(na + (nb + nc))) M := cast R M (_ : na + nb + nc = na + (nb + nc)) lhs : (⨂[R]^na) M →ₗ[R] (⨂[R]^nb) M →ₗ[R] (⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M := LinearMap.comp (↑(LinearMap.llcomp R ((⨂[R]^nb) M) ((⨂[R]^(na + nb)) M) ((⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M)) (LinearMap.compr₂ (mul (na + nb) nc) ↑e)) (mul na nb) lhs_eq : ∀ (a : (⨂[R]^na) M) (b : (⨂[R]^nb) M) (c : (⨂[R]^nc) M), ↑(↑(↑lhs a) b) c = ↑e (GradedMonoid.GMul.mul (GradedMonoid.GMul.mul a b) c) rhs : (⨂[R]^na) M →ₗ[R] (⨂[R]^nb) M →ₗ[R] (⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M := LinearMap.flip (↑(↑(LinearMap.llcomp R ((⨂[R]^nb) M) ((⨂[R]^nc) M →ₗ[R] (⨂[R]^na) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M) ((⨂[R]^na) M →ₗ[R] (⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M)) LinearMap.lflip) (LinearMap.comp (↑(LinearMap.llcomp R ((⨂[R]^nc) M) ((⨂[R]^(nb + nc)) M) ((⨂[R]^na) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M)) (LinearMap.flip (mul na (nb + nc)))) (mul nb nc))) rhs_eq : ∀ (a : (⨂[R]^na) M) (b : (⨂[R]^nb) M) (c : (⨂[R]^nc) M), ↑(↑(↑rhs a) b) c = GradedMonoid.GMul.mul a (GradedMonoid.GMul.mul b c) ⊢ lhs = rhs [PROOFSTEP] ext a b c [GOAL] case this.H.H.H.H.H.H R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M na nb nc : ℕ a✝ : (⨂[R]^na) M b✝ : (⨂[R]^nb) M c✝ : (⨂[R]^nc) M mul : (n m : ℕ) → (⨂[R]^n) M →ₗ[R] (⨂[R]^m) M →ₗ[R] (⨂[R]^(n + m)) M := fun n m => LinearMap.compr₂ (TensorProduct.mk R ((⨂[R]^n) M) ((⨂[R]^m) M)) ↑mulEquiv e : (⨂[R]^(na + nb + nc)) M ≃ₗ[R] (⨂[R]^(na + (nb + nc))) M := cast R M (_ : na + nb + nc = na + (nb + nc)) lhs : (⨂[R]^na) M →ₗ[R] (⨂[R]^nb) M →ₗ[R] (⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M := LinearMap.comp (↑(LinearMap.llcomp R ((⨂[R]^nb) M) ((⨂[R]^(na + nb)) M) ((⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M)) (LinearMap.compr₂ (mul (na + nb) nc) ↑e)) (mul na nb) lhs_eq : ∀ (a : (⨂[R]^na) M) (b : (⨂[R]^nb) M) (c : (⨂[R]^nc) M), ↑(↑(↑lhs a) b) c = ↑e (GradedMonoid.GMul.mul (GradedMonoid.GMul.mul a b) c) rhs : (⨂[R]^na) M →ₗ[R] (⨂[R]^nb) M →ₗ[R] (⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M := LinearMap.flip (↑(↑(LinearMap.llcomp R ((⨂[R]^nb) M) ((⨂[R]^nc) M →ₗ[R] (⨂[R]^na) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M) ((⨂[R]^na) M →ₗ[R] (⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M)) LinearMap.lflip) (LinearMap.comp (↑(LinearMap.llcomp R ((⨂[R]^nc) M) ((⨂[R]^(nb + nc)) M) ((⨂[R]^na) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M)) (LinearMap.flip (mul na (nb + nc)))) (mul nb nc))) rhs_eq : ∀ (a : (⨂[R]^na) M) (b : (⨂[R]^nb) M) (c : (⨂[R]^nc) M), ↑(↑(↑rhs a) b) c = GradedMonoid.GMul.mul a (GradedMonoid.GMul.mul b c) a : Fin na → M b : Fin nb → M c : Fin nc → M ⊢ ↑(LinearMap.compMultilinearMap (↑(LinearMap.compMultilinearMap (↑(LinearMap.compMultilinearMap lhs (tprod R)) a) (tprod R)) b) (tprod R)) c = ↑(LinearMap.compMultilinearMap (↑(LinearMap.compMultilinearMap (↑(LinearMap.compMultilinearMap rhs (tprod R)) a) (tprod R)) b) (tprod R)) c [PROOFSTEP] simp only [LinearMap.compMultilinearMap_apply, lhs_eq, rhs_eq, tprod_mul_tprod, cast_tprod] [GOAL] case this.H.H.H.H.H.H R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M na nb nc : ℕ a✝ : (⨂[R]^na) M b✝ : (⨂[R]^nb) M c✝ : (⨂[R]^nc) M mul : (n m : ℕ) → (⨂[R]^n) M →ₗ[R] (⨂[R]^m) M →ₗ[R] (⨂[R]^(n + m)) M := fun n m => LinearMap.compr₂ (TensorProduct.mk R ((⨂[R]^n) M) ((⨂[R]^m) M)) ↑mulEquiv e : (⨂[R]^(na + nb + nc)) M ≃ₗ[R] (⨂[R]^(na + (nb + nc))) M := cast R M (_ : na + nb + nc = na + (nb + nc)) lhs : (⨂[R]^na) M →ₗ[R] (⨂[R]^nb) M →ₗ[R] (⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M := LinearMap.comp (↑(LinearMap.llcomp R ((⨂[R]^nb) M) ((⨂[R]^(na + nb)) M) ((⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M)) (LinearMap.compr₂ (mul (na + nb) nc) ↑e)) (mul na nb) lhs_eq : ∀ (a : (⨂[R]^na) M) (b : (⨂[R]^nb) M) (c : (⨂[R]^nc) M), ↑(↑(↑lhs a) b) c = ↑e (GradedMonoid.GMul.mul (GradedMonoid.GMul.mul a b) c) rhs : (⨂[R]^na) M →ₗ[R] (⨂[R]^nb) M →ₗ[R] (⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M := LinearMap.flip (↑(↑(LinearMap.llcomp R ((⨂[R]^nb) M) ((⨂[R]^nc) M →ₗ[R] (⨂[R]^na) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M) ((⨂[R]^na) M →ₗ[R] (⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M)) LinearMap.lflip) (LinearMap.comp (↑(LinearMap.llcomp R ((⨂[R]^nc) M) ((⨂[R]^(nb + nc)) M) ((⨂[R]^na) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M)) (LinearMap.flip (mul na (nb + nc)))) (mul nb nc))) rhs_eq : ∀ (a : (⨂[R]^na) M) (b : (⨂[R]^nb) M) (c : (⨂[R]^nc) M), ↑(↑(↑rhs a) b) c = GradedMonoid.GMul.mul a (GradedMonoid.GMul.mul b c) a : Fin na → M b : Fin nb → M c : Fin nc → M ⊢ ↑(tprod R) (Fin.append (Fin.append a b) c ∘ ↑(Fin.castIso (_ : na + (nb + nc) = na + nb + nc))) = ↑(tprod R) (Fin.append a (Fin.append b c)) [PROOFSTEP] congr with j [GOAL] case this.H.H.H.H.H.H.h.e_6.h.h R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M na nb nc : ℕ a✝ : (⨂[R]^na) M b✝ : (⨂[R]^nb) M c✝ : (⨂[R]^nc) M mul : (n m : ℕ) → (⨂[R]^n) M →ₗ[R] (⨂[R]^m) M →ₗ[R] (⨂[R]^(n + m)) M := fun n m => LinearMap.compr₂ (TensorProduct.mk R ((⨂[R]^n) M) ((⨂[R]^m) M)) ↑mulEquiv e : (⨂[R]^(na + nb + nc)) M ≃ₗ[R] (⨂[R]^(na + (nb + nc))) M := cast R M (_ : na + nb + nc = na + (nb + nc)) lhs : (⨂[R]^na) M →ₗ[R] (⨂[R]^nb) M →ₗ[R] (⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M := LinearMap.comp (↑(LinearMap.llcomp R ((⨂[R]^nb) M) ((⨂[R]^(na + nb)) M) ((⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M)) (LinearMap.compr₂ (mul (na + nb) nc) ↑e)) (mul na nb) lhs_eq : ∀ (a : (⨂[R]^na) M) (b : (⨂[R]^nb) M) (c : (⨂[R]^nc) M), ↑(↑(↑lhs a) b) c = ↑e (GradedMonoid.GMul.mul (GradedMonoid.GMul.mul a b) c) rhs : (⨂[R]^na) M →ₗ[R] (⨂[R]^nb) M →ₗ[R] (⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M := LinearMap.flip (↑(↑(LinearMap.llcomp R ((⨂[R]^nb) M) ((⨂[R]^nc) M →ₗ[R] (⨂[R]^na) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M) ((⨂[R]^na) M →ₗ[R] (⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M)) LinearMap.lflip) (LinearMap.comp (↑(LinearMap.llcomp R ((⨂[R]^nc) M) ((⨂[R]^(nb + nc)) M) ((⨂[R]^na) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M)) (LinearMap.flip (mul na (nb + nc)))) (mul nb nc))) rhs_eq : ∀ (a : (⨂[R]^na) M) (b : (⨂[R]^nb) M) (c : (⨂[R]^nc) M), ↑(↑(↑rhs a) b) c = GradedMonoid.GMul.mul a (GradedMonoid.GMul.mul b c) a : Fin na → M b : Fin nb → M c : Fin nc → M j : Fin (na + (nb + nc)) ⊢ (Fin.append (Fin.append a b) c ∘ ↑(Fin.castIso (_ : na + (nb + nc) = na + nb + nc))) j = Fin.append a (Fin.append b c) j [PROOFSTEP] rw [Fin.append_assoc] [GOAL] case this.H.H.H.H.H.H.h.e_6.h.h R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M na nb nc : ℕ a✝ : (⨂[R]^na) M b✝ : (⨂[R]^nb) M c✝ : (⨂[R]^nc) M mul : (n m : ℕ) → (⨂[R]^n) M →ₗ[R] (⨂[R]^m) M →ₗ[R] (⨂[R]^(n + m)) M := fun n m => LinearMap.compr₂ (TensorProduct.mk R ((⨂[R]^n) M) ((⨂[R]^m) M)) ↑mulEquiv e : (⨂[R]^(na + nb + nc)) M ≃ₗ[R] (⨂[R]^(na + (nb + nc))) M := cast R M (_ : na + nb + nc = na + (nb + nc)) lhs : (⨂[R]^na) M →ₗ[R] (⨂[R]^nb) M →ₗ[R] (⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M := LinearMap.comp (↑(LinearMap.llcomp R ((⨂[R]^nb) M) ((⨂[R]^(na + nb)) M) ((⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M)) (LinearMap.compr₂ (mul (na + nb) nc) ↑e)) (mul na nb) lhs_eq : ∀ (a : (⨂[R]^na) M) (b : (⨂[R]^nb) M) (c : (⨂[R]^nc) M), ↑(↑(↑lhs a) b) c = ↑e (GradedMonoid.GMul.mul (GradedMonoid.GMul.mul a b) c) rhs : (⨂[R]^na) M →ₗ[R] (⨂[R]^nb) M →ₗ[R] (⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M := LinearMap.flip (↑(↑(LinearMap.llcomp R ((⨂[R]^nb) M) ((⨂[R]^nc) M →ₗ[R] (⨂[R]^na) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M) ((⨂[R]^na) M →ₗ[R] (⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M)) LinearMap.lflip) (LinearMap.comp (↑(LinearMap.llcomp R ((⨂[R]^nc) M) ((⨂[R]^(nb + nc)) M) ((⨂[R]^na) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M)) (LinearMap.flip (mul na (nb + nc)))) (mul nb nc))) rhs_eq : ∀ (a : (⨂[R]^na) M) (b : (⨂[R]^nb) M) (c : (⨂[R]^nc) M), ↑(↑(↑rhs a) b) c = GradedMonoid.GMul.mul a (GradedMonoid.GMul.mul b c) a : Fin na → M b : Fin nb → M c : Fin nc → M j : Fin (na + (nb + nc)) ⊢ ((Fin.append a (Fin.append b c) ∘ ↑(Fin.castIso (_ : na + nb + nc = na + (nb + nc)))) ∘ ↑(Fin.castIso (_ : na + (nb + nc) = na + nb + nc))) j = Fin.append a (Fin.append b c) j [PROOFSTEP] refine' congr_arg (Fin.append a (Fin.append b c)) (Fin.ext _) [GOAL] case this.H.H.H.H.H.H.h.e_6.h.h R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M na nb nc : ℕ a✝ : (⨂[R]^na) M b✝ : (⨂[R]^nb) M c✝ : (⨂[R]^nc) M mul : (n m : ℕ) → (⨂[R]^n) M →ₗ[R] (⨂[R]^m) M →ₗ[R] (⨂[R]^(n + m)) M := fun n m => LinearMap.compr₂ (TensorProduct.mk R ((⨂[R]^n) M) ((⨂[R]^m) M)) ↑mulEquiv e : (⨂[R]^(na + nb + nc)) M ≃ₗ[R] (⨂[R]^(na + (nb + nc))) M := cast R M (_ : na + nb + nc = na + (nb + nc)) lhs : (⨂[R]^na) M →ₗ[R] (⨂[R]^nb) M →ₗ[R] (⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M := LinearMap.comp (↑(LinearMap.llcomp R ((⨂[R]^nb) M) ((⨂[R]^(na + nb)) M) ((⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M)) (LinearMap.compr₂ (mul (na + nb) nc) ↑e)) (mul na nb) lhs_eq : ∀ (a : (⨂[R]^na) M) (b : (⨂[R]^nb) M) (c : (⨂[R]^nc) M), ↑(↑(↑lhs a) b) c = ↑e (GradedMonoid.GMul.mul (GradedMonoid.GMul.mul a b) c) rhs : (⨂[R]^na) M →ₗ[R] (⨂[R]^nb) M →ₗ[R] (⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M := LinearMap.flip (↑(↑(LinearMap.llcomp R ((⨂[R]^nb) M) ((⨂[R]^nc) M →ₗ[R] (⨂[R]^na) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M) ((⨂[R]^na) M →ₗ[R] (⨂[R]^nc) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M)) LinearMap.lflip) (LinearMap.comp (↑(LinearMap.llcomp R ((⨂[R]^nc) M) ((⨂[R]^(nb + nc)) M) ((⨂[R]^na) M →ₗ[R] (⨂[R]^(na + (nb + nc))) M)) (LinearMap.flip (mul na (nb + nc)))) (mul nb nc))) rhs_eq : ∀ (a : (⨂[R]^na) M) (b : (⨂[R]^nb) M) (c : (⨂[R]^nc) M), ↑(↑(↑rhs a) b) c = GradedMonoid.GMul.mul a (GradedMonoid.GMul.mul b c) a : Fin na → M b : Fin nb → M c : Fin nc → M j : Fin (na + (nb + nc)) ⊢ ↑(↑(Fin.castIso (_ : na + nb + nc = na + (nb + nc))) (↑(Fin.castIso (_ : na + (nb + nc) = na + nb + nc)) j)) = ↑j [PROOFSTEP] rw [Fin.coe_castIso, Fin.coe_castIso] [GOAL] R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M r : R ⊢ ↑algebraMap₀ r = r • GradedMonoid.GOne.one [PROOFSTEP] simp [algebraMap₀] [GOAL] R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M r : R ⊢ r • ↑(tprod R) isEmptyElim = r • GradedMonoid.GOne.one [PROOFSTEP] congr [GOAL] R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M n : ℕ r : R a : (⨂[R]^n) M ⊢ ↑(cast R M (_ : 0 + n = n)) (GradedMonoid.GMul.mul (↑algebraMap₀ r) a) = r • a [PROOFSTEP] rw [gMul_eq_coe_linearMap, algebraMap₀_eq_smul_one, LinearMap.map_smul₂, LinearEquiv.map_smul, ← gMul_eq_coe_linearMap, one_mul] [GOAL] R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M n : ℕ r : R a : (⨂[R]^n) M ⊢ ↑(cast R M (_ : n + 0 = n)) (GradedMonoid.GMul.mul a (↑algebraMap₀ r)) = r • a [PROOFSTEP] rw [gMul_eq_coe_linearMap, algebraMap₀_eq_smul_one, LinearMap.map_smul, LinearEquiv.map_smul, ← gMul_eq_coe_linearMap, mul_one] [GOAL] R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M r s : R ⊢ ↑(cast R M (_ : 0 + 0 = 0)) (GradedMonoid.GMul.mul (↑algebraMap₀ r) (↑algebraMap₀ s)) = ↑algebraMap₀ (r * s) [PROOFSTEP] rw [← smul_eq_mul, LinearEquiv.map_smul] [GOAL] R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M r s : R ⊢ ↑(cast R M (_ : 0 + 0 = 0)) (GradedMonoid.GMul.mul (↑algebraMap₀ r) (↑algebraMap₀ s)) = r • ↑algebraMap₀ s [PROOFSTEP] exact algebraMap₀_mul r (@algebraMap₀ R M _ _ _ s) [GOAL] R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M src✝ : GradedMonoid.GMonoid fun i => (⨂[R]^i) M := gmonoid ⊢ (fun n => ↑algebraMap₀ ↑n) 0 = 0 [PROOFSTEP] simp only [Nat.cast_zero, map_zero] [GOAL] R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M src✝ : GradedMonoid.GMonoid fun i => (⨂[R]^i) M := gmonoid n : ℕ ⊢ (fun n => ↑algebraMap₀ ↑n) (n + 1) = (fun n => ↑algebraMap₀ ↑n) n + GradedMonoid.GOne.one [PROOFSTEP] simp only [Nat.cast_succ, map_add, algebraMap₀_one] [GOAL] R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M ⊢ Semiring (⨁ (n : ℕ), (⨂[R]^n) M) [PROOFSTEP] infer_instance [GOAL] R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M r s : R ⊢ ↑(cast R M (_ : (GradedMonoid.mk 0 (↑(LinearMap.toAddMonoidHom ↑algebraMap₀) (r * s))).fst = (GradedMonoid.mk 0 (↑(LinearMap.toAddMonoidHom ↑algebraMap₀) (r * s))).fst)) (GradedMonoid.mk 0 (↑(LinearMap.toAddMonoidHom ↑algebraMap₀) (r * s))).snd = { fst := 0 + 0, snd := GradedMonoid.GMul.mul (↑(LinearMap.toAddMonoidHom ↑algebraMap₀) r) (↑(LinearMap.toAddMonoidHom ↑algebraMap₀) s) }.snd [PROOFSTEP] rw [← LinearEquiv.eq_symm_apply] [GOAL] R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M r s : R ⊢ (GradedMonoid.mk 0 (↑(LinearMap.toAddMonoidHom ↑algebraMap₀) (r * s))).snd = ↑(LinearEquiv.symm (cast R M (_ : (GradedMonoid.mk 0 (↑(LinearMap.toAddMonoidHom ↑algebraMap₀) (r * s))).fst = (GradedMonoid.mk 0 (↑(LinearMap.toAddMonoidHom ↑algebraMap₀) (r * s))).fst))) { fst := 0 + 0, snd := GradedMonoid.GMul.mul (↑(LinearMap.toAddMonoidHom ↑algebraMap₀) r) (↑(LinearMap.toAddMonoidHom ↑algebraMap₀) s) }.snd [PROOFSTEP] have := algebraMap₀_mul_algebraMap₀ (M := M) r s [GOAL] R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M r s : R this : ↑(cast R M (_ : 0 + 0 = 0)) (GradedMonoid.GMul.mul (↑algebraMap₀ r) (↑algebraMap₀ s)) = ↑algebraMap₀ (r * s) ⊢ (GradedMonoid.mk 0 (↑(LinearMap.toAddMonoidHom ↑algebraMap₀) (r * s))).snd = ↑(LinearEquiv.symm (cast R M (_ : (GradedMonoid.mk 0 (↑(LinearMap.toAddMonoidHom ↑algebraMap₀) (r * s))).fst = (GradedMonoid.mk 0 (↑(LinearMap.toAddMonoidHom ↑algebraMap₀) (r * s))).fst))) { fst := 0 + 0, snd := GradedMonoid.GMul.mul (↑(LinearMap.toAddMonoidHom ↑algebraMap₀) r) (↑(LinearMap.toAddMonoidHom ↑algebraMap₀) s) }.snd [PROOFSTEP] exact this.symm [GOAL] R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M r : R x : GradedMonoid fun i => (⨂[R]^i) M ⊢ ↑(cast R M (_ : (GradedMonoid.mk 0 (↑(LinearMap.toAddMonoidHom ↑algebraMap₀) r)).fst + x.fst = x.fst + (GradedMonoid.mk 0 (↑(LinearMap.toAddMonoidHom ↑algebraMap₀) r)).fst)) (GradedMonoid.mk 0 (↑(LinearMap.toAddMonoidHom ↑algebraMap₀) r) * x).snd = (x * { fst := 0, snd := ↑(LinearMap.toAddMonoidHom ↑algebraMap₀) r }).snd [PROOFSTEP] have := (algebraMap₀_mul r x.snd).trans (mul_algebraMap₀ r x.snd).symm [GOAL] R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M r : R x : GradedMonoid fun i => (⨂[R]^i) M this : ↑(cast R M (_ : 0 + x.fst = x.fst)) (GradedMonoid.GMul.mul (↑algebraMap₀ r) x.snd) = ↑(cast R M (_ : x.fst + 0 = x.fst)) (GradedMonoid.GMul.mul x.snd (↑algebraMap₀ r)) ⊢ ↑(cast R M (_ : (GradedMonoid.mk 0 (↑(LinearMap.toAddMonoidHom ↑algebraMap₀) r)).fst + x.fst = x.fst + (GradedMonoid.mk 0 (↑(LinearMap.toAddMonoidHom ↑algebraMap₀) r)).fst)) (GradedMonoid.mk 0 (↑(LinearMap.toAddMonoidHom ↑algebraMap₀) r) * x).snd = (x * { fst := 0, snd := ↑(LinearMap.toAddMonoidHom ↑algebraMap₀) r }).snd [PROOFSTEP] rw [← LinearEquiv.eq_symm_apply, cast_symm] [GOAL] R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M r : R x : GradedMonoid fun i => (⨂[R]^i) M this : ↑(cast R M (_ : 0 + x.fst = x.fst)) (GradedMonoid.GMul.mul (↑algebraMap₀ r) x.snd) = ↑(cast R M (_ : x.fst + 0 = x.fst)) (GradedMonoid.GMul.mul x.snd (↑algebraMap₀ r)) ⊢ (GradedMonoid.mk 0 (↑(LinearMap.toAddMonoidHom ↑algebraMap₀) r) * x).snd = ↑(cast R M (_ : (x * { fst := 0, snd := ↑(LinearMap.toAddMonoidHom ↑algebraMap₀) r }).fst = (GradedMonoid.mk 0 (↑(LinearMap.toAddMonoidHom ↑algebraMap₀) r) * x).fst)) (x * { fst := 0, snd := ↑(LinearMap.toAddMonoidHom ↑algebraMap₀) r }).snd [PROOFSTEP] rw [← LinearEquiv.eq_symm_apply, cast_symm, cast_cast] at this [GOAL] R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M r : R x : GradedMonoid fun i => (⨂[R]^i) M this : GradedMonoid.GMul.mul (↑algebraMap₀ r) x.snd = ↑(cast R M (_ : x.fst + 0 = 0 + x.fst)) (GradedMonoid.GMul.mul x.snd (↑algebraMap₀ r)) ⊢ (GradedMonoid.mk 0 (↑(LinearMap.toAddMonoidHom ↑algebraMap₀) r) * x).snd = ↑(cast R M (_ : (x * { fst := 0, snd := ↑(LinearMap.toAddMonoidHom ↑algebraMap₀) r }).fst = (GradedMonoid.mk 0 (↑(LinearMap.toAddMonoidHom ↑algebraMap₀) r) * x).fst)) (x * { fst := 0, snd := ↑(LinearMap.toAddMonoidHom ↑algebraMap₀) r }).snd [PROOFSTEP] exact this [GOAL] R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M r : R x : GradedMonoid fun i => (⨂[R]^i) M ⊢ ↑(cast R M (_ : x.fst = 0 + x.fst)) (GradedMonoid.mk x.fst (r • x.snd)).snd = ({ fst := 0, snd := ↑(LinearMap.toAddMonoidHom ↑algebraMap₀) r } * x).snd [PROOFSTEP] rw [← LinearEquiv.eq_symm_apply, cast_symm] [GOAL] R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M r : R x : GradedMonoid fun i => (⨂[R]^i) M ⊢ (GradedMonoid.mk x.fst (r • x.snd)).snd = ↑(cast R M (_ : ({ fst := 0, snd := ↑(LinearMap.toAddMonoidHom ↑algebraMap₀) r } * x).fst = (GradedMonoid.mk x.fst (r • x.snd)).fst)) ({ fst := 0, snd := ↑(LinearMap.toAddMonoidHom ↑algebraMap₀) r } * x).snd [PROOFSTEP] exact (algebraMap₀_mul r x.snd).symm [GOAL] R : Type u_1 M : Type u_2 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M ⊢ Algebra R (⨁ (n : ℕ), (⨂[R]^n) M) [PROOFSTEP] infer_instance
{"mathlib_filename": "Mathlib.LinearAlgebra.TensorPower", "llama_tokens": 22477}
[GOAL] V : Type (u + 1) inst✝ : LargeCategory V G : MonCat A : Action V G ⊢ ↑A.ρ 1 = 𝟙 A.V [PROOFSTEP] rw [MonoidHom.map_one] [GOAL] V : Type (u + 1) inst✝ : LargeCategory V G : MonCat A : Action V G ⊢ 1 = 𝟙 A.V [PROOFSTEP] rfl [GOAL] V : Type (u + 1) inst✝ : LargeCategory V G : GroupCat A : Action V (MonCat.of ↑G) g : ↑G ⊢ ↑A.ρ (g⁻¹ * g) = 𝟙 A.V [PROOFSTEP] rw [inv_mul_self, ρ_one] [GOAL] V : Type (u + 1) inst✝ : LargeCategory V G : GroupCat A : Action V (MonCat.of ↑G) g : ↑G ⊢ ↑A.ρ (g * g⁻¹) = 𝟙 A.V [PROOFSTEP] rw [mul_inv_self, ρ_one] [GOAL] V : Type (u + 1) inst✝ : LargeCategory V G : MonCat M N : Action V G f : M.V ≅ N.V comm : autoParam (∀ (g : ↑G), ↑M.ρ g ≫ f.hom = f.hom ≫ ↑N.ρ g) _auto✝ g : ↑G ⊢ ↑N.ρ g ≫ f.inv = f.inv ≫ ↑M.ρ g [PROOFSTEP] have w := comm g =≫ f.inv [GOAL] V : Type (u + 1) inst✝ : LargeCategory V G : MonCat M N : Action V G f : M.V ≅ N.V comm : autoParam (∀ (g : ↑G), ↑M.ρ g ≫ f.hom = f.hom ≫ ↑N.ρ g) _auto✝ g : ↑G w : (↑M.ρ g ≫ f.hom) ≫ f.inv = (f.hom ≫ ↑N.ρ g) ≫ f.inv ⊢ ↑N.ρ g ≫ f.inv = f.inv ≫ ↑M.ρ g [PROOFSTEP] simp at w [GOAL] V : Type (u + 1) inst✝ : LargeCategory V G : MonCat M N : Action V G f : M.V ≅ N.V comm : autoParam (∀ (g : ↑G), ↑M.ρ g ≫ f.hom = f.hom ≫ ↑N.ρ g) _auto✝ g : ↑G w : ↑M.ρ g = f.hom ≫ ↑N.ρ g ≫ f.inv ⊢ ↑N.ρ g ≫ f.inv = f.inv ≫ ↑M.ρ g [PROOFSTEP] simp [w] [GOAL] V : Type (u + 1) inst✝ : LargeCategory V G : MonCat M N : Action V G f : M ≅ N g : ↑G ⊢ ↑N.ρ g = ↑(Iso.conj ((forget V G).mapIso f)) (↑M.ρ g) [PROOFSTEP] rw [Iso.conj_apply, Iso.eq_inv_comp] [GOAL] V : Type (u + 1) inst✝ : LargeCategory V G : MonCat M N : Action V G f : M ≅ N g : ↑G ⊢ ((forget V G).mapIso f).hom ≫ ↑N.ρ g = ↑M.ρ g ≫ ((forget V G).mapIso f).hom [PROOFSTEP] simp [f.hom.comm] [GOAL] V : Type (u + 1) inst✝¹ : LargeCategory V G : MonCat inst✝ : HasZeroMorphisms V X Y : Action V G ⊢ ∀ (g : ↑G), ↑X.ρ g ≫ 0 = 0 ≫ ↑Y.ρ g [PROOFSTEP] aesop_cat [GOAL] V : Type (u + 1) inst✝¹ : LargeCategory V G : MonCat inst✝ : Preadditive V X Y : Action V G f g : X ⟶ Y ⊢ ∀ (g_1 : ↑G), ↑X.ρ g_1 ≫ (f.hom + g.hom) = (f.hom + g.hom) ≫ ↑Y.ρ g_1 [PROOFSTEP] simp [f.comm, g.comm] [GOAL] V : Type (u + 1) inst✝¹ : LargeCategory V G : MonCat inst✝ : Preadditive V X Y : Action V G ⊢ ∀ (a b c : X ⟶ Y), a + b + c = a + (b + c) [PROOFSTEP] intros [GOAL] V : Type (u + 1) inst✝¹ : LargeCategory V G : MonCat inst✝ : Preadditive V X Y : Action V G a✝ b✝ c✝ : X ⟶ Y ⊢ a✝ + b✝ + c✝ = a✝ + (b✝ + c✝) [PROOFSTEP] ext [GOAL] case h V : Type (u + 1) inst✝¹ : LargeCategory V G : MonCat inst✝ : Preadditive V X Y : Action V G a✝ b✝ c✝ : X ⟶ Y ⊢ (a✝ + b✝ + c✝).hom = (a✝ + (b✝ + c✝)).hom [PROOFSTEP] exact add_assoc _ _ _ [GOAL] V : Type (u + 1) inst✝¹ : LargeCategory V G : MonCat inst✝ : Preadditive V X Y : Action V G ⊢ ∀ (a : X ⟶ Y), 0 + a = a [PROOFSTEP] intros [GOAL] V : Type (u + 1) inst✝¹ : LargeCategory V G : MonCat inst✝ : Preadditive V X Y : Action V G a✝ : X ⟶ Y ⊢ 0 + a✝ = a✝ [PROOFSTEP] ext [GOAL] case h V : Type (u + 1) inst✝¹ : LargeCategory V G : MonCat inst✝ : Preadditive V X Y : Action V G a✝ : X ⟶ Y ⊢ (0 + a✝).hom = a✝.hom [PROOFSTEP] exact zero_add _ [GOAL] V : Type (u + 1) inst✝¹ : LargeCategory V G : MonCat inst✝ : Preadditive V X Y : Action V G ⊢ ∀ (a : X ⟶ Y), a + 0 = a [PROOFSTEP] intros [GOAL] V : Type (u + 1) inst✝¹ : LargeCategory V G : MonCat inst✝ : Preadditive V X Y : Action V G a✝ : X ⟶ Y ⊢ a✝ + 0 = a✝ [PROOFSTEP] ext [GOAL] case h V : Type (u + 1) inst✝¹ : LargeCategory V G : MonCat inst✝ : Preadditive V X Y : Action V G a✝ : X ⟶ Y ⊢ (a✝ + 0).hom = a✝.hom [PROOFSTEP] exact add_zero _ [GOAL] V : Type (u + 1) inst✝¹ : LargeCategory V G : MonCat inst✝ : Preadditive V X Y : Action V G f : X ⟶ Y ⊢ ∀ (g : ↑G), ↑X.ρ g ≫ (-f.hom) = (-f.hom) ≫ ↑Y.ρ g [PROOFSTEP] simp [f.comm] [GOAL] V : Type (u + 1) inst✝¹ : LargeCategory V G : MonCat inst✝ : Preadditive V X Y : Action V G ⊢ ∀ (a : X ⟶ Y), -a + a = 0 [PROOFSTEP] intros [GOAL] V : Type (u + 1) inst✝¹ : LargeCategory V G : MonCat inst✝ : Preadditive V X Y : Action V G a✝ : X ⟶ Y ⊢ -a✝ + a✝ = 0 [PROOFSTEP] ext [GOAL] case h V : Type (u + 1) inst✝¹ : LargeCategory V G : MonCat inst✝ : Preadditive V X Y : Action V G a✝ : X ⟶ Y ⊢ (-a✝ + a✝).hom = 0.hom [PROOFSTEP] exact add_left_neg _ [GOAL] V : Type (u + 1) inst✝¹ : LargeCategory V G : MonCat inst✝ : Preadditive V X Y : Action V G ⊢ ∀ (a b : X ⟶ Y), a + b = b + a [PROOFSTEP] intros [GOAL] V : Type (u + 1) inst✝¹ : LargeCategory V G : MonCat inst✝ : Preadditive V X Y : Action V G a✝ b✝ : X ⟶ Y ⊢ a✝ + b✝ = b✝ + a✝ [PROOFSTEP] ext [GOAL] case h V : Type (u + 1) inst✝¹ : LargeCategory V G : MonCat inst✝ : Preadditive V X Y : Action V G a✝ b✝ : X ⟶ Y ⊢ (a✝ + b✝).hom = (b✝ + a✝).hom [PROOFSTEP] exact add_comm _ _ [GOAL] V : Type (u + 1) inst✝¹ : LargeCategory V G : MonCat inst✝ : Preadditive V ⊢ ∀ (P Q R : Action V G) (f f' : P ⟶ Q) (g : Q ⟶ R), (f + f') ≫ g = f ≫ g + f' ≫ g [PROOFSTEP] intros [GOAL] V : Type (u + 1) inst✝¹ : LargeCategory V G : MonCat inst✝ : Preadditive V P✝ Q✝ R✝ : Action V G f✝ f'✝ : P✝ ⟶ Q✝ g✝ : Q✝ ⟶ R✝ ⊢ (f✝ + f'✝) ≫ g✝ = f✝ ≫ g✝ + f'✝ ≫ g✝ [PROOFSTEP] ext [GOAL] case h V : Type (u + 1) inst✝¹ : LargeCategory V G : MonCat inst✝ : Preadditive V P✝ Q✝ R✝ : Action V G f✝ f'✝ : P✝ ⟶ Q✝ g✝ : Q✝ ⟶ R✝ ⊢ ((f✝ + f'✝) ≫ g✝).hom = (f✝ ≫ g✝ + f'✝ ≫ g✝).hom [PROOFSTEP] exact Preadditive.add_comp _ _ _ _ _ _ [GOAL] V : Type (u + 1) inst✝¹ : LargeCategory V G : MonCat inst✝ : Preadditive V ⊢ ∀ (P Q R : Action V G) (f : P ⟶ Q) (g g' : Q ⟶ R), f ≫ (g + g') = f ≫ g + f ≫ g' [PROOFSTEP] intros [GOAL] V : Type (u + 1) inst✝¹ : LargeCategory V G : MonCat inst✝ : Preadditive V P✝ Q✝ R✝ : Action V G f✝ : P✝ ⟶ Q✝ g✝ g'✝ : Q✝ ⟶ R✝ ⊢ f✝ ≫ (g✝ + g'✝) = f✝ ≫ g✝ + f✝ ≫ g'✝ [PROOFSTEP] ext [GOAL] case h V : Type (u + 1) inst✝¹ : LargeCategory V G : MonCat inst✝ : Preadditive V P✝ Q✝ R✝ : Action V G f✝ : P✝ ⟶ Q✝ g✝ g'✝ : Q✝ ⟶ R✝ ⊢ (f✝ ≫ (g✝ + g'✝)).hom = (f✝ ≫ g✝ + f✝ ≫ g'✝).hom [PROOFSTEP] exact Preadditive.comp_add _ _ _ _ _ _ [GOAL] V : Type (u + 1) inst✝³ : LargeCategory V G : MonCat inst✝² : Preadditive V R : Type u_1 inst✝¹ : Semiring R inst✝ : Linear R V X Y : Action V G r : R f : X ⟶ Y ⊢ ∀ (g : ↑G), ↑X.ρ g ≫ (r • f.hom) = (r • f.hom) ≫ ↑Y.ρ g [PROOFSTEP] simp [f.comm] [GOAL] V : Type (u + 1) inst✝³ : LargeCategory V G : MonCat inst✝² : Preadditive V R : Type u_1 inst✝¹ : Semiring R inst✝ : Linear R V X Y : Action V G ⊢ ∀ (b : X ⟶ Y), 1 • b = b [PROOFSTEP] intros [GOAL] V : Type (u + 1) inst✝³ : LargeCategory V G : MonCat inst✝² : Preadditive V R : Type u_1 inst✝¹ : Semiring R inst✝ : Linear R V X Y : Action V G b✝ : X ⟶ Y ⊢ 1 • b✝ = b✝ [PROOFSTEP] ext [GOAL] case h V : Type (u + 1) inst✝³ : LargeCategory V G : MonCat inst✝² : Preadditive V R : Type u_1 inst✝¹ : Semiring R inst✝ : Linear R V X Y : Action V G b✝ : X ⟶ Y ⊢ (1 • b✝).hom = b✝.hom [PROOFSTEP] exact one_smul _ _ [GOAL] V : Type (u + 1) inst✝³ : LargeCategory V G : MonCat inst✝² : Preadditive V R : Type u_1 inst✝¹ : Semiring R inst✝ : Linear R V X Y : Action V G ⊢ ∀ (x y : R) (b : X ⟶ Y), (x * y) • b = x • y • b [PROOFSTEP] intros [GOAL] V : Type (u + 1) inst✝³ : LargeCategory V G : MonCat inst✝² : Preadditive V R : Type u_1 inst✝¹ : Semiring R inst✝ : Linear R V X Y : Action V G x✝ y✝ : R b✝ : X ⟶ Y ⊢ (x✝ * y✝) • b✝ = x✝ • y✝ • b✝ [PROOFSTEP] ext [GOAL] case h V : Type (u + 1) inst✝³ : LargeCategory V G : MonCat inst✝² : Preadditive V R : Type u_1 inst✝¹ : Semiring R inst✝ : Linear R V X Y : Action V G x✝ y✝ : R b✝ : X ⟶ Y ⊢ ((x✝ * y✝) • b✝).hom = (x✝ • y✝ • b✝).hom [PROOFSTEP] exact mul_smul _ _ _ [GOAL] V : Type (u + 1) inst✝³ : LargeCategory V G : MonCat inst✝² : Preadditive V R : Type u_1 inst✝¹ : Semiring R inst✝ : Linear R V X Y : Action V G ⊢ ∀ (a : R), a • 0 = 0 [PROOFSTEP] intros [GOAL] V : Type (u + 1) inst✝³ : LargeCategory V G : MonCat inst✝² : Preadditive V R : Type u_1 inst✝¹ : Semiring R inst✝ : Linear R V X Y : Action V G a✝ : R ⊢ a✝ • 0 = 0 [PROOFSTEP] ext [GOAL] case h V : Type (u + 1) inst✝³ : LargeCategory V G : MonCat inst✝² : Preadditive V R : Type u_1 inst✝¹ : Semiring R inst✝ : Linear R V X Y : Action V G a✝ : R ⊢ (a✝ • 0).hom = 0.hom [PROOFSTEP] exact smul_zero _ [GOAL] V : Type (u + 1) inst✝³ : LargeCategory V G : MonCat inst✝² : Preadditive V R : Type u_1 inst✝¹ : Semiring R inst✝ : Linear R V X Y : Action V G ⊢ ∀ (a : R) (x y : X ⟶ Y), a • (x + y) = a • x + a • y [PROOFSTEP] intros [GOAL] V : Type (u + 1) inst✝³ : LargeCategory V G : MonCat inst✝² : Preadditive V R : Type u_1 inst✝¹ : Semiring R inst✝ : Linear R V X Y : Action V G a✝ : R x✝ y✝ : X ⟶ Y ⊢ a✝ • (x✝ + y✝) = a✝ • x✝ + a✝ • y✝ [PROOFSTEP] ext [GOAL] case h V : Type (u + 1) inst✝³ : LargeCategory V G : MonCat inst✝² : Preadditive V R : Type u_1 inst✝¹ : Semiring R inst✝ : Linear R V X Y : Action V G a✝ : R x✝ y✝ : X ⟶ Y ⊢ (a✝ • (x✝ + y✝)).hom = (a✝ • x✝ + a✝ • y✝).hom [PROOFSTEP] exact smul_add _ _ _ [GOAL] V : Type (u + 1) inst✝³ : LargeCategory V G : MonCat inst✝² : Preadditive V R : Type u_1 inst✝¹ : Semiring R inst✝ : Linear R V X Y : Action V G ⊢ ∀ (r s : R) (x : X ⟶ Y), (r + s) • x = r • x + s • x [PROOFSTEP] intros [GOAL] V : Type (u + 1) inst✝³ : LargeCategory V G : MonCat inst✝² : Preadditive V R : Type u_1 inst✝¹ : Semiring R inst✝ : Linear R V X Y : Action V G r✝ s✝ : R x✝ : X ⟶ Y ⊢ (r✝ + s✝) • x✝ = r✝ • x✝ + s✝ • x✝ [PROOFSTEP] ext [GOAL] case h V : Type (u + 1) inst✝³ : LargeCategory V G : MonCat inst✝² : Preadditive V R : Type u_1 inst✝¹ : Semiring R inst✝ : Linear R V X Y : Action V G r✝ s✝ : R x✝ : X ⟶ Y ⊢ ((r✝ + s✝) • x✝).hom = (r✝ • x✝ + s✝ • x✝).hom [PROOFSTEP] exact add_smul _ _ _ [GOAL] V : Type (u + 1) inst✝³ : LargeCategory V G : MonCat inst✝² : Preadditive V R : Type u_1 inst✝¹ : Semiring R inst✝ : Linear R V X Y : Action V G ⊢ ∀ (x : X ⟶ Y), 0 • x = 0 [PROOFSTEP] intros [GOAL] V : Type (u + 1) inst✝³ : LargeCategory V G : MonCat inst✝² : Preadditive V R : Type u_1 inst✝¹ : Semiring R inst✝ : Linear R V X Y : Action V G x✝ : X ⟶ Y ⊢ 0 • x✝ = 0 [PROOFSTEP] ext [GOAL] case h V : Type (u + 1) inst✝³ : LargeCategory V G : MonCat inst✝² : Preadditive V R : Type u_1 inst✝¹ : Semiring R inst✝ : Linear R V X Y : Action V G x✝ : X ⟶ Y ⊢ (0 • x✝).hom = 0.hom [PROOFSTEP] exact zero_smul _ _ [GOAL] V : Type (u + 1) inst✝³ : LargeCategory V G : MonCat inst✝² : Preadditive V R : Type u_1 inst✝¹ : Semiring R inst✝ : Linear R V ⊢ ∀ (X Y Z : Action V G) (r : R) (f : X ⟶ Y) (g : Y ⟶ Z), (r • f) ≫ g = r • f ≫ g [PROOFSTEP] intros [GOAL] V : Type (u + 1) inst✝³ : LargeCategory V G : MonCat inst✝² : Preadditive V R : Type u_1 inst✝¹ : Semiring R inst✝ : Linear R V X✝ Y✝ Z✝ : Action V G r✝ : R f✝ : X✝ ⟶ Y✝ g✝ : Y✝ ⟶ Z✝ ⊢ (r✝ • f✝) ≫ g✝ = r✝ • f✝ ≫ g✝ [PROOFSTEP] ext [GOAL] case h V : Type (u + 1) inst✝³ : LargeCategory V G : MonCat inst✝² : Preadditive V R : Type u_1 inst✝¹ : Semiring R inst✝ : Linear R V X✝ Y✝ Z✝ : Action V G r✝ : R f✝ : X✝ ⟶ Y✝ g✝ : Y✝ ⟶ Z✝ ⊢ ((r✝ • f✝) ≫ g✝).hom = (r✝ • f✝ ≫ g✝).hom [PROOFSTEP] exact Linear.smul_comp _ _ _ _ _ _ [GOAL] V : Type (u + 1) inst✝³ : LargeCategory V G : MonCat inst✝² : Preadditive V R : Type u_1 inst✝¹ : Semiring R inst✝ : Linear R V ⊢ ∀ (X Y Z : Action V G) (f : X ⟶ Y) (r : R) (g : Y ⟶ Z), f ≫ (r • g) = r • f ≫ g [PROOFSTEP] intros [GOAL] V : Type (u + 1) inst✝³ : LargeCategory V G : MonCat inst✝² : Preadditive V R : Type u_1 inst✝¹ : Semiring R inst✝ : Linear R V X✝ Y✝ Z✝ : Action V G f✝ : X✝ ⟶ Y✝ r✝ : R g✝ : Y✝ ⟶ Z✝ ⊢ f✝ ≫ (r✝ • g✝) = r✝ • f✝ ≫ g✝ [PROOFSTEP] ext [GOAL] case h V : Type (u + 1) inst✝³ : LargeCategory V G : MonCat inst✝² : Preadditive V R : Type u_1 inst✝¹ : Semiring R inst✝ : Linear R V X✝ Y✝ Z✝ : Action V G f✝ : X✝ ⟶ Y✝ r✝ : R g✝ : Y✝ ⟶ Z✝ ⊢ (f✝ ≫ (r✝ • g✝)).hom = (r✝ • f✝ ≫ g✝).hom [PROOFSTEP] exact Linear.comp_smul _ _ _ _ _ _ [GOAL] V : Type (u + 1) inst✝¹ : LargeCategory V G : MonCat inst✝ : MonoidalCategory V X Y Z : Action V G ⊢ (α_ X Y Z).hom.hom = (α_ X.V Y.V Z.V).hom [PROOFSTEP] dsimp [Monoidal.transport_associator] [GOAL] V : Type (u + 1) inst✝¹ : LargeCategory V G : MonCat inst✝ : MonoidalCategory V X Y Z : Action V G ⊢ (𝟙 (X.V ⊗ Y.V) ⊗ 𝟙 Z.V) ≫ (α_ X.V Y.V Z.V).hom ≫ (𝟙 X.V ⊗ 𝟙 (Y.V ⊗ Z.V)) = (α_ X.V Y.V Z.V).hom [PROOFSTEP] simp [GOAL] V : Type (u + 1) inst✝¹ : LargeCategory V G : MonCat inst✝ : MonoidalCategory V X Y Z : Action V G ⊢ (α_ X Y Z).inv.hom = (α_ X.V Y.V Z.V).inv [PROOFSTEP] dsimp [Monoidal.transport_associator] [GOAL] V : Type (u + 1) inst✝¹ : LargeCategory V G : MonCat inst✝ : MonoidalCategory V X Y Z : Action V G ⊢ ((𝟙 X.V ⊗ 𝟙 (Y.V ⊗ Z.V)) ≫ (α_ X.V Y.V Z.V).inv) ≫ (𝟙 (X.V ⊗ Y.V) ⊗ 𝟙 Z.V) = (α_ X.V Y.V Z.V).inv [PROOFSTEP] simp [GOAL] V : Type (u + 1) inst✝¹ : LargeCategory V G : MonCat inst✝ : MonoidalCategory V X : Action V G ⊢ (λ_ X).hom.hom = (λ_ X.V).hom [PROOFSTEP] dsimp [Monoidal.transport_leftUnitor] [GOAL] V : Type (u + 1) inst✝¹ : LargeCategory V G : MonCat inst✝ : MonoidalCategory V X : Action V G ⊢ ((𝟙 (𝟙_ V) ⊗ 𝟙 X.V) ≫ (λ_ X.V).hom) ≫ 𝟙 X.V = (λ_ X.V).hom [PROOFSTEP] simp [GOAL] V : Type (u + 1) inst✝¹ : LargeCategory V G : MonCat inst✝ : MonoidalCategory V X : Action V G ⊢ (λ_ X).inv.hom = (λ_ X.V).inv [PROOFSTEP] dsimp [Monoidal.transport_leftUnitor] [GOAL] V : Type (u + 1) inst✝¹ : LargeCategory V G : MonCat inst✝ : MonoidalCategory V X : Action V G ⊢ 𝟙 X.V ≫ (λ_ X.V).inv ≫ (𝟙 (𝟙_ V) ⊗ 𝟙 X.V) = (λ_ X.V).inv [PROOFSTEP] simp [GOAL] V : Type (u + 1) inst✝¹ : LargeCategory V G : MonCat inst✝ : MonoidalCategory V X : Action V G ⊢ (ρ_ X).hom.hom = (ρ_ X.V).hom [PROOFSTEP] dsimp [Monoidal.transport_rightUnitor] [GOAL] V : Type (u + 1) inst✝¹ : LargeCategory V G : MonCat inst✝ : MonoidalCategory V X : Action V G ⊢ ((𝟙 X.V ⊗ 𝟙 (𝟙_ V)) ≫ (ρ_ X.V).hom) ≫ 𝟙 X.V = (ρ_ X.V).hom [PROOFSTEP] simp [GOAL] V : Type (u + 1) inst✝¹ : LargeCategory V G : MonCat inst✝ : MonoidalCategory V X : Action V G ⊢ (ρ_ X).inv.hom = (ρ_ X.V).inv [PROOFSTEP] dsimp [Monoidal.transport_rightUnitor] [GOAL] V : Type (u + 1) inst✝¹ : LargeCategory V G : MonCat inst✝ : MonoidalCategory V X : Action V G ⊢ 𝟙 X.V ≫ (ρ_ X.V).inv ≫ (𝟙 X.V ⊗ 𝟙 (𝟙_ V)) = (ρ_ X.V).inv [PROOFSTEP] simp [GOAL] V : Type (u + 1) inst✝¹ : LargeCategory V G : MonCat inst✝ : MonoidalCategory V X : V f : 𝟙_ V ≅ X x✝ : ↑G ⊢ ↑(𝟙_ (Action V G)).ρ x✝ ≫ f.hom = f.hom ≫ ↑{ V := X, ρ := 1 }.ρ x✝ [PROOFSTEP] simp only [MonoidHom.one_apply, End.one_def, Category.id_comp f.hom, tensorUnit_rho, MonCat.oneHom_apply, MonCat.one_of, Category.comp_id] [GOAL] V : Type (u + 1) inst✝¹ : LargeCategory V G : MonCat inst✝ : MonoidalCategory V ⊢ Faithful (forgetMonoidal V G).toLaxMonoidalFunctor.toFunctor [PROOFSTEP] change Faithful (forget V G) [GOAL] V : Type (u + 1) inst✝¹ : LargeCategory V G : MonCat inst✝ : MonoidalCategory V ⊢ Faithful (forget V G) [PROOFSTEP] infer_instance [GOAL] V : Type (u + 1) inst✝² : LargeCategory V G : MonCat inst✝¹ : MonoidalCategory V inst✝ : BraidedCategory V X Y : Action V G g : ↑G ⊢ ↑(X ⊗ Y).ρ g ≫ (β_ (((CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G)).inverse.obj X).obj PUnit.unit) (((CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G)).inverse.obj Y).obj PUnit.unit)).hom = (β_ (((CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G)).inverse.obj X).obj PUnit.unit) (((CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G)).inverse.obj Y).obj PUnit.unit)).hom ≫ ↑(Y ⊗ X).ρ g [PROOFSTEP] simp [FunctorCategoryEquivalence.inverse] [GOAL] V : Type (u + 1) inst✝² : LargeCategory V G : MonCat inst✝¹ : MonoidalCategory V inst✝ : BraidedCategory V ⊢ ∀ (X Y : Action V G), LaxMonoidalFunctor.μ (forgetMonoidal V G).toLaxMonoidalFunctor X Y ≫ (forgetMonoidal V G).toLaxMonoidalFunctor.toFunctor.map ((fun X Y => mkIso (β_ (((CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G)).inverse.obj X).obj PUnit.unit) (((CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G)).inverse.obj Y).obj PUnit.unit))) X Y).hom = (β_ ((forgetMonoidal V G).toLaxMonoidalFunctor.toFunctor.obj X) ((forgetMonoidal V G).toLaxMonoidalFunctor.toFunctor.obj Y)).hom ≫ LaxMonoidalFunctor.μ (forgetMonoidal V G).toLaxMonoidalFunctor Y X [PROOFSTEP] aesop_cat [GOAL] V : Type (u + 1) inst✝² : LargeCategory V G : MonCat inst✝¹ : MonoidalCategory V inst✝ : BraidedCategory V ⊢ Faithful (forgetBraided V G).toMonoidalFunctor.toLaxMonoidalFunctor.toFunctor [PROOFSTEP] change Faithful (forget V G) [GOAL] V : Type (u + 1) inst✝² : LargeCategory V G : MonCat inst✝¹ : MonoidalCategory V inst✝ : BraidedCategory V ⊢ Faithful (forget V G) [PROOFSTEP] infer_instance [GOAL] V : Type (u + 1) inst✝¹ : LargeCategory V G : MonCat inst✝ : MonoidalCategory V ⊢ IsEquivalence (functorCategoryMonoidalEquivalence V G).toLaxMonoidalFunctor.toFunctor [PROOFSTEP] change IsEquivalence (Action.functorCategoryEquivalence _ _).functor [GOAL] V : Type (u + 1) inst✝¹ : LargeCategory V G : MonCat inst✝ : MonoidalCategory V ⊢ IsEquivalence (functorCategoryEquivalence V G).functor [PROOFSTEP] infer_instance [GOAL] V : Type (u + 1) inst✝¹ : LargeCategory V G : MonCat inst✝ : MonoidalCategory V A B : Action V G ⊢ NatTrans.app (LaxMonoidalFunctor.μ (functorCategoryMonoidalEquivalence V G).toLaxMonoidalFunctor A B) PUnit.unit = 𝟙 (((functorCategoryMonoidalEquivalence V G).toLaxMonoidalFunctor.toFunctor.obj A ⊗ (functorCategoryMonoidalEquivalence V G).toLaxMonoidalFunctor.toFunctor.obj B).obj PUnit.unit) [PROOFSTEP] dsimp only [functorCategoryMonoidalEquivalence] [GOAL] V : Type (u + 1) inst✝¹ : LargeCategory V G : MonCat inst✝ : MonoidalCategory V A B : Action V G ⊢ NatTrans.app (LaxMonoidalFunctor.μ (Monoidal.fromTransported (CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G))).toLaxMonoidalFunctor A B) PUnit.unit = 𝟙 (((Monoidal.fromTransported (CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G))).toLaxMonoidalFunctor.toFunctor.obj A ⊗ (Monoidal.fromTransported (CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G))).toLaxMonoidalFunctor.toFunctor.obj B).obj PUnit.unit) [PROOFSTEP] simp only [Monoidal.fromTransported_toLaxMonoidalFunctor_μ, NatTrans.comp_app] -- porting note: Lean3 was able to see through some defeq, as the mathlib3 proof was -- show (𝟙 A.V ⊗ 𝟙 B.V) ≫ 𝟙 (A.V ⊗ B.V) ≫ (𝟙 A.V ⊗ 𝟙 B.V) = 𝟙 (A.V ⊗ B.V) -- simp only [monoidal_category.tensor_id, category.comp_id] [GOAL] V : Type (u + 1) inst✝¹ : LargeCategory V G : MonCat inst✝ : MonoidalCategory V A B : Action V G ⊢ NatTrans.app (NatTrans.app (Equivalence.unit (CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G))) ((Functor.asEquivalence (CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G)).functor).inverse.obj A ⊗ (Functor.asEquivalence (CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G)).functor).inverse.obj B)) PUnit.unit ≫ NatTrans.app (inv ((Functor.asEquivalence (CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G)).functor).inverse.map ((CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G)).functor.map (NatTrans.app (Equivalence.unitInv (CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G))) ((Functor.asEquivalence (CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G)).functor).inverse.obj A) ⊗ NatTrans.app (Equivalence.unitInv (CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G))) ((Functor.asEquivalence (CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G)).functor).inverse.obj B))))) PUnit.unit ≫ NatTrans.app ((Functor.asEquivalence (CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G)).functor).inverse.map ((CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G)).functor.map ((CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G)).inverse.map (NatTrans.app (Equivalence.counit (CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G))) A) ⊗ (CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G)).inverse.map (NatTrans.app (Equivalence.counit (CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G))) B)))) PUnit.unit = 𝟙 (((Monoidal.fromTransported (CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G))).toLaxMonoidalFunctor.toFunctor.obj A ⊗ (Monoidal.fromTransported (CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G))).toLaxMonoidalFunctor.toFunctor.obj B).obj PUnit.unit) [PROOFSTEP] dsimp [Equivalence.unit] [GOAL] V : Type (u + 1) inst✝¹ : LargeCategory V G : MonCat inst✝ : MonoidalCategory V A B : Action V G ⊢ 𝟙 (((Functor.asEquivalence FunctorCategoryEquivalence.inverse).inverse.obj A).obj PUnit.unit ⊗ ((Functor.asEquivalence FunctorCategoryEquivalence.inverse).inverse.obj B).obj PUnit.unit) ≫ NatTrans.app (inv ((Functor.asEquivalence FunctorCategoryEquivalence.inverse).inverse.map (FunctorCategoryEquivalence.inverse.map (NatTrans.app (Equivalence.unitInv (CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G))) ((Functor.asEquivalence FunctorCategoryEquivalence.inverse).inverse.obj A) ⊗ NatTrans.app (Equivalence.unitInv (CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G))) ((Functor.asEquivalence FunctorCategoryEquivalence.inverse).inverse.obj B))))) PUnit.unit ≫ NatTrans.app ((Functor.asEquivalence FunctorCategoryEquivalence.inverse).inverse.map (FunctorCategoryEquivalence.inverse.map (FunctorCategoryEquivalence.functor.map (NatTrans.app (Equivalence.counit (CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G))) A) ⊗ FunctorCategoryEquivalence.functor.map (NatTrans.app (Equivalence.counit (CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G))) B)))) PUnit.unit = 𝟙 (((Monoidal.fromTransported (CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G))).toLaxMonoidalFunctor.toFunctor.obj A).obj PUnit.unit ⊗ ((Monoidal.fromTransported (CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G))).toLaxMonoidalFunctor.toFunctor.obj B).obj PUnit.unit) [PROOFSTEP] erw [Category.id_comp] [GOAL] V : Type (u + 1) inst✝¹ : LargeCategory V G : MonCat inst✝ : MonoidalCategory V A B : Action V G ⊢ NatTrans.app (inv ((Functor.asEquivalence FunctorCategoryEquivalence.inverse).inverse.map (FunctorCategoryEquivalence.inverse.map (NatTrans.app (Equivalence.unitInv (CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G))) ((Functor.asEquivalence FunctorCategoryEquivalence.inverse).inverse.obj A) ⊗ NatTrans.app (Equivalence.unitInv (CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G))) ((Functor.asEquivalence FunctorCategoryEquivalence.inverse).inverse.obj B))))) PUnit.unit ≫ NatTrans.app ((Functor.asEquivalence FunctorCategoryEquivalence.inverse).inverse.map (FunctorCategoryEquivalence.inverse.map (FunctorCategoryEquivalence.functor.map (NatTrans.app (Equivalence.counit (CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G))) A) ⊗ FunctorCategoryEquivalence.functor.map (NatTrans.app (Equivalence.counit (CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G))) B)))) PUnit.unit = 𝟙 (((Monoidal.fromTransported (CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G))).toLaxMonoidalFunctor.toFunctor.obj A).obj PUnit.unit ⊗ ((Monoidal.fromTransported (CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G))).toLaxMonoidalFunctor.toFunctor.obj B).obj PUnit.unit) [PROOFSTEP] rw [NatIso.isIso_inv_app, IsIso.inv_comp_eq] [GOAL] V : Type (u + 1) inst✝¹ : LargeCategory V G : MonCat inst✝ : MonoidalCategory V A B : Action V G ⊢ NatTrans.app ((Functor.asEquivalence FunctorCategoryEquivalence.inverse).inverse.map (FunctorCategoryEquivalence.inverse.map (FunctorCategoryEquivalence.functor.map (NatTrans.app (Equivalence.counit (CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G))) A) ⊗ FunctorCategoryEquivalence.functor.map (NatTrans.app (Equivalence.counit (CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G))) B)))) PUnit.unit = NatTrans.app ((Functor.asEquivalence FunctorCategoryEquivalence.inverse).inverse.map (FunctorCategoryEquivalence.inverse.map (NatTrans.app (Equivalence.unitInv (CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G))) ((Functor.asEquivalence FunctorCategoryEquivalence.inverse).inverse.obj A) ⊗ NatTrans.app (Equivalence.unitInv (CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G))) ((Functor.asEquivalence FunctorCategoryEquivalence.inverse).inverse.obj B)))) PUnit.unit ≫ 𝟙 (((Monoidal.fromTransported (CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G))).toLaxMonoidalFunctor.toFunctor.obj A).obj PUnit.unit ⊗ ((Monoidal.fromTransported (CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G))).toLaxMonoidalFunctor.toFunctor.obj B).obj PUnit.unit) [PROOFSTEP] erw [MonoidalCategory.tensor_id] [GOAL] V : Type (u + 1) inst✝¹ : LargeCategory V G : MonCat inst✝ : MonoidalCategory V A B : Action V G ⊢ NatTrans.app ((Functor.asEquivalence FunctorCategoryEquivalence.inverse).inverse.map (FunctorCategoryEquivalence.inverse.map (𝟙 (FunctorCategoryEquivalence.functor.obj (FunctorCategoryEquivalence.inverse.obj ((Functor.asEquivalence FunctorCategoryEquivalence.inverse).inverse.obj A)) ⊗ FunctorCategoryEquivalence.functor.obj (FunctorCategoryEquivalence.inverse.obj ((Functor.asEquivalence FunctorCategoryEquivalence.inverse).inverse.obj B)))))) PUnit.unit = NatTrans.app ((Functor.asEquivalence FunctorCategoryEquivalence.inverse).inverse.map (FunctorCategoryEquivalence.inverse.map (𝟙 (FunctorCategoryEquivalence.functor.obj (FunctorCategoryEquivalence.inverse.obj ((Functor.asEquivalence FunctorCategoryEquivalence.inverse).inverse.obj A)) ⊗ FunctorCategoryEquivalence.functor.obj (FunctorCategoryEquivalence.inverse.obj ((Functor.asEquivalence FunctorCategoryEquivalence.inverse).inverse.obj B)))))) PUnit.unit ≫ 𝟙 (((Monoidal.fromTransported (CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G))).toLaxMonoidalFunctor.toFunctor.obj A).obj PUnit.unit ⊗ ((Monoidal.fromTransported (CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G))).toLaxMonoidalFunctor.toFunctor.obj B).obj PUnit.unit) [PROOFSTEP] erw [(functorCategoryEquivalence V G).inverse.map_id, (functorCategoryEquivalence V G).functor.map_id, Category.id_comp] [GOAL] V : Type (u + 1) inst✝¹ : LargeCategory V G : MonCat inst✝ : MonoidalCategory V A B : Action V G ⊢ NatTrans.app (𝟙 ((functorCategoryEquivalence V G).functor.obj (FunctorCategoryEquivalence.inverse.obj (FunctorCategoryEquivalence.functor.obj (FunctorCategoryEquivalence.inverse.obj ((Functor.asEquivalence FunctorCategoryEquivalence.inverse).inverse.obj A)) ⊗ FunctorCategoryEquivalence.functor.obj (FunctorCategoryEquivalence.inverse.obj ((Functor.asEquivalence FunctorCategoryEquivalence.inverse).inverse.obj B)))))) PUnit.unit = 𝟙 (((Monoidal.fromTransported (CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G))).toLaxMonoidalFunctor.toFunctor.obj A).obj PUnit.unit ⊗ ((Monoidal.fromTransported (CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G))).toLaxMonoidalFunctor.toFunctor.obj B).obj PUnit.unit) [PROOFSTEP] rfl [GOAL] V : Type (u + 1) inst✝¹ : LargeCategory V G : MonCat inst✝ : MonoidalCategory V A B : Action V G ⊢ NatTrans.app (MonoidalFunctor.μIso (functorCategoryMonoidalEquivalence V G) A B).inv PUnit.unit = 𝟙 (((functorCategoryMonoidalEquivalence V G).toLaxMonoidalFunctor.toFunctor.obj (A ⊗ B)).obj PUnit.unit) [PROOFSTEP] rw [← NatIso.app_inv, ← IsIso.Iso.inv_hom] [GOAL] V : Type (u + 1) inst✝¹ : LargeCategory V G : MonCat inst✝ : MonoidalCategory V A B : Action V G ⊢ inv ((MonoidalFunctor.μIso (functorCategoryMonoidalEquivalence V G) A B).app PUnit.unit).hom = 𝟙 (((functorCategoryMonoidalEquivalence V G).toLaxMonoidalFunctor.toFunctor.obj (A ⊗ B)).obj PUnit.unit) [PROOFSTEP] refine' IsIso.inv_eq_of_hom_inv_id _ [GOAL] V : Type (u + 1) inst✝¹ : LargeCategory V G : MonCat inst✝ : MonoidalCategory V A B : Action V G ⊢ ((MonoidalFunctor.μIso (functorCategoryMonoidalEquivalence V G) A B).app PUnit.unit).hom ≫ 𝟙 (((functorCategoryMonoidalEquivalence V G).toLaxMonoidalFunctor.toFunctor.obj (A ⊗ B)).obj PUnit.unit) = 𝟙 (((functorCategoryMonoidalEquivalence V G).toLaxMonoidalFunctor.toFunctor.obj A ⊗ (functorCategoryMonoidalEquivalence V G).toLaxMonoidalFunctor.toFunctor.obj B).obj PUnit.unit) [PROOFSTEP] rw [Category.comp_id, NatIso.app_hom, MonoidalFunctor.μIso_hom, functorCategoryMonoidalEquivalence.μ_app] [GOAL] V : Type (u + 1) inst✝¹ : LargeCategory V G : MonCat inst✝ : MonoidalCategory V ⊢ NatTrans.app (functorCategoryMonoidalEquivalence V G).toLaxMonoidalFunctor.ε PUnit.unit = 𝟙 ((𝟙_ (SingleObj ↑G ⥤ V)).obj PUnit.unit) [PROOFSTEP] dsimp only [functorCategoryMonoidalEquivalence] [GOAL] V : Type (u + 1) inst✝¹ : LargeCategory V G : MonCat inst✝ : MonoidalCategory V ⊢ NatTrans.app (Monoidal.fromTransported (CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G))).toLaxMonoidalFunctor.ε PUnit.unit = 𝟙 ((𝟙_ (SingleObj ↑G ⥤ V)).obj PUnit.unit) [PROOFSTEP] simp only [Monoidal.fromTransported_toLaxMonoidalFunctor_ε] [GOAL] V : Type (u + 1) inst✝¹ : LargeCategory V G : MonCat inst✝ : MonoidalCategory V ⊢ NatTrans.app (NatTrans.app (Equivalence.unit (CategoryTheory.Equivalence.symm (functorCategoryEquivalence V G))) (𝟙_ (SingleObj ↑G ⥤ V))) PUnit.unit = 𝟙 ((𝟙_ (SingleObj ↑G ⥤ V)).obj PUnit.unit) [PROOFSTEP] rfl [GOAL] V : Type (u + 1) inst✝² : LargeCategory V G : MonCat inst✝¹ : MonoidalCategory V H : GroupCat inst✝ : RightRigidCategory V ⊢ RightRigidCategory (SingleObj ↑((forget₂ GroupCat MonCat).obj H) ⥤ V) [PROOFSTEP] change RightRigidCategory (SingleObj H ⥤ V) [GOAL] V : Type (u + 1) inst✝² : LargeCategory V G : MonCat inst✝¹ : MonoidalCategory V H : GroupCat inst✝ : RightRigidCategory V ⊢ RightRigidCategory (SingleObj ↑H ⥤ V) [PROOFSTEP] infer_instance [GOAL] V : Type (u + 1) inst✝² : LargeCategory V G : MonCat inst✝¹ : MonoidalCategory V H : GroupCat inst✝ : LeftRigidCategory V ⊢ LeftRigidCategory (SingleObj ↑((forget₂ GroupCat MonCat).obj H) ⥤ V) [PROOFSTEP] change LeftRigidCategory (SingleObj H ⥤ V) [GOAL] V : Type (u + 1) inst✝² : LargeCategory V G : MonCat inst✝¹ : MonoidalCategory V H : GroupCat inst✝ : LeftRigidCategory V ⊢ LeftRigidCategory (SingleObj ↑H ⥤ V) [PROOFSTEP] infer_instance [GOAL] V : Type (u + 1) inst✝² : LargeCategory V G : MonCat inst✝¹ : MonoidalCategory V H : GroupCat inst✝ : RigidCategory V ⊢ RigidCategory (SingleObj ↑((forget₂ GroupCat MonCat).obj H) ⥤ V) [PROOFSTEP] change RigidCategory (SingleObj H ⥤ V) [GOAL] V : Type (u + 1) inst✝² : LargeCategory V G : MonCat inst✝¹ : MonoidalCategory V H : GroupCat inst✝ : RigidCategory V ⊢ RigidCategory (SingleObj ↑H ⥤ V) [PROOFSTEP] infer_instance [GOAL] V : Type (u + 1) inst✝² : LargeCategory V G : MonCat inst✝¹ : MonoidalCategory V H : GroupCat X : Action V ((forget₂ GroupCat MonCat).obj H) inst✝ : RightRigidCategory V h : ↑H ⊢ ↑Xᘁ.ρ h = ↑X.ρ h⁻¹ᘁ [PROOFSTEP] rw [← SingleObj.inv_as_inv] [GOAL] V : Type (u + 1) inst✝² : LargeCategory V G : MonCat inst✝¹ : MonoidalCategory V H : GroupCat X : Action V ((forget₂ GroupCat MonCat).obj H) inst✝ : RightRigidCategory V h : ↑H ⊢ ↑Xᘁ.ρ h = ↑X.ρ (inv h)ᘁ case x V : Type (u + 1) inst✝² : LargeCategory V G : MonCat inst✝¹ : MonoidalCategory V H : GroupCat X : Action V ((forget₂ GroupCat MonCat).obj H) inst✝ : RightRigidCategory V h : ↑H ⊢ SingleObj H.1 case y V : Type (u + 1) inst✝² : LargeCategory V G : MonCat inst✝¹ : MonoidalCategory V H : GroupCat X : Action V ((forget₂ GroupCat MonCat).obj H) inst✝ : RightRigidCategory V h : ↑H ⊢ SingleObj H.1 [PROOFSTEP] rfl [GOAL] V : Type (u + 1) inst✝² : LargeCategory V G : MonCat inst✝¹ : MonoidalCategory V H : GroupCat X : Action V ((forget₂ GroupCat MonCat).obj H) inst✝ : LeftRigidCategory V h : ↑H ⊢ ↑(ᘁX).ρ h = ᘁ↑X.ρ h⁻¹ [PROOFSTEP] rw [← SingleObj.inv_as_inv] [GOAL] V : Type (u + 1) inst✝² : LargeCategory V G : MonCat inst✝¹ : MonoidalCategory V H : GroupCat X : Action V ((forget₂ GroupCat MonCat).obj H) inst✝ : LeftRigidCategory V h : ↑H ⊢ ↑(ᘁX).ρ h = ᘁ↑X.ρ (inv h) case x V : Type (u + 1) inst✝² : LargeCategory V G : MonCat inst✝¹ : MonoidalCategory V H : GroupCat X : Action V ((forget₂ GroupCat MonCat).obj H) inst✝ : LeftRigidCategory V h : ↑H ⊢ SingleObj H.1 case y V : Type (u + 1) inst✝² : LargeCategory V G : MonCat inst✝¹ : MonoidalCategory V H : GroupCat X : Action V ((forget₂ GroupCat MonCat).obj H) inst✝ : LeftRigidCategory V h : ↑H ⊢ SingleObj H.1 [PROOFSTEP] rfl [GOAL] V : Type (u + 1) inst✝ : LargeCategory V G : MonCat X✝ Y✝ : V f : X✝ ⟶ Y✝ x✝ : ↑(MonCat.of PUnit) ⊢ ↑((fun X => { V := X, ρ := 1 }) X✝).ρ PUnit.unit ≫ f = f ≫ ↑((fun X => { V := X, ρ := 1 }) Y✝).ρ PUnit.unit [PROOFSTEP] simp [GOAL] V : Type (u + 1) inst✝ : LargeCategory V G : MonCat X : Action V (MonCat.of PUnit) x✝ : ↑(MonCat.of PUnit) ⊢ ↑((𝟭 (Action V (MonCat.of PUnit))).obj X).ρ PUnit.unit ≫ (Iso.refl ((𝟭 (Action V (MonCat.of PUnit))).obj X).V).hom = (Iso.refl ((𝟭 (Action V (MonCat.of PUnit))).obj X).V).hom ≫ ↑((forget V (MonCat.of PUnit) ⋙ CategoryTheory.Functor.mk { obj := fun X => { V := X, ρ := 1 }, map := fun {X Y} f => Hom.mk f }).obj X).ρ PUnit.unit [PROOFSTEP] simp only [MonCat.oneHom_apply, MonCat.one_of, End.one_def, id_eq, Functor.comp_obj, forget_obj, Iso.refl_hom, Category.comp_id] [GOAL] V : Type (u + 1) inst✝ : LargeCategory V G : MonCat X : Action V (MonCat.of PUnit) x✝ : ↑(MonCat.of PUnit) ⊢ ↑((𝟭 (Action V (MonCat.of PUnit))).obj X).ρ PUnit.unit = 𝟙 ((𝟭 (Action V (MonCat.of PUnit))).obj X).V [PROOFSTEP] exact ρ_one X [GOAL] V : Type (u + 1) inst✝³ : LargeCategory V G✝ H✝ : MonCat f : G✝ ⟶ H✝ R : Type u_1 inst✝² : Semiring R G H : Type u inst✝¹ : Monoid G inst✝ : MulAction G H ⊢ MulAction (↑(MonCat.of G)) H [PROOFSTEP] assumption [GOAL] V : Type (u + 1) inst✝³ : LargeCategory V G✝ H : MonCat f : G✝ ⟶ H R : Type u_1 inst✝² : Semiring R ι : Type v G : Type (max v u) inst✝¹ : Monoid G F : ι → Type (max v u) inst✝ : (i : ι) → MulAction G (F i) s : Cone (Discrete.functor fun i => ofMulAction G (F i)) g : ↑(MonCat.of G) ⊢ (↑s.pt.ρ g ≫ fun x i => Hom.hom (NatTrans.app s.π { as := i }) x) = (fun x i => Hom.hom (NatTrans.app s.π { as := i }) x) ≫ ↑{ pt := ofMulAction G ((i : ι) → F i), π := Discrete.natTrans fun i => Hom.mk fun x => x i.as }.pt.ρ g [PROOFSTEP] ext x [GOAL] case h V : Type (u + 1) inst✝³ : LargeCategory V G✝ H : MonCat f : G✝ ⟶ H R : Type u_1 inst✝² : Semiring R ι : Type v G : Type (max v u) inst✝¹ : Monoid G F : ι → Type (max v u) inst✝ : (i : ι) → MulAction G (F i) s : Cone (Discrete.functor fun i => ofMulAction G (F i)) g : ↑(MonCat.of G) x : s.pt.V ⊢ (↑s.pt.ρ g ≫ fun x i => Hom.hom (NatTrans.app s.π { as := i }) x) x = ((fun x i => Hom.hom (NatTrans.app s.π { as := i }) x) ≫ ↑{ pt := ofMulAction G ((i : ι) → F i), π := Discrete.natTrans fun i => Hom.mk fun x => x i.as }.pt.ρ g) x [PROOFSTEP] funext j [GOAL] case h.h V : Type (u + 1) inst✝³ : LargeCategory V G✝ H : MonCat f : G✝ ⟶ H R : Type u_1 inst✝² : Semiring R ι : Type v G : Type (max v u) inst✝¹ : Monoid G F : ι → Type (max v u) inst✝ : (i : ι) → MulAction G (F i) s : Cone (Discrete.functor fun i => ofMulAction G (F i)) g : ↑(MonCat.of G) x : s.pt.V j : ι ⊢ (↑s.pt.ρ g ≫ fun x i => Hom.hom (NatTrans.app s.π { as := i }) x) x j = ((fun x i => Hom.hom (NatTrans.app s.π { as := i }) x) ≫ ↑{ pt := ofMulAction G ((i : ι) → F i), π := Discrete.natTrans fun i => Hom.mk fun x => x i.as }.pt.ρ g) x j [PROOFSTEP] exact congr_fun ((s.π.app ⟨j⟩).comm g) x [GOAL] V : Type (u + 1) inst✝³ : LargeCategory V G✝ H : MonCat f✝ : G✝ ⟶ H R : Type u_1 inst✝² : Semiring R ι : Type v G : Type (max v u) inst✝¹ : Monoid G F : ι → Type (max v u) inst✝ : (i : ι) → MulAction G (F i) s : Cone (Discrete.functor fun i => ofMulAction G (F i)) f : s.pt ⟶ { pt := ofMulAction G ((i : ι) → F i), π := Discrete.natTrans fun i => Hom.mk fun x => x i.as }.pt h : ∀ (j : Discrete ι), f ≫ NatTrans.app { pt := ofMulAction G ((i : ι) → F i), π := Discrete.natTrans fun i => Hom.mk fun x => x i.as }.π j = NatTrans.app s.π j ⊢ f = (fun s => Hom.mk fun x i => Hom.hom (NatTrans.app s.π { as := i }) x) s [PROOFSTEP] ext x [GOAL] case h.h V : Type (u + 1) inst✝³ : LargeCategory V G✝ H : MonCat f✝ : G✝ ⟶ H R : Type u_1 inst✝² : Semiring R ι : Type v G : Type (max v u) inst✝¹ : Monoid G F : ι → Type (max v u) inst✝ : (i : ι) → MulAction G (F i) s : Cone (Discrete.functor fun i => ofMulAction G (F i)) f : s.pt ⟶ { pt := ofMulAction G ((i : ι) → F i), π := Discrete.natTrans fun i => Hom.mk fun x => x i.as }.pt h : ∀ (j : Discrete ι), f ≫ NatTrans.app { pt := ofMulAction G ((i : ι) → F i), π := Discrete.natTrans fun i => Hom.mk fun x => x i.as }.π j = NatTrans.app s.π j x : s.pt.V ⊢ Hom.hom f x = Hom.hom ((fun s => Hom.mk fun x i => Hom.hom (NatTrans.app s.π { as := i }) x) s) x [PROOFSTEP] funext j [GOAL] case h.h.h V : Type (u + 1) inst✝³ : LargeCategory V G✝ H : MonCat f✝ : G✝ ⟶ H R : Type u_1 inst✝² : Semiring R ι : Type v G : Type (max v u) inst✝¹ : Monoid G F : ι → Type (max v u) inst✝ : (i : ι) → MulAction G (F i) s : Cone (Discrete.functor fun i => ofMulAction G (F i)) f : s.pt ⟶ { pt := ofMulAction G ((i : ι) → F i), π := Discrete.natTrans fun i => Hom.mk fun x => x i.as }.pt h : ∀ (j : Discrete ι), f ≫ NatTrans.app { pt := ofMulAction G ((i : ι) → F i), π := Discrete.natTrans fun i => Hom.mk fun x => x i.as }.π j = NatTrans.app s.π j x : s.pt.V j : ι ⊢ Hom.hom f x j = Hom.hom ((fun s => Hom.mk fun x i => Hom.hom (NatTrans.app s.π { as := i }) x) s) x j [PROOFSTEP] dsimp at * [GOAL] case h.h.h V : Type (u + 1) inst✝³ : LargeCategory V G✝ H : MonCat f✝ : G✝ ⟶ H R : Type u_1 inst✝² : Semiring R ι : Type v G : Type (max v u) inst✝¹ : Monoid G F : ι → Type (max v u) inst✝ : (i : ι) → MulAction G (F i) s : Cone (Discrete.functor fun i => ofMulAction G (F i)) f : s.pt ⟶ { pt := ofMulAction G ((i : ι) → F i), π := Discrete.natTrans fun i => Hom.mk fun x => x i.as }.pt h : ∀ (j : Discrete ι), (f ≫ Hom.mk fun x => x j.as) = NatTrans.app s.π j x : s.pt.V j : ι ⊢ Hom.hom f x j = Hom.hom (NatTrans.app s.π { as := j }) x [PROOFSTEP] rw [← h ⟨j⟩] [GOAL] case h.h.h V : Type (u + 1) inst✝³ : LargeCategory V G✝ H : MonCat f✝ : G✝ ⟶ H R : Type u_1 inst✝² : Semiring R ι : Type v G : Type (max v u) inst✝¹ : Monoid G F : ι → Type (max v u) inst✝ : (i : ι) → MulAction G (F i) s : Cone (Discrete.functor fun i => ofMulAction G (F i)) f : s.pt ⟶ { pt := ofMulAction G ((i : ι) → F i), π := Discrete.natTrans fun i => Hom.mk fun x => x i.as }.pt h : ∀ (j : Discrete ι), (f ≫ Hom.mk fun x => x j.as) = NatTrans.app s.π j x : s.pt.V j : ι ⊢ Hom.hom f x j = Hom.hom (f ≫ Hom.mk fun x => x { as := j }.as) x [PROOFSTEP] rfl [GOAL] V : Type (u + 1) inst✝² : LargeCategory V G✝ H : MonCat f : G✝ ⟶ H R : Type u_1 inst✝¹ : Semiring R G : Type u inst✝ : Group G X : Action (Type u) (MonCat.of G) g : G ⊢ (↑(leftRegular G ⊗ X).ρ g ≫ fun g => (g.fst, ↑X.ρ g.fst⁻¹ g.snd)) = (fun g => (g.fst, ↑X.ρ g.fst⁻¹ g.snd)) ≫ ↑(leftRegular G ⊗ { V := X.V, ρ := 1 }).ρ g [PROOFSTEP] funext ⟨(x₁ : G), (x₂ : X.V)⟩ [GOAL] case h V : Type (u + 1) inst✝² : LargeCategory V G✝ H : MonCat f : G✝ ⟶ H R : Type u_1 inst✝¹ : Semiring R G : Type u inst✝ : Group G X : Action (Type u) (MonCat.of G) g x₁ : G x₂ : X.V ⊢ (↑(leftRegular G ⊗ X).ρ g ≫ fun g => (g.fst, ↑X.ρ g.fst⁻¹ g.snd)) (x₁, x₂) = ((fun g => (g.fst, ↑X.ρ g.fst⁻¹ g.snd)) ≫ ↑(leftRegular G ⊗ { V := X.V, ρ := 1 }).ρ g) (x₁, x₂) [PROOFSTEP] refine' Prod.ext rfl _ [GOAL] case h V : Type (u + 1) inst✝² : LargeCategory V G✝ H : MonCat f : G✝ ⟶ H R : Type u_1 inst✝¹ : Semiring R G : Type u inst✝ : Group G X : Action (Type u) (MonCat.of G) g x₁ : G x₂ : X.V ⊢ ((↑(leftRegular G ⊗ X).ρ g ≫ fun g => (g.fst, ↑X.ρ g.fst⁻¹ g.snd)) (x₁, x₂)).snd = (((fun g => (g.fst, ↑X.ρ g.fst⁻¹ g.snd)) ≫ ↑(leftRegular G ⊗ { V := X.V, ρ := 1 }).ρ g) (x₁, x₂)).snd [PROOFSTEP] change (X.ρ ((g * x₁)⁻¹ : G) * X.ρ g) x₂ = X.ρ _ _ [GOAL] case h V : Type (u + 1) inst✝² : LargeCategory V G✝ H : MonCat f : G✝ ⟶ H R : Type u_1 inst✝¹ : Semiring R G : Type u inst✝ : Group G X : Action (Type u) (MonCat.of G) g x₁ : G x₂ : X.V ⊢ (↑X.ρ (g * x₁)⁻¹ * ↑X.ρ g) x₂ = ↑X.ρ (x₁, x₂).fst⁻¹ (x₁, x₂).snd [PROOFSTEP] rw [mul_inv_rev, ← X.ρ.map_mul, inv_mul_cancel_right] [GOAL] V : Type (u + 1) inst✝² : LargeCategory V G✝ H : MonCat f : G✝ ⟶ H R : Type u_1 inst✝¹ : Semiring R G : Type u inst✝ : Group G X : Action (Type u) (MonCat.of G) g : G ⊢ (↑(leftRegular G ⊗ { V := X.V, ρ := 1 }).ρ g ≫ fun g => (g.fst, ↑X.ρ g.fst g.snd)) = (fun g => (g.fst, ↑X.ρ g.fst g.snd)) ≫ ↑(leftRegular G ⊗ X).ρ g [PROOFSTEP] funext ⟨(x₁ : G), (x₂ : X.V)⟩ [GOAL] case h V : Type (u + 1) inst✝² : LargeCategory V G✝ H : MonCat f : G✝ ⟶ H R : Type u_1 inst✝¹ : Semiring R G : Type u inst✝ : Group G X : Action (Type u) (MonCat.of G) g x₁ : G x₂ : X.V ⊢ (↑(leftRegular G ⊗ { V := X.V, ρ := 1 }).ρ g ≫ fun g => (g.fst, ↑X.ρ g.fst g.snd)) (x₁, x₂) = ((fun g => (g.fst, ↑X.ρ g.fst g.snd)) ≫ ↑(leftRegular G ⊗ X).ρ g) (x₁, x₂) [PROOFSTEP] refine' Prod.ext rfl _ [GOAL] case h V : Type (u + 1) inst✝² : LargeCategory V G✝ H : MonCat f : G✝ ⟶ H R : Type u_1 inst✝¹ : Semiring R G : Type u inst✝ : Group G X : Action (Type u) (MonCat.of G) g x₁ : G x₂ : X.V ⊢ ((↑(leftRegular G ⊗ { V := X.V, ρ := 1 }).ρ g ≫ fun g => (g.fst, ↑X.ρ g.fst g.snd)) (x₁, x₂)).snd = (((fun g => (g.fst, ↑X.ρ g.fst g.snd)) ≫ ↑(leftRegular G ⊗ X).ρ g) (x₁, x₂)).snd [PROOFSTEP] erw [tensor_rho, tensor_rho] [GOAL] case h V : Type (u + 1) inst✝² : LargeCategory V G✝ H : MonCat f : G✝ ⟶ H R : Type u_1 inst✝¹ : Semiring R G : Type u inst✝ : Group G X : Action (Type u) (MonCat.of G) g x₁ : G x₂ : X.V ⊢ (((↑(leftRegular G).ρ g ⊗ ↑{ V := X.V, ρ := 1 }.ρ g) ≫ fun g => (g.fst, ↑X.ρ g.fst g.snd)) (x₁, x₂)).snd = (((fun g => (g.fst, ↑X.ρ g.fst g.snd)) ≫ (↑(leftRegular G).ρ g ⊗ ↑X.ρ g)) (x₁, x₂)).snd [PROOFSTEP] dsimp [GOAL] case h V : Type (u + 1) inst✝² : LargeCategory V G✝ H : MonCat f : G✝ ⟶ H R : Type u_1 inst✝¹ : Semiring R G : Type u inst✝ : Group G X : Action (Type u) (MonCat.of G) g x₁ : G x₂ : X.V ⊢ ↑X.ρ (↑(leftRegular G).ρ g x₁) x₂ = ↑X.ρ g (↑X.ρ x₁ x₂) [PROOFSTEP] rw [leftRegular_ρ_apply] [GOAL] case h V : Type (u + 1) inst✝² : LargeCategory V G✝ H : MonCat f : G✝ ⟶ H R : Type u_1 inst✝¹ : Semiring R G : Type u inst✝ : Group G X : Action (Type u) (MonCat.of G) g x₁ : G x₂ : X.V ⊢ ↑X.ρ (g • x₁) x₂ = ↑X.ρ g (↑X.ρ x₁ x₂) [PROOFSTEP] erw [map_mul] [GOAL] case h V : Type (u + 1) inst✝² : LargeCategory V G✝ H : MonCat f : G✝ ⟶ H R : Type u_1 inst✝¹ : Semiring R G : Type u inst✝ : Group G X : Action (Type u) (MonCat.of G) g x₁ : G x₂ : X.V ⊢ (↑X.ρ g * ↑X.ρ x₁) x₂ = ↑X.ρ g (↑X.ρ x₁ x₂) [PROOFSTEP] rfl [GOAL] V : Type (u + 1) inst✝² : LargeCategory V G✝ H : MonCat f : G✝ ⟶ H R : Type u_1 inst✝¹ : Semiring R G : Type u inst✝ : Group G X : Action (Type u) (MonCat.of G) ⊢ ((Hom.mk fun g => (g.fst, ↑X.ρ g.fst⁻¹ g.snd)) ≫ Hom.mk fun g => (g.fst, ↑X.ρ g.fst g.snd)) = 𝟙 (leftRegular G ⊗ X) [PROOFSTEP] apply Hom.ext [GOAL] case hom V : Type (u + 1) inst✝² : LargeCategory V G✝ H : MonCat f : G✝ ⟶ H R : Type u_1 inst✝¹ : Semiring R G : Type u inst✝ : Group G X : Action (Type u) (MonCat.of G) ⊢ ((Hom.mk fun g => (g.fst, ↑X.ρ g.fst⁻¹ g.snd)) ≫ Hom.mk fun g => (g.fst, ↑X.ρ g.fst g.snd)).hom = (𝟙 (leftRegular G ⊗ X)).hom [PROOFSTEP] funext x [GOAL] case hom.h V : Type (u + 1) inst✝² : LargeCategory V G✝ H : MonCat f : G✝ ⟶ H R : Type u_1 inst✝¹ : Semiring R G : Type u inst✝ : Group G X : Action (Type u) (MonCat.of G) x : (leftRegular G ⊗ X).V ⊢ Hom.hom ((Hom.mk fun g => (g.fst, ↑X.ρ g.fst⁻¹ g.snd)) ≫ Hom.mk fun g => (g.fst, ↑X.ρ g.fst g.snd)) x = Hom.hom (𝟙 (leftRegular G ⊗ X)) x [PROOFSTEP] refine' Prod.ext rfl _ [GOAL] case hom.h V : Type (u + 1) inst✝² : LargeCategory V G✝ H : MonCat f : G✝ ⟶ H R : Type u_1 inst✝¹ : Semiring R G : Type u inst✝ : Group G X : Action (Type u) (MonCat.of G) x : (leftRegular G ⊗ X).V ⊢ (Hom.hom ((Hom.mk fun g => (g.fst, ↑X.ρ g.fst⁻¹ g.snd)) ≫ Hom.mk fun g => (g.fst, ↑X.ρ g.fst g.snd)) x).snd = (Hom.hom (𝟙 (leftRegular G ⊗ X)) x).snd [PROOFSTEP] change (X.ρ x.1 * X.ρ (x.1⁻¹ : G)) x.2 = x.2 [GOAL] case hom.h V : Type (u + 1) inst✝² : LargeCategory V G✝ H : MonCat f : G✝ ⟶ H R : Type u_1 inst✝¹ : Semiring R G : Type u inst✝ : Group G X : Action (Type u) (MonCat.of G) x : (leftRegular G ⊗ X).V ⊢ (↑X.ρ x.fst * ↑X.ρ x.fst⁻¹) x.snd = x.snd [PROOFSTEP] rw [← X.ρ.map_mul, mul_inv_self, X.ρ.map_one, MonCat.one_of, End.one_def, types_id_apply] [GOAL] V : Type (u + 1) inst✝² : LargeCategory V G✝ H : MonCat f : G✝ ⟶ H R : Type u_1 inst✝¹ : Semiring R G : Type u inst✝ : Group G X : Action (Type u) (MonCat.of G) ⊢ ((Hom.mk fun g => (g.fst, ↑X.ρ g.fst g.snd)) ≫ Hom.mk fun g => (g.fst, ↑X.ρ g.fst⁻¹ g.snd)) = 𝟙 (leftRegular G ⊗ { V := X.V, ρ := 1 }) [PROOFSTEP] apply Hom.ext [GOAL] case hom V : Type (u + 1) inst✝² : LargeCategory V G✝ H : MonCat f : G✝ ⟶ H R : Type u_1 inst✝¹ : Semiring R G : Type u inst✝ : Group G X : Action (Type u) (MonCat.of G) ⊢ ((Hom.mk fun g => (g.fst, ↑X.ρ g.fst g.snd)) ≫ Hom.mk fun g => (g.fst, ↑X.ρ g.fst⁻¹ g.snd)).hom = (𝟙 (leftRegular G ⊗ { V := X.V, ρ := 1 })).hom [PROOFSTEP] funext x [GOAL] case hom.h V : Type (u + 1) inst✝² : LargeCategory V G✝ H : MonCat f : G✝ ⟶ H R : Type u_1 inst✝¹ : Semiring R G : Type u inst✝ : Group G X : Action (Type u) (MonCat.of G) x : (leftRegular G ⊗ { V := X.V, ρ := 1 }).V ⊢ Hom.hom ((Hom.mk fun g => (g.fst, ↑X.ρ g.fst g.snd)) ≫ Hom.mk fun g => (g.fst, ↑X.ρ g.fst⁻¹ g.snd)) x = Hom.hom (𝟙 (leftRegular G ⊗ { V := X.V, ρ := 1 })) x [PROOFSTEP] refine' Prod.ext rfl _ [GOAL] case hom.h V : Type (u + 1) inst✝² : LargeCategory V G✝ H : MonCat f : G✝ ⟶ H R : Type u_1 inst✝¹ : Semiring R G : Type u inst✝ : Group G X : Action (Type u) (MonCat.of G) x : (leftRegular G ⊗ { V := X.V, ρ := 1 }).V ⊢ (Hom.hom ((Hom.mk fun g => (g.fst, ↑X.ρ g.fst g.snd)) ≫ Hom.mk fun g => (g.fst, ↑X.ρ g.fst⁻¹ g.snd)) x).snd = (Hom.hom (𝟙 (leftRegular G ⊗ { V := X.V, ρ := 1 })) x).snd [PROOFSTEP] change (X.ρ (x.1⁻¹ : G) * X.ρ x.1) x.2 = x.2 [GOAL] case hom.h V : Type (u + 1) inst✝² : LargeCategory V G✝ H : MonCat f : G✝ ⟶ H R : Type u_1 inst✝¹ : Semiring R G : Type u inst✝ : Group G X : Action (Type u) (MonCat.of G) x : (leftRegular G ⊗ { V := X.V, ρ := 1 }).V ⊢ (↑X.ρ x.fst⁻¹ * ↑X.ρ x.fst) x.snd = x.snd [PROOFSTEP] rw [← X.ρ.map_mul, inv_mul_self, X.ρ.map_one, MonCat.one_of, End.one_def, types_id_apply] [GOAL] V : Type (u + 1) inst✝¹ : LargeCategory V W : Type (u + 1) inst✝ : LargeCategory W F : V ⥤ W G : MonCat M : Action V G ⊢ (fun g => F.map (↑M.ρ g)) 1 = 1 [PROOFSTEP] simp only [End.one_def, Action.ρ_one, F.map_id, MonCat.one_of] [GOAL] V : Type (u + 1) inst✝¹ : LargeCategory V W : Type (u + 1) inst✝ : LargeCategory W F : V ⥤ W G : MonCat M : Action V G g h : ↑G ⊢ OneHom.toFun { toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) } (g * h) = OneHom.toFun { toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) } g * OneHom.toFun { toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) } h [PROOFSTEP] dsimp [GOAL] V : Type (u + 1) inst✝¹ : LargeCategory V W : Type (u + 1) inst✝ : LargeCategory W F : V ⥤ W G : MonCat M : Action V G g h : ↑G ⊢ F.map (↑M.ρ (g * h)) = F.map (↑M.ρ g) * F.map (↑M.ρ h) [PROOFSTEP] rw [map_mul, MonCat.mul_of, End.mul_def, End.mul_def, F.map_comp] [GOAL] V : Type (u + 1) inst✝¹ : LargeCategory V W : Type (u + 1) inst✝ : LargeCategory W F : V ⥤ W G : MonCat X✝ Y✝ : Action V G f : X✝ ⟶ Y✝ g : ↑G ⊢ ↑((fun M => { V := F.obj M.V, ρ := { toOneHom := { toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) }, map_mul' := (_ : ∀ (g h : ↑G), OneHom.toFun { toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) } (g * h) = OneHom.toFun { toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) } g * OneHom.toFun { toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) } h) } }) X✝).ρ g ≫ F.map f.hom = F.map f.hom ≫ ↑((fun M => { V := F.obj M.V, ρ := { toOneHom := { toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) }, map_mul' := (_ : ∀ (g h : ↑G), OneHom.toFun { toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) } (g * h) = OneHom.toFun { toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) } g * OneHom.toFun { toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) } h) } }) Y✝).ρ g [PROOFSTEP] dsimp [GOAL] V : Type (u + 1) inst✝¹ : LargeCategory V W : Type (u + 1) inst✝ : LargeCategory W F : V ⥤ W G : MonCat X✝ Y✝ : Action V G f : X✝ ⟶ Y✝ g : ↑G ⊢ F.map (↑X✝.ρ g) ≫ F.map f.hom = F.map f.hom ≫ F.map (↑Y✝.ρ g) [PROOFSTEP] rw [← F.map_comp, f.comm, F.map_comp] [GOAL] V : Type (u + 1) inst✝¹ : LargeCategory V W : Type (u + 1) inst✝ : LargeCategory W F : V ⥤ W G : MonCat M : Action V G ⊢ { obj := fun M => { V := F.obj M.V, ρ := { toOneHom := { toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) }, map_mul' := (_ : ∀ (g h : ↑G), OneHom.toFun { toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) } (g * h) = OneHom.toFun { toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) } g * OneHom.toFun { toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) } h) } }, map := fun {X Y} f => Action.Hom.mk (F.map f.hom) }.map (𝟙 M) = 𝟙 ({ obj := fun M => { V := F.obj M.V, ρ := { toOneHom := { toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) }, map_mul' := (_ : ∀ (g h : ↑G), OneHom.toFun { toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) } (g * h) = OneHom.toFun { toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) } g * OneHom.toFun { toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) } h) } }, map := fun {X Y} f => Action.Hom.mk (F.map f.hom) }.obj M) [PROOFSTEP] ext [GOAL] case h V : Type (u + 1) inst✝¹ : LargeCategory V W : Type (u + 1) inst✝ : LargeCategory W F : V ⥤ W G : MonCat M : Action V G ⊢ ({ obj := fun M => { V := F.obj M.V, ρ := { toOneHom := { toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) }, map_mul' := (_ : ∀ (g h : ↑G), OneHom.toFun { toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) } (g * h) = OneHom.toFun { toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) } g * OneHom.toFun { toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) } h) } }, map := fun {X Y} f => Action.Hom.mk (F.map f.hom) }.map (𝟙 M)).hom = (𝟙 ({ obj := fun M => { V := F.obj M.V, ρ := { toOneHom := { toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) }, map_mul' := (_ : ∀ (g h : ↑G), OneHom.toFun { toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) } (g * h) = OneHom.toFun { toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) } g * OneHom.toFun { toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) } h) } }, map := fun {X Y} f => Action.Hom.mk (F.map f.hom) }.obj M)).hom [PROOFSTEP] simp only [Action.id_hom, F.map_id] [GOAL] V : Type (u + 1) inst✝¹ : LargeCategory V W : Type (u + 1) inst✝ : LargeCategory W F : V ⥤ W G : MonCat X✝ Y✝ Z✝ : Action V G f : X✝ ⟶ Y✝ g : Y✝ ⟶ Z✝ ⊢ { obj := fun M => { V := F.obj M.V, ρ := { toOneHom := { toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) }, map_mul' := (_ : ∀ (g h : ↑G), OneHom.toFun { toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) } (g * h) = OneHom.toFun { toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) } g * OneHom.toFun { toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) } h) } }, map := fun {X Y} f => Action.Hom.mk (F.map f.hom) }.map (f ≫ g) = { obj := fun M => { V := F.obj M.V, ρ := { toOneHom := { toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) }, map_mul' := (_ : ∀ (g h : ↑G), OneHom.toFun { toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) } (g * h) = OneHom.toFun { toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) } g * OneHom.toFun { toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) } h) } }, map := fun {X Y} f => Action.Hom.mk (F.map f.hom) }.map f ≫ { obj := fun M => { V := F.obj M.V, ρ := { toOneHom := { toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) }, map_mul' := (_ : ∀ (g h : ↑G), OneHom.toFun { toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) } (g * h) = OneHom.toFun { toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) } g * OneHom.toFun { toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) } h) } }, map := fun {X Y} f => Action.Hom.mk (F.map f.hom) }.map g [PROOFSTEP] ext [GOAL] case h V : Type (u + 1) inst✝¹ : LargeCategory V W : Type (u + 1) inst✝ : LargeCategory W F : V ⥤ W G : MonCat X✝ Y✝ Z✝ : Action V G f : X✝ ⟶ Y✝ g : Y✝ ⟶ Z✝ ⊢ ({ obj := fun M => { V := F.obj M.V, ρ := { toOneHom := { toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) }, map_mul' := (_ : ∀ (g h : ↑G), OneHom.toFun { toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) } (g * h) = OneHom.toFun { toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) } g * OneHom.toFun { toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) } h) } }, map := fun {X Y} f => Action.Hom.mk (F.map f.hom) }.map (f ≫ g)).hom = ({ obj := fun M => { V := F.obj M.V, ρ := { toOneHom := { toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) }, map_mul' := (_ : ∀ (g h : ↑G), OneHom.toFun { toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) } (g * h) = OneHom.toFun { toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) } g * OneHom.toFun { toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) } h) } }, map := fun {X Y} f => Action.Hom.mk (F.map f.hom) }.map f ≫ { obj := fun M => { V := F.obj M.V, ρ := { toOneHom := { toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) }, map_mul' := (_ : ∀ (g h : ↑G), OneHom.toFun { toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) } (g * h) = OneHom.toFun { toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) } g * OneHom.toFun { toFun := fun g => F.map (↑M.ρ g), map_one' := (_ : F.map (↑M.ρ 1) = 𝟙 (F.obj M.V)) } h) } }, map := fun {X Y} f => Action.Hom.mk (F.map f.hom) }.map g).hom [PROOFSTEP] simp only [Action.comp_hom, F.map_comp] [GOAL] V : Type (u + 1) inst✝³ : LargeCategory V W : Type (u + 1) inst✝² : LargeCategory W inst✝¹ : MonoidalCategory V inst✝ : MonoidalCategory W F : MonoidalFunctor V W G : MonCat src✝ : Action V G ⥤ Action W G := Functor.mapAction F.toFunctor G g : ↑G ⊢ ↑(MonoidalCategory.tensorUnit (Action W G)).ρ g ≫ F.ε = F.ε ≫ ↑((Functor.mk src✝.toPrefunctor).obj (MonoidalCategory.tensorUnit (Action V G))).ρ g [PROOFSTEP] dsimp [FunctorCategoryEquivalence.inverse, Functor.mapAction] [GOAL] V : Type (u + 1) inst✝³ : LargeCategory V W : Type (u + 1) inst✝² : LargeCategory W inst✝¹ : MonoidalCategory V inst✝ : MonoidalCategory W F : MonoidalFunctor V W G : MonCat src✝ : Action V G ⥤ Action W G := Functor.mapAction F.toFunctor G g : ↑G ⊢ 𝟙 (MonoidalCategory.tensorUnit W) ≫ F.ε = F.ε ≫ F.map (𝟙 (MonoidalCategory.tensorUnit V)) [PROOFSTEP] rw [Category.id_comp, F.map_id, Category.comp_id] [GOAL] V : Type (u + 1) inst✝³ : LargeCategory V W : Type (u + 1) inst✝² : LargeCategory W inst✝¹ : MonoidalCategory V inst✝ : MonoidalCategory W F : MonoidalFunctor V W G : MonCat src✝ : Action V G ⥤ Action W G := Functor.mapAction F.toFunctor G ⊢ ∀ {X Y X' Y' : Action V G} (f : X ⟶ Y) (g : X' ⟶ Y'), MonoidalCategory.tensorHom ((Functor.mk src✝.toPrefunctor).map f) ((Functor.mk src✝.toPrefunctor).map g) ≫ (fun X Y => Hom.mk (LaxMonoidalFunctor.μ F.toLaxMonoidalFunctor X.V Y.V)) Y Y' = (fun X Y => Hom.mk (LaxMonoidalFunctor.μ F.toLaxMonoidalFunctor X.V Y.V)) X X' ≫ (Functor.mk src✝.toPrefunctor).map (MonoidalCategory.tensorHom f g) [PROOFSTEP] intros [GOAL] V : Type (u + 1) inst✝³ : LargeCategory V W : Type (u + 1) inst✝² : LargeCategory W inst✝¹ : MonoidalCategory V inst✝ : MonoidalCategory W F : MonoidalFunctor V W G : MonCat src✝ : Action V G ⥤ Action W G := Functor.mapAction F.toFunctor G X✝ Y✝ X'✝ Y'✝ : Action V G f✝ : X✝ ⟶ Y✝ g✝ : X'✝ ⟶ Y'✝ ⊢ MonoidalCategory.tensorHom ((Functor.mk src✝.toPrefunctor).map f✝) ((Functor.mk src✝.toPrefunctor).map g✝) ≫ (fun X Y => Hom.mk (LaxMonoidalFunctor.μ F.toLaxMonoidalFunctor X.V Y.V)) Y✝ Y'✝ = (fun X Y => Hom.mk (LaxMonoidalFunctor.μ F.toLaxMonoidalFunctor X.V Y.V)) X✝ X'✝ ≫ (Functor.mk src✝.toPrefunctor).map (MonoidalCategory.tensorHom f✝ g✝) [PROOFSTEP] ext [GOAL] case h V : Type (u + 1) inst✝³ : LargeCategory V W : Type (u + 1) inst✝² : LargeCategory W inst✝¹ : MonoidalCategory V inst✝ : MonoidalCategory W F : MonoidalFunctor V W G : MonCat src✝ : Action V G ⥤ Action W G := Functor.mapAction F.toFunctor G X✝ Y✝ X'✝ Y'✝ : Action V G f✝ : X✝ ⟶ Y✝ g✝ : X'✝ ⟶ Y'✝ ⊢ (MonoidalCategory.tensorHom ((Functor.mk src✝.toPrefunctor).map f✝) ((Functor.mk src✝.toPrefunctor).map g✝) ≫ (fun X Y => Hom.mk (LaxMonoidalFunctor.μ F.toLaxMonoidalFunctor X.V Y.V)) Y✝ Y'✝).hom = ((fun X Y => Hom.mk (LaxMonoidalFunctor.μ F.toLaxMonoidalFunctor X.V Y.V)) X✝ X'✝ ≫ (Functor.mk src✝.toPrefunctor).map (MonoidalCategory.tensorHom f✝ g✝)).hom [PROOFSTEP] simp [GOAL] V : Type (u + 1) inst✝³ : LargeCategory V W : Type (u + 1) inst✝² : LargeCategory W inst✝¹ : MonoidalCategory V inst✝ : MonoidalCategory W F : MonoidalFunctor V W G : MonCat src✝ : Action V G ⥤ Action W G := Functor.mapAction F.toFunctor G ⊢ ∀ (X Y Z : Action V G), MonoidalCategory.tensorHom ((fun X Y => Hom.mk (LaxMonoidalFunctor.μ F.toLaxMonoidalFunctor X.V Y.V)) X Y) (𝟙 ((Functor.mk src✝.toPrefunctor).obj Z)) ≫ (fun X Y => Hom.mk (LaxMonoidalFunctor.μ F.toLaxMonoidalFunctor X.V Y.V)) (MonoidalCategory.tensorObj X Y) Z ≫ (Functor.mk src✝.toPrefunctor).map (MonoidalCategory.associator X Y Z).hom = (MonoidalCategory.associator ((Functor.mk src✝.toPrefunctor).obj X) ((Functor.mk src✝.toPrefunctor).obj Y) ((Functor.mk src✝.toPrefunctor).obj Z)).hom ≫ MonoidalCategory.tensorHom (𝟙 ((Functor.mk src✝.toPrefunctor).obj X)) ((fun X Y => Hom.mk (LaxMonoidalFunctor.μ F.toLaxMonoidalFunctor X.V Y.V)) Y Z) ≫ (fun X Y => Hom.mk (LaxMonoidalFunctor.μ F.toLaxMonoidalFunctor X.V Y.V)) X (MonoidalCategory.tensorObj Y Z) [PROOFSTEP] intros [GOAL] V : Type (u + 1) inst✝³ : LargeCategory V W : Type (u + 1) inst✝² : LargeCategory W inst✝¹ : MonoidalCategory V inst✝ : MonoidalCategory W F : MonoidalFunctor V W G : MonCat src✝ : Action V G ⥤ Action W G := Functor.mapAction F.toFunctor G X✝ Y✝ Z✝ : Action V G ⊢ MonoidalCategory.tensorHom ((fun X Y => Hom.mk (LaxMonoidalFunctor.μ F.toLaxMonoidalFunctor X.V Y.V)) X✝ Y✝) (𝟙 ((Functor.mk src✝.toPrefunctor).obj Z✝)) ≫ (fun X Y => Hom.mk (LaxMonoidalFunctor.μ F.toLaxMonoidalFunctor X.V Y.V)) (MonoidalCategory.tensorObj X✝ Y✝) Z✝ ≫ (Functor.mk src✝.toPrefunctor).map (MonoidalCategory.associator X✝ Y✝ Z✝).hom = (MonoidalCategory.associator ((Functor.mk src✝.toPrefunctor).obj X✝) ((Functor.mk src✝.toPrefunctor).obj Y✝) ((Functor.mk src✝.toPrefunctor).obj Z✝)).hom ≫ MonoidalCategory.tensorHom (𝟙 ((Functor.mk src✝.toPrefunctor).obj X✝)) ((fun X Y => Hom.mk (LaxMonoidalFunctor.μ F.toLaxMonoidalFunctor X.V Y.V)) Y✝ Z✝) ≫ (fun X Y => Hom.mk (LaxMonoidalFunctor.μ F.toLaxMonoidalFunctor X.V Y.V)) X✝ (MonoidalCategory.tensorObj Y✝ Z✝) [PROOFSTEP] ext [GOAL] case h V : Type (u + 1) inst✝³ : LargeCategory V W : Type (u + 1) inst✝² : LargeCategory W inst✝¹ : MonoidalCategory V inst✝ : MonoidalCategory W F : MonoidalFunctor V W G : MonCat src✝ : Action V G ⥤ Action W G := Functor.mapAction F.toFunctor G X✝ Y✝ Z✝ : Action V G ⊢ (MonoidalCategory.tensorHom ((fun X Y => Hom.mk (LaxMonoidalFunctor.μ F.toLaxMonoidalFunctor X.V Y.V)) X✝ Y✝) (𝟙 ((Functor.mk src✝.toPrefunctor).obj Z✝)) ≫ (fun X Y => Hom.mk (LaxMonoidalFunctor.μ F.toLaxMonoidalFunctor X.V Y.V)) (MonoidalCategory.tensorObj X✝ Y✝) Z✝ ≫ (Functor.mk src✝.toPrefunctor).map (MonoidalCategory.associator X✝ Y✝ Z✝).hom).hom = ((MonoidalCategory.associator ((Functor.mk src✝.toPrefunctor).obj X✝) ((Functor.mk src✝.toPrefunctor).obj Y✝) ((Functor.mk src✝.toPrefunctor).obj Z✝)).hom ≫ MonoidalCategory.tensorHom (𝟙 ((Functor.mk src✝.toPrefunctor).obj X✝)) ((fun X Y => Hom.mk (LaxMonoidalFunctor.μ F.toLaxMonoidalFunctor X.V Y.V)) Y✝ Z✝) ≫ (fun X Y => Hom.mk (LaxMonoidalFunctor.μ F.toLaxMonoidalFunctor X.V Y.V)) X✝ (MonoidalCategory.tensorObj Y✝ Z✝)).hom [PROOFSTEP] simp [GOAL] V : Type (u + 1) inst✝³ : LargeCategory V W : Type (u + 1) inst✝² : LargeCategory W inst✝¹ : MonoidalCategory V inst✝ : MonoidalCategory W F : MonoidalFunctor V W G : MonCat src✝ : Action V G ⥤ Action W G := Functor.mapAction F.toFunctor G ⊢ ∀ (X : Action V G), (MonoidalCategory.leftUnitor ((Functor.mk src✝.toPrefunctor).obj X)).hom = MonoidalCategory.tensorHom (Hom.mk F.ε) (𝟙 ((Functor.mk src✝.toPrefunctor).obj X)) ≫ (fun X Y => Hom.mk (LaxMonoidalFunctor.μ F.toLaxMonoidalFunctor X.V Y.V)) (MonoidalCategory.tensorUnit (Action V G)) X ≫ (Functor.mk src✝.toPrefunctor).map (MonoidalCategory.leftUnitor X).hom [PROOFSTEP] intros [GOAL] V : Type (u + 1) inst✝³ : LargeCategory V W : Type (u + 1) inst✝² : LargeCategory W inst✝¹ : MonoidalCategory V inst✝ : MonoidalCategory W F : MonoidalFunctor V W G : MonCat src✝ : Action V G ⥤ Action W G := Functor.mapAction F.toFunctor G X✝ : Action V G ⊢ (MonoidalCategory.leftUnitor ((Functor.mk src✝.toPrefunctor).obj X✝)).hom = MonoidalCategory.tensorHom (Hom.mk F.ε) (𝟙 ((Functor.mk src✝.toPrefunctor).obj X✝)) ≫ (fun X Y => Hom.mk (LaxMonoidalFunctor.μ F.toLaxMonoidalFunctor X.V Y.V)) (MonoidalCategory.tensorUnit (Action V G)) X✝ ≫ (Functor.mk src✝.toPrefunctor).map (MonoidalCategory.leftUnitor X✝).hom [PROOFSTEP] ext [GOAL] case h V : Type (u + 1) inst✝³ : LargeCategory V W : Type (u + 1) inst✝² : LargeCategory W inst✝¹ : MonoidalCategory V inst✝ : MonoidalCategory W F : MonoidalFunctor V W G : MonCat src✝ : Action V G ⥤ Action W G := Functor.mapAction F.toFunctor G X✝ : Action V G ⊢ (MonoidalCategory.leftUnitor ((Functor.mk src✝.toPrefunctor).obj X✝)).hom.hom = (MonoidalCategory.tensorHom (Hom.mk F.ε) (𝟙 ((Functor.mk src✝.toPrefunctor).obj X✝)) ≫ (fun X Y => Hom.mk (LaxMonoidalFunctor.μ F.toLaxMonoidalFunctor X.V Y.V)) (MonoidalCategory.tensorUnit (Action V G)) X✝ ≫ (Functor.mk src✝.toPrefunctor).map (MonoidalCategory.leftUnitor X✝).hom).hom [PROOFSTEP] simp [GOAL] V : Type (u + 1) inst✝³ : LargeCategory V W : Type (u + 1) inst✝² : LargeCategory W inst✝¹ : MonoidalCategory V inst✝ : MonoidalCategory W F : MonoidalFunctor V W G : MonCat src✝ : Action V G ⥤ Action W G := Functor.mapAction F.toFunctor G ⊢ ∀ (X : Action V G), (MonoidalCategory.rightUnitor ((Functor.mk src✝.toPrefunctor).obj X)).hom = MonoidalCategory.tensorHom (𝟙 ((Functor.mk src✝.toPrefunctor).obj X)) (Hom.mk F.ε) ≫ (fun X Y => Hom.mk (LaxMonoidalFunctor.μ F.toLaxMonoidalFunctor X.V Y.V)) X (MonoidalCategory.tensorUnit (Action V G)) ≫ (Functor.mk src✝.toPrefunctor).map (MonoidalCategory.rightUnitor X).hom [PROOFSTEP] intros [GOAL] V : Type (u + 1) inst✝³ : LargeCategory V W : Type (u + 1) inst✝² : LargeCategory W inst✝¹ : MonoidalCategory V inst✝ : MonoidalCategory W F : MonoidalFunctor V W G : MonCat src✝ : Action V G ⥤ Action W G := Functor.mapAction F.toFunctor G X✝ : Action V G ⊢ (MonoidalCategory.rightUnitor ((Functor.mk src✝.toPrefunctor).obj X✝)).hom = MonoidalCategory.tensorHom (𝟙 ((Functor.mk src✝.toPrefunctor).obj X✝)) (Hom.mk F.ε) ≫ (fun X Y => Hom.mk (LaxMonoidalFunctor.μ F.toLaxMonoidalFunctor X.V Y.V)) X✝ (MonoidalCategory.tensorUnit (Action V G)) ≫ (Functor.mk src✝.toPrefunctor).map (MonoidalCategory.rightUnitor X✝).hom [PROOFSTEP] ext [GOAL] case h V : Type (u + 1) inst✝³ : LargeCategory V W : Type (u + 1) inst✝² : LargeCategory W inst✝¹ : MonoidalCategory V inst✝ : MonoidalCategory W F : MonoidalFunctor V W G : MonCat src✝ : Action V G ⥤ Action W G := Functor.mapAction F.toFunctor G X✝ : Action V G ⊢ (MonoidalCategory.rightUnitor ((Functor.mk src✝.toPrefunctor).obj X✝)).hom.hom = (MonoidalCategory.tensorHom (𝟙 ((Functor.mk src✝.toPrefunctor).obj X✝)) (Hom.mk F.ε) ≫ (fun X Y => Hom.mk (LaxMonoidalFunctor.μ F.toLaxMonoidalFunctor X.V Y.V)) X✝ (MonoidalCategory.tensorUnit (Action V G)) ≫ (Functor.mk src✝.toPrefunctor).map (MonoidalCategory.rightUnitor X✝).hom).hom [PROOFSTEP] dsimp [GOAL] case h V : Type (u + 1) inst✝³ : LargeCategory V W : Type (u + 1) inst✝² : LargeCategory W inst✝¹ : MonoidalCategory V inst✝ : MonoidalCategory W F : MonoidalFunctor V W G : MonCat src✝ : Action V G ⥤ Action W G := Functor.mapAction F.toFunctor G X✝ : Action V G ⊢ (MonoidalCategory.tensorHom (𝟙 (F.obj X✝.V)) (𝟙 (MonoidalCategory.tensorUnit W)) ≫ (MonoidalCategory.rightUnitor (F.obj X✝.V)).hom) ≫ 𝟙 (F.obj X✝.V) = MonoidalCategory.tensorHom (𝟙 (F.obj X✝.V)) F.ε ≫ LaxMonoidalFunctor.μ F.toLaxMonoidalFunctor X✝.V (MonoidalCategory.tensorUnit V) ≫ F.map ((MonoidalCategory.tensorHom (𝟙 X✝.V) (𝟙 (MonoidalCategory.tensorUnit V)) ≫ (MonoidalCategory.rightUnitor X✝.V).hom) ≫ 𝟙 X✝.V) [PROOFSTEP] simp only [MonoidalCategory.rightUnitor_conjugation, LaxMonoidalFunctor.right_unitality, Category.id_comp, Category.assoc, LaxMonoidalFunctor.right_unitality_inv_assoc, Category.comp_id, Iso.hom_inv_id] [GOAL] case h V : Type (u + 1) inst✝³ : LargeCategory V W : Type (u + 1) inst✝² : LargeCategory W inst✝¹ : MonoidalCategory V inst✝ : MonoidalCategory W F : MonoidalFunctor V W G : MonCat src✝ : Action V G ⥤ Action W G := Functor.mapAction F.toFunctor G X✝ : Action V G ⊢ MonoidalCategory.tensorHom (𝟙 (F.obj X✝.V)) F.ε ≫ LaxMonoidalFunctor.μ F.toLaxMonoidalFunctor X✝.V (MonoidalCategory.tensorUnit V) ≫ F.map (MonoidalCategory.rightUnitor X✝.V).hom ≫ F.map (MonoidalCategory.rightUnitor X✝.V).inv ≫ F.map (MonoidalCategory.rightUnitor X✝.V).hom = MonoidalCategory.tensorHom (𝟙 (F.obj X✝.V)) F.ε ≫ LaxMonoidalFunctor.μ F.toLaxMonoidalFunctor X✝.V (MonoidalCategory.tensorUnit V) ≫ F.map (MonoidalCategory.rightUnitor X✝.V).hom [PROOFSTEP] rw [← F.map_comp, Iso.inv_hom_id, F.map_id, Category.comp_id] [GOAL] V : Type (u + 1) inst✝³ : LargeCategory V W : Type (u + 1) inst✝² : LargeCategory W inst✝¹ : MonoidalCategory V inst✝ : MonoidalCategory W F : MonoidalFunctor V W G : MonCat src✝ : Action V G ⥤ Action W G := Functor.mapAction F.toFunctor G ⊢ IsIso (LaxMonoidalFunctor.mk (Functor.mk src✝.toPrefunctor) (Hom.mk F.ε) fun X Y => Hom.mk (LaxMonoidalFunctor.μ F.toLaxMonoidalFunctor X.V Y.V)).ε [PROOFSTEP] infer_instance [GOAL] V : Type (u + 1) inst✝³ : LargeCategory V W : Type (u + 1) inst✝² : LargeCategory W inst✝¹ : MonoidalCategory V inst✝ : MonoidalCategory W F : MonoidalFunctor V W G : MonCat src✝ : Action V G ⥤ Action W G := Functor.mapAction F.toFunctor G ⊢ ∀ (X Y : Action V G), IsIso (LaxMonoidalFunctor.μ (LaxMonoidalFunctor.mk (Functor.mk src✝.toPrefunctor) (Hom.mk F.ε) fun X Y => Hom.mk (LaxMonoidalFunctor.μ F.toLaxMonoidalFunctor X.V Y.V)) X Y) [PROOFSTEP] infer_instance [GOAL] V : Type (u + 1) inst✝³ : LargeCategory V W : Type (u + 1) inst✝² : LargeCategory W inst✝¹ : MonoidalCategory V inst✝ : MonoidalCategory W F : MonoidalFunctor V W G : MonCat ⊢ (inv (mapAction F G).toLaxMonoidalFunctor.ε).hom = inv F.ε [PROOFSTEP] rw [← cancel_mono F.ε, IsIso.inv_hom_id, ← F.mapAction_toLaxMonoidalFunctor_ε_hom G, ← Action.comp_hom, IsIso.inv_hom_id, Action.id_hom] [GOAL] V : Type (u + 1) inst✝³ : LargeCategory V W : Type (u + 1) inst✝² : LargeCategory W inst✝¹ : MonoidalCategory V inst✝ : MonoidalCategory W F : MonoidalFunctor V W G : MonCat X Y : Action V G ⊢ (inv (LaxMonoidalFunctor.μ (mapAction F G).toLaxMonoidalFunctor X Y)).hom = inv (LaxMonoidalFunctor.μ F.toLaxMonoidalFunctor X.V Y.V) [PROOFSTEP] rw [← cancel_mono (F.μ X.V Y.V), IsIso.inv_hom_id, ← F.mapAction_toLaxMonoidalFunctor_μ_hom G, ← Action.comp_hom, IsIso.inv_hom_id, Action.id_hom]
{"mathlib_filename": "Mathlib.RepresentationTheory.Action", "llama_tokens": 35489}
[GOAL] X : LocallyRingedSpace r : ↑(Γ.obj (op X)) x : ↑(toTopCat X) ⊢ ¬r ∈ (toΓSpecFun X x).asIdeal ↔ IsUnit (↑(ΓToStalk X x) r) [PROOFSTEP] erw [LocalRing.mem_maximalIdeal, Classical.not_not] [GOAL] X : LocallyRingedSpace r : ↑(Γ.obj (op X)) ⊢ toΓSpecFun X ⁻¹' (basicOpen r).carrier = (RingedSpace.basicOpen (toRingedSpace X) r).carrier [PROOFSTEP] ext [GOAL] case h X : LocallyRingedSpace r : ↑(Γ.obj (op X)) x✝ : ↑(toTopCat X) ⊢ x✝ ∈ toΓSpecFun X ⁻¹' (basicOpen r).carrier ↔ x✝ ∈ (RingedSpace.basicOpen (toRingedSpace X) r).carrier [PROOFSTEP] erw [X.toRingedSpace.mem_top_basicOpen] [GOAL] case h X : LocallyRingedSpace r : ↑(Γ.obj (op X)) x✝ : ↑(toTopCat X) ⊢ x✝ ∈ toΓSpecFun X ⁻¹' (basicOpen r).carrier ↔ IsUnit (↑(germ (toRingedSpace X).toPresheafedSpace.presheaf { val := x✝, property := (_ : x✝ ∈ ⊤) }) r) [PROOFSTEP] apply not_mem_prime_iff_unit_in_stalk [GOAL] X : LocallyRingedSpace ⊢ Continuous (toΓSpecFun X) [PROOFSTEP] apply isTopologicalBasis_basic_opens.continuous [GOAL] case hf X : LocallyRingedSpace ⊢ ∀ (s : Set (PrimeSpectrum ↑(Γ.obj (op X)))), (s ∈ Set.range fun r => ↑(basicOpen r)) → IsOpen (toΓSpecFun X ⁻¹' s) [PROOFSTEP] rintro _ ⟨r, rfl⟩ [GOAL] case hf.intro X : LocallyRingedSpace r : ↑(Γ.obj (op X)) ⊢ IsOpen (toΓSpecFun X ⁻¹' (fun r => ↑(basicOpen r)) r) [PROOFSTEP] erw [X.toΓSpec_preim_basicOpen_eq r] [GOAL] case hf.intro X : LocallyRingedSpace r : ↑(Γ.obj (op X)) ⊢ IsOpen (RingedSpace.basicOpen (toRingedSpace X) r).carrier [PROOFSTEP] exact (X.toRingedSpace.basicOpen r).2 [GOAL] X : LocallyRingedSpace r : ↑(Γ.obj (op X)) ⊢ IsUnit (↑(toToΓSpecMapBasicOpen X r) r) [PROOFSTEP] convert (X.presheaf.map <| (eqToHom <| X.toΓSpecMapBasicOpen_eq r).op).isUnit_map (X.toRingedSpace.isUnit_res_basicOpen r) -- Porting note : `rw [comp_apply]` to `erw [comp_apply]` [GOAL] case h.e'_3 X : LocallyRingedSpace r : ↑(Γ.obj (op X)) ⊢ ↑(toToΓSpecMapBasicOpen X r) r = ↑(X.presheaf.map (eqToHom (_ : toΓSpecMapBasicOpen X r = RingedSpace.basicOpen (toRingedSpace X) r)).op) (↑((toRingedSpace X).toPresheafedSpace.presheaf.map (homOfLE (_ : RingedSpace.basicOpen (toRingedSpace X) r ≤ ⊤)).op) r) [PROOFSTEP] erw [← comp_apply, ← Functor.map_comp] [GOAL] case h.e'_3 X : LocallyRingedSpace r : ↑(Γ.obj (op X)) ⊢ ↑(toToΓSpecMapBasicOpen X r) r = ↑((toRingedSpace X).toPresheafedSpace.presheaf.map ((homOfLE (_ : RingedSpace.basicOpen (toRingedSpace X) r ≤ ⊤)).op ≫ (eqToHom (_ : toΓSpecMapBasicOpen X r = RingedSpace.basicOpen (toRingedSpace X) r)).op)) r [PROOFSTEP] congr [GOAL] X : LocallyRingedSpace r : ↑(Γ.obj (op X)) f : (structureSheaf ↑(Γ.obj (op X))).val.obj (op (basicOpen r)) ⟶ X.presheaf.obj (op (toΓSpecMapBasicOpen X r)) ⊢ toOpen (↑(Γ.obj (op X))) (basicOpen r) ≫ f = toToΓSpecMapBasicOpen X r ↔ f = toΓSpecCApp X r [PROOFSTEP] have loc_inst := IsLocalization.to_basicOpen (Γ.obj (op X)) r [GOAL] X : LocallyRingedSpace r : ↑(Γ.obj (op X)) f : (structureSheaf ↑(Γ.obj (op X))).val.obj (op (basicOpen r)) ⟶ X.presheaf.obj (op (toΓSpecMapBasicOpen X r)) loc_inst : IsLocalization.Away r ↑((structureSheaf ↑(Γ.obj (op X))).val.obj (op (basicOpen r))) ⊢ toOpen (↑(Γ.obj (op X))) (basicOpen r) ≫ f = toToΓSpecMapBasicOpen X r ↔ f = toΓSpecCApp X r [PROOFSTEP] rw [← @IsLocalization.Away.AwayMap.lift_comp _ _ _ _ _ _ _ r loc_inst _ (X.isUnit_res_toΓSpecMapBasicOpen r)] --pick_goal 5; exact is_localization.to_basic_open _ r [GOAL] X : LocallyRingedSpace r : ↑(Γ.obj (op X)) f : (structureSheaf ↑(Γ.obj (op X))).val.obj (op (basicOpen r)) ⟶ X.presheaf.obj (op (toΓSpecMapBasicOpen X r)) loc_inst : IsLocalization.Away r ↑((structureSheaf ↑(Γ.obj (op X))).val.obj (op (basicOpen r))) ⊢ toOpen (↑(Γ.obj (op X))) (basicOpen r) ≫ f = RingHom.comp (IsLocalization.Away.lift r (_ : IsUnit (↑(toToΓSpecMapBasicOpen X r) r))) (algebraMap ↑(Γ.obj (op X)) ↑((structureSheaf ↑(Γ.obj (op X))).val.obj (op (basicOpen r)))) ↔ f = toΓSpecCApp X r [PROOFSTEP] constructor [GOAL] case mp X : LocallyRingedSpace r : ↑(Γ.obj (op X)) f : (structureSheaf ↑(Γ.obj (op X))).val.obj (op (basicOpen r)) ⟶ X.presheaf.obj (op (toΓSpecMapBasicOpen X r)) loc_inst : IsLocalization.Away r ↑((structureSheaf ↑(Γ.obj (op X))).val.obj (op (basicOpen r))) ⊢ toOpen (↑(Γ.obj (op X))) (basicOpen r) ≫ f = RingHom.comp (IsLocalization.Away.lift r (_ : IsUnit (↑(toToΓSpecMapBasicOpen X r) r))) (algebraMap ↑(Γ.obj (op X)) ↑((structureSheaf ↑(Γ.obj (op X))).val.obj (op (basicOpen r)))) → f = toΓSpecCApp X r [PROOFSTEP] intro h [GOAL] case mp X : LocallyRingedSpace r : ↑(Γ.obj (op X)) f : (structureSheaf ↑(Γ.obj (op X))).val.obj (op (basicOpen r)) ⟶ X.presheaf.obj (op (toΓSpecMapBasicOpen X r)) loc_inst : IsLocalization.Away r ↑((structureSheaf ↑(Γ.obj (op X))).val.obj (op (basicOpen r))) h : toOpen (↑(Γ.obj (op X))) (basicOpen r) ≫ f = RingHom.comp (IsLocalization.Away.lift r (_ : IsUnit (↑(toToΓSpecMapBasicOpen X r) r))) (algebraMap ↑(Γ.obj (op X)) ↑((structureSheaf ↑(Γ.obj (op X))).val.obj (op (basicOpen r)))) ⊢ f = toΓSpecCApp X r [PROOFSTEP] refine' @IsLocalization.ringHom_ext _ _ _ _ _ _ _ _ loc_inst _ _ _ [GOAL] case mp X : LocallyRingedSpace r : ↑(Γ.obj (op X)) f : (structureSheaf ↑(Γ.obj (op X))).val.obj (op (basicOpen r)) ⟶ X.presheaf.obj (op (toΓSpecMapBasicOpen X r)) loc_inst : IsLocalization.Away r ↑((structureSheaf ↑(Γ.obj (op X))).val.obj (op (basicOpen r))) h : toOpen (↑(Γ.obj (op X))) (basicOpen r) ≫ f = RingHom.comp (IsLocalization.Away.lift r (_ : IsUnit (↑(toToΓSpecMapBasicOpen X r) r))) (algebraMap ↑(Γ.obj (op X)) ↑((structureSheaf ↑(Γ.obj (op X))).val.obj (op (basicOpen r)))) ⊢ RingHom.comp f (algebraMap ↑(Γ.obj (op X)) ↑((structureSheaf ↑(Γ.obj (op X))).val.obj (op (basicOpen r)))) = RingHom.comp (toΓSpecCApp X r) (algebraMap ↑(Γ.obj (op X)) ↑((structureSheaf ↑(Γ.obj (op X))).val.obj (op (basicOpen r)))) [PROOFSTEP] exact h [GOAL] case mpr X : LocallyRingedSpace r : ↑(Γ.obj (op X)) f : (structureSheaf ↑(Γ.obj (op X))).val.obj (op (basicOpen r)) ⟶ X.presheaf.obj (op (toΓSpecMapBasicOpen X r)) loc_inst : IsLocalization.Away r ↑((structureSheaf ↑(Γ.obj (op X))).val.obj (op (basicOpen r))) ⊢ f = toΓSpecCApp X r → toOpen (↑(Γ.obj (op X))) (basicOpen r) ≫ f = RingHom.comp (IsLocalization.Away.lift r (_ : IsUnit (↑(toToΓSpecMapBasicOpen X r) r))) (algebraMap ↑(Γ.obj (op X)) ↑((structureSheaf ↑(Γ.obj (op X))).val.obj (op (basicOpen r)))) [PROOFSTEP] apply congr_arg [GOAL] X : LocallyRingedSpace r✝ : ↑(Γ.obj (op X)) r s : (InducedCategory (Opens (PrimeSpectrum ↑(Γ.obj (op X)))) basicOpen)ᵒᵖ f : r ⟶ s ⊢ ((inducedFunctor basicOpen).op ⋙ (structureSheaf ↑(Γ.obj (op X))).val).map f ≫ (fun r => toΓSpecCApp X r.unop) s = (fun r => toΓSpecCApp X r.unop) r ≫ ((inducedFunctor basicOpen).op ⋙ ((TopCat.Sheaf.pushforward (toΓSpecBase X)).obj (𝒪 X)).val).map f [PROOFSTEP] apply (StructureSheaf.to_basicOpen_epi (Γ.obj (op X)) r.unop).1 [GOAL] case a X : LocallyRingedSpace r✝ : ↑(Γ.obj (op X)) r s : (InducedCategory (Opens (PrimeSpectrum ↑(Γ.obj (op X)))) basicOpen)ᵒᵖ f : r ⟶ s ⊢ toOpen (↑(Γ.obj (op X))) (basicOpen r.unop) ≫ ((inducedFunctor basicOpen).op ⋙ (structureSheaf ↑(Γ.obj (op X))).val).map f ≫ (fun r => toΓSpecCApp X r.unop) s = toOpen (↑(Γ.obj (op X))) (basicOpen r.unop) ≫ (fun r => toΓSpecCApp X r.unop) r ≫ ((inducedFunctor basicOpen).op ⋙ ((TopCat.Sheaf.pushforward (toΓSpecBase X)).obj (𝒪 X)).val).map f [PROOFSTEP] simp only [← Category.assoc] [GOAL] case a X : LocallyRingedSpace r✝ : ↑(Γ.obj (op X)) r s : (InducedCategory (Opens (PrimeSpectrum ↑(Γ.obj (op X)))) basicOpen)ᵒᵖ f : r ⟶ s ⊢ (toOpen (↑(Γ.obj (op X))) (basicOpen r.unop) ≫ ((inducedFunctor basicOpen).op ⋙ (structureSheaf ↑(Γ.obj (op X))).val).map f) ≫ toΓSpecCApp X s.unop = (toOpen (↑(Γ.obj (op X))) (basicOpen r.unop) ≫ toΓSpecCApp X r.unop) ≫ ((inducedFunctor basicOpen).op ⋙ ((TopCat.Sheaf.pushforward (toΓSpecBase X)).obj (𝒪 X)).val).map f [PROOFSTEP] erw [X.toΓSpecCApp_spec r.unop] [GOAL] case a X : LocallyRingedSpace r✝ : ↑(Γ.obj (op X)) r s : (InducedCategory (Opens (PrimeSpectrum ↑(Γ.obj (op X)))) basicOpen)ᵒᵖ f : r ⟶ s ⊢ (toOpen (↑(Γ.obj (op X))) (basicOpen r.unop) ≫ ((inducedFunctor basicOpen).op ⋙ (structureSheaf ↑(Γ.obj (op X))).val).map f) ≫ toΓSpecCApp X s.unop = toToΓSpecMapBasicOpen X r.unop ≫ ((inducedFunctor basicOpen).op ⋙ ((TopCat.Sheaf.pushforward (toΓSpecBase X)).obj (𝒪 X)).val).map f [PROOFSTEP] convert X.toΓSpecCApp_spec s.unop [GOAL] case h.e'_3.h X : LocallyRingedSpace r✝ : ↑(Γ.obj (op X)) r s : (InducedCategory (Opens (PrimeSpectrum ↑(Γ.obj (op X)))) basicOpen)ᵒᵖ f : r ⟶ s e_1✝ : (CommRingCat.of ↑(Γ.obj (op X)) ⟶ ((inducedFunctor basicOpen).op ⋙ ((TopCat.Sheaf.pushforward (toΓSpecBase X)).obj (𝒪 X)).val).obj s) = (CommRingCat.of ↑(Γ.obj (op X)) ⟶ X.presheaf.obj (op (toΓSpecMapBasicOpen X s.unop))) ⊢ toToΓSpecMapBasicOpen X r.unop ≫ ((inducedFunctor basicOpen).op ⋙ ((TopCat.Sheaf.pushforward (toΓSpecBase X)).obj (𝒪 X)).val).map f = toToΓSpecMapBasicOpen X s.unop [PROOFSTEP] symm [GOAL] case h.e'_3.h X : LocallyRingedSpace r✝ : ↑(Γ.obj (op X)) r s : (InducedCategory (Opens (PrimeSpectrum ↑(Γ.obj (op X)))) basicOpen)ᵒᵖ f : r ⟶ s e_1✝ : (CommRingCat.of ↑(Γ.obj (op X)) ⟶ ((inducedFunctor basicOpen).op ⋙ ((TopCat.Sheaf.pushforward (toΓSpecBase X)).obj (𝒪 X)).val).obj s) = (CommRingCat.of ↑(Γ.obj (op X)) ⟶ X.presheaf.obj (op (toΓSpecMapBasicOpen X s.unop))) ⊢ toToΓSpecMapBasicOpen X s.unop = toToΓSpecMapBasicOpen X r.unop ≫ ((inducedFunctor basicOpen).op ⋙ ((TopCat.Sheaf.pushforward (toΓSpecBase X)).obj (𝒪 X)).val).map f [PROOFSTEP] apply X.presheaf.map_comp [GOAL] X : LocallyRingedSpace r : ↑(Γ.obj (op X)) ⊢ NatTrans.app (toΓSpecSheafedSpace X).c (op (basicOpen r)) = toΓSpecCApp X r [PROOFSTEP] have := TopCat.Sheaf.extend_hom_app (Spec.toSheafedSpace.obj (op (Γ.obj (op X)))).presheaf ((TopCat.Sheaf.pushforward X.toΓSpecBase).obj X.𝒪) isBasis_basic_opens X.toΓSpecCBasicOpens r [GOAL] X : LocallyRingedSpace r : ↑(Γ.obj (op X)) this : NatTrans.app (↑(TopCat.Sheaf.restrictHomEquivHom (Spec.toSheafedSpace.obj (op (Γ.obj (op X)))).presheaf ((TopCat.Sheaf.pushforward (toΓSpecBase X)).obj (𝒪 X)) (_ : Opens.IsBasis (Set.range basicOpen))) (toΓSpecCBasicOpens X)) (op (basicOpen r)) = NatTrans.app (toΓSpecCBasicOpens X) (op r) ⊢ NatTrans.app (toΓSpecSheafedSpace X).c (op (basicOpen r)) = toΓSpecCApp X r [PROOFSTEP] dsimp at this [GOAL] X : LocallyRingedSpace r : ↑(Γ.obj (op X)) this : NatTrans.app (↑(TopCat.Sheaf.restrictHomEquivHom (structureSheaf ↑(X.presheaf.obj (op ⊤))).val ((TopCat.Sheaf.pushforward (toΓSpecBase X)).obj (𝒪 X)) (_ : Opens.IsBasis (Set.range basicOpen))) (toΓSpecCBasicOpens X)) (op (basicOpen r)) = toΓSpecCApp X r ⊢ NatTrans.app (toΓSpecSheafedSpace X).c (op (basicOpen r)) = toΓSpecCApp X r [PROOFSTEP] rw [← this] [GOAL] X : LocallyRingedSpace r : ↑(Γ.obj (op X)) this : NatTrans.app (↑(TopCat.Sheaf.restrictHomEquivHom (structureSheaf ↑(X.presheaf.obj (op ⊤))).val ((TopCat.Sheaf.pushforward (toΓSpecBase X)).obj (𝒪 X)) (_ : Opens.IsBasis (Set.range basicOpen))) (toΓSpecCBasicOpens X)) (op (basicOpen r)) = toΓSpecCApp X r ⊢ NatTrans.app (toΓSpecSheafedSpace X).c (op (basicOpen r)) = NatTrans.app (↑(TopCat.Sheaf.restrictHomEquivHom (structureSheaf ↑(X.presheaf.obj (op ⊤))).val ((TopCat.Sheaf.pushforward (toΓSpecBase X)).obj (𝒪 X)) (_ : Opens.IsBasis (Set.range basicOpen))) (toΓSpecCBasicOpens X)) (op (basicOpen r)) [PROOFSTEP] dsimp [GOAL] X : LocallyRingedSpace r : ↑(Γ.obj (op X)) this : NatTrans.app (↑(TopCat.Sheaf.restrictHomEquivHom (structureSheaf ↑(X.presheaf.obj (op ⊤))).val ((TopCat.Sheaf.pushforward (toΓSpecBase X)).obj (𝒪 X)) (_ : Opens.IsBasis (Set.range basicOpen))) (toΓSpecCBasicOpens X)) (op (basicOpen r)) = toΓSpecCApp X r ⊢ NatTrans.app (↑(TopCat.Sheaf.restrictHomEquivHom (structureSheaf ↑(X.presheaf.obj (op ⊤))).val ((TopCat.Sheaf.pushforward (toΓSpecBase X)).obj (𝒪 X)) (_ : Opens.IsBasis (Set.range basicOpen))) (toΓSpecCBasicOpens X)) (op (basicOpen r)) = NatTrans.app (↑(TopCat.Sheaf.restrictHomEquivHom (structureSheaf ↑(X.presheaf.obj (op ⊤))).val ((TopCat.Sheaf.pushforward (toΓSpecBase X)).obj (𝒪 X)) (_ : Opens.IsBasis (Set.range basicOpen))) (toΓSpecCBasicOpens X)) (op (basicOpen r)) [PROOFSTEP] congr [GOAL] X : LocallyRingedSpace r : ↑(Γ.obj (op X)) x : ↑(toTopCat X) ⊢ toStalk (↑(op (Γ.obj (op X))).unop) (↑(toΓSpecSheafedSpace X).base x) ≫ PresheafedSpace.stalkMap (toΓSpecSheafedSpace X) x = ΓToStalk X x [PROOFSTEP] rw [PresheafedSpace.stalkMap] [GOAL] X : LocallyRingedSpace r : ↑(Γ.obj (op X)) x : ↑(toTopCat X) ⊢ toStalk (↑(op (Γ.obj (op X))).unop) (↑(toΓSpecSheafedSpace X).base x) ≫ (stalkFunctor CommRingCat (↑(toΓSpecSheafedSpace X).base x)).map (toΓSpecSheafedSpace X).c ≫ stalkPushforward CommRingCat (toΓSpecSheafedSpace X).base X.presheaf x = ΓToStalk X x [PROOFSTEP] erw [← toOpen_germ _ (basicOpen (1 : Γ.obj (op X))) ⟨X.toΓSpecFun x, by rw [basicOpen_one]; trivial⟩] [GOAL] X : LocallyRingedSpace r : ↑(Γ.obj (op X)) x : ↑(toTopCat X) ⊢ toΓSpecFun X x ∈ basicOpen 1 [PROOFSTEP] rw [basicOpen_one] [GOAL] X : LocallyRingedSpace r : ↑(Γ.obj (op X)) x : ↑(toTopCat X) ⊢ toΓSpecFun X x ∈ ⊤ [PROOFSTEP] trivial [GOAL] X : LocallyRingedSpace r : ↑(Γ.obj (op X)) x : ↑(toTopCat X) ⊢ (toOpen (↑(Γ.obj (op X))) (basicOpen 1) ≫ germ (TopCat.Sheaf.presheaf (structureSheaf ↑(Γ.obj (op X)))) { val := toΓSpecFun X x, property := (_ : toΓSpecFun X x ∈ basicOpen 1) }) ≫ (stalkFunctor CommRingCat (↑(toΓSpecSheafedSpace X).base x)).map (toΓSpecSheafedSpace X).c ≫ stalkPushforward CommRingCat (toΓSpecSheafedSpace X).base X.presheaf x = ΓToStalk X x [PROOFSTEP] rw [← Category.assoc, Category.assoc (toOpen _ _)] [GOAL] X : LocallyRingedSpace r : ↑(Γ.obj (op X)) x : ↑(toTopCat X) ⊢ (toOpen (↑(Γ.obj (op X))) (basicOpen 1) ≫ germ (TopCat.Sheaf.presheaf (structureSheaf ↑(Γ.obj (op X)))) { val := toΓSpecFun X x, property := (_ : toΓSpecFun X x ∈ basicOpen 1) } ≫ (stalkFunctor CommRingCat (↑(toΓSpecSheafedSpace X).base x)).map (toΓSpecSheafedSpace X).c) ≫ stalkPushforward CommRingCat (toΓSpecSheafedSpace X).base X.presheaf x = ΓToStalk X x [PROOFSTEP] erw [stalkFunctor_map_germ] -- Porting note : was `rw [←assoc, toΓSpecSheafedSpace_app_spec]`, but Lean did not like it. [GOAL] X : LocallyRingedSpace r : ↑(Γ.obj (op X)) x : ↑(toTopCat X) ⊢ (toOpen (↑(Γ.obj (op X))) (basicOpen 1) ≫ NatTrans.app (toΓSpecSheafedSpace X).c (op (basicOpen 1)) ≫ germ ((toΓSpecSheafedSpace X).base _* X.presheaf) { val := toΓSpecFun X x, property := (_ : toΓSpecFun X x ∈ basicOpen 1) }) ≫ stalkPushforward CommRingCat (toΓSpecSheafedSpace X).base X.presheaf x = ΓToStalk X x [PROOFSTEP] rw [toΓSpecSheafedSpace_app_spec_assoc] [GOAL] X : LocallyRingedSpace r : ↑(Γ.obj (op X)) x : ↑(toTopCat X) ⊢ (toToΓSpecMapBasicOpen X 1 ≫ germ ((toΓSpecSheafedSpace X).base _* X.presheaf) { val := toΓSpecFun X x, property := (_ : toΓSpecFun X x ∈ basicOpen 1) }) ≫ stalkPushforward CommRingCat (toΓSpecSheafedSpace X).base X.presheaf x = ΓToStalk X x [PROOFSTEP] unfold ΓToStalk [GOAL] X : LocallyRingedSpace r : ↑(Γ.obj (op X)) x : ↑(toTopCat X) ⊢ (toToΓSpecMapBasicOpen X 1 ≫ germ ((toΓSpecSheafedSpace X).base _* X.presheaf) { val := toΓSpecFun X x, property := (_ : toΓSpecFun X x ∈ basicOpen 1) }) ≫ stalkPushforward CommRingCat (toΓSpecSheafedSpace X).base X.presheaf x = germ X.presheaf { val := x, property := trivial } [PROOFSTEP] rw [← stalkPushforward_germ _ X.toΓSpecBase X.presheaf ⊤] [GOAL] X : LocallyRingedSpace r : ↑(Γ.obj (op X)) x : ↑(toTopCat X) ⊢ (toToΓSpecMapBasicOpen X 1 ≫ germ ((toΓSpecSheafedSpace X).base _* X.presheaf) { val := toΓSpecFun X x, property := (_ : toΓSpecFun X x ∈ basicOpen 1) }) ≫ stalkPushforward CommRingCat (toΓSpecSheafedSpace X).base X.presheaf x = germ (toΓSpecBase X _* X.presheaf) { val := ↑(toΓSpecBase X) ↑{ val := x, property := trivial }, property := (_ : ↑{ val := x, property := trivial } ∈ (Opens.map (toΓSpecBase X)).obj ⊤) } ≫ stalkPushforward CommRingCat (toΓSpecBase X) X.presheaf ↑{ val := x, property := trivial } [PROOFSTEP] congr 1 [GOAL] case e_a X : LocallyRingedSpace r : ↑(Γ.obj (op X)) x : ↑(toTopCat X) ⊢ toToΓSpecMapBasicOpen X 1 ≫ germ ((toΓSpecSheafedSpace X).base _* X.presheaf) { val := toΓSpecFun X x, property := (_ : toΓSpecFun X x ∈ basicOpen 1) } = germ (toΓSpecBase X _* X.presheaf) { val := ↑(toΓSpecBase X) ↑{ val := x, property := trivial }, property := (_ : ↑{ val := x, property := trivial } ∈ (Opens.map (toΓSpecBase X)).obj ⊤) } [PROOFSTEP] change (X.toΓSpecBase _* X.presheaf).map le_top.hom.op ≫ _ = _ [GOAL] case e_a X : LocallyRingedSpace r : ↑(Γ.obj (op X)) x : ↑(toTopCat X) ⊢ (toΓSpecBase X _* X.presheaf).map (LE.le.hom (_ : { carrier := {x | ¬1 ∈ x.asIdeal}, is_open' := (_ : ∃ y, zeroLocus y = {x | ¬1 ∈ x.asIdeal}ᶜ) } ≤ ⊤)).op ≫ germ ((toΓSpecSheafedSpace X).base _* X.presheaf) { val := toΓSpecFun X x, property := (_ : toΓSpecFun X x ∈ basicOpen 1) } = germ (toΓSpecBase X _* X.presheaf) { val := ↑(toΓSpecBase X) ↑{ val := x, property := trivial }, property := (_ : ↑{ val := x, property := trivial } ∈ (Opens.map (toΓSpecBase X)).obj ⊤) } [PROOFSTEP] apply germ_res [GOAL] X : LocallyRingedSpace r : ↑(Γ.obj (op X)) ⊢ ∀ (x : ↑↑X.toPresheafedSpace), IsLocalRingHom (PresheafedSpace.stalkMap (toΓSpecSheafedSpace X) x) [PROOFSTEP] intro x [GOAL] X : LocallyRingedSpace r : ↑(Γ.obj (op X)) x : ↑↑X.toPresheafedSpace ⊢ IsLocalRingHom (PresheafedSpace.stalkMap (toΓSpecSheafedSpace X) x) [PROOFSTEP] let p : PrimeSpectrum (Γ.obj (op X)) := X.toΓSpecFun x [GOAL] X : LocallyRingedSpace r : ↑(Γ.obj (op X)) x : ↑↑X.toPresheafedSpace p : PrimeSpectrum ↑(Γ.obj (op X)) := toΓSpecFun X x ⊢ IsLocalRingHom (PresheafedSpace.stalkMap (toΓSpecSheafedSpace X) x) [PROOFSTEP] constructor -- show stalk map is local hom ↓ [GOAL] case map_nonunit X : LocallyRingedSpace r : ↑(Γ.obj (op X)) x : ↑↑X.toPresheafedSpace p : PrimeSpectrum ↑(Γ.obj (op X)) := toΓSpecFun X x ⊢ ∀ (a : ↑(PresheafedSpace.stalk (Spec.locallyRingedSpaceObj (Γ.obj (op X))).toSheafedSpace.toPresheafedSpace (↑(toΓSpecSheafedSpace X).base x))), IsUnit (↑(PresheafedSpace.stalkMap (toΓSpecSheafedSpace X) x) a) → IsUnit a [PROOFSTEP] let S := (structureSheaf _).presheaf.stalk p [GOAL] case map_nonunit X : LocallyRingedSpace r : ↑(Γ.obj (op X)) x : ↑↑X.toPresheafedSpace p : PrimeSpectrum ↑(Γ.obj (op X)) := toΓSpecFun X x S : CommRingCat := TopCat.Presheaf.stalk (TopCat.Sheaf.presheaf (structureSheaf ↑(Γ.obj (op X)))) p ⊢ ∀ (a : ↑(PresheafedSpace.stalk (Spec.locallyRingedSpaceObj (Γ.obj (op X))).toSheafedSpace.toPresheafedSpace (↑(toΓSpecSheafedSpace X).base x))), IsUnit (↑(PresheafedSpace.stalkMap (toΓSpecSheafedSpace X) x) a) → IsUnit a [PROOFSTEP] rintro (t : S) ht [GOAL] case map_nonunit X : LocallyRingedSpace r : ↑(Γ.obj (op X)) x : ↑↑X.toPresheafedSpace p : PrimeSpectrum ↑(Γ.obj (op X)) := toΓSpecFun X x S : CommRingCat := TopCat.Presheaf.stalk (TopCat.Sheaf.presheaf (structureSheaf ↑(Γ.obj (op X)))) p t : ↑S ht : IsUnit (↑(PresheafedSpace.stalkMap (toΓSpecSheafedSpace X) x) t) ⊢ IsUnit t [PROOFSTEP] obtain ⟨⟨r, s⟩, he⟩ := IsLocalization.surj p.asIdeal.primeCompl t [GOAL] case map_nonunit.intro.mk X : LocallyRingedSpace r✝ : ↑(Γ.obj (op X)) x : ↑↑X.toPresheafedSpace p : PrimeSpectrum ↑(Γ.obj (op X)) := toΓSpecFun X x S : CommRingCat := TopCat.Presheaf.stalk (TopCat.Sheaf.presheaf (structureSheaf ↑(Γ.obj (op X)))) p t : ↑S ht : IsUnit (↑(PresheafedSpace.stalkMap (toΓSpecSheafedSpace X) x) t) r : ↑(Γ.obj (op X)) s : { x // x ∈ Ideal.primeCompl p.asIdeal } he : t * ↑(algebraMap ↑(Γ.obj (op X)) ↑S) ↑(r, s).snd = ↑(algebraMap ↑(Γ.obj (op X)) ↑S) (r, s).fst ⊢ IsUnit t [PROOFSTEP] dsimp at he [GOAL] case map_nonunit.intro.mk X : LocallyRingedSpace r✝ : ↑(Γ.obj (op X)) x : ↑↑X.toPresheafedSpace p : PrimeSpectrum ↑(Γ.obj (op X)) := toΓSpecFun X x S : CommRingCat := TopCat.Presheaf.stalk (TopCat.Sheaf.presheaf (structureSheaf ↑(Γ.obj (op X)))) p t : ↑S ht : IsUnit (↑(PresheafedSpace.stalkMap (toΓSpecSheafedSpace X) x) t) r : ↑(Γ.obj (op X)) s : { x // x ∈ Ideal.primeCompl p.asIdeal } he : t * ↑(toStalk (↑(X.presheaf.obj (op ⊤))) (toΓSpecFun X x)) ↑s = ↑(toStalk (↑(X.presheaf.obj (op ⊤))) (toΓSpecFun X x)) r ⊢ IsUnit t [PROOFSTEP] set t' := _ [GOAL] case map_nonunit.intro.mk X : LocallyRingedSpace r✝ : ↑(Γ.obj (op X)) x : ↑↑X.toPresheafedSpace p : PrimeSpectrum ↑(Γ.obj (op X)) := toΓSpecFun X x S : CommRingCat := TopCat.Presheaf.stalk (TopCat.Sheaf.presheaf (structureSheaf ↑(Γ.obj (op X)))) p t : ↑S ht : IsUnit (↑(PresheafedSpace.stalkMap (toΓSpecSheafedSpace X) x) t) r : ↑(Γ.obj (op X)) s : { x // x ∈ Ideal.primeCompl p.asIdeal } he : t * ↑(toStalk (↑(X.presheaf.obj (op ⊤))) (toΓSpecFun X x)) ↑s = ↑(toStalk (↑(X.presheaf.obj (op ⊤))) (toΓSpecFun X x)) r t' : ?m.142259 := ?m.142260 ⊢ IsUnit t [PROOFSTEP] change t * t' = _ at he [GOAL] case map_nonunit.intro.mk X : LocallyRingedSpace r✝ : ↑(Γ.obj (op X)) x : ↑↑X.toPresheafedSpace p : PrimeSpectrum ↑(Γ.obj (op X)) := toΓSpecFun X x S : CommRingCat := TopCat.Presheaf.stalk (TopCat.Sheaf.presheaf (structureSheaf ↑(Γ.obj (op X)))) p t : ↑S ht : IsUnit (↑(PresheafedSpace.stalkMap (toΓSpecSheafedSpace X) x) t) r : ↑(Γ.obj (op X)) s : { x // x ∈ Ideal.primeCompl p.asIdeal } t' : ↑S := ↑(toStalk (↑(X.presheaf.obj (op ⊤))) (toΓSpecFun X x)) ↑s he : t * t' = ↑(toStalk (↑(X.presheaf.obj (op ⊤))) (toΓSpecFun X x)) r ⊢ IsUnit t [PROOFSTEP] apply isUnit_of_mul_isUnit_left (y := t') [GOAL] case map_nonunit.intro.mk X : LocallyRingedSpace r✝ : ↑(Γ.obj (op X)) x : ↑↑X.toPresheafedSpace p : PrimeSpectrum ↑(Γ.obj (op X)) := toΓSpecFun X x S : CommRingCat := TopCat.Presheaf.stalk (TopCat.Sheaf.presheaf (structureSheaf ↑(Γ.obj (op X)))) p t : ↑S ht : IsUnit (↑(PresheafedSpace.stalkMap (toΓSpecSheafedSpace X) x) t) r : ↑(Γ.obj (op X)) s : { x // x ∈ Ideal.primeCompl p.asIdeal } t' : ↑S := ↑(toStalk (↑(X.presheaf.obj (op ⊤))) (toΓSpecFun X x)) ↑s he : t * t' = ↑(toStalk (↑(X.presheaf.obj (op ⊤))) (toΓSpecFun X x)) r ⊢ IsUnit (t * t') [PROOFSTEP] rw [he] [GOAL] case map_nonunit.intro.mk X : LocallyRingedSpace r✝ : ↑(Γ.obj (op X)) x : ↑↑X.toPresheafedSpace p : PrimeSpectrum ↑(Γ.obj (op X)) := toΓSpecFun X x S : CommRingCat := TopCat.Presheaf.stalk (TopCat.Sheaf.presheaf (structureSheaf ↑(Γ.obj (op X)))) p t : ↑S ht : IsUnit (↑(PresheafedSpace.stalkMap (toΓSpecSheafedSpace X) x) t) r : ↑(Γ.obj (op X)) s : { x // x ∈ Ideal.primeCompl p.asIdeal } t' : ↑S := ↑(toStalk (↑(X.presheaf.obj (op ⊤))) (toΓSpecFun X x)) ↑s he : t * t' = ↑(toStalk (↑(X.presheaf.obj (op ⊤))) (toΓSpecFun X x)) r ⊢ IsUnit (↑(toStalk (↑(X.presheaf.obj (op ⊤))) (toΓSpecFun X x)) r) [PROOFSTEP] refine' IsLocalization.map_units S (⟨r, _⟩ : p.asIdeal.primeCompl) [GOAL] case map_nonunit.intro.mk X : LocallyRingedSpace r✝ : ↑(Γ.obj (op X)) x : ↑↑X.toPresheafedSpace p : PrimeSpectrum ↑(Γ.obj (op X)) := toΓSpecFun X x S : CommRingCat := TopCat.Presheaf.stalk (TopCat.Sheaf.presheaf (structureSheaf ↑(Γ.obj (op X)))) p t : ↑S ht : IsUnit (↑(PresheafedSpace.stalkMap (toΓSpecSheafedSpace X) x) t) r : ↑(Γ.obj (op X)) s : { x // x ∈ Ideal.primeCompl p.asIdeal } t' : ↑S := ↑(toStalk (↑(X.presheaf.obj (op ⊤))) (toΓSpecFun X x)) ↑s he : t * t' = ↑(toStalk (↑(X.presheaf.obj (op ⊤))) (toΓSpecFun X x)) r ⊢ r ∈ Ideal.primeCompl p.asIdeal [PROOFSTEP] apply (not_mem_prime_iff_unit_in_stalk _ _ _).mpr [GOAL] case map_nonunit.intro.mk X : LocallyRingedSpace r✝ : ↑(Γ.obj (op X)) x : ↑↑X.toPresheafedSpace p : PrimeSpectrum ↑(Γ.obj (op X)) := toΓSpecFun X x S : CommRingCat := TopCat.Presheaf.stalk (TopCat.Sheaf.presheaf (structureSheaf ↑(Γ.obj (op X)))) p t : ↑S ht : IsUnit (↑(PresheafedSpace.stalkMap (toΓSpecSheafedSpace X) x) t) r : ↑(Γ.obj (op X)) s : { x // x ∈ Ideal.primeCompl p.asIdeal } t' : ↑S := ↑(toStalk (↑(X.presheaf.obj (op ⊤))) (toΓSpecFun X x)) ↑s he : t * t' = ↑(toStalk (↑(X.presheaf.obj (op ⊤))) (toΓSpecFun X x)) r ⊢ IsUnit (↑(ΓToStalk X x) r) [PROOFSTEP] rw [← toStalk_stalkMap_toΓSpec] [GOAL] case map_nonunit.intro.mk X : LocallyRingedSpace r✝ : ↑(Γ.obj (op X)) x : ↑↑X.toPresheafedSpace p : PrimeSpectrum ↑(Γ.obj (op X)) := toΓSpecFun X x S : CommRingCat := TopCat.Presheaf.stalk (TopCat.Sheaf.presheaf (structureSheaf ↑(Γ.obj (op X)))) p t : ↑S ht : IsUnit (↑(PresheafedSpace.stalkMap (toΓSpecSheafedSpace X) x) t) r : ↑(Γ.obj (op X)) s : { x // x ∈ Ideal.primeCompl p.asIdeal } t' : ↑S := ↑(toStalk (↑(X.presheaf.obj (op ⊤))) (toΓSpecFun X x)) ↑s he : t * t' = ↑(toStalk (↑(X.presheaf.obj (op ⊤))) (toΓSpecFun X x)) r ⊢ IsUnit (↑(toStalk (↑(op (Γ.obj (op X))).unop) (↑(toΓSpecSheafedSpace X).base x) ≫ PresheafedSpace.stalkMap (toΓSpecSheafedSpace X) x) r) [PROOFSTEP] erw [comp_apply, ← he] [GOAL] case map_nonunit.intro.mk X : LocallyRingedSpace r✝ : ↑(Γ.obj (op X)) x : ↑↑X.toPresheafedSpace p : PrimeSpectrum ↑(Γ.obj (op X)) := toΓSpecFun X x S : CommRingCat := TopCat.Presheaf.stalk (TopCat.Sheaf.presheaf (structureSheaf ↑(Γ.obj (op X)))) p t : ↑S ht : IsUnit (↑(PresheafedSpace.stalkMap (toΓSpecSheafedSpace X) x) t) r : ↑(Γ.obj (op X)) s : { x // x ∈ Ideal.primeCompl p.asIdeal } t' : ↑S := ↑(toStalk (↑(X.presheaf.obj (op ⊤))) (toΓSpecFun X x)) ↑s he : t * t' = ↑(toStalk (↑(X.presheaf.obj (op ⊤))) (toΓSpecFun X x)) r ⊢ IsUnit (↑(PresheafedSpace.stalkMap (toΓSpecSheafedSpace X) x) (t * t')) [PROOFSTEP] rw [RingHom.map_mul] -- Porting note : `IsLocalization.map_units` and the goal needs to be simplified before Lean -- realize it is useful [GOAL] case map_nonunit.intro.mk X : LocallyRingedSpace r✝ : ↑(Γ.obj (op X)) x : ↑↑X.toPresheafedSpace p : PrimeSpectrum ↑(Γ.obj (op X)) := toΓSpecFun X x S : CommRingCat := TopCat.Presheaf.stalk (TopCat.Sheaf.presheaf (structureSheaf ↑(Γ.obj (op X)))) p t : ↑S ht : IsUnit (↑(PresheafedSpace.stalkMap (toΓSpecSheafedSpace X) x) t) r : ↑(Γ.obj (op X)) s : { x // x ∈ Ideal.primeCompl p.asIdeal } t' : ↑S := ↑(toStalk (↑(X.presheaf.obj (op ⊤))) (toΓSpecFun X x)) ↑s he : t * t' = ↑(toStalk (↑(X.presheaf.obj (op ⊤))) (toΓSpecFun X x)) r ⊢ IsUnit (↑(PresheafedSpace.stalkMap (toΓSpecSheafedSpace X) x) t * ↑(PresheafedSpace.stalkMap (toΓSpecSheafedSpace X) x) t') [PROOFSTEP] have := IsLocalization.map_units (R := Γ.obj (op X)) S s [GOAL] case map_nonunit.intro.mk X : LocallyRingedSpace r✝ : ↑(Γ.obj (op X)) x : ↑↑X.toPresheafedSpace p : PrimeSpectrum ↑(Γ.obj (op X)) := toΓSpecFun X x S : CommRingCat := TopCat.Presheaf.stalk (TopCat.Sheaf.presheaf (structureSheaf ↑(Γ.obj (op X)))) p t : ↑S ht : IsUnit (↑(PresheafedSpace.stalkMap (toΓSpecSheafedSpace X) x) t) r : ↑(Γ.obj (op X)) s : { x // x ∈ Ideal.primeCompl p.asIdeal } t' : ↑S := ↑(toStalk (↑(X.presheaf.obj (op ⊤))) (toΓSpecFun X x)) ↑s he : t * t' = ↑(toStalk (↑(X.presheaf.obj (op ⊤))) (toΓSpecFun X x)) r this : IsUnit (↑(algebraMap ↑(Γ.obj (op X)) ↑S) ↑s) ⊢ IsUnit (↑(PresheafedSpace.stalkMap (toΓSpecSheafedSpace X) x) t * ↑(PresheafedSpace.stalkMap (toΓSpecSheafedSpace X) x) t') [PROOFSTEP] dsimp at this ⊢ [GOAL] case map_nonunit.intro.mk X : LocallyRingedSpace r✝ : ↑(Γ.obj (op X)) x : ↑↑X.toPresheafedSpace p : PrimeSpectrum ↑(Γ.obj (op X)) := toΓSpecFun X x S : CommRingCat := TopCat.Presheaf.stalk (TopCat.Sheaf.presheaf (structureSheaf ↑(Γ.obj (op X)))) p t : ↑S ht : IsUnit (↑(PresheafedSpace.stalkMap (toΓSpecSheafedSpace X) x) t) r : ↑(Γ.obj (op X)) s : { x // x ∈ Ideal.primeCompl p.asIdeal } t' : ↑S := ↑(toStalk (↑(X.presheaf.obj (op ⊤))) (toΓSpecFun X x)) ↑s he : t * t' = ↑(toStalk (↑(X.presheaf.obj (op ⊤))) (toΓSpecFun X x)) r this : IsUnit (↑(toStalk (↑(X.presheaf.obj (op ⊤))) (toΓSpecFun X x)) ↑s) ⊢ IsUnit (↑(PresheafedSpace.stalkMap (toΓSpecSheafedSpace X) x) t * ↑(PresheafedSpace.stalkMap (toΓSpecSheafedSpace X) x) (↑(toStalk (↑(X.presheaf.obj (op ⊤))) (toΓSpecFun X x)) ↑s)) [PROOFSTEP] refine ht.mul <| this.map _ [GOAL] X✝ : LocallyRingedSpace r : ↑(Γ.obj (op X✝)) X : LocallyRingedSpace R : CommRingCat f : R ⟶ Γ.obj (op X) β : X ⟶ Spec.locallyRingedSpaceObj R w : (toΓSpec X).val.base ≫ (Spec.locallyRingedSpaceMap f).val.base = β.val.base h : ∀ (r : ↑R), f ≫ X.presheaf.map (homOfLE (_ : (Opens.map β.val.base).obj (basicOpen r) ≤ ⊤)).op = toOpen (↑R) (basicOpen r) ≫ NatTrans.app β.val.c (op (basicOpen r)) ⊢ toΓSpec X ≫ Spec.locallyRingedSpaceMap f = β [PROOFSTEP] ext1 -- Porting note : need more hand holding here [GOAL] case h X✝ : LocallyRingedSpace r : ↑(Γ.obj (op X✝)) X : LocallyRingedSpace R : CommRingCat f : R ⟶ Γ.obj (op X) β : X ⟶ Spec.locallyRingedSpaceObj R w : (toΓSpec X).val.base ≫ (Spec.locallyRingedSpaceMap f).val.base = β.val.base h : ∀ (r : ↑R), f ≫ X.presheaf.map (homOfLE (_ : (Opens.map β.val.base).obj (basicOpen r) ≤ ⊤)).op = toOpen (↑R) (basicOpen r) ≫ NatTrans.app β.val.c (op (basicOpen r)) ⊢ (toΓSpec X ≫ Spec.locallyRingedSpaceMap f).val = β.val [PROOFSTEP] change (X.toΓSpec.1 ≫ _).base = _ at w [GOAL] case h X✝ : LocallyRingedSpace r : ↑(Γ.obj (op X✝)) X : LocallyRingedSpace R : CommRingCat f : R ⟶ Γ.obj (op X) β : X ⟶ Spec.locallyRingedSpaceObj R h : ∀ (r : ↑R), f ≫ X.presheaf.map (homOfLE (_ : (Opens.map β.val.base).obj (basicOpen r) ≤ ⊤)).op = toOpen (↑R) (basicOpen r) ≫ NatTrans.app β.val.c (op (basicOpen r)) w : ((toΓSpec X).val ≫ (Spec.locallyRingedSpaceMap f).val).base = β.val.base ⊢ (toΓSpec X ≫ Spec.locallyRingedSpaceMap f).val = β.val [PROOFSTEP] apply Spec.basicOpen_hom_ext w [GOAL] case h X✝ : LocallyRingedSpace r : ↑(Γ.obj (op X✝)) X : LocallyRingedSpace R : CommRingCat f : R ⟶ Γ.obj (op X) β : X ⟶ Spec.locallyRingedSpaceObj R h : ∀ (r : ↑R), f ≫ X.presheaf.map (homOfLE (_ : (Opens.map β.val.base).obj (basicOpen r) ≤ ⊤)).op = toOpen (↑R) (basicOpen r) ≫ NatTrans.app β.val.c (op (basicOpen r)) w : ((toΓSpec X).val ≫ (Spec.locallyRingedSpaceMap f).val).base = β.val.base ⊢ ∀ (r : ↑R), let U := basicOpen r; (toOpen (↑R) U ≫ NatTrans.app ((toΓSpec X).val ≫ (Spec.locallyRingedSpaceMap f).val).c (op U)) ≫ X.presheaf.map (eqToHom (_ : (Opens.map ((toΓSpec X).val ≫ (Spec.locallyRingedSpaceMap f).val).base).op.obj (op U) = (Opens.map β.val.base).op.obj (op U))) = toOpen (↑R) U ≫ NatTrans.app β.val.c (op U) [PROOFSTEP] intro r U [GOAL] case h X✝ : LocallyRingedSpace r✝ : ↑(Γ.obj (op X✝)) X : LocallyRingedSpace R : CommRingCat f : R ⟶ Γ.obj (op X) β : X ⟶ Spec.locallyRingedSpaceObj R h : ∀ (r : ↑R), f ≫ X.presheaf.map (homOfLE (_ : (Opens.map β.val.base).obj (basicOpen r) ≤ ⊤)).op = toOpen (↑R) (basicOpen r) ≫ NatTrans.app β.val.c (op (basicOpen r)) w : ((toΓSpec X).val ≫ (Spec.locallyRingedSpaceMap f).val).base = β.val.base r : ↑R U : Opens (PrimeSpectrum ↑R) := basicOpen r ⊢ (toOpen (↑R) U ≫ NatTrans.app ((toΓSpec X).val ≫ (Spec.locallyRingedSpaceMap f).val).c (op U)) ≫ X.presheaf.map (eqToHom (_ : (Opens.map ((toΓSpec X).val ≫ (Spec.locallyRingedSpaceMap f).val).base).op.obj (op U) = (Opens.map β.val.base).op.obj (op U))) = toOpen (↑R) U ≫ NatTrans.app β.val.c (op U) [PROOFSTEP] erw [LocallyRingedSpace.comp_val_c_app] [GOAL] case h X✝ : LocallyRingedSpace r✝ : ↑(Γ.obj (op X✝)) X : LocallyRingedSpace R : CommRingCat f : R ⟶ Γ.obj (op X) β : X ⟶ Spec.locallyRingedSpaceObj R h : ∀ (r : ↑R), f ≫ X.presheaf.map (homOfLE (_ : (Opens.map β.val.base).obj (basicOpen r) ≤ ⊤)).op = toOpen (↑R) (basicOpen r) ≫ NatTrans.app β.val.c (op (basicOpen r)) w : ((toΓSpec X).val ≫ (Spec.locallyRingedSpaceMap f).val).base = β.val.base r : ↑R U : Opens (PrimeSpectrum ↑R) := basicOpen r ⊢ (toOpen (↑R) U ≫ NatTrans.app (Spec.locallyRingedSpaceMap f).val.c (op U) ≫ NatTrans.app (toΓSpec X).val.c (op ((Opens.map (Spec.locallyRingedSpaceMap f).val.base).obj (op U).unop))) ≫ X.presheaf.map (eqToHom (_ : (Opens.map ((toΓSpec X).val ≫ (Spec.locallyRingedSpaceMap f).val).base).op.obj (op U) = (Opens.map β.val.base).op.obj (op U))) = toOpen (↑R) U ≫ NatTrans.app β.val.c (op U) [PROOFSTEP] erw [toOpen_comp_comap_assoc] [GOAL] case h X✝ : LocallyRingedSpace r✝ : ↑(Γ.obj (op X✝)) X : LocallyRingedSpace R : CommRingCat f : R ⟶ Γ.obj (op X) β : X ⟶ Spec.locallyRingedSpaceObj R h : ∀ (r : ↑R), f ≫ X.presheaf.map (homOfLE (_ : (Opens.map β.val.base).obj (basicOpen r) ≤ ⊤)).op = toOpen (↑R) (basicOpen r) ≫ NatTrans.app β.val.c (op (basicOpen r)) w : ((toΓSpec X).val ≫ (Spec.locallyRingedSpaceMap f).val).base = β.val.base r : ↑R U : Opens (PrimeSpectrum ↑R) := basicOpen r ⊢ (CommRingCat.ofHom f ≫ toOpen (↑(Γ.obj (op X))) (↑(Opens.comap (PrimeSpectrum.comap f)) U) ≫ NatTrans.app (toΓSpec X).val.c (op ((Opens.map (Spec.locallyRingedSpaceMap f).val.base).obj (op U).unop))) ≫ X.presheaf.map (eqToHom (_ : (Opens.map ((toΓSpec X).val ≫ (Spec.locallyRingedSpaceMap f).val).base).op.obj (op U) = (Opens.map β.val.base).op.obj (op U))) = toOpen (↑R) U ≫ NatTrans.app β.val.c (op U) [PROOFSTEP] rw [Category.assoc] [GOAL] case h X✝ : LocallyRingedSpace r✝ : ↑(Γ.obj (op X✝)) X : LocallyRingedSpace R : CommRingCat f : R ⟶ Γ.obj (op X) β : X ⟶ Spec.locallyRingedSpaceObj R h : ∀ (r : ↑R), f ≫ X.presheaf.map (homOfLE (_ : (Opens.map β.val.base).obj (basicOpen r) ≤ ⊤)).op = toOpen (↑R) (basicOpen r) ≫ NatTrans.app β.val.c (op (basicOpen r)) w : ((toΓSpec X).val ≫ (Spec.locallyRingedSpaceMap f).val).base = β.val.base r : ↑R U : Opens (PrimeSpectrum ↑R) := basicOpen r ⊢ CommRingCat.ofHom f ≫ (toOpen (↑(Γ.obj (op X))) (↑(Opens.comap (PrimeSpectrum.comap f)) U) ≫ NatTrans.app (toΓSpec X).val.c (op ((Opens.map (Spec.locallyRingedSpaceMap f).val.base).obj (op U).unop))) ≫ X.presheaf.map (eqToHom (_ : (Opens.map ((toΓSpec X).val ≫ (Spec.locallyRingedSpaceMap f).val).base).op.obj (op U) = (Opens.map β.val.base).op.obj (op U))) = toOpen (↑R) U ≫ NatTrans.app β.val.c (op U) [PROOFSTEP] erw [toΓSpecSheafedSpace_app_spec, ← X.presheaf.map_comp] [GOAL] case h X✝ : LocallyRingedSpace r✝ : ↑(Γ.obj (op X✝)) X : LocallyRingedSpace R : CommRingCat f : R ⟶ Γ.obj (op X) β : X ⟶ Spec.locallyRingedSpaceObj R h : ∀ (r : ↑R), f ≫ X.presheaf.map (homOfLE (_ : (Opens.map β.val.base).obj (basicOpen r) ≤ ⊤)).op = toOpen (↑R) (basicOpen r) ≫ NatTrans.app β.val.c (op (basicOpen r)) w : ((toΓSpec X).val ≫ (Spec.locallyRingedSpaceMap f).val).base = β.val.base r : ↑R U : Opens (PrimeSpectrum ↑R) := basicOpen r ⊢ CommRingCat.ofHom f ≫ X.presheaf.map ((Opens.leTop (toΓSpecMapBasicOpen X (↑f r))).op ≫ eqToHom (_ : (Opens.map ((toΓSpec X).val ≫ (Spec.locallyRingedSpaceMap f).val).base).op.obj (op U) = (Opens.map β.val.base).op.obj (op U))) = toOpen (↑R) U ≫ NatTrans.app β.val.c (op U) [PROOFSTEP] convert h r using 1 [GOAL] X : LocallyRingedSpace r : ↑(Γ.obj (op X)) ⊢ toSpecΓ (Γ.obj (op X)) ≫ NatTrans.app (toΓSpec X).val.c (op ⊤) = 𝟙 (Γ.obj (op X)) [PROOFSTEP] unfold toSpecΓ [GOAL] X : LocallyRingedSpace r : ↑(Γ.obj (op X)) ⊢ toOpen ↑(Γ.obj (op X)) ⊤ ≫ NatTrans.app (toΓSpec X).val.c (op ⊤) = 𝟙 (Γ.obj (op X)) [PROOFSTEP] rw [← toOpen_res _ (basicOpen (1 : Γ.obj (op X))) ⊤ (eqToHom basicOpen_one.symm)] [GOAL] X : LocallyRingedSpace r : ↑(Γ.obj (op X)) ⊢ (toOpen (↑(Γ.obj (op X))) (basicOpen 1) ≫ (structureSheaf ↑(Γ.obj (op X))).val.map (eqToHom (_ : ⊤ = basicOpen 1)).op) ≫ NatTrans.app (toΓSpec X).val.c (op ⊤) = 𝟙 (Γ.obj (op X)) [PROOFSTEP] erw [Category.assoc] [GOAL] X : LocallyRingedSpace r : ↑(Γ.obj (op X)) ⊢ toOpen (↑(Γ.obj (op X))) (basicOpen 1) ≫ (structureSheaf ↑(Γ.obj (op X))).val.map (eqToHom (_ : ⊤ = basicOpen 1)).op ≫ NatTrans.app (toΓSpec X).val.c (op ⊤) = 𝟙 (Γ.obj (op X)) [PROOFSTEP] rw [NatTrans.naturality, ← Category.assoc] [GOAL] X : LocallyRingedSpace r : ↑(Γ.obj (op X)) ⊢ (toOpen (↑(Γ.obj (op X))) (basicOpen 1) ≫ NatTrans.app (toΓSpec X).val.c (op (basicOpen 1))) ≫ ((toΓSpec X).val.base _* X.presheaf).map (eqToHom (_ : ⊤ = basicOpen 1)).op = 𝟙 (Γ.obj (op X)) [PROOFSTEP] erw [X.toΓSpecSheafedSpace_app_spec 1, ← Functor.map_comp] [GOAL] X : LocallyRingedSpace r : ↑(Γ.obj (op X)) ⊢ X.presheaf.map ((Opens.leTop (toΓSpecMapBasicOpen X 1)).op ≫ (Opens.map (toΓSpec X).val.base).op.map (eqToHom (_ : ⊤ = basicOpen 1)).op) = 𝟙 (Γ.obj (op X)) [PROOFSTEP] convert eqToHom_map X.presheaf _ [GOAL] case convert_3 X : LocallyRingedSpace r : ↑(Γ.obj (op X)) ⊢ op ⊤ = (Opens.map (toΓSpec X).val.base).op.obj (op ⊤) [PROOFSTEP] rfl [GOAL] X Y : LocallyRingedSpace f : X ⟶ Y ⊢ (𝟭 LocallyRingedSpace).map f ≫ toΓSpec Y = toΓSpec X ≫ (Γ.rightOp ⋙ Spec.toLocallyRingedSpace).map f [PROOFSTEP] symm [GOAL] X Y : LocallyRingedSpace f : X ⟶ Y ⊢ toΓSpec X ≫ (Γ.rightOp ⋙ Spec.toLocallyRingedSpace).map f = (𝟭 LocallyRingedSpace).map f ≫ toΓSpec Y [PROOFSTEP] apply LocallyRingedSpace.comp_ring_hom_ext [GOAL] case w X Y : LocallyRingedSpace f : X ⟶ Y ⊢ (toΓSpec ((𝟭 LocallyRingedSpace).obj X)).val.base ≫ (Spec.locallyRingedSpaceMap (Γ.rightOp.map f).unop).val.base = ((𝟭 LocallyRingedSpace).map f ≫ toΓSpec Y).val.base [PROOFSTEP] ext1 x [GOAL] case w.w X Y : LocallyRingedSpace f : X ⟶ Y x : (forget TopCat).obj ↑((𝟭 LocallyRingedSpace).obj X).toPresheafedSpace ⊢ ↑((toΓSpec ((𝟭 LocallyRingedSpace).obj X)).val.base ≫ (Spec.locallyRingedSpaceMap (Γ.rightOp.map f).unop).val.base) x = ↑((𝟭 LocallyRingedSpace).map f ≫ toΓSpec Y).val.base x [PROOFSTEP] dsimp [Spec.topMap, LocallyRingedSpace.toΓSpecFun] --Porting Note: Had to add the next four lines [GOAL] case w.w X Y : LocallyRingedSpace f : X ⟶ Y x : (forget TopCat).obj ↑((𝟭 LocallyRingedSpace).obj X).toPresheafedSpace ⊢ ↑(toΓSpecBase X ≫ PrimeSpectrum.comap (NatTrans.app f.val.c (op ⊤))) x = ↑(f.val.base ≫ toΓSpecBase Y) x [PROOFSTEP] rw [comp_apply, comp_apply] [GOAL] case w.w X Y : LocallyRingedSpace f : X ⟶ Y x : (forget TopCat).obj ↑((𝟭 LocallyRingedSpace).obj X).toPresheafedSpace ⊢ ↑(PrimeSpectrum.comap (NatTrans.app f.val.c (op ⊤))) (↑(toΓSpecBase X) x) = ↑(toΓSpecBase Y) (↑f.val.base x) [PROOFSTEP] dsimp [toΓSpecBase] [GOAL] case w.w X Y : LocallyRingedSpace f : X ⟶ Y x : (forget TopCat).obj ↑((𝟭 LocallyRingedSpace).obj X).toPresheafedSpace ⊢ ↑(PrimeSpectrum.comap (NatTrans.app f.val.c (op ⊤))) (↑(ContinuousMap.mk (toΓSpecFun X)) x) = ↑(ContinuousMap.mk (toΓSpecFun Y)) (↑f.val.base x) [PROOFSTEP] rw [ContinuousMap.coe_mk, ContinuousMap.coe_mk] [GOAL] case w.w X Y : LocallyRingedSpace f : X ⟶ Y x : (forget TopCat).obj ↑((𝟭 LocallyRingedSpace).obj X).toPresheafedSpace ⊢ ↑(PrimeSpectrum.comap (NatTrans.app f.val.c (op ⊤))) (toΓSpecFun X x) = toΓSpecFun Y (↑f.val.base x) [PROOFSTEP] dsimp [toΓSpecFun] [GOAL] case w.w X Y : LocallyRingedSpace f : X ⟶ Y x : (forget TopCat).obj ↑((𝟭 LocallyRingedSpace).obj X).toPresheafedSpace ⊢ ↑(PrimeSpectrum.comap (NatTrans.app f.val.c (op ⊤))) (↑(PrimeSpectrum.comap (ΓToStalk X x)) (LocalRing.closedPoint ↑(TopCat.Presheaf.stalk X.presheaf x))) = ↑(PrimeSpectrum.comap (ΓToStalk Y (↑f.val.base x))) (LocalRing.closedPoint ↑(TopCat.Presheaf.stalk Y.presheaf (↑f.val.base x))) [PROOFSTEP] rw [← LocalRing.comap_closedPoint (PresheafedSpace.stalkMap f.val x), ← PrimeSpectrum.comap_comp_apply, ← PrimeSpectrum.comap_comp_apply] [GOAL] case w.w X Y : LocallyRingedSpace f : X ⟶ Y x : (forget TopCat).obj ↑((𝟭 LocallyRingedSpace).obj X).toPresheafedSpace ⊢ ↑(PrimeSpectrum.comap (RingHom.comp (ΓToStalk X x) (NatTrans.app f.val.c (op ⊤)))) (LocalRing.closedPoint ↑(TopCat.Presheaf.stalk X.presheaf x)) = ↑(PrimeSpectrum.comap (RingHom.comp (PresheafedSpace.stalkMap f.val x) (ΓToStalk Y (↑f.val.base x)))) (LocalRing.closedPoint ↑(PresheafedSpace.stalk X.toPresheafedSpace x)) [PROOFSTEP] congr 2 [GOAL] case w.w.e_a.e_f X Y : LocallyRingedSpace f : X ⟶ Y x : (forget TopCat).obj ↑((𝟭 LocallyRingedSpace).obj X).toPresheafedSpace ⊢ RingHom.comp (ΓToStalk X x) (NatTrans.app f.val.c (op ⊤)) = RingHom.comp (PresheafedSpace.stalkMap f.val x) (ΓToStalk Y (↑f.val.base x)) [PROOFSTEP] exact (PresheafedSpace.stalkMap_germ f.1 ⊤ ⟨x, trivial⟩).symm [GOAL] case h X Y : LocallyRingedSpace f : X ⟶ Y ⊢ ∀ (r : ↑(Γ.rightOp.obj Y).unop), (Γ.rightOp.map f).unop ≫ ((𝟭 LocallyRingedSpace).obj X).presheaf.map (homOfLE (_ : (Opens.map ((𝟭 LocallyRingedSpace).map f ≫ toΓSpec Y).val.base).obj (basicOpen r) ≤ ⊤)).op = toOpen (↑(Γ.rightOp.obj Y).unop) (basicOpen r) ≫ NatTrans.app ((𝟭 LocallyRingedSpace).map f ≫ toΓSpec Y).val.c (op (basicOpen r)) [PROOFSTEP] intro r [GOAL] case h X Y : LocallyRingedSpace f : X ⟶ Y r : ↑(Γ.rightOp.obj Y).unop ⊢ (Γ.rightOp.map f).unop ≫ ((𝟭 LocallyRingedSpace).obj X).presheaf.map (homOfLE (_ : (Opens.map ((𝟭 LocallyRingedSpace).map f ≫ toΓSpec Y).val.base).obj (basicOpen r) ≤ ⊤)).op = toOpen (↑(Γ.rightOp.obj Y).unop) (basicOpen r) ≫ NatTrans.app ((𝟭 LocallyRingedSpace).map f ≫ toΓSpec Y).val.c (op (basicOpen r)) [PROOFSTEP] rw [LocallyRingedSpace.comp_val_c_app, ← Category.assoc] [GOAL] case h X Y : LocallyRingedSpace f : X ⟶ Y r : ↑(Γ.rightOp.obj Y).unop ⊢ (Γ.rightOp.map f).unop ≫ ((𝟭 LocallyRingedSpace).obj X).presheaf.map (homOfLE (_ : (Opens.map ((𝟭 LocallyRingedSpace).map f ≫ toΓSpec Y).val.base).obj (basicOpen r) ≤ ⊤)).op = (toOpen (↑(Γ.rightOp.obj Y).unop) (basicOpen r) ≫ NatTrans.app (toΓSpec Y).val.c (op (basicOpen r))) ≫ NatTrans.app ((𝟭 LocallyRingedSpace).map f).val.c (op ((Opens.map (toΓSpec Y).val.base).obj (op (basicOpen r)).unop)) [PROOFSTEP] erw [Y.toΓSpecSheafedSpace_app_spec, f.1.c.naturality] [GOAL] case h X Y : LocallyRingedSpace f : X ⟶ Y r : ↑(Γ.rightOp.obj Y).unop ⊢ (Γ.rightOp.map f).unop ≫ ((𝟭 LocallyRingedSpace).obj X).presheaf.map (homOfLE (_ : (Opens.map ((𝟭 LocallyRingedSpace).map f ≫ toΓSpec Y).val.base).obj (basicOpen r) ≤ ⊤)).op = NatTrans.app f.val.c (op ⊤) ≫ (f.val.base _* X.presheaf).map (Opens.leTop (toΓSpecMapBasicOpen Y r)).op [PROOFSTEP] rfl [GOAL] R : CommRingCat ⊢ NatTrans.app identityToΓSpec (Spec.toLocallyRingedSpace.obj (op R)) ≫ Spec.toLocallyRingedSpace.map (NatTrans.app SpecΓIdentity.inv R).op = 𝟙 ((𝟭 LocallyRingedSpace).obj (Spec.toLocallyRingedSpace.obj (op R))) [PROOFSTEP] apply LocallyRingedSpace.comp_ring_hom_ext [GOAL] case w R : CommRingCat ⊢ (toΓSpec ((𝟭 LocallyRingedSpace).obj (Spec.toLocallyRingedSpace.obj (op R)))).val.base ≫ (Spec.locallyRingedSpaceMap (NatTrans.app SpecΓIdentity.inv R).op.unop).val.base = (𝟙 ((𝟭 LocallyRingedSpace).obj (Spec.toLocallyRingedSpace.obj (op R)))).val.base [PROOFSTEP] ext (p : PrimeSpectrum R) [GOAL] case w.w R : CommRingCat p : PrimeSpectrum ↑R ⊢ ↑((toΓSpec ((𝟭 LocallyRingedSpace).obj (Spec.toLocallyRingedSpace.obj (op R)))).val.base ≫ (Spec.locallyRingedSpaceMap (NatTrans.app SpecΓIdentity.inv R).op.unop).val.base) p = ↑(𝟙 ((𝟭 LocallyRingedSpace).obj (Spec.toLocallyRingedSpace.obj (op R)))).val.base p [PROOFSTEP] change _ = p [GOAL] case w.w R : CommRingCat p : PrimeSpectrum ↑R ⊢ ↑((toΓSpec ((𝟭 LocallyRingedSpace).obj (Spec.toLocallyRingedSpace.obj (op R)))).val.base ≫ (Spec.locallyRingedSpaceMap (NatTrans.app SpecΓIdentity.inv R).op.unop).val.base) p = p [PROOFSTEP] ext x [GOAL] case w.w.asIdeal.h R : CommRingCat p : PrimeSpectrum ↑R x : ↑(op ((𝟭 CommRingCat).obj R)).unop ⊢ x ∈ (↑((toΓSpec ((𝟭 LocallyRingedSpace).obj (Spec.toLocallyRingedSpace.obj (op R)))).val.base ≫ (Spec.locallyRingedSpaceMap (NatTrans.app SpecΓIdentity.inv R).op.unop).val.base) p).asIdeal ↔ x ∈ p.asIdeal [PROOFSTEP] erw [← IsLocalization.AtPrime.to_map_mem_maximal_iff ((structureSheaf R).presheaf.stalk p) p.asIdeal x] [GOAL] case w.w.asIdeal.h R : CommRingCat p : PrimeSpectrum ↑R x : ↑(op ((𝟭 CommRingCat).obj R)).unop ⊢ x ∈ (↑((toΓSpec ((𝟭 LocallyRingedSpace).obj (Spec.toLocallyRingedSpace.obj (op R)))).val.base ≫ (Spec.locallyRingedSpaceMap (NatTrans.app SpecΓIdentity.inv R).op.unop).val.base) p).asIdeal ↔ ↑(algebraMap ↑R ↑(TopCat.Presheaf.stalk (TopCat.Sheaf.presheaf (structureSheaf ↑R)) p)) x ∈ LocalRing.maximalIdeal ↑(TopCat.Presheaf.stalk (TopCat.Sheaf.presheaf (structureSheaf ↑R)) p) [PROOFSTEP] rfl [GOAL] case h R : CommRingCat ⊢ ∀ (r : ↑(op ((𝟭 CommRingCat).obj R)).unop), (NatTrans.app SpecΓIdentity.inv R).op.unop ≫ ((𝟭 LocallyRingedSpace).obj (Spec.toLocallyRingedSpace.obj (op R))).presheaf.map (homOfLE (_ : (Opens.map (𝟙 ((𝟭 LocallyRingedSpace).obj (Spec.toLocallyRingedSpace.obj (op R)))).val.base).obj (basicOpen r) ≤ ⊤)).op = toOpen (↑(op ((𝟭 CommRingCat).obj R)).unop) (basicOpen r) ≫ NatTrans.app (𝟙 ((𝟭 LocallyRingedSpace).obj (Spec.toLocallyRingedSpace.obj (op R)))).val.c (op (basicOpen r)) [PROOFSTEP] intro r [GOAL] case h R : CommRingCat r : ↑(op ((𝟭 CommRingCat).obj R)).unop ⊢ (NatTrans.app SpecΓIdentity.inv R).op.unop ≫ ((𝟭 LocallyRingedSpace).obj (Spec.toLocallyRingedSpace.obj (op R))).presheaf.map (homOfLE (_ : (Opens.map (𝟙 ((𝟭 LocallyRingedSpace).obj (Spec.toLocallyRingedSpace.obj (op R)))).val.base).obj (basicOpen r) ≤ ⊤)).op = toOpen (↑(op ((𝟭 CommRingCat).obj R)).unop) (basicOpen r) ≫ NatTrans.app (𝟙 ((𝟭 LocallyRingedSpace).obj (Spec.toLocallyRingedSpace.obj (op R)))).val.c (op (basicOpen r)) [PROOFSTEP] apply toOpen_res [GOAL] ⊢ whiskerRight identityToΓSpec Γ.rightOp ≫ (Functor.associator Γ.rightOp Spec.toLocallyRingedSpace Γ.rightOp).hom ≫ whiskerLeft Γ.rightOp (NatIso.op SpecΓIdentity).inv = NatTrans.id (𝟭 LocallyRingedSpace ⋙ Γ.rightOp) [PROOFSTEP] ext X [GOAL] case w.h X : LocallyRingedSpace ⊢ NatTrans.app (whiskerRight identityToΓSpec Γ.rightOp ≫ (Functor.associator Γ.rightOp Spec.toLocallyRingedSpace Γ.rightOp).hom ≫ whiskerLeft Γ.rightOp (NatIso.op SpecΓIdentity).inv) X = NatTrans.app (NatTrans.id (𝟭 LocallyRingedSpace ⋙ Γ.rightOp)) X [PROOFSTEP] erw [Category.id_comp] [GOAL] case w.h X : LocallyRingedSpace ⊢ NatTrans.app (whiskerRight identityToΓSpec Γ.rightOp ≫ whiskerLeft Γ.rightOp (NatIso.op SpecΓIdentity).inv) X = NatTrans.app (NatTrans.id (𝟭 LocallyRingedSpace ⋙ Γ.rightOp)) X [PROOFSTEP] exact congr_arg Quiver.Hom.op (left_triangle X) [GOAL] ⊢ whiskerLeft Spec.toLocallyRingedSpace identityToΓSpec ≫ (Functor.associator Spec.toLocallyRingedSpace Γ.rightOp Spec.toLocallyRingedSpace).inv ≫ whiskerRight (NatIso.op SpecΓIdentity).inv Spec.toLocallyRingedSpace = NatTrans.id (Spec.toLocallyRingedSpace ⋙ 𝟭 LocallyRingedSpace) [PROOFSTEP] ext R : 2 -- Porting note : a little bit hand holding [GOAL] case w.h R : CommRingCatᵒᵖ ⊢ NatTrans.app (whiskerLeft Spec.toLocallyRingedSpace identityToΓSpec ≫ (Functor.associator Spec.toLocallyRingedSpace Γ.rightOp Spec.toLocallyRingedSpace).inv ≫ whiskerRight (NatIso.op SpecΓIdentity).inv Spec.toLocallyRingedSpace) R = NatTrans.app (NatTrans.id (Spec.toLocallyRingedSpace ⋙ 𝟭 LocallyRingedSpace)) R [PROOFSTEP] change identityToΓSpec.app _ ≫ 𝟙 _ ≫ Spec.toLocallyRingedSpace.map _ = 𝟙 _ [GOAL] case w.h R : CommRingCatᵒᵖ ⊢ NatTrans.app identityToΓSpec (Spec.locallyRingedSpaceObj R.unop) ≫ 𝟙 ((Γ.rightOp ⋙ Spec.toLocallyRingedSpace).obj (Spec.locallyRingedSpaceObj R.unop)) ≫ Spec.toLocallyRingedSpace.map (NatTrans.app (NatIso.op SpecΓIdentity).inv R) = 𝟙 ((𝟭 LocallyRingedSpace).obj (Spec.locallyRingedSpaceObj R.unop)) [PROOFSTEP] simp_rw [Category.id_comp, show (NatIso.op SpecΓIdentity).inv.app R = (SpecΓIdentity.inv.app R.unop).op from rfl] [GOAL] case w.h R : CommRingCatᵒᵖ ⊢ NatTrans.app identityToΓSpec (Spec.locallyRingedSpaceObj R.unop) ≫ Spec.toLocallyRingedSpace.map (NatTrans.app SpecΓIdentity.inv R.unop).op = 𝟙 ((𝟭 LocallyRingedSpace).obj (Spec.locallyRingedSpaceObj R.unop)) [PROOFSTEP] exact right_triangle R.unop [GOAL] X : Scheme R : CommRingCatᵒᵖ f : op (Scheme.Γ.obj (op X)) ⟶ R ⊢ ↑(Adjunction.homEquiv adjunction X R) f = ↑(Adjunction.homEquiv locallyRingedSpaceAdjunction X.toLocallyRingedSpace R) f [PROOFSTEP] dsimp [adjunction, Adjunction.restrictFullyFaithful] [GOAL] X : Scheme R : CommRingCatᵒᵖ f : op (Scheme.Γ.obj (op X)) ⟶ R ⊢ ↑(equivOfFullyFaithful Scheme.forgetToLocallyRingedSpace).symm (𝟙 X.toLocallyRingedSpace ≫ ↑(Adjunction.homEquiv locallyRingedSpaceAdjunction X.toLocallyRingedSpace R) (𝟙 (op (X.presheaf.obj (op ⊤))) ≫ ↑(equivOfFullyFaithful (𝟭 CommRingCatᵒᵖ)) f ≫ 𝟙 R) ≫ 𝟙 (Spec.locallyRingedSpaceObj R.unop)) = ↑(Adjunction.homEquiv locallyRingedSpaceAdjunction X.toLocallyRingedSpace R) f [PROOFSTEP] simp only [Category.comp_id, Category.id_comp] [GOAL] X : Scheme R : CommRingCatᵒᵖ f : op (Scheme.Γ.obj (op X)) ⟶ R ⊢ ↑(equivOfFullyFaithful Scheme.forgetToLocallyRingedSpace).symm (↑(Adjunction.homEquiv locallyRingedSpaceAdjunction X.toLocallyRingedSpace R) (↑(equivOfFullyFaithful (𝟭 CommRingCatᵒᵖ)) f)) = ↑(Adjunction.homEquiv locallyRingedSpaceAdjunction X.toLocallyRingedSpace R) f [PROOFSTEP] rfl --Porting Note: Added [GOAL] X : Scheme R : CommRingCatᵒᵖ f : X ⟶ Scheme.Spec.obj R ⊢ ↑(Adjunction.homEquiv adjunction X R).symm f = ↑(Adjunction.homEquiv locallyRingedSpaceAdjunction X.toLocallyRingedSpace R).symm f [PROOFSTEP] rw [adjunction_homEquiv] [GOAL] X : Scheme R : CommRingCatᵒᵖ f : X ⟶ Scheme.Spec.obj R ⊢ ↑(Adjunction.homEquiv locallyRingedSpaceAdjunction X.toLocallyRingedSpace R).symm f = ↑(Adjunction.homEquiv locallyRingedSpaceAdjunction X.toLocallyRingedSpace R).symm f [PROOFSTEP] rfl [GOAL] R : CommRingCatᵒᵖ ⊢ NatTrans.app adjunction.counit R = NatTrans.app locallyRingedSpaceAdjunction.counit R [PROOFSTEP] rw [← Adjunction.homEquiv_symm_id, ← Adjunction.homEquiv_symm_id, adjunction_homEquiv_symm_apply] [GOAL] R : CommRingCatᵒᵖ ⊢ ↑(Adjunction.homEquiv locallyRingedSpaceAdjunction (Scheme.Spec.obj R).toLocallyRingedSpace R).symm (𝟙 (Scheme.Spec.obj R)) = ↑(Adjunction.homEquiv locallyRingedSpaceAdjunction (Spec.toLocallyRingedSpace.obj R) R).symm (𝟙 (Spec.toLocallyRingedSpace.obj R)) [PROOFSTEP] rfl [GOAL] X : Scheme ⊢ NatTrans.app adjunction.unit X = NatTrans.app locallyRingedSpaceAdjunction.unit X.toLocallyRingedSpace [PROOFSTEP] rw [← Adjunction.homEquiv_id, ← Adjunction.homEquiv_id, adjunction_homEquiv_apply] [GOAL] X : Scheme ⊢ ↑(Adjunction.homEquiv locallyRingedSpaceAdjunction X.toLocallyRingedSpace (Scheme.Γ.rightOp.obj X)) (𝟙 (Scheme.Γ.rightOp.obj X)) = ↑(Adjunction.homEquiv locallyRingedSpaceAdjunction X.toLocallyRingedSpace (Γ.rightOp.obj X.toLocallyRingedSpace)) (𝟙 (Γ.rightOp.obj X.toLocallyRingedSpace)) [PROOFSTEP] rfl [GOAL] ⊢ IsIso locallyRingedSpaceAdjunction.counit [PROOFSTEP] dsimp only [locallyRingedSpaceAdjunction, Adjunction.mkOfUnitCounit_counit] -- Porting Note: `dsimp` was unnecessary and had to make this explicit [GOAL] ⊢ IsIso (NatIso.op SpecΓIdentity).inv [PROOFSTEP] convert IsIso.of_iso_inv (NatIso.op SpecΓIdentity) using 1 [GOAL] ⊢ IsIso adjunction.counit [PROOFSTEP] apply (config := { allowSynthFailures := true }) NatIso.isIso_of_isIso_app [GOAL] case inst ⊢ ∀ (X : CommRingCatᵒᵖ), IsIso (NatTrans.app adjunction.counit X) [PROOFSTEP] intro R [GOAL] case inst R : CommRingCatᵒᵖ ⊢ IsIso (NatTrans.app adjunction.counit R) [PROOFSTEP] rw [adjunction_counit_app] [GOAL] case inst R : CommRingCatᵒᵖ ⊢ IsIso (NatTrans.app locallyRingedSpaceAdjunction.counit R) [PROOFSTEP] infer_instance [GOAL] X : Scheme ⊢ NatTrans.app (NatTrans.app adjunction.unit X).val.c (op ⊤) = NatTrans.app SpecΓIdentity.hom (X.presheaf.obj (op ⊤)) [PROOFSTEP] have := congr_app ΓSpec.adjunction.left_triangle X [GOAL] X : Scheme this : NatTrans.app (whiskerRight adjunction.unit Scheme.Γ.rightOp ≫ whiskerLeft Scheme.Γ.rightOp adjunction.counit) X = NatTrans.app (𝟙 (𝟭 Scheme ⋙ Scheme.Γ.rightOp)) X ⊢ NatTrans.app (NatTrans.app adjunction.unit X).val.c (op ⊤) = NatTrans.app SpecΓIdentity.hom (X.presheaf.obj (op ⊤)) [PROOFSTEP] dsimp at this [GOAL] X : Scheme this : (NatTrans.app (NatTrans.app adjunction.unit X).val.c (op ⊤)).op ≫ NatTrans.app adjunction.counit (op (X.presheaf.obj (op ⊤))) = 𝟙 (op (X.presheaf.obj (op ⊤))) ⊢ NatTrans.app (NatTrans.app adjunction.unit X).val.c (op ⊤) = NatTrans.app SpecΓIdentity.hom (X.presheaf.obj (op ⊤)) [PROOFSTEP] rw [← IsIso.eq_comp_inv] at this [GOAL] X : Scheme this : (NatTrans.app (NatTrans.app adjunction.unit X).val.c (op ⊤)).op = 𝟙 (op (X.presheaf.obj (op ⊤))) ≫ inv (NatTrans.app adjunction.counit (op (X.presheaf.obj (op ⊤)))) ⊢ NatTrans.app (NatTrans.app adjunction.unit X).val.c (op ⊤) = NatTrans.app SpecΓIdentity.hom (X.presheaf.obj (op ⊤)) [PROOFSTEP] simp only [adjunction_counit_app, locallyRingedSpaceAdjunction_counit, NatIso.op_inv, NatTrans.op_app, unop_op, Functor.id_obj, Functor.comp_obj, Functor.rightOp_obj, Spec.toLocallyRingedSpace_obj, Γ_obj, Spec.locallyRingedSpaceObj_toSheafedSpace, Spec.sheafedSpaceObj_carrier, Spec.sheafedSpaceObj_presheaf, SpecΓIdentity_inv_app, Category.id_comp] at this [GOAL] X : Scheme this : (NatTrans.app (NatTrans.app adjunction.unit X).val.c (op ⊤)).op = inv (toSpecΓ (X.presheaf.obj (op ⊤))).op ⊢ NatTrans.app (NatTrans.app adjunction.unit X).val.c (op ⊤) = NatTrans.app SpecΓIdentity.hom (X.presheaf.obj (op ⊤)) [PROOFSTEP] rw [← op_inv, Quiver.Hom.op_inj.eq_iff] at this [GOAL] X : Scheme this : NatTrans.app (NatTrans.app adjunction.unit X).val.c (op ⊤) = inv (toSpecΓ (X.presheaf.obj (op ⊤))) ⊢ NatTrans.app (NatTrans.app adjunction.unit X).val.c (op ⊤) = NatTrans.app SpecΓIdentity.hom (X.presheaf.obj (op ⊤)) [PROOFSTEP] rw [SpecΓIdentity_hom_app] [GOAL] X : Scheme this : NatTrans.app (NatTrans.app adjunction.unit X).val.c (op ⊤) = inv (toSpecΓ (X.presheaf.obj (op ⊤))) ⊢ NatTrans.app (NatTrans.app adjunction.unit X).val.c (op ⊤) = inv (toSpecΓ (X.presheaf.obj (op ⊤))) [PROOFSTEP] convert this using 1
{"mathlib_filename": "Mathlib.AlgebraicGeometry.GammaSpecAdjunction", "llama_tokens": 25179}
[GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝⁷ : Semiring R inst✝⁶ : (i : ι) → AddCommMonoid (M i) inst✝⁵ : (i : ι) → Module R (M i) inst✝⁴ : AddCommMonoid N inst✝³ : Module R N inst✝² : Semiring S inst✝¹ : Module S N inst✝ : SMulCommClass R S N F : (i : ι) → M i →ₗ[R] N c : R f : Π₀ (i : ι), M i ⊢ AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f [PROOFSTEP] dsimp [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝⁷ : Semiring R inst✝⁶ : (i : ι) → AddCommMonoid (M i) inst✝⁵ : (i : ι) → Module R (M i) inst✝⁴ : AddCommMonoid N inst✝³ : Module R N inst✝² : Semiring S inst✝¹ : Module S N inst✝ : SMulCommClass R S N F : (i : ι) → M i →ₗ[R] N c : R f : Π₀ (i : ι), M i ⊢ ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)) (c • f) = c • ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)) f [PROOFSTEP] apply DFinsupp.induction f [GOAL] case h0 ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝⁷ : Semiring R inst✝⁶ : (i : ι) → AddCommMonoid (M i) inst✝⁵ : (i : ι) → Module R (M i) inst✝⁴ : AddCommMonoid N inst✝³ : Module R N inst✝² : Semiring S inst✝¹ : Module S N inst✝ : SMulCommClass R S N F : (i : ι) → M i →ₗ[R] N c : R f : Π₀ (i : ι), M i ⊢ ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)) (c • 0) = c • ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)) 0 [PROOFSTEP] rw [smul_zero, AddMonoidHom.map_zero, smul_zero] [GOAL] case ha ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝⁷ : Semiring R inst✝⁶ : (i : ι) → AddCommMonoid (M i) inst✝⁵ : (i : ι) → Module R (M i) inst✝⁴ : AddCommMonoid N inst✝³ : Module R N inst✝² : Semiring S inst✝¹ : Module S N inst✝ : SMulCommClass R S N F : (i : ι) → M i →ₗ[R] N c : R f : Π₀ (i : ι), M i ⊢ ∀ (i : ι) (b : M i) (f : Π₀ (i : ι), M i), ↑f i = 0 → b ≠ 0 → ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)) (c • f) = c • ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)) f → ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)) (c • (single i b + f)) = c • ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)) (single i b + f) [PROOFSTEP] intro a b f _ _ hf [GOAL] case ha ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝⁷ : Semiring R inst✝⁶ : (i : ι) → AddCommMonoid (M i) inst✝⁵ : (i : ι) → Module R (M i) inst✝⁴ : AddCommMonoid N inst✝³ : Module R N inst✝² : Semiring S inst✝¹ : Module S N inst✝ : SMulCommClass R S N F : (i : ι) → M i →ₗ[R] N c : R f✝ : Π₀ (i : ι), M i a : ι b : M a f : Π₀ (i : ι), M i a✝¹ : ↑f a = 0 a✝ : b ≠ 0 hf : ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)) (c • f) = c • ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)) f ⊢ ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)) (c • (single a b + f)) = c • ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)) (single a b + f) [PROOFSTEP] rw [smul_add, AddMonoidHom.map_add, AddMonoidHom.map_add, smul_add, hf, ← single_smul, sumAddHom_single, sumAddHom_single, LinearMap.toAddMonoidHom_coe, LinearMap.map_smul] [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝⁷ : Semiring R inst✝⁶ : (i : ι) → AddCommMonoid (M i) inst✝⁵ : (i : ι) → Module R (M i) inst✝⁴ : AddCommMonoid N inst✝³ : Module R N inst✝² : Semiring S inst✝¹ : Module S N inst✝ : SMulCommClass R S N F G : (i : ι) → M i →ₗ[R] N ⊢ (fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }) (F + G) = (fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }) F + (fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }) G [PROOFSTEP] refine DFinsupp.lhom_ext' (fun i ↦ ?_) [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝⁷ : Semiring R inst✝⁶ : (i : ι) → AddCommMonoid (M i) inst✝⁵ : (i : ι) → Module R (M i) inst✝⁴ : AddCommMonoid N inst✝³ : Module R N inst✝² : Semiring S inst✝¹ : Module S N inst✝ : SMulCommClass R S N F G : (i : ι) → M i →ₗ[R] N i : ι ⊢ LinearMap.comp ((fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }) (F + G)) (lsingle i) = LinearMap.comp ((fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }) F + (fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }) G) (lsingle i) [PROOFSTEP] ext [GOAL] case h ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝⁷ : Semiring R inst✝⁶ : (i : ι) → AddCommMonoid (M i) inst✝⁵ : (i : ι) → Module R (M i) inst✝⁴ : AddCommMonoid N inst✝³ : Module R N inst✝² : Semiring S inst✝¹ : Module S N inst✝ : SMulCommClass R S N F G : (i : ι) → M i →ₗ[R] N i : ι x✝ : M i ⊢ ↑(LinearMap.comp ((fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }) (F + G)) (lsingle i)) x✝ = ↑(LinearMap.comp ((fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }) F + (fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }) G) (lsingle i)) x✝ [PROOFSTEP] simp [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝⁷ : Semiring R inst✝⁶ : (i : ι) → AddCommMonoid (M i) inst✝⁵ : (i : ι) → Module R (M i) inst✝⁴ : AddCommMonoid N inst✝³ : Module R N inst✝² : Semiring S inst✝¹ : Module S N inst✝ : SMulCommClass R S N c : S F : (i : ι) → M i →ₗ[R] N ⊢ AddHom.toFun { toFun := fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }, map_add' := (_ : ∀ (F G : (i : ι) → M i →ₗ[R] N), (fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }) (F + G) = (fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }) F + (fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }) G) } (c • F) = ↑(RingHom.id S) c • AddHom.toFun { toFun := fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }, map_add' := (_ : ∀ (F G : (i : ι) → M i →ₗ[R] N), (fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }) (F + G) = (fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }) F + (fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }) G) } F [PROOFSTEP] refine DFinsupp.lhom_ext' (fun i ↦ ?_) [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝⁷ : Semiring R inst✝⁶ : (i : ι) → AddCommMonoid (M i) inst✝⁵ : (i : ι) → Module R (M i) inst✝⁴ : AddCommMonoid N inst✝³ : Module R N inst✝² : Semiring S inst✝¹ : Module S N inst✝ : SMulCommClass R S N c : S F : (i : ι) → M i →ₗ[R] N i : ι ⊢ LinearMap.comp (AddHom.toFun { toFun := fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }, map_add' := (_ : ∀ (F G : (i : ι) → M i →ₗ[R] N), (fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }) (F + G) = (fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }) F + (fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }) G) } (c • F)) (lsingle i) = LinearMap.comp (↑(RingHom.id S) c • AddHom.toFun { toFun := fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }, map_add' := (_ : ∀ (F G : (i : ι) → M i →ₗ[R] N), (fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }) (F + G) = (fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }) F + (fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }) G) } F) (lsingle i) [PROOFSTEP] ext [GOAL] case h ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝⁷ : Semiring R inst✝⁶ : (i : ι) → AddCommMonoid (M i) inst✝⁵ : (i : ι) → Module R (M i) inst✝⁴ : AddCommMonoid N inst✝³ : Module R N inst✝² : Semiring S inst✝¹ : Module S N inst✝ : SMulCommClass R S N c : S F : (i : ι) → M i →ₗ[R] N i : ι x✝ : M i ⊢ ↑(LinearMap.comp (AddHom.toFun { toFun := fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }, map_add' := (_ : ∀ (F G : (i : ι) → M i →ₗ[R] N), (fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }) (F + G) = (fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }) F + (fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }) G) } (c • F)) (lsingle i)) x✝ = ↑(LinearMap.comp (↑(RingHom.id S) c • AddHom.toFun { toFun := fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }, map_add' := (_ : ∀ (F G : (i : ι) → M i →ₗ[R] N), (fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }) (F + G) = (fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }) F + (fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }) G) } F) (lsingle i)) x✝ [PROOFSTEP] simp [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝⁷ : Semiring R inst✝⁶ : (i : ι) → AddCommMonoid (M i) inst✝⁵ : (i : ι) → Module R (M i) inst✝⁴ : AddCommMonoid N inst✝³ : Module R N inst✝² : Semiring S inst✝¹ : Module S N inst✝ : SMulCommClass R S N F : (i : ι) → M i →ₗ[R] N ⊢ (fun F i => LinearMap.comp F (lsingle i)) (AddHom.toFun { toAddHom := { toFun := fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }, map_add' := (_ : ∀ (F G : (i : ι) → M i →ₗ[R] N), (fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }) (F + G) = (fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }) F + (fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }) G) }, map_smul' := (_ : ∀ (c : S) (F : (i : ι) → M i →ₗ[R] N), AddHom.toFun { toFun := fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }, map_add' := (_ : ∀ (F G : (i : ι) → M i →ₗ[R] N), (fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }) (F + G) = (fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }) F + (fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }) G) } (c • F) = ↑(RingHom.id S) c • AddHom.toFun { toFun := fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }, map_add' := (_ : ∀ (F G : (i : ι) → M i →ₗ[R] N), (fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }) (F + G) = (fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }) F + (fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }) G) } F) }.toAddHom F) = F [PROOFSTEP] ext [GOAL] case h.h ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝⁷ : Semiring R inst✝⁶ : (i : ι) → AddCommMonoid (M i) inst✝⁵ : (i : ι) → Module R (M i) inst✝⁴ : AddCommMonoid N inst✝³ : Module R N inst✝² : Semiring S inst✝¹ : Module S N inst✝ : SMulCommClass R S N F : (i : ι) → M i →ₗ[R] N x✝¹ : ι x✝ : M x✝¹ ⊢ ↑((fun F i => LinearMap.comp F (lsingle i)) (AddHom.toFun { toAddHom := { toFun := fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }, map_add' := (_ : ∀ (F G : (i : ι) → M i →ₗ[R] N), (fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }) (F + G) = (fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }) F + (fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }) G) }, map_smul' := (_ : ∀ (c : S) (F : (i : ι) → M i →ₗ[R] N), AddHom.toFun { toFun := fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }, map_add' := (_ : ∀ (F G : (i : ι) → M i →ₗ[R] N), (fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }) (F + G) = (fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }) F + (fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }) G) } (c • F) = ↑(RingHom.id S) c • AddHom.toFun { toFun := fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }, map_add' := (_ : ∀ (F G : (i : ι) → M i →ₗ[R] N), (fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }) (F + G) = (fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }) F + (fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }) G) } F) }.toAddHom F) x✝¹) x✝ = ↑(F x✝¹) x✝ [PROOFSTEP] simp [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝⁷ : Semiring R inst✝⁶ : (i : ι) → AddCommMonoid (M i) inst✝⁵ : (i : ι) → Module R (M i) inst✝⁴ : AddCommMonoid N inst✝³ : Module R N inst✝² : Semiring S inst✝¹ : Module S N inst✝ : SMulCommClass R S N F : (Π₀ (i : ι), M i) →ₗ[R] N ⊢ AddHom.toFun { toAddHom := { toFun := fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }, map_add' := (_ : ∀ (F G : (i : ι) → M i →ₗ[R] N), (fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }) (F + G) = (fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }) F + (fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }) G) }, map_smul' := (_ : ∀ (c : S) (F : (i : ι) → M i →ₗ[R] N), AddHom.toFun { toFun := fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }, map_add' := (_ : ∀ (F G : (i : ι) → M i →ₗ[R] N), (fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }) (F + G) = (fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }) F + (fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }) G) } (c • F) = ↑(RingHom.id S) c • AddHom.toFun { toFun := fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }, map_add' := (_ : ∀ (F G : (i : ι) → M i →ₗ[R] N), (fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }) (F + G) = (fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }) F + (fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }) G) } F) }.toAddHom ((fun F i => LinearMap.comp F (lsingle i)) F) = F [PROOFSTEP] refine DFinsupp.lhom_ext' (fun i ↦ ?_) [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝⁷ : Semiring R inst✝⁶ : (i : ι) → AddCommMonoid (M i) inst✝⁵ : (i : ι) → Module R (M i) inst✝⁴ : AddCommMonoid N inst✝³ : Module R N inst✝² : Semiring S inst✝¹ : Module S N inst✝ : SMulCommClass R S N F : (Π₀ (i : ι), M i) →ₗ[R] N i : ι ⊢ LinearMap.comp (AddHom.toFun { toAddHom := { toFun := fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }, map_add' := (_ : ∀ (F G : (i : ι) → M i →ₗ[R] N), (fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }) (F + G) = (fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }) F + (fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }) G) }, map_smul' := (_ : ∀ (c : S) (F : (i : ι) → M i →ₗ[R] N), AddHom.toFun { toFun := fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }, map_add' := (_ : ∀ (F G : (i : ι) → M i →ₗ[R] N), (fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }) (F + G) = (fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }) F + (fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }) G) } (c • F) = ↑(RingHom.id S) c • AddHom.toFun { toFun := fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }, map_add' := (_ : ∀ (F G : (i : ι) → M i →ₗ[R] N), (fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }) (F + G) = (fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }) F + (fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }) G) } F) }.toAddHom ((fun F i => LinearMap.comp F (lsingle i)) F)) (lsingle i) = LinearMap.comp F (lsingle i) [PROOFSTEP] ext [GOAL] case h ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝⁷ : Semiring R inst✝⁶ : (i : ι) → AddCommMonoid (M i) inst✝⁵ : (i : ι) → Module R (M i) inst✝⁴ : AddCommMonoid N inst✝³ : Module R N inst✝² : Semiring S inst✝¹ : Module S N inst✝ : SMulCommClass R S N F : (Π₀ (i : ι), M i) →ₗ[R] N i : ι x✝ : M i ⊢ ↑(LinearMap.comp (AddHom.toFun { toAddHom := { toFun := fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }, map_add' := (_ : ∀ (F G : (i : ι) → M i →ₗ[R] N), (fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }) (F + G) = (fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }) F + (fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }) G) }, map_smul' := (_ : ∀ (c : S) (F : (i : ι) → M i →ₗ[R] N), AddHom.toFun { toFun := fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }, map_add' := (_ : ∀ (F G : (i : ι) → M i →ₗ[R] N), (fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }) (F + G) = (fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }) F + (fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }) G) } (c • F) = ↑(RingHom.id S) c • AddHom.toFun { toFun := fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }, map_add' := (_ : ∀ (F G : (i : ι) → M i →ₗ[R] N), (fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }) (F + G) = (fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }) F + (fun F => { toAddHom := { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) }, map_smul' := (_ : ∀ (c : R) (f : Π₀ (i : ι), M i), AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (F i)), map_add' := (_ : ∀ (a b : Π₀ (i : ι), M i), ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) (a + b) = ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) a + ↑(↑liftAddHom fun i => LinearMap.toAddMonoidHom (F i)) b) } f) }) G) } F) }.toAddHom ((fun F i => LinearMap.comp F (lsingle i)) F)) (lsingle i)) x✝ = ↑(LinearMap.comp F (lsingle i)) x✝ [PROOFSTEP] simp [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝⁷ : Semiring R inst✝⁶ : (i : ι) → AddCommMonoid (M i) inst✝⁵ : (i : ι) → Module R (M i) inst✝⁴ : AddCommMonoid N inst✝³ : Module R N inst✝² : Semiring S inst✝¹ : Module S N inst✝ : SMulCommClass R S N F : (i : ι) → M i →ₗ[R] N i : ι x : M i ⊢ ↑(↑(lsum S) F) (single i x) = ↑(F i) x [PROOFSTEP] simp [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝¹⁰ : Semiring R inst✝⁹ : (i : ι) → AddCommMonoid (M i) inst✝⁸ : (i : ι) → Module R (M i) inst✝⁷ : AddCommMonoid N inst✝⁶ : Module R N β : ι → Type u_6 β₁ : ι → Type u_7 β₂ : ι → Type u_8 inst✝⁵ : (i : ι) → AddCommMonoid (β i) inst✝⁴ : (i : ι) → AddCommMonoid (β₁ i) inst✝³ : (i : ι) → AddCommMonoid (β₂ i) inst✝² : (i : ι) → Module R (β i) inst✝¹ : (i : ι) → Module R (β₁ i) inst✝ : (i : ι) → Module R (β₂ i) f : (i : ι) → β₁ i → β₂ i hf : ∀ (i : ι), f i 0 = 0 r : R hf' : ∀ (i : ι) (x : β₁ i), f i (r • x) = r • f i x g : Π₀ (i : ι), β₁ i ⊢ mapRange f hf (r • g) = r • mapRange f hf g [PROOFSTEP] ext [GOAL] case h ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝¹⁰ : Semiring R inst✝⁹ : (i : ι) → AddCommMonoid (M i) inst✝⁸ : (i : ι) → Module R (M i) inst✝⁷ : AddCommMonoid N inst✝⁶ : Module R N β : ι → Type u_6 β₁ : ι → Type u_7 β₂ : ι → Type u_8 inst✝⁵ : (i : ι) → AddCommMonoid (β i) inst✝⁴ : (i : ι) → AddCommMonoid (β₁ i) inst✝³ : (i : ι) → AddCommMonoid (β₂ i) inst✝² : (i : ι) → Module R (β i) inst✝¹ : (i : ι) → Module R (β₁ i) inst✝ : (i : ι) → Module R (β₂ i) f : (i : ι) → β₁ i → β₂ i hf : ∀ (i : ι), f i 0 = 0 r : R hf' : ∀ (i : ι) (x : β₁ i), f i (r • x) = r • f i x g : Π₀ (i : ι), β₁ i i✝ : ι ⊢ ↑(mapRange f hf (r • g)) i✝ = ↑(r • mapRange f hf g) i✝ [PROOFSTEP] simp only [mapRange_apply f, coe_smul, Pi.smul_apply, hf'] [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝¹⁰ : Semiring R inst✝⁹ : (i : ι) → AddCommMonoid (M i) inst✝⁸ : (i : ι) → Module R (M i) inst✝⁷ : AddCommMonoid N inst✝⁶ : Module R N β : ι → Type u_6 β₁ : ι → Type u_7 β₂ : ι → Type u_8 inst✝⁵ : (i : ι) → AddCommMonoid (β i) inst✝⁴ : (i : ι) → AddCommMonoid (β₁ i) inst✝³ : (i : ι) → AddCommMonoid (β₂ i) inst✝² : (i : ι) → Module R (β i) inst✝¹ : (i : ι) → Module R (β₁ i) inst✝ : (i : ι) → Module R (β₂ i) ⊢ (linearMap fun i => LinearMap.id) = LinearMap.id [PROOFSTEP] ext [GOAL] case h.h.h ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝¹⁰ : Semiring R inst✝⁹ : (i : ι) → AddCommMonoid (M i) inst✝⁸ : (i : ι) → Module R (M i) inst✝⁷ : AddCommMonoid N inst✝⁶ : Module R N β : ι → Type u_6 β₁ : ι → Type u_7 β₂ : ι → Type u_8 inst✝⁵ : (i : ι) → AddCommMonoid (β i) inst✝⁴ : (i : ι) → AddCommMonoid (β₁ i) inst✝³ : (i : ι) → AddCommMonoid (β₂ i) inst✝² : (i : ι) → Module R (β i) inst✝¹ : (i : ι) → Module R (β₁ i) inst✝ : (i : ι) → Module R (β₂ i) i✝¹ : ι x✝ : β₂ i✝¹ i✝ : ι ⊢ ↑(↑(LinearMap.comp (linearMap fun i => LinearMap.id) (lsingle i✝¹)) x✝) i✝ = ↑(↑(LinearMap.comp LinearMap.id (lsingle i✝¹)) x✝) i✝ [PROOFSTEP] simp [linearMap] [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝¹⁰ : Semiring R inst✝⁹ : (i : ι) → AddCommMonoid (M i) inst✝⁸ : (i : ι) → Module R (M i) inst✝⁷ : AddCommMonoid N inst✝⁶ : Module R N β : ι → Type u_6 β₁ : ι → Type u_7 β₂ : ι → Type u_8 inst✝⁵ : (i : ι) → AddCommMonoid (β i) inst✝⁴ : (i : ι) → AddCommMonoid (β₁ i) inst✝³ : (i : ι) → AddCommMonoid (β₂ i) inst✝² : (i : ι) → Module R (β i) inst✝¹ : (i : ι) → Module R (β₁ i) inst✝ : (i : ι) → Module R (β₂ i) f : (i : ι) → β₁ i →ₗ[R] β₂ i f₂ : (i : ι) → β i →ₗ[R] β₁ i ⊢ ∀ (i : ι), ((fun i x => ↑(f i) x) i ∘ (fun i x => ↑(f₂ i) x) i) 0 = 0 [PROOFSTEP] simp [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝¹² : Semiring R inst✝¹¹ : (i : ι) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → Module R (M i) inst✝⁹ : AddCommMonoid N inst✝⁸ : Module R N β : ι → Type u_6 β₁ : ι → Type u_7 β₂ : ι → Type u_8 inst✝⁷ : (i : ι) → AddCommMonoid (β i) inst✝⁶ : (i : ι) → AddCommMonoid (β₁ i) inst✝⁵ : (i : ι) → AddCommMonoid (β₂ i) inst✝⁴ : (i : ι) → Module R (β i) inst✝³ : (i : ι) → Module R (β₁ i) inst✝² : (i : ι) → Module R (β₂ i) inst✝¹ : (i : ι) → (x : β₁ i) → Decidable (x ≠ 0) inst✝ : (i : ι) → (x : β₂ i) → Decidable (x ≠ 0) f : (i : ι) → β₁ i →ₗ[R] β₂ i h : (i : ι) → β₂ i →ₗ[R] N l : Π₀ (i : ι), β₁ i ⊢ ↑(↑(lsum ℕ) h) (↑(mapRange.linearMap f) l) = ↑(↑(lsum ℕ) fun i => LinearMap.comp (h i) (f i)) l [PROOFSTEP] simpa [DFinsupp.sumAddHom_apply] using sum_mapRange_index fun i => by simp [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝¹² : Semiring R inst✝¹¹ : (i : ι) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → Module R (M i) inst✝⁹ : AddCommMonoid N inst✝⁸ : Module R N β : ι → Type u_6 β₁ : ι → Type u_7 β₂ : ι → Type u_8 inst✝⁷ : (i : ι) → AddCommMonoid (β i) inst✝⁶ : (i : ι) → AddCommMonoid (β₁ i) inst✝⁵ : (i : ι) → AddCommMonoid (β₂ i) inst✝⁴ : (i : ι) → Module R (β i) inst✝³ : (i : ι) → Module R (β₁ i) inst✝² : (i : ι) → Module R (β₂ i) inst✝¹ : (i : ι) → (x : β₁ i) → Decidable (x ≠ 0) inst✝ : (i : ι) → (x : β₂ i) → Decidable (x ≠ 0) f : (i : ι) → β₁ i →ₗ[R] β₂ i h : (i : ι) → β₂ i →ₗ[R] N l : Π₀ (i : ι), β₁ i i : ι ⊢ ↑(h i) 0 = 0 [PROOFSTEP] simp [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝¹⁰ : Semiring R inst✝⁹ : (i : ι) → AddCommMonoid (M i) inst✝⁸ : (i : ι) → Module R (M i) inst✝⁷ : AddCommMonoid N inst✝⁶ : Module R N β : ι → Type u_6 β₁ : ι → Type u_7 β₂ : ι → Type u_8 inst✝⁵ : (i : ι) → AddCommMonoid (β i) inst✝⁴ : (i : ι) → AddCommMonoid (β₁ i) inst✝³ : (i : ι) → AddCommMonoid (β₂ i) inst✝² : (i : ι) → Module R (β i) inst✝¹ : (i : ι) → Module R (β₁ i) inst✝ : (i : ι) → Module R (β₂ i) f : (i : ι) → β i ≃ₗ[R] β₁ i f₂ : (i : ι) → β₁ i ≃ₗ[R] β₂ i ⊢ ∀ (i : ι), ((fun i x => ↑(f₂ i) x) i ∘ (fun i x => ↑(f i) x) i) 0 = 0 [PROOFSTEP] simp [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝⁶ : Semiring R inst✝⁵ : (i : ι) → AddCommMonoid (M i) inst✝⁴ : (i : ι) → Module R (M i) inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : DecidableEq ι inst✝ : (x : N) → Decidable (x ≠ 0) f : (i : ι) → M i →ₗ[R] N i : ι x : M i ⊢ ↑(coprodMap f) (single i x) = ↑(f i) x [PROOFSTEP] simp [coprodMap_apply] [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝² : Semiring R inst✝¹ : AddCommMonoid N inst✝ : Module R N p : ι → Submodule R N ⊢ iSup p = LinearMap.range (↑(lsum ℕ) fun i => Submodule.subtype (p i)) [PROOFSTEP] apply le_antisymm [GOAL] case a ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝² : Semiring R inst✝¹ : AddCommMonoid N inst✝ : Module R N p : ι → Submodule R N ⊢ iSup p ≤ LinearMap.range (↑(lsum ℕ) fun i => Submodule.subtype (p i)) [PROOFSTEP] apply iSup_le _ [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝² : Semiring R inst✝¹ : AddCommMonoid N inst✝ : Module R N p : ι → Submodule R N ⊢ ∀ (i : ι), p i ≤ LinearMap.range (↑(lsum ℕ) fun i => Submodule.subtype (p i)) [PROOFSTEP] intro i y hy [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝² : Semiring R inst✝¹ : AddCommMonoid N inst✝ : Module R N p : ι → Submodule R N i : ι y : N hy : y ∈ p i ⊢ y ∈ LinearMap.range (↑(lsum ℕ) fun i => Submodule.subtype (p i)) [PROOFSTEP] simp only [LinearMap.mem_range, lsum_apply_apply] [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝² : Semiring R inst✝¹ : AddCommMonoid N inst✝ : Module R N p : ι → Submodule R N i : ι y : N hy : y ∈ p i ⊢ ∃ y_1, ↑(sumAddHom fun i => LinearMap.toAddMonoidHom (Submodule.subtype (p i))) y_1 = y [PROOFSTEP] exact ⟨DFinsupp.single i ⟨y, hy⟩, DFinsupp.sumAddHom_single _ _ _⟩ [GOAL] case a ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝² : Semiring R inst✝¹ : AddCommMonoid N inst✝ : Module R N p : ι → Submodule R N ⊢ LinearMap.range (↑(lsum ℕ) fun i => Submodule.subtype (p i)) ≤ iSup p [PROOFSTEP] rintro x ⟨v, rfl⟩ [GOAL] case a.intro ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝² : Semiring R inst✝¹ : AddCommMonoid N inst✝ : Module R N p : ι → Submodule R N v : Π₀ (i : ι), { x // x ∈ p i } ⊢ ↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) v ∈ iSup p [PROOFSTEP] exact dfinsupp_sumAddHom_mem _ v _ fun i _ => (le_iSup p i : p i ≤ _) (v i).2 [GOAL] ι : Type u_1 R : Type u_2 S✝ : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝³ : Semiring R inst✝² : AddCommMonoid N inst✝¹ : Module R N p : ι → Prop inst✝ : DecidablePred p S : ι → Submodule R N ⊢ ⨆ (i : ι) (_ : p i), S i = LinearMap.range (LinearMap.comp (↑(lsum ℕ) fun i => Submodule.subtype (S i)) (filterLinearMap R (fun i => { x // x ∈ S i }) p)) [PROOFSTEP] apply le_antisymm [GOAL] case a ι : Type u_1 R : Type u_2 S✝ : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝³ : Semiring R inst✝² : AddCommMonoid N inst✝¹ : Module R N p : ι → Prop inst✝ : DecidablePred p S : ι → Submodule R N ⊢ ⨆ (i : ι) (_ : p i), S i ≤ LinearMap.range (LinearMap.comp (↑(lsum ℕ) fun i => Submodule.subtype (S i)) (filterLinearMap R (fun i => { x // x ∈ S i }) p)) [PROOFSTEP] refine' iSup₂_le fun i hi y hy => ⟨DFinsupp.single i ⟨y, hy⟩, _⟩ [GOAL] case a ι : Type u_1 R : Type u_2 S✝ : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝³ : Semiring R inst✝² : AddCommMonoid N inst✝¹ : Module R N p : ι → Prop inst✝ : DecidablePred p S : ι → Submodule R N i : ι hi : p i y : N hy : y ∈ S i ⊢ ↑(LinearMap.comp (↑(lsum ℕ) fun i => Submodule.subtype (S i)) (filterLinearMap R (fun i => { x // x ∈ S i }) p)) (single i { val := y, property := hy }) = y [PROOFSTEP] rw [LinearMap.comp_apply, filterLinearMap_apply, filter_single_pos _ _ hi] [GOAL] case a ι : Type u_1 R : Type u_2 S✝ : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝³ : Semiring R inst✝² : AddCommMonoid N inst✝¹ : Module R N p : ι → Prop inst✝ : DecidablePred p S : ι → Submodule R N i : ι hi : p i y : N hy : y ∈ S i ⊢ ↑(↑(lsum ℕ) fun i => Submodule.subtype (S i)) (single i { val := y, property := hy }) = y [PROOFSTEP] simp only [lsum_apply_apply, sumAddHom_single, LinearMap.toAddMonoidHom_coe, coeSubtype] [GOAL] case a ι : Type u_1 R : Type u_2 S✝ : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝³ : Semiring R inst✝² : AddCommMonoid N inst✝¹ : Module R N p : ι → Prop inst✝ : DecidablePred p S : ι → Submodule R N ⊢ LinearMap.range (LinearMap.comp (↑(lsum ℕ) fun i => Submodule.subtype (S i)) (filterLinearMap R (fun i => { x // x ∈ S i }) p)) ≤ ⨆ (i : ι) (_ : p i), S i [PROOFSTEP] rintro x ⟨v, rfl⟩ [GOAL] case a.intro ι : Type u_1 R : Type u_2 S✝ : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝³ : Semiring R inst✝² : AddCommMonoid N inst✝¹ : Module R N p : ι → Prop inst✝ : DecidablePred p S : ι → Submodule R N v : Π₀ (i : ι), { x // x ∈ S i } ⊢ ↑(LinearMap.comp (↑(lsum ℕ) fun i => Submodule.subtype (S i)) (filterLinearMap R (fun i => { x // x ∈ S i }) p)) v ∈ ⨆ (i : ι) (_ : p i), S i [PROOFSTEP] refine' dfinsupp_sumAddHom_mem _ _ _ fun i _ => _ [GOAL] case a.intro ι : Type u_1 R : Type u_2 S✝ : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝³ : Semiring R inst✝² : AddCommMonoid N inst✝¹ : Module R N p : ι → Prop inst✝ : DecidablePred p S : ι → Submodule R N v : Π₀ (i : ι), { x // x ∈ S i } i : ι x✝ : ↑(↑(filterLinearMap R (fun i => { x // x ∈ S i }) p) v) i ≠ 0 ⊢ ↑((fun i => LinearMap.toAddMonoidHom ((fun i => Submodule.subtype (S i)) i)) i) (↑(↑(filterLinearMap R (fun i => { x // x ∈ S i }) p) v) i) ∈ ⨆ (i : ι) (_ : p i), S i [PROOFSTEP] refine' mem_iSup_of_mem i _ [GOAL] case a.intro ι : Type u_1 R : Type u_2 S✝ : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝³ : Semiring R inst✝² : AddCommMonoid N inst✝¹ : Module R N p : ι → Prop inst✝ : DecidablePred p S : ι → Submodule R N v : Π₀ (i : ι), { x // x ∈ S i } i : ι x✝ : ↑(↑(filterLinearMap R (fun i => { x // x ∈ S i }) p) v) i ≠ 0 ⊢ ↑((fun i => LinearMap.toAddMonoidHom ((fun i => Submodule.subtype (S i)) i)) i) (↑(↑(filterLinearMap R (fun i => { x // x ∈ S i }) p) v) i) ∈ ⨆ (_ : p i), S i [PROOFSTEP] by_cases hp : p i [GOAL] case pos ι : Type u_1 R : Type u_2 S✝ : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝³ : Semiring R inst✝² : AddCommMonoid N inst✝¹ : Module R N p : ι → Prop inst✝ : DecidablePred p S : ι → Submodule R N v : Π₀ (i : ι), { x // x ∈ S i } i : ι x✝ : ↑(↑(filterLinearMap R (fun i => { x // x ∈ S i }) p) v) i ≠ 0 hp : p i ⊢ ↑((fun i => LinearMap.toAddMonoidHom ((fun i => Submodule.subtype (S i)) i)) i) (↑(↑(filterLinearMap R (fun i => { x // x ∈ S i }) p) v) i) ∈ ⨆ (_ : p i), S i [PROOFSTEP] simp [hp] [GOAL] case neg ι : Type u_1 R : Type u_2 S✝ : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝³ : Semiring R inst✝² : AddCommMonoid N inst✝¹ : Module R N p : ι → Prop inst✝ : DecidablePred p S : ι → Submodule R N v : Π₀ (i : ι), { x // x ∈ S i } i : ι x✝ : ↑(↑(filterLinearMap R (fun i => { x // x ∈ S i }) p) v) i ≠ 0 hp : ¬p i ⊢ ↑((fun i => LinearMap.toAddMonoidHom ((fun i => Submodule.subtype (S i)) i)) i) (↑(↑(filterLinearMap R (fun i => { x // x ∈ S i }) p) v) i) ∈ ⨆ (_ : p i), S i [PROOFSTEP] simp [hp] [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝³ : Semiring R inst✝² : AddCommMonoid N inst✝¹ : Module R N p : ι → Submodule R N inst✝ : (i : ι) → (x : { x // x ∈ p i }) → Decidable (x ≠ 0) x : N ⊢ x ∈ iSup p ↔ ∃ f, (sum f fun i xi => ↑xi) = x [PROOFSTEP] rw [mem_iSup_iff_exists_dfinsupp] [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝³ : Semiring R inst✝² : AddCommMonoid N inst✝¹ : Module R N p : ι → Submodule R N inst✝ : (i : ι) → (x : { x // x ∈ p i }) → Decidable (x ≠ 0) x : N ⊢ (∃ f, ↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) f = x) ↔ ∃ f, (sum f fun i xi => ↑xi) = x [PROOFSTEP] simp_rw [DFinsupp.lsum_apply_apply, DFinsupp.sumAddHom_apply, LinearMap.toAddMonoidHom_coe, coeSubtype] [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝² : Semiring R inst✝¹ : AddCommMonoid N inst✝ : Module R N s : Finset ι p : ι → Submodule R N a : N ⊢ a ∈ ⨆ (i : ι) (_ : i ∈ s), p i ↔ ∃ μ, ∑ i in s, ↑(μ i) = a [PROOFSTEP] classical rw [Submodule.mem_iSup_iff_exists_dfinsupp'] constructor <;> rintro ⟨μ, hμ⟩ · use fun i => ⟨μ i, (iSup_const_le : _ ≤ p i) (coe_mem <| μ i)⟩ rw [← hμ] symm apply Finset.sum_subset · intro x contrapose intro hx rw [mem_support_iff, not_ne_iff] ext rw [coe_zero, ← mem_bot R] suffices : ⊥ = ⨆ (_ : x ∈ s), p x · exact this.symm ▸ coe_mem (μ x) exact (iSup_neg hx).symm · intro x _ hx rw [mem_support_iff, not_ne_iff] at hx rw [hx] rfl · refine' ⟨DFinsupp.mk s _, _⟩ · rintro ⟨i, hi⟩ refine' ⟨μ i, _⟩ rw [iSup_pos] · exact coe_mem _ · exact hi simp only [DFinsupp.sum] rw [Finset.sum_subset support_mk_subset, ← hμ] exact Finset.sum_congr rfl fun x hx => congr_arg Subtype.val <| mk_of_mem hx · intro x _ hx rw [mem_support_iff, not_ne_iff] at hx rw [hx] rfl [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝² : Semiring R inst✝¹ : AddCommMonoid N inst✝ : Module R N s : Finset ι p : ι → Submodule R N a : N ⊢ a ∈ ⨆ (i : ι) (_ : i ∈ s), p i ↔ ∃ μ, ∑ i in s, ↑(μ i) = a [PROOFSTEP] rw [Submodule.mem_iSup_iff_exists_dfinsupp'] [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝² : Semiring R inst✝¹ : AddCommMonoid N inst✝ : Module R N s : Finset ι p : ι → Submodule R N a : N ⊢ (∃ f, (sum f fun i xi => ↑xi) = a) ↔ ∃ μ, ∑ i in s, ↑(μ i) = a [PROOFSTEP] constructor [GOAL] case mp ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝² : Semiring R inst✝¹ : AddCommMonoid N inst✝ : Module R N s : Finset ι p : ι → Submodule R N a : N ⊢ (∃ f, (sum f fun i xi => ↑xi) = a) → ∃ μ, ∑ i in s, ↑(μ i) = a [PROOFSTEP] rintro ⟨μ, hμ⟩ [GOAL] case mpr ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝² : Semiring R inst✝¹ : AddCommMonoid N inst✝ : Module R N s : Finset ι p : ι → Submodule R N a : N ⊢ (∃ μ, ∑ i in s, ↑(μ i) = a) → ∃ f, (sum f fun i xi => ↑xi) = a [PROOFSTEP] rintro ⟨μ, hμ⟩ [GOAL] case mp.intro ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝² : Semiring R inst✝¹ : AddCommMonoid N inst✝ : Module R N s : Finset ι p : ι → Submodule R N a : N μ : Π₀ (i : ι), { x // x ∈ ⨆ (_ : i ∈ s), p i } hμ : (sum μ fun i xi => ↑xi) = a ⊢ ∃ μ, ∑ i in s, ↑(μ i) = a [PROOFSTEP] use fun i => ⟨μ i, (iSup_const_le : _ ≤ p i) (coe_mem <| μ i)⟩ [GOAL] case h ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝² : Semiring R inst✝¹ : AddCommMonoid N inst✝ : Module R N s : Finset ι p : ι → Submodule R N a : N μ : Π₀ (i : ι), { x // x ∈ ⨆ (_ : i ∈ s), p i } hμ : (sum μ fun i xi => ↑xi) = a ⊢ ∑ i in s, ↑{ val := ↑(↑μ i), property := (_ : ↑(↑μ i) ∈ p i) } = a [PROOFSTEP] rw [← hμ] [GOAL] case h ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝² : Semiring R inst✝¹ : AddCommMonoid N inst✝ : Module R N s : Finset ι p : ι → Submodule R N a : N μ : Π₀ (i : ι), { x // x ∈ ⨆ (_ : i ∈ s), p i } hμ : (sum μ fun i xi => ↑xi) = a ⊢ ∑ i in s, ↑{ val := ↑(↑μ i), property := (_ : ↑(↑μ i) ∈ p i) } = sum μ fun i xi => ↑xi [PROOFSTEP] symm [GOAL] case h ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝² : Semiring R inst✝¹ : AddCommMonoid N inst✝ : Module R N s : Finset ι p : ι → Submodule R N a : N μ : Π₀ (i : ι), { x // x ∈ ⨆ (_ : i ∈ s), p i } hμ : (sum μ fun i xi => ↑xi) = a ⊢ (sum μ fun i xi => ↑xi) = ∑ i in s, ↑{ val := ↑(↑μ i), property := (_ : ↑(↑μ i) ∈ p i) } [PROOFSTEP] apply Finset.sum_subset [GOAL] case h.h ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝² : Semiring R inst✝¹ : AddCommMonoid N inst✝ : Module R N s : Finset ι p : ι → Submodule R N a : N μ : Π₀ (i : ι), { x // x ∈ ⨆ (_ : i ∈ s), p i } hμ : (sum μ fun i xi => ↑xi) = a ⊢ support μ ⊆ s [PROOFSTEP] intro x [GOAL] case h.h ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝² : Semiring R inst✝¹ : AddCommMonoid N inst✝ : Module R N s : Finset ι p : ι → Submodule R N a : N μ : Π₀ (i : ι), { x // x ∈ ⨆ (_ : i ∈ s), p i } hμ : (sum μ fun i xi => ↑xi) = a x : ι ⊢ x ∈ support μ → x ∈ s [PROOFSTEP] contrapose [GOAL] case h.h ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝² : Semiring R inst✝¹ : AddCommMonoid N inst✝ : Module R N s : Finset ι p : ι → Submodule R N a : N μ : Π₀ (i : ι), { x // x ∈ ⨆ (_ : i ∈ s), p i } hμ : (sum μ fun i xi => ↑xi) = a x : ι ⊢ ¬x ∈ s → ¬x ∈ support μ [PROOFSTEP] intro hx [GOAL] case h.h ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝² : Semiring R inst✝¹ : AddCommMonoid N inst✝ : Module R N s : Finset ι p : ι → Submodule R N a : N μ : Π₀ (i : ι), { x // x ∈ ⨆ (_ : i ∈ s), p i } hμ : (sum μ fun i xi => ↑xi) = a x : ι hx : ¬x ∈ s ⊢ ¬x ∈ support μ [PROOFSTEP] rw [mem_support_iff, not_ne_iff] [GOAL] case h.h ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝² : Semiring R inst✝¹ : AddCommMonoid N inst✝ : Module R N s : Finset ι p : ι → Submodule R N a : N μ : Π₀ (i : ι), { x // x ∈ ⨆ (_ : i ∈ s), p i } hμ : (sum μ fun i xi => ↑xi) = a x : ι hx : ¬x ∈ s ⊢ ↑μ x = 0 [PROOFSTEP] ext [GOAL] case h.h.a ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝² : Semiring R inst✝¹ : AddCommMonoid N inst✝ : Module R N s : Finset ι p : ι → Submodule R N a : N μ : Π₀ (i : ι), { x // x ∈ ⨆ (_ : i ∈ s), p i } hμ : (sum μ fun i xi => ↑xi) = a x : ι hx : ¬x ∈ s ⊢ ↑(↑μ x) = ↑0 [PROOFSTEP] rw [coe_zero, ← mem_bot R] [GOAL] case h.h.a ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝² : Semiring R inst✝¹ : AddCommMonoid N inst✝ : Module R N s : Finset ι p : ι → Submodule R N a : N μ : Π₀ (i : ι), { x // x ∈ ⨆ (_ : i ∈ s), p i } hμ : (sum μ fun i xi => ↑xi) = a x : ι hx : ¬x ∈ s ⊢ ↑(↑μ x) ∈ ⊥ [PROOFSTEP] suffices : ⊥ = ⨆ (_ : x ∈ s), p x [GOAL] case h.h.a ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝² : Semiring R inst✝¹ : AddCommMonoid N inst✝ : Module R N s : Finset ι p : ι → Submodule R N a : N μ : Π₀ (i : ι), { x // x ∈ ⨆ (_ : i ∈ s), p i } hμ : (sum μ fun i xi => ↑xi) = a x : ι hx : ¬x ∈ s this : ⊥ = ⨆ (_ : x ∈ s), p x ⊢ ↑(↑μ x) ∈ ⊥ [PROOFSTEP] exact this.symm ▸ coe_mem (μ x) [GOAL] case this ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝² : Semiring R inst✝¹ : AddCommMonoid N inst✝ : Module R N s : Finset ι p : ι → Submodule R N a : N μ : Π₀ (i : ι), { x // x ∈ ⨆ (_ : i ∈ s), p i } hμ : (sum μ fun i xi => ↑xi) = a x : ι hx : ¬x ∈ s ⊢ ⊥ = ⨆ (_ : x ∈ s), p x [PROOFSTEP] exact (iSup_neg hx).symm [GOAL] case h.hf ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝² : Semiring R inst✝¹ : AddCommMonoid N inst✝ : Module R N s : Finset ι p : ι → Submodule R N a : N μ : Π₀ (i : ι), { x // x ∈ ⨆ (_ : i ∈ s), p i } hμ : (sum μ fun i xi => ↑xi) = a ⊢ ∀ (x : ι), x ∈ s → ¬x ∈ support μ → (fun i xi => ↑xi) x (↑μ x) = 0 [PROOFSTEP] intro x _ hx [GOAL] case h.hf ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝² : Semiring R inst✝¹ : AddCommMonoid N inst✝ : Module R N s : Finset ι p : ι → Submodule R N a : N μ : Π₀ (i : ι), { x // x ∈ ⨆ (_ : i ∈ s), p i } hμ : (sum μ fun i xi => ↑xi) = a x : ι a✝ : x ∈ s hx : ¬x ∈ support μ ⊢ (fun i xi => ↑xi) x (↑μ x) = 0 [PROOFSTEP] rw [mem_support_iff, not_ne_iff] at hx [GOAL] case h.hf ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝² : Semiring R inst✝¹ : AddCommMonoid N inst✝ : Module R N s : Finset ι p : ι → Submodule R N a : N μ : Π₀ (i : ι), { x // x ∈ ⨆ (_ : i ∈ s), p i } hμ : (sum μ fun i xi => ↑xi) = a x : ι a✝ : x ∈ s hx : ↑μ x = 0 ⊢ (fun i xi => ↑xi) x (↑μ x) = 0 [PROOFSTEP] rw [hx] [GOAL] case h.hf ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝² : Semiring R inst✝¹ : AddCommMonoid N inst✝ : Module R N s : Finset ι p : ι → Submodule R N a : N μ : Π₀ (i : ι), { x // x ∈ ⨆ (_ : i ∈ s), p i } hμ : (sum μ fun i xi => ↑xi) = a x : ι a✝ : x ∈ s hx : ↑μ x = 0 ⊢ (fun i xi => ↑xi) x 0 = 0 [PROOFSTEP] rfl [GOAL] case mpr.intro ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝² : Semiring R inst✝¹ : AddCommMonoid N inst✝ : Module R N s : Finset ι p : ι → Submodule R N a : N μ : (i : ι) → { x // x ∈ p i } hμ : ∑ i in s, ↑(μ i) = a ⊢ ∃ f, (sum f fun i xi => ↑xi) = a [PROOFSTEP] refine' ⟨DFinsupp.mk s _, _⟩ [GOAL] case mpr.intro.refine'_1 ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝² : Semiring R inst✝¹ : AddCommMonoid N inst✝ : Module R N s : Finset ι p : ι → Submodule R N a : N μ : (i : ι) → { x // x ∈ p i } hμ : ∑ i in s, ↑(μ i) = a ⊢ (i : ↑↑s) → { x // x ∈ ⨆ (_ : ↑i ∈ s), p ↑i } [PROOFSTEP] rintro ⟨i, hi⟩ [GOAL] case mpr.intro.refine'_1.mk ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝² : Semiring R inst✝¹ : AddCommMonoid N inst✝ : Module R N s : Finset ι p : ι → Submodule R N a : N μ : (i : ι) → { x // x ∈ p i } hμ : ∑ i in s, ↑(μ i) = a i : ι hi : i ∈ ↑s ⊢ { x // x ∈ ⨆ (_ : ↑{ val := i, property := hi } ∈ s), p ↑{ val := i, property := hi } } [PROOFSTEP] refine' ⟨μ i, _⟩ [GOAL] case mpr.intro.refine'_1.mk ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝² : Semiring R inst✝¹ : AddCommMonoid N inst✝ : Module R N s : Finset ι p : ι → Submodule R N a : N μ : (i : ι) → { x // x ∈ p i } hμ : ∑ i in s, ↑(μ i) = a i : ι hi : i ∈ ↑s ⊢ ↑(μ i) ∈ ⨆ (_ : ↑{ val := i, property := hi } ∈ s), p ↑{ val := i, property := hi } [PROOFSTEP] rw [iSup_pos] [GOAL] case mpr.intro.refine'_1.mk ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝² : Semiring R inst✝¹ : AddCommMonoid N inst✝ : Module R N s : Finset ι p : ι → Submodule R N a : N μ : (i : ι) → { x // x ∈ p i } hμ : ∑ i in s, ↑(μ i) = a i : ι hi : i ∈ ↑s ⊢ ↑(μ i) ∈ p ↑{ val := i, property := hi } [PROOFSTEP] exact coe_mem _ [GOAL] case mpr.intro.refine'_1.mk ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝² : Semiring R inst✝¹ : AddCommMonoid N inst✝ : Module R N s : Finset ι p : ι → Submodule R N a : N μ : (i : ι) → { x // x ∈ p i } hμ : ∑ i in s, ↑(μ i) = a i : ι hi : i ∈ ↑s ⊢ ↑{ val := i, property := hi } ∈ s [PROOFSTEP] exact hi [GOAL] case mpr.intro.refine'_2 ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝² : Semiring R inst✝¹ : AddCommMonoid N inst✝ : Module R N s : Finset ι p : ι → Submodule R N a : N μ : (i : ι) → { x // x ∈ p i } hμ : ∑ i in s, ↑(μ i) = a ⊢ (sum (DFinsupp.mk s fun i => Subtype.casesOn i fun i hi => { val := ↑(μ i), property := (_ : ↑(μ i) ∈ ⨆ (_ : ↑{ val := i, property := hi } ∈ s), p ↑{ val := i, property := hi }) }) fun i xi => ↑xi) = a [PROOFSTEP] simp only [DFinsupp.sum] [GOAL] case mpr.intro.refine'_2 ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝² : Semiring R inst✝¹ : AddCommMonoid N inst✝ : Module R N s : Finset ι p : ι → Submodule R N a : N μ : (i : ι) → { x // x ∈ p i } hμ : ∑ i in s, ↑(μ i) = a ⊢ ∑ x in support (DFinsupp.mk s fun i => { val := ↑(μ ↑i), property := (_ : ↑(μ ↑i) ∈ ⨆ (_ : ↑{ val := ↑i, property := (_ : ↑i ∈ ↑s) } ∈ s), p ↑{ val := ↑i, property := (_ : ↑i ∈ ↑s) }) }), ↑(↑(DFinsupp.mk s fun i => { val := ↑(μ ↑i), property := (_ : ↑(μ ↑i) ∈ ⨆ (_ : ↑{ val := ↑i, property := (_ : ↑i ∈ ↑s) } ∈ s), p ↑{ val := ↑i, property := (_ : ↑i ∈ ↑s) }) }) x) = a [PROOFSTEP] rw [Finset.sum_subset support_mk_subset, ← hμ] [GOAL] case mpr.intro.refine'_2 ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝² : Semiring R inst✝¹ : AddCommMonoid N inst✝ : Module R N s : Finset ι p : ι → Submodule R N a : N μ : (i : ι) → { x // x ∈ p i } hμ : ∑ i in s, ↑(μ i) = a ⊢ ∑ x in s, ↑(↑(DFinsupp.mk s fun i => { val := ↑(μ ↑i), property := (_ : ↑(μ ↑i) ∈ ⨆ (_ : ↑{ val := ↑i, property := (_ : ↑i ∈ ↑s) } ∈ s), p ↑{ val := ↑i, property := (_ : ↑i ∈ ↑s) }) }) x) = ∑ i in s, ↑(μ i) case mpr.intro.refine'_2 ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝² : Semiring R inst✝¹ : AddCommMonoid N inst✝ : Module R N s : Finset ι p : ι → Submodule R N a : N μ : (i : ι) → { x // x ∈ p i } hμ : ∑ i in s, ↑(μ i) = a ⊢ ∀ (x : ι), x ∈ s → ¬x ∈ support (DFinsupp.mk s fun i => { val := ↑(μ ↑i), property := (_ : ↑(μ ↑i) ∈ ⨆ (_ : ↑{ val := ↑i, property := (_ : ↑i ∈ ↑s) } ∈ s), p ↑{ val := ↑i, property := (_ : ↑i ∈ ↑s) }) }) → ↑(↑(DFinsupp.mk s fun i => { val := ↑(μ ↑i), property := (_ : ↑(μ ↑i) ∈ ⨆ (_ : ↑{ val := ↑i, property := (_ : ↑i ∈ ↑s) } ∈ s), p ↑{ val := ↑i, property := (_ : ↑i ∈ ↑s) }) }) x) = 0 [PROOFSTEP] exact Finset.sum_congr rfl fun x hx => congr_arg Subtype.val <| mk_of_mem hx [GOAL] case mpr.intro.refine'_2 ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝² : Semiring R inst✝¹ : AddCommMonoid N inst✝ : Module R N s : Finset ι p : ι → Submodule R N a : N μ : (i : ι) → { x // x ∈ p i } hμ : ∑ i in s, ↑(μ i) = a ⊢ ∀ (x : ι), x ∈ s → ¬x ∈ support (DFinsupp.mk s fun i => { val := ↑(μ ↑i), property := (_ : ↑(μ ↑i) ∈ ⨆ (_ : ↑{ val := ↑i, property := (_ : ↑i ∈ ↑s) } ∈ s), p ↑{ val := ↑i, property := (_ : ↑i ∈ ↑s) }) }) → ↑(↑(DFinsupp.mk s fun i => { val := ↑(μ ↑i), property := (_ : ↑(μ ↑i) ∈ ⨆ (_ : ↑{ val := ↑i, property := (_ : ↑i ∈ ↑s) } ∈ s), p ↑{ val := ↑i, property := (_ : ↑i ∈ ↑s) }) }) x) = 0 [PROOFSTEP] intro x _ hx [GOAL] case mpr.intro.refine'_2 ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝² : Semiring R inst✝¹ : AddCommMonoid N inst✝ : Module R N s : Finset ι p : ι → Submodule R N a : N μ : (i : ι) → { x // x ∈ p i } hμ : ∑ i in s, ↑(μ i) = a x : ι a✝ : x ∈ s hx : ¬x ∈ support (DFinsupp.mk s fun i => { val := ↑(μ ↑i), property := (_ : ↑(μ ↑i) ∈ ⨆ (_ : ↑{ val := ↑i, property := (_ : ↑i ∈ ↑s) } ∈ s), p ↑{ val := ↑i, property := (_ : ↑i ∈ ↑s) }) }) ⊢ ↑(↑(DFinsupp.mk s fun i => { val := ↑(μ ↑i), property := (_ : ↑(μ ↑i) ∈ ⨆ (_ : ↑{ val := ↑i, property := (_ : ↑i ∈ ↑s) } ∈ s), p ↑{ val := ↑i, property := (_ : ↑i ∈ ↑s) }) }) x) = 0 [PROOFSTEP] rw [mem_support_iff, not_ne_iff] at hx [GOAL] case mpr.intro.refine'_2 ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝² : Semiring R inst✝¹ : AddCommMonoid N inst✝ : Module R N s : Finset ι p : ι → Submodule R N a : N μ : (i : ι) → { x // x ∈ p i } hμ : ∑ i in s, ↑(μ i) = a x : ι a✝ : x ∈ s hx : ↑(DFinsupp.mk s fun i => { val := ↑(μ ↑i), property := (_ : ↑(μ ↑i) ∈ ⨆ (_ : ↑{ val := ↑i, property := (_ : ↑i ∈ ↑s) } ∈ s), p ↑{ val := ↑i, property := (_ : ↑i ∈ ↑s) }) }) x = 0 ⊢ ↑(↑(DFinsupp.mk s fun i => { val := ↑(μ ↑i), property := (_ : ↑(μ ↑i) ∈ ⨆ (_ : ↑{ val := ↑i, property := (_ : ↑i ∈ ↑s) } ∈ s), p ↑{ val := ↑i, property := (_ : ↑i ∈ ↑s) }) }) x) = 0 [PROOFSTEP] rw [hx] [GOAL] case mpr.intro.refine'_2 ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝² : Semiring R inst✝¹ : AddCommMonoid N inst✝ : Module R N s : Finset ι p : ι → Submodule R N a : N μ : (i : ι) → { x // x ∈ p i } hμ : ∑ i in s, ↑(μ i) = a x : ι a✝ : x ∈ s hx : ↑(DFinsupp.mk s fun i => { val := ↑(μ ↑i), property := (_ : ↑(μ ↑i) ∈ ⨆ (_ : ↑{ val := ↑i, property := (_ : ↑i ∈ ↑s) } ∈ s), p ↑{ val := ↑i, property := (_ : ↑i ∈ ↑s) }) }) x = 0 ⊢ ↑0 = 0 [PROOFSTEP] rfl [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝² : Semiring R inst✝¹ : AddCommMonoid N inst✝ : Module R N p : ι → Submodule R N ⊢ Independent p ↔ ∀ (i : ι) (x : { x // x ∈ p i }) (v : Π₀ (i : ι), { x // x ∈ p i }), ↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) (erase i v) = ↑x → x = 0 [PROOFSTEP] simp_rw [CompleteLattice.independent_def, Submodule.disjoint_def, Submodule.mem_biSup_iff_exists_dfinsupp, exists_imp, filter_ne_eq_erase] [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝² : Semiring R inst✝¹ : AddCommMonoid N inst✝ : Module R N p : ι → Submodule R N ⊢ (∀ (i : ι) (x : N), x ∈ p i → ∀ (x_1 : Π₀ (i : ι), { x // x ∈ p i }), ↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) (erase i x_1) = x → x = 0) ↔ ∀ (i : ι) (x : { x // x ∈ p i }) (v : Π₀ (i : ι), { x // x ∈ p i }), ↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) (erase i v) = ↑x → x = 0 [PROOFSTEP] refine' forall_congr' fun i => Subtype.forall'.trans _ [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝² : Semiring R inst✝¹ : AddCommMonoid N inst✝ : Module R N p : ι → Submodule R N i : ι ⊢ (∀ (x : { a // a ∈ p i }) (x_1 : Π₀ (i : ι), { x // x ∈ p i }), ↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) (erase i x_1) = ↑x → ↑x = 0) ↔ ∀ (x : { x // x ∈ p i }) (v : Π₀ (i : ι), { x // x ∈ p i }), ↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) (erase i v) = ↑x → x = 0 [PROOFSTEP] simp_rw [Submodule.coe_eq_zero] [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝² : Semiring R inst✝¹ : AddCommMonoid N inst✝ : Module R N p : ι → Submodule R N h : Function.Injective ↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) ⊢ Independent p [PROOFSTEP] rw [independent_iff_forall_dfinsupp] [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝² : Semiring R inst✝¹ : AddCommMonoid N inst✝ : Module R N p : ι → Submodule R N h : Function.Injective ↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) ⊢ ∀ (i : ι) (x : { x // x ∈ p i }) (v : Π₀ (i : ι), { x // x ∈ p i }), ↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) (erase i v) = ↑x → x = 0 [PROOFSTEP] intro i x v hv [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝² : Semiring R inst✝¹ : AddCommMonoid N inst✝ : Module R N p : ι → Submodule R N h : Function.Injective ↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) i : ι x : { x // x ∈ p i } v : Π₀ (i : ι), { x // x ∈ p i } hv : ↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) (erase i v) = ↑x ⊢ x = 0 [PROOFSTEP] replace hv : lsum ℕ (M := fun i ↦ ↥(p i)) (fun i => (p i).subtype) (erase i v) = lsum ℕ (M := fun i ↦ ↥(p i)) (fun i => (p i).subtype) (single i x) [GOAL] case hv ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝² : Semiring R inst✝¹ : AddCommMonoid N inst✝ : Module R N p : ι → Submodule R N h : Function.Injective ↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) i : ι x : { x // x ∈ p i } v : Π₀ (i : ι), { x // x ∈ p i } hv : ↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) (erase i v) = ↑x ⊢ ↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) (erase i v) = ↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) (single i x) [PROOFSTEP] simpa only [lsum_single] using hv [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝² : Semiring R inst✝¹ : AddCommMonoid N inst✝ : Module R N p : ι → Submodule R N h : Function.Injective ↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) i : ι x : { x // x ∈ p i } v : Π₀ (i : ι), { x // x ∈ p i } hv : ↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) (erase i v) = ↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) (single i x) ⊢ x = 0 [PROOFSTEP] have := FunLike.ext_iff.mp (h hv) i [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝² : Semiring R inst✝¹ : AddCommMonoid N inst✝ : Module R N p : ι → Submodule R N h : Function.Injective ↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) i : ι x : { x // x ∈ p i } v : Π₀ (i : ι), { x // x ∈ p i } hv : ↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) (erase i v) = ↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) (single i x) this : ↑(erase i v) i = ↑(single i x) i ⊢ x = 0 [PROOFSTEP] simpa [eq_comm] using this [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝² : Semiring R inst✝¹ : AddCommMonoid N inst✝ : Module R N p : ι → AddSubmonoid N h : Function.Injective ↑(sumAddHom fun i => AddSubmonoid.subtype (p i)) ⊢ Independent p [PROOFSTEP] rw [← independent_map_orderIso_iff (AddSubmonoid.toNatSubmodule : AddSubmonoid N ≃o _)] [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝² : Semiring R inst✝¹ : AddCommMonoid N inst✝ : Module R N p : ι → AddSubmonoid N h : Function.Injective ↑(sumAddHom fun i => AddSubmonoid.subtype (p i)) ⊢ Independent (↑AddSubmonoid.toNatSubmodule ∘ p) [PROOFSTEP] exact independent_of_dfinsupp_lsum_injective _ h [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝³ : Semiring R inst✝² : AddCommMonoid N inst✝¹ : Module R N inst✝ : (m : R) → Decidable (m ≠ 0) p : ι → Submodule R N v : ι → N hv : ∀ (i : ι), v i ∈ p i ⊢ LinearMap.comp (↑(lsum ℕ) fun i => Submodule.subtype (p i)) (LinearMap.comp (mapRange.linearMap fun i => LinearMap.toSpanSingleton R { x // x ∈ p i } { val := v i, property := (_ : v i ∈ p i) }) ↑(finsuppLequivDFinsupp R)) = Finsupp.total ι N R v [PROOFSTEP] ext [GOAL] case h.h ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝³ : Semiring R inst✝² : AddCommMonoid N inst✝¹ : Module R N inst✝ : (m : R) → Decidable (m ≠ 0) p : ι → Submodule R N v : ι → N hv : ∀ (i : ι), v i ∈ p i a✝ : ι ⊢ ↑(LinearMap.comp (LinearMap.comp (↑(lsum ℕ) fun i => Submodule.subtype (p i)) (LinearMap.comp (mapRange.linearMap fun i => LinearMap.toSpanSingleton R { x // x ∈ p i } { val := v i, property := (_ : v i ∈ p i) }) ↑(finsuppLequivDFinsupp R))) (Finsupp.lsingle a✝)) 1 = ↑(LinearMap.comp (Finsupp.total ι N R v) (Finsupp.lsingle a✝)) 1 [PROOFSTEP] simp [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝² : Ring R inst✝¹ : AddCommGroup N inst✝ : Module R N p : ι → AddSubgroup N h : Function.Injective ↑(sumAddHom fun i => AddSubgroup.subtype (p i)) ⊢ Independent p [PROOFSTEP] rw [← independent_map_orderIso_iff (AddSubgroup.toIntSubmodule : AddSubgroup N ≃o _)] [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝² : Ring R inst✝¹ : AddCommGroup N inst✝ : Module R N p : ι → AddSubgroup N h : Function.Injective ↑(sumAddHom fun i => AddSubgroup.subtype (p i)) ⊢ Independent (↑AddSubgroup.toIntSubmodule ∘ p) [PROOFSTEP] exact independent_of_dfinsupp_lsum_injective _ h [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝² : Ring R inst✝¹ : AddCommGroup N inst✝ : Module R N p : ι → Submodule R N h : Independent p ⊢ Function.Injective ↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) [PROOFSTEP] rw [independent_iff_forall_dfinsupp] at h [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝² : Ring R inst✝¹ : AddCommGroup N inst✝ : Module R N p : ι → Submodule R N h✝ : Independent p h : ∀ (i : ι) (x : { x // x ∈ p i }) (v : Π₀ (i : ι), { x // x ∈ p i }), ↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) (erase i v) = ↑x → x = 0 ⊢ Function.Injective ↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) [PROOFSTEP] suffices LinearMap.ker (lsum ℕ (M := fun i ↦ ↥(p i)) fun i => (p i).subtype) = ⊥ by -- Lean can't find this without our help letI thisI : AddCommGroup (Π₀ i, p i) := inferInstance rw [LinearMap.ker_eq_bot] at this exact this [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝² : Ring R inst✝¹ : AddCommGroup N inst✝ : Module R N p : ι → Submodule R N h✝ : Independent p h : ∀ (i : ι) (x : { x // x ∈ p i }) (v : Π₀ (i : ι), { x // x ∈ p i }), ↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) (erase i v) = ↑x → x = 0 this : LinearMap.ker (↑(lsum ℕ) fun i => Submodule.subtype (p i)) = ⊥ ⊢ Function.Injective ↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) [PROOFSTEP] letI thisI : AddCommGroup (Π₀ i, p i) := inferInstance [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝² : Ring R inst✝¹ : AddCommGroup N inst✝ : Module R N p : ι → Submodule R N h✝ : Independent p h : ∀ (i : ι) (x : { x // x ∈ p i }) (v : Π₀ (i : ι), { x // x ∈ p i }), ↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) (erase i v) = ↑x → x = 0 this : LinearMap.ker (↑(lsum ℕ) fun i => Submodule.subtype (p i)) = ⊥ thisI : AddCommGroup (Π₀ (i : ι), { x // x ∈ p i }) := inferInstance ⊢ Function.Injective ↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) [PROOFSTEP] rw [LinearMap.ker_eq_bot] at this [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝² : Ring R inst✝¹ : AddCommGroup N inst✝ : Module R N p : ι → Submodule R N h✝ : Independent p h : ∀ (i : ι) (x : { x // x ∈ p i }) (v : Π₀ (i : ι), { x // x ∈ p i }), ↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) (erase i v) = ↑x → x = 0 thisI : AddCommGroup (Π₀ (i : ι), { x // x ∈ p i }) := inferInstance this : Function.Injective ↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) ⊢ Function.Injective ↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) [PROOFSTEP] exact this [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝² : Ring R inst✝¹ : AddCommGroup N inst✝ : Module R N p : ι → Submodule R N h✝ : Independent p h : ∀ (i : ι) (x : { x // x ∈ p i }) (v : Π₀ (i : ι), { x // x ∈ p i }), ↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) (erase i v) = ↑x → x = 0 ⊢ LinearMap.ker (↑(lsum ℕ) fun i => Submodule.subtype (p i)) = ⊥ [PROOFSTEP] rw [LinearMap.ker_eq_bot'] [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝² : Ring R inst✝¹ : AddCommGroup N inst✝ : Module R N p : ι → Submodule R N h✝ : Independent p h : ∀ (i : ι) (x : { x // x ∈ p i }) (v : Π₀ (i : ι), { x // x ∈ p i }), ↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) (erase i v) = ↑x → x = 0 ⊢ ∀ (m : Π₀ (i : ι), { x // x ∈ p i }), ↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) m = 0 → m = 0 [PROOFSTEP] intro m hm [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝² : Ring R inst✝¹ : AddCommGroup N inst✝ : Module R N p : ι → Submodule R N h✝ : Independent p h : ∀ (i : ι) (x : { x // x ∈ p i }) (v : Π₀ (i : ι), { x // x ∈ p i }), ↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) (erase i v) = ↑x → x = 0 m : Π₀ (i : ι), { x // x ∈ p i } hm : ↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) m = 0 ⊢ m = 0 [PROOFSTEP] ext i : 1 -- split `m` into the piece at `i` and the pieces elsewhere, to match `h` [GOAL] case h ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝² : Ring R inst✝¹ : AddCommGroup N inst✝ : Module R N p : ι → Submodule R N h✝ : Independent p h : ∀ (i : ι) (x : { x // x ∈ p i }) (v : Π₀ (i : ι), { x // x ∈ p i }), ↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) (erase i v) = ↑x → x = 0 m : Π₀ (i : ι), { x // x ∈ p i } hm : ↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) m = 0 i : ι ⊢ ↑m i = ↑0 i [PROOFSTEP] rw [DFinsupp.zero_apply, ← neg_eq_zero] [GOAL] case h ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝² : Ring R inst✝¹ : AddCommGroup N inst✝ : Module R N p : ι → Submodule R N h✝ : Independent p h : ∀ (i : ι) (x : { x // x ∈ p i }) (v : Π₀ (i : ι), { x // x ∈ p i }), ↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) (erase i v) = ↑x → x = 0 m : Π₀ (i : ι), { x // x ∈ p i } hm : ↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) m = 0 i : ι ⊢ -↑m i = 0 [PROOFSTEP] refine' h i (-m i) m _ [GOAL] case h ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝² : Ring R inst✝¹ : AddCommGroup N inst✝ : Module R N p : ι → Submodule R N h✝ : Independent p h : ∀ (i : ι) (x : { x // x ∈ p i }) (v : Π₀ (i : ι), { x // x ∈ p i }), ↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) (erase i v) = ↑x → x = 0 m : Π₀ (i : ι), { x // x ∈ p i } hm : ↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) m = 0 i : ι ⊢ ↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) (erase i m) = ↑(-↑m i) [PROOFSTEP] rwa [← erase_add_single i m, LinearMap.map_add, lsum_single, Submodule.subtype_apply, add_eq_zero_iff_eq_neg, ← Submodule.coe_neg] at hm [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝² : Ring R inst✝¹ : AddCommGroup N inst✝ : Module R N p : ι → AddSubgroup N h : Independent p ⊢ Function.Injective ↑(sumAddHom fun i => AddSubgroup.subtype (p i)) [PROOFSTEP] rw [← independent_map_orderIso_iff (AddSubgroup.toIntSubmodule : AddSubgroup N ≃o _)] at h [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝² : Ring R inst✝¹ : AddCommGroup N inst✝ : Module R N p : ι → AddSubgroup N h : Independent (↑AddSubgroup.toIntSubmodule ∘ p) ⊢ Function.Injective ↑(sumAddHom fun i => AddSubgroup.subtype (p i)) [PROOFSTEP] exact h.dfinsupp_lsum_injective [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝³ : Ring R inst✝² : AddCommGroup N inst✝¹ : Module R N inst✝ : NoZeroSMulDivisors R N p : ι → Submodule R N hp : Independent p v : ι → N hv : ∀ (i : ι), v i ∈ p i hv' : ∀ (i : ι), v i ≠ 0 ⊢ LinearIndependent R v [PROOFSTEP] let _ := Classical.decEq ι [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝³ : Ring R inst✝² : AddCommGroup N inst✝¹ : Module R N inst✝ : NoZeroSMulDivisors R N p : ι → Submodule R N hp : Independent p v : ι → N hv : ∀ (i : ι), v i ∈ p i hv' : ∀ (i : ι), v i ≠ 0 x✝ : DecidableEq ι := Classical.decEq ι ⊢ LinearIndependent R v [PROOFSTEP] let _ := Classical.decEq R [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝³ : Ring R inst✝² : AddCommGroup N inst✝¹ : Module R N inst✝ : NoZeroSMulDivisors R N p : ι → Submodule R N hp : Independent p v : ι → N hv : ∀ (i : ι), v i ∈ p i hv' : ∀ (i : ι), v i ≠ 0 x✝¹ : DecidableEq ι := Classical.decEq ι x✝ : DecidableEq R := Classical.decEq R ⊢ LinearIndependent R v [PROOFSTEP] rw [linearIndependent_iff] [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝³ : Ring R inst✝² : AddCommGroup N inst✝¹ : Module R N inst✝ : NoZeroSMulDivisors R N p : ι → Submodule R N hp : Independent p v : ι → N hv : ∀ (i : ι), v i ∈ p i hv' : ∀ (i : ι), v i ≠ 0 x✝¹ : DecidableEq ι := Classical.decEq ι x✝ : DecidableEq R := Classical.decEq R ⊢ ∀ (l : ι →₀ R), ↑(Finsupp.total ι N R v) l = 0 → l = 0 [PROOFSTEP] intro l hl [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝³ : Ring R inst✝² : AddCommGroup N inst✝¹ : Module R N inst✝ : NoZeroSMulDivisors R N p : ι → Submodule R N hp : Independent p v : ι → N hv : ∀ (i : ι), v i ∈ p i hv' : ∀ (i : ι), v i ≠ 0 x✝¹ : DecidableEq ι := Classical.decEq ι x✝ : DecidableEq R := Classical.decEq R l : ι →₀ R hl : ↑(Finsupp.total ι N R v) l = 0 ⊢ l = 0 [PROOFSTEP] let a := DFinsupp.mapRange.linearMap (fun i => LinearMap.toSpanSingleton R (p i) ⟨v i, hv i⟩) l.toDFinsupp [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝³ : Ring R inst✝² : AddCommGroup N inst✝¹ : Module R N inst✝ : NoZeroSMulDivisors R N p : ι → Submodule R N hp : Independent p v : ι → N hv : ∀ (i : ι), v i ∈ p i hv' : ∀ (i : ι), v i ≠ 0 x✝¹ : DecidableEq ι := Classical.decEq ι x✝ : DecidableEq R := Classical.decEq R l : ι →₀ R hl : ↑(Finsupp.total ι N R v) l = 0 a : (fun x => Π₀ (i : ι), { x // x ∈ p i }) (Finsupp.toDFinsupp l) := ↑(mapRange.linearMap fun i => LinearMap.toSpanSingleton R { x // x ∈ p i } { val := v i, property := (_ : v i ∈ p i) }) (Finsupp.toDFinsupp l) ⊢ l = 0 [PROOFSTEP] have ha : a = 0 := by apply hp.dfinsupp_lsum_injective rwa [← lsum_comp_mapRange_toSpanSingleton _ hv] at hl [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝³ : Ring R inst✝² : AddCommGroup N inst✝¹ : Module R N inst✝ : NoZeroSMulDivisors R N p : ι → Submodule R N hp : Independent p v : ι → N hv : ∀ (i : ι), v i ∈ p i hv' : ∀ (i : ι), v i ≠ 0 x✝¹ : DecidableEq ι := Classical.decEq ι x✝ : DecidableEq R := Classical.decEq R l : ι →₀ R hl : ↑(Finsupp.total ι N R v) l = 0 a : (fun x => Π₀ (i : ι), { x // x ∈ p i }) (Finsupp.toDFinsupp l) := ↑(mapRange.linearMap fun i => LinearMap.toSpanSingleton R { x // x ∈ p i } { val := v i, property := (_ : v i ∈ p i) }) (Finsupp.toDFinsupp l) ⊢ a = 0 [PROOFSTEP] apply hp.dfinsupp_lsum_injective [GOAL] case a ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝³ : Ring R inst✝² : AddCommGroup N inst✝¹ : Module R N inst✝ : NoZeroSMulDivisors R N p : ι → Submodule R N hp : Independent p v : ι → N hv : ∀ (i : ι), v i ∈ p i hv' : ∀ (i : ι), v i ≠ 0 x✝¹ : DecidableEq ι := Classical.decEq ι x✝ : DecidableEq R := Classical.decEq R l : ι →₀ R hl : ↑(Finsupp.total ι N R v) l = 0 a : (fun x => Π₀ (i : ι), { x // x ∈ p i }) (Finsupp.toDFinsupp l) := ↑(mapRange.linearMap fun i => LinearMap.toSpanSingleton R { x // x ∈ p i } { val := v i, property := (_ : v i ∈ p i) }) (Finsupp.toDFinsupp l) ⊢ ↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) a = ↑(↑(lsum ℕ) fun i => Submodule.subtype (p i)) 0 [PROOFSTEP] rwa [← lsum_comp_mapRange_toSpanSingleton _ hv] at hl [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝³ : Ring R inst✝² : AddCommGroup N inst✝¹ : Module R N inst✝ : NoZeroSMulDivisors R N p : ι → Submodule R N hp : Independent p v : ι → N hv : ∀ (i : ι), v i ∈ p i hv' : ∀ (i : ι), v i ≠ 0 x✝¹ : DecidableEq ι := Classical.decEq ι x✝ : DecidableEq R := Classical.decEq R l : ι →₀ R hl : ↑(Finsupp.total ι N R v) l = 0 a : (fun x => Π₀ (i : ι), { x // x ∈ p i }) (Finsupp.toDFinsupp l) := ↑(mapRange.linearMap fun i => LinearMap.toSpanSingleton R { x // x ∈ p i } { val := v i, property := (_ : v i ∈ p i) }) (Finsupp.toDFinsupp l) ha : a = 0 ⊢ l = 0 [PROOFSTEP] ext i [GOAL] case h ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝³ : Ring R inst✝² : AddCommGroup N inst✝¹ : Module R N inst✝ : NoZeroSMulDivisors R N p : ι → Submodule R N hp : Independent p v : ι → N hv : ∀ (i : ι), v i ∈ p i hv' : ∀ (i : ι), v i ≠ 0 x✝¹ : DecidableEq ι := Classical.decEq ι x✝ : DecidableEq R := Classical.decEq R l : ι →₀ R hl : ↑(Finsupp.total ι N R v) l = 0 a : (fun x => Π₀ (i : ι), { x // x ∈ p i }) (Finsupp.toDFinsupp l) := ↑(mapRange.linearMap fun i => LinearMap.toSpanSingleton R { x // x ∈ p i } { val := v i, property := (_ : v i ∈ p i) }) (Finsupp.toDFinsupp l) ha : a = 0 i : ι ⊢ ↑l i = ↑0 i [PROOFSTEP] apply smul_left_injective R (hv' i) [GOAL] case h.a ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝³ : Ring R inst✝² : AddCommGroup N inst✝¹ : Module R N inst✝ : NoZeroSMulDivisors R N p : ι → Submodule R N hp : Independent p v : ι → N hv : ∀ (i : ι), v i ∈ p i hv' : ∀ (i : ι), v i ≠ 0 x✝¹ : DecidableEq ι := Classical.decEq ι x✝ : DecidableEq R := Classical.decEq R l : ι →₀ R hl : ↑(Finsupp.total ι N R v) l = 0 a : (fun x => Π₀ (i : ι), { x // x ∈ p i }) (Finsupp.toDFinsupp l) := ↑(mapRange.linearMap fun i => LinearMap.toSpanSingleton R { x // x ∈ p i } { val := v i, property := (_ : v i ∈ p i) }) (Finsupp.toDFinsupp l) ha : a = 0 i : ι ⊢ (fun c => c • v i) (↑l i) = (fun c => c • v i) (↑0 i) [PROOFSTEP] have : l i • v i = a i := rfl [GOAL] case h.a ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝³ : Ring R inst✝² : AddCommGroup N inst✝¹ : Module R N inst✝ : NoZeroSMulDivisors R N p : ι → Submodule R N hp : Independent p v : ι → N hv : ∀ (i : ι), v i ∈ p i hv' : ∀ (i : ι), v i ≠ 0 x✝¹ : DecidableEq ι := Classical.decEq ι x✝ : DecidableEq R := Classical.decEq R l : ι →₀ R hl : ↑(Finsupp.total ι N R v) l = 0 a : (fun x => Π₀ (i : ι), { x // x ∈ p i }) (Finsupp.toDFinsupp l) := ↑(mapRange.linearMap fun i => LinearMap.toSpanSingleton R { x // x ∈ p i } { val := v i, property := (_ : v i ∈ p i) }) (Finsupp.toDFinsupp l) ha : a = 0 i : ι this : ↑l i • v i = ↑(↑a i) ⊢ (fun c => c • v i) (↑l i) = (fun c => c • v i) (↑0 i) [PROOFSTEP] simp only [coe_zero, Pi.zero_apply, ZeroMemClass.coe_zero, smul_eq_zero, ha] at this [GOAL] case h.a ι : Type u_1 R : Type u_2 S : Type u_3 M : ι → Type u_4 N : Type u_5 dec_ι : DecidableEq ι inst✝³ : Ring R inst✝² : AddCommGroup N inst✝¹ : Module R N inst✝ : NoZeroSMulDivisors R N p : ι → Submodule R N hp : Independent p v : ι → N hv : ∀ (i : ι), v i ∈ p i hv' : ∀ (i : ι), v i ≠ 0 x✝¹ : DecidableEq ι := Classical.decEq ι x✝ : DecidableEq R := Classical.decEq R l : ι →₀ R hl : ↑(Finsupp.total ι N R v) l = 0 a : (fun x => Π₀ (i : ι), { x // x ∈ p i }) (Finsupp.toDFinsupp l) := ↑(mapRange.linearMap fun i => LinearMap.toSpanSingleton R { x // x ∈ p i } { val := v i, property := (_ : v i ∈ p i) }) (Finsupp.toDFinsupp l) ha : a = 0 i : ι this : ↑l i = 0 ∨ v i = 0 ⊢ (fun c => c • v i) (↑l i) = (fun c => c • v i) (↑0 i) [PROOFSTEP] simpa
{"mathlib_filename": "Mathlib.LinearAlgebra.DFinsupp", "llama_tokens": 90178}
[GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g : E →ₗ.[R] F h : f.domain = g.domain h' : ∀ ⦃x : { x // x ∈ f.domain }⦄ ⦃y : { x // x ∈ g.domain }⦄, ↑x = ↑y → ↑f x = ↑g y ⊢ f = g [PROOFSTEP] rcases f with ⟨f_dom, f⟩ [GOAL] case mk R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G g : E →ₗ.[R] F f_dom : Submodule R E f : { x // x ∈ f_dom } →ₗ[R] F h : { domain := f_dom, toFun := f }.domain = g.domain h' : ∀ ⦃x : { x // x ∈ { domain := f_dom, toFun := f }.domain }⦄ ⦃y : { x // x ∈ g.domain }⦄, ↑x = ↑y → ↑{ domain := f_dom, toFun := f } x = ↑g y ⊢ { domain := f_dom, toFun := f } = g [PROOFSTEP] rcases g with ⟨g_dom, g⟩ [GOAL] case mk.mk R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f_dom : Submodule R E f : { x // x ∈ f_dom } →ₗ[R] F g_dom : Submodule R E g : { x // x ∈ g_dom } →ₗ[R] F h : { domain := f_dom, toFun := f }.domain = { domain := g_dom, toFun := g }.domain h' : ∀ ⦃x : { x // x ∈ { domain := f_dom, toFun := f }.domain }⦄ ⦃y : { x // x ∈ { domain := g_dom, toFun := g }.domain }⦄, ↑x = ↑y → ↑{ domain := f_dom, toFun := f } x = ↑{ domain := g_dom, toFun := g } y ⊢ { domain := f_dom, toFun := f } = { domain := g_dom, toFun := g } [PROOFSTEP] obtain rfl : f_dom = g_dom := h [GOAL] case mk.mk R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f_dom : Submodule R E f g : { x // x ∈ f_dom } →ₗ[R] F h' : ∀ ⦃x : { x // x ∈ { domain := f_dom, toFun := f }.domain }⦄ ⦃y : { x // x ∈ { domain := f_dom, toFun := g }.domain }⦄, ↑x = ↑y → ↑{ domain := f_dom, toFun := f } x = ↑{ domain := f_dom, toFun := g } y ⊢ { domain := f_dom, toFun := f } = { domain := f_dom, toFun := g } [PROOFSTEP] obtain rfl : f = g := LinearMap.ext fun x => h' rfl [GOAL] case mk.mk R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f_dom : Submodule R E f : { x // x ∈ f_dom } →ₗ[R] F h' : ∀ ⦃x y : { x // x ∈ { domain := f_dom, toFun := f }.domain }⦄, ↑x = ↑y → ↑{ domain := f_dom, toFun := f } x = ↑{ domain := f_dom, toFun := f } y ⊢ { domain := f_dom, toFun := f } = { domain := f_dom, toFun := f } [PROOFSTEP] rfl [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g : E →ₗ.[R] F EQ : f = g x y : { x // x ∈ f.domain } h : ↑x = ↑y ⊢ ↑f x = ↑f y [PROOFSTEP] congr [GOAL] case e_a R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g : E →ₗ.[R] F EQ : f = g x y : { x // x ∈ f.domain } h : ↑x = ↑y ⊢ x = y [PROOFSTEP] exact_mod_cast h [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G x : E y : F H : ∀ (c : R), c • x = 0 → c • y = 0 ⊢ ∀ (c₁ c₂ : R), c₁ • x = c₂ • x → c₁ • y = c₂ • y [PROOFSTEP] intro c₁ c₂ h [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G x : E y : F H : ∀ (c : R), c • x = 0 → c • y = 0 c₁ c₂ : R h : c₁ • x = c₂ • x ⊢ c₁ • y = c₂ • y [PROOFSTEP] rw [← sub_eq_zero, ← sub_smul] at h ⊢ [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G x : E y : F H : ∀ (c : R), c • x = 0 → c • y = 0 c₁ c₂ : R h✝ : c₁ • x = c₂ • x h : (c₁ - c₂) • x = 0 ⊢ (c₁ - c₂) • y = 0 [PROOFSTEP] exact H _ h [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G x : E y✝ : F H✝ : ∀ (c : R), c • x = 0 → c • y✝ = 0 H : ∀ (c₁ c₂ : R), c₁ • x = c₂ • x → c₁ • y✝ = c₂ • y✝ y z : { x_1 // x_1 ∈ span R {x} } ⊢ (fun z => Classical.choose (_ : ∃ a, a • x = ↑z) • y✝) (y + z) = (fun z => Classical.choose (_ : ∃ a, a • x = ↑z) • y✝) y + (fun z => Classical.choose (_ : ∃ a, a • x = ↑z) • y✝) z [PROOFSTEP] dsimp only [] [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G x : E y✝ : F H✝ : ∀ (c : R), c • x = 0 → c • y✝ = 0 H : ∀ (c₁ c₂ : R), c₁ • x = c₂ • x → c₁ • y✝ = c₂ • y✝ y z : { x_1 // x_1 ∈ span R {x} } ⊢ Classical.choose (_ : ∃ a, a • x = ↑(y + z)) • y✝ = Classical.choose (_ : ∃ a, a • x = ↑y) • y✝ + Classical.choose (_ : ∃ a, a • x = ↑z) • y✝ [PROOFSTEP] rw [← add_smul] [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G x : E y✝ : F H✝ : ∀ (c : R), c • x = 0 → c • y✝ = 0 H : ∀ (c₁ c₂ : R), c₁ • x = c₂ • x → c₁ • y✝ = c₂ • y✝ y z : { x_1 // x_1 ∈ span R {x} } ⊢ Classical.choose (_ : ∃ a, a • x = ↑(y + z)) • y✝ = (Classical.choose (_ : ∃ a, a • x = ↑y) + Classical.choose (_ : ∃ a, a • x = ↑z)) • y✝ [PROOFSTEP] apply H [GOAL] case a R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G x : E y✝ : F H✝ : ∀ (c : R), c • x = 0 → c • y✝ = 0 H : ∀ (c₁ c₂ : R), c₁ • x = c₂ • x → c₁ • y✝ = c₂ • y✝ y z : { x_1 // x_1 ∈ span R {x} } ⊢ Classical.choose (_ : ∃ a, a • x = ↑(y + z)) • x = (Classical.choose (_ : ∃ a, a • x = ↑y) + Classical.choose (_ : ∃ a, a • x = ↑z)) • x [PROOFSTEP] simp only [add_smul, sub_smul, fun w : R ∙ x => Classical.choose_spec (mem_span_singleton.1 w.prop)] [GOAL] case a R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G x : E y✝ : F H✝ : ∀ (c : R), c • x = 0 → c • y✝ = 0 H : ∀ (c₁ c₂ : R), c₁ • x = c₂ • x → c₁ • y✝ = c₂ • y✝ y z : { x_1 // x_1 ∈ span R {x} } ⊢ ↑(y + z) = ↑y + ↑z [PROOFSTEP] apply coe_add [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G x : E y : F H✝ : ∀ (c : R), c • x = 0 → c • y = 0 H : ∀ (c₁ c₂ : R), c₁ • x = c₂ • x → c₁ • y = c₂ • y c : R z : { x_1 // x_1 ∈ span R {x} } ⊢ AddHom.toFun { toFun := fun z => Classical.choose (_ : ∃ a, a • x = ↑z) • y, map_add' := (_ : ∀ (y_1 z : { x_1 // x_1 ∈ span R {x} }), (fun z => Classical.choose (_ : ∃ a, a • x = ↑z) • y) (y_1 + z) = (fun z => Classical.choose (_ : ∃ a, a • x = ↑z) • y) y_1 + (fun z => Classical.choose (_ : ∃ a, a • x = ↑z) • y) z) } (c • z) = ↑(RingHom.id R) c • AddHom.toFun { toFun := fun z => Classical.choose (_ : ∃ a, a • x = ↑z) • y, map_add' := (_ : ∀ (y_1 z : { x_1 // x_1 ∈ span R {x} }), (fun z => Classical.choose (_ : ∃ a, a • x = ↑z) • y) (y_1 + z) = (fun z => Classical.choose (_ : ∃ a, a • x = ↑z) • y) y_1 + (fun z => Classical.choose (_ : ∃ a, a • x = ↑z) • y) z) } z [PROOFSTEP] dsimp only [] [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G x : E y : F H✝ : ∀ (c : R), c • x = 0 → c • y = 0 H : ∀ (c₁ c₂ : R), c₁ • x = c₂ • x → c₁ • y = c₂ • y c : R z : { x_1 // x_1 ∈ span R {x} } ⊢ Classical.choose (_ : ∃ a, a • x = ↑(c • z)) • y = ↑(RingHom.id R) c • Classical.choose (_ : ∃ a, a • x = ↑z) • y [PROOFSTEP] rw [smul_smul] [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G x : E y : F H✝ : ∀ (c : R), c • x = 0 → c • y = 0 H : ∀ (c₁ c₂ : R), c₁ • x = c₂ • x → c₁ • y = c₂ • y c : R z : { x_1 // x_1 ∈ span R {x} } ⊢ Classical.choose (_ : ∃ a, a • x = ↑(c • z)) • y = (↑(RingHom.id R) c * Classical.choose (_ : ∃ a, a • x = ↑z)) • y [PROOFSTEP] apply H [GOAL] case a R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G x : E y : F H✝ : ∀ (c : R), c • x = 0 → c • y = 0 H : ∀ (c₁ c₂ : R), c₁ • x = c₂ • x → c₁ • y = c₂ • y c : R z : { x_1 // x_1 ∈ span R {x} } ⊢ Classical.choose (_ : ∃ a, a • x = ↑(c • z)) • x = (↑(RingHom.id R) c * Classical.choose (_ : ∃ a, a • x = ↑z)) • x [PROOFSTEP] simp only [mul_smul, fun w : R ∙ x => Classical.choose_spec (mem_span_singleton.1 w.prop)] [GOAL] case a R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G x : E y : F H✝ : ∀ (c : R), c • x = 0 → c • y = 0 H : ∀ (c₁ c₂ : R), c₁ • x = c₂ • x → c₁ • y = c₂ • y c : R z : { x_1 // x_1 ∈ span R {x} } ⊢ ↑(c • z) = ↑(RingHom.id R) c • ↑z [PROOFSTEP] apply coe_smul [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G x : E y : F H : ∀ (c : R), c • x = 0 → c • y = 0 c : R h : c • x ∈ (mkSpanSingleton' x y H).domain ⊢ ↑(mkSpanSingleton' x y H) { val := c • x, property := h } = c • y [PROOFSTEP] dsimp [mkSpanSingleton'] [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G x : E y : F H : ∀ (c : R), c • x = 0 → c • y = 0 c : R h : c • x ∈ (mkSpanSingleton' x y H).domain ⊢ Classical.choose (_ : ∃ a, a • x = c • x) • y = c • y [PROOFSTEP] rw [← sub_eq_zero, ← sub_smul] [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G x : E y : F H : ∀ (c : R), c • x = 0 → c • y = 0 c : R h : c • x ∈ (mkSpanSingleton' x y H).domain ⊢ (Classical.choose (_ : ∃ a, a • x = c • x) - c) • y = 0 [PROOFSTEP] apply H [GOAL] case a R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G x : E y : F H : ∀ (c : R), c • x = 0 → c • y = 0 c : R h : c • x ∈ (mkSpanSingleton' x y H).domain ⊢ (Classical.choose (_ : ∃ a, a • x = c • x) - c) • x = 0 [PROOFSTEP] simp only [sub_smul, one_smul, sub_eq_zero] [GOAL] case a R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G x : E y : F H : ∀ (c : R), c • x = 0 → c • y = 0 c : R h : c • x ∈ (mkSpanSingleton' x y H).domain ⊢ Classical.choose (_ : ∃ a, a • x = c • x) • x = c • x [PROOFSTEP] apply Classical.choose_spec (mem_span_singleton.1 h) [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G x : E y : F H : ∀ (c : R), c • x = 0 → c • y = 0 h : x ∈ (mkSpanSingleton' x y H).domain ⊢ ↑(mkSpanSingleton' x y H) { val := x, property := h } = y [PROOFSTEP] have := by refine mkSpanSingleton'_apply x y H 1 ?_; rwa [one_smul] [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G x : E y : F H : ∀ (c : R), c • x = 0 → c • y = 0 h : x ∈ (mkSpanSingleton' x y H).domain ⊢ ?m.88594 [PROOFSTEP] refine mkSpanSingleton'_apply x y H 1 ?_ [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G x : E y : F H : ∀ (c : R), c • x = 0 → c • y = 0 h : x ∈ (mkSpanSingleton' x y H).domain ⊢ 1 • x ∈ (mkSpanSingleton' x y H).domain [PROOFSTEP] rwa [one_smul] [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G x : E y : F H : ∀ (c : R), c • x = 0 → c • y = 0 h : x ∈ (mkSpanSingleton' x y H).domain this : ↑(mkSpanSingleton' x y H) { val := 1 • x, property := (_ : 1 • x ∈ (mkSpanSingleton' x y H).domain) } = 1 • y ⊢ ↑(mkSpanSingleton' x y H) { val := x, property := h } = y [PROOFSTEP] convert this [GOAL] case h.e'_2.h.e'_10.h.e'_3 R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G x : E y : F H : ∀ (c : R), c • x = 0 → c • y = 0 h : x ∈ (mkSpanSingleton' x y H).domain this : ↑(mkSpanSingleton' x y H) { val := 1 • x, property := (_ : 1 • x ∈ (mkSpanSingleton' x y H).domain) } = 1 • y ⊢ x = 1 • x [PROOFSTEP] rw [one_smul] [GOAL] case h.e'_3 R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G x : E y : F H : ∀ (c : R), c • x = 0 → c • y = 0 h : x ∈ (mkSpanSingleton' x y H).domain this : ↑(mkSpanSingleton' x y H) { val := 1 • x, property := (_ : 1 • x ∈ (mkSpanSingleton' x y H).domain) } = 1 • y ⊢ y = 1 • y [PROOFSTEP] rw [one_smul] [GOAL] R : Type u_1 inst✝¹¹ : Ring R E✝ : Type u_2 inst✝¹⁰ : AddCommGroup E✝ inst✝⁹ : Module R E✝ F✝ : Type u_3 inst✝⁸ : AddCommGroup F✝ inst✝⁷ : Module R F✝ G : Type u_4 inst✝⁶ : AddCommGroup G inst✝⁵ : Module R G K : Type u_5 E : Type u_6 F : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup E inst✝² : Module K E inst✝¹ : AddCommGroup F inst✝ : Module K F x : E y : F hx : x ≠ 0 c : K hc✝ : c • x = 0 hc : c = 0 ⊢ c • y = 0 [PROOFSTEP] rw [hc, zero_smul] [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g : E →ₗ.[R] F x y : E x✝¹ : x ∈ {x | ∃ hf hg, ↑f { val := x, property := hf } = ↑g { val := x, property := hg }} x✝ : y ∈ {x | ∃ hf hg, ↑f { val := x, property := hf } = ↑g { val := x, property := hg }} hfx : x ∈ f.domain hgx : x ∈ g.domain hx : ↑f { val := x, property := hfx } = ↑g { val := x, property := hgx } hfy : y ∈ f.domain hgy : y ∈ g.domain hy : ↑f { val := y, property := hfy } = ↑g { val := y, property := hgy } ⊢ ↑f { val := x + y, property := (_ : x + y ∈ f.domain) } = ↑g { val := x + y, property := (_ : x + y ∈ g.domain) } [PROOFSTEP] erw [f.map_add ⟨x, hfx⟩ ⟨y, hfy⟩, g.map_add ⟨x, hgx⟩ ⟨y, hgy⟩, hx, hy] [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g : E →ₗ.[R] F ⊢ ∀ (c : R) {x : E}, x ∈ { toAddSubsemigroup := { carrier := {x | ∃ hf hg, ↑f { val := x, property := hf } = ↑g { val := x, property := hg }}, add_mem' := (_ : ∀ {x y : E}, x ∈ {x | ∃ hf hg, ↑f { val := x, property := hf } = ↑g { val := x, property := hg }} → y ∈ {x | ∃ hf hg, ↑f { val := x, property := hf } = ↑g { val := x, property := hg }} → x + y ∈ {x | ∃ hf hg, ↑f { val := x, property := hf } = ↑g { val := x, property := hg }}) }, zero_mem' := (_ : ∃ hf hg, ↑f { val := 0, property := hf } = ↑g { val := 0, property := hg }) }.toAddSubsemigroup.carrier → c • x ∈ { toAddSubsemigroup := { carrier := {x | ∃ hf hg, ↑f { val := x, property := hf } = ↑g { val := x, property := hg }}, add_mem' := (_ : ∀ {x y : E}, x ∈ {x | ∃ hf hg, ↑f { val := x, property := hf } = ↑g { val := x, property := hg }} → y ∈ {x | ∃ hf hg, ↑f { val := x, property := hf } = ↑g { val := x, property := hg }} → x + y ∈ {x | ∃ hf hg, ↑f { val := x, property := hf } = ↑g { val := x, property := hg }}) }, zero_mem' := (_ : ∃ hf hg, ↑f { val := 0, property := hf } = ↑g { val := 0, property := hg }) }.toAddSubsemigroup.carrier [PROOFSTEP] rintro c x ⟨hfx, hgx, hx⟩ [GOAL] case intro.intro R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g : E →ₗ.[R] F c : R x : E hfx : x ∈ f.domain hgx : x ∈ g.domain hx : ↑f { val := x, property := hfx } = ↑g { val := x, property := hgx } ⊢ c • x ∈ { toAddSubsemigroup := { carrier := {x | ∃ hf hg, ↑f { val := x, property := hf } = ↑g { val := x, property := hg }}, add_mem' := (_ : ∀ {x y : E}, x ∈ {x | ∃ hf hg, ↑f { val := x, property := hf } = ↑g { val := x, property := hg }} → y ∈ {x | ∃ hf hg, ↑f { val := x, property := hf } = ↑g { val := x, property := hg }} → x + y ∈ {x | ∃ hf hg, ↑f { val := x, property := hf } = ↑g { val := x, property := hg }}) }, zero_mem' := (_ : ∃ hf hg, ↑f { val := 0, property := hf } = ↑g { val := 0, property := hg }) }.toAddSubsemigroup.carrier [PROOFSTEP] exact ⟨smul_mem _ c hfx, smul_mem _ c hgx, by erw [f.map_smul c ⟨x, hfx⟩, g.map_smul c ⟨x, hgx⟩, hx]⟩ [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g : E →ₗ.[R] F c : R x : E hfx : x ∈ f.domain hgx : x ∈ g.domain hx : ↑f { val := x, property := hfx } = ↑g { val := x, property := hgx } ⊢ ↑f { val := c • x, property := (_ : c • x ∈ f.domain) } = ↑g { val := c • x, property := (_ : c • x ∈ g.domain) } [PROOFSTEP] erw [f.map_smul c ⟨x, hfx⟩, g.map_smul c ⟨x, hgx⟩, hx] [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G ⊢ ∀ (a b c : E →ₗ.[R] F), a ≤ b → a ≤ c → a ≤ b ⊓ c [PROOFSTEP] rintro f g h ⟨fg_le, fg_eq⟩ ⟨fh_le, fh_eq⟩ [GOAL] case intro.intro R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g h : E →ₗ.[R] F fg_le : f.domain ≤ g.domain fg_eq : ∀ ⦃x : { x // x ∈ f.domain }⦄ ⦃y : { x // x ∈ g.domain }⦄, ↑x = ↑y → ↑f x = ↑g y fh_le : f.domain ≤ h.domain fh_eq : ∀ ⦃x : { x // x ∈ f.domain }⦄ ⦃y : { x // x ∈ h.domain }⦄, ↑x = ↑y → ↑f x = ↑h y ⊢ f ≤ g ⊓ h [PROOFSTEP] exact ⟨fun x hx => ⟨fg_le hx, fh_le hx, by -- Porting note: `[exact ⟨x, hx⟩, rfl, rfl]` → `[skip, exact ⟨x, hx⟩, skip] <;> rfl`refine' (fg_eq _).symm.trans (fh_eq _) <;> [skip; exact ⟨x, hx⟩; skip] <;> rfl⟩, fun x ⟨y, yg, hy⟩ h => by apply fg_eq exact h⟩ [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g h : E →ₗ.[R] F fg_le : f.domain ≤ g.domain fg_eq : ∀ ⦃x : { x // x ∈ f.domain }⦄ ⦃y : { x // x ∈ g.domain }⦄, ↑x = ↑y → ↑f x = ↑g y fh_le : f.domain ≤ h.domain fh_eq : ∀ ⦃x : { x // x ∈ f.domain }⦄ ⦃y : { x // x ∈ h.domain }⦄, ↑x = ↑y → ↑f x = ↑h y x : E hx : x ∈ f.domain ⊢ ↑g { val := x, property := (_ : x ∈ g.domain) } = ↑h { val := x, property := (_ : x ∈ h.domain) } [PROOFSTEP] refine' (fg_eq _).symm.trans (fh_eq _) <;> [skip; exact ⟨x, hx⟩; skip] [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g h : E →ₗ.[R] F fg_le : f.domain ≤ g.domain fg_eq : ∀ ⦃x : { x // x ∈ f.domain }⦄ ⦃y : { x // x ∈ g.domain }⦄, ↑x = ↑y → ↑f x = ↑g y fh_le : f.domain ≤ h.domain fh_eq : ∀ ⦃x : { x // x ∈ f.domain }⦄ ⦃y : { x // x ∈ h.domain }⦄, ↑x = ↑y → ↑f x = ↑h y x : E hx : x ∈ f.domain ⊢ ↑g { val := x, property := (_ : x ∈ g.domain) } = ↑h { val := x, property := (_ : x ∈ h.domain) } [PROOFSTEP] refine' (fg_eq _).symm.trans (fh_eq _) [GOAL] case refine'_1 R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g h : E →ₗ.[R] F fg_le : f.domain ≤ g.domain fg_eq : ∀ ⦃x : { x // x ∈ f.domain }⦄ ⦃y : { x // x ∈ g.domain }⦄, ↑x = ↑y → ↑f x = ↑g y fh_le : f.domain ≤ h.domain fh_eq : ∀ ⦃x : { x // x ∈ f.domain }⦄ ⦃y : { x // x ∈ h.domain }⦄, ↑x = ↑y → ↑f x = ↑h y x : E hx : x ∈ f.domain ⊢ ↑?refine'_2 = ↑{ val := x, property := (_ : x ∈ g.domain) } [PROOFSTEP] skip [GOAL] case refine'_2 R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g h : E →ₗ.[R] F fg_le : f.domain ≤ g.domain fg_eq : ∀ ⦃x : { x // x ∈ f.domain }⦄ ⦃y : { x // x ∈ g.domain }⦄, ↑x = ↑y → ↑f x = ↑g y fh_le : f.domain ≤ h.domain fh_eq : ∀ ⦃x : { x // x ∈ f.domain }⦄ ⦃y : { x // x ∈ h.domain }⦄, ↑x = ↑y → ↑f x = ↑h y x : E hx : x ∈ f.domain ⊢ { x // x ∈ f.domain } [PROOFSTEP] exact ⟨x, hx⟩ [GOAL] case refine'_3 R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g h : E →ₗ.[R] F fg_le : f.domain ≤ g.domain fg_eq : ∀ ⦃x : { x // x ∈ f.domain }⦄ ⦃y : { x // x ∈ g.domain }⦄, ↑x = ↑y → ↑f x = ↑g y fh_le : f.domain ≤ h.domain fh_eq : ∀ ⦃x : { x // x ∈ f.domain }⦄ ⦃y : { x // x ∈ h.domain }⦄, ↑x = ↑y → ↑f x = ↑h y x : E hx : x ∈ f.domain ⊢ ↑{ val := x, property := hx } = ↑{ val := x, property := (_ : x ∈ h.domain) } [PROOFSTEP] skip [GOAL] case refine'_1 R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g h : E →ₗ.[R] F fg_le : f.domain ≤ g.domain fg_eq : ∀ ⦃x : { x // x ∈ f.domain }⦄ ⦃y : { x // x ∈ g.domain }⦄, ↑x = ↑y → ↑f x = ↑g y fh_le : f.domain ≤ h.domain fh_eq : ∀ ⦃x : { x // x ∈ f.domain }⦄ ⦃y : { x // x ∈ h.domain }⦄, ↑x = ↑y → ↑f x = ↑h y x : E hx : x ∈ f.domain ⊢ ↑{ val := x, property := hx } = ↑{ val := x, property := (_ : x ∈ g.domain) } [PROOFSTEP] rfl [GOAL] case refine'_3 R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g h : E →ₗ.[R] F fg_le : f.domain ≤ g.domain fg_eq : ∀ ⦃x : { x // x ∈ f.domain }⦄ ⦃y : { x // x ∈ g.domain }⦄, ↑x = ↑y → ↑f x = ↑g y fh_le : f.domain ≤ h.domain fh_eq : ∀ ⦃x : { x // x ∈ f.domain }⦄ ⦃y : { x // x ∈ h.domain }⦄, ↑x = ↑y → ↑f x = ↑h y x : E hx : x ∈ f.domain ⊢ ↑{ val := x, property := hx } = ↑{ val := x, property := (_ : x ∈ h.domain) } [PROOFSTEP] rfl [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g h✝ : E →ₗ.[R] F fg_le : f.domain ≤ g.domain fg_eq : ∀ ⦃x : { x // x ∈ f.domain }⦄ ⦃y : { x // x ∈ g.domain }⦄, ↑x = ↑y → ↑f x = ↑g y fh_le : f.domain ≤ h✝.domain fh_eq : ∀ ⦃x : { x // x ∈ f.domain }⦄ ⦃y : { x // x ∈ h✝.domain }⦄, ↑x = ↑y → ↑f x = ↑h✝ y x : { x // x ∈ f.domain } x✝ : { x // x ∈ (g ⊓ h✝).domain } y : E yg : y ∈ g.domain hy : ∃ hg, ↑g { val := y, property := yg } = ↑h✝ { val := y, property := hg } h : ↑x = ↑{ val := y, property := (_ : ∃ hf hg, ↑g { val := y, property := hf } = ↑h✝ { val := y, property := hg }) } ⊢ ↑f x = ↑(g ⊓ h✝) { val := y, property := (_ : ∃ hf hg, ↑g { val := y, property := hf } = ↑h✝ { val := y, property := hg }) } [PROOFSTEP] apply fg_eq [GOAL] case _h R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g h✝ : E →ₗ.[R] F fg_le : f.domain ≤ g.domain fg_eq : ∀ ⦃x : { x // x ∈ f.domain }⦄ ⦃y : { x // x ∈ g.domain }⦄, ↑x = ↑y → ↑f x = ↑g y fh_le : f.domain ≤ h✝.domain fh_eq : ∀ ⦃x : { x // x ∈ f.domain }⦄ ⦃y : { x // x ∈ h✝.domain }⦄, ↑x = ↑y → ↑f x = ↑h✝ y x : { x // x ∈ f.domain } x✝ : { x // x ∈ (g ⊓ h✝).domain } y : E yg : y ∈ g.domain hy : ∃ hg, ↑g { val := y, property := yg } = ↑h✝ { val := y, property := hg } h : ↑x = ↑{ val := y, property := (_ : ∃ hf hg, ↑g { val := y, property := hf } = ↑h✝ { val := y, property := hg }) } ⊢ ↑x = ↑(↑(ofLe (_ : ∀ (_x : E), _x ∈ eqLocus g h✝ → _x ∈ g.domain)) { val := y, property := (_ : ∃ hf hg, ↑g { val := y, property := hf } = ↑h✝ { val := y, property := hg }) }) [PROOFSTEP] exact h [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f : E →ₗ.[R] F x : { x // x ∈ ⊥.domain } y : { x // x ∈ f.domain } h : ↑x = ↑y ⊢ ↑⊥ x = ↑f y [PROOFSTEP] have hx : x = 0 := Subtype.eq ((mem_bot R).1 x.2) [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f : E →ₗ.[R] F x : { x // x ∈ ⊥.domain } y : { x // x ∈ f.domain } h : ↑x = ↑y hx : x = 0 ⊢ ↑⊥ x = ↑f y [PROOFSTEP] have hy : y = 0 := Subtype.eq (h.symm.trans (congr_arg _ hx)) [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f : E →ₗ.[R] F x : { x // x ∈ ⊥.domain } y : { x // x ∈ f.domain } h : ↑x = ↑y hx : x = 0 hy : y = 0 ⊢ ↑⊥ x = ↑f y [PROOFSTEP] rw [hx, hy, map_zero, map_zero] [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g : E →ₗ.[R] F h : ∀ (x : { x // x ∈ f.domain }) (y : { x // x ∈ g.domain }), ↑x = ↑y → ↑f x = ↑g y ⊢ ∃ fg, ∀ (x : { x // x ∈ f.domain }) (y : { x // x ∈ g.domain }) (z : { x // x ∈ f.domain ⊔ g.domain }), ↑x + ↑y = ↑z → ↑fg z = ↑f x + ↑g y [PROOFSTEP] choose x hx y hy hxy using fun z : ↥(f.domain ⊔ g.domain) => mem_sup.1 z.prop [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g : E →ₗ.[R] F h : ∀ (x : { x // x ∈ f.domain }) (y : { x // x ∈ g.domain }), ↑x = ↑y → ↑f x = ↑g y x : { x // x ∈ f.domain ⊔ g.domain } → E hx : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), x z ∈ f.domain y : { x // x ∈ f.domain ⊔ g.domain } → E hy : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), y z ∈ g.domain hxy : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), x z + y z = ↑z ⊢ ∃ fg, ∀ (x : { x // x ∈ f.domain }) (y : { x // x ∈ g.domain }) (z : { x // x ∈ f.domain ⊔ g.domain }), ↑x + ↑y = ↑z → ↑fg z = ↑f x + ↑g y [PROOFSTEP] set fg := fun z => f ⟨x z, hx z⟩ + g ⟨y z, hy z⟩ [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g : E →ₗ.[R] F h : ∀ (x : { x // x ∈ f.domain }) (y : { x // x ∈ g.domain }), ↑x = ↑y → ↑f x = ↑g y x : { x // x ∈ f.domain ⊔ g.domain } → E hx : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), x z ∈ f.domain y : { x // x ∈ f.domain ⊔ g.domain } → E hy : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), y z ∈ g.domain hxy : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), x z + y z = ↑z fg : { x // x ∈ f.domain ⊔ g.domain } → F := fun z => ↑f { val := x z, property := (_ : x z ∈ f.domain) } + ↑g { val := y z, property := (_ : y z ∈ g.domain) } ⊢ ∃ fg, ∀ (x : { x // x ∈ f.domain }) (y : { x // x ∈ g.domain }) (z : { x // x ∈ f.domain ⊔ g.domain }), ↑x + ↑y = ↑z → ↑fg z = ↑f x + ↑g y [PROOFSTEP] have fg_eq : ∀ (x' : f.domain) (y' : g.domain) (z' : ↥(f.domain ⊔ g.domain)) (_H : (x' : E) + y' = z'), fg z' = f x' + g y' := by intro x' y' z' H dsimp rw [add_comm, ← sub_eq_sub_iff_add_eq_add, eq_comm, ← map_sub, ← map_sub] apply h simp only [← eq_sub_iff_add_eq] at hxy simp only [AddSubgroupClass.coe_sub, coe_mk, coe_mk, hxy, ← sub_add, ← sub_sub, sub_self, zero_sub, ← H] apply neg_add_eq_sub [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g : E →ₗ.[R] F h : ∀ (x : { x // x ∈ f.domain }) (y : { x // x ∈ g.domain }), ↑x = ↑y → ↑f x = ↑g y x : { x // x ∈ f.domain ⊔ g.domain } → E hx : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), x z ∈ f.domain y : { x // x ∈ f.domain ⊔ g.domain } → E hy : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), y z ∈ g.domain hxy : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), x z + y z = ↑z fg : { x // x ∈ f.domain ⊔ g.domain } → F := fun z => ↑f { val := x z, property := (_ : x z ∈ f.domain) } + ↑g { val := y z, property := (_ : y z ∈ g.domain) } ⊢ ∀ (x' : { x // x ∈ f.domain }) (y' : { x // x ∈ g.domain }) (z' : { x // x ∈ f.domain ⊔ g.domain }), ↑x' + ↑y' = ↑z' → fg z' = ↑f x' + ↑g y' [PROOFSTEP] intro x' y' z' H [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g : E →ₗ.[R] F h : ∀ (x : { x // x ∈ f.domain }) (y : { x // x ∈ g.domain }), ↑x = ↑y → ↑f x = ↑g y x : { x // x ∈ f.domain ⊔ g.domain } → E hx : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), x z ∈ f.domain y : { x // x ∈ f.domain ⊔ g.domain } → E hy : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), y z ∈ g.domain hxy : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), x z + y z = ↑z fg : { x // x ∈ f.domain ⊔ g.domain } → F := fun z => ↑f { val := x z, property := (_ : x z ∈ f.domain) } + ↑g { val := y z, property := (_ : y z ∈ g.domain) } x' : { x // x ∈ f.domain } y' : { x // x ∈ g.domain } z' : { x // x ∈ f.domain ⊔ g.domain } H : ↑x' + ↑y' = ↑z' ⊢ fg z' = ↑f x' + ↑g y' [PROOFSTEP] dsimp [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g : E →ₗ.[R] F h : ∀ (x : { x // x ∈ f.domain }) (y : { x // x ∈ g.domain }), ↑x = ↑y → ↑f x = ↑g y x : { x // x ∈ f.domain ⊔ g.domain } → E hx : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), x z ∈ f.domain y : { x // x ∈ f.domain ⊔ g.domain } → E hy : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), y z ∈ g.domain hxy : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), x z + y z = ↑z fg : { x // x ∈ f.domain ⊔ g.domain } → F := fun z => ↑f { val := x z, property := (_ : x z ∈ f.domain) } + ↑g { val := y z, property := (_ : y z ∈ g.domain) } x' : { x // x ∈ f.domain } y' : { x // x ∈ g.domain } z' : { x // x ∈ f.domain ⊔ g.domain } H : ↑x' + ↑y' = ↑z' ⊢ ↑f { val := x z', property := (_ : x z' ∈ f.domain) } + ↑g { val := y z', property := (_ : y z' ∈ g.domain) } = ↑f x' + ↑g y' [PROOFSTEP] rw [add_comm, ← sub_eq_sub_iff_add_eq_add, eq_comm, ← map_sub, ← map_sub] [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g : E →ₗ.[R] F h : ∀ (x : { x // x ∈ f.domain }) (y : { x // x ∈ g.domain }), ↑x = ↑y → ↑f x = ↑g y x : { x // x ∈ f.domain ⊔ g.domain } → E hx : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), x z ∈ f.domain y : { x // x ∈ f.domain ⊔ g.domain } → E hy : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), y z ∈ g.domain hxy : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), x z + y z = ↑z fg : { x // x ∈ f.domain ⊔ g.domain } → F := fun z => ↑f { val := x z, property := (_ : x z ∈ f.domain) } + ↑g { val := y z, property := (_ : y z ∈ g.domain) } x' : { x // x ∈ f.domain } y' : { x // x ∈ g.domain } z' : { x // x ∈ f.domain ⊔ g.domain } H : ↑x' + ↑y' = ↑z' ⊢ ↑f (x' - { val := x z', property := (_ : x z' ∈ f.domain) }) = ↑g ({ val := y z', property := (_ : y z' ∈ g.domain) } - y') [PROOFSTEP] apply h [GOAL] case a R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g : E →ₗ.[R] F h : ∀ (x : { x // x ∈ f.domain }) (y : { x // x ∈ g.domain }), ↑x = ↑y → ↑f x = ↑g y x : { x // x ∈ f.domain ⊔ g.domain } → E hx : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), x z ∈ f.domain y : { x // x ∈ f.domain ⊔ g.domain } → E hy : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), y z ∈ g.domain hxy : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), x z + y z = ↑z fg : { x // x ∈ f.domain ⊔ g.domain } → F := fun z => ↑f { val := x z, property := (_ : x z ∈ f.domain) } + ↑g { val := y z, property := (_ : y z ∈ g.domain) } x' : { x // x ∈ f.domain } y' : { x // x ∈ g.domain } z' : { x // x ∈ f.domain ⊔ g.domain } H : ↑x' + ↑y' = ↑z' ⊢ ↑(x' - { val := x z', property := (_ : x z' ∈ f.domain) }) = ↑({ val := y z', property := (_ : y z' ∈ g.domain) } - y') [PROOFSTEP] simp only [← eq_sub_iff_add_eq] at hxy [GOAL] case a R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g : E →ₗ.[R] F h : ∀ (x : { x // x ∈ f.domain }) (y : { x // x ∈ g.domain }), ↑x = ↑y → ↑f x = ↑g y x : { x // x ∈ f.domain ⊔ g.domain } → E hx : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), x z ∈ f.domain y : { x // x ∈ f.domain ⊔ g.domain } → E hy : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), y z ∈ g.domain fg : { x // x ∈ f.domain ⊔ g.domain } → F := fun z => ↑f { val := x z, property := (_ : x z ∈ f.domain) } + ↑g { val := y z, property := (_ : y z ∈ g.domain) } x' : { x // x ∈ f.domain } y' : { x // x ∈ g.domain } z' : { x // x ∈ f.domain ⊔ g.domain } H : ↑x' + ↑y' = ↑z' hxy : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), x z = ↑z - y z ⊢ ↑(x' - { val := x z', property := (_ : x z' ∈ f.domain) }) = ↑({ val := y z', property := (_ : y z' ∈ g.domain) } - y') [PROOFSTEP] simp only [AddSubgroupClass.coe_sub, coe_mk, coe_mk, hxy, ← sub_add, ← sub_sub, sub_self, zero_sub, ← H] [GOAL] case a R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g : E →ₗ.[R] F h : ∀ (x : { x // x ∈ f.domain }) (y : { x // x ∈ g.domain }), ↑x = ↑y → ↑f x = ↑g y x : { x // x ∈ f.domain ⊔ g.domain } → E hx : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), x z ∈ f.domain y : { x // x ∈ f.domain ⊔ g.domain } → E hy : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), y z ∈ g.domain fg : { x // x ∈ f.domain ⊔ g.domain } → F := fun z => ↑f { val := x z, property := (_ : x z ∈ f.domain) } + ↑g { val := y z, property := (_ : y z ∈ g.domain) } x' : { x // x ∈ f.domain } y' : { x // x ∈ g.domain } z' : { x // x ∈ f.domain ⊔ g.domain } H : ↑x' + ↑y' = ↑z' hxy : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), x z = ↑z - y z ⊢ -↑y' + y z' = y z' - ↑y' [PROOFSTEP] apply neg_add_eq_sub [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g : E →ₗ.[R] F h : ∀ (x : { x // x ∈ f.domain }) (y : { x // x ∈ g.domain }), ↑x = ↑y → ↑f x = ↑g y x : { x // x ∈ f.domain ⊔ g.domain } → E hx : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), x z ∈ f.domain y : { x // x ∈ f.domain ⊔ g.domain } → E hy : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), y z ∈ g.domain hxy : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), x z + y z = ↑z fg : { x // x ∈ f.domain ⊔ g.domain } → F := fun z => ↑f { val := x z, property := (_ : x z ∈ f.domain) } + ↑g { val := y z, property := (_ : y z ∈ g.domain) } fg_eq : ∀ (x' : { x // x ∈ f.domain }) (y' : { x // x ∈ g.domain }) (z' : { x // x ∈ f.domain ⊔ g.domain }), ↑x' + ↑y' = ↑z' → fg z' = ↑f x' + ↑g y' ⊢ ∃ fg, ∀ (x : { x // x ∈ f.domain }) (y : { x // x ∈ g.domain }) (z : { x // x ∈ f.domain ⊔ g.domain }), ↑x + ↑y = ↑z → ↑fg z = ↑f x + ↑g y [PROOFSTEP] refine' ⟨{ toFun := fg .. }, fg_eq⟩ [GOAL] case refine'_1 R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g : E →ₗ.[R] F h : ∀ (x : { x // x ∈ f.domain }) (y : { x // x ∈ g.domain }), ↑x = ↑y → ↑f x = ↑g y x : { x // x ∈ f.domain ⊔ g.domain } → E hx : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), x z ∈ f.domain y : { x // x ∈ f.domain ⊔ g.domain } → E hy : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), y z ∈ g.domain hxy : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), x z + y z = ↑z fg : { x // x ∈ f.domain ⊔ g.domain } → F := fun z => ↑f { val := x z, property := (_ : x z ∈ f.domain) } + ↑g { val := y z, property := (_ : y z ∈ g.domain) } fg_eq : ∀ (x' : { x // x ∈ f.domain }) (y' : { x // x ∈ g.domain }) (z' : { x // x ∈ f.domain ⊔ g.domain }), ↑x' + ↑y' = ↑z' → fg z' = ↑f x' + ↑g y' ⊢ ∀ (x y : { x // x ∈ f.domain ⊔ g.domain }), fg (x + y) = fg x + fg y [PROOFSTEP] rintro ⟨z₁, hz₁⟩ ⟨z₂, hz₂⟩ [GOAL] case refine'_1.mk.mk R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g : E →ₗ.[R] F h : ∀ (x : { x // x ∈ f.domain }) (y : { x // x ∈ g.domain }), ↑x = ↑y → ↑f x = ↑g y x : { x // x ∈ f.domain ⊔ g.domain } → E hx : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), x z ∈ f.domain y : { x // x ∈ f.domain ⊔ g.domain } → E hy : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), y z ∈ g.domain hxy : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), x z + y z = ↑z fg : { x // x ∈ f.domain ⊔ g.domain } → F := fun z => ↑f { val := x z, property := (_ : x z ∈ f.domain) } + ↑g { val := y z, property := (_ : y z ∈ g.domain) } fg_eq : ∀ (x' : { x // x ∈ f.domain }) (y' : { x // x ∈ g.domain }) (z' : { x // x ∈ f.domain ⊔ g.domain }), ↑x' + ↑y' = ↑z' → fg z' = ↑f x' + ↑g y' z₁ : E hz₁ : z₁ ∈ f.domain ⊔ g.domain z₂ : E hz₂ : z₂ ∈ f.domain ⊔ g.domain ⊢ fg ({ val := z₁, property := hz₁ } + { val := z₂, property := hz₂ }) = fg { val := z₁, property := hz₁ } + fg { val := z₂, property := hz₂ } [PROOFSTEP] rw [← add_assoc, add_right_comm (f _), ← map_add, add_assoc, ← map_add] [GOAL] case refine'_1.mk.mk R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g : E →ₗ.[R] F h : ∀ (x : { x // x ∈ f.domain }) (y : { x // x ∈ g.domain }), ↑x = ↑y → ↑f x = ↑g y x : { x // x ∈ f.domain ⊔ g.domain } → E hx : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), x z ∈ f.domain y : { x // x ∈ f.domain ⊔ g.domain } → E hy : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), y z ∈ g.domain hxy : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), x z + y z = ↑z fg : { x // x ∈ f.domain ⊔ g.domain } → F := fun z => ↑f { val := x z, property := (_ : x z ∈ f.domain) } + ↑g { val := y z, property := (_ : y z ∈ g.domain) } fg_eq : ∀ (x' : { x // x ∈ f.domain }) (y' : { x // x ∈ g.domain }) (z' : { x // x ∈ f.domain ⊔ g.domain }), ↑x' + ↑y' = ↑z' → fg z' = ↑f x' + ↑g y' z₁ : E hz₁ : z₁ ∈ f.domain ⊔ g.domain z₂ : E hz₂ : z₂ ∈ f.domain ⊔ g.domain ⊢ fg ({ val := z₁, property := hz₁ } + { val := z₂, property := hz₂ }) = ↑f ({ val := x { val := z₁, property := hz₁ }, property := (_ : x { val := z₁, property := hz₁ } ∈ f.domain) } + { val := x { val := z₂, property := hz₂ }, property := (_ : x { val := z₂, property := hz₂ } ∈ f.domain) }) + ↑g ({ val := y { val := z₁, property := hz₁ }, property := (_ : y { val := z₁, property := hz₁ } ∈ g.domain) } + { val := y { val := z₂, property := hz₂ }, property := (_ : y { val := z₂, property := hz₂ } ∈ g.domain) }) [PROOFSTEP] apply fg_eq [GOAL] case refine'_1.mk.mk._H R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g : E →ₗ.[R] F h : ∀ (x : { x // x ∈ f.domain }) (y : { x // x ∈ g.domain }), ↑x = ↑y → ↑f x = ↑g y x : { x // x ∈ f.domain ⊔ g.domain } → E hx : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), x z ∈ f.domain y : { x // x ∈ f.domain ⊔ g.domain } → E hy : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), y z ∈ g.domain hxy : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), x z + y z = ↑z fg : { x // x ∈ f.domain ⊔ g.domain } → F := fun z => ↑f { val := x z, property := (_ : x z ∈ f.domain) } + ↑g { val := y z, property := (_ : y z ∈ g.domain) } fg_eq : ∀ (x' : { x // x ∈ f.domain }) (y' : { x // x ∈ g.domain }) (z' : { x // x ∈ f.domain ⊔ g.domain }), ↑x' + ↑y' = ↑z' → fg z' = ↑f x' + ↑g y' z₁ : E hz₁ : z₁ ∈ f.domain ⊔ g.domain z₂ : E hz₂ : z₂ ∈ f.domain ⊔ g.domain ⊢ ↑({ val := x { val := z₁, property := hz₁ }, property := (_ : x { val := z₁, property := hz₁ } ∈ f.domain) } + { val := x { val := z₂, property := hz₂ }, property := (_ : x { val := z₂, property := hz₂ } ∈ f.domain) }) + ↑({ val := y { val := z₁, property := hz₁ }, property := (_ : y { val := z₁, property := hz₁ } ∈ g.domain) } + { val := y { val := z₂, property := hz₂ }, property := (_ : y { val := z₂, property := hz₂ } ∈ g.domain) }) = ↑({ val := z₁, property := hz₁ } + { val := z₂, property := hz₂ }) [PROOFSTEP] simp only [coe_add, coe_mk, ← add_assoc] [GOAL] case refine'_1.mk.mk._H R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g : E →ₗ.[R] F h : ∀ (x : { x // x ∈ f.domain }) (y : { x // x ∈ g.domain }), ↑x = ↑y → ↑f x = ↑g y x : { x // x ∈ f.domain ⊔ g.domain } → E hx : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), x z ∈ f.domain y : { x // x ∈ f.domain ⊔ g.domain } → E hy : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), y z ∈ g.domain hxy : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), x z + y z = ↑z fg : { x // x ∈ f.domain ⊔ g.domain } → F := fun z => ↑f { val := x z, property := (_ : x z ∈ f.domain) } + ↑g { val := y z, property := (_ : y z ∈ g.domain) } fg_eq : ∀ (x' : { x // x ∈ f.domain }) (y' : { x // x ∈ g.domain }) (z' : { x // x ∈ f.domain ⊔ g.domain }), ↑x' + ↑y' = ↑z' → fg z' = ↑f x' + ↑g y' z₁ : E hz₁ : z₁ ∈ f.domain ⊔ g.domain z₂ : E hz₂ : z₂ ∈ f.domain ⊔ g.domain ⊢ x { val := z₁, property := hz₁ } + x { val := z₂, property := hz₂ } + y { val := z₁, property := hz₁ } + y { val := z₂, property := hz₂ } = z₁ + z₂ [PROOFSTEP] rw [add_right_comm (x _), hxy, add_assoc, hxy, coe_mk, coe_mk] [GOAL] case refine'_2 R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g : E →ₗ.[R] F h : ∀ (x : { x // x ∈ f.domain }) (y : { x // x ∈ g.domain }), ↑x = ↑y → ↑f x = ↑g y x : { x // x ∈ f.domain ⊔ g.domain } → E hx : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), x z ∈ f.domain y : { x // x ∈ f.domain ⊔ g.domain } → E hy : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), y z ∈ g.domain hxy : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), x z + y z = ↑z fg : { x // x ∈ f.domain ⊔ g.domain } → F := fun z => ↑f { val := x z, property := (_ : x z ∈ f.domain) } + ↑g { val := y z, property := (_ : y z ∈ g.domain) } fg_eq : ∀ (x' : { x // x ∈ f.domain }) (y' : { x // x ∈ g.domain }) (z' : { x // x ∈ f.domain ⊔ g.domain }), ↑x' + ↑y' = ↑z' → fg z' = ↑f x' + ↑g y' ⊢ ∀ (r : R) (x_1 : { x // x ∈ f.domain ⊔ g.domain }), AddHom.toFun { toFun := fg, map_add' := (_ : ∀ (x y : { x // x ∈ f.domain ⊔ g.domain }), fg (x + y) = fg x + fg y) } (r • x_1) = ↑(RingHom.id R) r • AddHom.toFun { toFun := fg, map_add' := (_ : ∀ (x y : { x // x ∈ f.domain ⊔ g.domain }), fg (x + y) = fg x + fg y) } x_1 [PROOFSTEP] intro c z [GOAL] case refine'_2 R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g : E →ₗ.[R] F h : ∀ (x : { x // x ∈ f.domain }) (y : { x // x ∈ g.domain }), ↑x = ↑y → ↑f x = ↑g y x : { x // x ∈ f.domain ⊔ g.domain } → E hx : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), x z ∈ f.domain y : { x // x ∈ f.domain ⊔ g.domain } → E hy : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), y z ∈ g.domain hxy : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), x z + y z = ↑z fg : { x // x ∈ f.domain ⊔ g.domain } → F := fun z => ↑f { val := x z, property := (_ : x z ∈ f.domain) } + ↑g { val := y z, property := (_ : y z ∈ g.domain) } fg_eq : ∀ (x' : { x // x ∈ f.domain }) (y' : { x // x ∈ g.domain }) (z' : { x // x ∈ f.domain ⊔ g.domain }), ↑x' + ↑y' = ↑z' → fg z' = ↑f x' + ↑g y' c : R z : { x // x ∈ f.domain ⊔ g.domain } ⊢ AddHom.toFun { toFun := fg, map_add' := (_ : ∀ (x y : { x // x ∈ f.domain ⊔ g.domain }), fg (x + y) = fg x + fg y) } (c • z) = ↑(RingHom.id R) c • AddHom.toFun { toFun := fg, map_add' := (_ : ∀ (x y : { x // x ∈ f.domain ⊔ g.domain }), fg (x + y) = fg x + fg y) } z [PROOFSTEP] rw [smul_add, ← map_smul, ← map_smul] [GOAL] case refine'_2 R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g : E →ₗ.[R] F h : ∀ (x : { x // x ∈ f.domain }) (y : { x // x ∈ g.domain }), ↑x = ↑y → ↑f x = ↑g y x : { x // x ∈ f.domain ⊔ g.domain } → E hx : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), x z ∈ f.domain y : { x // x ∈ f.domain ⊔ g.domain } → E hy : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), y z ∈ g.domain hxy : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), x z + y z = ↑z fg : { x // x ∈ f.domain ⊔ g.domain } → F := fun z => ↑f { val := x z, property := (_ : x z ∈ f.domain) } + ↑g { val := y z, property := (_ : y z ∈ g.domain) } fg_eq : ∀ (x' : { x // x ∈ f.domain }) (y' : { x // x ∈ g.domain }) (z' : { x // x ∈ f.domain ⊔ g.domain }), ↑x' + ↑y' = ↑z' → fg z' = ↑f x' + ↑g y' c : R z : { x // x ∈ f.domain ⊔ g.domain } ⊢ AddHom.toFun { toFun := fg, map_add' := (_ : ∀ (x y : { x // x ∈ f.domain ⊔ g.domain }), fg (x + y) = fg x + fg y) } (c • z) = ↑f (↑(RingHom.id R) c • { val := x z, property := (_ : x z ∈ f.domain) }) + ↑g (↑(RingHom.id R) c • { val := y z, property := (_ : y z ∈ g.domain) }) [PROOFSTEP] apply fg_eq [GOAL] case refine'_2._H R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g : E →ₗ.[R] F h : ∀ (x : { x // x ∈ f.domain }) (y : { x // x ∈ g.domain }), ↑x = ↑y → ↑f x = ↑g y x : { x // x ∈ f.domain ⊔ g.domain } → E hx : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), x z ∈ f.domain y : { x // x ∈ f.domain ⊔ g.domain } → E hy : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), y z ∈ g.domain hxy : ∀ (z : { x // x ∈ f.domain ⊔ g.domain }), x z + y z = ↑z fg : { x // x ∈ f.domain ⊔ g.domain } → F := fun z => ↑f { val := x z, property := (_ : x z ∈ f.domain) } + ↑g { val := y z, property := (_ : y z ∈ g.domain) } fg_eq : ∀ (x' : { x // x ∈ f.domain }) (y' : { x // x ∈ g.domain }) (z' : { x // x ∈ f.domain ⊔ g.domain }), ↑x' + ↑y' = ↑z' → fg z' = ↑f x' + ↑g y' c : R z : { x // x ∈ f.domain ⊔ g.domain } ⊢ ↑(↑(RingHom.id R) c • { val := x z, property := (_ : x z ∈ f.domain) }) + ↑(↑(RingHom.id R) c • { val := y z, property := (_ : y z ∈ g.domain) }) = ↑(c • z) [PROOFSTEP] simp only [coe_smul, coe_mk, ← smul_add, hxy, RingHom.id_apply] [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g : E →ₗ.[R] F h : ∀ (x : { x // x ∈ f.domain }) (y : { x // x ∈ g.domain }), ↑x = ↑y → ↑f x = ↑g y ⊢ f ≤ LinearPMap.sup f g h [PROOFSTEP] refine' ⟨le_sup_left, fun z₁ z₂ hz => _⟩ [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g : E →ₗ.[R] F h : ∀ (x : { x // x ∈ f.domain }) (y : { x // x ∈ g.domain }), ↑x = ↑y → ↑f x = ↑g y z₁ : { x // x ∈ f.domain } z₂ : { x // x ∈ (LinearPMap.sup f g h).domain } hz : ↑z₁ = ↑z₂ ⊢ ↑f z₁ = ↑(LinearPMap.sup f g h) z₂ [PROOFSTEP] rw [← add_zero (f _), ← g.map_zero] [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g : E →ₗ.[R] F h : ∀ (x : { x // x ∈ f.domain }) (y : { x // x ∈ g.domain }), ↑x = ↑y → ↑f x = ↑g y z₁ : { x // x ∈ f.domain } z₂ : { x // x ∈ (LinearPMap.sup f g h).domain } hz : ↑z₁ = ↑z₂ ⊢ ↑f z₁ + ↑g 0 = ↑(LinearPMap.sup f g h) z₂ [PROOFSTEP] refine' (sup_apply h _ _ _ _).symm [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g : E →ₗ.[R] F h : ∀ (x : { x // x ∈ f.domain }) (y : { x // x ∈ g.domain }), ↑x = ↑y → ↑f x = ↑g y z₁ : { x // x ∈ f.domain } z₂ : { x // x ∈ (LinearPMap.sup f g h).domain } hz : ↑z₁ = ↑z₂ ⊢ ↑z₁ + ↑0 = ↑z₂ [PROOFSTEP] simpa [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g : E →ₗ.[R] F h : ∀ (x : { x // x ∈ f.domain }) (y : { x // x ∈ g.domain }), ↑x = ↑y → ↑f x = ↑g y ⊢ g ≤ LinearPMap.sup f g h [PROOFSTEP] refine' ⟨le_sup_right, fun z₁ z₂ hz => _⟩ [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g : E →ₗ.[R] F h : ∀ (x : { x // x ∈ f.domain }) (y : { x // x ∈ g.domain }), ↑x = ↑y → ↑f x = ↑g y z₁ : { x // x ∈ g.domain } z₂ : { x // x ∈ (LinearPMap.sup f g h).domain } hz : ↑z₁ = ↑z₂ ⊢ ↑g z₁ = ↑(LinearPMap.sup f g h) z₂ [PROOFSTEP] rw [← zero_add (g _), ← f.map_zero] [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g : E →ₗ.[R] F h : ∀ (x : { x // x ∈ f.domain }) (y : { x // x ∈ g.domain }), ↑x = ↑y → ↑f x = ↑g y z₁ : { x // x ∈ g.domain } z₂ : { x // x ∈ (LinearPMap.sup f g h).domain } hz : ↑z₁ = ↑z₂ ⊢ ↑f 0 + ↑g z₁ = ↑(LinearPMap.sup f g h) z₂ [PROOFSTEP] refine' (sup_apply h _ _ _ _).symm [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g : E →ₗ.[R] F h : ∀ (x : { x // x ∈ f.domain }) (y : { x // x ∈ g.domain }), ↑x = ↑y → ↑f x = ↑g y z₁ : { x // x ∈ g.domain } z₂ : { x // x ∈ (LinearPMap.sup f g h).domain } hz : ↑z₁ = ↑z₂ ⊢ ↑0 + ↑z₁ = ↑z₂ [PROOFSTEP] simpa [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g : E →ₗ.[R] F h : Disjoint f.domain g.domain x : { x // x ∈ f.domain } y : { x // x ∈ g.domain } hxy : ↑x = ↑y ⊢ ↑f x = ↑g y [PROOFSTEP] rw [disjoint_def] at h [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g : E →ₗ.[R] F h : ∀ (x : E), x ∈ f.domain → x ∈ g.domain → x = 0 x : { x // x ∈ f.domain } y : { x // x ∈ g.domain } hxy : ↑x = ↑y ⊢ ↑f x = ↑g y [PROOFSTEP] have hy : y = 0 := Subtype.eq (h y (hxy ▸ x.2) y.2) [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g : E →ₗ.[R] F h : ∀ (x : E), x ∈ f.domain → x ∈ g.domain → x = 0 x : { x // x ∈ f.domain } y : { x // x ∈ g.domain } hxy : ↑x = ↑y hy : y = 0 ⊢ ↑f x = ↑g y [PROOFSTEP] have hx : x = 0 := Subtype.eq (hxy.trans <| congr_arg _ hy) [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g : E →ₗ.[R] F h : ∀ (x : E), x ∈ f.domain → x ∈ g.domain → x = 0 x : { x // x ∈ f.domain } y : { x // x ∈ g.domain } hxy : ↑x = ↑y hy : y = 0 hx : x = 0 ⊢ ↑f x = ↑g y [PROOFSTEP] simp [*] [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f : E →ₗ.[R] F ⊢ - -f = f [PROOFSTEP] ext x y hxy [GOAL] case h.h R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f : E →ₗ.[R] F x : E ⊢ x ∈ (- -f).domain ↔ x ∈ f.domain [PROOFSTEP] rfl [GOAL] case h' R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f : E →ₗ.[R] F x : { x // x ∈ (- -f).domain } y : { x // x ∈ f.domain } hxy : ↑x = ↑y ⊢ ↑(- -f) x = ↑f y [PROOFSTEP] simp only [neg_apply, neg_neg] [GOAL] case h' R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f : E →ₗ.[R] F x : { x // x ∈ (- -f).domain } y : { x // x ∈ f.domain } hxy : ↑x = ↑y ⊢ ↑f x = ↑f y [PROOFSTEP] cases x [GOAL] case h'.mk R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f : E →ₗ.[R] F y : { x // x ∈ f.domain } val✝ : E property✝ : val✝ ∈ (- -f).domain hxy : ↑{ val := val✝, property := property✝ } = ↑y ⊢ ↑f { val := val✝, property := property✝ } = ↑f y [PROOFSTEP] congr [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g h : E →ₗ.[R] F ⊢ f + g + h = f + (g + h) [PROOFSTEP] ext x y hxy [GOAL] case h.h R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g h : E →ₗ.[R] F x : E ⊢ x ∈ (f + g + h).domain ↔ x ∈ (f + (g + h)).domain [PROOFSTEP] simp only [add_domain, inf_assoc] [GOAL] case h' R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g h : E →ₗ.[R] F x : { x // x ∈ (f + g + h).domain } y : { x // x ∈ (f + (g + h)).domain } hxy : ↑x = ↑y ⊢ ↑(f + g + h) x = ↑(f + (g + h)) y [PROOFSTEP] simp only [add_apply, hxy, add_assoc] [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f : E →ₗ.[R] F ⊢ 0 + f = f [PROOFSTEP] ext x y hxy [GOAL] case h.h R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f : E →ₗ.[R] F x : E ⊢ x ∈ (0 + f).domain ↔ x ∈ f.domain [PROOFSTEP] simp [add_domain] [GOAL] case h' R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f : E →ₗ.[R] F x : { x // x ∈ (0 + f).domain } y : { x // x ∈ f.domain } hxy : ↑x = ↑y ⊢ ↑(0 + f) x = ↑f y [PROOFSTEP] simp only [add_apply, hxy, zero_apply, zero_add] [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f : E →ₗ.[R] F ⊢ f + 0 = f [PROOFSTEP] ext x y hxy [GOAL] case h.h R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f : E →ₗ.[R] F x : E ⊢ x ∈ (f + 0).domain ↔ x ∈ f.domain [PROOFSTEP] simp [add_domain] [GOAL] case h' R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f : E →ₗ.[R] F x : { x // x ∈ (f + 0).domain } y : { x // x ∈ f.domain } hxy : ↑x = ↑y ⊢ ↑(f + 0) x = ↑f y [PROOFSTEP] simp only [add_apply, hxy, zero_apply, add_zero] [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f : E →ₗ.[R] F ⊢ 0 + f = f [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G ⊢ ∀ (a : E →ₗ.[R] F), a + 0 = a [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g : E →ₗ.[R] F ⊢ f + g = g + f [PROOFSTEP] ext x y hxy [GOAL] case h.h R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g : E →ₗ.[R] F x : E ⊢ x ∈ (f + g).domain ↔ x ∈ (g + f).domain [PROOFSTEP] simp only [add_domain, inf_comm] [GOAL] case h' R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g : E →ₗ.[R] F x : { x // x ∈ (f + g).domain } y : { x // x ∈ (g + f).domain } hxy : ↑x = ↑y ⊢ ↑(f + g) x = ↑(g + f) y [PROOFSTEP] simp only [add_apply, hxy, add_comm] [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g : E →ₗ.[R] F ⊢ f - g = f + -g [PROOFSTEP] ext x y h [GOAL] case h.h R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g : E →ₗ.[R] F x : E ⊢ x ∈ (f - g).domain ↔ x ∈ (f + -g).domain [PROOFSTEP] rfl [GOAL] case h' R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g : E →ₗ.[R] F x : { x // x ∈ (f - g).domain } y : { x // x ∈ (f + -g).domain } h : ↑x = ↑y ⊢ ↑(f - g) x = ↑(f + -g) y [PROOFSTEP] simp [sub_apply, add_apply, neg_apply, ← sub_eq_add_neg, h] [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g : E →ₗ.[R] F ⊢ -(f + g) = -g + -f [PROOFSTEP] ext x y h [GOAL] case h.h R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g : E →ₗ.[R] F x : E ⊢ x ∈ (-(f + g)).domain ↔ x ∈ (-g + -f).domain [PROOFSTEP] simp [add_domain, sub_domain, neg_domain, And.comm] [GOAL] case h' R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g : E →ₗ.[R] F x : { x // x ∈ (-(f + g)).domain } y : { x // x ∈ (-g + -f).domain } h : ↑x = ↑y ⊢ ↑(-(f + g)) x = ↑(-g + -f) y [PROOFSTEP] simp [sub_apply, add_apply, neg_apply, ← sub_eq_add_neg, h] [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g : E →ₗ.[R] F h' : f + g = 0 ⊢ -f = g [PROOFSTEP] ext x y h [GOAL] case h.h R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g : E →ₗ.[R] F h' : f + g = 0 x : E ⊢ x ∈ (-f).domain ↔ x ∈ g.domain [PROOFSTEP] have : (0 : E →ₗ.[R] F).domain = ⊤ := zero_domain [GOAL] case h.h R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g : E →ₗ.[R] F h' : f + g = 0 x : E this : 0.domain = ⊤ ⊢ x ∈ (-f).domain ↔ x ∈ g.domain [PROOFSTEP] simp only [← h', add_domain, ge_iff_le, inf_eq_top_iff] at this [GOAL] case h.h R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g : E →ₗ.[R] F h' : f + g = 0 x : E this : f.domain = ⊤ ∧ g.domain = ⊤ ⊢ x ∈ (-f).domain ↔ x ∈ g.domain [PROOFSTEP] rw [neg_domain, this.1, this.2] [GOAL] case h' R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g : E →ₗ.[R] F h' : f + g = 0 x : { x // x ∈ (-f).domain } y : { x // x ∈ g.domain } h : ↑x = ↑y ⊢ ↑(-f) x = ↑g y [PROOFSTEP] simp only [inf_coe, neg_domain, Eq.ndrec, Int.ofNat_eq_coe, neg_apply] [GOAL] case h' R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g : E →ₗ.[R] F h' : f + g = 0 x : { x // x ∈ (-f).domain } y : { x // x ∈ g.domain } h : ↑x = ↑y ⊢ -↑f x = ↑g y [PROOFSTEP] rw [ext_iff] at h' [GOAL] case h' R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g : E →ₗ.[R] F h' : ∃ _domain_eq, ∀ ⦃x : { x // x ∈ (f + g).domain }⦄ ⦃y : { x // x ∈ 0.domain }⦄, ↑x = ↑y → ↑(f + g) x = ↑0 y x : { x // x ∈ (-f).domain } y : { x // x ∈ g.domain } h : ↑x = ↑y ⊢ -↑f x = ↑g y [PROOFSTEP] rcases h' with ⟨hdom, h'⟩ [GOAL] case h'.intro R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g : E →ₗ.[R] F x : { x // x ∈ (-f).domain } y : { x // x ∈ g.domain } h : ↑x = ↑y hdom : (f + g).domain = 0.domain h' : ∀ ⦃x : { x // x ∈ (f + g).domain }⦄ ⦃y : { x // x ∈ 0.domain }⦄, ↑x = ↑y → ↑(f + g) x = ↑0 y ⊢ -↑f x = ↑g y [PROOFSTEP] rw [zero_domain] at hdom [GOAL] case h'.intro R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g : E →ₗ.[R] F x : { x // x ∈ (-f).domain } y : { x // x ∈ g.domain } h : ↑x = ↑y hdom : (f + g).domain = ⊤ h' : ∀ ⦃x : { x // x ∈ (f + g).domain }⦄ ⦃y : { x // x ∈ 0.domain }⦄, ↑x = ↑y → ↑(f + g) x = ↑0 y ⊢ -↑f x = ↑g y [PROOFSTEP] simp only [inf_coe, neg_domain, Eq.ndrec, Int.ofNat_eq_coe, zero_domain, top_coe, zero_apply, Subtype.forall, mem_top, forall_true_left, forall_eq'] at h' [GOAL] case h'.intro R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g : E →ₗ.[R] F x : { x // x ∈ (-f).domain } y : { x // x ∈ g.domain } h : ↑x = ↑y hdom : (f + g).domain = ⊤ h' : ∀ (a : E) (b : a ∈ (f + g).domain), ↑(f + g) { val := a, property := b } = 0 ⊢ -↑f x = ↑g y [PROOFSTEP] specialize h' x.1 (by simp [hdom]) [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g : E →ₗ.[R] F x : { x // x ∈ (-f).domain } y : { x // x ∈ g.domain } h : ↑x = ↑y hdom : (f + g).domain = ⊤ h' : ∀ (a : E) (b : a ∈ (f + g).domain), ↑(f + g) { val := a, property := b } = 0 ⊢ ↑x ∈ (f + g).domain [PROOFSTEP] simp [hdom] [GOAL] case h'.intro R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g : E →ₗ.[R] F x : { x // x ∈ (-f).domain } y : { x // x ∈ g.domain } h : ↑x = ↑y hdom : (f + g).domain = ⊤ h' : ↑(f + g) { val := ↑x, property := (_ : ↑x ∈ (f + g).domain) } = 0 ⊢ -↑f x = ↑g y [PROOFSTEP] simp only [inf_coe, neg_domain, Eq.ndrec, Int.ofNat_eq_coe, add_apply, Subtype.coe_eta, ← neg_eq_iff_add_eq_zero] at h' [GOAL] case h'.intro R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g : E →ₗ.[R] F x : { x // x ∈ (-f).domain } y : { x // x ∈ g.domain } h : ↑x = ↑y hdom : (f + g).domain = ⊤ h' : -↑f x = ↑g { val := ↑x, property := (_ : ↑{ val := ↑x, property := (_ : ↑x ∈ (f + g).domain) } ∈ ↑g.domain) } ⊢ -↑f x = ↑g y [PROOFSTEP] rw [h', h] [GOAL] R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G K : Type u_5 inst✝² : DivisionRing K inst✝¹ : Module K E inst✝ : Module K F f : E →ₗ.[K] F x : E y : F hx : ¬x ∈ f.domain ⊢ Disjoint f.domain (mkSpanSingleton x y (_ : x = 0 → False)).domain [PROOFSTEP] simp [disjoint_span_singleton] [GOAL] R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G K : Type u_5 inst✝² : DivisionRing K inst✝¹ : Module K E inst✝ : Module K F f : E →ₗ.[K] F x : E y : F hx : ¬x ∈ f.domain ⊢ x ∈ f.domain → x = 0 [PROOFSTEP] exact fun h => False.elim <| hx h [GOAL] R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G K : Type u_5 inst✝² : DivisionRing K inst✝¹ : Module K E inst✝ : Module K F f : E →ₗ.[K] F x : E y : F hx : ¬x ∈ f.domain x' : E hx' : x' ∈ f.domain c : K ⊢ ↑(supSpanSingleton f x y hx) { val := x' + c • x, property := (_ : x' + c • x ∈ f.domain ⊔ (mkSpanSingleton x y (_ : x = 0 → False)).domain) } = ↑f { val := x', property := hx' } + c • y [PROOFSTEP] erw [sup_apply _ ⟨x', hx'⟩ ⟨c • x, _⟩, mkSpanSingleton'_apply] [GOAL] case h R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G K : Type u_5 inst✝² : DivisionRing K inst✝¹ : Module K E inst✝ : Module K F f : E →ₗ.[K] F x : E y : F hx : ¬x ∈ f.domain x' : E hx' : x' ∈ f.domain c : K ⊢ c • x ∈ (mkSpanSingleton' x y (_ : ∀ (c : K), c • x = 0 → c • y = 0)).domain [PROOFSTEP] exact mem_span_singleton.2 ⟨c, rfl⟩ [GOAL] case hz R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G K : Type u_5 inst✝² : DivisionRing K inst✝¹ : Module K E inst✝ : Module K F f : E →ₗ.[K] F x : E y : F hx : ¬x ∈ f.domain x' : E hx' : x' ∈ f.domain c : K ⊢ ↑{ val := x', property := hx' } + ↑{ val := c • x, property := (_ : c • x ∈ span K {x}) } = ↑{ val := x' + c • x, property := (_ : x' + c • x ∈ f.domain ⊔ (mkSpanSingleton x y (_ : x = 0 → False)).domain) } [PROOFSTEP] rfl [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G c : Set (E →ₗ.[R] F) hc : DirectedOn (fun x x_1 => x ≤ x_1) c ⊢ ∃ f, { domain := sSup (domain '' c), toFun := f } ∈ upperBounds c [PROOFSTEP] cases' c.eq_empty_or_nonempty with ceq cne [GOAL] case inl R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G c : Set (E →ₗ.[R] F) hc : DirectedOn (fun x x_1 => x ≤ x_1) c ceq : c = ∅ ⊢ ∃ f, { domain := sSup (domain '' c), toFun := f } ∈ upperBounds c [PROOFSTEP] subst c [GOAL] case inl R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G hc : DirectedOn (fun x x_1 => x ≤ x_1) ∅ ⊢ ∃ f, { domain := sSup (domain '' ∅), toFun := f } ∈ upperBounds ∅ [PROOFSTEP] simp [GOAL] case inr R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G c : Set (E →ₗ.[R] F) hc : DirectedOn (fun x x_1 => x ≤ x_1) c cne : Set.Nonempty c ⊢ ∃ f, { domain := sSup (domain '' c), toFun := f } ∈ upperBounds c [PROOFSTEP] have hdir : DirectedOn (· ≤ ·) (domain '' c) := directedOn_image.2 (hc.mono @(domain_mono.monotone)) [GOAL] case inr R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G c : Set (E →ₗ.[R] F) hc : DirectedOn (fun x x_1 => x ≤ x_1) c cne : Set.Nonempty c hdir : DirectedOn (fun x x_1 => x ≤ x_1) (domain '' c) ⊢ ∃ f, { domain := sSup (domain '' c), toFun := f } ∈ upperBounds c [PROOFSTEP] have P : ∀ x : ↥(sSup (domain '' c)), { p : c // (x : E) ∈ p.val.domain } := by rintro x apply Classical.indefiniteDescription have := (mem_sSup_of_directed (cne.image _) hdir).1 x.2 -- Porting note: + `← bex_def` rwa [bex_image_iff, ← bex_def, SetCoe.exists'] at this [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G c : Set (E →ₗ.[R] F) hc : DirectedOn (fun x x_1 => x ≤ x_1) c cne : Set.Nonempty c hdir : DirectedOn (fun x x_1 => x ≤ x_1) (domain '' c) ⊢ (x : { x // x ∈ sSup (domain '' c) }) → { p // ↑x ∈ (↑p).domain } [PROOFSTEP] rintro x [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G c : Set (E →ₗ.[R] F) hc : DirectedOn (fun x x_1 => x ≤ x_1) c cne : Set.Nonempty c hdir : DirectedOn (fun x x_1 => x ≤ x_1) (domain '' c) x : { x // x ∈ sSup (domain '' c) } ⊢ { p // ↑x ∈ (↑p).domain } [PROOFSTEP] apply Classical.indefiniteDescription [GOAL] case h R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G c : Set (E →ₗ.[R] F) hc : DirectedOn (fun x x_1 => x ≤ x_1) c cne : Set.Nonempty c hdir : DirectedOn (fun x x_1 => x ≤ x_1) (domain '' c) x : { x // x ∈ sSup (domain '' c) } ⊢ ∃ x_1, ↑x ∈ (↑x_1).domain [PROOFSTEP] have := (mem_sSup_of_directed (cne.image _) hdir).1 x.2 -- Porting note: + `← bex_def` [GOAL] case h R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G c : Set (E →ₗ.[R] F) hc : DirectedOn (fun x x_1 => x ≤ x_1) c cne : Set.Nonempty c hdir : DirectedOn (fun x x_1 => x ≤ x_1) (domain '' c) x : { x // x ∈ sSup (domain '' c) } this : ∃ y, y ∈ domain '' c ∧ ↑x ∈ y ⊢ ∃ x_1, ↑x ∈ (↑x_1).domain [PROOFSTEP] rwa [bex_image_iff, ← bex_def, SetCoe.exists'] at this [GOAL] case inr R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G c : Set (E →ₗ.[R] F) hc : DirectedOn (fun x x_1 => x ≤ x_1) c cne : Set.Nonempty c hdir : DirectedOn (fun x x_1 => x ≤ x_1) (domain '' c) P : (x : { x // x ∈ sSup (domain '' c) }) → { p // ↑x ∈ (↑p).domain } ⊢ ∃ f, { domain := sSup (domain '' c), toFun := f } ∈ upperBounds c [PROOFSTEP] set f : ↥(sSup (domain '' c)) → F := fun x => (P x).val.val ⟨x, (P x).property⟩ [GOAL] case inr R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G c : Set (E →ₗ.[R] F) hc : DirectedOn (fun x x_1 => x ≤ x_1) c cne : Set.Nonempty c hdir : DirectedOn (fun x x_1 => x ≤ x_1) (domain '' c) P : (x : { x // x ∈ sSup (domain '' c) }) → { p // ↑x ∈ (↑p).domain } f : { x // x ∈ sSup (domain '' c) } → F := fun x => ↑↑↑(P x) { val := ↑x, property := (_ : ↑x ∈ (↑↑(P x)).domain) } ⊢ ∃ f, { domain := sSup (domain '' c), toFun := f } ∈ upperBounds c [PROOFSTEP] have f_eq : ∀ (p : c) (x : ↥(sSup (domain '' c))) (y : p.1.1) (_hxy : (x : E) = y), f x = p.1 y := by intro p x y hxy rcases hc (P x).1.1 (P x).1.2 p.1 p.2 with ⟨q, _hqc, hxq, hpq⟩ -- Porting note: `refine' ..; exacts [ofLe hpq.1 y, hxy, rfl]` -- → `refine' .. <;> [skip; exact ofLe hpq.1 y; rfl]; exact hxy` refine' (hxq.2 _).trans (hpq.2 _).symm <;> [skip; exact ofLe hpq.1 y; rfl]; exact hxy [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G c : Set (E →ₗ.[R] F) hc : DirectedOn (fun x x_1 => x ≤ x_1) c cne : Set.Nonempty c hdir : DirectedOn (fun x x_1 => x ≤ x_1) (domain '' c) P : (x : { x // x ∈ sSup (domain '' c) }) → { p // ↑x ∈ (↑p).domain } f : { x // x ∈ sSup (domain '' c) } → F := fun x => ↑↑↑(P x) { val := ↑x, property := (_ : ↑x ∈ (↑↑(P x)).domain) } ⊢ ∀ (p : ↑c) (x : { x // x ∈ sSup (domain '' c) }) (y : { x // x ∈ (↑p).domain }), ↑x = ↑y → f x = ↑↑p y [PROOFSTEP] intro p x y hxy [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G c : Set (E →ₗ.[R] F) hc : DirectedOn (fun x x_1 => x ≤ x_1) c cne : Set.Nonempty c hdir : DirectedOn (fun x x_1 => x ≤ x_1) (domain '' c) P : (x : { x // x ∈ sSup (domain '' c) }) → { p // ↑x ∈ (↑p).domain } f : { x // x ∈ sSup (domain '' c) } → F := fun x => ↑↑↑(P x) { val := ↑x, property := (_ : ↑x ∈ (↑↑(P x)).domain) } p : ↑c x : { x // x ∈ sSup (domain '' c) } y : { x // x ∈ (↑p).domain } hxy : ↑x = ↑y ⊢ f x = ↑↑p y [PROOFSTEP] rcases hc (P x).1.1 (P x).1.2 p.1 p.2 with ⟨q, _hqc, hxq, hpq⟩ -- Porting note: `refine' ..; exacts [ofLe hpq.1 y, hxy, rfl]` -- → `refine' .. <;> [skip; exact ofLe hpq.1 y; rfl]; exact hxy` [GOAL] case intro.intro.intro R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G c : Set (E →ₗ.[R] F) hc : DirectedOn (fun x x_1 => x ≤ x_1) c cne : Set.Nonempty c hdir : DirectedOn (fun x x_1 => x ≤ x_1) (domain '' c) P : (x : { x // x ∈ sSup (domain '' c) }) → { p // ↑x ∈ (↑p).domain } f : { x // x ∈ sSup (domain '' c) } → F := fun x => ↑↑↑(P x) { val := ↑x, property := (_ : ↑x ∈ (↑↑(P x)).domain) } p : ↑c x : { x // x ∈ sSup (domain '' c) } y : { x // x ∈ (↑p).domain } hxy : ↑x = ↑y q : E →ₗ.[R] F _hqc : q ∈ c hxq : ↑↑(P x) ≤ q hpq : ↑p ≤ q ⊢ f x = ↑↑p y [PROOFSTEP] refine' (hxq.2 _).trans (hpq.2 _).symm <;> [skip; exact ofLe hpq.1 y; rfl] [GOAL] case intro.intro.intro R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G c : Set (E →ₗ.[R] F) hc : DirectedOn (fun x x_1 => x ≤ x_1) c cne : Set.Nonempty c hdir : DirectedOn (fun x x_1 => x ≤ x_1) (domain '' c) P : (x : { x // x ∈ sSup (domain '' c) }) → { p // ↑x ∈ (↑p).domain } f : { x // x ∈ sSup (domain '' c) } → F := fun x => ↑↑↑(P x) { val := ↑x, property := (_ : ↑x ∈ (↑↑(P x)).domain) } p : ↑c x : { x // x ∈ sSup (domain '' c) } y : { x // x ∈ (↑p).domain } hxy : ↑x = ↑y q : E →ₗ.[R] F _hqc : q ∈ c hxq : ↑↑(P x) ≤ q hpq : ↑p ≤ q ⊢ f x = ↑↑p y [PROOFSTEP] refine' (hxq.2 _).trans (hpq.2 _).symm [GOAL] case intro.intro.intro.refine'_1 R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G c : Set (E →ₗ.[R] F) hc : DirectedOn (fun x x_1 => x ≤ x_1) c cne : Set.Nonempty c hdir : DirectedOn (fun x x_1 => x ≤ x_1) (domain '' c) P : (x : { x // x ∈ sSup (domain '' c) }) → { p // ↑x ∈ (↑p).domain } f : { x // x ∈ sSup (domain '' c) } → F := fun x => ↑↑↑(P x) { val := ↑x, property := (_ : ↑x ∈ (↑↑(P x)).domain) } p : ↑c x : { x // x ∈ sSup (domain '' c) } y : { x // x ∈ (↑p).domain } hxy : ↑x = ↑y q : E →ₗ.[R] F _hqc : q ∈ c hxq : ↑↑(P x) ≤ q hpq : ↑p ≤ q ⊢ ↑{ val := ↑x, property := (_ : ↑x ∈ (↑↑(P x)).domain) } = ↑?intro.intro.intro.refine'_2 [PROOFSTEP] skip [GOAL] case intro.intro.intro.refine'_2 R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G c : Set (E →ₗ.[R] F) hc : DirectedOn (fun x x_1 => x ≤ x_1) c cne : Set.Nonempty c hdir : DirectedOn (fun x x_1 => x ≤ x_1) (domain '' c) P : (x : { x // x ∈ sSup (domain '' c) }) → { p // ↑x ∈ (↑p).domain } f : { x // x ∈ sSup (domain '' c) } → F := fun x => ↑↑↑(P x) { val := ↑x, property := (_ : ↑x ∈ (↑↑(P x)).domain) } p : ↑c x : { x // x ∈ sSup (domain '' c) } y : { x // x ∈ (↑p).domain } hxy : ↑x = ↑y q : E →ₗ.[R] F _hqc : q ∈ c hxq : ↑↑(P x) ≤ q hpq : ↑p ≤ q ⊢ { x // x ∈ q.domain } [PROOFSTEP] exact ofLe hpq.1 y [GOAL] case intro.intro.intro.refine'_3 R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G c : Set (E →ₗ.[R] F) hc : DirectedOn (fun x x_1 => x ≤ x_1) c cne : Set.Nonempty c hdir : DirectedOn (fun x x_1 => x ≤ x_1) (domain '' c) P : (x : { x // x ∈ sSup (domain '' c) }) → { p // ↑x ∈ (↑p).domain } f : { x // x ∈ sSup (domain '' c) } → F := fun x => ↑↑↑(P x) { val := ↑x, property := (_ : ↑x ∈ (↑↑(P x)).domain) } p : ↑c x : { x // x ∈ sSup (domain '' c) } y : { x // x ∈ (↑p).domain } hxy : ↑x = ↑y q : E →ₗ.[R] F _hqc : q ∈ c hxq : ↑↑(P x) ≤ q hpq : ↑p ≤ q ⊢ ↑y = ↑(↑(ofLe (_ : (↑p).domain ≤ q.domain)) y) [PROOFSTEP] rfl [GOAL] case intro.intro.intro.refine'_1 R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G c : Set (E →ₗ.[R] F) hc : DirectedOn (fun x x_1 => x ≤ x_1) c cne : Set.Nonempty c hdir : DirectedOn (fun x x_1 => x ≤ x_1) (domain '' c) P : (x : { x // x ∈ sSup (domain '' c) }) → { p // ↑x ∈ (↑p).domain } f : { x // x ∈ sSup (domain '' c) } → F := fun x => ↑↑↑(P x) { val := ↑x, property := (_ : ↑x ∈ (↑↑(P x)).domain) } p : ↑c x : { x // x ∈ sSup (domain '' c) } y : { x // x ∈ (↑p).domain } hxy : ↑x = ↑y q : E →ₗ.[R] F _hqc : q ∈ c hxq : ↑↑(P x) ≤ q hpq : ↑p ≤ q ⊢ ↑{ val := ↑x, property := (_ : ↑x ∈ (↑↑(P x)).domain) } = ↑(↑(ofLe (_ : (↑p).domain ≤ q.domain)) y) [PROOFSTEP] exact hxy [GOAL] case inr R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G c : Set (E →ₗ.[R] F) hc : DirectedOn (fun x x_1 => x ≤ x_1) c cne : Set.Nonempty c hdir : DirectedOn (fun x x_1 => x ≤ x_1) (domain '' c) P : (x : { x // x ∈ sSup (domain '' c) }) → { p // ↑x ∈ (↑p).domain } f : { x // x ∈ sSup (domain '' c) } → F := fun x => ↑↑↑(P x) { val := ↑x, property := (_ : ↑x ∈ (↑↑(P x)).domain) } f_eq : ∀ (p : ↑c) (x : { x // x ∈ sSup (domain '' c) }) (y : { x // x ∈ (↑p).domain }), ↑x = ↑y → f x = ↑↑p y ⊢ ∃ f, { domain := sSup (domain '' c), toFun := f } ∈ upperBounds c [PROOFSTEP] refine' ⟨{ toFun := f .. }, _⟩ [GOAL] case inr.refine'_1 R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G c : Set (E →ₗ.[R] F) hc : DirectedOn (fun x x_1 => x ≤ x_1) c cne : Set.Nonempty c hdir : DirectedOn (fun x x_1 => x ≤ x_1) (domain '' c) P : (x : { x // x ∈ sSup (domain '' c) }) → { p // ↑x ∈ (↑p).domain } f : { x // x ∈ sSup (domain '' c) } → F := fun x => ↑↑↑(P x) { val := ↑x, property := (_ : ↑x ∈ (↑↑(P x)).domain) } f_eq : ∀ (p : ↑c) (x : { x // x ∈ sSup (domain '' c) }) (y : { x // x ∈ (↑p).domain }), ↑x = ↑y → f x = ↑↑p y ⊢ ∀ (x y : { x // x ∈ sSup (domain '' c) }), f (x + y) = f x + f y [PROOFSTEP] intro x y [GOAL] case inr.refine'_1 R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G c : Set (E →ₗ.[R] F) hc : DirectedOn (fun x x_1 => x ≤ x_1) c cne : Set.Nonempty c hdir : DirectedOn (fun x x_1 => x ≤ x_1) (domain '' c) P : (x : { x // x ∈ sSup (domain '' c) }) → { p // ↑x ∈ (↑p).domain } f : { x // x ∈ sSup (domain '' c) } → F := fun x => ↑↑↑(P x) { val := ↑x, property := (_ : ↑x ∈ (↑↑(P x)).domain) } f_eq : ∀ (p : ↑c) (x : { x // x ∈ sSup (domain '' c) }) (y : { x // x ∈ (↑p).domain }), ↑x = ↑y → f x = ↑↑p y x y : { x // x ∈ sSup (domain '' c) } ⊢ f (x + y) = f x + f y [PROOFSTEP] rcases hc (P x).1.1 (P x).1.2 (P y).1.1 (P y).1.2 with ⟨p, hpc, hpx, hpy⟩ [GOAL] case inr.refine'_1.intro.intro.intro R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G c : Set (E →ₗ.[R] F) hc : DirectedOn (fun x x_1 => x ≤ x_1) c cne : Set.Nonempty c hdir : DirectedOn (fun x x_1 => x ≤ x_1) (domain '' c) P : (x : { x // x ∈ sSup (domain '' c) }) → { p // ↑x ∈ (↑p).domain } f : { x // x ∈ sSup (domain '' c) } → F := fun x => ↑↑↑(P x) { val := ↑x, property := (_ : ↑x ∈ (↑↑(P x)).domain) } f_eq : ∀ (p : ↑c) (x : { x // x ∈ sSup (domain '' c) }) (y : { x // x ∈ (↑p).domain }), ↑x = ↑y → f x = ↑↑p y x y : { x // x ∈ sSup (domain '' c) } p : E →ₗ.[R] F hpc : p ∈ c hpx : ↑↑(P x) ≤ p hpy : ↑↑(P y) ≤ p ⊢ f (x + y) = f x + f y [PROOFSTEP] set x' := ofLe hpx.1 ⟨x, (P x).2⟩ [GOAL] case inr.refine'_1.intro.intro.intro R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G c : Set (E →ₗ.[R] F) hc : DirectedOn (fun x x_1 => x ≤ x_1) c cne : Set.Nonempty c hdir : DirectedOn (fun x x_1 => x ≤ x_1) (domain '' c) P : (x : { x // x ∈ sSup (domain '' c) }) → { p // ↑x ∈ (↑p).domain } f : { x // x ∈ sSup (domain '' c) } → F := fun x => ↑↑↑(P x) { val := ↑x, property := (_ : ↑x ∈ (↑↑(P x)).domain) } f_eq : ∀ (p : ↑c) (x : { x // x ∈ sSup (domain '' c) }) (y : { x // x ∈ (↑p).domain }), ↑x = ↑y → f x = ↑↑p y x y : { x // x ∈ sSup (domain '' c) } p : E →ₗ.[R] F hpc : p ∈ c hpx : ↑↑(P x) ≤ p hpy : ↑↑(P y) ≤ p x' : { x // x ∈ p.domain } := ↑(ofLe (_ : (↑↑(P x)).domain ≤ p.domain)) { val := ↑x, property := (_ : ↑x ∈ (↑↑(P x)).domain) } ⊢ f (x + y) = f x + f y [PROOFSTEP] set y' := ofLe hpy.1 ⟨y, (P y).2⟩ [GOAL] case inr.refine'_1.intro.intro.intro R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G c : Set (E →ₗ.[R] F) hc : DirectedOn (fun x x_1 => x ≤ x_1) c cne : Set.Nonempty c hdir : DirectedOn (fun x x_1 => x ≤ x_1) (domain '' c) P : (x : { x // x ∈ sSup (domain '' c) }) → { p // ↑x ∈ (↑p).domain } f : { x // x ∈ sSup (domain '' c) } → F := fun x => ↑↑↑(P x) { val := ↑x, property := (_ : ↑x ∈ (↑↑(P x)).domain) } f_eq : ∀ (p : ↑c) (x : { x // x ∈ sSup (domain '' c) }) (y : { x // x ∈ (↑p).domain }), ↑x = ↑y → f x = ↑↑p y x y : { x // x ∈ sSup (domain '' c) } p : E →ₗ.[R] F hpc : p ∈ c hpx : ↑↑(P x) ≤ p hpy : ↑↑(P y) ≤ p x' : { x // x ∈ p.domain } := ↑(ofLe (_ : (↑↑(P x)).domain ≤ p.domain)) { val := ↑x, property := (_ : ↑x ∈ (↑↑(P x)).domain) } y' : { x // x ∈ p.domain } := ↑(ofLe (_ : (↑↑(P y)).domain ≤ p.domain)) { val := ↑y, property := (_ : ↑y ∈ (↑↑(P y)).domain) } ⊢ f (x + y) = f x + f y [PROOFSTEP] rw [f_eq ⟨p, hpc⟩ x x' rfl, f_eq ⟨p, hpc⟩ y y' rfl, f_eq ⟨p, hpc⟩ (x + y) (x' + y') rfl, map_add] [GOAL] case inr.refine'_2 R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G c : Set (E →ₗ.[R] F) hc : DirectedOn (fun x x_1 => x ≤ x_1) c cne : Set.Nonempty c hdir : DirectedOn (fun x x_1 => x ≤ x_1) (domain '' c) P : (x : { x // x ∈ sSup (domain '' c) }) → { p // ↑x ∈ (↑p).domain } f : { x // x ∈ sSup (domain '' c) } → F := fun x => ↑↑↑(P x) { val := ↑x, property := (_ : ↑x ∈ (↑↑(P x)).domain) } f_eq : ∀ (p : ↑c) (x : { x // x ∈ sSup (domain '' c) }) (y : { x // x ∈ (↑p).domain }), ↑x = ↑y → f x = ↑↑p y ⊢ ∀ (r : R) (x : { x // x ∈ sSup (domain '' c) }), AddHom.toFun { toFun := f, map_add' := (_ : ∀ (x y : { x // x ∈ sSup (domain '' c) }), f (x + y) = f x + f y) } (r • x) = ↑(RingHom.id R) r • AddHom.toFun { toFun := f, map_add' := (_ : ∀ (x y : { x // x ∈ sSup (domain '' c) }), f (x + y) = f x + f y) } x [PROOFSTEP] intro c x [GOAL] case inr.refine'_2 R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G c✝ : Set (E →ₗ.[R] F) hc : DirectedOn (fun x x_1 => x ≤ x_1) c✝ cne : Set.Nonempty c✝ hdir : DirectedOn (fun x x_1 => x ≤ x_1) (domain '' c✝) P : (x : { x // x ∈ sSup (domain '' c✝) }) → { p // ↑x ∈ (↑p).domain } f : { x // x ∈ sSup (domain '' c✝) } → F := fun x => ↑↑↑(P x) { val := ↑x, property := (_ : ↑x ∈ (↑↑(P x)).domain) } f_eq : ∀ (p : ↑c✝) (x : { x // x ∈ sSup (domain '' c✝) }) (y : { x // x ∈ (↑p).domain }), ↑x = ↑y → f x = ↑↑p y c : R x : { x // x ∈ sSup (domain '' c✝) } ⊢ AddHom.toFun { toFun := f, map_add' := (_ : ∀ (x y : { x // x ∈ sSup (domain '' c✝) }), f (x + y) = f x + f y) } (c • x) = ↑(RingHom.id R) c • AddHom.toFun { toFun := f, map_add' := (_ : ∀ (x y : { x // x ∈ sSup (domain '' c✝) }), f (x + y) = f x + f y) } x [PROOFSTEP] simp only [f_eq (P x).1 (c • x) (c • ⟨x, (P x).2⟩) rfl, ← map_smul, RingHom.id_apply] [GOAL] case inr.refine'_3 R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G c : Set (E →ₗ.[R] F) hc : DirectedOn (fun x x_1 => x ≤ x_1) c cne : Set.Nonempty c hdir : DirectedOn (fun x x_1 => x ≤ x_1) (domain '' c) P : (x : { x // x ∈ sSup (domain '' c) }) → { p // ↑x ∈ (↑p).domain } f : { x // x ∈ sSup (domain '' c) } → F := fun x => ↑↑↑(P x) { val := ↑x, property := (_ : ↑x ∈ (↑↑(P x)).domain) } f_eq : ∀ (p : ↑c) (x : { x // x ∈ sSup (domain '' c) }) (y : { x // x ∈ (↑p).domain }), ↑x = ↑y → f x = ↑↑p y ⊢ { domain := sSup (domain '' c), toFun := { toAddHom := { toFun := f, map_add' := (_ : ∀ (x y : { x // x ∈ sSup (domain '' c) }), f (x + y) = f x + f y) }, map_smul' := (_ : ∀ (c_1 : R) (x : { x // x ∈ sSup (domain '' c) }), f (c_1 • x) = c_1 • ↑↑↑(P x) { val := ↑x, property := (_ : ↑x ∈ (↑↑(P x)).domain) }) } } ∈ upperBounds c [PROOFSTEP] intro p hpc [GOAL] case inr.refine'_3 R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G c : Set (E →ₗ.[R] F) hc : DirectedOn (fun x x_1 => x ≤ x_1) c cne : Set.Nonempty c hdir : DirectedOn (fun x x_1 => x ≤ x_1) (domain '' c) P : (x : { x // x ∈ sSup (domain '' c) }) → { p // ↑x ∈ (↑p).domain } f : { x // x ∈ sSup (domain '' c) } → F := fun x => ↑↑↑(P x) { val := ↑x, property := (_ : ↑x ∈ (↑↑(P x)).domain) } f_eq : ∀ (p : ↑c) (x : { x // x ∈ sSup (domain '' c) }) (y : { x // x ∈ (↑p).domain }), ↑x = ↑y → f x = ↑↑p y p : E →ₗ.[R] F hpc : p ∈ c ⊢ p ≤ { domain := sSup (domain '' c), toFun := { toAddHom := { toFun := f, map_add' := (_ : ∀ (x y : { x // x ∈ sSup (domain '' c) }), f (x + y) = f x + f y) }, map_smul' := (_ : ∀ (c_1 : R) (x : { x // x ∈ sSup (domain '' c) }), f (c_1 • x) = c_1 • ↑↑↑(P x) { val := ↑x, property := (_ : ↑x ∈ (↑↑(P x)).domain) }) } } [PROOFSTEP] refine' ⟨le_sSup <| mem_image_of_mem domain hpc, fun x y hxy => Eq.symm _⟩ [GOAL] case inr.refine'_3 R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G c : Set (E →ₗ.[R] F) hc : DirectedOn (fun x x_1 => x ≤ x_1) c cne : Set.Nonempty c hdir : DirectedOn (fun x x_1 => x ≤ x_1) (domain '' c) P : (x : { x // x ∈ sSup (domain '' c) }) → { p // ↑x ∈ (↑p).domain } f : { x // x ∈ sSup (domain '' c) } → F := fun x => ↑↑↑(P x) { val := ↑x, property := (_ : ↑x ∈ (↑↑(P x)).domain) } f_eq : ∀ (p : ↑c) (x : { x // x ∈ sSup (domain '' c) }) (y : { x // x ∈ (↑p).domain }), ↑x = ↑y → f x = ↑↑p y p : E →ₗ.[R] F hpc : p ∈ c x : { x // x ∈ p.domain } y : { x // x ∈ { domain := sSup (domain '' c), toFun := { toAddHom := { toFun := f, map_add' := (_ : ∀ (x y : { x // x ∈ sSup (domain '' c) }), f (x + y) = f x + f y) }, map_smul' := (_ : ∀ (c_1 : R) (x : { x // x ∈ sSup (domain '' c) }), f (c_1 • x) = c_1 • ↑↑↑(P x) { val := ↑x, property := (_ : ↑x ∈ (↑↑(P x)).domain) }) } }.domain } hxy : ↑x = ↑y ⊢ ↑{ domain := sSup (domain '' c), toFun := { toAddHom := { toFun := f, map_add' := (_ : ∀ (x y : { x // x ∈ sSup (domain '' c) }), f (x + y) = f x + f y) }, map_smul' := (_ : ∀ (c_1 : R) (x : { x // x ∈ sSup (domain '' c) }), f (c_1 • x) = c_1 • ↑↑↑(P x) { val := ↑x, property := (_ : ↑x ∈ (↑↑(P x)).domain) }) } } y = ↑p x [PROOFSTEP] exact f_eq ⟨p, hpc⟩ _ _ hxy.symm [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G c : Set (E →ₗ.[R] F) hc : DirectedOn (fun x x_1 => x ≤ x_1) c l : E →ₗ.[R] F hl : l ∈ c x : { x // x ∈ l.domain } ⊢ ↑(LinearPMap.sSup c hc) { val := ↑x, property := (_ : ↑x ∈ (LinearPMap.sSup c hc).domain) } = ↑l x [PROOFSTEP] symm [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G c : Set (E →ₗ.[R] F) hc : DirectedOn (fun x x_1 => x ≤ x_1) c l : E →ₗ.[R] F hl : l ∈ c x : { x // x ∈ l.domain } ⊢ ↑l x = ↑(LinearPMap.sSup c hc) { val := ↑x, property := (_ : ↑x ∈ (LinearPMap.sSup c hc).domain) } [PROOFSTEP] apply (Classical.choose_spec (sSup_aux c hc) hl).2 [GOAL] case _h R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G c : Set (E →ₗ.[R] F) hc : DirectedOn (fun x x_1 => x ≤ x_1) c l : E →ₗ.[R] F hl : l ∈ c x : { x // x ∈ l.domain } ⊢ ↑x = ↑{ val := ↑x, property := (_ : ↑x ∈ (LinearPMap.sSup c hc).domain) } [PROOFSTEP] rfl [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f : E →ₗ.[R] F S : Submodule R E ⊢ S ⊓ f.domain ≤ f.domain [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f : E →ₗ.[R] F S : Submodule R E x : { x // x ∈ S ⊓ f.domain } y : { x // x ∈ f.domain } h : ↑x = ↑y ⊢ ↑(domRestrict f S) x = ↑f y [PROOFSTEP] have : Submodule.ofLe (by simp) x = y := by ext simp [h] [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f : E →ₗ.[R] F S : Submodule R E x : { x // x ∈ S ⊓ f.domain } y : { x // x ∈ f.domain } h : ↑x = ↑y ⊢ S ⊓ f.domain ≤ f.domain [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f : E →ₗ.[R] F S : Submodule R E x : { x // x ∈ S ⊓ f.domain } y : { x // x ∈ f.domain } h : ↑x = ↑y ⊢ ↑(Submodule.ofLe (_ : S ⊓ f.domain ≤ f.domain)) x = y [PROOFSTEP] ext [GOAL] case a R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f : E →ₗ.[R] F S : Submodule R E x : { x // x ∈ S ⊓ f.domain } y : { x // x ∈ f.domain } h : ↑x = ↑y ⊢ ↑(↑(Submodule.ofLe (_ : S ⊓ f.domain ≤ f.domain)) x) = ↑y [PROOFSTEP] simp [h] [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f : E →ₗ.[R] F S : Submodule R E x : { x // x ∈ S ⊓ f.domain } y : { x // x ∈ f.domain } h : ↑x = ↑y this : ↑(Submodule.ofLe (_ : S ⊓ f.domain ≤ f.domain)) x = y ⊢ ↑(domRestrict f S) x = ↑f y [PROOFSTEP] rw [← this] [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f : E →ₗ.[R] F S : Submodule R E x : { x // x ∈ S ⊓ f.domain } y : { x // x ∈ f.domain } h : ↑x = ↑y this : ↑(Submodule.ofLe (_ : S ⊓ f.domain ≤ f.domain)) x = y ⊢ ↑(domRestrict f S) x = ↑f (↑(Submodule.ofLe (_ : S ⊓ f.domain ≤ f.domain)) x) [PROOFSTEP] exact LinearPMap.mk_apply _ _ _ [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f : E →ₗ.[R] F S : Submodule R E ⊢ (domRestrict f S).domain ≤ f.domain [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f : E →ₗ.[R] F x : E × F ⊢ x ∈ graph f ↔ ∃ y, (↑y, ↑f y) = x [PROOFSTEP] simp [graph] [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f : E →ₗ.[R] F x : E × F ⊢ x ∈ graph f ↔ ∃ y, ↑y = x.fst ∧ ↑f y = x.snd [PROOFSTEP] cases x [GOAL] case mk R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f : E →ₗ.[R] F fst✝ : E snd✝ : F ⊢ (fst✝, snd✝) ∈ graph f ↔ ∃ y, ↑y = (fst✝, snd✝).fst ∧ ↑f y = (fst✝, snd✝).snd [PROOFSTEP] simp_rw [mem_graph_iff', Prod.mk.inj_iff] [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f : E →ₗ.[R] F x : { x // x ∈ f.domain } ⊢ (↑x, ↑f x) ∈ graph f [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f : E →ₗ.[R] F ⊢ Submodule.map (LinearMap.fst R E F) (graph f) = f.domain [PROOFSTEP] ext x [GOAL] case h R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f : E →ₗ.[R] F x : E ⊢ x ∈ Submodule.map (LinearMap.fst R E F) (graph f) ↔ x ∈ f.domain [PROOFSTEP] simp only [Submodule.mem_map, mem_graph_iff, Subtype.exists, exists_and_left, exists_eq_left, LinearMap.fst_apply, Prod.exists, exists_and_right, exists_eq_right] [GOAL] case h R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f : E →ₗ.[R] F x : E ⊢ (∃ x_1 h, ↑f { val := x, property := (_ : (x, x_1).fst ∈ f.domain) } = x_1) ↔ x ∈ f.domain [PROOFSTEP] constructor [GOAL] case h.mp R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f : E →ₗ.[R] F x : E ⊢ (∃ x_1 h, ↑f { val := x, property := (_ : (x, x_1).fst ∈ f.domain) } = x_1) → x ∈ f.domain [PROOFSTEP] intro h [GOAL] case h.mpr R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f : E →ₗ.[R] F x : E ⊢ x ∈ f.domain → ∃ x_1 h, ↑f { val := x, property := (_ : (x, x_1).fst ∈ f.domain) } = x_1 [PROOFSTEP] intro h [GOAL] case h.mp R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f : E →ₗ.[R] F x : E h : ∃ x_1 h, ↑f { val := x, property := (_ : (x, x_1).fst ∈ f.domain) } = x_1 ⊢ x ∈ f.domain [PROOFSTEP] rcases h with ⟨x, hx, _⟩ [GOAL] case h.mp.intro.intro R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f : E →ₗ.[R] F x✝ : E x : F hx : x✝ ∈ f.domain h✝ : ↑f { val := x✝, property := (_ : (x✝, x).fst ∈ f.domain) } = x ⊢ x✝ ∈ f.domain [PROOFSTEP] exact hx [GOAL] case h.mpr R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f : E →ₗ.[R] F x : E h : x ∈ f.domain ⊢ ∃ x_1 h, ↑f { val := x, property := (_ : (x, x_1).fst ∈ f.domain) } = x_1 [PROOFSTEP] use f ⟨x, h⟩ [GOAL] case h R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f : E →ₗ.[R] F x : E h : x ∈ f.domain ⊢ ∃ h_1, ↑f { val := x, property := (_ : (x, ↑f { val := x, property := h }).fst ∈ f.domain) } = ↑f { val := x, property := h } [PROOFSTEP] simp only [h, exists_prop] [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f : E →ₗ.[R] F ⊢ Submodule.map (LinearMap.snd R E F) (graph f) = LinearMap.range f.toFun [PROOFSTEP] ext [GOAL] case h R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f : E →ₗ.[R] F x✝ : F ⊢ x✝ ∈ Submodule.map (LinearMap.snd R E F) (graph f) ↔ x✝ ∈ LinearMap.range f.toFun [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y : M f : E →ₗ.[R] F z : M ⊢ graph (z • f) = Submodule.map (LinearMap.prodMap LinearMap.id (z • LinearMap.id)) (graph f) [PROOFSTEP] ext x [GOAL] case h R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y : M f : E →ₗ.[R] F z : M x : E × F ⊢ x ∈ graph (z • f) ↔ x ∈ Submodule.map (LinearMap.prodMap LinearMap.id (z • LinearMap.id)) (graph f) [PROOFSTEP] cases' x with x_fst x_snd [GOAL] case h.mk R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y : M f : E →ₗ.[R] F z : M x_fst : E x_snd : F ⊢ (x_fst, x_snd) ∈ graph (z • f) ↔ (x_fst, x_snd) ∈ Submodule.map (LinearMap.prodMap LinearMap.id (z • LinearMap.id)) (graph f) [PROOFSTEP] constructor [GOAL] case h.mk.mp R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y : M f : E →ₗ.[R] F z : M x_fst : E x_snd : F ⊢ (x_fst, x_snd) ∈ graph (z • f) → (x_fst, x_snd) ∈ Submodule.map (LinearMap.prodMap LinearMap.id (z • LinearMap.id)) (graph f) [PROOFSTEP] intro h [GOAL] case h.mk.mpr R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y : M f : E →ₗ.[R] F z : M x_fst : E x_snd : F ⊢ (x_fst, x_snd) ∈ Submodule.map (LinearMap.prodMap LinearMap.id (z • LinearMap.id)) (graph f) → (x_fst, x_snd) ∈ graph (z • f) [PROOFSTEP] intro h [GOAL] case h.mk.mp R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y : M f : E →ₗ.[R] F z : M x_fst : E x_snd : F h : (x_fst, x_snd) ∈ graph (z • f) ⊢ (x_fst, x_snd) ∈ Submodule.map (LinearMap.prodMap LinearMap.id (z • LinearMap.id)) (graph f) [PROOFSTEP] rw [mem_graph_iff] at h [GOAL] case h.mk.mp R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y : M f : E →ₗ.[R] F z : M x_fst : E x_snd : F h : ∃ y, ↑y = (x_fst, x_snd).fst ∧ ↑(z • f) y = (x_fst, x_snd).snd ⊢ (x_fst, x_snd) ∈ Submodule.map (LinearMap.prodMap LinearMap.id (z • LinearMap.id)) (graph f) [PROOFSTEP] rcases h with ⟨y, hy, h⟩ [GOAL] case h.mk.mp.intro.intro R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y✝ : M f : E →ₗ.[R] F z : M x_fst : E x_snd : F y : { x // x ∈ (z • f).domain } hy : ↑y = (x_fst, x_snd).fst h : ↑(z • f) y = (x_fst, x_snd).snd ⊢ (x_fst, x_snd) ∈ Submodule.map (LinearMap.prodMap LinearMap.id (z • LinearMap.id)) (graph f) [PROOFSTEP] rw [LinearPMap.smul_apply] at h [GOAL] case h.mk.mp.intro.intro R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y✝ : M f : E →ₗ.[R] F z : M x_fst : E x_snd : F y : { x // x ∈ (z • f).domain } hy : ↑y = (x_fst, x_snd).fst h : z • ↑f y = (x_fst, x_snd).snd ⊢ (x_fst, x_snd) ∈ Submodule.map (LinearMap.prodMap LinearMap.id (z • LinearMap.id)) (graph f) [PROOFSTEP] rw [Submodule.mem_map] [GOAL] case h.mk.mp.intro.intro R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y✝ : M f : E →ₗ.[R] F z : M x_fst : E x_snd : F y : { x // x ∈ (z • f).domain } hy : ↑y = (x_fst, x_snd).fst h : z • ↑f y = (x_fst, x_snd).snd ⊢ ∃ y, y ∈ graph f ∧ ↑(LinearMap.prodMap LinearMap.id (z • LinearMap.id)) y = (x_fst, x_snd) [PROOFSTEP] simp only [mem_graph_iff, LinearMap.prodMap_apply, LinearMap.id_coe, id.def, LinearMap.smul_apply, Prod.mk.inj_iff, Prod.exists, exists_exists_and_eq_and] [GOAL] case h.mk.mp.intro.intro R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y✝ : M f : E →ₗ.[R] F z : M x_fst : E x_snd : F y : { x // x ∈ (z • f).domain } hy : ↑y = (x_fst, x_snd).fst h : z • ↑f y = (x_fst, x_snd).snd ⊢ ∃ a a_1, ↑a_1 = a ∧ a = x_fst ∧ z • ↑f a_1 = x_snd [PROOFSTEP] use x_fst, y, hy [GOAL] case h.mk.mpr R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y : M f : E →ₗ.[R] F z : M x_fst : E x_snd : F h : (x_fst, x_snd) ∈ Submodule.map (LinearMap.prodMap LinearMap.id (z • LinearMap.id)) (graph f) ⊢ (x_fst, x_snd) ∈ graph (z • f) [PROOFSTEP] rw [Submodule.mem_map] at h [GOAL] case h.mk.mpr R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y : M f : E →ₗ.[R] F z : M x_fst : E x_snd : F h : ∃ y, y ∈ graph f ∧ ↑(LinearMap.prodMap LinearMap.id (z • LinearMap.id)) y = (x_fst, x_snd) ⊢ (x_fst, x_snd) ∈ graph (z • f) [PROOFSTEP] rcases h with ⟨x', hx', h⟩ [GOAL] case h.mk.mpr.intro.intro R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y : M f : E →ₗ.[R] F z : M x_fst : E x_snd : F x' : E × F hx' : x' ∈ graph f h : ↑(LinearMap.prodMap LinearMap.id (z • LinearMap.id)) x' = (x_fst, x_snd) ⊢ (x_fst, x_snd) ∈ graph (z • f) [PROOFSTEP] cases x' [GOAL] case h.mk.mpr.intro.intro.mk R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y : M f : E →ₗ.[R] F z : M x_fst : E x_snd : F fst✝ : E snd✝ : F hx' : (fst✝, snd✝) ∈ graph f h : ↑(LinearMap.prodMap LinearMap.id (z • LinearMap.id)) (fst✝, snd✝) = (x_fst, x_snd) ⊢ (x_fst, x_snd) ∈ graph (z • f) [PROOFSTEP] simp only [LinearMap.prodMap_apply, LinearMap.id_coe, id.def, LinearMap.smul_apply, Prod.mk.inj_iff] at h [GOAL] case h.mk.mpr.intro.intro.mk R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y : M f : E →ₗ.[R] F z : M x_fst : E x_snd : F fst✝ : E snd✝ : F hx' : (fst✝, snd✝) ∈ graph f h : fst✝ = x_fst ∧ z • snd✝ = x_snd ⊢ (x_fst, x_snd) ∈ graph (z • f) [PROOFSTEP] rw [mem_graph_iff] at hx' ⊢ [GOAL] case h.mk.mpr.intro.intro.mk R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y : M f : E →ₗ.[R] F z : M x_fst : E x_snd : F fst✝ : E snd✝ : F hx' : ∃ y, ↑y = (fst✝, snd✝).fst ∧ ↑f y = (fst✝, snd✝).snd h : fst✝ = x_fst ∧ z • snd✝ = x_snd ⊢ ∃ y, ↑y = (x_fst, x_snd).fst ∧ ↑(z • f) y = (x_fst, x_snd).snd [PROOFSTEP] rcases hx' with ⟨y, hy, hx'⟩ [GOAL] case h.mk.mpr.intro.intro.mk.intro.intro R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y✝ : M f : E →ₗ.[R] F z : M x_fst : E x_snd : F fst✝ : E snd✝ : F h : fst✝ = x_fst ∧ z • snd✝ = x_snd y : { x // x ∈ f.domain } hy : ↑y = (fst✝, snd✝).fst hx' : ↑f y = (fst✝, snd✝).snd ⊢ ∃ y, ↑y = (x_fst, x_snd).fst ∧ ↑(z • f) y = (x_fst, x_snd).snd [PROOFSTEP] use y [GOAL] case h R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y✝ : M f : E →ₗ.[R] F z : M x_fst : E x_snd : F fst✝ : E snd✝ : F h : fst✝ = x_fst ∧ z • snd✝ = x_snd y : { x // x ∈ f.domain } hy : ↑y = (fst✝, snd✝).fst hx' : ↑f y = (fst✝, snd✝).snd ⊢ ↑y = (x_fst, x_snd).fst ∧ ↑(z • f) y = (x_fst, x_snd).snd [PROOFSTEP] rw [← h.1, ← h.2] [GOAL] case h R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y✝ : M f : E →ₗ.[R] F z : M x_fst : E x_snd : F fst✝ : E snd✝ : F h : fst✝ = x_fst ∧ z • snd✝ = x_snd y : { x // x ∈ f.domain } hy : ↑y = (fst✝, snd✝).fst hx' : ↑f y = (fst✝, snd✝).snd ⊢ ↑y = (fst✝, z • snd✝).fst ∧ ↑(z • f) y = (fst✝, z • snd✝).snd [PROOFSTEP] simp [hy, hx'] [GOAL] R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y : M f : E →ₗ.[R] F ⊢ graph (-f) = Submodule.map (LinearMap.prodMap LinearMap.id (-LinearMap.id)) (graph f) [PROOFSTEP] ext x [GOAL] case h R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y : M f : E →ₗ.[R] F x : E × F ⊢ x ∈ graph (-f) ↔ x ∈ Submodule.map (LinearMap.prodMap LinearMap.id (-LinearMap.id)) (graph f) [PROOFSTEP] cases' x with x_fst x_snd [GOAL] case h.mk R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y : M f : E →ₗ.[R] F x_fst : E x_snd : F ⊢ (x_fst, x_snd) ∈ graph (-f) ↔ (x_fst, x_snd) ∈ Submodule.map (LinearMap.prodMap LinearMap.id (-LinearMap.id)) (graph f) [PROOFSTEP] constructor [GOAL] case h.mk.mp R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y : M f : E →ₗ.[R] F x_fst : E x_snd : F ⊢ (x_fst, x_snd) ∈ graph (-f) → (x_fst, x_snd) ∈ Submodule.map (LinearMap.prodMap LinearMap.id (-LinearMap.id)) (graph f) [PROOFSTEP] intro h [GOAL] case h.mk.mpr R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y : M f : E →ₗ.[R] F x_fst : E x_snd : F ⊢ (x_fst, x_snd) ∈ Submodule.map (LinearMap.prodMap LinearMap.id (-LinearMap.id)) (graph f) → (x_fst, x_snd) ∈ graph (-f) [PROOFSTEP] intro h [GOAL] case h.mk.mp R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y : M f : E →ₗ.[R] F x_fst : E x_snd : F h : (x_fst, x_snd) ∈ graph (-f) ⊢ (x_fst, x_snd) ∈ Submodule.map (LinearMap.prodMap LinearMap.id (-LinearMap.id)) (graph f) [PROOFSTEP] rw [mem_graph_iff] at h [GOAL] case h.mk.mp R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y : M f : E →ₗ.[R] F x_fst : E x_snd : F h : ∃ y, ↑y = (x_fst, x_snd).fst ∧ ↑(-f) y = (x_fst, x_snd).snd ⊢ (x_fst, x_snd) ∈ Submodule.map (LinearMap.prodMap LinearMap.id (-LinearMap.id)) (graph f) [PROOFSTEP] rcases h with ⟨y, hy, h⟩ [GOAL] case h.mk.mp.intro.intro R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y✝ : M f : E →ₗ.[R] F x_fst : E x_snd : F y : { x // x ∈ (-f).domain } hy : ↑y = (x_fst, x_snd).fst h : ↑(-f) y = (x_fst, x_snd).snd ⊢ (x_fst, x_snd) ∈ Submodule.map (LinearMap.prodMap LinearMap.id (-LinearMap.id)) (graph f) [PROOFSTEP] rw [LinearPMap.neg_apply] at h [GOAL] case h.mk.mp.intro.intro R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y✝ : M f : E →ₗ.[R] F x_fst : E x_snd : F y : { x // x ∈ (-f).domain } hy : ↑y = (x_fst, x_snd).fst h : -↑f y = (x_fst, x_snd).snd ⊢ (x_fst, x_snd) ∈ Submodule.map (LinearMap.prodMap LinearMap.id (-LinearMap.id)) (graph f) [PROOFSTEP] rw [Submodule.mem_map] [GOAL] case h.mk.mp.intro.intro R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y✝ : M f : E →ₗ.[R] F x_fst : E x_snd : F y : { x // x ∈ (-f).domain } hy : ↑y = (x_fst, x_snd).fst h : -↑f y = (x_fst, x_snd).snd ⊢ ∃ y, y ∈ graph f ∧ ↑(LinearMap.prodMap LinearMap.id (-LinearMap.id)) y = (x_fst, x_snd) [PROOFSTEP] simp only [mem_graph_iff, LinearMap.prodMap_apply, LinearMap.id_coe, id.def, LinearMap.neg_apply, Prod.mk.inj_iff, Prod.exists, exists_exists_and_eq_and] [GOAL] case h.mk.mp.intro.intro R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y✝ : M f : E →ₗ.[R] F x_fst : E x_snd : F y : { x // x ∈ (-f).domain } hy : ↑y = (x_fst, x_snd).fst h : -↑f y = (x_fst, x_snd).snd ⊢ ∃ a a_1, ↑a_1 = a ∧ a = x_fst ∧ -↑f a_1 = x_snd [PROOFSTEP] use x_fst, y, hy [GOAL] case h.mk.mpr R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y : M f : E →ₗ.[R] F x_fst : E x_snd : F h : (x_fst, x_snd) ∈ Submodule.map (LinearMap.prodMap LinearMap.id (-LinearMap.id)) (graph f) ⊢ (x_fst, x_snd) ∈ graph (-f) [PROOFSTEP] rw [Submodule.mem_map] at h [GOAL] case h.mk.mpr R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y : M f : E →ₗ.[R] F x_fst : E x_snd : F h : ∃ y, y ∈ graph f ∧ ↑(LinearMap.prodMap LinearMap.id (-LinearMap.id)) y = (x_fst, x_snd) ⊢ (x_fst, x_snd) ∈ graph (-f) [PROOFSTEP] rcases h with ⟨x', hx', h⟩ [GOAL] case h.mk.mpr.intro.intro R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y : M f : E →ₗ.[R] F x_fst : E x_snd : F x' : E × F hx' : x' ∈ graph f h : ↑(LinearMap.prodMap LinearMap.id (-LinearMap.id)) x' = (x_fst, x_snd) ⊢ (x_fst, x_snd) ∈ graph (-f) [PROOFSTEP] cases x' [GOAL] case h.mk.mpr.intro.intro.mk R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y : M f : E →ₗ.[R] F x_fst : E x_snd : F fst✝ : E snd✝ : F hx' : (fst✝, snd✝) ∈ graph f h : ↑(LinearMap.prodMap LinearMap.id (-LinearMap.id)) (fst✝, snd✝) = (x_fst, x_snd) ⊢ (x_fst, x_snd) ∈ graph (-f) [PROOFSTEP] simp only [LinearMap.prodMap_apply, LinearMap.id_coe, id.def, LinearMap.neg_apply, Prod.mk.inj_iff] at h [GOAL] case h.mk.mpr.intro.intro.mk R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y : M f : E →ₗ.[R] F x_fst : E x_snd : F fst✝ : E snd✝ : F hx' : (fst✝, snd✝) ∈ graph f h : fst✝ = x_fst ∧ -snd✝ = x_snd ⊢ (x_fst, x_snd) ∈ graph (-f) [PROOFSTEP] rw [mem_graph_iff] at hx' ⊢ [GOAL] case h.mk.mpr.intro.intro.mk R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y : M f : E →ₗ.[R] F x_fst : E x_snd : F fst✝ : E snd✝ : F hx' : ∃ y, ↑y = (fst✝, snd✝).fst ∧ ↑f y = (fst✝, snd✝).snd h : fst✝ = x_fst ∧ -snd✝ = x_snd ⊢ ∃ y, ↑y = (x_fst, x_snd).fst ∧ ↑(-f) y = (x_fst, x_snd).snd [PROOFSTEP] rcases hx' with ⟨y, hy, hx'⟩ [GOAL] case h.mk.mpr.intro.intro.mk.intro.intro R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y✝ : M f : E →ₗ.[R] F x_fst : E x_snd : F fst✝ : E snd✝ : F h : fst✝ = x_fst ∧ -snd✝ = x_snd y : { x // x ∈ f.domain } hy : ↑y = (fst✝, snd✝).fst hx' : ↑f y = (fst✝, snd✝).snd ⊢ ∃ y, ↑y = (x_fst, x_snd).fst ∧ ↑(-f) y = (x_fst, x_snd).snd [PROOFSTEP] use y [GOAL] case h R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y✝ : M f : E →ₗ.[R] F x_fst : E x_snd : F fst✝ : E snd✝ : F h : fst✝ = x_fst ∧ -snd✝ = x_snd y : { x // x ∈ f.domain } hy : ↑y = (fst✝, snd✝).fst hx' : ↑f y = (fst✝, snd✝).snd ⊢ ↑y = (x_fst, x_snd).fst ∧ ↑(-f) y = (x_fst, x_snd).snd [PROOFSTEP] rw [← h.1, ← h.2] [GOAL] case h R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y✝ : M f : E →ₗ.[R] F x_fst : E x_snd : F fst✝ : E snd✝ : F h : fst✝ = x_fst ∧ -snd✝ = x_snd y : { x // x ∈ f.domain } hy : ↑y = (fst✝, snd✝).fst hx' : ↑f y = (fst✝, snd✝).snd ⊢ ↑y = (fst✝, -snd✝).fst ∧ ↑(-f) y = (fst✝, -snd✝).snd [PROOFSTEP] simp [hy, hx'] [GOAL] R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y✝ : M f : E →ₗ.[R] F x y : E x' y' : F hx : (x, x') ∈ graph f hy : (y, y') ∈ graph f hxy : x = y ⊢ x' = y' [PROOFSTEP] rw [mem_graph_iff] at hx hy [GOAL] R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y✝ : M f : E →ₗ.[R] F x y : E x' y' : F hx : ∃ y, ↑y = (x, x').fst ∧ ↑f y = (x, x').snd hy : ∃ y_1, ↑y_1 = (y, y').fst ∧ ↑f y_1 = (y, y').snd hxy : x = y ⊢ x' = y' [PROOFSTEP] rcases hx with ⟨x'', hx1, hx2⟩ [GOAL] case intro.intro R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y✝ : M f : E →ₗ.[R] F x y : E x' y' : F hy : ∃ y_1, ↑y_1 = (y, y').fst ∧ ↑f y_1 = (y, y').snd hxy : x = y x'' : { x // x ∈ f.domain } hx1 : ↑x'' = (x, x').fst hx2 : ↑f x'' = (x, x').snd ⊢ x' = y' [PROOFSTEP] rcases hy with ⟨y'', hy1, hy2⟩ [GOAL] case intro.intro.intro.intro R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y✝ : M f : E →ₗ.[R] F x y : E x' y' : F hxy : x = y x'' : { x // x ∈ f.domain } hx1 : ↑x'' = (x, x').fst hx2 : ↑f x'' = (x, x').snd y'' : { x // x ∈ f.domain } hy1 : ↑y'' = (y, y').fst hy2 : ↑f y'' = (y, y').snd ⊢ x' = y' [PROOFSTEP] simp only at hx1 hx2 hy1 hy2 [GOAL] case intro.intro.intro.intro R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y✝ : M f : E →ₗ.[R] F x y : E x' y' : F hxy : x = y x'' : { x // x ∈ f.domain } hx1 : ↑x'' = x hx2 : ↑f x'' = x' y'' : { x // x ∈ f.domain } hy1 : ↑y'' = y hy2 : ↑f y'' = y' ⊢ x' = y' [PROOFSTEP] rw [← hx1, ← hy1, SetLike.coe_eq_coe] at hxy [GOAL] case intro.intro.intro.intro R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y✝ : M f : E →ₗ.[R] F x y : E x' y' : F x'' : { x // x ∈ f.domain } hx1 : ↑x'' = x hx2 : ↑f x'' = x' y'' : { x // x ∈ f.domain } hxy : x'' = y'' hy1 : ↑y'' = y hy2 : ↑f y'' = y' ⊢ x' = y' [PROOFSTEP] rw [← hx2, ← hy2, hxy] [GOAL] R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y✝ : M f : E →ₗ.[R] F x y : E × F hx : x ∈ graph f hy : y ∈ graph f hxy : x.fst = y.fst ⊢ x.snd = y.snd [PROOFSTEP] cases x [GOAL] case mk R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y✝ : M f : E →ₗ.[R] F y : E × F hy : y ∈ graph f fst✝ : E snd✝ : F hx : (fst✝, snd✝) ∈ graph f hxy : (fst✝, snd✝).fst = y.fst ⊢ (fst✝, snd✝).snd = y.snd [PROOFSTEP] cases y [GOAL] case mk.mk R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y : M f : E →ₗ.[R] F fst✝¹ : E snd✝¹ : F hx : (fst✝¹, snd✝¹) ∈ graph f fst✝ : E snd✝ : F hy : (fst✝, snd✝) ∈ graph f hxy : (fst✝¹, snd✝¹).fst = (fst✝, snd✝).fst ⊢ (fst✝¹, snd✝¹).snd = (fst✝, snd✝).snd [PROOFSTEP] exact f.mem_graph_snd_inj hx hy hxy [GOAL] R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y : M f : E →ₗ.[R] F x : E ⊢ x ∈ f.domain ↔ ∃ y, (x, y) ∈ graph f [PROOFSTEP] constructor [GOAL] case mp R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y : M f : E →ₗ.[R] F x : E ⊢ x ∈ f.domain → ∃ y, (x, y) ∈ graph f [PROOFSTEP] intro h [GOAL] case mpr R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y : M f : E →ₗ.[R] F x : E ⊢ (∃ y, (x, y) ∈ graph f) → x ∈ f.domain [PROOFSTEP] intro h [GOAL] case mp R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y : M f : E →ₗ.[R] F x : E h : x ∈ f.domain ⊢ ∃ y, (x, y) ∈ graph f [PROOFSTEP] use f ⟨x, h⟩ [GOAL] case h R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y : M f : E →ₗ.[R] F x : E h : x ∈ f.domain ⊢ (x, ↑f { val := x, property := h }) ∈ graph f [PROOFSTEP] exact f.mem_graph ⟨x, h⟩ [GOAL] case mpr R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y : M f : E →ₗ.[R] F x : E h : ∃ y, (x, y) ∈ graph f ⊢ x ∈ f.domain [PROOFSTEP] cases' h with y h [GOAL] case mpr.intro R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y✝ : M f : E →ₗ.[R] F x : E y : F h : (x, y) ∈ graph f ⊢ x ∈ f.domain [PROOFSTEP] rw [mem_graph_iff] at h [GOAL] case mpr.intro R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y✝ : M f : E →ₗ.[R] F x : E y : F h : ∃ y_1, ↑y_1 = (x, y).fst ∧ ↑f y_1 = (x, y).snd ⊢ x ∈ f.domain [PROOFSTEP] cases' h with x' h [GOAL] case mpr.intro.intro R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y✝ : M f : E →ₗ.[R] F x : E y : F x' : { x // x ∈ f.domain } h : ↑x' = (x, y).fst ∧ ↑f x' = (x, y).snd ⊢ x ∈ f.domain [PROOFSTEP] simp only at h [GOAL] case mpr.intro.intro R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y✝ : M f : E →ₗ.[R] F x : E y : F x' : { x // x ∈ f.domain } h : ↑x' = x ∧ ↑f x' = y ⊢ x ∈ f.domain [PROOFSTEP] rw [← h.1] [GOAL] case mpr.intro.intro R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y✝ : M f : E →ₗ.[R] F x : E y : F x' : { x // x ∈ f.domain } h : ↑x' = x ∧ ↑f x' = y ⊢ ↑x' ∈ f.domain [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y✝ : M f : E →ₗ.[R] F x : E y : F h : (x, y) ∈ graph f ⊢ x ∈ f.domain [PROOFSTEP] rw [mem_domain_iff] [GOAL] R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y✝ : M f : E →ₗ.[R] F x : E y : F h : (x, y) ∈ graph f ⊢ ∃ y, (x, y) ∈ graph f [PROOFSTEP] exact ⟨y, h⟩ [GOAL] R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y✝ : M f : E →ₗ.[R] F x : E y : F hx : x ∈ f.domain ⊢ y = ↑f { val := x, property := hx } ↔ (x, y) ∈ graph f [PROOFSTEP] rw [mem_graph_iff] [GOAL] R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y✝ : M f : E →ₗ.[R] F x : E y : F hx : x ∈ f.domain ⊢ y = ↑f { val := x, property := hx } ↔ ∃ y_1, ↑y_1 = (x, y).fst ∧ ↑f y_1 = (x, y).snd [PROOFSTEP] constructor [GOAL] case mp R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y✝ : M f : E →ₗ.[R] F x : E y : F hx : x ∈ f.domain ⊢ y = ↑f { val := x, property := hx } → ∃ y_1, ↑y_1 = (x, y).fst ∧ ↑f y_1 = (x, y).snd [PROOFSTEP] intro h [GOAL] case mpr R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y✝ : M f : E →ₗ.[R] F x : E y : F hx : x ∈ f.domain ⊢ (∃ y_1, ↑y_1 = (x, y).fst ∧ ↑f y_1 = (x, y).snd) → y = ↑f { val := x, property := hx } [PROOFSTEP] intro h [GOAL] case mp R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y✝ : M f : E →ₗ.[R] F x : E y : F hx : x ∈ f.domain h : y = ↑f { val := x, property := hx } ⊢ ∃ y_1, ↑y_1 = (x, y).fst ∧ ↑f y_1 = (x, y).snd [PROOFSTEP] use⟨x, hx⟩ [GOAL] case h R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y✝ : M f : E →ₗ.[R] F x : E y : F hx : x ∈ f.domain h : y = ↑f { val := x, property := hx } ⊢ ↑{ val := x, property := hx } = (x, y).fst ∧ ↑f { val := x, property := hx } = (x, y).snd [PROOFSTEP] simp [h] [GOAL] case mpr R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y✝ : M f : E →ₗ.[R] F x : E y : F hx : x ∈ f.domain h : ∃ y_1, ↑y_1 = (x, y).fst ∧ ↑f y_1 = (x, y).snd ⊢ y = ↑f { val := x, property := hx } [PROOFSTEP] rcases h with ⟨⟨x', hx'⟩, ⟨h1, h2⟩⟩ [GOAL] case mpr.intro.mk.intro R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y✝ : M f : E →ₗ.[R] F x : E y : F hx : x ∈ f.domain x' : E hx' : x' ∈ f.domain h1 : ↑{ val := x', property := hx' } = (x, y).fst h2 : ↑f { val := x', property := hx' } = (x, y).snd ⊢ y = ↑f { val := x, property := hx } [PROOFSTEP] simp only [Submodule.coe_mk] at h1 h2 [GOAL] case mpr.intro.mk.intro R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y✝ : M f : E →ₗ.[R] F x : E y : F hx : x ∈ f.domain x' : E hx' : x' ∈ f.domain h1 : x' = x h2 : ↑f { val := x', property := hx' } = y ⊢ y = ↑f { val := x, property := hx } [PROOFSTEP] simp only [← h2, h1] [GOAL] R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y✝ : M f : E →ₗ.[R] F y : F ⊢ y ∈ range ↑f ↔ ∃ x, (x, y) ∈ graph f [PROOFSTEP] constructor [GOAL] case mp R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y✝ : M f : E →ₗ.[R] F y : F ⊢ y ∈ range ↑f → ∃ x, (x, y) ∈ graph f [PROOFSTEP] intro h [GOAL] case mpr R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y✝ : M f : E →ₗ.[R] F y : F ⊢ (∃ x, (x, y) ∈ graph f) → y ∈ range ↑f [PROOFSTEP] intro h [GOAL] case mp R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y✝ : M f : E →ₗ.[R] F y : F h : y ∈ range ↑f ⊢ ∃ x, (x, y) ∈ graph f [PROOFSTEP] rw [Set.mem_range] at h [GOAL] case mp R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y✝ : M f : E →ₗ.[R] F y : F h : ∃ y_1, ↑f y_1 = y ⊢ ∃ x, (x, y) ∈ graph f [PROOFSTEP] rcases h with ⟨⟨x, hx⟩, h⟩ [GOAL] case mp.intro.mk R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y✝ : M f : E →ₗ.[R] F y : F x : E hx : x ∈ f.domain h : ↑f { val := x, property := hx } = y ⊢ ∃ x, (x, y) ∈ graph f [PROOFSTEP] use x [GOAL] case h R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y✝ : M f : E →ₗ.[R] F y : F x : E hx : x ∈ f.domain h : ↑f { val := x, property := hx } = y ⊢ (x, y) ∈ graph f [PROOFSTEP] rw [← h] [GOAL] case h R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y✝ : M f : E →ₗ.[R] F y : F x : E hx : x ∈ f.domain h : ↑f { val := x, property := hx } = y ⊢ (x, ↑f { val := x, property := hx }) ∈ graph f [PROOFSTEP] exact f.mem_graph ⟨x, hx⟩ [GOAL] case mpr R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y✝ : M f : E →ₗ.[R] F y : F h : ∃ x, (x, y) ∈ graph f ⊢ y ∈ range ↑f [PROOFSTEP] cases' h with x h [GOAL] case mpr.intro R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y✝ : M f : E →ₗ.[R] F y : F x : E h : (x, y) ∈ graph f ⊢ y ∈ range ↑f [PROOFSTEP] rw [mem_graph_iff] at h [GOAL] case mpr.intro R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y✝ : M f : E →ₗ.[R] F y : F x : E h : ∃ y_1, ↑y_1 = (x, y).fst ∧ ↑f y_1 = (x, y).snd ⊢ y ∈ range ↑f [PROOFSTEP] cases' h with x h [GOAL] case mpr.intro.intro R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y✝ : M f : E →ₗ.[R] F y : F x✝ : E x : { x // x ∈ f.domain } h : ↑x = (x✝, y).fst ∧ ↑f x = (x✝, y).snd ⊢ y ∈ range ↑f [PROOFSTEP] rw [Set.mem_range] [GOAL] case mpr.intro.intro R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y✝ : M f : E →ₗ.[R] F y : F x✝ : E x : { x // x ∈ f.domain } h : ↑x = (x✝, y).fst ∧ ↑f x = (x✝, y).snd ⊢ ∃ y_1, ↑f y_1 = y [PROOFSTEP] use x [GOAL] case h R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y✝ : M f : E →ₗ.[R] F y : F x✝ : E x : { x // x ∈ f.domain } h : ↑x = (x✝, y).fst ∧ ↑f x = (x✝, y).snd ⊢ ↑f x = y [PROOFSTEP] simp only at h [GOAL] case h R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y✝ : M f : E →ₗ.[R] F y : F x✝ : E x : { x // x ∈ f.domain } h : ↑x = x✝ ∧ ↑f x = y ⊢ ↑f x = y [PROOFSTEP] rw [h.2] [GOAL] R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y : M f g : E →ₗ.[R] F h : graph f = graph g x : E ⊢ x ∈ f.domain ↔ x ∈ g.domain [PROOFSTEP] simp_rw [mem_domain_iff, h] [GOAL] R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y : M f g : E →ₗ.[R] F h : graph f ≤ graph g ⊢ f ≤ g [PROOFSTEP] constructor [GOAL] case left R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y : M f g : E →ₗ.[R] F h : graph f ≤ graph g ⊢ f.domain ≤ g.domain [PROOFSTEP] intro x hx [GOAL] case left R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y : M f g : E →ₗ.[R] F h : graph f ≤ graph g x : E hx : x ∈ f.domain ⊢ x ∈ g.domain [PROOFSTEP] rw [mem_domain_iff] at hx ⊢ [GOAL] case left R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y : M f g : E →ₗ.[R] F h : graph f ≤ graph g x : E hx : ∃ y, (x, y) ∈ graph f ⊢ ∃ y, (x, y) ∈ graph g [PROOFSTEP] cases' hx with y hx [GOAL] case left.intro R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y✝ : M f g : E →ₗ.[R] F h : graph f ≤ graph g x : E y : F hx : (x, y) ∈ graph f ⊢ ∃ y, (x, y) ∈ graph g [PROOFSTEP] use y [GOAL] case h R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y✝ : M f g : E →ₗ.[R] F h : graph f ≤ graph g x : E y : F hx : (x, y) ∈ graph f ⊢ (x, y) ∈ graph g [PROOFSTEP] exact h hx [GOAL] case right R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y : M f g : E →ₗ.[R] F h : graph f ≤ graph g ⊢ ∀ ⦃x : { x // x ∈ f.domain }⦄ ⦃y : { x // x ∈ g.domain }⦄, ↑x = ↑y → ↑f x = ↑g y [PROOFSTEP] rintro ⟨x, hx⟩ ⟨y, hy⟩ hxy [GOAL] case right.mk.mk R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y✝ : M f g : E →ₗ.[R] F h : graph f ≤ graph g x : E hx : x ∈ f.domain y : E hy : y ∈ g.domain hxy : ↑{ val := x, property := hx } = ↑{ val := y, property := hy } ⊢ ↑f { val := x, property := hx } = ↑g { val := y, property := hy } [PROOFSTEP] rw [image_iff] [GOAL] case right.mk.mk R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y✝ : M f g : E →ₗ.[R] F h : graph f ≤ graph g x : E hx : x ∈ f.domain y : E hy : y ∈ g.domain hxy : ↑{ val := x, property := hx } = ↑{ val := y, property := hy } ⊢ (y, ↑f { val := x, property := hx }) ∈ graph g [PROOFSTEP] refine' h _ [GOAL] case right.mk.mk R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y✝ : M f g : E →ₗ.[R] F h : graph f ≤ graph g x : E hx : x ∈ f.domain y : E hy : y ∈ g.domain hxy : ↑{ val := x, property := hx } = ↑{ val := y, property := hy } ⊢ (y, ↑f { val := x, property := hx }) ∈ graph f [PROOFSTEP] simp only [Submodule.coe_mk] at hxy [GOAL] case right.mk.mk R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y✝ : M f g : E →ₗ.[R] F h : graph f ≤ graph g x : E hx : x ∈ f.domain y : E hy : y ∈ g.domain hxy : x = y ⊢ (y, ↑f { val := x, property := hx }) ∈ graph f [PROOFSTEP] rw [hxy] at hx [GOAL] case right.mk.mk R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y✝ : M f g : E →ₗ.[R] F h : graph f ≤ graph g x : E hx✝ : x ∈ f.domain y : E hx : y ∈ f.domain hy : y ∈ g.domain hxy : x = y ⊢ (y, ↑f { val := x, property := hx✝ }) ∈ graph f [PROOFSTEP] rw [← image_iff hx] [GOAL] case right.mk.mk R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y✝ : M f g : E →ₗ.[R] F h : graph f ≤ graph g x : E hx✝ : x ∈ f.domain y : E hx : y ∈ f.domain hy : y ∈ g.domain hxy : x = y ⊢ ↑f { val := x, property := hx✝ } = ↑f { val := y, property := hx } [PROOFSTEP] simp [hxy] [GOAL] R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y : M f g : E →ₗ.[R] F h : f ≤ g ⊢ graph f ≤ graph g [PROOFSTEP] intro x hx [GOAL] R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y : M f g : E →ₗ.[R] F h : f ≤ g x : E × F hx : x ∈ graph f ⊢ x ∈ graph g [PROOFSTEP] rw [mem_graph_iff] at hx ⊢ [GOAL] R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y : M f g : E →ₗ.[R] F h : f ≤ g x : E × F hx : ∃ y, ↑y = x.fst ∧ ↑f y = x.snd ⊢ ∃ y, ↑y = x.fst ∧ ↑g y = x.snd [PROOFSTEP] cases' hx with y hx [GOAL] case intro R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y✝ : M f g : E →ₗ.[R] F h : f ≤ g x : E × F y : { x // x ∈ f.domain } hx : ↑y = x.fst ∧ ↑f y = x.snd ⊢ ∃ y, ↑y = x.fst ∧ ↑g y = x.snd [PROOFSTEP] use⟨y, h.1 y.2⟩ [GOAL] case h R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y✝ : M f g : E →ₗ.[R] F h : f ≤ g x : E × F y : { x // x ∈ f.domain } hx : ↑y = x.fst ∧ ↑f y = x.snd ⊢ ↑{ val := ↑y, property := (_ : ↑y ∈ g.domain) } = x.fst ∧ ↑g { val := ↑y, property := (_ : ↑y ∈ g.domain) } = x.snd [PROOFSTEP] simp only [hx, Submodule.coe_mk, eq_self_iff_true, true_and_iff] [GOAL] case h R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y✝ : M f g : E →ₗ.[R] F h : f ≤ g x : E × F y : { x // x ∈ f.domain } hx : ↑y = x.fst ∧ ↑f y = x.snd ⊢ ↑g { val := x.fst, property := (_ : (fun x => x ∈ g.domain) x.fst) } = x.snd [PROOFSTEP] convert hx.2 using 1 [GOAL] case h.e'_2 R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y✝ : M f g : E →ₗ.[R] F h : f ≤ g x : E × F y : { x // x ∈ f.domain } hx : ↑y = x.fst ∧ ↑f y = x.snd ⊢ ↑g { val := x.fst, property := (_ : (fun x => x ∈ g.domain) x.fst) } = ↑f y [PROOFSTEP] refine' (h.2 _).symm [GOAL] case h.e'_2 R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y✝ : M f g : E →ₗ.[R] F h : f ≤ g x : E × F y : { x // x ∈ f.domain } hx : ↑y = x.fst ∧ ↑f y = x.snd ⊢ ↑y = ↑{ val := x.fst, property := (_ : (fun x => x ∈ g.domain) x.fst) } [PROOFSTEP] simp only [hx.1, Submodule.coe_mk] [GOAL] R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y : M f g : E →ₗ.[R] F h : graph f = graph g ⊢ f = g [PROOFSTEP] refine ext (Submodule.ext fun x => ?_) (fun x y h' => ?_) [GOAL] case refine_1 R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y : M f g : E →ₗ.[R] F h : graph f = graph g x : E ⊢ x ∈ f.domain ↔ x ∈ g.domain case refine_2 R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y✝ : M f g : E →ₗ.[R] F h : graph f = graph g x : { x // x ∈ f.domain } y : { x // x ∈ g.domain } h' : ↑x = ↑y ⊢ ↑f x = ↑g y [PROOFSTEP] exact mem_domain_iff_of_eq_graph h [GOAL] case refine_2 R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G M : Type u_5 inst✝² : Monoid M inst✝¹ : DistribMulAction M F inst✝ : SMulCommClass R M F y✝ : M f g : E →ₗ.[R] F h : graph f = graph g x : { x // x ∈ f.domain } y : { x // x ∈ g.domain } h' : ↑x = ↑y ⊢ ↑f x = ↑g y [PROOFSTEP] exact (le_of_le_graph h.le).2 h' [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G g : Submodule R (E × F) hg : ∀ {x : E × F}, x ∈ g → x.fst = 0 → x.snd = 0 a : E ha : a ∈ map (LinearMap.fst R E F) g ⊢ ∃! b, (a, b) ∈ g [PROOFSTEP] refine' exists_unique_of_exists_of_unique _ _ [GOAL] case refine'_1 R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G g : Submodule R (E × F) hg : ∀ {x : E × F}, x ∈ g → x.fst = 0 → x.snd = 0 a : E ha : a ∈ map (LinearMap.fst R E F) g ⊢ ∃ x, (a, x) ∈ g [PROOFSTEP] convert ha [GOAL] case a R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G g : Submodule R (E × F) hg : ∀ {x : E × F}, x ∈ g → x.fst = 0 → x.snd = 0 a : E ha : a ∈ map (LinearMap.fst R E F) g ⊢ (∃ x, (a, x) ∈ g) ↔ a ∈ map (LinearMap.fst R E F) g [PROOFSTEP] simp [GOAL] case refine'_2 R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G g : Submodule R (E × F) hg : ∀ {x : E × F}, x ∈ g → x.fst = 0 → x.snd = 0 a : E ha : a ∈ map (LinearMap.fst R E F) g ⊢ ∀ (y₁ y₂ : F), (a, y₁) ∈ g → (a, y₂) ∈ g → y₁ = y₂ [PROOFSTEP] intro y₁ y₂ hy₁ hy₂ [GOAL] case refine'_2 R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G g : Submodule R (E × F) hg : ∀ {x : E × F}, x ∈ g → x.fst = 0 → x.snd = 0 a : E ha : a ∈ map (LinearMap.fst R E F) g y₁ y₂ : F hy₁ : (a, y₁) ∈ g hy₂ : (a, y₂) ∈ g ⊢ y₁ = y₂ [PROOFSTEP] have hy : ((0 : E), y₁ - y₂) ∈ g := by convert g.sub_mem hy₁ hy₂ exact (sub_self _).symm [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G g : Submodule R (E × F) hg : ∀ {x : E × F}, x ∈ g → x.fst = 0 → x.snd = 0 a : E ha : a ∈ map (LinearMap.fst R E F) g y₁ y₂ : F hy₁ : (a, y₁) ∈ g hy₂ : (a, y₂) ∈ g ⊢ (0, y₁ - y₂) ∈ g [PROOFSTEP] convert g.sub_mem hy₁ hy₂ [GOAL] case h.e'_4.h.e'_3 R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G g : Submodule R (E × F) hg : ∀ {x : E × F}, x ∈ g → x.fst = 0 → x.snd = 0 a : E ha : a ∈ map (LinearMap.fst R E F) g y₁ y₂ : F hy₁ : (a, y₁) ∈ g hy₂ : (a, y₂) ∈ g ⊢ 0 = ((a, y₁) - (a, y₂)).fst [PROOFSTEP] exact (sub_self _).symm [GOAL] case refine'_2 R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G g : Submodule R (E × F) hg : ∀ {x : E × F}, x ∈ g → x.fst = 0 → x.snd = 0 a : E ha : a ∈ map (LinearMap.fst R E F) g y₁ y₂ : F hy₁ : (a, y₁) ∈ g hy₂ : (a, y₂) ∈ g hy : (0, y₁ - y₂) ∈ g ⊢ y₁ = y₂ [PROOFSTEP] exact sub_eq_zero.mp (hg hy (by simp)) [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G g : Submodule R (E × F) hg : ∀ {x : E × F}, x ∈ g → x.fst = 0 → x.snd = 0 a : E ha : a ∈ map (LinearMap.fst R E F) g y₁ y₂ : F hy₁ : (a, y₁) ∈ g hy₂ : (a, y₂) ∈ g hy : (0, y₁ - y₂) ∈ g ⊢ (0, y₁ - y₂).fst = 0 [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G g : Submodule R (E × F) hg : ∀ (x : E × F), x ∈ g → x.fst = 0 → x.snd = 0 v w : { x // x ∈ map (LinearMap.fst R E F) g } ⊢ (fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) (v + w) = (fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) v + (fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) w [PROOFSTEP] have hadd := (g.map (LinearMap.fst R E F)).add_mem v.2 w.2 [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G g : Submodule R (E × F) hg : ∀ (x : E × F), x ∈ g → x.fst = 0 → x.snd = 0 v w : { x // x ∈ map (LinearMap.fst R E F) g } hadd : ↑v + ↑w ∈ map (LinearMap.fst R E F) g ⊢ (fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) (v + w) = (fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) v + (fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) w [PROOFSTEP] have hvw := valFromGraph_mem hg hadd [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G g : Submodule R (E × F) hg : ∀ (x : E × F), x ∈ g → x.fst = 0 → x.snd = 0 v w : { x // x ∈ map (LinearMap.fst R E F) g } hadd : ↑v + ↑w ∈ map (LinearMap.fst R E F) g hvw : (↑v + ↑w, valFromGraph hg hadd) ∈ g ⊢ (fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) (v + w) = (fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) v + (fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) w [PROOFSTEP] have hvw' := g.add_mem (valFromGraph_mem hg v.2) (valFromGraph_mem hg w.2) [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G g : Submodule R (E × F) hg : ∀ (x : E × F), x ∈ g → x.fst = 0 → x.snd = 0 v w : { x // x ∈ map (LinearMap.fst R E F) g } hadd : ↑v + ↑w ∈ map (LinearMap.fst R E F) g hvw : (↑v + ↑w, valFromGraph hg hadd) ∈ g hvw' : (↑v, valFromGraph hg (_ : ↑v ∈ map (LinearMap.fst R E F) g)) + (↑w, valFromGraph hg (_ : ↑w ∈ map (LinearMap.fst R E F) g)) ∈ g ⊢ (fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) (v + w) = (fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) v + (fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) w [PROOFSTEP] rw [Prod.mk_add_mk] at hvw' [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G g : Submodule R (E × F) hg : ∀ (x : E × F), x ∈ g → x.fst = 0 → x.snd = 0 v w : { x // x ∈ map (LinearMap.fst R E F) g } hadd : ↑v + ↑w ∈ map (LinearMap.fst R E F) g hvw : (↑v + ↑w, valFromGraph hg hadd) ∈ g hvw' : (↑v + ↑w, valFromGraph hg (_ : ↑v ∈ map (LinearMap.fst R E F) g) + valFromGraph hg (_ : ↑w ∈ map (LinearMap.fst R E F) g)) ∈ g ⊢ (fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) (v + w) = (fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) v + (fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) w [PROOFSTEP] exact (existsUnique_from_graph (@hg) hadd).unique hvw hvw' [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G g : Submodule R (E × F) hg : ∀ (x : E × F), x ∈ g → x.fst = 0 → x.snd = 0 a : R v : { x // x ∈ map (LinearMap.fst R E F) g } ⊢ AddHom.toFun { toFun := fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g), map_add' := (_ : ∀ (v w : { x // x ∈ map (LinearMap.fst R E F) g }), (fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) (v + w) = (fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) v + (fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) w) } (a • v) = ↑(RingHom.id R) a • AddHom.toFun { toFun := fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g), map_add' := (_ : ∀ (v w : { x // x ∈ map (LinearMap.fst R E F) g }), (fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) (v + w) = (fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) v + (fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) w) } v [PROOFSTEP] have hsmul := (g.map (LinearMap.fst R E F)).smul_mem a v.2 [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G g : Submodule R (E × F) hg : ∀ (x : E × F), x ∈ g → x.fst = 0 → x.snd = 0 a : R v : { x // x ∈ map (LinearMap.fst R E F) g } hsmul : a • ↑v ∈ map (LinearMap.fst R E F) g ⊢ AddHom.toFun { toFun := fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g), map_add' := (_ : ∀ (v w : { x // x ∈ map (LinearMap.fst R E F) g }), (fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) (v + w) = (fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) v + (fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) w) } (a • v) = ↑(RingHom.id R) a • AddHom.toFun { toFun := fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g), map_add' := (_ : ∀ (v w : { x // x ∈ map (LinearMap.fst R E F) g }), (fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) (v + w) = (fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) v + (fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) w) } v [PROOFSTEP] have hav := valFromGraph_mem hg hsmul [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G g : Submodule R (E × F) hg : ∀ (x : E × F), x ∈ g → x.fst = 0 → x.snd = 0 a : R v : { x // x ∈ map (LinearMap.fst R E F) g } hsmul : a • ↑v ∈ map (LinearMap.fst R E F) g hav : (a • ↑v, valFromGraph hg hsmul) ∈ g ⊢ AddHom.toFun { toFun := fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g), map_add' := (_ : ∀ (v w : { x // x ∈ map (LinearMap.fst R E F) g }), (fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) (v + w) = (fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) v + (fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) w) } (a • v) = ↑(RingHom.id R) a • AddHom.toFun { toFun := fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g), map_add' := (_ : ∀ (v w : { x // x ∈ map (LinearMap.fst R E F) g }), (fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) (v + w) = (fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) v + (fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) w) } v [PROOFSTEP] have hav' := g.smul_mem a (valFromGraph_mem hg v.2) [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G g : Submodule R (E × F) hg : ∀ (x : E × F), x ∈ g → x.fst = 0 → x.snd = 0 a : R v : { x // x ∈ map (LinearMap.fst R E F) g } hsmul : a • ↑v ∈ map (LinearMap.fst R E F) g hav : (a • ↑v, valFromGraph hg hsmul) ∈ g hav' : a • (↑v, valFromGraph hg (_ : ↑v ∈ map (LinearMap.fst R E F) g)) ∈ g ⊢ AddHom.toFun { toFun := fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g), map_add' := (_ : ∀ (v w : { x // x ∈ map (LinearMap.fst R E F) g }), (fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) (v + w) = (fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) v + (fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) w) } (a • v) = ↑(RingHom.id R) a • AddHom.toFun { toFun := fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g), map_add' := (_ : ∀ (v w : { x // x ∈ map (LinearMap.fst R E F) g }), (fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) (v + w) = (fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) v + (fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) w) } v [PROOFSTEP] rw [Prod.smul_mk] at hav' [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G g : Submodule R (E × F) hg : ∀ (x : E × F), x ∈ g → x.fst = 0 → x.snd = 0 a : R v : { x // x ∈ map (LinearMap.fst R E F) g } hsmul : a • ↑v ∈ map (LinearMap.fst R E F) g hav : (a • ↑v, valFromGraph hg hsmul) ∈ g hav' : (a • ↑v, a • valFromGraph hg (_ : ↑v ∈ map (LinearMap.fst R E F) g)) ∈ g ⊢ AddHom.toFun { toFun := fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g), map_add' := (_ : ∀ (v w : { x // x ∈ map (LinearMap.fst R E F) g }), (fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) (v + w) = (fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) v + (fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) w) } (a • v) = ↑(RingHom.id R) a • AddHom.toFun { toFun := fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g), map_add' := (_ : ∀ (v w : { x // x ∈ map (LinearMap.fst R E F) g }), (fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) (v + w) = (fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) v + (fun x => valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) w) } v [PROOFSTEP] exact (existsUnique_from_graph (@hg) hsmul).unique hav hav' [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G g : Submodule R (E × F) hg : ∀ (x : E × F), x ∈ g → x.fst = 0 → x.snd = 0 x : { x // x ∈ map (LinearMap.fst R E F) g } ⊢ ↑(toLinearPMap g) x = valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g) [PROOFSTEP] classical change (if hg : _ then g.toLinearPMapAux hg else 0) x = _ rw [dif_pos] · rfl · exact hg [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G g : Submodule R (E × F) hg : ∀ (x : E × F), x ∈ g → x.fst = 0 → x.snd = 0 x : { x // x ∈ map (LinearMap.fst R E F) g } ⊢ ↑(toLinearPMap g) x = valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g) [PROOFSTEP] change (if hg : _ then g.toLinearPMapAux hg else 0) x = _ [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G g : Submodule R (E × F) hg : ∀ (x : E × F), x ∈ g → x.fst = 0 → x.snd = 0 x : { x // x ∈ map (LinearMap.fst R E F) g } ⊢ ↑(if hg : ∀ (x : E × F), x ∈ g → x.fst = 0 → x.snd = 0 then toLinearPMapAux g hg else 0) x = valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g) [PROOFSTEP] rw [dif_pos] [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G g : Submodule R (E × F) hg : ∀ (x : E × F), x ∈ g → x.fst = 0 → x.snd = 0 x : { x // x ∈ map (LinearMap.fst R E F) g } ⊢ ↑(toLinearPMapAux g ?hc) x = valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g) [PROOFSTEP] rfl [GOAL] case hc R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G g : Submodule R (E × F) hg : ∀ (x : E × F), x ∈ g → x.fst = 0 → x.snd = 0 x : { x // x ∈ map (LinearMap.fst R E F) g } ⊢ ∀ (x : E × F), x ∈ g → x.fst = 0 → x.snd = 0 [PROOFSTEP] exact hg [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G g : Submodule R (E × F) hg : ∀ (x : E × F), x ∈ g → x.fst = 0 → x.snd = 0 x : { x // x ∈ map (LinearMap.fst R E F) g } ⊢ (↑x, ↑(toLinearPMap g) x) ∈ g [PROOFSTEP] rw [toLinearPMap_apply_aux hg] [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G g : Submodule R (E × F) hg : ∀ (x : E × F), x ∈ g → x.fst = 0 → x.snd = 0 x : { x // x ∈ map (LinearMap.fst R E F) g } ⊢ (↑x, valFromGraph hg (_ : ↑x ∈ map (LinearMap.fst R E F) g)) ∈ g [PROOFSTEP] exact valFromGraph_mem hg x.2 [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G g : Submodule R (E × F) hg : ∀ (x : E × F), x ∈ g → x.fst = 0 → x.snd = 0 ⊢ LinearPMap.graph (toLinearPMap g) = g [PROOFSTEP] ext x [GOAL] case h R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G g : Submodule R (E × F) hg : ∀ (x : E × F), x ∈ g → x.fst = 0 → x.snd = 0 x : E × F ⊢ x ∈ LinearPMap.graph (toLinearPMap g) ↔ x ∈ g [PROOFSTEP] constructor [GOAL] case h.mp R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G g : Submodule R (E × F) hg : ∀ (x : E × F), x ∈ g → x.fst = 0 → x.snd = 0 x : E × F ⊢ x ∈ LinearPMap.graph (toLinearPMap g) → x ∈ g [PROOFSTEP] intro hx [GOAL] case h.mpr R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G g : Submodule R (E × F) hg : ∀ (x : E × F), x ∈ g → x.fst = 0 → x.snd = 0 x : E × F ⊢ x ∈ g → x ∈ LinearPMap.graph (toLinearPMap g) [PROOFSTEP] intro hx [GOAL] case h.mp R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G g : Submodule R (E × F) hg : ∀ (x : E × F), x ∈ g → x.fst = 0 → x.snd = 0 x : E × F hx : x ∈ LinearPMap.graph (toLinearPMap g) ⊢ x ∈ g [PROOFSTEP] rw [LinearPMap.mem_graph_iff] at hx [GOAL] case h.mp R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G g : Submodule R (E × F) hg : ∀ (x : E × F), x ∈ g → x.fst = 0 → x.snd = 0 x : E × F hx : ∃ y, ↑y = x.fst ∧ ↑(toLinearPMap g) y = x.snd ⊢ x ∈ g [PROOFSTEP] rcases hx with ⟨y, hx1, hx2⟩ [GOAL] case h.mp.intro.intro R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G g : Submodule R (E × F) hg : ∀ (x : E × F), x ∈ g → x.fst = 0 → x.snd = 0 x : E × F y : { x // x ∈ (toLinearPMap g).domain } hx1 : ↑y = x.fst hx2 : ↑(toLinearPMap g) y = x.snd ⊢ x ∈ g [PROOFSTEP] convert g.mem_graph_toLinearPMap hg y using 1 [GOAL] case h.e'_4 R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G g : Submodule R (E × F) hg : ∀ (x : E × F), x ∈ g → x.fst = 0 → x.snd = 0 x : E × F y : { x // x ∈ (toLinearPMap g).domain } hx1 : ↑y = x.fst hx2 : ↑(toLinearPMap g) y = x.snd ⊢ x = (↑y, ↑(toLinearPMap g) y) [PROOFSTEP] exact Prod.ext hx1.symm hx2.symm [GOAL] case h.mpr R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G g : Submodule R (E × F) hg : ∀ (x : E × F), x ∈ g → x.fst = 0 → x.snd = 0 x : E × F hx : x ∈ g ⊢ x ∈ LinearPMap.graph (toLinearPMap g) [PROOFSTEP] rw [LinearPMap.mem_graph_iff] [GOAL] case h.mpr R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G g : Submodule R (E × F) hg : ∀ (x : E × F), x ∈ g → x.fst = 0 → x.snd = 0 x : E × F hx : x ∈ g ⊢ ∃ y, ↑y = x.fst ∧ ↑(toLinearPMap g) y = x.snd [PROOFSTEP] cases' x with x_fst x_snd [GOAL] case h.mpr.mk R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G g : Submodule R (E × F) hg : ∀ (x : E × F), x ∈ g → x.fst = 0 → x.snd = 0 x_fst : E x_snd : F hx : (x_fst, x_snd) ∈ g ⊢ ∃ y, ↑y = (x_fst, x_snd).fst ∧ ↑(toLinearPMap g) y = (x_fst, x_snd).snd [PROOFSTEP] have hx_fst : x_fst ∈ g.map (LinearMap.fst R E F) := by simp only [mem_map, LinearMap.fst_apply, Prod.exists, exists_and_right, exists_eq_right] exact ⟨x_snd, hx⟩ [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G g : Submodule R (E × F) hg : ∀ (x : E × F), x ∈ g → x.fst = 0 → x.snd = 0 x_fst : E x_snd : F hx : (x_fst, x_snd) ∈ g ⊢ x_fst ∈ map (LinearMap.fst R E F) g [PROOFSTEP] simp only [mem_map, LinearMap.fst_apply, Prod.exists, exists_and_right, exists_eq_right] [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G g : Submodule R (E × F) hg : ∀ (x : E × F), x ∈ g → x.fst = 0 → x.snd = 0 x_fst : E x_snd : F hx : (x_fst, x_snd) ∈ g ⊢ ∃ x, (x_fst, x) ∈ g [PROOFSTEP] exact ⟨x_snd, hx⟩ [GOAL] case h.mpr.mk R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G g : Submodule R (E × F) hg : ∀ (x : E × F), x ∈ g → x.fst = 0 → x.snd = 0 x_fst : E x_snd : F hx : (x_fst, x_snd) ∈ g hx_fst : x_fst ∈ map (LinearMap.fst R E F) g ⊢ ∃ y, ↑y = (x_fst, x_snd).fst ∧ ↑(toLinearPMap g) y = (x_fst, x_snd).snd [PROOFSTEP] refine' ⟨⟨x_fst, hx_fst⟩, Subtype.coe_mk x_fst hx_fst, _⟩ [GOAL] case h.mpr.mk R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G g : Submodule R (E × F) hg : ∀ (x : E × F), x ∈ g → x.fst = 0 → x.snd = 0 x_fst : E x_snd : F hx : (x_fst, x_snd) ∈ g hx_fst : x_fst ∈ map (LinearMap.fst R E F) g ⊢ ↑(toLinearPMap g) { val := x_fst, property := hx_fst } = (x_fst, x_snd).snd [PROOFSTEP] rw [toLinearPMap_apply_aux hg] [GOAL] case h.mpr.mk R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G g : Submodule R (E × F) hg : ∀ (x : E × F), x ∈ g → x.fst = 0 → x.snd = 0 x_fst : E x_snd : F hx : (x_fst, x_snd) ∈ g hx_fst : x_fst ∈ map (LinearMap.fst R E F) g ⊢ valFromGraph hg (_ : ↑{ val := x_fst, property := hx_fst } ∈ map (LinearMap.fst R E F) g) = (x_fst, x_snd).snd [PROOFSTEP] exact (existsUnique_from_graph (@hg) hx_fst).unique (valFromGraph_mem hg hx_fst) hx [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G g : Submodule R (E × F) hg : ∀ (x : E × F), x ∈ g → x.fst = 0 → x.snd = 0 ⊢ LinearMap.range (toLinearPMap g).toFun = map (LinearMap.snd R E F) g [PROOFSTEP] rwa [← LinearPMap.graph_map_snd_eq_range, toLinearPMap_graph_eq] [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f : E →ₗ.[R] F ⊢ (inverse f).domain = LinearMap.range f.toFun [PROOFSTEP] rw [inverse, Submodule.toLinearPMap_domain, ← graph_map_snd_eq_range, ← LinearEquiv.fst_comp_prodComm, Submodule.map_comp] [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f : E →ₗ.[R] F ⊢ Submodule.map (LinearMap.fst R F E) (Submodule.map (LinearEquiv.prodComm R E F) (graph f)) = Submodule.map (LinearMap.fst R F E) (Submodule.map (↑(LinearEquiv.prodComm R E F)) (graph f)) [PROOFSTEP] rfl [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f : E →ₗ.[R] F hf : LinearMap.ker f.toFun = ⊥ x : F × E hv : x ∈ Submodule.map (LinearEquiv.prodComm R E F) (graph f) hv' : x.fst = 0 ⊢ x.snd = 0 [PROOFSTEP] simp only [Submodule.mem_map, mem_graph_iff, Subtype.exists, exists_and_left, exists_eq_left, LinearEquiv.prodComm_apply, Prod.exists, Prod.swap_prod_mk] at hv [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f : E →ₗ.[R] F hf : LinearMap.ker f.toFun = ⊥ x : F × E hv' : x.fst = 0 hv : ∃ a b, (∃ h, ↑f { val := a, property := (_ : (a, b).fst ∈ f.domain) } = b) ∧ (b, a) = x ⊢ x.snd = 0 [PROOFSTEP] rcases hv with ⟨a, b, ⟨ha, h1⟩, ⟨h2, h3⟩⟩ [GOAL] case intro.intro.intro.intro.refl R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f : E →ₗ.[R] F hf : LinearMap.ker f.toFun = ⊥ a : E b : F ha : a ∈ f.domain h1 : ↑f { val := a, property := (_ : (a, b).fst ∈ f.domain) } = b hv' : (b, a).fst = 0 ⊢ (b, a).snd = 0 [PROOFSTEP] simp only at hv' ⊢ [GOAL] case intro.intro.intro.intro.refl R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f : E →ₗ.[R] F hf : LinearMap.ker f.toFun = ⊥ a : E b : F ha : a ∈ f.domain h1 : ↑f { val := a, property := (_ : (a, b).fst ∈ f.domain) } = b hv' : b = 0 ⊢ a = 0 [PROOFSTEP] rw [hv'] at h1 [GOAL] case intro.intro.intro.intro.refl R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f : E →ₗ.[R] F hf : LinearMap.ker f.toFun = ⊥ a : E b : F ha : a ∈ f.domain h1 : ↑f { val := a, property := (_ : (a, 0).fst ∈ f.domain) } = 0 hv' : b = 0 ⊢ a = 0 [PROOFSTEP] rw [LinearMap.ker_eq_bot'] at hf [GOAL] case intro.intro.intro.intro.refl R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f : E →ₗ.[R] F hf : ∀ (m : { x // x ∈ f.domain }), ↑f.toFun m = 0 → m = 0 a : E b : F ha : a ∈ f.domain h1 : ↑f { val := a, property := (_ : (a, 0).fst ∈ f.domain) } = 0 hv' : b = 0 ⊢ a = 0 [PROOFSTEP] specialize hf ⟨a, ha⟩ h1 [GOAL] case intro.intro.intro.intro.refl R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f : E →ₗ.[R] F a : E b : F ha : a ∈ f.domain h1 : ↑f { val := a, property := (_ : (a, 0).fst ∈ f.domain) } = 0 hv' : b = 0 hf : { val := a, property := ha } = 0 ⊢ a = 0 [PROOFSTEP] simp only [Submodule.mk_eq_zero] at hf [GOAL] case intro.intro.intro.intro.refl R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f : E →ₗ.[R] F a : E b : F ha : a ∈ f.domain h1 : ↑f { val := a, property := (_ : (a, 0).fst ∈ f.domain) } = 0 hv' : b = 0 hf : a = 0 ⊢ a = 0 [PROOFSTEP] exact hf [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f : E →ₗ.[R] F hf : LinearMap.ker f.toFun = ⊥ ⊢ graph (inverse f) = Submodule.map (LinearEquiv.prodComm R E F) (graph f) [PROOFSTEP] rw [inverse, Submodule.toLinearPMap_graph_eq _ (mem_inverse_graph_snd_eq_zero hf)] [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f : E →ₗ.[R] F hf : LinearMap.ker f.toFun = ⊥ ⊢ LinearMap.range (inverse f).toFun = f.domain [PROOFSTEP] rw [inverse, Submodule.toLinearPMap_range _ (mem_inverse_graph_snd_eq_zero hf), ← graph_map_fst_eq_domain, ← LinearEquiv.snd_comp_prodComm, Submodule.map_comp] [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f : E →ₗ.[R] F hf : LinearMap.ker f.toFun = ⊥ ⊢ Submodule.map (LinearMap.snd R F E) (Submodule.map (LinearEquiv.prodComm R E F) (graph f)) = Submodule.map (LinearMap.snd R F E) (Submodule.map (↑(LinearEquiv.prodComm R E F)) (graph f)) [PROOFSTEP] rfl [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f : E →ₗ.[R] F hf : LinearMap.ker f.toFun = ⊥ x : { x // x ∈ f.domain } ⊢ (↑f x, ↑x) ∈ graph (inverse f) [PROOFSTEP] simp only [inverse_graph hf, Submodule.mem_map, mem_graph_iff, Subtype.exists, exists_and_left, exists_eq_left, LinearEquiv.prodComm_apply, Prod.exists, Prod.swap_prod_mk, Prod.mk.injEq] [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f : E →ₗ.[R] F hf : LinearMap.ker f.toFun = ⊥ x : { x // x ∈ f.domain } ⊢ ∃ a b, (∃ h, ↑f { val := a, property := (_ : (a, b).fst ∈ f.domain) } = b) ∧ b = ↑f x ∧ a = ↑x [PROOFSTEP] exact ⟨(x : E), f x, ⟨x.2, Eq.refl _⟩, Eq.refl _, Eq.refl _⟩ [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f : E →ₗ.[R] F hf : LinearMap.ker f.toFun = ⊥ y : { x // x ∈ (inverse f).domain } x : { x // x ∈ f.domain } hxy : ↑f x = ↑y ⊢ ↑(inverse f) y = ↑x [PROOFSTEP] have := mem_inverse_graph hf x [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f : E →ₗ.[R] F hf : LinearMap.ker f.toFun = ⊥ y : { x // x ∈ (inverse f).domain } x : { x // x ∈ f.domain } hxy : ↑f x = ↑y this : (↑f x, ↑x) ∈ graph (inverse f) ⊢ ↑(inverse f) y = ↑x [PROOFSTEP] simp only [mem_graph_iff, Subtype.exists, exists_and_left, exists_eq_left] at this [GOAL] R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f : E →ₗ.[R] F hf : LinearMap.ker f.toFun = ⊥ y : { x // x ∈ (inverse f).domain } x : { x // x ∈ f.domain } hxy : ↑f x = ↑y this : ∃ x_1, ↑(inverse f) { val := ↑f x, property := (_ : ↑f x ∈ (inverse f).domain) } = ↑x ⊢ ↑(inverse f) y = ↑x [PROOFSTEP] rcases this with ⟨hx, h⟩ [GOAL] case intro R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f : E →ₗ.[R] F hf : LinearMap.ker f.toFun = ⊥ y : { x // x ∈ (inverse f).domain } x : { x // x ∈ f.domain } hxy : ↑f x = ↑y hx : ↑f x ∈ (inverse f).domain h : ↑(inverse f) { val := ↑f x, property := (_ : ↑f x ∈ (inverse f).domain) } = ↑x ⊢ ↑(inverse f) y = ↑x [PROOFSTEP] rw [← h] [GOAL] case intro R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f : E →ₗ.[R] F hf : LinearMap.ker f.toFun = ⊥ y : { x // x ∈ (inverse f).domain } x : { x // x ∈ f.domain } hxy : ↑f x = ↑y hx : ↑f x ∈ (inverse f).domain h : ↑(inverse f) { val := ↑f x, property := (_ : ↑f x ∈ (inverse f).domain) } = ↑x ⊢ ↑(inverse f) y = ↑(inverse f) { val := ↑f x, property := (_ : ↑f x ∈ (inverse f).domain) } [PROOFSTEP] congr [GOAL] case intro.e_a R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f : E →ₗ.[R] F hf : LinearMap.ker f.toFun = ⊥ y : { x // x ∈ (inverse f).domain } x : { x // x ∈ f.domain } hxy : ↑f x = ↑y hx : ↑f x ∈ (inverse f).domain h : ↑(inverse f) { val := ↑f x, property := (_ : ↑f x ∈ (inverse f).domain) } = ↑x ⊢ y = { val := ↑f x, property := (_ : ↑f x ∈ (inverse f).domain) } [PROOFSTEP] simp only [hxy, Subtype.coe_eta]
{"mathlib_filename": "Mathlib.LinearAlgebra.LinearPMap", "llama_tokens": 101722}
[GOAL] C : Type u inst✝ : Category.{v, u} C X : LocallyRingedSpace h : ∀ (x : ↑(toTopCat X)), ∃ R f, x ∈ Set.range ↑f.val.base ∧ IsOpenImmersion f ⊢ ∀ (x : ↑(toTopCat X)), ∃ U R, Nonempty (restrict X (_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅ Spec.toLocallyRingedSpace.obj (op R)) [PROOFSTEP] intro x [GOAL] C : Type u inst✝ : Category.{v, u} C X : LocallyRingedSpace h : ∀ (x : ↑(toTopCat X)), ∃ R f, x ∈ Set.range ↑f.val.base ∧ IsOpenImmersion f x : ↑(toTopCat X) ⊢ ∃ U R, Nonempty (restrict X (_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅ Spec.toLocallyRingedSpace.obj (op R)) [PROOFSTEP] obtain ⟨R, f, h₁, h₂⟩ := h x [GOAL] case intro.intro.intro C : Type u inst✝ : Category.{v, u} C X : LocallyRingedSpace h : ∀ (x : ↑(toTopCat X)), ∃ R f, x ∈ Set.range ↑f.val.base ∧ IsOpenImmersion f x : ↑(toTopCat X) R : CommRingCat f : Spec.toLocallyRingedSpace.obj (op R) ⟶ X h₁ : x ∈ Set.range ↑f.val.base h₂ : IsOpenImmersion f ⊢ ∃ U R, Nonempty (restrict X (_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅ Spec.toLocallyRingedSpace.obj (op R)) [PROOFSTEP] refine' ⟨⟨⟨_, h₂.base_open.open_range⟩, h₁⟩, R, ⟨_⟩⟩ [GOAL] case intro.intro.intro C : Type u inst✝ : Category.{v, u} C X : LocallyRingedSpace h : ∀ (x : ↑(toTopCat X)), ∃ R f, x ∈ Set.range ↑f.val.base ∧ IsOpenImmersion f x : ↑(toTopCat X) R : CommRingCat f : Spec.toLocallyRingedSpace.obj (op R) ⟶ X h₁ : x ∈ Set.range ↑f.val.base h₂ : IsOpenImmersion f ⊢ restrict X (_ : OpenEmbedding ↑(Opens.inclusion { obj := { carrier := Set.range ↑f.val.base, is_open' := (_ : IsOpen (Set.range ↑f.val.base)) }, property := h₁ }.obj)) ≅ Spec.toLocallyRingedSpace.obj (op R) [PROOFSTEP] apply LocallyRingedSpace.isoOfSheafedSpaceIso [GOAL] case intro.intro.intro.f C : Type u inst✝ : Category.{v, u} C X : LocallyRingedSpace h : ∀ (x : ↑(toTopCat X)), ∃ R f, x ∈ Set.range ↑f.val.base ∧ IsOpenImmersion f x : ↑(toTopCat X) R : CommRingCat f : Spec.toLocallyRingedSpace.obj (op R) ⟶ X h₁ : x ∈ Set.range ↑f.val.base h₂ : IsOpenImmersion f ⊢ (restrict X (_ : OpenEmbedding ↑(Opens.inclusion { obj := { carrier := Set.range ↑f.val.base, is_open' := (_ : IsOpen (Set.range ↑f.val.base)) }, property := h₁ }.obj))).toSheafedSpace ≅ (Spec.toLocallyRingedSpace.obj (op R)).toSheafedSpace [PROOFSTEP] refine' SheafedSpace.forgetToPresheafedSpace.preimageIso _ [GOAL] case intro.intro.intro.f C : Type u inst✝ : Category.{v, u} C X : LocallyRingedSpace h : ∀ (x : ↑(toTopCat X)), ∃ R f, x ∈ Set.range ↑f.val.base ∧ IsOpenImmersion f x : ↑(toTopCat X) R : CommRingCat f : Spec.toLocallyRingedSpace.obj (op R) ⟶ X h₁ : x ∈ Set.range ↑f.val.base h₂ : IsOpenImmersion f ⊢ SheafedSpace.forgetToPresheafedSpace.obj (restrict X (_ : OpenEmbedding ↑(Opens.inclusion { obj := { carrier := Set.range ↑f.val.base, is_open' := (_ : IsOpen (Set.range ↑f.val.base)) }, property := h₁ }.obj))).toSheafedSpace ≅ SheafedSpace.forgetToPresheafedSpace.obj (Spec.toLocallyRingedSpace.obj (op R)).toSheafedSpace [PROOFSTEP] skip [GOAL] case intro.intro.intro.f C : Type u inst✝ : Category.{v, u} C X : LocallyRingedSpace h : ∀ (x : ↑(toTopCat X)), ∃ R f, x ∈ Set.range ↑f.val.base ∧ IsOpenImmersion f x : ↑(toTopCat X) R : CommRingCat f : Spec.toLocallyRingedSpace.obj (op R) ⟶ X h₁ : x ∈ Set.range ↑f.val.base h₂ : IsOpenImmersion f ⊢ SheafedSpace.forgetToPresheafedSpace.obj (restrict X (_ : OpenEmbedding ↑(Opens.inclusion { obj := { carrier := Set.range ↑f.val.base, is_open' := (_ : IsOpen (Set.range ↑f.val.base)) }, property := h₁ }.obj))).toSheafedSpace ≅ SheafedSpace.forgetToPresheafedSpace.obj (Spec.toLocallyRingedSpace.obj (op R)).toSheafedSpace [PROOFSTEP] apply PresheafedSpace.IsOpenImmersion.isoOfRangeEq (PresheafedSpace.ofRestrict _ _) f.1 [GOAL] case intro.intro.intro.f C : Type u inst✝ : Category.{v, u} C X : LocallyRingedSpace h : ∀ (x : ↑(toTopCat X)), ∃ R f, x ∈ Set.range ↑f.val.base ∧ IsOpenImmersion f x : ↑(toTopCat X) R : CommRingCat f : Spec.toLocallyRingedSpace.obj (op R) ⟶ X h₁ : x ∈ Set.range ↑f.val.base h₂ : IsOpenImmersion f ⊢ Set.range ↑(PresheafedSpace.ofRestrict X.toPresheafedSpace ?m.3415).base = Set.range ↑f.val.base [PROOFSTEP] exact Subtype.range_coe_subtype [GOAL] C : Type u inst✝ : Category.{v, u} C X : LocallyRingedSpace h : ∀ (x : ↑(toTopCat X)), ∃ R f, x ∈ Set.range ↑f.val.base ∧ IsOpenImmersion f x : ↑(toTopCat X) R : CommRingCat f : Spec.toLocallyRingedSpace.obj (op R) ⟶ X h₁ : x ∈ Set.range ↑f.val.base h₂ : IsOpenImmersion f ⊢ OpenEmbedding ↑(Opens.inclusion { obj := { carrier := Set.range ↑f.val.base, is_open' := (_ : IsOpen (Set.range ↑f.val.base)) }, property := h₁ }.obj) [PROOFSTEP] exact Opens.openEmbedding _ -- Porting note : was `infer_instance` [GOAL] C : Type u inst✝¹ : Category.{v, u} C X✝ Y Z : Scheme 𝒰 : OpenCover X✝ f : X✝ ⟶ Z g : Y ⟶ Z inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f) g X : Scheme ⊢ ∀ (x : ↑↑X.toPresheafedSpace), x ∈ Set.range ↑((fun x => (Nonempty.some (_ : Nonempty (LocallyRingedSpace.restrict X.toLocallyRingedSpace (_ : OpenEmbedding ↑(Opens.inclusion (Exists.choose (_ : ∃ U R, Nonempty (LocallyRingedSpace.restrict X.toLocallyRingedSpace (_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅ Spec.toLocallyRingedSpace.obj (op R)))).obj)) ≅ Spec.toLocallyRingedSpace.obj (op (Exists.choose (_ : ∃ R, Nonempty (LocallyRingedSpace.restrict X.toLocallyRingedSpace (_ : OpenEmbedding ↑(Opens.inclusion (Exists.choose (_ : ∃ U R, Nonempty (LocallyRingedSpace.restrict X.toLocallyRingedSpace (_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅ Spec.toLocallyRingedSpace.obj (op R)))).obj)) ≅ Spec.toLocallyRingedSpace.obj (op R)))))))).inv ≫ LocallyRingedSpace.ofRestrict X.toLocallyRingedSpace (_ : OpenEmbedding ↑(Opens.inclusion (Exists.choose (_ : ∃ U R, Nonempty (LocallyRingedSpace.restrict X.toLocallyRingedSpace (_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅ Spec.toLocallyRingedSpace.obj (op R)))).obj))) ((fun x => x) x)).val.base [PROOFSTEP] intro x [GOAL] C : Type u inst✝¹ : Category.{v, u} C X✝ Y Z : Scheme 𝒰 : OpenCover X✝ f : X✝ ⟶ Z g : Y ⟶ Z inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f) g X : Scheme x : ↑↑X.toPresheafedSpace ⊢ x ∈ Set.range ↑((fun x => (Nonempty.some (_ : Nonempty (LocallyRingedSpace.restrict X.toLocallyRingedSpace (_ : OpenEmbedding ↑(Opens.inclusion (Exists.choose (_ : ∃ U R, Nonempty (LocallyRingedSpace.restrict X.toLocallyRingedSpace (_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅ Spec.toLocallyRingedSpace.obj (op R)))).obj)) ≅ Spec.toLocallyRingedSpace.obj (op (Exists.choose (_ : ∃ R, Nonempty (LocallyRingedSpace.restrict X.toLocallyRingedSpace (_ : OpenEmbedding ↑(Opens.inclusion (Exists.choose (_ : ∃ U R, Nonempty (LocallyRingedSpace.restrict X.toLocallyRingedSpace (_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅ Spec.toLocallyRingedSpace.obj (op R)))).obj)) ≅ Spec.toLocallyRingedSpace.obj (op R)))))))).inv ≫ LocallyRingedSpace.ofRestrict X.toLocallyRingedSpace (_ : OpenEmbedding ↑(Opens.inclusion (Exists.choose (_ : ∃ U R, Nonempty (LocallyRingedSpace.restrict X.toLocallyRingedSpace (_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅ Spec.toLocallyRingedSpace.obj (op R)))).obj))) ((fun x => x) x)).val.base [PROOFSTEP] erw [coe_comp] [GOAL] C : Type u inst✝¹ : Category.{v, u} C X✝ Y Z : Scheme 𝒰 : OpenCover X✝ f : X✝ ⟶ Z g : Y ⟶ Z inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f) g X : Scheme x : ↑↑X.toPresheafedSpace ⊢ x ∈ Set.range (↑(LocallyRingedSpace.ofRestrict X.toLocallyRingedSpace (_ : OpenEmbedding ↑(Opens.inclusion (Exists.choose (_ : ∃ U R, Nonempty (LocallyRingedSpace.restrict X.toLocallyRingedSpace (_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅ Spec.toLocallyRingedSpace.obj (op R)))).obj))).val.base ∘ ↑(Nonempty.some (_ : Nonempty (LocallyRingedSpace.restrict X.toLocallyRingedSpace (_ : OpenEmbedding ↑(Opens.inclusion (Exists.choose (_ : ∃ U R, Nonempty (LocallyRingedSpace.restrict X.toLocallyRingedSpace (_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅ Spec.toLocallyRingedSpace.obj (op R)))).obj)) ≅ Spec.toLocallyRingedSpace.obj (op (Exists.choose (_ : ∃ R, Nonempty (LocallyRingedSpace.restrict X.toLocallyRingedSpace (_ : OpenEmbedding ↑(Opens.inclusion (Exists.choose (_ : ∃ U R, Nonempty (LocallyRingedSpace.restrict X.toLocallyRingedSpace (_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅ Spec.toLocallyRingedSpace.obj (op R)))).obj)) ≅ Spec.toLocallyRingedSpace.obj (op R)))))))).inv.val.base) [PROOFSTEP] rw [Set.range_comp, Set.range_iff_surjective.mpr, Set.image_univ] [GOAL] C : Type u inst✝¹ : Category.{v, u} C X✝ Y Z : Scheme 𝒰 : OpenCover X✝ f : X✝ ⟶ Z g : Y ⟶ Z inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f) g X : Scheme x : ↑↑X.toPresheafedSpace ⊢ x ∈ Set.range ↑(LocallyRingedSpace.ofRestrict X.toLocallyRingedSpace (_ : OpenEmbedding ↑(Opens.inclusion (Exists.choose (_ : ∃ U R, Nonempty (LocallyRingedSpace.restrict X.toLocallyRingedSpace (_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅ Spec.toLocallyRingedSpace.obj (op R)))).obj))).val.base C : Type u inst✝¹ : Category.{v, u} C X✝ Y Z : Scheme 𝒰 : OpenCover X✝ f : X✝ ⟶ Z g : Y ⟶ Z inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f) g X : Scheme x : ↑↑X.toPresheafedSpace ⊢ Function.Surjective ↑(Nonempty.some (_ : Nonempty (LocallyRingedSpace.restrict X.toLocallyRingedSpace (_ : OpenEmbedding ↑(Opens.inclusion (Exists.choose (_ : ∃ U R, Nonempty (LocallyRingedSpace.restrict X.toLocallyRingedSpace (_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅ Spec.toLocallyRingedSpace.obj (op R)))).obj)) ≅ Spec.toLocallyRingedSpace.obj (op (Exists.choose (_ : ∃ R, Nonempty (LocallyRingedSpace.restrict X.toLocallyRingedSpace (_ : OpenEmbedding ↑(Opens.inclusion (Exists.choose (_ : ∃ U R, Nonempty (LocallyRingedSpace.restrict X.toLocallyRingedSpace (_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅ Spec.toLocallyRingedSpace.obj (op R)))).obj)) ≅ Spec.toLocallyRingedSpace.obj (op R)))))))).inv.val.base [PROOFSTEP] erw [Subtype.range_coe_subtype] [GOAL] C : Type u inst✝¹ : Category.{v, u} C X✝ Y Z : Scheme 𝒰 : OpenCover X✝ f : X✝ ⟶ Z g : Y ⟶ Z inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f) g X : Scheme x : ↑↑X.toPresheafedSpace ⊢ x ∈ {x_1 | x_1 ∈ (Exists.choose (_ : ∃ U R, Nonempty (LocallyRingedSpace.restrict X.toLocallyRingedSpace (_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅ Spec.toLocallyRingedSpace.obj (op R)))).obj} C : Type u inst✝¹ : Category.{v, u} C X✝ Y Z : Scheme 𝒰 : OpenCover X✝ f : X✝ ⟶ Z g : Y ⟶ Z inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f) g X : Scheme x : ↑↑X.toPresheafedSpace ⊢ Function.Surjective ↑(Nonempty.some (_ : Nonempty (LocallyRingedSpace.restrict X.toLocallyRingedSpace (_ : OpenEmbedding ↑(Opens.inclusion (Exists.choose (_ : ∃ U R, Nonempty (LocallyRingedSpace.restrict X.toLocallyRingedSpace (_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅ Spec.toLocallyRingedSpace.obj (op R)))).obj)) ≅ Spec.toLocallyRingedSpace.obj (op (Exists.choose (_ : ∃ R, Nonempty (LocallyRingedSpace.restrict X.toLocallyRingedSpace (_ : OpenEmbedding ↑(Opens.inclusion (Exists.choose (_ : ∃ U R, Nonempty (LocallyRingedSpace.restrict X.toLocallyRingedSpace (_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅ Spec.toLocallyRingedSpace.obj (op R)))).obj)) ≅ Spec.toLocallyRingedSpace.obj (op R)))))))).inv.val.base [PROOFSTEP] exact (X.local_affine x).choose.2 [GOAL] C : Type u inst✝¹ : Category.{v, u} C X✝ Y Z : Scheme 𝒰 : OpenCover X✝ f : X✝ ⟶ Z g : Y ⟶ Z inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f) g X : Scheme x : ↑↑X.toPresheafedSpace ⊢ Function.Surjective ↑(Nonempty.some (_ : Nonempty (LocallyRingedSpace.restrict X.toLocallyRingedSpace (_ : OpenEmbedding ↑(Opens.inclusion (Exists.choose (_ : ∃ U R, Nonempty (LocallyRingedSpace.restrict X.toLocallyRingedSpace (_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅ Spec.toLocallyRingedSpace.obj (op R)))).obj)) ≅ Spec.toLocallyRingedSpace.obj (op (Exists.choose (_ : ∃ R, Nonempty (LocallyRingedSpace.restrict X.toLocallyRingedSpace (_ : OpenEmbedding ↑(Opens.inclusion (Exists.choose (_ : ∃ U R, Nonempty (LocallyRingedSpace.restrict X.toLocallyRingedSpace (_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅ Spec.toLocallyRingedSpace.obj (op R)))).obj)) ≅ Spec.toLocallyRingedSpace.obj (op R)))))))).inv.val.base [PROOFSTEP] rw [← TopCat.epi_iff_surjective] [GOAL] C : Type u inst✝¹ : Category.{v, u} C X✝ Y Z : Scheme 𝒰 : OpenCover X✝ f : X✝ ⟶ Z g : Y ⟶ Z inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f) g X : Scheme x : ↑↑X.toPresheafedSpace ⊢ Epi (Nonempty.some (_ : Nonempty (LocallyRingedSpace.restrict X.toLocallyRingedSpace (_ : OpenEmbedding ↑(Opens.inclusion (Exists.choose (_ : ∃ U R, Nonempty (LocallyRingedSpace.restrict X.toLocallyRingedSpace (_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅ Spec.toLocallyRingedSpace.obj (op R)))).obj)) ≅ Spec.toLocallyRingedSpace.obj (op (Exists.choose (_ : ∃ R, Nonempty (LocallyRingedSpace.restrict X.toLocallyRingedSpace (_ : OpenEmbedding ↑(Opens.inclusion (Exists.choose (_ : ∃ U R, Nonempty (LocallyRingedSpace.restrict X.toLocallyRingedSpace (_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅ Spec.toLocallyRingedSpace.obj (op R)))).obj)) ≅ Spec.toLocallyRingedSpace.obj (op R)))))))).inv.val.base [PROOFSTEP] change Epi ((SheafedSpace.forget _).map (LocallyRingedSpace.forgetToSheafedSpace.map _)) [GOAL] C : Type u inst✝¹ : Category.{v, u} C X✝ Y Z : Scheme 𝒰 : OpenCover X✝ f : X✝ ⟶ Z g : Y ⟶ Z inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f) g X : Scheme x : ↑↑X.toPresheafedSpace ⊢ Epi ((SheafedSpace.forget CommRingCat).map (LocallyRingedSpace.forgetToSheafedSpace.map (Nonempty.some (_ : Nonempty (LocallyRingedSpace.restrict X.toLocallyRingedSpace (_ : OpenEmbedding ↑(Opens.inclusion (Exists.choose (_ : ∃ U R, Nonempty (LocallyRingedSpace.restrict X.toLocallyRingedSpace (_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅ Spec.toLocallyRingedSpace.obj (op R)))).obj)) ≅ Spec.toLocallyRingedSpace.obj (op (Exists.choose (_ : ∃ R, Nonempty (LocallyRingedSpace.restrict X.toLocallyRingedSpace (_ : OpenEmbedding ↑(Opens.inclusion (Exists.choose (_ : ∃ U R, Nonempty (LocallyRingedSpace.restrict X.toLocallyRingedSpace (_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅ Spec.toLocallyRingedSpace.obj (op R)))).obj)) ≅ Spec.toLocallyRingedSpace.obj (op R)))))))).inv)) [PROOFSTEP] infer_instance [GOAL] C : Type u inst✝¹ : Category.{v, u} C X✝ Y Z : Scheme 𝒰 : OpenCover X✝ f : X✝ ⟶ Z g : Y ⟶ Z inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f) g X : Scheme x : ↑↑X.toPresheafedSpace ⊢ IsOpenImmersion ((fun x => (Nonempty.some (_ : Nonempty (LocallyRingedSpace.restrict X.toLocallyRingedSpace (_ : OpenEmbedding ↑(Opens.inclusion (Exists.choose (_ : ∃ U R, Nonempty (LocallyRingedSpace.restrict X.toLocallyRingedSpace (_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅ Spec.toLocallyRingedSpace.obj (op R)))).obj)) ≅ Spec.toLocallyRingedSpace.obj (op (Exists.choose (_ : ∃ R, Nonempty (LocallyRingedSpace.restrict X.toLocallyRingedSpace (_ : OpenEmbedding ↑(Opens.inclusion (Exists.choose (_ : ∃ U R, Nonempty (LocallyRingedSpace.restrict X.toLocallyRingedSpace (_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅ Spec.toLocallyRingedSpace.obj (op R)))).obj)) ≅ Spec.toLocallyRingedSpace.obj (op R)))))))).inv ≫ LocallyRingedSpace.ofRestrict X.toLocallyRingedSpace (_ : OpenEmbedding ↑(Opens.inclusion (Exists.choose (_ : ∃ U R, Nonempty (LocallyRingedSpace.restrict X.toLocallyRingedSpace (_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅ Spec.toLocallyRingedSpace.obj (op R)))).obj))) x) [PROOFSTEP] apply (config := { allowSynthFailures := true }) PresheafedSpace.IsOpenImmersion.comp [GOAL] case hg C : Type u inst✝¹ : Category.{v, u} C X✝ Y Z : Scheme 𝒰 : OpenCover X✝ f : X✝ ⟶ Z g : Y ⟶ Z inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f) g X : Scheme x : ↑↑X.toPresheafedSpace ⊢ PresheafedSpace.IsOpenImmersion (LocallyRingedSpace.ofRestrict X.toLocallyRingedSpace (_ : OpenEmbedding ↑(Opens.inclusion (Exists.choose (_ : ∃ U R, Nonempty (LocallyRingedSpace.restrict X.toLocallyRingedSpace (_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅ Spec.toLocallyRingedSpace.obj (op R)))).obj))).val [PROOFSTEP] apply PresheafedSpace.IsOpenImmersion.ofRestrict [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f✝ : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (x : 𝒰.J), HasPullback (map 𝒰 x ≫ f✝) g f : (x : 𝒰.J) → OpenCover (obj 𝒰 x) x : ↑↑X.toPresheafedSpace ⊢ x ∈ Set.range ↑((fun x => map (f x.fst) x.snd ≫ map 𝒰 x.fst) ((fun x => { fst := AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x, snd := AlgebraicGeometry.Scheme.OpenCover.f (f (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)) (Exists.choose (_ : x ∈ Set.range ↑(map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)).val.base)) }) x)).val.base [PROOFSTEP] let y := (𝒰.Covers x).choose [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f✝ : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (x : 𝒰.J), HasPullback (map 𝒰 x ≫ f✝) g f : (x : 𝒰.J) → OpenCover (obj 𝒰 x) x : ↑↑X.toPresheafedSpace y : (forget TopCat).obj ↑(obj 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)).toPresheafedSpace := Exists.choose (_ : x ∈ Set.range ↑(map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)).val.base) ⊢ x ∈ Set.range ↑((fun x => map (f x.fst) x.snd ≫ map 𝒰 x.fst) ((fun x => { fst := AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x, snd := AlgebraicGeometry.Scheme.OpenCover.f (f (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)) (Exists.choose (_ : x ∈ Set.range ↑(map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)).val.base)) }) x)).val.base [PROOFSTEP] have hy : (𝒰.map (𝒰.f x)).val.base y = x := (𝒰.Covers x).choose_spec [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f✝ : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (x : 𝒰.J), HasPullback (map 𝒰 x ≫ f✝) g f : (x : 𝒰.J) → OpenCover (obj 𝒰 x) x : ↑↑X.toPresheafedSpace y : (forget TopCat).obj ↑(obj 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)).toPresheafedSpace := Exists.choose (_ : x ∈ Set.range ↑(map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)).val.base) hy : ↑(map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)).val.base y = x ⊢ x ∈ Set.range ↑((fun x => map (f x.fst) x.snd ≫ map 𝒰 x.fst) ((fun x => { fst := AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x, snd := AlgebraicGeometry.Scheme.OpenCover.f (f (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)) (Exists.choose (_ : x ∈ Set.range ↑(map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)).val.base)) }) x)).val.base [PROOFSTEP] rcases(f (𝒰.f x)).Covers y with ⟨z, hz⟩ [GOAL] case intro C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f✝ : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (x : 𝒰.J), HasPullback (map 𝒰 x ≫ f✝) g f : (x : 𝒰.J) → OpenCover (obj 𝒰 x) x : ↑↑X.toPresheafedSpace y : (forget TopCat).obj ↑(obj 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)).toPresheafedSpace := Exists.choose (_ : x ∈ Set.range ↑(map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)).val.base) hy : ↑(map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)).val.base y = x z : (forget TopCat).obj ↑(obj (f (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)) (AlgebraicGeometry.Scheme.OpenCover.f (f (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)) y)).toPresheafedSpace hz : ↑(map (f (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)) (AlgebraicGeometry.Scheme.OpenCover.f (f (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)) y)).val.base z = y ⊢ x ∈ Set.range ↑((fun x => map (f x.fst) x.snd ≫ map 𝒰 x.fst) ((fun x => { fst := AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x, snd := AlgebraicGeometry.Scheme.OpenCover.f (f (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)) (Exists.choose (_ : x ∈ Set.range ↑(map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)).val.base)) }) x)).val.base [PROOFSTEP] change x ∈ Set.range ((f (𝒰.f x)).map ((f (𝒰.f x)).f y) ≫ 𝒰.map (𝒰.f x)).1.base [GOAL] case intro C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f✝ : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (x : 𝒰.J), HasPullback (map 𝒰 x ≫ f✝) g f : (x : 𝒰.J) → OpenCover (obj 𝒰 x) x : ↑↑X.toPresheafedSpace y : (forget TopCat).obj ↑(obj 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)).toPresheafedSpace := Exists.choose (_ : x ∈ Set.range ↑(map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)).val.base) hy : ↑(map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)).val.base y = x z : (forget TopCat).obj ↑(obj (f (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)) (AlgebraicGeometry.Scheme.OpenCover.f (f (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)) y)).toPresheafedSpace hz : ↑(map (f (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)) (AlgebraicGeometry.Scheme.OpenCover.f (f (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)) y)).val.base z = y ⊢ x ∈ Set.range ↑(map (f (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)) (AlgebraicGeometry.Scheme.OpenCover.f (f (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)) y) ≫ map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)).val.base [PROOFSTEP] use z [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f✝ : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (x : 𝒰.J), HasPullback (map 𝒰 x ≫ f✝) g f : (x : 𝒰.J) → OpenCover (obj 𝒰 x) x : ↑↑X.toPresheafedSpace y : (forget TopCat).obj ↑(obj 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)).toPresheafedSpace := Exists.choose (_ : x ∈ Set.range ↑(map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)).val.base) hy : ↑(map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)).val.base y = x z : (forget TopCat).obj ↑(obj (f (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)) (AlgebraicGeometry.Scheme.OpenCover.f (f (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)) y)).toPresheafedSpace hz : ↑(map (f (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)) (AlgebraicGeometry.Scheme.OpenCover.f (f (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)) y)).val.base z = y ⊢ ↑(map (f (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)) (AlgebraicGeometry.Scheme.OpenCover.f (f (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)) y) ≫ map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)).val.base z = x [PROOFSTEP] erw [comp_apply] [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f✝ : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (x : 𝒰.J), HasPullback (map 𝒰 x ≫ f✝) g f : (x : 𝒰.J) → OpenCover (obj 𝒰 x) x : ↑↑X.toPresheafedSpace y : (forget TopCat).obj ↑(obj 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)).toPresheafedSpace := Exists.choose (_ : x ∈ Set.range ↑(map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)).val.base) hy : ↑(map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)).val.base y = x z : (forget TopCat).obj ↑(obj (f (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)) (AlgebraicGeometry.Scheme.OpenCover.f (f (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)) y)).toPresheafedSpace hz : ↑(map (f (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)) (AlgebraicGeometry.Scheme.OpenCover.f (f (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)) y)).val.base z = y ⊢ ↑(map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)).val.base (↑(map (f (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)) (AlgebraicGeometry.Scheme.OpenCover.f (f (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)) y)).val.base z) = x [PROOFSTEP] rw [hz, hy] -- Porting note : weirdly, even though no input is needed, `inferInstance` does not work -- `PresheafedSpace.IsOpenImmersion.comp` is marked as `instance` [GOAL] C : Type u inst✝² : Category.{v, u} C X✝ Y✝ Z : Scheme 𝒰 : OpenCover X✝ f✝ : X✝ ⟶ Z g : Y✝ ⟶ Z inst✝¹ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f✝) g X Y : Scheme f : X ⟶ Y inst✝ : IsIso f x : ↑↑Y.toPresheafedSpace ⊢ x ∈ Set.range ↑((fun x => f) ((fun x => PUnit.unit) x)).val.base [PROOFSTEP] rw [Set.range_iff_surjective.mpr] [GOAL] C : Type u inst✝² : Category.{v, u} C X✝ Y✝ Z : Scheme 𝒰 : OpenCover X✝ f✝ : X✝ ⟶ Z g : Y✝ ⟶ Z inst✝¹ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f✝) g X Y : Scheme f : X ⟶ Y inst✝ : IsIso f x : ↑↑Y.toPresheafedSpace ⊢ x ∈ Set.univ C : Type u inst✝² : Category.{v, u} C X✝ Y✝ Z : Scheme 𝒰 : OpenCover X✝ f✝ : X✝ ⟶ Z g : Y✝ ⟶ Z inst✝¹ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f✝) g X Y : Scheme f : X ⟶ Y inst✝ : IsIso f x : ↑↑Y.toPresheafedSpace ⊢ Function.Surjective ↑((fun x => f) ((fun x => PUnit.unit) x)).val.base [PROOFSTEP] all_goals try trivial [GOAL] C : Type u inst✝² : Category.{v, u} C X✝ Y✝ Z : Scheme 𝒰 : OpenCover X✝ f✝ : X✝ ⟶ Z g : Y✝ ⟶ Z inst✝¹ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f✝) g X Y : Scheme f : X ⟶ Y inst✝ : IsIso f x : ↑↑Y.toPresheafedSpace ⊢ x ∈ Set.univ [PROOFSTEP] try trivial [GOAL] C : Type u inst✝² : Category.{v, u} C X✝ Y✝ Z : Scheme 𝒰 : OpenCover X✝ f✝ : X✝ ⟶ Z g : Y✝ ⟶ Z inst✝¹ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f✝) g X Y : Scheme f : X ⟶ Y inst✝ : IsIso f x : ↑↑Y.toPresheafedSpace ⊢ x ∈ Set.univ [PROOFSTEP] trivial [GOAL] C : Type u inst✝² : Category.{v, u} C X✝ Y✝ Z : Scheme 𝒰 : OpenCover X✝ f✝ : X✝ ⟶ Z g : Y✝ ⟶ Z inst✝¹ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f✝) g X Y : Scheme f : X ⟶ Y inst✝ : IsIso f x : ↑↑Y.toPresheafedSpace ⊢ Function.Surjective ↑((fun x => f) ((fun x => PUnit.unit) x)).val.base [PROOFSTEP] try trivial [GOAL] C : Type u inst✝² : Category.{v, u} C X✝ Y✝ Z : Scheme 𝒰 : OpenCover X✝ f✝ : X✝ ⟶ Z g : Y✝ ⟶ Z inst✝¹ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f✝) g X Y : Scheme f : X ⟶ Y inst✝ : IsIso f x : ↑↑Y.toPresheafedSpace ⊢ Function.Surjective ↑((fun x => f) ((fun x => PUnit.unit) x)).val.base [PROOFSTEP] trivial [GOAL] C : Type u inst✝² : Category.{v, u} C X✝ Y✝ Z : Scheme 𝒰 : OpenCover X✝ f✝ : X✝ ⟶ Z g : Y✝ ⟶ Z inst✝¹ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f✝) g X Y : Scheme f : X ⟶ Y inst✝ : IsIso f x : ↑↑Y.toPresheafedSpace ⊢ Function.Surjective ↑((fun x => f) ((fun x => PUnit.unit) x)).val.base [PROOFSTEP] rw [← TopCat.epi_iff_surjective] [GOAL] C : Type u inst✝² : Category.{v, u} C X✝ Y✝ Z : Scheme 𝒰 : OpenCover X✝ f✝ : X✝ ⟶ Z g : Y✝ ⟶ Z inst✝¹ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f✝) g X Y : Scheme f : X ⟶ Y inst✝ : IsIso f x : ↑↑Y.toPresheafedSpace ⊢ Epi ((fun x => f) ((fun x => PUnit.unit) x)).val.base [PROOFSTEP] infer_instance [GOAL] C : Type u inst✝¹ : Category.{v, u} C X✝ Y Z : Scheme 𝒰✝ : OpenCover X✝ f : X✝ ⟶ Z g : Y ⟶ Z inst✝ : ∀ (x : 𝒰✝.J), HasPullback (AlgebraicGeometry.Scheme.OpenCover.map 𝒰✝ x ≫ f) g X : Scheme 𝒰 : OpenCover X J : Type u_1 obj : J → Scheme map : (i : J) → obj i ⟶ X e₁ : J ≃ 𝒰.J e₂✝ : (i : J) → obj i ≅ AlgebraicGeometry.Scheme.OpenCover.obj 𝒰 (↑e₁ i) e₂ : ∀ (i : J), map i = (e₂✝ i).hom ≫ AlgebraicGeometry.Scheme.OpenCover.map 𝒰 (↑e₁ i) x : ↑↑X.toPresheafedSpace ⊢ x ∈ Set.range ↑(map ((fun x => ↑e₁.symm (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)) x)).val.base [PROOFSTEP] rw [e₂, Scheme.comp_val_base, coe_comp, Set.range_comp, Set.range_iff_surjective.mpr, Set.image_univ, e₁.rightInverse_symm] [GOAL] C : Type u inst✝¹ : Category.{v, u} C X✝ Y Z : Scheme 𝒰✝ : OpenCover X✝ f : X✝ ⟶ Z g : Y ⟶ Z inst✝ : ∀ (x : 𝒰✝.J), HasPullback (AlgebraicGeometry.Scheme.OpenCover.map 𝒰✝ x ≫ f) g X : Scheme 𝒰 : OpenCover X J : Type u_1 obj : J → Scheme map : (i : J) → obj i ⟶ X e₁ : J ≃ 𝒰.J e₂✝ : (i : J) → obj i ≅ AlgebraicGeometry.Scheme.OpenCover.obj 𝒰 (↑e₁ i) e₂ : ∀ (i : J), map i = (e₂✝ i).hom ≫ AlgebraicGeometry.Scheme.OpenCover.map 𝒰 (↑e₁ i) x : ↑↑X.toPresheafedSpace ⊢ x ∈ Set.range ↑(AlgebraicGeometry.Scheme.OpenCover.map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)).val.base [PROOFSTEP] exact 𝒰.Covers x [GOAL] C : Type u inst✝¹ : Category.{v, u} C X✝ Y Z : Scheme 𝒰✝ : OpenCover X✝ f : X✝ ⟶ Z g : Y ⟶ Z inst✝ : ∀ (x : 𝒰✝.J), HasPullback (AlgebraicGeometry.Scheme.OpenCover.map 𝒰✝ x ≫ f) g X : Scheme 𝒰 : OpenCover X J : Type u_1 obj : J → Scheme map : (i : J) → obj i ⟶ X e₁ : J ≃ 𝒰.J e₂✝ : (i : J) → obj i ≅ AlgebraicGeometry.Scheme.OpenCover.obj 𝒰 (↑e₁ i) e₂ : ∀ (i : J), map i = (e₂✝ i).hom ≫ AlgebraicGeometry.Scheme.OpenCover.map 𝒰 (↑e₁ i) x : ↑↑X.toPresheafedSpace ⊢ Function.Surjective ↑(e₂✝ ((fun x => ↑e₁.symm (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)) x)).hom.val.base [PROOFSTEP] rw [← TopCat.epi_iff_surjective] [GOAL] C : Type u inst✝¹ : Category.{v, u} C X✝ Y Z : Scheme 𝒰✝ : OpenCover X✝ f : X✝ ⟶ Z g : Y ⟶ Z inst✝ : ∀ (x : 𝒰✝.J), HasPullback (AlgebraicGeometry.Scheme.OpenCover.map 𝒰✝ x ≫ f) g X : Scheme 𝒰 : OpenCover X J : Type u_1 obj : J → Scheme map : (i : J) → obj i ⟶ X e₁ : J ≃ 𝒰.J e₂✝ : (i : J) → obj i ≅ AlgebraicGeometry.Scheme.OpenCover.obj 𝒰 (↑e₁ i) e₂ : ∀ (i : J), map i = (e₂✝ i).hom ≫ AlgebraicGeometry.Scheme.OpenCover.map 𝒰 (↑e₁ i) x : ↑↑X.toPresheafedSpace ⊢ Epi (e₂✝ ((fun x => ↑e₁.symm (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)) x)).hom.val.base [PROOFSTEP] infer_instance -- Porting note : weirdly, even though no input is needed, `inferInstance` does not work -- `PresheafedSpace.IsOpenImmersion.comp` is marked as `instance` [GOAL] C : Type u inst✝¹ : Category.{v, u} C X✝ Y Z : Scheme 𝒰✝ : OpenCover X✝ f : X✝ ⟶ Z g : Y ⟶ Z inst✝ : ∀ (x : 𝒰✝.J), HasPullback (AlgebraicGeometry.Scheme.OpenCover.map 𝒰✝ x ≫ f) g X : Scheme 𝒰 : OpenCover X J : Type u_1 obj : J → Scheme map : (i : J) → obj i ⟶ X e₁ : J ≃ 𝒰.J e₂✝ : (i : J) → obj i ≅ AlgebraicGeometry.Scheme.OpenCover.obj 𝒰 (↑e₁ i) e₂ : ∀ (i : J), map i = (e₂✝ i).hom ≫ AlgebraicGeometry.Scheme.OpenCover.map 𝒰 (↑e₁ i) i : J ⊢ IsOpenImmersion (map i) [PROOFSTEP] rw [e₂] [GOAL] C : Type u inst✝¹ : Category.{v, u} C X✝ Y Z : Scheme 𝒰✝ : OpenCover X✝ f : X✝ ⟶ Z g : Y ⟶ Z inst✝ : ∀ (x : 𝒰✝.J), HasPullback (AlgebraicGeometry.Scheme.OpenCover.map 𝒰✝ x ≫ f) g X : Scheme 𝒰 : OpenCover X J : Type u_1 obj : J → Scheme map : (i : J) → obj i ⟶ X e₁ : J ≃ 𝒰.J e₂✝ : (i : J) → obj i ≅ AlgebraicGeometry.Scheme.OpenCover.obj 𝒰 (↑e₁ i) e₂ : ∀ (i : J), map i = (e₂✝ i).hom ≫ AlgebraicGeometry.Scheme.OpenCover.map 𝒰 (↑e₁ i) i : J ⊢ IsOpenImmersion ((e₂✝ i).hom ≫ AlgebraicGeometry.Scheme.OpenCover.map 𝒰 (↑e₁ i)) [PROOFSTEP] exact PresheafedSpace.IsOpenImmersion.comp _ _ [GOAL] C : Type u inst✝² : Category.{v, u} C X✝ Y✝ Z : Scheme 𝒰✝ : OpenCover X✝ f✝ : X✝ ⟶ Z g : Y✝ ⟶ Z inst✝¹ : ∀ (x : 𝒰✝.J), HasPullback (map 𝒰✝ x ≫ f✝) g X : Scheme 𝒰 : OpenCover X Y : Scheme f : Y ⟶ X inst✝ : IsOpenImmersion f ⊢ ∀ (x : Option 𝒰.J), IsOpenImmersion ((fun i => Option.rec f 𝒰.map i) x) [PROOFSTEP] rintro (_ | _) [GOAL] case none C : Type u inst✝² : Category.{v, u} C X✝ Y✝ Z : Scheme 𝒰✝ : OpenCover X✝ f✝ : X✝ ⟶ Z g : Y✝ ⟶ Z inst✝¹ : ∀ (x : 𝒰✝.J), HasPullback (map 𝒰✝ x ≫ f✝) g X : Scheme 𝒰 : OpenCover X Y : Scheme f : Y ⟶ X inst✝ : IsOpenImmersion f ⊢ IsOpenImmersion ((fun i => Option.rec f 𝒰.map i) none) [PROOFSTEP] dsimp [GOAL] case some C : Type u inst✝² : Category.{v, u} C X✝ Y✝ Z : Scheme 𝒰✝ : OpenCover X✝ f✝ : X✝ ⟶ Z g : Y✝ ⟶ Z inst✝¹ : ∀ (x : 𝒰✝.J), HasPullback (map 𝒰✝ x ≫ f✝) g X : Scheme 𝒰 : OpenCover X Y : Scheme f : Y ⟶ X inst✝ : IsOpenImmersion f val✝ : 𝒰.J ⊢ IsOpenImmersion ((fun i => Option.rec f 𝒰.map i) (some val✝)) [PROOFSTEP] dsimp [GOAL] case none C : Type u inst✝² : Category.{v, u} C X✝ Y✝ Z : Scheme 𝒰✝ : OpenCover X✝ f✝ : X✝ ⟶ Z g : Y✝ ⟶ Z inst✝¹ : ∀ (x : 𝒰✝.J), HasPullback (map 𝒰✝ x ≫ f✝) g X : Scheme 𝒰 : OpenCover X Y : Scheme f : Y ⟶ X inst✝ : IsOpenImmersion f ⊢ IsOpenImmersion f [PROOFSTEP] infer_instance [GOAL] case some C : Type u inst✝² : Category.{v, u} C X✝ Y✝ Z : Scheme 𝒰✝ : OpenCover X✝ f✝ : X✝ ⟶ Z g : Y✝ ⟶ Z inst✝¹ : ∀ (x : 𝒰✝.J), HasPullback (map 𝒰✝ x ≫ f✝) g X : Scheme 𝒰 : OpenCover X Y : Scheme f : Y ⟶ X inst✝ : IsOpenImmersion f val✝ : 𝒰.J ⊢ IsOpenImmersion (map 𝒰 val✝) [PROOFSTEP] infer_instance [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f✝ : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f✝) g R : CommRingCat f : ↑R ⊢ IsOpenImmersion (Spec.map (CommRingCat.ofHom (algebraMap (↑R) (Localization.Away f))).op) [PROOFSTEP] apply SheafedSpace.IsOpenImmersion.of_stalk_iso (H := ?_) [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f✝ : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f✝) g R : CommRingCat f : ↑R ⊢ OpenEmbedding ↑(Spec.map (CommRingCat.ofHom (algebraMap (↑R) (Localization.Away f))).op).val.base [PROOFSTEP] exact (PrimeSpectrum.localization_away_openEmbedding (Localization.Away f) f : _) [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f✝ : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f✝) g R : CommRingCat f : ↑R hf : OpenEmbedding ↑(Spec.map (CommRingCat.ofHom (algebraMap (↑R) (Localization.Away f))).op).val.base ⊢ ∀ (x : ↑↑(Spec.obj (op (CommRingCat.of (Localization.Away f)))).toPresheafedSpace), IsIso (PresheafedSpace.stalkMap (Spec.map (CommRingCat.ofHom (algebraMap (↑R) (Localization.Away f))).op).val x) [PROOFSTEP] intro x [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f✝ : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f✝) g R : CommRingCat f : ↑R hf : OpenEmbedding ↑(Spec.map (CommRingCat.ofHom (algebraMap (↑R) (Localization.Away f))).op).val.base x : ↑↑(Spec.obj (op (CommRingCat.of (Localization.Away f)))).toPresheafedSpace ⊢ IsIso (PresheafedSpace.stalkMap (Spec.map (CommRingCat.ofHom (algebraMap (↑R) (Localization.Away f))).op).val x) [PROOFSTEP] exact Spec_map_localization_isIso R (Submonoid.powers f) x [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f) g R : CommRingCat r : ↑↑(Spec.obj (op R)).toPresheafedSpace ⊢ r ∈ Set.range ↑((fun r => Spec.map (algebraMap (↑R) (Localization.Away r)).op) ((fun x => 1) r)).val.base [PROOFSTEP] rw [Set.range_iff_surjective.mpr ((TopCat.epi_iff_surjective _).mp _)] [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f) g R : CommRingCat r : ↑↑(Spec.obj (op R)).toPresheafedSpace ⊢ r ∈ Set.univ [PROOFSTEP] exact trivial [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f) g R : CommRingCat r : ↑↑(Spec.obj (op R)).toPresheafedSpace ⊢ Epi ((fun r => Spec.map (algebraMap (↑R) (Localization.Away r)).op) ((fun x => 1) r)).val.base [PROOFSTEP] change Epi (Spec.map (CommRingCat.ofHom (algebraMap _ _)).op).1.base [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f) g R : CommRingCat r : ↑↑(Spec.obj (op R)).toPresheafedSpace ⊢ Epi (Spec.map (CommRingCat.ofHom (algebraMap (↑R) (Localization.Away ((fun x => 1) r)))).op).val.base [PROOFSTEP] infer_instance [GOAL] C : Type u inst✝¹ : Category.{v, u} C X✝ Y Z : Scheme 𝒰 : OpenCover X✝ f : X✝ ⟶ Z g : Y ⟶ Z inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f) g X : Scheme x : ↑↑X.toPresheafedSpace r : ↑(Exists.choose (_ : ∃ R, Nonempty (LocallyRingedSpace.restrict X.toLocallyRingedSpace (_ : OpenEmbedding ↑(Opens.inclusion (Exists.choose (_ : ∃ U R, Nonempty (LocallyRingedSpace.restrict X.toLocallyRingedSpace (_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅ Spec.toLocallyRingedSpace.obj (op R)))).obj)) ≅ Spec.toLocallyRingedSpace.obj (op R)))) ⊢ Set.range ↑(OpenCover.map (affineBasisCover X) { fst := x, snd := r }).val.base = ↑(OpenCover.map (affineCover X) x).val.base '' (PrimeSpectrum.basicOpen r).carrier [PROOFSTEP] erw [coe_comp, Set.range_comp] -- Porting note : `congr` fails to see the goal is comparing image of the same function [GOAL] C : Type u inst✝¹ : Category.{v, u} C X✝ Y Z : Scheme 𝒰 : OpenCover X✝ f : X✝ ⟶ Z g : Y ⟶ Z inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f) g X : Scheme x : ↑↑X.toPresheafedSpace r : ↑(Exists.choose (_ : ∃ R, Nonempty (LocallyRingedSpace.restrict X.toLocallyRingedSpace (_ : OpenEmbedding ↑(Opens.inclusion (Exists.choose (_ : ∃ U R, Nonempty (LocallyRingedSpace.restrict X.toLocallyRingedSpace (_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅ Spec.toLocallyRingedSpace.obj (op R)))).obj)) ≅ Spec.toLocallyRingedSpace.obj (op R)))) ⊢ ↑(OpenCover.map (affineCover X) { fst := x, snd := r }.fst).val.base '' Set.range ↑(OpenCover.map ((fun x => affineBasisCoverOfAffine (Exists.choose (_ : ∃ R, Nonempty (LocallyRingedSpace.restrict X.toLocallyRingedSpace (_ : OpenEmbedding ↑(Opens.inclusion (Exists.choose (_ : ∃ U R, Nonempty (LocallyRingedSpace.restrict X.toLocallyRingedSpace (_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅ Spec.toLocallyRingedSpace.obj (op R)))).obj)) ≅ Spec.toLocallyRingedSpace.obj (op R))))) { fst := x, snd := r }.fst) { fst := x, snd := r }.snd).val.base = ↑(OpenCover.map (affineCover X) x).val.base '' (PrimeSpectrum.basicOpen r).carrier [PROOFSTEP] refine congr_arg (_ '' ·) ?_ [GOAL] C : Type u inst✝¹ : Category.{v, u} C X✝ Y Z : Scheme 𝒰 : OpenCover X✝ f : X✝ ⟶ Z g : Y ⟶ Z inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f) g X : Scheme x : ↑↑X.toPresheafedSpace r : ↑(Exists.choose (_ : ∃ R, Nonempty (LocallyRingedSpace.restrict X.toLocallyRingedSpace (_ : OpenEmbedding ↑(Opens.inclusion (Exists.choose (_ : ∃ U R, Nonempty (LocallyRingedSpace.restrict X.toLocallyRingedSpace (_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅ Spec.toLocallyRingedSpace.obj (op R)))).obj)) ≅ Spec.toLocallyRingedSpace.obj (op R)))) ⊢ Set.range ↑(OpenCover.map ((fun x => affineBasisCoverOfAffine (Exists.choose (_ : ∃ R, Nonempty (LocallyRingedSpace.restrict X.toLocallyRingedSpace (_ : OpenEmbedding ↑(Opens.inclusion (Exists.choose (_ : ∃ U R, Nonempty (LocallyRingedSpace.restrict X.toLocallyRingedSpace (_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅ Spec.toLocallyRingedSpace.obj (op R)))).obj)) ≅ Spec.toLocallyRingedSpace.obj (op R))))) { fst := x, snd := r }.fst) { fst := x, snd := r }.snd).val.base = (PrimeSpectrum.basicOpen r).carrier [PROOFSTEP] exact (PrimeSpectrum.localization_away_comap_range (Localization.Away r) r : _) [GOAL] C : Type u inst✝¹ : Category.{v, u} C X✝ Y Z : Scheme 𝒰 : OpenCover X✝ f : X✝ ⟶ Z g : Y ⟶ Z inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f) g X : Scheme ⊢ IsTopologicalBasis {x | ∃ a, x = Set.range ↑(OpenCover.map (affineBasisCover X) a).val.base} [PROOFSTEP] apply TopologicalSpace.isTopologicalBasis_of_open_of_nhds [GOAL] case h_open C : Type u inst✝¹ : Category.{v, u} C X✝ Y Z : Scheme 𝒰 : OpenCover X✝ f : X✝ ⟶ Z g : Y ⟶ Z inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f) g X : Scheme ⊢ ∀ (u : Set ↑↑X.toPresheafedSpace), u ∈ {x | ∃ a, x = Set.range ↑(OpenCover.map (affineBasisCover X) a).val.base} → IsOpen u [PROOFSTEP] rintro _ ⟨a, rfl⟩ [GOAL] case h_open.intro C : Type u inst✝¹ : Category.{v, u} C X✝ Y Z : Scheme 𝒰 : OpenCover X✝ f : X✝ ⟶ Z g : Y ⟶ Z inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f) g X : Scheme a : (affineBasisCover X).J ⊢ IsOpen (Set.range ↑(OpenCover.map (affineBasisCover X) a).val.base) [PROOFSTEP] exact IsOpenImmersion.open_range (X.affineBasisCover.map a) [GOAL] case h_nhds C : Type u inst✝¹ : Category.{v, u} C X✝ Y Z : Scheme 𝒰 : OpenCover X✝ f : X✝ ⟶ Z g : Y ⟶ Z inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f) g X : Scheme ⊢ ∀ (a : ↑↑X.toPresheafedSpace) (u : Set ↑↑X.toPresheafedSpace), a ∈ u → IsOpen u → ∃ v, v ∈ {x | ∃ a, x = Set.range ↑(OpenCover.map (affineBasisCover X) a).val.base} ∧ a ∈ v ∧ v ⊆ u [PROOFSTEP] rintro a U haU hU [GOAL] case h_nhds C : Type u inst✝¹ : Category.{v, u} C X✝ Y Z : Scheme 𝒰 : OpenCover X✝ f : X✝ ⟶ Z g : Y ⟶ Z inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f) g X : Scheme a : ↑↑X.toPresheafedSpace U : Set ↑↑X.toPresheafedSpace haU : a ∈ U hU : IsOpen U ⊢ ∃ v, v ∈ {x | ∃ a, x = Set.range ↑(OpenCover.map (affineBasisCover X) a).val.base} ∧ a ∈ v ∧ v ⊆ U [PROOFSTEP] rcases X.affineCover.Covers a with ⟨x, e⟩ [GOAL] case h_nhds.intro C : Type u inst✝¹ : Category.{v, u} C X✝ Y Z : Scheme 𝒰 : OpenCover X✝ f : X✝ ⟶ Z g : Y ⟶ Z inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f) g X : Scheme a : ↑↑X.toPresheafedSpace U : Set ↑↑X.toPresheafedSpace haU : a ∈ U hU : IsOpen U x : (forget TopCat).obj ↑(OpenCover.obj (affineCover X) (OpenCover.f (affineCover X) a)).toPresheafedSpace e : ↑(OpenCover.map (affineCover X) (OpenCover.f (affineCover X) a)).val.base x = a ⊢ ∃ v, v ∈ {x | ∃ a, x = Set.range ↑(OpenCover.map (affineBasisCover X) a).val.base} ∧ a ∈ v ∧ v ⊆ U [PROOFSTEP] let U' := (X.affineCover.map (X.affineCover.f a)).1.base ⁻¹' U [GOAL] case h_nhds.intro C : Type u inst✝¹ : Category.{v, u} C X✝ Y Z : Scheme 𝒰 : OpenCover X✝ f : X✝ ⟶ Z g : Y ⟶ Z inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f) g X : Scheme a : ↑↑X.toPresheafedSpace U : Set ↑↑X.toPresheafedSpace haU : a ∈ U hU : IsOpen U x : (forget TopCat).obj ↑(OpenCover.obj (affineCover X) (OpenCover.f (affineCover X) a)).toPresheafedSpace e : ↑(OpenCover.map (affineCover X) (OpenCover.f (affineCover X) a)).val.base x = a U' : Set ((forget TopCat).obj ↑(OpenCover.obj (affineCover X) (OpenCover.f (affineCover X) a)).toPresheafedSpace) := ↑(OpenCover.map (affineCover X) (OpenCover.f (affineCover X) a)).val.base ⁻¹' U ⊢ ∃ v, v ∈ {x | ∃ a, x = Set.range ↑(OpenCover.map (affineBasisCover X) a).val.base} ∧ a ∈ v ∧ v ⊆ U [PROOFSTEP] have hxU' : x ∈ U' := by rw [← e] at haU ; exact haU [GOAL] C : Type u inst✝¹ : Category.{v, u} C X✝ Y Z : Scheme 𝒰 : OpenCover X✝ f : X✝ ⟶ Z g : Y ⟶ Z inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f) g X : Scheme a : ↑↑X.toPresheafedSpace U : Set ↑↑X.toPresheafedSpace haU : a ∈ U hU : IsOpen U x : (forget TopCat).obj ↑(OpenCover.obj (affineCover X) (OpenCover.f (affineCover X) a)).toPresheafedSpace e : ↑(OpenCover.map (affineCover X) (OpenCover.f (affineCover X) a)).val.base x = a U' : Set ((forget TopCat).obj ↑(OpenCover.obj (affineCover X) (OpenCover.f (affineCover X) a)).toPresheafedSpace) := ↑(OpenCover.map (affineCover X) (OpenCover.f (affineCover X) a)).val.base ⁻¹' U ⊢ x ∈ U' [PROOFSTEP] rw [← e] at haU [GOAL] C : Type u inst✝¹ : Category.{v, u} C X✝ Y Z : Scheme 𝒰 : OpenCover X✝ f : X✝ ⟶ Z g : Y ⟶ Z inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f) g X : Scheme a : ↑↑X.toPresheafedSpace U : Set ↑↑X.toPresheafedSpace hU : IsOpen U x : (forget TopCat).obj ↑(OpenCover.obj (affineCover X) (OpenCover.f (affineCover X) a)).toPresheafedSpace haU : ↑(OpenCover.map (affineCover X) (OpenCover.f (affineCover X) a)).val.base x ∈ U e : ↑(OpenCover.map (affineCover X) (OpenCover.f (affineCover X) a)).val.base x = a U' : Set ((forget TopCat).obj ↑(OpenCover.obj (affineCover X) (OpenCover.f (affineCover X) a)).toPresheafedSpace) := ↑(OpenCover.map (affineCover X) (OpenCover.f (affineCover X) a)).val.base ⁻¹' U ⊢ x ∈ U' [PROOFSTEP] exact haU [GOAL] case h_nhds.intro C : Type u inst✝¹ : Category.{v, u} C X✝ Y Z : Scheme 𝒰 : OpenCover X✝ f : X✝ ⟶ Z g : Y ⟶ Z inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f) g X : Scheme a : ↑↑X.toPresheafedSpace U : Set ↑↑X.toPresheafedSpace haU : a ∈ U hU : IsOpen U x : (forget TopCat).obj ↑(OpenCover.obj (affineCover X) (OpenCover.f (affineCover X) a)).toPresheafedSpace e : ↑(OpenCover.map (affineCover X) (OpenCover.f (affineCover X) a)).val.base x = a U' : Set ((forget TopCat).obj ↑(OpenCover.obj (affineCover X) (OpenCover.f (affineCover X) a)).toPresheafedSpace) := ↑(OpenCover.map (affineCover X) (OpenCover.f (affineCover X) a)).val.base ⁻¹' U hxU' : x ∈ U' ⊢ ∃ v, v ∈ {x | ∃ a, x = Set.range ↑(OpenCover.map (affineBasisCover X) a).val.base} ∧ a ∈ v ∧ v ⊆ U [PROOFSTEP] rcases PrimeSpectrum.isBasis_basic_opens.exists_subset_of_mem_open hxU' ((X.affineCover.map (X.affineCover.f a)).1.base.continuous_toFun.isOpen_preimage _ hU) with ⟨_, ⟨_, ⟨s, rfl⟩, rfl⟩, hxV, hVU⟩ [GOAL] case h_nhds.intro.intro.intro.intro.intro.intro.intro C : Type u inst✝¹ : Category.{v, u} C X✝ Y Z : Scheme 𝒰 : OpenCover X✝ f : X✝ ⟶ Z g : Y ⟶ Z inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f) g X : Scheme a : ↑↑X.toPresheafedSpace U : Set ↑↑X.toPresheafedSpace haU : a ∈ U hU : IsOpen U x : (forget TopCat).obj ↑(OpenCover.obj (affineCover X) (OpenCover.f (affineCover X) a)).toPresheafedSpace e : ↑(OpenCover.map (affineCover X) (OpenCover.f (affineCover X) a)).val.base x = a U' : Set ((forget TopCat).obj ↑(OpenCover.obj (affineCover X) (OpenCover.f (affineCover X) a)).toPresheafedSpace) := ↑(OpenCover.map (affineCover X) (OpenCover.f (affineCover X) a)).val.base ⁻¹' U hxU' : x ∈ U' s : ↑(op (Exists.choose (_ : ∃ R, Nonempty (LocallyRingedSpace.restrict X.toLocallyRingedSpace (_ : OpenEmbedding ↑(Opens.inclusion (Exists.choose (_ : ∃ U R, Nonempty (LocallyRingedSpace.restrict X.toLocallyRingedSpace (_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅ Spec.toLocallyRingedSpace.obj (op R)))).obj)) ≅ Spec.toLocallyRingedSpace.obj (op R))))).unop hxV : x ∈ ↑(PrimeSpectrum.basicOpen s) hVU : ↑(PrimeSpectrum.basicOpen s) ⊆ U' ⊢ ∃ v, v ∈ {x | ∃ a, x = Set.range ↑(OpenCover.map (affineBasisCover X) a).val.base} ∧ a ∈ v ∧ v ⊆ U [PROOFSTEP] refine' ⟨_, ⟨⟨_, s⟩, rfl⟩, _, _⟩ [GOAL] case h_nhds.intro.intro.intro.intro.intro.intro.intro.refine'_1 C : Type u inst✝¹ : Category.{v, u} C X✝ Y Z : Scheme 𝒰 : OpenCover X✝ f : X✝ ⟶ Z g : Y ⟶ Z inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f) g X : Scheme a : ↑↑X.toPresheafedSpace U : Set ↑↑X.toPresheafedSpace haU : a ∈ U hU : IsOpen U x : (forget TopCat).obj ↑(OpenCover.obj (affineCover X) (OpenCover.f (affineCover X) a)).toPresheafedSpace e : ↑(OpenCover.map (affineCover X) (OpenCover.f (affineCover X) a)).val.base x = a U' : Set ((forget TopCat).obj ↑(OpenCover.obj (affineCover X) (OpenCover.f (affineCover X) a)).toPresheafedSpace) := ↑(OpenCover.map (affineCover X) (OpenCover.f (affineCover X) a)).val.base ⁻¹' U hxU' : x ∈ U' s : ↑(op (Exists.choose (_ : ∃ R, Nonempty (LocallyRingedSpace.restrict X.toLocallyRingedSpace (_ : OpenEmbedding ↑(Opens.inclusion (Exists.choose (_ : ∃ U R, Nonempty (LocallyRingedSpace.restrict X.toLocallyRingedSpace (_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅ Spec.toLocallyRingedSpace.obj (op R)))).obj)) ≅ Spec.toLocallyRingedSpace.obj (op R))))).unop hxV : x ∈ ↑(PrimeSpectrum.basicOpen s) hVU : ↑(PrimeSpectrum.basicOpen s) ⊆ U' ⊢ a ∈ Set.range ↑(OpenCover.map (affineBasisCover X) { fst := OpenCover.f (affineCover X) a, snd := s }).val.base [PROOFSTEP] erw [affineBasisCover_map_range] [GOAL] case h_nhds.intro.intro.intro.intro.intro.intro.intro.refine'_2 C : Type u inst✝¹ : Category.{v, u} C X✝ Y Z : Scheme 𝒰 : OpenCover X✝ f : X✝ ⟶ Z g : Y ⟶ Z inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f) g X : Scheme a : ↑↑X.toPresheafedSpace U : Set ↑↑X.toPresheafedSpace haU : a ∈ U hU : IsOpen U x : (forget TopCat).obj ↑(OpenCover.obj (affineCover X) (OpenCover.f (affineCover X) a)).toPresheafedSpace e : ↑(OpenCover.map (affineCover X) (OpenCover.f (affineCover X) a)).val.base x = a U' : Set ((forget TopCat).obj ↑(OpenCover.obj (affineCover X) (OpenCover.f (affineCover X) a)).toPresheafedSpace) := ↑(OpenCover.map (affineCover X) (OpenCover.f (affineCover X) a)).val.base ⁻¹' U hxU' : x ∈ U' s : ↑(op (Exists.choose (_ : ∃ R, Nonempty (LocallyRingedSpace.restrict X.toLocallyRingedSpace (_ : OpenEmbedding ↑(Opens.inclusion (Exists.choose (_ : ∃ U R, Nonempty (LocallyRingedSpace.restrict X.toLocallyRingedSpace (_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅ Spec.toLocallyRingedSpace.obj (op R)))).obj)) ≅ Spec.toLocallyRingedSpace.obj (op R))))).unop hxV : x ∈ ↑(PrimeSpectrum.basicOpen s) hVU : ↑(PrimeSpectrum.basicOpen s) ⊆ U' ⊢ Set.range ↑(OpenCover.map (affineBasisCover X) { fst := OpenCover.f (affineCover X) a, snd := s }).val.base ⊆ U [PROOFSTEP] erw [affineBasisCover_map_range] [GOAL] case h_nhds.intro.intro.intro.intro.intro.intro.intro.refine'_1 C : Type u inst✝¹ : Category.{v, u} C X✝ Y Z : Scheme 𝒰 : OpenCover X✝ f : X✝ ⟶ Z g : Y ⟶ Z inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f) g X : Scheme a : ↑↑X.toPresheafedSpace U : Set ↑↑X.toPresheafedSpace haU : a ∈ U hU : IsOpen U x : (forget TopCat).obj ↑(OpenCover.obj (affineCover X) (OpenCover.f (affineCover X) a)).toPresheafedSpace e : ↑(OpenCover.map (affineCover X) (OpenCover.f (affineCover X) a)).val.base x = a U' : Set ((forget TopCat).obj ↑(OpenCover.obj (affineCover X) (OpenCover.f (affineCover X) a)).toPresheafedSpace) := ↑(OpenCover.map (affineCover X) (OpenCover.f (affineCover X) a)).val.base ⁻¹' U hxU' : x ∈ U' s : ↑(op (Exists.choose (_ : ∃ R, Nonempty (LocallyRingedSpace.restrict X.toLocallyRingedSpace (_ : OpenEmbedding ↑(Opens.inclusion (Exists.choose (_ : ∃ U R, Nonempty (LocallyRingedSpace.restrict X.toLocallyRingedSpace (_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅ Spec.toLocallyRingedSpace.obj (op R)))).obj)) ≅ Spec.toLocallyRingedSpace.obj (op R))))).unop hxV : x ∈ ↑(PrimeSpectrum.basicOpen s) hVU : ↑(PrimeSpectrum.basicOpen s) ⊆ U' ⊢ a ∈ ↑(OpenCover.map (affineCover X) (OpenCover.f (affineCover X) a)).val.base '' (PrimeSpectrum.basicOpen s).carrier [PROOFSTEP] exact ⟨x, hxV, e⟩ [GOAL] case h_nhds.intro.intro.intro.intro.intro.intro.intro.refine'_2 C : Type u inst✝¹ : Category.{v, u} C X✝ Y Z : Scheme 𝒰 : OpenCover X✝ f : X✝ ⟶ Z g : Y ⟶ Z inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f) g X : Scheme a : ↑↑X.toPresheafedSpace U : Set ↑↑X.toPresheafedSpace haU : a ∈ U hU : IsOpen U x : (forget TopCat).obj ↑(OpenCover.obj (affineCover X) (OpenCover.f (affineCover X) a)).toPresheafedSpace e : ↑(OpenCover.map (affineCover X) (OpenCover.f (affineCover X) a)).val.base x = a U' : Set ((forget TopCat).obj ↑(OpenCover.obj (affineCover X) (OpenCover.f (affineCover X) a)).toPresheafedSpace) := ↑(OpenCover.map (affineCover X) (OpenCover.f (affineCover X) a)).val.base ⁻¹' U hxU' : x ∈ U' s : ↑(op (Exists.choose (_ : ∃ R, Nonempty (LocallyRingedSpace.restrict X.toLocallyRingedSpace (_ : OpenEmbedding ↑(Opens.inclusion (Exists.choose (_ : ∃ U R, Nonempty (LocallyRingedSpace.restrict X.toLocallyRingedSpace (_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅ Spec.toLocallyRingedSpace.obj (op R)))).obj)) ≅ Spec.toLocallyRingedSpace.obj (op R))))).unop hxV : x ∈ ↑(PrimeSpectrum.basicOpen s) hVU : ↑(PrimeSpectrum.basicOpen s) ⊆ U' ⊢ ↑(OpenCover.map (affineCover X) (OpenCover.f (affineCover X) a)).val.base '' (PrimeSpectrum.basicOpen s).carrier ⊆ U [PROOFSTEP] rw [Set.image_subset_iff] [GOAL] case h_nhds.intro.intro.intro.intro.intro.intro.intro.refine'_2 C : Type u inst✝¹ : Category.{v, u} C X✝ Y Z : Scheme 𝒰 : OpenCover X✝ f : X✝ ⟶ Z g : Y ⟶ Z inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f) g X : Scheme a : ↑↑X.toPresheafedSpace U : Set ↑↑X.toPresheafedSpace haU : a ∈ U hU : IsOpen U x : (forget TopCat).obj ↑(OpenCover.obj (affineCover X) (OpenCover.f (affineCover X) a)).toPresheafedSpace e : ↑(OpenCover.map (affineCover X) (OpenCover.f (affineCover X) a)).val.base x = a U' : Set ((forget TopCat).obj ↑(OpenCover.obj (affineCover X) (OpenCover.f (affineCover X) a)).toPresheafedSpace) := ↑(OpenCover.map (affineCover X) (OpenCover.f (affineCover X) a)).val.base ⁻¹' U hxU' : x ∈ U' s : ↑(op (Exists.choose (_ : ∃ R, Nonempty (LocallyRingedSpace.restrict X.toLocallyRingedSpace (_ : OpenEmbedding ↑(Opens.inclusion (Exists.choose (_ : ∃ U R, Nonempty (LocallyRingedSpace.restrict X.toLocallyRingedSpace (_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅ Spec.toLocallyRingedSpace.obj (op R)))).obj)) ≅ Spec.toLocallyRingedSpace.obj (op R))))).unop hxV : x ∈ ↑(PrimeSpectrum.basicOpen s) hVU : ↑(PrimeSpectrum.basicOpen s) ⊆ U' ⊢ (PrimeSpectrum.basicOpen s).carrier ⊆ ↑(OpenCover.map (affineCover X) (OpenCover.f (affineCover X) a)).val.base ⁻¹' U [PROOFSTEP] exact hVU [GOAL] C : Type u inst✝¹ : Category.{v, u} C X✝ Y Z : Scheme 𝒰✝ : OpenCover X✝ f : X✝ ⟶ Z g : Y ⟶ Z inst✝ : ∀ (x : 𝒰✝.J), HasPullback (map 𝒰✝ x ≫ f) g X : Scheme 𝒰 : OpenCover X H : CompactSpace ↑↑X.toPresheafedSpace ⊢ OpenCover X [PROOFSTEP] have := @CompactSpace.elim_nhds_subcover _ _ H (fun x : X => Set.range (𝒰.map (𝒰.f x)).1.base) fun x => (IsOpenImmersion.open_range (𝒰.map (𝒰.f x))).mem_nhds (𝒰.Covers x) [GOAL] C : Type u inst✝¹ : Category.{v, u} C X✝ Y Z : Scheme 𝒰✝ : OpenCover X✝ f : X✝ ⟶ Z g : Y ⟶ Z inst✝ : ∀ (x : 𝒰✝.J), HasPullback (map 𝒰✝ x ≫ f) g X : Scheme 𝒰 : OpenCover X H : CompactSpace ↑↑X.toPresheafedSpace this : ∃ t, ⋃ (x : ↑↑X.toPresheafedSpace) (_ : x ∈ t), (fun x => Set.range ↑(map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)).val.base) x = ⊤ ⊢ OpenCover X [PROOFSTEP] let t := this.choose [GOAL] C : Type u inst✝¹ : Category.{v, u} C X✝ Y Z : Scheme 𝒰✝ : OpenCover X✝ f : X✝ ⟶ Z g : Y ⟶ Z inst✝ : ∀ (x : 𝒰✝.J), HasPullback (map 𝒰✝ x ≫ f) g X : Scheme 𝒰 : OpenCover X H : CompactSpace ↑↑X.toPresheafedSpace this : ∃ t, ⋃ (x : ↑↑X.toPresheafedSpace) (_ : x ∈ t), (fun x => Set.range ↑(map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)).val.base) x = ⊤ t : Finset ↑↑X.toPresheafedSpace := Exists.choose this ⊢ OpenCover X [PROOFSTEP] have h : ∀ x : X, ∃ y : t, x ∈ Set.range (𝒰.map (𝒰.f y)).1.base := by intro x have h' : x ∈ (⊤ : Set X) := trivial rw [← Classical.choose_spec this, Set.mem_iUnion] at h' rcases h' with ⟨y, _, ⟨hy, rfl⟩, hy'⟩ exact ⟨⟨y, hy⟩, hy'⟩ [GOAL] C : Type u inst✝¹ : Category.{v, u} C X✝ Y Z : Scheme 𝒰✝ : OpenCover X✝ f : X✝ ⟶ Z g : Y ⟶ Z inst✝ : ∀ (x : 𝒰✝.J), HasPullback (map 𝒰✝ x ≫ f) g X : Scheme 𝒰 : OpenCover X H : CompactSpace ↑↑X.toPresheafedSpace this : ∃ t, ⋃ (x : ↑↑X.toPresheafedSpace) (_ : x ∈ t), (fun x => Set.range ↑(map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)).val.base) x = ⊤ t : Finset ↑↑X.toPresheafedSpace := Exists.choose this ⊢ ∀ (x : ↑↑X.toPresheafedSpace), ∃ y, x ∈ Set.range ↑(map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 ↑y)).val.base [PROOFSTEP] intro x [GOAL] C : Type u inst✝¹ : Category.{v, u} C X✝ Y Z : Scheme 𝒰✝ : OpenCover X✝ f : X✝ ⟶ Z g : Y ⟶ Z inst✝ : ∀ (x : 𝒰✝.J), HasPullback (map 𝒰✝ x ≫ f) g X : Scheme 𝒰 : OpenCover X H : CompactSpace ↑↑X.toPresheafedSpace this : ∃ t, ⋃ (x : ↑↑X.toPresheafedSpace) (_ : x ∈ t), (fun x => Set.range ↑(map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)).val.base) x = ⊤ t : Finset ↑↑X.toPresheafedSpace := Exists.choose this x : ↑↑X.toPresheafedSpace ⊢ ∃ y, x ∈ Set.range ↑(map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 ↑y)).val.base [PROOFSTEP] have h' : x ∈ (⊤ : Set X) := trivial [GOAL] C : Type u inst✝¹ : Category.{v, u} C X✝ Y Z : Scheme 𝒰✝ : OpenCover X✝ f : X✝ ⟶ Z g : Y ⟶ Z inst✝ : ∀ (x : 𝒰✝.J), HasPullback (map 𝒰✝ x ≫ f) g X : Scheme 𝒰 : OpenCover X H : CompactSpace ↑↑X.toPresheafedSpace this : ∃ t, ⋃ (x : ↑↑X.toPresheafedSpace) (_ : x ∈ t), (fun x => Set.range ↑(map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)).val.base) x = ⊤ t : Finset ↑↑X.toPresheafedSpace := Exists.choose this x : ↑↑X.toPresheafedSpace h' : x ∈ ⊤ ⊢ ∃ y, x ∈ Set.range ↑(map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 ↑y)).val.base [PROOFSTEP] rw [← Classical.choose_spec this, Set.mem_iUnion] at h' [GOAL] C : Type u inst✝¹ : Category.{v, u} C X✝ Y Z : Scheme 𝒰✝ : OpenCover X✝ f : X✝ ⟶ Z g : Y ⟶ Z inst✝ : ∀ (x : 𝒰✝.J), HasPullback (map 𝒰✝ x ≫ f) g X : Scheme 𝒰 : OpenCover X H : CompactSpace ↑↑X.toPresheafedSpace this : ∃ t, ⋃ (x : ↑↑X.toPresheafedSpace) (_ : x ∈ t), (fun x => Set.range ↑(map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)).val.base) x = ⊤ t : Finset ↑↑X.toPresheafedSpace := Exists.choose this x : ↑↑X.toPresheafedSpace h' : ∃ i, x ∈ ⋃ (_ : i ∈ Classical.choose this), (fun x => Set.range ↑(map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)).val.base) i ⊢ ∃ y, x ∈ Set.range ↑(map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 ↑y)).val.base [PROOFSTEP] rcases h' with ⟨y, _, ⟨hy, rfl⟩, hy'⟩ [GOAL] case intro.intro.intro.intro C : Type u inst✝¹ : Category.{v, u} C X✝ Y Z : Scheme 𝒰✝ : OpenCover X✝ f : X✝ ⟶ Z g : Y ⟶ Z inst✝ : ∀ (x : 𝒰✝.J), HasPullback (map 𝒰✝ x ≫ f) g X : Scheme 𝒰 : OpenCover X H : CompactSpace ↑↑X.toPresheafedSpace this : ∃ t, ⋃ (x : ↑↑X.toPresheafedSpace) (_ : x ∈ t), (fun x => Set.range ↑(map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)).val.base) x = ⊤ t : Finset ↑↑X.toPresheafedSpace := Exists.choose this x y : ↑↑X.toPresheafedSpace hy : y ∈ Classical.choose this hy' : x ∈ (fun h => (fun x => Set.range ↑(map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)).val.base) y) hy ⊢ ∃ y, x ∈ Set.range ↑(map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 ↑y)).val.base [PROOFSTEP] exact ⟨⟨y, hy⟩, hy'⟩ [GOAL] C : Type u inst✝¹ : Category.{v, u} C X✝ Y Z : Scheme 𝒰✝ : OpenCover X✝ f : X✝ ⟶ Z g : Y ⟶ Z inst✝ : ∀ (x : 𝒰✝.J), HasPullback (map 𝒰✝ x ≫ f) g X : Scheme 𝒰 : OpenCover X H : CompactSpace ↑↑X.toPresheafedSpace this : ∃ t, ⋃ (x : ↑↑X.toPresheafedSpace) (_ : x ∈ t), (fun x => Set.range ↑(map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 x)).val.base) x = ⊤ t : Finset ↑↑X.toPresheafedSpace := Exists.choose this h : ∀ (x : ↑↑X.toPresheafedSpace), ∃ y, x ∈ Set.range ↑(map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 ↑y)).val.base ⊢ OpenCover X [PROOFSTEP] exact { J := t obj := fun x => 𝒰.obj (𝒰.f x.1) map := fun x => 𝒰.map (𝒰.f x.1) f := fun x => (h x).choose Covers := fun x => (h x).choose_spec } [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f) g H : CompactSpace ↑↑X.toPresheafedSpace ⊢ Fintype (OpenCover.finiteSubcover 𝒰).J [PROOFSTEP] delta OpenCover.finiteSubcover [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme 𝒰 : OpenCover X f : X ⟶ Z g : Y ⟶ Z inst✝ : ∀ (x : 𝒰.J), HasPullback (OpenCover.map 𝒰 x ≫ f) g H : CompactSpace ↑↑X.toPresheafedSpace ⊢ Fintype (let_fun this := (_ : ∃ t, ⋃ (x : ↑↑X.toPresheafedSpace) (_ : x ∈ t), Set.range ↑(OpenCover.map 𝒰 (OpenCover.f 𝒰 x)).val.base = ⊤); let t := Exists.choose this; let_fun h := (_ : ∀ (x : ↑↑X.toPresheafedSpace), ∃ y, x ∈ Set.range ↑(OpenCover.map 𝒰 (OpenCover.f 𝒰 ↑y)).val.base); OpenCover.mk { x // x ∈ t } (fun x => OpenCover.obj 𝒰 (OpenCover.f 𝒰 ↑x)) (fun x => OpenCover.map 𝒰 (OpenCover.f 𝒰 ↑x)) (fun x => Exists.choose (_ : ∃ y, x ∈ Set.range ↑(OpenCover.map 𝒰 (OpenCover.f 𝒰 ↑y)).val.base)) (_ : ∀ (x : ↑↑X.toPresheafedSpace), x ∈ Set.range ↑(OpenCover.map 𝒰 (OpenCover.f 𝒰 ↑(Exists.choose (_ : ∃ y, x ∈ Set.range ↑(OpenCover.map 𝒰 (OpenCover.f 𝒰 ↑y)).val.base)))).val.base)).J [PROOFSTEP] infer_instance [GOAL] C : Type u inst✝ : Category.{v, u} C X : PresheafedSpace CommRingCat Y : Scheme f : X ⟶ Y.toPresheafedSpace H : IsOpenImmersion f ⊢ Scheme [PROOFSTEP] apply LocallyRingedSpace.IsOpenImmersion.scheme (toLocallyRingedSpace _ f) [GOAL] C : Type u inst✝ : Category.{v, u} C X : PresheafedSpace CommRingCat Y : Scheme f : X ⟶ Y.toPresheafedSpace H : IsOpenImmersion f ⊢ ∀ (x : ↑(LocallyRingedSpace.toTopCat (toLocallyRingedSpace Y.toLocallyRingedSpace f))), ∃ R f_1, x ∈ Set.range ↑f_1.val.base ∧ LocallyRingedSpace.IsOpenImmersion f_1 [PROOFSTEP] intro x [GOAL] C : Type u inst✝ : Category.{v, u} C X : PresheafedSpace CommRingCat Y : Scheme f : X ⟶ Y.toPresheafedSpace H : IsOpenImmersion f x : ↑(LocallyRingedSpace.toTopCat (toLocallyRingedSpace Y.toLocallyRingedSpace f)) ⊢ ∃ R f_1, x ∈ Set.range ↑f_1.val.base ∧ LocallyRingedSpace.IsOpenImmersion f_1 [PROOFSTEP] obtain ⟨_, ⟨i, rfl⟩, hx, hi⟩ := Y.affineBasisCover_is_basis.exists_subset_of_mem_open (Set.mem_range_self x) H.base_open.open_range [GOAL] case intro.intro.intro.intro C : Type u inst✝ : Category.{v, u} C X : PresheafedSpace CommRingCat Y : Scheme f : X ⟶ Y.toPresheafedSpace H : IsOpenImmersion f x : ↑(LocallyRingedSpace.toTopCat (toLocallyRingedSpace Y.toLocallyRingedSpace f)) i : (Scheme.affineBasisCover Y).J hx : ↑f.base x ∈ Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover Y) i).val.base hi : Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover Y) i).val.base ⊆ Set.range ↑f.base ⊢ ∃ R f_1, x ∈ Set.range ↑f_1.val.base ∧ LocallyRingedSpace.IsOpenImmersion f_1 [PROOFSTEP] use Y.affineBasisCoverRing i [GOAL] case h C : Type u inst✝ : Category.{v, u} C X : PresheafedSpace CommRingCat Y : Scheme f : X ⟶ Y.toPresheafedSpace H : IsOpenImmersion f x : ↑(LocallyRingedSpace.toTopCat (toLocallyRingedSpace Y.toLocallyRingedSpace f)) i : (Scheme.affineBasisCover Y).J hx : ↑f.base x ∈ Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover Y) i).val.base hi : Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover Y) i).val.base ⊆ Set.range ↑f.base ⊢ ∃ f_1, x ∈ Set.range ↑f_1.val.base ∧ LocallyRingedSpace.IsOpenImmersion f_1 [PROOFSTEP] use LocallyRingedSpace.IsOpenImmersion.lift (toLocallyRingedSpaceHom _ f) _ hi [GOAL] case h C : Type u inst✝ : Category.{v, u} C X : PresheafedSpace CommRingCat Y : Scheme f : X ⟶ Y.toPresheafedSpace H : IsOpenImmersion f x : ↑(LocallyRingedSpace.toTopCat (toLocallyRingedSpace Y.toLocallyRingedSpace f)) i : (Scheme.affineBasisCover Y).J hx : ↑f.base x ∈ Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover Y) i).val.base hi : Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover Y) i).val.base ⊆ Set.range ↑f.base ⊢ x ∈ Set.range ↑(LocallyRingedSpace.IsOpenImmersion.lift (toLocallyRingedSpaceHom Y.toLocallyRingedSpace f) (Scheme.OpenCover.map (Scheme.affineBasisCover Y) i) hi).val.base ∧ LocallyRingedSpace.IsOpenImmersion (LocallyRingedSpace.IsOpenImmersion.lift (toLocallyRingedSpaceHom Y.toLocallyRingedSpace f) (Scheme.OpenCover.map (Scheme.affineBasisCover Y) i) hi) [PROOFSTEP] constructor [GOAL] case h.left C : Type u inst✝ : Category.{v, u} C X : PresheafedSpace CommRingCat Y : Scheme f : X ⟶ Y.toPresheafedSpace H : IsOpenImmersion f x : ↑(LocallyRingedSpace.toTopCat (toLocallyRingedSpace Y.toLocallyRingedSpace f)) i : (Scheme.affineBasisCover Y).J hx : ↑f.base x ∈ Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover Y) i).val.base hi : Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover Y) i).val.base ⊆ Set.range ↑f.base ⊢ x ∈ Set.range ↑(LocallyRingedSpace.IsOpenImmersion.lift (toLocallyRingedSpaceHom Y.toLocallyRingedSpace f) (Scheme.OpenCover.map (Scheme.affineBasisCover Y) i) hi).val.base [PROOFSTEP] rw [LocallyRingedSpace.IsOpenImmersion.lift_range] [GOAL] case h.left C : Type u inst✝ : Category.{v, u} C X : PresheafedSpace CommRingCat Y : Scheme f : X ⟶ Y.toPresheafedSpace H : IsOpenImmersion f x : ↑(LocallyRingedSpace.toTopCat (toLocallyRingedSpace Y.toLocallyRingedSpace f)) i : (Scheme.affineBasisCover Y).J hx : ↑f.base x ∈ Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover Y) i).val.base hi : Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover Y) i).val.base ⊆ Set.range ↑f.base ⊢ x ∈ ↑(toLocallyRingedSpaceHom Y.toLocallyRingedSpace f).val.base ⁻¹' Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover Y) i).val.base [PROOFSTEP] exact hx [GOAL] case h.right C : Type u inst✝ : Category.{v, u} C X : PresheafedSpace CommRingCat Y : Scheme f : X ⟶ Y.toPresheafedSpace H : IsOpenImmersion f x : ↑(LocallyRingedSpace.toTopCat (toLocallyRingedSpace Y.toLocallyRingedSpace f)) i : (Scheme.affineBasisCover Y).J hx : ↑f.base x ∈ Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover Y) i).val.base hi : Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover Y) i).val.base ⊆ Set.range ↑f.base ⊢ LocallyRingedSpace.IsOpenImmersion (LocallyRingedSpace.IsOpenImmersion.lift (toLocallyRingedSpaceHom Y.toLocallyRingedSpace f) (Scheme.OpenCover.map (Scheme.affineBasisCover Y) i) hi) [PROOFSTEP] delta LocallyRingedSpace.IsOpenImmersion.lift [GOAL] case h.right C : Type u inst✝ : Category.{v, u} C X : PresheafedSpace CommRingCat Y : Scheme f : X ⟶ Y.toPresheafedSpace H : IsOpenImmersion f x : ↑(LocallyRingedSpace.toTopCat (toLocallyRingedSpace Y.toLocallyRingedSpace f)) i : (Scheme.affineBasisCover Y).J hx : ↑f.base x ∈ Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover Y) i).val.base hi : Set.range ↑(Scheme.OpenCover.map (Scheme.affineBasisCover Y) i).val.base ⊆ Set.range ↑f.base ⊢ LocallyRingedSpace.IsOpenImmersion (let_fun this := (_ : IsIso pullback.snd); inv pullback.snd ≫ pullback.fst) [PROOFSTEP] infer_instance [GOAL] C : Type u inst✝ : Category.{v, u} C X✝ : PresheafedSpace CommRingCat Y✝ : Scheme f : X✝ ⟶ Y✝.toPresheafedSpace H✝ : IsOpenImmersion f X Y : Scheme H : X.toLocallyRingedSpace = Y.toLocallyRingedSpace ⊢ X = Y [PROOFSTEP] cases X [GOAL] case mk C : Type u inst✝ : Category.{v, u} C X : PresheafedSpace CommRingCat Y✝ : Scheme f : X ⟶ Y✝.toPresheafedSpace H✝ : IsOpenImmersion f Y : Scheme toLocallyRingedSpace✝ : LocallyRingedSpace local_affine✝ : ∀ (x : ↑(LocallyRingedSpace.toTopCat toLocallyRingedSpace✝)), ∃ U R, Nonempty (LocallyRingedSpace.restrict toLocallyRingedSpace✝ (_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅ Spec.toLocallyRingedSpace.obj (op R)) H : { toLocallyRingedSpace := toLocallyRingedSpace✝, local_affine := local_affine✝ }.toLocallyRingedSpace = Y.toLocallyRingedSpace ⊢ { toLocallyRingedSpace := toLocallyRingedSpace✝, local_affine := local_affine✝ } = Y [PROOFSTEP] cases Y [GOAL] case mk.mk C : Type u inst✝ : Category.{v, u} C X : PresheafedSpace CommRingCat Y : Scheme f : X ⟶ Y.toPresheafedSpace H✝ : IsOpenImmersion f toLocallyRingedSpace✝¹ : LocallyRingedSpace local_affine✝¹ : ∀ (x : ↑(LocallyRingedSpace.toTopCat toLocallyRingedSpace✝¹)), ∃ U R, Nonempty (LocallyRingedSpace.restrict toLocallyRingedSpace✝¹ (_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅ Spec.toLocallyRingedSpace.obj (op R)) toLocallyRingedSpace✝ : LocallyRingedSpace local_affine✝ : ∀ (x : ↑(LocallyRingedSpace.toTopCat toLocallyRingedSpace✝)), ∃ U R, Nonempty (LocallyRingedSpace.restrict toLocallyRingedSpace✝ (_ : OpenEmbedding ↑(Opens.inclusion U.obj)) ≅ Spec.toLocallyRingedSpace.obj (op R)) H : { toLocallyRingedSpace := toLocallyRingedSpace✝¹, local_affine := local_affine✝¹ }.toLocallyRingedSpace = { toLocallyRingedSpace := toLocallyRingedSpace✝, local_affine := local_affine✝ }.toLocallyRingedSpace ⊢ { toLocallyRingedSpace := toLocallyRingedSpace✝¹, local_affine := local_affine✝¹ } = { toLocallyRingedSpace := toLocallyRingedSpace✝, local_affine := local_affine✝ } [PROOFSTEP] congr [GOAL] C : Type u inst✝¹ : Category.{v, u} C X✝ : PresheafedSpace CommRingCat Y✝ : Scheme f✝ : X✝ ⟶ Y✝.toPresheafedSpace H : IsOpenImmersion f✝ X Y : Scheme f : X ⟶ Y inst✝ : AlgebraicGeometry.IsOpenImmersion f ⊢ toScheme Y f.val = X [PROOFSTEP] apply scheme_eq_of_locallyRingedSpace_eq [GOAL] case H C : Type u inst✝¹ : Category.{v, u} C X✝ : PresheafedSpace CommRingCat Y✝ : Scheme f✝ : X✝ ⟶ Y✝.toPresheafedSpace H : IsOpenImmersion f✝ X Y : Scheme f : X ⟶ Y inst✝ : AlgebraicGeometry.IsOpenImmersion f ⊢ (toScheme Y f.val).toLocallyRingedSpace = X.toLocallyRingedSpace [PROOFSTEP] exact locallyRingedSpace_toLocallyRingedSpace f [GOAL] C : Type u inst✝ : Category.{v, u} C U : TopCat X : Scheme f : U ⟶ TopCat.of ↑↑X.toPresheafedSpace h : OpenEmbedding ↑f ⊢ PresheafedSpace.IsOpenImmersion (PresheafedSpace.ofRestrict X.toPresheafedSpace h) [PROOFSTEP] infer_instance [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f inst✝ : IsIso g ⊢ IsIso ((inducedFunctor Scheme.toLocallyRingedSpace).map g) [PROOFSTEP] infer_instance [GOAL] C : Type u inst✝ : Category.{v, u} C X✝ Y✝ Z : Scheme f✝ : X✝ ⟶ Z g : Y✝ ⟶ Z H : IsOpenImmersion f✝ X Y : Scheme f : X ⟶ Y ⊢ IsIso f ↔ IsIso f.val.base ∧ ∀ (x : ↑↑X.toPresheafedSpace), IsIso (PresheafedSpace.stalkMap f.val x) [PROOFSTEP] rw [isIso_iff_isOpenImmersion, IsOpenImmersion.iff_stalk_iso, and_comm, ← and_assoc] [GOAL] C : Type u inst✝ : Category.{v, u} C X✝ Y✝ Z : Scheme f✝ : X✝ ⟶ Z g : Y✝ ⟶ Z H : IsOpenImmersion f✝ X Y : Scheme f : X ⟶ Y ⊢ ((Epi f.val.base ∧ OpenEmbedding ↑f.val.base) ∧ ∀ (x : ↑↑X.toPresheafedSpace), IsIso (PresheafedSpace.stalkMap f.val x)) ↔ IsIso f.val.base ∧ ∀ (x : ↑↑X.toPresheafedSpace), IsIso (PresheafedSpace.stalkMap f.val x) [PROOFSTEP] refine' and_congr ⟨_, _⟩ Iff.rfl [GOAL] case refine'_1 C : Type u inst✝ : Category.{v, u} C X✝ Y✝ Z : Scheme f✝ : X✝ ⟶ Z g : Y✝ ⟶ Z H : IsOpenImmersion f✝ X Y : Scheme f : X ⟶ Y ⊢ Epi f.val.base ∧ OpenEmbedding ↑f.val.base → IsIso f.val.base [PROOFSTEP] rintro ⟨h₁, h₂⟩ [GOAL] case refine'_1.intro C : Type u inst✝ : Category.{v, u} C X✝ Y✝ Z : Scheme f✝ : X✝ ⟶ Z g : Y✝ ⟶ Z H : IsOpenImmersion f✝ X Y : Scheme f : X ⟶ Y h₁ : Epi f.val.base h₂ : OpenEmbedding ↑f.val.base ⊢ IsIso f.val.base [PROOFSTEP] convert_to IsIso (TopCat.isoOfHomeo (Homeomorph.homeomorphOfContinuousOpen (Equiv.ofBijective _ ⟨h₂.inj, (TopCat.epi_iff_surjective _).mp h₁⟩) h₂.continuous h₂.isOpenMap)).hom [GOAL] case refine'_1.intro C : Type u inst✝ : Category.{v, u} C X✝ Y✝ Z : Scheme f✝ : X✝ ⟶ Z g : Y✝ ⟶ Z H : IsOpenImmersion f✝ X Y : Scheme f : X ⟶ Y h₁ : Epi f.val.base h₂ : OpenEmbedding ↑f.val.base ⊢ IsIso (TopCat.isoOfHomeo (Homeomorph.homeomorphOfContinuousOpen (Equiv.ofBijective ↑f.val.base (_ : Function.Injective ↑f.val.base ∧ Function.Surjective ↑f.val.base)) (_ : Continuous ↑f.val.base) (_ : IsOpenMap ↑f.val.base))).hom [PROOFSTEP] infer_instance [GOAL] case refine'_2 C : Type u inst✝ : Category.{v, u} C X✝ Y✝ Z : Scheme f✝ : X✝ ⟶ Z g : Y✝ ⟶ Z H : IsOpenImmersion f✝ X Y : Scheme f : X ⟶ Y ⊢ IsIso f.val.base → Epi f.val.base ∧ OpenEmbedding ↑f.val.base [PROOFSTEP] intro H [GOAL] case refine'_2 C : Type u inst✝ : Category.{v, u} C X✝ Y✝ Z : Scheme f✝ : X✝ ⟶ Z g : Y✝ ⟶ Z H✝ : IsOpenImmersion f✝ X Y : Scheme f : X ⟶ Y H : IsIso f.val.base ⊢ Epi f.val.base ∧ OpenEmbedding ↑f.val.base [PROOFSTEP] exact ⟨inferInstance, (TopCat.homeoOfIso (asIso f.1.base)).openEmbedding⟩ [GOAL] C : Type u inst✝ : Category.{v, u} C X Y Z : Scheme f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ Mono f [PROOFSTEP] infer_instance [GOAL] C : Type u inst✝ : Category.{v, u} C X Y Z : Scheme f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ HasLimit (cospan f g ⋙ forget) [PROOFSTEP] apply @hasLimitOfIso _ _ _ _ _ _ ?_ (diagramIsoCospan.{u} _).symm [GOAL] C : Type u inst✝ : Category.{v, u} C X Y Z : Scheme f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ HasLimit (cospan ((cospan f g ⋙ forget).map WalkingCospan.Hom.inl) ((cospan f g ⋙ forget).map WalkingCospan.Hom.inr)) [PROOFSTEP] change HasLimit (cospan ((forget).map f) ((forget).map g)) [GOAL] C : Type u inst✝ : Category.{v, u} C X Y Z : Scheme f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ HasLimit (cospan (forget.map f) (forget.map g)) [PROOFSTEP] infer_instance [GOAL] C : Type u inst✝ : Category.{v, u} C X Y Z : Scheme f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ HasLimit (cospan g f ⋙ forget) [PROOFSTEP] apply @hasLimitOfIso _ _ _ _ _ _ ?_ (diagramIsoCospan.{u} _).symm [GOAL] C : Type u inst✝ : Category.{v, u} C X Y Z : Scheme f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ HasLimit (cospan ((cospan g f ⋙ forget).map Hom.inl) ((cospan g f ⋙ forget).map Hom.inr)) [PROOFSTEP] change HasLimit (cospan ((forget).map g) ((forget).map f)) [GOAL] C : Type u inst✝ : Category.{v, u} C X Y Z : Scheme f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ HasLimit (cospan (forget.map g) (forget.map f)) [PROOFSTEP] infer_instance [GOAL] C : Type u inst✝ : Category.{v, u} C X Y Z : Scheme f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ forget.obj (PresheafedSpace.IsOpenImmersion.toScheme Y pullback.snd.val) = limit (cospan ((cospan f g ⋙ forget).map Hom.inl) ((cospan f g ⋙ forget).map Hom.inr)) [PROOFSTEP] simp [GOAL] C : Type u inst✝ : Category.{v, u} C X Y Z : Scheme f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ forget.obj (PresheafedSpace.IsOpenImmersion.toScheme Y pullback.fst.val) = limit (cospan ((cospan g f ⋙ forget).map Hom.inl) ((cospan g f ⋙ forget).map Hom.inr)) [PROOFSTEP] simp [GOAL] C : Type u inst✝ : Category.{v, u} C X Y Z : Scheme f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ IsOpenImmersion pullback.snd [PROOFSTEP] have := PreservesPullback.iso_hom_snd forget f g [GOAL] C : Type u inst✝ : Category.{v, u} C X Y Z : Scheme f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f this : (PreservesPullback.iso forget f g).hom ≫ pullback.snd = forget.map pullback.snd ⊢ IsOpenImmersion pullback.snd [PROOFSTEP] dsimp only [Scheme.forgetToLocallyRingedSpace, inducedFunctor_map] at this [GOAL] C : Type u inst✝ : Category.{v, u} C X Y Z : Scheme f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f this : (PreservesPullback.iso (inducedFunctor Scheme.toLocallyRingedSpace) f g).hom ≫ pullback.snd = pullback.snd ⊢ IsOpenImmersion pullback.snd [PROOFSTEP] rw [← this] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y Z : Scheme f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f this : (PreservesPullback.iso (inducedFunctor Scheme.toLocallyRingedSpace) f g).hom ≫ pullback.snd = pullback.snd ⊢ IsOpenImmersion ((PreservesPullback.iso (inducedFunctor Scheme.toLocallyRingedSpace) f g).hom ≫ pullback.snd) [PROOFSTEP] change LocallyRingedSpace.IsOpenImmersion _ [GOAL] C : Type u inst✝ : Category.{v, u} C X Y Z : Scheme f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f this : (PreservesPullback.iso (inducedFunctor Scheme.toLocallyRingedSpace) f g).hom ≫ pullback.snd = pullback.snd ⊢ LocallyRingedSpace.IsOpenImmersion ((PreservesPullback.iso (inducedFunctor Scheme.toLocallyRingedSpace) f g).hom ≫ pullback.snd) [PROOFSTEP] infer_instance [GOAL] C : Type u inst✝ : Category.{v, u} C X Y Z : Scheme f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ IsOpenImmersion pullback.fst [PROOFSTEP] rw [← pullbackSymmetry_hom_comp_snd] -- Porting note : was just `infer_instance`, it is a bit weird that no explicit class instance is -- provided but still class inference fail to find this [GOAL] C : Type u inst✝ : Category.{v, u} C X Y Z : Scheme f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ IsOpenImmersion ((pullbackSymmetry g f).hom ≫ pullback.snd) [PROOFSTEP] exact LocallyRingedSpace.IsOpenImmersion.comp (H := inferInstance) _ [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f inst✝ : IsOpenImmersion g ⊢ IsOpenImmersion (limit.π (cospan f g) one) [PROOFSTEP] rw [← limit.w (cospan f g) WalkingCospan.Hom.inl] [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f inst✝ : IsOpenImmersion g ⊢ IsOpenImmersion (limit.π (cospan f g) left ≫ (cospan f g).map Hom.inl) [PROOFSTEP] change IsOpenImmersion (_ ≫ f) -- Porting note : was just `infer_instance`, it is a bit weird that no explicit class instance is -- provided but still class inference fail to find this [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f inst✝ : IsOpenImmersion g ⊢ IsOpenImmersion (limit.π (cospan f g) left ≫ f) [PROOFSTEP] exact LocallyRingedSpace.IsOpenImmersion.comp (H := inferInstance) _ [GOAL] C : Type u inst✝ : Category.{v, u} C X Y Z : Scheme f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ PreservesLimit (cospan f g) Scheme.forgetToTop [PROOFSTEP] delta Scheme.forgetToTop [GOAL] C : Type u inst✝ : Category.{v, u} C X Y Z : Scheme f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ PreservesLimit (cospan f g) (forget ⋙ LocallyRingedSpace.forgetToTop) [PROOFSTEP] apply @Limits.compPreservesLimit (K := cospan f g) (F := forget) (G := LocallyRingedSpace.forgetToTop) ?_ ?_ [GOAL] C : Type u inst✝ : Category.{v, u} C X Y Z : Scheme f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ PreservesLimit (cospan f g) forget [PROOFSTEP] infer_instance [GOAL] C : Type u inst✝ : Category.{v, u} C X Y Z : Scheme f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ PreservesLimit (cospan f g ⋙ forget) LocallyRingedSpace.forgetToTop [PROOFSTEP] apply @preservesLimitOfIsoDiagram (F := _) _ _ _ _ _ _ (diagramIsoCospan.{u} _).symm ?_ [GOAL] C : Type u inst✝ : Category.{v, u} C X Y Z : Scheme f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ PreservesLimit (cospan ((cospan f g ⋙ forget).map Hom.inl) ((cospan f g ⋙ forget).map Hom.inr)) LocallyRingedSpace.forgetToTop [PROOFSTEP] dsimp [LocallyRingedSpace.forgetToTop] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y Z : Scheme f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ PreservesLimit (cospan f g) (LocallyRingedSpace.forgetToSheafedSpace ⋙ SheafedSpace.forget CommRingCat) [PROOFSTEP] infer_instance [GOAL] C : Type u inst✝ : Category.{v, u} C X Y Z : Scheme f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ Set.range ↑pullback.snd.val.base = ((Opens.map g.val.base).obj { carrier := Set.range ↑f.val.base, is_open' := (_ : IsOpen (Set.range ↑f.val.base)) }).carrier [PROOFSTEP] rw [← show _ = (pullback.snd : pullback f g ⟶ _).1.base from PreservesPullback.iso_hom_snd Scheme.forgetToTop f g] -- Porting note : was `rw` [GOAL] C : Type u inst✝ : Category.{v, u} C X Y Z : Scheme f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ Set.range ↑((PreservesPullback.iso Scheme.forgetToTop f g).hom ≫ pullback.snd) = ((Opens.map g.val.base).obj { carrier := Set.range ↑f.val.base, is_open' := (_ : IsOpen (Set.range ↑f.val.base)) }).carrier [PROOFSTEP] erw [coe_comp] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y Z : Scheme f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ Set.range (↑pullback.snd ∘ ↑(PreservesPullback.iso Scheme.forgetToTop f g).hom) = ((Opens.map g.val.base).obj { carrier := Set.range ↑f.val.base, is_open' := (_ : IsOpen (Set.range ↑f.val.base)) }).carrier [PROOFSTEP] rw [Set.range_comp, Set.range_iff_surjective.mpr, ← @Set.preimage_univ _ _ (pullback.fst : pullback f.1.base g.1.base ⟶ _)] -- Porting note : was `rw` [GOAL] C : Type u inst✝ : Category.{v, u} C X Y Z : Scheme f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ ↑pullback.snd '' (↑pullback.fst ⁻¹' Set.univ) = ((Opens.map g.val.base).obj { carrier := Set.range ↑f.val.base, is_open' := (_ : IsOpen (Set.range ↑f.val.base)) }).carrier C : Type u inst✝ : Category.{v, u} C X Y Z : Scheme f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ Function.Surjective ↑(PreservesPullback.iso Scheme.forgetToTop f g).hom [PROOFSTEP] erw [TopCat.pullback_snd_image_fst_preimage] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y Z : Scheme f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ ↑(Scheme.forgetToTop.map g) ⁻¹' (↑(Scheme.forgetToTop.map f) '' Set.univ) = ((Opens.map g.val.base).obj { carrier := Set.range ↑f.val.base, is_open' := (_ : IsOpen (Set.range ↑f.val.base)) }).carrier C : Type u inst✝ : Category.{v, u} C X Y Z : Scheme f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ Function.Surjective ↑(PreservesPullback.iso Scheme.forgetToTop f g).hom [PROOFSTEP] rw [Set.image_univ] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y Z : Scheme f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ ↑(Scheme.forgetToTop.map g) ⁻¹' Set.range ↑(Scheme.forgetToTop.map f) = ((Opens.map g.val.base).obj { carrier := Set.range ↑f.val.base, is_open' := (_ : IsOpen (Set.range ↑f.val.base)) }).carrier C : Type u inst✝ : Category.{v, u} C X Y Z : Scheme f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ Function.Surjective ↑(PreservesPullback.iso Scheme.forgetToTop f g).hom [PROOFSTEP] rfl [GOAL] C : Type u inst✝ : Category.{v, u} C X Y Z : Scheme f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ Function.Surjective ↑(PreservesPullback.iso Scheme.forgetToTop f g).hom [PROOFSTEP] rw [← TopCat.epi_iff_surjective] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y Z : Scheme f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ Epi (PreservesPullback.iso Scheme.forgetToTop f g).hom [PROOFSTEP] infer_instance [GOAL] C : Type u inst✝ : Category.{v, u} C X Y Z : Scheme f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ Set.range ↑pullback.fst.val.base = ((Opens.map g.val.base).obj { carrier := Set.range ↑f.val.base, is_open' := (_ : IsOpen (Set.range ↑f.val.base)) }).carrier [PROOFSTEP] rw [← show _ = (pullback.fst : pullback g f ⟶ _).1.base from PreservesPullback.iso_hom_fst Scheme.forgetToTop g f] -- Porting note : was `rw` [GOAL] C : Type u inst✝ : Category.{v, u} C X Y Z : Scheme f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ Set.range ↑((PreservesPullback.iso Scheme.forgetToTop g f).hom ≫ pullback.fst) = ((Opens.map g.val.base).obj { carrier := Set.range ↑f.val.base, is_open' := (_ : IsOpen (Set.range ↑f.val.base)) }).carrier [PROOFSTEP] erw [coe_comp] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y Z : Scheme f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ Set.range (↑pullback.fst ∘ ↑(PreservesPullback.iso Scheme.forgetToTop g f).hom) = ((Opens.map g.val.base).obj { carrier := Set.range ↑f.val.base, is_open' := (_ : IsOpen (Set.range ↑f.val.base)) }).carrier [PROOFSTEP] rw [Set.range_comp, Set.range_iff_surjective.mpr, ← @Set.preimage_univ _ _ (pullback.snd : pullback g.1.base f.1.base ⟶ _)] -- Porting note : was `rw` [GOAL] C : Type u inst✝ : Category.{v, u} C X Y Z : Scheme f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ ↑pullback.fst '' (↑pullback.snd ⁻¹' Set.univ) = ((Opens.map g.val.base).obj { carrier := Set.range ↑f.val.base, is_open' := (_ : IsOpen (Set.range ↑f.val.base)) }).carrier C : Type u inst✝ : Category.{v, u} C X Y Z : Scheme f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ Function.Surjective ↑(PreservesPullback.iso Scheme.forgetToTop g f).hom [PROOFSTEP] erw [TopCat.pullback_fst_image_snd_preimage] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y Z : Scheme f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ ↑(Scheme.forgetToTop.map g) ⁻¹' (↑(Scheme.forgetToTop.map f) '' Set.univ) = ((Opens.map g.val.base).obj { carrier := Set.range ↑f.val.base, is_open' := (_ : IsOpen (Set.range ↑f.val.base)) }).carrier C : Type u inst✝ : Category.{v, u} C X Y Z : Scheme f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ Function.Surjective ↑(PreservesPullback.iso Scheme.forgetToTop g f).hom [PROOFSTEP] rw [Set.image_univ] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y Z : Scheme f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ ↑(Scheme.forgetToTop.map g) ⁻¹' Set.range ↑(Scheme.forgetToTop.map f) = ((Opens.map g.val.base).obj { carrier := Set.range ↑f.val.base, is_open' := (_ : IsOpen (Set.range ↑f.val.base)) }).carrier C : Type u inst✝ : Category.{v, u} C X Y Z : Scheme f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ Function.Surjective ↑(PreservesPullback.iso Scheme.forgetToTop g f).hom [PROOFSTEP] rfl [GOAL] C : Type u inst✝ : Category.{v, u} C X Y Z : Scheme f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ Function.Surjective ↑(PreservesPullback.iso Scheme.forgetToTop g f).hom [PROOFSTEP] rw [← TopCat.epi_iff_surjective] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y Z : Scheme f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ Epi (PreservesPullback.iso Scheme.forgetToTop g f).hom [PROOFSTEP] infer_instance [GOAL] C : Type u inst✝ : Category.{v, u} C X Y Z : Scheme f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ Set.range ↑(pullback.fst ≫ f).val.base = Set.range ↑f.val.base ∩ Set.range ↑g.val.base [PROOFSTEP] rw [pullback.condition, Scheme.comp_val_base, coe_comp, Set.range_comp, range_pullback_snd_of_left, Opens.carrier_eq_coe, Opens.map_obj, Opens.coe_mk, Set.image_preimage_eq_inter_range, Set.inter_comm] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y Z : Scheme f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f ⊢ Set.range ↑(pullback.fst ≫ g).val.base = Set.range ↑g.val.base ∩ Set.range ↑f.val.base [PROOFSTEP] rw [Scheme.comp_val_base, coe_comp, Set.range_comp, range_pullback_fst_of_right, Opens.map_obj, Opens.carrier_eq_coe, Opens.coe_mk, Set.image_preimage_eq_inter_range, Set.inter_comm] [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f inst✝ : IsOpenImmersion g e : Set.range ↑f.val.base = Set.range ↑g.val.base ⊢ lift g f (_ : Set.range ↑f.val.base ≤ Set.range ↑g.val.base) ≫ lift f g (_ : Set.range ↑g.val.base ≤ Set.range ↑f.val.base) = 𝟙 X [PROOFSTEP] rw [← cancel_mono f] [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f inst✝ : IsOpenImmersion g e : Set.range ↑f.val.base = Set.range ↑g.val.base ⊢ (lift g f (_ : Set.range ↑f.val.base ≤ Set.range ↑g.val.base) ≫ lift f g (_ : Set.range ↑g.val.base ≤ Set.range ↑f.val.base)) ≫ f = 𝟙 X ≫ f [PROOFSTEP] simp [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f inst✝ : IsOpenImmersion g e : Set.range ↑f.val.base = Set.range ↑g.val.base ⊢ lift f g (_ : Set.range ↑g.val.base ≤ Set.range ↑f.val.base) ≫ lift g f (_ : Set.range ↑f.val.base ≤ Set.range ↑g.val.base) = 𝟙 Y [PROOFSTEP] rw [← cancel_mono g] [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y Z : Scheme f : X ⟶ Z g : Y ⟶ Z H : IsOpenImmersion f inst✝ : IsOpenImmersion g e : Set.range ↑f.val.base = Set.range ↑g.val.base ⊢ (lift f g (_ : Set.range ↑g.val.base ≤ Set.range ↑f.val.base) ≫ lift g f (_ : Set.range ↑f.val.base ≤ Set.range ↑g.val.base)) ≫ g = 𝟙 Y ≫ g [PROOFSTEP] simp [GOAL] C : Type u inst✝ : Category.{v, u} C X✝ Y✝ Z : Scheme f✝ : X✝ ⟶ Z g✝ : Y✝ ⟶ Z H✝ : IsOpenImmersion f✝ X Y U : Scheme f : Y ⟶ U g : U ⟶ X fg : Y ⟶ X H : fg = f ≫ g h : IsOpenImmersion g V : Opens ↑↑U.toPresheafedSpace ⊢ (Opens.map f.val.base).obj V = (Opens.map fg.val.base).obj ((Scheme.Hom.opensFunctor g).obj V) [PROOFSTEP] subst H [GOAL] C : Type u inst✝ : Category.{v, u} C X✝ Y✝ Z : Scheme f✝ : X✝ ⟶ Z g✝ : Y✝ ⟶ Z H : IsOpenImmersion f✝ X Y U : Scheme f : Y ⟶ U g : U ⟶ X h : IsOpenImmersion g V : Opens ↑↑U.toPresheafedSpace ⊢ (Opens.map f.val.base).obj V = (Opens.map (f ≫ g).val.base).obj ((Scheme.Hom.opensFunctor g).obj V) [PROOFSTEP] rw [Scheme.comp_val_base, Opens.map_comp_obj] [GOAL] C : Type u inst✝ : Category.{v, u} C X✝ Y✝ Z : Scheme f✝ : X✝ ⟶ Z g✝ : Y✝ ⟶ Z H : IsOpenImmersion f✝ X Y U : Scheme f : Y ⟶ U g : U ⟶ X h : IsOpenImmersion g V : Opens ↑↑U.toPresheafedSpace ⊢ (Opens.map f.val.base).obj V = (Opens.map f.val.base).obj ((Opens.map g.val.base).obj ((Scheme.Hom.opensFunctor g).obj V)) [PROOFSTEP] congr 1 [GOAL] case e_a C : Type u inst✝ : Category.{v, u} C X✝ Y✝ Z : Scheme f✝ : X✝ ⟶ Z g✝ : Y✝ ⟶ Z H : IsOpenImmersion f✝ X Y U : Scheme f : Y ⟶ U g : U ⟶ X h : IsOpenImmersion g V : Opens ↑↑U.toPresheafedSpace ⊢ V = (Opens.map g.val.base).obj ((Scheme.Hom.opensFunctor g).obj V) [PROOFSTEP] ext1 [GOAL] case e_a.h C : Type u inst✝ : Category.{v, u} C X✝ Y✝ Z : Scheme f✝ : X✝ ⟶ Z g✝ : Y✝ ⟶ Z H : IsOpenImmersion f✝ X Y U : Scheme f : Y ⟶ U g : U ⟶ X h : IsOpenImmersion g V : Opens ↑↑U.toPresheafedSpace ⊢ ↑V = ↑((Opens.map g.val.base).obj ((Scheme.Hom.opensFunctor g).obj V)) [PROOFSTEP] exact (Set.preimage_image_eq _ h.base_open.inj).symm [GOAL] C : Type u inst✝ : Category.{v, u} C X✝ Y✝ Z : Scheme f✝ : X✝ ⟶ Z g✝ : Y✝ ⟶ Z H✝ : IsOpenImmersion f✝ X Y U : Scheme f : Y ⟶ U g : U ⟶ X fg : Y ⟶ X H : fg = f ≫ g h : IsOpenImmersion g V : Opens ↑↑U.toPresheafedSpace ⊢ NatTrans.app f.val.c (op V) = Scheme.Hom.invApp g V ≫ NatTrans.app fg.val.c (op ((Scheme.Hom.opensFunctor g).obj V)) ≫ Y.presheaf.map (eqToHom (_ : (Opens.map f.val.base).obj V = (Opens.map fg.val.base).obj ((Scheme.Hom.opensFunctor g).obj V))).op [PROOFSTEP] subst H [GOAL] C : Type u inst✝ : Category.{v, u} C X✝ Y✝ Z : Scheme f✝ : X✝ ⟶ Z g✝ : Y✝ ⟶ Z H : IsOpenImmersion f✝ X Y U : Scheme f : Y ⟶ U g : U ⟶ X h : IsOpenImmersion g V : Opens ↑↑U.toPresheafedSpace ⊢ NatTrans.app f.val.c (op V) = Scheme.Hom.invApp g V ≫ NatTrans.app (f ≫ g).val.c (op ((Scheme.Hom.opensFunctor g).obj V)) ≫ Y.presheaf.map (eqToHom (_ : (Opens.map f.val.base).obj V = (Opens.map (f ≫ g).val.base).obj ((Scheme.Hom.opensFunctor g).obj V))).op [PROOFSTEP] rw [Scheme.comp_val_c_app, Category.assoc, Scheme.Hom.invApp, PresheafedSpace.IsOpenImmersion.invApp_app_assoc, f.val.c.naturality_assoc, TopCat.Presheaf.pushforwardObj_map, ← Functor.map_comp] [GOAL] C : Type u inst✝ : Category.{v, u} C X✝ Y✝ Z : Scheme f✝ : X✝ ⟶ Z g✝ : Y✝ ⟶ Z H : IsOpenImmersion f✝ X Y U : Scheme f : Y ⟶ U g : U ⟶ X h : IsOpenImmersion g V : Opens ↑↑U.toPresheafedSpace ⊢ NatTrans.app f.val.c (op V) = NatTrans.app f.val.c (op V) ≫ Y.presheaf.map ((Opens.map f.val.base).op.map (eqToHom (_ : op V = op ((Opens.map g.val.base).obj (op ((PresheafedSpace.IsOpenImmersion.openFunctor h).obj V)).unop))) ≫ (eqToHom (_ : (Opens.map f.val.base).obj V = (Opens.map (f ≫ g).val.base).obj ((Scheme.Hom.opensFunctor g).obj V))).op) [PROOFSTEP] convert (Category.comp_id <| f.1.c.app (op V)).symm [GOAL] case h.e'_3.h.e'_7.h C : Type u inst✝ : Category.{v, u} C X✝ Y✝ Z : Scheme f✝ : X✝ ⟶ Z g✝ : Y✝ ⟶ Z H : IsOpenImmersion f✝ X Y U : Scheme f : Y ⟶ U g : U ⟶ X h : IsOpenImmersion g V : Opens ↑↑U.toPresheafedSpace e_5✝ : Y.presheaf.obj (op ((Opens.map f.val.base).obj V)) = (f.val.base _* Y.presheaf).obj (op V) ⊢ Y.presheaf.map ((Opens.map f.val.base).op.map (eqToHom (_ : op V = op ((Opens.map g.val.base).obj (op ((PresheafedSpace.IsOpenImmersion.openFunctor h).obj V)).unop))) ≫ (eqToHom (_ : (Opens.map f.val.base).obj V = (Opens.map (f ≫ g).val.base).obj ((Scheme.Hom.opensFunctor g).obj V))).op) = 𝟙 ((f.val.base _* Y.presheaf).obj (op V)) [PROOFSTEP] convert Y.presheaf.map_id _ [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y H : IsOpenImmersion f U : Opens ↑↑X.toPresheafedSpace r : ↑(X.presheaf.obj (op U)) ⊢ (Hom.opensFunctor f).obj (basicOpen X r) = basicOpen Y (↑(Hom.invApp f U) r) [PROOFSTEP] have e := Scheme.preimage_basicOpen f (Scheme.Hom.invApp f U r) [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y H : IsOpenImmersion f U : Opens ↑↑X.toPresheafedSpace r : ↑(X.presheaf.obj (op U)) e : (Opens.map f.val.base).obj (basicOpen Y (↑(Hom.invApp f U) r)) = basicOpen X (↑(NatTrans.app f.val.c (op ((Hom.opensFunctor f).obj U))) (↑(Hom.invApp f U) r)) ⊢ (Hom.opensFunctor f).obj (basicOpen X r) = basicOpen Y (↑(Hom.invApp f U) r) [PROOFSTEP] rw [Scheme.Hom.invApp] at e [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y H : IsOpenImmersion f U : Opens ↑↑X.toPresheafedSpace r : ↑(X.presheaf.obj (op U)) e : (Opens.map f.val.base).obj (basicOpen Y (↑(PresheafedSpace.IsOpenImmersion.invApp H U) r)) = basicOpen X (↑(NatTrans.app f.val.c (op ((Hom.opensFunctor f).obj U))) (↑(PresheafedSpace.IsOpenImmersion.invApp H U) r)) ⊢ (Hom.opensFunctor f).obj (basicOpen X r) = basicOpen Y (↑(Hom.invApp f U) r) [PROOFSTEP] erw [PresheafedSpace.IsOpenImmersion.invApp_app_apply] at e [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y H : IsOpenImmersion f U : Opens ↑↑X.toPresheafedSpace r : ↑(X.presheaf.obj (op U)) e : (Opens.map f.val.base).obj (basicOpen Y (↑(PresheafedSpace.IsOpenImmersion.invApp H U) r)) = basicOpen X (↑(X.presheaf.map (eqToHom (_ : op U = op ((Opens.map f.val.base).obj (op ((PresheafedSpace.IsOpenImmersion.openFunctor H).obj U)).unop)))) r) ⊢ (Hom.opensFunctor f).obj (basicOpen X r) = basicOpen Y (↑(Hom.invApp f U) r) [PROOFSTEP] rw [Scheme.basicOpen_res, inf_eq_right.mpr _] at e [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y H : IsOpenImmersion f U : Opens ↑↑X.toPresheafedSpace r : ↑(X.presheaf.obj (op U)) e : (Opens.map f.val.base).obj (basicOpen Y (↑(PresheafedSpace.IsOpenImmersion.invApp H U) r)) = basicOpen X r ⊢ (Hom.opensFunctor f).obj (basicOpen X r) = basicOpen Y (↑(Hom.invApp f U) r) C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y H : IsOpenImmersion f U : Opens ↑↑X.toPresheafedSpace r : ↑(X.presheaf.obj (op U)) e : (Opens.map f.val.base).obj (basicOpen Y (↑(PresheafedSpace.IsOpenImmersion.invApp H U) r)) = (Opens.map f.val.base).obj ((Hom.opensFunctor f).obj U) ⊓ basicOpen X r ⊢ basicOpen X r ≤ (Opens.map f.val.base).obj ((Hom.opensFunctor f).obj U) [PROOFSTEP] rw [← e] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y H : IsOpenImmersion f U : Opens ↑↑X.toPresheafedSpace r : ↑(X.presheaf.obj (op U)) e : (Opens.map f.val.base).obj (basicOpen Y (↑(PresheafedSpace.IsOpenImmersion.invApp H U) r)) = basicOpen X r ⊢ (Hom.opensFunctor f).obj ((Opens.map f.val.base).obj (basicOpen Y (↑(PresheafedSpace.IsOpenImmersion.invApp H U) r))) = basicOpen Y (↑(Hom.invApp f U) r) C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y H : IsOpenImmersion f U : Opens ↑↑X.toPresheafedSpace r : ↑(X.presheaf.obj (op U)) e : (Opens.map f.val.base).obj (basicOpen Y (↑(PresheafedSpace.IsOpenImmersion.invApp H U) r)) = (Opens.map f.val.base).obj ((Hom.opensFunctor f).obj U) ⊓ basicOpen X r ⊢ basicOpen X r ≤ (Opens.map f.val.base).obj ((Hom.opensFunctor f).obj U) [PROOFSTEP] ext1 -- Porting note : this `dsimp` was not necessary [GOAL] case h C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y H : IsOpenImmersion f U : Opens ↑↑X.toPresheafedSpace r : ↑(X.presheaf.obj (op U)) e : (Opens.map f.val.base).obj (basicOpen Y (↑(PresheafedSpace.IsOpenImmersion.invApp H U) r)) = basicOpen X r ⊢ ↑((Hom.opensFunctor f).obj ((Opens.map f.val.base).obj (basicOpen Y (↑(PresheafedSpace.IsOpenImmersion.invApp H U) r)))) = ↑(basicOpen Y (↑(Hom.invApp f U) r)) C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y H : IsOpenImmersion f U : Opens ↑↑X.toPresheafedSpace r : ↑(X.presheaf.obj (op U)) e : (Opens.map f.val.base).obj (basicOpen Y (↑(PresheafedSpace.IsOpenImmersion.invApp H U) r)) = (Opens.map f.val.base).obj ((Hom.opensFunctor f).obj U) ⊓ basicOpen X r ⊢ basicOpen X r ≤ (Opens.map f.val.base).obj ((Hom.opensFunctor f).obj U) [PROOFSTEP] dsimp [Opens.map] [GOAL] case h C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y H : IsOpenImmersion f U : Opens ↑↑X.toPresheafedSpace r : ↑(X.presheaf.obj (op U)) e : (Opens.map f.val.base).obj (basicOpen Y (↑(PresheafedSpace.IsOpenImmersion.invApp H U) r)) = basicOpen X r ⊢ ↑f.val.base '' (↑f.val.base ⁻¹' ↑(basicOpen Y (↑(PresheafedSpace.IsOpenImmersion.invApp H U) r))) = ↑(basicOpen Y (↑(Hom.invApp f U) r)) C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y H : IsOpenImmersion f U : Opens ↑↑X.toPresheafedSpace r : ↑(X.presheaf.obj (op U)) e : (Opens.map f.val.base).obj (basicOpen Y (↑(PresheafedSpace.IsOpenImmersion.invApp H U) r)) = (Opens.map f.val.base).obj ((Hom.opensFunctor f).obj U) ⊓ basicOpen X r ⊢ basicOpen X r ≤ (Opens.map f.val.base).obj ((Hom.opensFunctor f).obj U) [PROOFSTEP] refine' Set.image_preimage_eq_inter_range.trans _ [GOAL] case h C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y H : IsOpenImmersion f U : Opens ↑↑X.toPresheafedSpace r : ↑(X.presheaf.obj (op U)) e : (Opens.map f.val.base).obj (basicOpen Y (↑(PresheafedSpace.IsOpenImmersion.invApp H U) r)) = basicOpen X r ⊢ ↑(basicOpen Y (↑(PresheafedSpace.IsOpenImmersion.invApp H U) r)) ∩ Set.range ↑f.val.base = ↑(basicOpen Y (↑(Hom.invApp f U) r)) C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y H : IsOpenImmersion f U : Opens ↑↑X.toPresheafedSpace r : ↑(X.presheaf.obj (op U)) e : (Opens.map f.val.base).obj (basicOpen Y (↑(PresheafedSpace.IsOpenImmersion.invApp H U) r)) = (Opens.map f.val.base).obj ((Hom.opensFunctor f).obj U) ⊓ basicOpen X r ⊢ basicOpen X r ≤ (Opens.map f.val.base).obj ((Hom.opensFunctor f).obj U) [PROOFSTEP] erw [Set.inter_eq_left_iff_subset] [GOAL] case h C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y H : IsOpenImmersion f U : Opens ↑↑X.toPresheafedSpace r : ↑(X.presheaf.obj (op U)) e : (Opens.map f.val.base).obj (basicOpen Y (↑(PresheafedSpace.IsOpenImmersion.invApp H U) r)) = basicOpen X r ⊢ ↑(basicOpen Y (↑(PresheafedSpace.IsOpenImmersion.invApp H U) r)) ⊆ Set.range ↑f.val.base C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y H : IsOpenImmersion f U : Opens ↑↑X.toPresheafedSpace r : ↑(X.presheaf.obj (op U)) e : (Opens.map f.val.base).obj (basicOpen Y (↑(PresheafedSpace.IsOpenImmersion.invApp H U) r)) = (Opens.map f.val.base).obj ((Hom.opensFunctor f).obj U) ⊓ basicOpen X r ⊢ basicOpen X r ≤ (Opens.map f.val.base).obj ((Hom.opensFunctor f).obj U) [PROOFSTEP] refine' Set.Subset.trans (Scheme.basicOpen_le _ _) (Set.image_subset_range _ _) [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y H : IsOpenImmersion f U : Opens ↑↑X.toPresheafedSpace r : ↑(X.presheaf.obj (op U)) e : (Opens.map f.val.base).obj (basicOpen Y (↑(PresheafedSpace.IsOpenImmersion.invApp H U) r)) = (Opens.map f.val.base).obj ((Hom.opensFunctor f).obj U) ⊓ basicOpen X r ⊢ basicOpen X r ≤ (Opens.map f.val.base).obj ((Hom.opensFunctor f).obj U) [PROOFSTEP] refine' le_trans (Scheme.basicOpen_le _ _) (le_of_eq _) [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y H : IsOpenImmersion f U : Opens ↑↑X.toPresheafedSpace r : ↑(X.presheaf.obj (op U)) e : (Opens.map f.val.base).obj (basicOpen Y (↑(PresheafedSpace.IsOpenImmersion.invApp H U) r)) = (Opens.map f.val.base).obj ((Hom.opensFunctor f).obj U) ⊓ basicOpen X r ⊢ U = (Opens.map f.val.base).obj ((Hom.opensFunctor f).obj U) [PROOFSTEP] ext1 [GOAL] case h C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y H : IsOpenImmersion f U : Opens ↑↑X.toPresheafedSpace r : ↑(X.presheaf.obj (op U)) e : (Opens.map f.val.base).obj (basicOpen Y (↑(PresheafedSpace.IsOpenImmersion.invApp H U) r)) = (Opens.map f.val.base).obj ((Hom.opensFunctor f).obj U) ⊓ basicOpen X r ⊢ ↑U = ↑((Opens.map f.val.base).obj ((Hom.opensFunctor f).obj U)) [PROOFSTEP] exact (Set.preimage_image_eq _ H.base_open.inj).symm [GOAL] C : Type u inst✝ : Category.{v, u} C X : Scheme U V : Opens ↑↑X.toPresheafedSpace i : U ⟶ V ⊢ Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base ⊆ Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))).val.base [PROOFSTEP] dsimp [ofRestrict, LocallyRingedSpace.ofRestrict, Opens.inclusion] [GOAL] C : Type u inst✝ : Category.{v, u} C X : Scheme U V : Opens ↑↑X.toPresheafedSpace i : U ⟶ V ⊢ Set.range ↑(ContinuousMap.mk Subtype.val) ⊆ Set.range ↑(ContinuousMap.mk Subtype.val) [PROOFSTEP] rw [ContinuousMap.coe_mk, ContinuousMap.coe_mk, Subtype.range_val, Subtype.range_val] [GOAL] C : Type u inst✝ : Category.{v, u} C X : Scheme U V : Opens ↑↑X.toPresheafedSpace i : U ⟶ V ⊢ ↑U ⊆ ↑V [PROOFSTEP] exact i.le [GOAL] C : Type u inst✝ : Category.{v, u} C X : Scheme U : Opens ↑↑X.toPresheafedSpace ⊢ { obj := fun U => Over.mk (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))), map := fun {U V} i => Over.homMk (IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))) (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base ⊆ Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))).val.base)) }.map (𝟙 U) = 𝟙 ({ obj := fun U => Over.mk (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))), map := fun {U V} i => Over.homMk (IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))) (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base ⊆ Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))).val.base)) }.obj U) [PROOFSTEP] ext1 [GOAL] case h C : Type u inst✝ : Category.{v, u} C X : Scheme U : Opens ↑↑X.toPresheafedSpace ⊢ ({ obj := fun U => Over.mk (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))), map := fun {U V} i => Over.homMk (IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))) (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base ⊆ Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))).val.base)) }.map (𝟙 U)).left = (𝟙 ({ obj := fun U => Over.mk (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))), map := fun {U V} i => Over.homMk (IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))) (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base ⊆ Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))).val.base)) }.obj U)).left [PROOFSTEP] dsimp only [Over.homMk_left, Over.id_left] [GOAL] case h C : Type u inst✝ : Category.{v, u} C X : Scheme U : Opens ↑↑X.toPresheafedSpace ⊢ IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base ⊆ Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base) = 𝟙 (Over.mk (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U)))).left [PROOFSTEP] rw [← cancel_mono (X.ofRestrict U.openEmbedding), Category.id_comp, IsOpenImmersion.lift_fac] [GOAL] C : Type u inst✝ : Category.{v, u} C X : Scheme U V W : Opens ↑↑X.toPresheafedSpace i : U ⟶ V j : V ⟶ W ⊢ { obj := fun U => Over.mk (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))), map := fun {U V} i => Over.homMk (IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))) (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base ⊆ Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))).val.base)) }.map (i ≫ j) = { obj := fun U => Over.mk (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))), map := fun {U V} i => Over.homMk (IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))) (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base ⊆ Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))).val.base)) }.map i ≫ { obj := fun U => Over.mk (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))), map := fun {U V} i => Over.homMk (IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))) (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base ⊆ Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))).val.base)) }.map j [PROOFSTEP] ext1 [GOAL] case h C : Type u inst✝ : Category.{v, u} C X : Scheme U V W : Opens ↑↑X.toPresheafedSpace i : U ⟶ V j : V ⟶ W ⊢ ({ obj := fun U => Over.mk (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))), map := fun {U V} i => Over.homMk (IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))) (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base ⊆ Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))).val.base)) }.map (i ≫ j)).left = ({ obj := fun U => Over.mk (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))), map := fun {U V} i => Over.homMk (IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))) (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base ⊆ Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))).val.base)) }.map i ≫ { obj := fun U => Over.mk (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))), map := fun {U V} i => Over.homMk (IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))) (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base ⊆ Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))).val.base)) }.map j).left [PROOFSTEP] dsimp only [Over.homMk_left, Over.comp_left] [GOAL] case h C : Type u inst✝ : Category.{v, u} C X : Scheme U V W : Opens ↑↑X.toPresheafedSpace i : U ⟶ V j : V ⟶ W ⊢ IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion W))) (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base ⊆ Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion W))).val.base) = IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))) (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base ⊆ Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))).val.base) ≫ IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion W))) (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))) (_ : Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))).val.base ⊆ Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion W))).val.base) [PROOFSTEP] rw [← cancel_mono (X.ofRestrict W.openEmbedding), Category.assoc] [GOAL] case h C : Type u inst✝ : Category.{v, u} C X : Scheme U V W : Opens ↑↑X.toPresheafedSpace i : U ⟶ V j : V ⟶ W ⊢ IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion W))) (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base ⊆ Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion W))).val.base) ≫ ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion W)) = IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))) (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base ⊆ Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))).val.base) ≫ IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion W))) (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))) (_ : Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))).val.base ⊆ Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion W))).val.base) ≫ ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion W)) [PROOFSTEP] iterate 3 rw [IsOpenImmersion.lift_fac] [GOAL] case h C : Type u inst✝ : Category.{v, u} C X : Scheme U V W : Opens ↑↑X.toPresheafedSpace i : U ⟶ V j : V ⟶ W ⊢ IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion W))) (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base ⊆ Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion W))).val.base) ≫ ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion W)) = IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))) (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base ⊆ Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))).val.base) ≫ IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion W))) (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))) (_ : Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))).val.base ⊆ Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion W))).val.base) ≫ ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion W)) [PROOFSTEP] rw [IsOpenImmersion.lift_fac] [GOAL] case h C : Type u inst✝ : Category.{v, u} C X : Scheme U V W : Opens ↑↑X.toPresheafedSpace i : U ⟶ V j : V ⟶ W ⊢ ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U)) = IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))) (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base ⊆ Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))).val.base) ≫ IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion W))) (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))) (_ : Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))).val.base ⊆ Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion W))).val.base) ≫ ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion W)) [PROOFSTEP] rw [IsOpenImmersion.lift_fac] [GOAL] case h C : Type u inst✝ : Category.{v, u} C X : Scheme U V W : Opens ↑↑X.toPresheafedSpace i : U ⟶ V j : V ⟶ W ⊢ ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U)) = IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))) (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base ⊆ Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))).val.base) ≫ ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V)) [PROOFSTEP] rw [IsOpenImmersion.lift_fac] [GOAL] C : Type u inst✝ : Category.{v, u} C X : Scheme U V : Opens ↑↑X.toPresheafedSpace i : U ⟶ V ⊢ Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base ⊆ Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))).val.base [PROOFSTEP] dsimp [ofRestrict, LocallyRingedSpace.ofRestrict, Opens.inclusion] [GOAL] C : Type u inst✝ : Category.{v, u} C X : Scheme U V : Opens ↑↑X.toPresheafedSpace i : U ⟶ V ⊢ Set.range ↑(ContinuousMap.mk Subtype.val) ⊆ Set.range ↑(ContinuousMap.mk Subtype.val) [PROOFSTEP] rw [ContinuousMap.coe_mk, ContinuousMap.coe_mk, Subtype.range_val, Subtype.range_val] [GOAL] C : Type u inst✝ : Category.{v, u} C X : Scheme U V : Opens ↑↑X.toPresheafedSpace i : U ⟶ V ⊢ ↑U ⊆ ↑V [PROOFSTEP] exact i.le [GOAL] C : Type u inst✝ : Category.{v, u} C X : Scheme U V : Opens ↑↑X.toPresheafedSpace i : U ⟶ V ⊢ Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base ⊆ Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))).val.base [PROOFSTEP] dsimp [ofRestrict, LocallyRingedSpace.ofRestrict, Opens.inclusion] [GOAL] C : Type u inst✝ : Category.{v, u} C X : Scheme U V : Opens ↑↑X.toPresheafedSpace i : U ⟶ V ⊢ Set.range ↑(ContinuousMap.mk Subtype.val) ⊆ Set.range ↑(ContinuousMap.mk Subtype.val) [PROOFSTEP] rw [ContinuousMap.coe_mk, ContinuousMap.coe_mk, Subtype.range_val, Subtype.range_val] [GOAL] C : Type u inst✝ : Category.{v, u} C X : Scheme U V : Opens ↑↑X.toPresheafedSpace i : U ⟶ V ⊢ ↑U ⊆ ↑V [PROOFSTEP] exact i.le [GOAL] C : Type u inst✝ : Category.{v, u} C X : Scheme U V : Opens ↑↑X.toPresheafedSpace i : U ⟶ V ⊢ ((restrictFunctor X).map i).left.val.base = (Opens.toTopCat ↑X.toPresheafedSpace).map i [PROOFSTEP] ext a [GOAL] case w C : Type u inst✝ : Category.{v, u} C X : Scheme U V : Opens ↑↑X.toPresheafedSpace i : U ⟶ V a : (forget TopCat).obj ↑((restrictFunctor X).obj U).left.toPresheafedSpace ⊢ ↑((restrictFunctor X).map i).left.val.base a = ↑((Opens.toTopCat ↑X.toPresheafedSpace).map i) a [PROOFSTEP] refine Subtype.ext ?_ -- Porting note : `ext` did not pick up `Subtype.ext` [GOAL] case w C : Type u inst✝ : Category.{v, u} C X : Scheme U V : Opens ↑↑X.toPresheafedSpace i : U ⟶ V a : (forget TopCat).obj ↑((restrictFunctor X).obj U).left.toPresheafedSpace ⊢ ↑(↑((restrictFunctor X).map i).left.val.base a) = ↑(↑((Opens.toTopCat ↑X.toPresheafedSpace).map i) a) [PROOFSTEP] exact (congr_arg (fun f : X.restrict U.openEmbedding ⟶ X => f.1.base a) (X.restrictFunctor_map_ofRestrict i)) [GOAL] C : Type u inst✝ : Category.{v, u} C X : Scheme U V : Opens ↑↑X.toPresheafedSpace i : U ⟶ V W : Opens { x // x ∈ V } ⊢ (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ((Opens.map ((restrictFunctor X).map i).left.val.base).obj W) ≤ (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W [PROOFSTEP] simp only [← SetLike.coe_subset_coe, IsOpenMap.functor_obj_coe, Set.image_subset_iff, Scheme.restrictFunctor_map_base, Opens.map_coe, Opens.inclusion_apply] [GOAL] C : Type u inst✝ : Category.{v, u} C X : Scheme U V : Opens ↑↑X.toPresheafedSpace i : U ⟶ V W : Opens { x // x ∈ V } ⊢ ↑((Opens.toTopCat ↑X.toPresheafedSpace).map i) ⁻¹' ↑W ⊆ (fun a => ↑(Opens.inclusion U) a) ⁻¹' ((fun a => ↑(Opens.inclusion V) a) '' ↑W) [PROOFSTEP] rintro _ h [GOAL] C : Type u inst✝ : Category.{v, u} C X : Scheme U V : Opens ↑↑X.toPresheafedSpace i : U ⟶ V W : Opens { x // x ∈ V } a✝ : (forget TopCat).obj ((Opens.toTopCat ↑X.toPresheafedSpace).obj U) h : a✝ ∈ ↑((Opens.toTopCat ↑X.toPresheafedSpace).map i) ⁻¹' ↑W ⊢ a✝ ∈ (fun a => ↑(Opens.inclusion U) a) ⁻¹' ((fun a => ↑(Opens.inclusion V) a) '' ↑W) [PROOFSTEP] exact ⟨_, h, rfl⟩ [GOAL] C : Type u inst✝ : Category.{v, u} C X : Scheme U V : Opens ↑↑X.toPresheafedSpace i : U ⟶ V W : Opens { x // x ∈ V } ⊢ NatTrans.app ((restrictFunctor X).map i).left.val.c (op W) = X.presheaf.map (homOfLE (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ((Opens.map ((restrictFunctor X).map i).left.val.base).obj W) ≤ (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)).op [PROOFSTEP] have e₁ := Scheme.congr_app (X.restrictFunctor_map_ofRestrict i) (op <| V.openEmbedding.isOpenMap.functor.obj W) [GOAL] C : Type u inst✝ : Category.{v, u} C X : Scheme U V : Opens ↑↑X.toPresheafedSpace i : U ⟶ V W : Opens { x // x ∈ V } e₁ : NatTrans.app (((restrictFunctor X).map i).left ≫ ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))).val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)) = NatTrans.app (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)) ≫ ((restrictFunctor X).obj U).left.presheaf.map (eqToHom (_ : (Opens.map (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)) = (Opens.map (((restrictFunctor X).map i).left ≫ ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))).val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)))) ⊢ NatTrans.app ((restrictFunctor X).map i).left.val.c (op W) = X.presheaf.map (homOfLE (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ((Opens.map ((restrictFunctor X).map i).left.val.base).obj W) ≤ (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)).op [PROOFSTEP] rw [Scheme.comp_val_c_app] at e₁ [GOAL] C : Type u inst✝ : Category.{v, u} C X : Scheme U V : Opens ↑↑X.toPresheafedSpace i : U ⟶ V W : Opens { x // x ∈ V } e₁ : NatTrans.app (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))).val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)) ≫ NatTrans.app ((restrictFunctor X).map i).left.val.c ((Opens.map (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))).val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W))) = NatTrans.app (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)) ≫ ((restrictFunctor X).obj U).left.presheaf.map (eqToHom (_ : (Opens.map (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)) = (Opens.map (((restrictFunctor X).map i).left ≫ ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))).val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)))) ⊢ NatTrans.app ((restrictFunctor X).map i).left.val.c (op W) = X.presheaf.map (homOfLE (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ((Opens.map ((restrictFunctor X).map i).left.val.base).obj W) ≤ (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)).op [PROOFSTEP] have e₂ := (X.restrictFunctor.map i).1.val.c.naturality (eqToHom <| W.map_functor_eq (U := V)).op [GOAL] C : Type u inst✝ : Category.{v, u} C X : Scheme U V : Opens ↑↑X.toPresheafedSpace i : U ⟶ V W : Opens { x // x ∈ V } e₁ : NatTrans.app (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))).val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)) ≫ NatTrans.app ((restrictFunctor X).map i).left.val.c ((Opens.map (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))).val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W))) = NatTrans.app (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)) ≫ ((restrictFunctor X).obj U).left.presheaf.map (eqToHom (_ : (Opens.map (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)) = (Opens.map (((restrictFunctor X).map i).left ≫ ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))).val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)))) e₂ : ((restrictFunctor X).obj V).left.presheaf.map (eqToHom (_ : (Opens.map (Opens.inclusion V)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W) = W)).op ≫ NatTrans.app ((restrictFunctor X).map i).left.val.c (op ((Opens.map (Opens.inclusion V)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W))) = NatTrans.app ((restrictFunctor X).map i).left.val.c (op W) ≫ (((restrictFunctor X).map i).left.val.base _* ((restrictFunctor X).obj U).left.presheaf).map (eqToHom (_ : (Opens.map (Opens.inclusion V)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W) = W)).op ⊢ NatTrans.app ((restrictFunctor X).map i).left.val.c (op W) = X.presheaf.map (homOfLE (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ((Opens.map ((restrictFunctor X).map i).left.val.base).obj W) ≤ (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)).op [PROOFSTEP] rw [← IsIso.eq_inv_comp] at e₂ [GOAL] C : Type u inst✝ : Category.{v, u} C X : Scheme U V : Opens ↑↑X.toPresheafedSpace i : U ⟶ V W : Opens { x // x ∈ V } e₁ : NatTrans.app (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))).val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)) ≫ NatTrans.app ((restrictFunctor X).map i).left.val.c ((Opens.map (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))).val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W))) = NatTrans.app (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)) ≫ ((restrictFunctor X).obj U).left.presheaf.map (eqToHom (_ : (Opens.map (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)) = (Opens.map (((restrictFunctor X).map i).left ≫ ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))).val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)))) e₂ : NatTrans.app ((restrictFunctor X).map i).left.val.c (op ((Opens.map (Opens.inclusion V)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W))) = inv (((restrictFunctor X).obj V).left.presheaf.map (eqToHom (_ : (Opens.map (Opens.inclusion V)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W) = W)).op) ≫ NatTrans.app ((restrictFunctor X).map i).left.val.c (op W) ≫ (((restrictFunctor X).map i).left.val.base _* ((restrictFunctor X).obj U).left.presheaf).map (eqToHom (_ : (Opens.map (Opens.inclusion V)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W) = W)).op ⊢ NatTrans.app ((restrictFunctor X).map i).left.val.c (op W) = X.presheaf.map (homOfLE (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ((Opens.map ((restrictFunctor X).map i).left.val.base).obj W) ≤ (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)).op [PROOFSTEP] dsimp at e₁ e₂ ⊢ [GOAL] C : Type u inst✝ : Category.{v, u} C X : Scheme U V : Opens ↑↑X.toPresheafedSpace i : U ⟶ V W : Opens { x // x ∈ V } e₁ : X.presheaf.map (NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑(Opens.inclusion V))).counit ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)).op ≫ NatTrans.app (IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))) (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : Set.range Subtype.val ⊆ Set.range Subtype.val)).val.c (op ((Opens.map (Opens.inclusion V)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W))) = X.presheaf.map (NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑(Opens.inclusion U))).counit ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)).op ≫ X.presheaf.map ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).map (eqToHom (_ : op ((Opens.map (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)) = op ((Opens.map (IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))) (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : Set.range Subtype.val ⊆ Set.range Subtype.val)).val.base).obj ((Opens.map (Opens.inclusion V)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W))))).unop).op e₂ : NatTrans.app (IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))) (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : Set.range Subtype.val ⊆ Set.range Subtype.val)).val.c (op ((Opens.map (Opens.inclusion V)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W))) = inv (X.presheaf.map ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).map (eqToHom (_ : (Opens.map (Opens.inclusion V)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W) = W))).op) ≫ NatTrans.app (IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))) (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : Set.range Subtype.val ⊆ Set.range Subtype.val)).val.c (op W) ≫ X.presheaf.map ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).map ((Opens.map (IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))) (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : Set.range Subtype.val ⊆ Set.range Subtype.val)).val.base).map (eqToHom (_ : (Opens.map (Opens.inclusion V)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W) = W)))).op ⊢ NatTrans.app (IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))) (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : Set.range Subtype.val ⊆ Set.range Subtype.val)).val.c (op W) = X.presheaf.map (homOfLE (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ((Opens.map ((restrictFunctor X).map i).left.val.base).obj W) ≤ (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)).op [PROOFSTEP] rw [e₂, W.adjunction_counit_map_functor (U := V), ← IsIso.eq_inv_comp, IsIso.inv_comp_eq, ← IsIso.eq_comp_inv] at e₁ [GOAL] C : Type u inst✝ : Category.{v, u} C X : Scheme U V : Opens ↑↑X.toPresheafedSpace i : U ⟶ V W : Opens { x // x ∈ V } e₁ : NatTrans.app (IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))) (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : Set.range Subtype.val ⊆ Set.range Subtype.val)).val.c (op W) = (X.presheaf.map ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).map (eqToHom (_ : (Opens.map (Opens.inclusion V)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W) = W))).op ≫ inv (X.presheaf.map (eqToHom (_ : (Opens.map (Opens.inclusion V) ⋙ IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W) = (𝟭 (Opens ↑↑X.toPresheafedSpace)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W))).op) ≫ X.presheaf.map (NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑(Opens.inclusion U))).counit ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)).op ≫ X.presheaf.map ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).map (eqToHom (_ : op ((Opens.map (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)) = op ((Opens.map (IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))) (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : Set.range Subtype.val ⊆ Set.range Subtype.val)).val.base).obj ((Opens.map (Opens.inclusion V)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W))))).unop).op) ≫ inv (X.presheaf.map ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).map ((Opens.map (IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))) (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : Set.range Subtype.val ⊆ Set.range Subtype.val)).val.base).map (eqToHom (_ : (Opens.map (Opens.inclusion V)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W) = W)))).op) e₂ : NatTrans.app (IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))) (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : Set.range Subtype.val ⊆ Set.range Subtype.val)).val.c (op ((Opens.map (Opens.inclusion V)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W))) = inv (X.presheaf.map ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).map (eqToHom (_ : (Opens.map (Opens.inclusion V)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W) = W))).op) ≫ NatTrans.app (IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))) (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : Set.range Subtype.val ⊆ Set.range Subtype.val)).val.c (op W) ≫ X.presheaf.map ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).map ((Opens.map (IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))) (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : Set.range Subtype.val ⊆ Set.range Subtype.val)).val.base).map (eqToHom (_ : (Opens.map (Opens.inclusion V)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W) = W)))).op ⊢ NatTrans.app (IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))) (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : Set.range Subtype.val ⊆ Set.range Subtype.val)).val.c (op W) = X.presheaf.map (homOfLE (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ((Opens.map ((restrictFunctor X).map i).left.val.base).obj W) ≤ (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)).op [PROOFSTEP] simp_rw [eqToHom_map (Opens.map _), eqToHom_map (IsOpenMap.functor _), ← Functor.map_inv, ← Functor.map_comp] at e₁ [GOAL] C : Type u inst✝ : Category.{v, u} C X : Scheme U V : Opens ↑↑X.toPresheafedSpace i : U ⟶ V W : Opens { x // x ∈ V } e₂ : NatTrans.app (IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))) (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : Set.range Subtype.val ⊆ Set.range Subtype.val)).val.c (op ((Opens.map (Opens.inclusion V)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W))) = inv (X.presheaf.map ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).map (eqToHom (_ : (Opens.map (Opens.inclusion V)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W) = W))).op) ≫ NatTrans.app (IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))) (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : Set.range Subtype.val ⊆ Set.range Subtype.val)).val.c (op W) ≫ X.presheaf.map ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).map ((Opens.map (IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))) (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : Set.range Subtype.val ⊆ Set.range Subtype.val)).val.base).map (eqToHom (_ : (Opens.map (Opens.inclusion V)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W) = W)))).op e₁ : NatTrans.app (IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))) (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : Set.range Subtype.val ⊆ Set.range Subtype.val)).val.c (op W) = X.presheaf.map (((eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj ((Opens.map (Opens.inclusion V)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)) = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)).op ≫ inv (eqToHom (_ : (Opens.map (Opens.inclusion V) ⋙ IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W) = (𝟭 (Opens ↑↑X.toPresheafedSpace)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W))).op ≫ (NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑(Opens.inclusion U))).counit ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)).op ≫ ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).map (eqToHom (_ : op ((Opens.map (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)) = op ((Opens.map (IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))) (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : Set.range Subtype.val ⊆ Set.range Subtype.val)).val.base).obj ((Opens.map (Opens.inclusion V)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W))))).unop).op) ≫ inv (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ((Opens.map (IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))) (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : Set.range Subtype.val ⊆ Set.range Subtype.val)).val.base).obj ((Opens.map (Opens.inclusion V)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W))) = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ((Opens.map (IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))) (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : Set.range Subtype.val ⊆ Set.range Subtype.val)).val.base).obj W))).op) ⊢ NatTrans.app (IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))) (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : Set.range Subtype.val ⊆ Set.range Subtype.val)).val.c (op W) = X.presheaf.map (homOfLE (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ((Opens.map ((restrictFunctor X).map i).left.val.base).obj W) ≤ (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)).op [PROOFSTEP] rw [e₁] [GOAL] C : Type u inst✝ : Category.{v, u} C X : Scheme U V : Opens ↑↑X.toPresheafedSpace i : U ⟶ V W : Opens { x // x ∈ V } e₂ : NatTrans.app (IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))) (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : Set.range Subtype.val ⊆ Set.range Subtype.val)).val.c (op ((Opens.map (Opens.inclusion V)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W))) = inv (X.presheaf.map ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).map (eqToHom (_ : (Opens.map (Opens.inclusion V)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W) = W))).op) ≫ NatTrans.app (IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))) (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : Set.range Subtype.val ⊆ Set.range Subtype.val)).val.c (op W) ≫ X.presheaf.map ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).map ((Opens.map (IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))) (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : Set.range Subtype.val ⊆ Set.range Subtype.val)).val.base).map (eqToHom (_ : (Opens.map (Opens.inclusion V)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W) = W)))).op e₁ : NatTrans.app (IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))) (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : Set.range Subtype.val ⊆ Set.range Subtype.val)).val.c (op W) = X.presheaf.map (((eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj ((Opens.map (Opens.inclusion V)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)) = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)).op ≫ inv (eqToHom (_ : (Opens.map (Opens.inclusion V) ⋙ IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W) = (𝟭 (Opens ↑↑X.toPresheafedSpace)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W))).op ≫ (NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑(Opens.inclusion U))).counit ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)).op ≫ ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).map (eqToHom (_ : op ((Opens.map (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)) = op ((Opens.map (IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))) (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : Set.range Subtype.val ⊆ Set.range Subtype.val)).val.base).obj ((Opens.map (Opens.inclusion V)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W))))).unop).op) ≫ inv (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ((Opens.map (IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))) (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : Set.range Subtype.val ⊆ Set.range Subtype.val)).val.base).obj ((Opens.map (Opens.inclusion V)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W))) = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ((Opens.map (IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))) (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : Set.range Subtype.val ⊆ Set.range Subtype.val)).val.base).obj W))).op) ⊢ X.presheaf.map (((eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj ((Opens.map (Opens.inclusion V)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)) = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)).op ≫ inv (eqToHom (_ : (Opens.map (Opens.inclusion V) ⋙ IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W) = (𝟭 (Opens ↑↑X.toPresheafedSpace)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W))).op ≫ (NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑(Opens.inclusion U))).counit ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)).op ≫ ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).map (eqToHom (_ : op ((Opens.map (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)) = op ((Opens.map (IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))) (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : Set.range Subtype.val ⊆ Set.range Subtype.val)).val.base).obj ((Opens.map (Opens.inclusion V)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W))))).unop).op) ≫ inv (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ((Opens.map (IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))) (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : Set.range Subtype.val ⊆ Set.range Subtype.val)).val.base).obj ((Opens.map (Opens.inclusion V)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W))) = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ((Opens.map (IsOpenImmersion.lift (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion V))) (ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : Set.range Subtype.val ⊆ Set.range Subtype.val)).val.base).obj W))).op) = X.presheaf.map (homOfLE (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ((Opens.map ((restrictFunctor X).map i).left.val.base).obj W) ≤ (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V))).obj W)).op [PROOFSTEP] congr 1 [GOAL] C : Type u inst✝ : Category.{v, u} C X : Scheme ⊢ ∀ {X_1 Y : (Opens ↑↑X.toPresheafedSpace)ᵒᵖ} (f : X_1 ⟶ Y), ((restrictFunctor X).op ⋙ (Over.forget X).op ⋙ Γ).map f ≫ ((fun U => X.presheaf.mapIso (Iso.op (eqToIso (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U.unop))).obj ⊤ = U.unop)).symm)) Y).hom = ((fun U => X.presheaf.mapIso (Iso.op (eqToIso (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U.unop))).obj ⊤ = U.unop)).symm)) X_1).hom ≫ X.presheaf.map f [PROOFSTEP] intro U V i [GOAL] C : Type u inst✝ : Category.{v, u} C X : Scheme U V : (Opens ↑↑X.toPresheafedSpace)ᵒᵖ i : U ⟶ V ⊢ ((restrictFunctor X).op ⋙ (Over.forget X).op ⋙ Γ).map i ≫ ((fun U => X.presheaf.mapIso (Iso.op (eqToIso (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U.unop))).obj ⊤ = U.unop)).symm)) V).hom = ((fun U => X.presheaf.mapIso (Iso.op (eqToIso (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U.unop))).obj ⊤ = U.unop)).symm)) U).hom ≫ X.presheaf.map i [PROOFSTEP] dsimp [-Scheme.restrictFunctor_map_left] [GOAL] C : Type u inst✝ : Category.{v, u} C X : Scheme U V : (Opens ↑↑X.toPresheafedSpace)ᵒᵖ i : U ⟶ V ⊢ NatTrans.app ((restrictFunctor X).map i.unop).left.val.c (op ⊤) ≫ X.presheaf.map (eqToHom (_ : V.unop = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V.unop))).obj ⊤)).op = X.presheaf.map (eqToHom (_ : U.unop = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U.unop))).obj ⊤)).op ≫ X.presheaf.map i [PROOFSTEP] rw [X.restrictFunctor_map_app, ← Functor.map_comp, ← Functor.map_comp] [GOAL] C : Type u inst✝ : Category.{v, u} C X : Scheme U V : (Opens ↑↑X.toPresheafedSpace)ᵒᵖ i : U ⟶ V ⊢ X.presheaf.map ((homOfLE (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V.unop))).obj ((Opens.map ((restrictFunctor X).map i.unop).left.val.base).obj ⊤) ≤ (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U.unop))).obj ⊤)).op ≫ (eqToHom (_ : V.unop = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion V.unop))).obj ⊤)).op) = X.presheaf.map ((eqToHom (_ : U.unop = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U.unop))).obj ⊤)).op ≫ i) [PROOFSTEP] congr 1 [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y : Scheme f : X ⟶ Y inst✝ : IsIso f U : Opens ↑↑Y.toPresheafedSpace ⊢ restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))) ≅ restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)) [PROOFSTEP] apply IsOpenImmersion.isoOfRangeEq (f := X.ofRestrict _ ≫ f) (H := PresheafedSpace.IsOpenImmersion.comp (hf := inferInstance) (hg := inferInstance)) (Y.ofRestrict _) _ [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y : Scheme f : X ⟶ Y inst✝ : IsIso f U : Opens ↑↑Y.toPresheafedSpace ⊢ Set.range ↑(ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))) ≫ f).val.base = Set.range ↑(ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base [PROOFSTEP] dsimp [Opens.inclusion] [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y : Scheme f : X ⟶ Y inst✝ : IsIso f U : Opens ↑↑Y.toPresheafedSpace ⊢ Set.range ↑(ContinuousMap.mk Subtype.val ≫ f.val.base) = Set.range ↑(ContinuousMap.mk Subtype.val) [PROOFSTEP] rw [coe_comp, Set.range_comp, ContinuousMap.coe_mk, ContinuousMap.coe_mk] [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y : Scheme f : X ⟶ Y inst✝ : IsIso f U : Opens ↑↑Y.toPresheafedSpace ⊢ ↑f.val.base '' Set.range Subtype.val = Set.range Subtype.val [PROOFSTEP] dsimp [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y : Scheme f : X ⟶ Y inst✝ : IsIso f U : Opens ↑↑Y.toPresheafedSpace ⊢ ↑f.val.base '' Set.range Subtype.val = Set.range Subtype.val [PROOFSTEP] rw [Subtype.range_val, Subtype.range_coe] [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y : Scheme f : X ⟶ Y inst✝ : IsIso f U : Opens ↑↑Y.toPresheafedSpace ⊢ ↑f.val.base '' ↑((Opens.map f.val.base).obj U) = ↑U [PROOFSTEP] refine' @Set.image_preimage_eq _ _ f.1.base U.1 _ [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y : Scheme f : X ⟶ Y inst✝ : IsIso f U : Opens ↑↑Y.toPresheafedSpace ⊢ Function.Surjective ↑f.val.base [PROOFSTEP] rw [← TopCat.epi_iff_surjective] [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y : Scheme f : X ⟶ Y inst✝ : IsIso f U : Opens ↑↑Y.toPresheafedSpace ⊢ Epi f.val.base [PROOFSTEP] infer_instance [GOAL] C : Type u inst✝ : Category.{v, u} C X : Scheme 𝒰 : OpenCover X W : Scheme f : W ⟶ X x : ↑↑W.toPresheafedSpace ⊢ x ∈ Set.range ↑((fun x => pullback.fst) ((fun x => AlgebraicGeometry.Scheme.OpenCover.f 𝒰 (↑f.val.base x)) x)).val.base [PROOFSTEP] rw [← show _ = (pullback.fst : pullback f (𝒰.map (𝒰.f (f.1.base x))) ⟶ _).1.base from PreservesPullback.iso_hom_fst Scheme.forgetToTop f (𝒰.map (𝒰.f (f.1.base x)))] -- Porting note : `rw` to `erw` on this single lemma [GOAL] C : Type u inst✝ : Category.{v, u} C X : Scheme 𝒰 : OpenCover X W : Scheme f : W ⟶ X x : ↑↑W.toPresheafedSpace ⊢ x ∈ Set.range ↑((PreservesPullback.iso forgetToTop f (map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 (↑f.val.base x)))).hom ≫ pullback.fst) [PROOFSTEP] erw [coe_comp] [GOAL] C : Type u inst✝ : Category.{v, u} C X : Scheme 𝒰 : OpenCover X W : Scheme f : W ⟶ X x : ↑↑W.toPresheafedSpace ⊢ x ∈ Set.range (↑pullback.fst ∘ ↑(PreservesPullback.iso forgetToTop f (map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 (↑f.val.base x)))).hom) [PROOFSTEP] rw [Set.range_comp, Set.range_iff_surjective.mpr, Set.image_univ, TopCat.pullback_fst_range] [GOAL] C : Type u inst✝ : Category.{v, u} C X : Scheme 𝒰 : OpenCover X W : Scheme f : W ⟶ X x : ↑↑W.toPresheafedSpace ⊢ x ∈ {x_1 | ∃ y, ↑(forgetToTop.map f) x_1 = ↑(forgetToTop.map (map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 (↑f.val.base x)))) y} C : Type u inst✝ : Category.{v, u} C X : Scheme 𝒰 : OpenCover X W : Scheme f : W ⟶ X x : ↑↑W.toPresheafedSpace ⊢ Function.Surjective ↑(PreservesPullback.iso forgetToTop f (map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 (↑f.val.base x)))).hom [PROOFSTEP] obtain ⟨y, h⟩ := 𝒰.Covers (f.1.base x) [GOAL] case intro C : Type u inst✝ : Category.{v, u} C X : Scheme 𝒰 : OpenCover X W : Scheme f : W ⟶ X x : ↑↑W.toPresheafedSpace y : (forget TopCat).obj ↑(obj 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 (↑f.val.base x))).toPresheafedSpace h : ↑(map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 (↑f.val.base x))).val.base y = ↑f.val.base x ⊢ x ∈ {x_1 | ∃ y, ↑(forgetToTop.map f) x_1 = ↑(forgetToTop.map (map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 (↑f.val.base x)))) y} C : Type u inst✝ : Category.{v, u} C X : Scheme 𝒰 : OpenCover X W : Scheme f : W ⟶ X x : ↑↑W.toPresheafedSpace ⊢ Function.Surjective ↑(PreservesPullback.iso forgetToTop f (map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 (↑f.val.base x)))).hom [PROOFSTEP] exact ⟨y, h.symm⟩ [GOAL] C : Type u inst✝ : Category.{v, u} C X : Scheme 𝒰 : OpenCover X W : Scheme f : W ⟶ X x : ↑↑W.toPresheafedSpace ⊢ Function.Surjective ↑(PreservesPullback.iso forgetToTop f (map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 (↑f.val.base x)))).hom [PROOFSTEP] rw [← TopCat.epi_iff_surjective] [GOAL] C : Type u inst✝ : Category.{v, u} C X : Scheme 𝒰 : OpenCover X W : Scheme f : W ⟶ X x : ↑↑W.toPresheafedSpace ⊢ Epi (PreservesPullback.iso forgetToTop f (map 𝒰 (AlgebraicGeometry.Scheme.OpenCover.f 𝒰 (↑f.val.base x)))).hom [PROOFSTEP] infer_instance [GOAL] C : Type u inst✝ : Category.{v, u} C X : Scheme 𝒰 : OpenCover X ⊢ ⋃ (i : 𝒰.J), Set.range ↑(map 𝒰 i).val.base = Set.univ [PROOFSTEP] rw [Set.eq_univ_iff_forall] [GOAL] C : Type u inst✝ : Category.{v, u} C X : Scheme 𝒰 : OpenCover X ⊢ ∀ (x : (forget TopCat).obj ↑X.toPresheafedSpace), x ∈ ⋃ (i : 𝒰.J), Set.range ↑(map 𝒰 i).val.base [PROOFSTEP] intro x [GOAL] C : Type u inst✝ : Category.{v, u} C X : Scheme 𝒰 : OpenCover X x : (forget TopCat).obj ↑X.toPresheafedSpace ⊢ x ∈ ⋃ (i : 𝒰.J), Set.range ↑(map 𝒰 i).val.base [PROOFSTEP] rw [Set.mem_iUnion] [GOAL] C : Type u inst✝ : Category.{v, u} C X : Scheme 𝒰 : OpenCover X x : (forget TopCat).obj ↑X.toPresheafedSpace ⊢ ∃ i, x ∈ Set.range ↑(map 𝒰 i).val.base [PROOFSTEP] exact ⟨𝒰.f x, 𝒰.Covers x⟩ [GOAL] C : Type u inst✝ : Category.{v, u} C X : Scheme 𝒰 : OpenCover X ⊢ ↑(⨆ (i : 𝒰.J), Hom.opensRange (map 𝒰 i)) = ↑⊤ [PROOFSTEP] rw [Opens.coe_iSup] [GOAL] C : Type u inst✝ : Category.{v, u} C X : Scheme 𝒰 : OpenCover X ⊢ ⋃ (i : 𝒰.J), ↑(Hom.opensRange (map 𝒰 i)) = ↑⊤ [PROOFSTEP] exact 𝒰.iUnion_range [GOAL] C : Type u inst✝¹ : Category.{v, u} C X : Scheme 𝒰 : OpenCover X inst✝ : Finite 𝒰.J H : ∀ (i : 𝒰.J), CompactSpace ↑↑(obj 𝒰 i).toPresheafedSpace ⊢ CompactSpace ↑↑X.toPresheafedSpace [PROOFSTEP] cases nonempty_fintype 𝒰.J [GOAL] case intro C : Type u inst✝¹ : Category.{v, u} C X : Scheme 𝒰 : OpenCover X inst✝ : Finite 𝒰.J H : ∀ (i : 𝒰.J), CompactSpace ↑↑(obj 𝒰 i).toPresheafedSpace val✝ : Fintype 𝒰.J ⊢ CompactSpace ↑↑X.toPresheafedSpace [PROOFSTEP] rw [← isCompact_univ_iff, ← 𝒰.iUnion_range] [GOAL] case intro C : Type u inst✝¹ : Category.{v, u} C X : Scheme 𝒰 : OpenCover X inst✝ : Finite 𝒰.J H : ∀ (i : 𝒰.J), CompactSpace ↑↑(obj 𝒰 i).toPresheafedSpace val✝ : Fintype 𝒰.J ⊢ IsCompact (⋃ (i : 𝒰.J), Set.range ↑(map 𝒰 i).val.base) [PROOFSTEP] apply isCompact_iUnion [GOAL] case intro.h C : Type u inst✝¹ : Category.{v, u} C X : Scheme 𝒰 : OpenCover X inst✝ : Finite 𝒰.J H : ∀ (i : 𝒰.J), CompactSpace ↑↑(obj 𝒰 i).toPresheafedSpace val✝ : Fintype 𝒰.J ⊢ ∀ (i : 𝒰.J), IsCompact (Set.range ↑(map 𝒰 i).val.base) [PROOFSTEP] intro i [GOAL] case intro.h C : Type u inst✝¹ : Category.{v, u} C X : Scheme 𝒰 : OpenCover X inst✝ : Finite 𝒰.J H : ∀ (i : 𝒰.J), CompactSpace ↑↑(obj 𝒰 i).toPresheafedSpace val✝ : Fintype 𝒰.J i : 𝒰.J ⊢ IsCompact (Set.range ↑(map 𝒰 i).val.base) [PROOFSTEP] rw [isCompact_iff_compactSpace] [GOAL] case intro.h C : Type u inst✝¹ : Category.{v, u} C X : Scheme 𝒰 : OpenCover X inst✝ : Finite 𝒰.J H : ∀ (i : 𝒰.J), CompactSpace ↑↑(obj 𝒰 i).toPresheafedSpace val✝ : Fintype 𝒰.J i : 𝒰.J ⊢ CompactSpace ↑(Set.range ↑(map 𝒰 i).val.base) [PROOFSTEP] exact @Homeomorph.compactSpace _ _ _ _ (H i) (TopCat.homeoOfIso (asIso (IsOpenImmersion.isoOfRangeEq (𝒰.map i) (X.ofRestrict (Opens.openEmbedding ⟨_, (𝒰.IsOpen i).base_open.open_range⟩)) Subtype.range_coe.symm).hom.1.base)) [GOAL] C : Type u inst✝ : Category.{v, u} C X : Scheme 𝒰₁ : OpenCover X 𝒰₂ : OpenCover X x : ↑↑X.toPresheafedSpace ⊢ x ∈ Set.range ↑((fun ij => pullback.fst ≫ map 𝒰₁ ij.fst) ((fun x => (f 𝒰₁ x, f 𝒰₂ x)) x)).val.base [PROOFSTEP] rw [IsOpenImmersion.range_pullback_to_base_of_left] [GOAL] C : Type u inst✝ : Category.{v, u} C X : Scheme 𝒰₁ : OpenCover X 𝒰₂ : OpenCover X x : ↑↑X.toPresheafedSpace ⊢ x ∈ Set.range ↑(map 𝒰₁ ((fun x => (f 𝒰₁ x, f 𝒰₂ x)) x).fst).val.base ∩ Set.range ↑(map 𝒰₂ ((fun x => (f 𝒰₁ x, f 𝒰₂ x)) x).snd).val.base [PROOFSTEP] exact ⟨𝒰₁.Covers x, 𝒰₂.Covers x⟩ -- Porting note : was automatic [GOAL] C : Type u inst✝ : Category.{v, u} C s : Type u_1 X : Scheme U : s → Opens ↑↑X.toPresheafedSpace hU : ⨆ (i : s), U i = ⊤ x : ↑↑X.toPresheafedSpace ⊢ x ∈ ⊤ [PROOFSTEP] triv [GOAL] C : Type u inst✝ : Category.{v, u} C s : Type u_1 X : Scheme U : s → Opens ↑↑X.toPresheafedSpace hU : ⨆ (i : s), U i = ⊤ x : ↑↑X.toPresheafedSpace ⊢ x ∈ Set.range ↑((fun i => ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion (U i)))) ((fun x => Exists.choose (_ : ∃ i, x ∈ U i)) x)).val.base [PROOFSTEP] erw [Subtype.range_coe] [GOAL] C : Type u inst✝ : Category.{v, u} C s : Type u_1 X : Scheme U : s → Opens ↑↑X.toPresheafedSpace hU : ⨆ (i : s), U i = ⊤ x : ↑↑X.toPresheafedSpace ⊢ x ∈ ↑(U ((fun x => Exists.choose (_ : ∃ i, x ∈ U i)) x)) [PROOFSTEP] have : x ∈ ⨆ i, U i := hU.symm ▸ show x ∈ (⊤ : Opens X) by triv [GOAL] C : Type u inst✝ : Category.{v, u} C s : Type u_1 X : Scheme U : s → Opens ↑↑X.toPresheafedSpace hU : ⨆ (i : s), U i = ⊤ x : ↑↑X.toPresheafedSpace ⊢ x ∈ ⊤ [PROOFSTEP] triv [GOAL] C : Type u inst✝ : Category.{v, u} C s : Type u_1 X : Scheme U : s → Opens ↑↑X.toPresheafedSpace hU : ⨆ (i : s), U i = ⊤ x : ↑↑X.toPresheafedSpace this : x ∈ ⨆ (i : s), U i ⊢ x ∈ ↑(U ((fun x => Exists.choose (_ : ∃ i, x ∈ U i)) x)) [PROOFSTEP] exact (Opens.mem_iSup.mp this).choose_spec [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace ⊢ pullback f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) ≅ Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))) [PROOFSTEP] refine' IsOpenImmersion.isoOfRangeEq pullback.fst (X.ofRestrict _) _ [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace ⊢ Set.range ↑pullback.fst.val.base = Set.range ↑(Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).val.base [PROOFSTEP] rw [IsOpenImmersion.range_pullback_fst_of_right] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace ⊢ ((Opens.map f.val.base).obj { carrier := Set.range ↑(Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base, is_open' := (_ : IsOpen (Set.range ↑(Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base)) }).carrier = Set.range ↑(Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).val.base [PROOFSTEP] dsimp [Opens.inclusion] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace ⊢ ↑f.val.base ⁻¹' Set.range ↑(ContinuousMap.mk Subtype.val) = Set.range ↑(ContinuousMap.mk Subtype.val) [PROOFSTEP] rw [ContinuousMap.coe_mk, ContinuousMap.coe_mk, Subtype.range_val, Subtype.range_coe] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace ⊢ ↑f.val.base ⁻¹' ↑U = ↑((Opens.map f.val.base).obj U) [PROOFSTEP] rfl [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace ⊢ (pullbackRestrictIsoRestrict f U).inv ≫ pullback.fst = Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))) [PROOFSTEP] delta pullbackRestrictIsoRestrict [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace ⊢ (IsOpenImmersion.isoOfRangeEq pullback.fst (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))) (_ : Set.range ↑pullback.fst.val.base = Set.range ↑(Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).val.base)).inv ≫ pullback.fst = Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))) [PROOFSTEP] simp [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace ⊢ (pullbackRestrictIsoRestrict f U).hom ≫ Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))) = pullback.fst [PROOFSTEP] delta pullbackRestrictIsoRestrict [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace ⊢ (IsOpenImmersion.isoOfRangeEq pullback.fst (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))) (_ : Set.range ↑pullback.fst.val.base = Set.range ↑(Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).val.base)).hom ≫ Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))) = pullback.fst [PROOFSTEP] simp [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace ⊢ (f ∣_ U) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)) = Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))) ≫ f [PROOFSTEP] delta morphismRestrict [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace ⊢ ((pullbackRestrictIsoRestrict f U).inv ≫ pullback.snd) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)) = Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))) ≫ f [PROOFSTEP] rw [Category.assoc, pullback.condition.symm, pullbackRestrictIsoRestrict_inv_fst_assoc] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace ⊢ IsPullback (f ∣_ U) (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))) (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) f [PROOFSTEP] delta morphismRestrict [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace ⊢ IsPullback ((pullbackRestrictIsoRestrict f U).inv ≫ pullback.snd) (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))) (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) f [PROOFSTEP] rw [← Category.id_comp f] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace ⊢ IsPullback ((pullbackRestrictIsoRestrict (𝟙 X ≫ f) U).inv ≫ pullback.snd) (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map (𝟙 X ≫ f).val.base).obj U)))) (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (𝟙 X ≫ f) [PROOFSTEP] refine' (IsPullback.of_horiz_isIso ⟨_⟩).paste_horiz (IsPullback.of_hasPullback f (Y.ofRestrict U.openEmbedding)).flip [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace ⊢ (pullbackRestrictIsoRestrict (𝟙 X ≫ f) U).inv ≫ pullback.fst = Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map (𝟙 X ≫ f).val.base).obj U))) ≫ 𝟙 X [PROOFSTEP] erw [pullbackRestrictIsoRestrict_inv_fst] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace ⊢ Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map (𝟙 X ≫ f).val.base).obj U))) = Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map (𝟙 X ≫ f).val.base).obj U))) ≫ 𝟙 X [PROOFSTEP] rw [Category.comp_id] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y Z : Scheme f : X ⟶ Y g : Y ⟶ Z U : Opens ↑↑Z.toPresheafedSpace ⊢ (f ≫ g) ∣_ U = (f ∣_ (Opens.map g.val.base).obj U) ≫ g ∣_ U [PROOFSTEP] delta morphismRestrict [GOAL] C : Type u inst✝ : Category.{v, u} C X Y Z : Scheme f : X ⟶ Y g : Y ⟶ Z U : Opens ↑↑Z.toPresheafedSpace ⊢ (pullbackRestrictIsoRestrict (f ≫ g) U).inv ≫ pullback.snd = ((pullbackRestrictIsoRestrict f ((Opens.map g.val.base).obj U)).inv ≫ pullback.snd) ≫ (pullbackRestrictIsoRestrict g U).inv ≫ pullback.snd [PROOFSTEP] rw [← pullbackRightPullbackFstIso_inv_snd_snd] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y Z : Scheme f : X ⟶ Y g : Y ⟶ Z U : Opens ↑↑Z.toPresheafedSpace ⊢ (pullbackRestrictIsoRestrict (f ≫ g) U).inv ≫ (pullbackRightPullbackFstIso g (Scheme.ofRestrict Z (_ : OpenEmbedding ↑(Opens.inclusion U))) f).inv ≫ pullback.snd ≫ pullback.snd = ((pullbackRestrictIsoRestrict f ((Opens.map g.val.base).obj U)).inv ≫ pullback.snd) ≫ (pullbackRestrictIsoRestrict g U).inv ≫ pullback.snd [PROOFSTEP] simp_rw [← Category.assoc] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y Z : Scheme f : X ⟶ Y g : Y ⟶ Z U : Opens ↑↑Z.toPresheafedSpace ⊢ (((pullbackRestrictIsoRestrict (f ≫ g) U).inv ≫ (pullbackRightPullbackFstIso g (Scheme.ofRestrict Z (_ : OpenEmbedding ↑(Opens.inclusion U))) f).inv) ≫ pullback.snd) ≫ pullback.snd = (((pullbackRestrictIsoRestrict f ((Opens.map g.val.base).obj U)).inv ≫ pullback.snd) ≫ (pullbackRestrictIsoRestrict g U).inv) ≫ pullback.snd [PROOFSTEP] congr 1 [GOAL] case e_a C : Type u inst✝ : Category.{v, u} C X Y Z : Scheme f : X ⟶ Y g : Y ⟶ Z U : Opens ↑↑Z.toPresheafedSpace ⊢ ((pullbackRestrictIsoRestrict (f ≫ g) U).inv ≫ (pullbackRightPullbackFstIso g (Scheme.ofRestrict Z (_ : OpenEmbedding ↑(Opens.inclusion U))) f).inv) ≫ pullback.snd = ((pullbackRestrictIsoRestrict f ((Opens.map g.val.base).obj U)).inv ≫ pullback.snd) ≫ (pullbackRestrictIsoRestrict g U).inv [PROOFSTEP] rw [← cancel_mono pullback.fst] [GOAL] case e_a C : Type u inst✝ : Category.{v, u} C X Y Z : Scheme f : X ⟶ Y g : Y ⟶ Z U : Opens ↑↑Z.toPresheafedSpace ⊢ (((pullbackRestrictIsoRestrict (f ≫ g) U).inv ≫ (pullbackRightPullbackFstIso g (Scheme.ofRestrict Z (_ : OpenEmbedding ↑(Opens.inclusion U))) f).inv) ≫ pullback.snd) ≫ pullback.fst = (((pullbackRestrictIsoRestrict f ((Opens.map g.val.base).obj U)).inv ≫ pullback.snd) ≫ (pullbackRestrictIsoRestrict g U).inv) ≫ pullback.fst [PROOFSTEP] simp_rw [Category.assoc] [GOAL] case e_a C : Type u inst✝ : Category.{v, u} C X Y Z : Scheme f : X ⟶ Y g : Y ⟶ Z U : Opens ↑↑Z.toPresheafedSpace ⊢ (pullbackRestrictIsoRestrict (f ≫ g) U).inv ≫ (pullbackRightPullbackFstIso g (Scheme.ofRestrict Z (_ : OpenEmbedding ↑(Opens.inclusion U))) f).inv ≫ pullback.snd ≫ pullback.fst = (pullbackRestrictIsoRestrict f ((Opens.map g.val.base).obj U)).inv ≫ pullback.snd ≫ (pullbackRestrictIsoRestrict g U).inv ≫ pullback.fst [PROOFSTEP] rw [pullbackRestrictIsoRestrict_inv_fst, pullbackRightPullbackFstIso_inv_snd_fst, ← pullback.condition, pullbackRestrictIsoRestrict_inv_fst_assoc, pullbackRestrictIsoRestrict_inv_fst_assoc] [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y : Scheme f : X ⟶ Y inst✝ : IsIso f U : Opens ↑↑Y.toPresheafedSpace ⊢ IsIso (f ∣_ U) [PROOFSTEP] delta morphismRestrict [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y : Scheme f : X ⟶ Y inst✝ : IsIso f U : Opens ↑↑Y.toPresheafedSpace ⊢ IsIso ((pullbackRestrictIsoRestrict f U).inv ≫ pullback.snd) [PROOFSTEP] infer_instance [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace V : Opens { x // x ∈ U } ⊢ (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).obj ((Opens.map (f ∣_ U).val.base).obj V) = (Opens.map f.val.base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V) [PROOFSTEP] ext1 [GOAL] case h C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace V : Opens { x // x ∈ U } ⊢ ↑((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).obj ((Opens.map (f ∣_ U).val.base).obj V)) = ↑((Opens.map f.val.base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) [PROOFSTEP] ext x [GOAL] case h.h C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace V : Opens { x // x ∈ U } x : ↑↑X.toPresheafedSpace ⊢ x ∈ ↑((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).obj ((Opens.map (f ∣_ U).val.base).obj V)) ↔ x ∈ ↑((Opens.map f.val.base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) [PROOFSTEP] constructor [GOAL] case h.h.mp C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace V : Opens { x // x ∈ U } x : ↑↑X.toPresheafedSpace ⊢ x ∈ ↑((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).obj ((Opens.map (f ∣_ U).val.base).obj V)) → x ∈ ↑((Opens.map f.val.base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) [PROOFSTEP] rintro ⟨⟨x, hx⟩, hx' : (f ∣_ U).1.base _ ∈ V, rfl⟩ [GOAL] case h.h.mp.intro.mk.intro C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace V : Opens { x // x ∈ U } x : ↑↑X.toPresheafedSpace hx : x ∈ (Opens.map f.val.base).obj U hx' : ↑(f ∣_ U).val.base { val := x, property := hx } ∈ V ⊢ ↑(Opens.inclusion ((Opens.map f.val.base).obj U)) { val := x, property := hx } ∈ ↑((Opens.map f.val.base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) [PROOFSTEP] refine' ⟨⟨_, hx⟩, _, rfl⟩ -- Porting note : this rewrite was not necessary [GOAL] case h.h.mp.intro.mk.intro C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace V : Opens { x // x ∈ U } x : ↑↑X.toPresheafedSpace hx : x ∈ (Opens.map f.val.base).obj U hx' : ↑(f ∣_ U).val.base { val := x, property := hx } ∈ V ⊢ { val := ↑f.val.base x, property := hx } ∈ ↑V [PROOFSTEP] rw [SetLike.mem_coe] [GOAL] case h.h.mp.intro.mk.intro C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace V : Opens { x // x ∈ U } x : ↑↑X.toPresheafedSpace hx : x ∈ (Opens.map f.val.base).obj U hx' : ↑(f ∣_ U).val.base { val := x, property := hx } ∈ V ⊢ { val := ↑f.val.base x, property := hx } ∈ V [PROOFSTEP] convert hx' [GOAL] case h.e'_4.h C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace V : Opens { x // x ∈ U } x : ↑↑X.toPresheafedSpace hx : x ∈ (Opens.map f.val.base).obj U hx' : ↑(f ∣_ U).val.base { val := x, property := hx } ∈ V e_1✝ : (forget TopCat).obj ((Opens.toTopCat ↑Y.toPresheafedSpace).obj U) = (fun x => (forget TopCat).obj ↑(Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace) { val := x, property := hx } ⊢ { val := ↑f.val.base x, property := hx } = ↑(f ∣_ U).val.base { val := x, property := hx } [PROOFSTEP] refine Subtype.ext ?_ [GOAL] case h.e'_4.h C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace V : Opens { x // x ∈ U } x : ↑↑X.toPresheafedSpace hx : x ∈ (Opens.map f.val.base).obj U hx' : ↑(f ∣_ U).val.base { val := x, property := hx } ∈ V e_1✝ : (forget TopCat).obj ((Opens.toTopCat ↑Y.toPresheafedSpace).obj U) = (fun x => (forget TopCat).obj ↑(Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace) { val := x, property := hx } ⊢ ↑{ val := ↑f.val.base x, property := hx } = ↑(↑(f ∣_ U).val.base { val := x, property := hx }) [PROOFSTEP] exact (morphismRestrict_base_coe f U ⟨x, hx⟩).symm [GOAL] case h.h.mpr C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace V : Opens { x // x ∈ U } x : ↑↑X.toPresheafedSpace ⊢ x ∈ ↑((Opens.map f.val.base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) → x ∈ ↑((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).obj ((Opens.map (f ∣_ U).val.base).obj V)) [PROOFSTEP] rintro ⟨⟨x, hx⟩, hx' : _ ∈ V.1, rfl : x = _⟩ [GOAL] case h.h.mpr.intro.mk.intro C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace V : Opens { x // x ∈ U } x : ↑↑X.toPresheafedSpace hx : ↑f.val.base x ∈ U hx' : { val := ↑f.val.base x, property := hx } ∈ V.carrier ⊢ x ∈ ↑((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).obj ((Opens.map (f ∣_ U).val.base).obj V)) [PROOFSTEP] refine' ⟨⟨_, hx⟩, (_ : (f ∣_ U).1.base ⟨x, hx⟩ ∈ V.1), rfl⟩ [GOAL] case h.h.mpr.intro.mk.intro C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace V : Opens { x // x ∈ U } x : ↑↑X.toPresheafedSpace hx : ↑f.val.base x ∈ U hx' : { val := ↑f.val.base x, property := hx } ∈ V.carrier ⊢ ↑(f ∣_ U).val.base { val := x, property := hx } ∈ V.carrier [PROOFSTEP] convert hx' [GOAL] case h.e'_4.h C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace V : Opens { x // x ∈ U } x : ↑↑X.toPresheafedSpace hx : ↑f.val.base x ∈ U hx' : { val := ↑f.val.base x, property := hx } ∈ V.carrier e_1✝ : (fun x => (forget TopCat).obj ↑(Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace) { val := x, property := hx } = { x // x ∈ U } ⊢ ↑(f ∣_ U).val.base { val := x, property := hx } = { val := ↑f.val.base x, property := hx } [PROOFSTEP] refine Subtype.ext ?_ [GOAL] case h.e'_4.h C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace V : Opens { x // x ∈ U } x : ↑↑X.toPresheafedSpace hx : ↑f.val.base x ∈ U hx' : { val := ↑f.val.base x, property := hx } ∈ V.carrier e_1✝ : (fun x => (forget TopCat).obj ↑(Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace) { val := x, property := hx } = { x // x ∈ U } ⊢ ↑(↑(f ∣_ U).val.base { val := x, property := hx }) = ↑{ val := ↑f.val.base x, property := hx } [PROOFSTEP] exact morphismRestrict_base_coe f U ⟨x, hx⟩ [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace V : Opens { x // x ∈ U } ⊢ NatTrans.app (f ∣_ U).val.c (op V) = NatTrans.app f.val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫ X.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).obj ((Opens.map (f ∣_ U).val.base).obj V) = (Opens.map f.val.base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))).op [PROOFSTEP] have := Scheme.congr_app (morphismRestrict_ι f U) (op (U.openEmbedding.isOpenMap.functor.obj V)) [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace V : Opens { x // x ∈ U } this : NatTrans.app ((f ∣_ U) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) = NatTrans.app (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))) ≫ f).val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫ (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.map (eqToHom (_ : (Opens.map (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))) ≫ f).val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) = (Opens.map ((f ∣_ U) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)))) ⊢ NatTrans.app (f ∣_ U).val.c (op V) = NatTrans.app f.val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫ X.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).obj ((Opens.map (f ∣_ U).val.base).obj V) = (Opens.map f.val.base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))).op [PROOFSTEP] rw [Scheme.comp_val_c_app, Scheme.comp_val_c_app_assoc] at this [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace V : Opens { x // x ∈ U } this : NatTrans.app (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫ NatTrans.app (f ∣_ U).val.c ((Opens.map (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))) = NatTrans.app f.val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫ NatTrans.app (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).val.c ((Opens.map f.val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))) ≫ (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.map (eqToHom (_ : (Opens.map (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))) ≫ f).val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) = (Opens.map ((f ∣_ U) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)))) ⊢ NatTrans.app (f ∣_ U).val.c (op V) = NatTrans.app f.val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫ X.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).obj ((Opens.map (f ∣_ U).val.base).obj V) = (Opens.map f.val.base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))).op [PROOFSTEP] have e : (Opens.map U.inclusion).obj (U.openEmbedding.isOpenMap.functor.obj V) = V := by ext1; exact Set.preimage_image_eq _ Subtype.coe_injective [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace V : Opens { x // x ∈ U } this : NatTrans.app (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫ NatTrans.app (f ∣_ U).val.c ((Opens.map (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))) = NatTrans.app f.val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫ NatTrans.app (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).val.c ((Opens.map f.val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))) ≫ (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.map (eqToHom (_ : (Opens.map (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))) ≫ f).val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) = (Opens.map ((f ∣_ U) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)))) ⊢ (Opens.map (Opens.inclusion U)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V) = V [PROOFSTEP] ext1 [GOAL] case h C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace V : Opens { x // x ∈ U } this : NatTrans.app (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫ NatTrans.app (f ∣_ U).val.c ((Opens.map (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))) = NatTrans.app f.val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫ NatTrans.app (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).val.c ((Opens.map f.val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))) ≫ (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.map (eqToHom (_ : (Opens.map (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))) ≫ f).val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) = (Opens.map ((f ∣_ U) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)))) ⊢ ↑((Opens.map (Opens.inclusion U)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) = ↑V [PROOFSTEP] exact Set.preimage_image_eq _ Subtype.coe_injective [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace V : Opens { x // x ∈ U } this : NatTrans.app (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫ NatTrans.app (f ∣_ U).val.c ((Opens.map (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))) = NatTrans.app f.val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫ NatTrans.app (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).val.c ((Opens.map f.val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))) ≫ (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.map (eqToHom (_ : (Opens.map (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))) ≫ f).val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) = (Opens.map ((f ∣_ U) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)))) e : (Opens.map (Opens.inclusion U)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V) = V ⊢ NatTrans.app (f ∣_ U).val.c (op V) = NatTrans.app f.val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫ X.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).obj ((Opens.map (f ∣_ U).val.base).obj V) = (Opens.map f.val.base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))).op [PROOFSTEP] have : _ ≫ X.presheaf.map _ = _ := (((f ∣_ U).1.c.naturality (eqToHom e).op).symm.trans ?_).trans this [GOAL] case refine_2 C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace V : Opens { x // x ∈ U } this✝ : NatTrans.app (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫ NatTrans.app (f ∣_ U).val.c ((Opens.map (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))) = NatTrans.app f.val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫ NatTrans.app (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).val.c ((Opens.map f.val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))) ≫ (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.map (eqToHom (_ : (Opens.map (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))) ≫ f).val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) = (Opens.map ((f ∣_ U) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)))) e : (Opens.map (Opens.inclusion U)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V) = V this : NatTrans.app (f ∣_ U).val.c (op V) ≫ X.presheaf.map ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).op.map ((Opens.map (f ∣_ U).val.base).op.map (eqToHom e).op)) = NatTrans.app f.val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫ NatTrans.app (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).val.c ((Opens.map f.val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))) ≫ (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.map (eqToHom (_ : (Opens.map (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))) ≫ f).val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) = (Opens.map ((f ∣_ U) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)))) ⊢ NatTrans.app (f ∣_ U).val.c (op V) = NatTrans.app f.val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫ X.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).obj ((Opens.map (f ∣_ U).val.base).obj V) = (Opens.map f.val.base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))).op [PROOFSTEP] rw [← IsIso.eq_comp_inv, ← Functor.map_inv, Category.assoc] at this [GOAL] case refine_2 C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace V : Opens { x // x ∈ U } this✝ : NatTrans.app (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫ NatTrans.app (f ∣_ U).val.c ((Opens.map (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))) = NatTrans.app f.val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫ NatTrans.app (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).val.c ((Opens.map f.val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))) ≫ (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.map (eqToHom (_ : (Opens.map (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))) ≫ f).val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) = (Opens.map ((f ∣_ U) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)))) e : (Opens.map (Opens.inclusion U)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V) = V this : NatTrans.app (f ∣_ U).val.c (op V) = NatTrans.app f.val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫ (NatTrans.app (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).val.c ((Opens.map f.val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))) ≫ (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.map (eqToHom (_ : (Opens.map (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))) ≫ f).val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) = (Opens.map ((f ∣_ U) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))))) ≫ X.presheaf.map (inv ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).op.map ((Opens.map (f ∣_ U).val.base).op.map (eqToHom e).op))) ⊢ NatTrans.app (f ∣_ U).val.c (op V) = NatTrans.app f.val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫ X.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).obj ((Opens.map (f ∣_ U).val.base).obj V) = (Opens.map f.val.base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))).op [PROOFSTEP] rw [this] [GOAL] case refine_2 C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace V : Opens { x // x ∈ U } this✝ : NatTrans.app (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫ NatTrans.app (f ∣_ U).val.c ((Opens.map (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))) = NatTrans.app f.val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫ NatTrans.app (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).val.c ((Opens.map f.val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))) ≫ (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.map (eqToHom (_ : (Opens.map (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))) ≫ f).val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) = (Opens.map ((f ∣_ U) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)))) e : (Opens.map (Opens.inclusion U)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V) = V this : NatTrans.app (f ∣_ U).val.c (op V) = NatTrans.app f.val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫ (NatTrans.app (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).val.c ((Opens.map f.val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))) ≫ (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.map (eqToHom (_ : (Opens.map (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))) ≫ f).val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) = (Opens.map ((f ∣_ U) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))))) ≫ X.presheaf.map (inv ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).op.map ((Opens.map (f ∣_ U).val.base).op.map (eqToHom e).op))) ⊢ NatTrans.app f.val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫ (NatTrans.app (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).val.c ((Opens.map f.val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))) ≫ (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.map (eqToHom (_ : (Opens.map (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))) ≫ f).val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) = (Opens.map ((f ∣_ U) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))))) ≫ X.presheaf.map (inv ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).op.map ((Opens.map (f ∣_ U).val.base).op.map (eqToHom e).op))) = NatTrans.app f.val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫ X.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).obj ((Opens.map (f ∣_ U).val.base).obj V) = (Opens.map f.val.base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))).op [PROOFSTEP] congr 1 [GOAL] case refine_2.e_a C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace V : Opens { x // x ∈ U } this✝ : NatTrans.app (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫ NatTrans.app (f ∣_ U).val.c ((Opens.map (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))) = NatTrans.app f.val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫ NatTrans.app (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).val.c ((Opens.map f.val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))) ≫ (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.map (eqToHom (_ : (Opens.map (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))) ≫ f).val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) = (Opens.map ((f ∣_ U) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)))) e : (Opens.map (Opens.inclusion U)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V) = V this : NatTrans.app (f ∣_ U).val.c (op V) = NatTrans.app f.val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫ (NatTrans.app (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).val.c ((Opens.map f.val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))) ≫ (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.map (eqToHom (_ : (Opens.map (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))) ≫ f).val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) = (Opens.map ((f ∣_ U) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))))) ≫ X.presheaf.map (inv ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).op.map ((Opens.map (f ∣_ U).val.base).op.map (eqToHom e).op))) ⊢ (NatTrans.app (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).val.c ((Opens.map f.val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))) ≫ (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.map (eqToHom (_ : (Opens.map (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))) ≫ f).val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) = (Opens.map ((f ∣_ U) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))))) ≫ X.presheaf.map (inv ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).op.map ((Opens.map (f ∣_ U).val.base).op.map (eqToHom e).op))) = X.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).obj ((Opens.map (f ∣_ U).val.base).obj V) = (Opens.map f.val.base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))).op [PROOFSTEP] erw [← X.presheaf.map_comp, ← X.presheaf.map_comp] [GOAL] case refine_2.e_a C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace V : Opens { x // x ∈ U } this✝ : NatTrans.app (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫ NatTrans.app (f ∣_ U).val.c ((Opens.map (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))) = NatTrans.app f.val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫ NatTrans.app (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).val.c ((Opens.map f.val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))) ≫ (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.map (eqToHom (_ : (Opens.map (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))) ≫ f).val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) = (Opens.map ((f ∣_ U) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)))) e : (Opens.map (Opens.inclusion U)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V) = V this : NatTrans.app (f ∣_ U).val.c (op V) = NatTrans.app f.val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫ (NatTrans.app (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).val.c ((Opens.map f.val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))) ≫ (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.map (eqToHom (_ : (Opens.map (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))) ≫ f).val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) = (Opens.map ((f ∣_ U) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))))) ≫ X.presheaf.map (inv ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).op.map ((Opens.map (f ∣_ U).val.base).op.map (eqToHom e).op))) ⊢ X.presheaf.map (((NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).counit ((Opens.map f.val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))).unop).op ≫ (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).op.map (eqToHom (_ : (Opens.map (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))) ≫ f).val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) = (Opens.map ((f ∣_ U) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))))) ≫ inv ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).op.map ((Opens.map (f ∣_ U).val.base).op.map (eqToHom e).op))) = X.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).obj ((Opens.map (f ∣_ U).val.base).obj V) = (Opens.map f.val.base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))).op [PROOFSTEP] congr 1 [GOAL] case refine_1 C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace V : Opens { x // x ∈ U } this : NatTrans.app (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫ NatTrans.app (f ∣_ U).val.c ((Opens.map (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))) = NatTrans.app f.val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫ NatTrans.app (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).val.c ((Opens.map f.val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))) ≫ (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.map (eqToHom (_ : (Opens.map (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))) ≫ f).val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) = (Opens.map ((f ∣_ U) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)))) e : (Opens.map (Opens.inclusion U)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V) = V ⊢ (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.map (eqToHom e).op ≫ NatTrans.app (f ∣_ U).val.c (op ((Opens.map (Opens.inclusion U)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))) = NatTrans.app (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫ NatTrans.app (f ∣_ U).val.c ((Opens.map (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))) [PROOFSTEP] change Y.presheaf.map _ ≫ _ = Y.presheaf.map _ ≫ _ [GOAL] case refine_1 C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace V : Opens { x // x ∈ U } this : NatTrans.app (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫ NatTrans.app (f ∣_ U).val.c ((Opens.map (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))) = NatTrans.app f.val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫ NatTrans.app (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).val.c ((Opens.map f.val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))) ≫ (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.map (eqToHom (_ : (Opens.map (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))) ≫ f).val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) = (Opens.map ((f ∣_ U) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)))) e : (Opens.map (Opens.inclusion U)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V) = V ⊢ Y.presheaf.map ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).op.map (eqToHom e).op) ≫ NatTrans.app (f ∣_ U).val.c (op ((Opens.map (Opens.inclusion U)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))) = Y.presheaf.map (NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑(Opens.inclusion U))).counit (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)).unop).op ≫ NatTrans.app (f ∣_ U).val.c ((Opens.map (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).op.obj (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))) [PROOFSTEP] congr 1 [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace ⊢ Scheme.Γ.map (f ∣_ U).op = Y.presheaf.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op ≫ NatTrans.app f.val.c (op U) ≫ X.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).obj ⊤ = (Opens.map f.val.base).obj U)).op [PROOFSTEP] rw [Scheme.Γ_map_op, morphismRestrict_c_app f U ⊤, f.val.c.naturality_assoc] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace ⊢ NatTrans.app f.val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)) ≫ X.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).obj ((Opens.map (f ∣_ U).val.base).obj ⊤) = (Opens.map f.val.base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤))).op = NatTrans.app f.val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)) ≫ (f.val.base _* X.presheaf).map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op ≫ X.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).obj ⊤ = (Opens.map f.val.base).obj U)).op [PROOFSTEP] erw [← X.presheaf.map_comp] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace ⊢ NatTrans.app f.val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)) ≫ X.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).obj ((Opens.map (f ∣_ U).val.base).obj ⊤) = (Opens.map f.val.base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤))).op = NatTrans.app f.val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)) ≫ X.presheaf.map ((Opens.map f.val.base).op.map (eqToHom (_ : U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤)).op ≫ (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).obj ⊤ = (Opens.map f.val.base).obj U)).op) [PROOFSTEP] congr [GOAL] C : Type u inst✝ : Category.{v, u} C X Y U : Scheme f : X ⟶ Y g : U ⟶ Y hg : IsOpenImmersion g ⊢ Arrow.mk (f ∣_ Scheme.Hom.opensRange g) ≅ Arrow.mk pullback.snd [PROOFSTEP] let V : Opens Y := Scheme.Hom.opensRange g [GOAL] C : Type u inst✝ : Category.{v, u} C X Y U : Scheme f : X ⟶ Y g : U ⟶ Y hg : IsOpenImmersion g V : Opens ↑↑Y.toPresheafedSpace := Scheme.Hom.opensRange g ⊢ Arrow.mk (f ∣_ Scheme.Hom.opensRange g) ≅ Arrow.mk pullback.snd [PROOFSTEP] let e := IsOpenImmersion.isoOfRangeEq g (Y.ofRestrict V.openEmbedding) Subtype.range_coe.symm [GOAL] C : Type u inst✝ : Category.{v, u} C X Y U : Scheme f : X ⟶ Y g : U ⟶ Y hg : IsOpenImmersion g V : Opens ↑↑Y.toPresheafedSpace := Scheme.Hom.opensRange g e : U ≅ Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion V)) := IsOpenImmersion.isoOfRangeEq g (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion V))) (_ : Set.range ↑g.val.base = Set.range Subtype.val) ⊢ Arrow.mk (f ∣_ Scheme.Hom.opensRange g) ≅ Arrow.mk pullback.snd [PROOFSTEP] let t : pullback f g ⟶ pullback f (Y.ofRestrict V.openEmbedding) := pullback.map _ _ _ _ (𝟙 _) e.hom (𝟙 _) (by rw [Category.comp_id, Category.id_comp]) (by rw [Category.comp_id, IsOpenImmersion.isoOfRangeEq_hom, IsOpenImmersion.lift_fac]) [GOAL] C : Type u inst✝ : Category.{v, u} C X Y U : Scheme f : X ⟶ Y g : U ⟶ Y hg : IsOpenImmersion g V : Opens ↑↑Y.toPresheafedSpace := Scheme.Hom.opensRange g e : U ≅ Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion V)) := IsOpenImmersion.isoOfRangeEq g (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion V))) (_ : Set.range ↑g.val.base = Set.range Subtype.val) ⊢ f ≫ 𝟙 Y = 𝟙 X ≫ f [PROOFSTEP] rw [Category.comp_id, Category.id_comp] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y U : Scheme f : X ⟶ Y g : U ⟶ Y hg : IsOpenImmersion g V : Opens ↑↑Y.toPresheafedSpace := Scheme.Hom.opensRange g e : U ≅ Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion V)) := IsOpenImmersion.isoOfRangeEq g (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion V))) (_ : Set.range ↑g.val.base = Set.range Subtype.val) ⊢ g ≫ 𝟙 Y = e.hom ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion V)) [PROOFSTEP] rw [Category.comp_id, IsOpenImmersion.isoOfRangeEq_hom, IsOpenImmersion.lift_fac] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y U : Scheme f : X ⟶ Y g : U ⟶ Y hg : IsOpenImmersion g V : Opens ↑↑Y.toPresheafedSpace := Scheme.Hom.opensRange g e : U ≅ Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion V)) := IsOpenImmersion.isoOfRangeEq g (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion V))) (_ : Set.range ↑g.val.base = Set.range Subtype.val) t : pullback f g ⟶ pullback f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion V))) := pullback.map f g f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion V))) (𝟙 X) e.hom (𝟙 Y) (_ : f ≫ 𝟙 Y = 𝟙 X ≫ f) (_ : g ≫ 𝟙 Y = e.hom ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion V))) ⊢ Arrow.mk (f ∣_ Scheme.Hom.opensRange g) ≅ Arrow.mk pullback.snd [PROOFSTEP] symm [GOAL] C : Type u inst✝ : Category.{v, u} C X Y U : Scheme f : X ⟶ Y g : U ⟶ Y hg : IsOpenImmersion g V : Opens ↑↑Y.toPresheafedSpace := Scheme.Hom.opensRange g e : U ≅ Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion V)) := IsOpenImmersion.isoOfRangeEq g (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion V))) (_ : Set.range ↑g.val.base = Set.range Subtype.val) t : pullback f g ⟶ pullback f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion V))) := pullback.map f g f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion V))) (𝟙 X) e.hom (𝟙 Y) (_ : f ≫ 𝟙 Y = 𝟙 X ≫ f) (_ : g ≫ 𝟙 Y = e.hom ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion V))) ⊢ Arrow.mk pullback.snd ≅ Arrow.mk (f ∣_ Scheme.Hom.opensRange g) [PROOFSTEP] refine' Arrow.isoMk (asIso t ≪≫ pullbackRestrictIsoRestrict f V) e _ [GOAL] C : Type u inst✝ : Category.{v, u} C X Y U : Scheme f : X ⟶ Y g : U ⟶ Y hg : IsOpenImmersion g V : Opens ↑↑Y.toPresheafedSpace := Scheme.Hom.opensRange g e : U ≅ Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion V)) := IsOpenImmersion.isoOfRangeEq g (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion V))) (_ : Set.range ↑g.val.base = Set.range Subtype.val) t : pullback f g ⟶ pullback f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion V))) := pullback.map f g f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion V))) (𝟙 X) e.hom (𝟙 Y) (_ : f ≫ 𝟙 Y = 𝟙 X ≫ f) (_ : g ≫ 𝟙 Y = e.hom ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion V))) ⊢ (asIso t ≪≫ pullbackRestrictIsoRestrict f V).hom ≫ (Arrow.mk (f ∣_ Scheme.Hom.opensRange g)).hom = (Arrow.mk pullback.snd).hom ≫ e.hom [PROOFSTEP] rw [Iso.trans_hom, asIso_hom, ← Iso.comp_inv_eq, ← cancel_mono g, Arrow.mk_hom, Arrow.mk_hom, IsOpenImmersion.isoOfRangeEq_inv, Category.assoc, Category.assoc, Category.assoc, IsOpenImmersion.lift_fac, ← pullback.condition, morphismRestrict_ι, pullbackRestrictIsoRestrict_hom_restrict_assoc, pullback.lift_fst_assoc, Category.comp_id] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U V : Opens ↑↑Y.toPresheafedSpace e : U = V ⊢ Arrow.mk (f ∣_ U) = Arrow.mk (f ∣_ V) [PROOFSTEP] subst e [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace ⊢ Arrow.mk (f ∣_ U) = Arrow.mk (f ∣_ U) [PROOFSTEP] rfl [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace V : Opens { x // x ∈ U } ⊢ Arrow.mk (f ∣_ U ∣_ V) ≅ Arrow.mk (f ∣_ (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V) [PROOFSTEP] set g := ((Y.restrict U.openEmbedding).ofRestrict (V.openEmbedding (X := TopCat.of U)) ≫ Y.ofRestrict U.openEmbedding) [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace V : Opens { x // x ∈ U } g : Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)) ⟶ Y := Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)) ⊢ Arrow.mk (f ∣_ U ∣_ V) ≅ Arrow.mk (f ∣_ (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V) [PROOFSTEP] have i1 : IsOpenImmersion g := PresheafedSpace.IsOpenImmersion.comp _ _ [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace V : Opens { x // x ∈ U } g : Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)) ⟶ Y := Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)) i1 : IsOpenImmersion g ⊢ Arrow.mk (f ∣_ U ∣_ V) ≅ Arrow.mk (f ∣_ (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V) [PROOFSTEP] have i2 : HasPullback f g := IsOpenImmersion.hasPullback_of_right g f [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace V : Opens { x // x ∈ U } g : Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)) ⟶ Y := Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)) i1 : IsOpenImmersion g i2 : HasPullback f g ⊢ Arrow.mk (f ∣_ U ∣_ V) ≅ Arrow.mk (f ∣_ (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V) [PROOFSTEP] set h : _ ⟶ pullback f g := (pullbackRestrictIsoRestrict (f ∣_ U) V).inv ≫ (pullbackSymmetry _ _).hom ≫ pullback.map _ _ _ _ (𝟙 _) ((pullbackRestrictIsoRestrict f U).inv ≫ (pullbackSymmetry _ _).hom) (𝟙 _) ((Category.comp_id _).trans (Category.id_comp _).symm) (by aesop_cat) ≫ (pullbackRightPullbackFstIso _ _ _).hom ≫ (pullbackSymmetry _ _).hom [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace V : Opens { x // x ∈ U } g : Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)) ⟶ Y := Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)) i1 : IsOpenImmersion g i2 : HasPullback f g ⊢ (f ∣_ U) ≫ 𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) = ((pullbackRestrictIsoRestrict f U).inv ≫ (pullbackSymmetry f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))).hom) ≫ pullback.fst [PROOFSTEP] aesop_cat [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace V : Opens { x // x ∈ U } g : Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)) ⟶ Y := Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)) i1 : IsOpenImmersion g i2 : HasPullback f g h : Scheme.restrict (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))) (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map (f ∣_ U).val.base).obj V))) ⟶ pullback f g := (pullbackRestrictIsoRestrict (f ∣_ U) V).inv ≫ (pullbackSymmetry (f ∣_ U) (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)))).hom ≫ pullback.map (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V))) (f ∣_ U) (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V))) pullback.fst (𝟙 (Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)))) ((pullbackRestrictIsoRestrict f U).inv ≫ (pullbackSymmetry f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))).hom) (𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))) (_ : Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)) ≫ 𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) = 𝟙 (Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V))) ≫ Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V))) (_ : (f ∣_ U) ≫ 𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) = ((pullbackRestrictIsoRestrict f U).inv ≫ (pullbackSymmetry f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))).hom) ≫ pullback.fst) ≫ (pullbackRightPullbackFstIso (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) f (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)))).hom ≫ (pullbackSymmetry (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) f).hom ⊢ Arrow.mk (f ∣_ U ∣_ V) ≅ Arrow.mk (f ∣_ (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V) [PROOFSTEP] have i3 : IsIso h [GOAL] case i3 C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace V : Opens { x // x ∈ U } g : Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)) ⟶ Y := Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)) i1 : IsOpenImmersion g i2 : HasPullback f g h : Scheme.restrict (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))) (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map (f ∣_ U).val.base).obj V))) ⟶ pullback f g := (pullbackRestrictIsoRestrict (f ∣_ U) V).inv ≫ (pullbackSymmetry (f ∣_ U) (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)))).hom ≫ pullback.map (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V))) (f ∣_ U) (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V))) pullback.fst (𝟙 (Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)))) ((pullbackRestrictIsoRestrict f U).inv ≫ (pullbackSymmetry f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))).hom) (𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))) (_ : Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)) ≫ 𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) = 𝟙 (Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V))) ≫ Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V))) (_ : (f ∣_ U) ≫ 𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) = ((pullbackRestrictIsoRestrict f U).inv ≫ (pullbackSymmetry f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))).hom) ≫ pullback.fst) ≫ (pullbackRightPullbackFstIso (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) f (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)))).hom ≫ (pullbackSymmetry (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) f).hom ⊢ IsIso h [PROOFSTEP] repeat apply (config := { allowSynthFailures := true }) IsIso.comp_isIso [GOAL] case i3 C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace V : Opens { x // x ∈ U } g : Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)) ⟶ Y := Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)) i1 : IsOpenImmersion g i2 : HasPullback f g h : Scheme.restrict (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))) (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map (f ∣_ U).val.base).obj V))) ⟶ pullback f g := (pullbackRestrictIsoRestrict (f ∣_ U) V).inv ≫ (pullbackSymmetry (f ∣_ U) (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)))).hom ≫ pullback.map (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V))) (f ∣_ U) (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V))) pullback.fst (𝟙 (Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)))) ((pullbackRestrictIsoRestrict f U).inv ≫ (pullbackSymmetry f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))).hom) (𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))) (_ : Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)) ≫ 𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) = 𝟙 (Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V))) ≫ Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V))) (_ : (f ∣_ U) ≫ 𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) = ((pullbackRestrictIsoRestrict f U).inv ≫ (pullbackSymmetry f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))).hom) ≫ pullback.fst) ≫ (pullbackRightPullbackFstIso (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) f (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)))).hom ≫ (pullbackSymmetry (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) f).hom ⊢ IsIso h [PROOFSTEP] apply (config := { allowSynthFailures := true }) IsIso.comp_isIso [GOAL] case inst C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace V : Opens { x // x ∈ U } g : Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)) ⟶ Y := Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)) i1 : IsOpenImmersion g i2 : HasPullback f g h : Scheme.restrict (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))) (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map (f ∣_ U).val.base).obj V))) ⟶ pullback f g := (pullbackRestrictIsoRestrict (f ∣_ U) V).inv ≫ (pullbackSymmetry (f ∣_ U) (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)))).hom ≫ pullback.map (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V))) (f ∣_ U) (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V))) pullback.fst (𝟙 (Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)))) ((pullbackRestrictIsoRestrict f U).inv ≫ (pullbackSymmetry f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))).hom) (𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))) (_ : Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)) ≫ 𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) = 𝟙 (Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V))) ≫ Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V))) (_ : (f ∣_ U) ≫ 𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) = ((pullbackRestrictIsoRestrict f U).inv ≫ (pullbackSymmetry f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))).hom) ≫ pullback.fst) ≫ (pullbackRightPullbackFstIso (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) f (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)))).hom ≫ (pullbackSymmetry (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) f).hom ⊢ IsIso ((pullbackSymmetry (f ∣_ U) (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)))).hom ≫ pullback.map (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V))) (f ∣_ U) (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V))) pullback.fst (𝟙 (Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)))) ((pullbackRestrictIsoRestrict f U).inv ≫ (pullbackSymmetry f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))).hom) (𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))) (_ : Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)) ≫ 𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) = 𝟙 (Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V))) ≫ Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V))) (_ : (f ∣_ U) ≫ 𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) = ((pullbackRestrictIsoRestrict f U).inv ≫ (pullbackSymmetry f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))).hom) ≫ pullback.fst) ≫ (pullbackRightPullbackFstIso (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) f (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)))).hom ≫ (pullbackSymmetry (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) f).hom) [PROOFSTEP] apply (config := { allowSynthFailures := true }) IsIso.comp_isIso [GOAL] case inst C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace V : Opens { x // x ∈ U } g : Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)) ⟶ Y := Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)) i1 : IsOpenImmersion g i2 : HasPullback f g h : Scheme.restrict (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))) (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map (f ∣_ U).val.base).obj V))) ⟶ pullback f g := (pullbackRestrictIsoRestrict (f ∣_ U) V).inv ≫ (pullbackSymmetry (f ∣_ U) (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)))).hom ≫ pullback.map (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V))) (f ∣_ U) (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V))) pullback.fst (𝟙 (Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)))) ((pullbackRestrictIsoRestrict f U).inv ≫ (pullbackSymmetry f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))).hom) (𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))) (_ : Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)) ≫ 𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) = 𝟙 (Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V))) ≫ Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V))) (_ : (f ∣_ U) ≫ 𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) = ((pullbackRestrictIsoRestrict f U).inv ≫ (pullbackSymmetry f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))).hom) ≫ pullback.fst) ≫ (pullbackRightPullbackFstIso (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) f (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)))).hom ≫ (pullbackSymmetry (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) f).hom ⊢ IsIso (pullback.map (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V))) (f ∣_ U) (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V))) pullback.fst (𝟙 (Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)))) ((pullbackRestrictIsoRestrict f U).inv ≫ (pullbackSymmetry f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))).hom) (𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))) (_ : Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)) ≫ 𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) = 𝟙 (Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V))) ≫ Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V))) (_ : (f ∣_ U) ≫ 𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) = ((pullbackRestrictIsoRestrict f U).inv ≫ (pullbackSymmetry f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))).hom) ≫ pullback.fst) ≫ (pullbackRightPullbackFstIso (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) f (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)))).hom ≫ (pullbackSymmetry (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) f).hom) [PROOFSTEP] apply (config := { allowSynthFailures := true }) IsIso.comp_isIso [GOAL] [PROOFSTEP] apply (config := { allowSynthFailures := true }) IsIso.comp_isIso [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace V : Opens { x // x ∈ U } g : Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)) ⟶ Y := Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)) i1 : IsOpenImmersion g i2 : HasPullback f g h : Scheme.restrict (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))) (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map (f ∣_ U).val.base).obj V))) ⟶ pullback f g := (pullbackRestrictIsoRestrict (f ∣_ U) V).inv ≫ (pullbackSymmetry (f ∣_ U) (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)))).hom ≫ pullback.map (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V))) (f ∣_ U) (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V))) pullback.fst (𝟙 (Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)))) ((pullbackRestrictIsoRestrict f U).inv ≫ (pullbackSymmetry f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))).hom) (𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))) (_ : Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)) ≫ 𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) = 𝟙 (Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V))) ≫ Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V))) (_ : (f ∣_ U) ≫ 𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) = ((pullbackRestrictIsoRestrict f U).inv ≫ (pullbackSymmetry f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))).hom) ≫ pullback.fst) ≫ (pullbackRightPullbackFstIso (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) f (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)))).hom ≫ (pullbackSymmetry (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) f).hom i3 : IsIso h ⊢ Arrow.mk (f ∣_ U ∣_ V) ≅ Arrow.mk (f ∣_ (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V) [PROOFSTEP] have : (f ∣_ U ∣_ V) ≫ (Iso.refl _).hom = (asIso h).hom ≫ pullback.snd (f := f) (g := g) [GOAL] case this C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace V : Opens { x // x ∈ U } g : Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)) ⟶ Y := Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)) i1 : IsOpenImmersion g i2 : HasPullback f g h : Scheme.restrict (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))) (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map (f ∣_ U).val.base).obj V))) ⟶ pullback f g := (pullbackRestrictIsoRestrict (f ∣_ U) V).inv ≫ (pullbackSymmetry (f ∣_ U) (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)))).hom ≫ pullback.map (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V))) (f ∣_ U) (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V))) pullback.fst (𝟙 (Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)))) ((pullbackRestrictIsoRestrict f U).inv ≫ (pullbackSymmetry f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))).hom) (𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))) (_ : Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)) ≫ 𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) = 𝟙 (Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V))) ≫ Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V))) (_ : (f ∣_ U) ≫ 𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) = ((pullbackRestrictIsoRestrict f U).inv ≫ (pullbackSymmetry f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))).hom) ≫ pullback.fst) ≫ (pullbackRightPullbackFstIso (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) f (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)))).hom ≫ (pullbackSymmetry (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) f).hom i3 : IsIso h ⊢ (f ∣_ U ∣_ V) ≫ (Iso.refl (Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)))).hom = (asIso h).hom ≫ pullback.snd [PROOFSTEP] simp only [Category.comp_id, pullbackRightPullbackFstIso_hom_fst, Iso.refl_hom, Category.assoc, pullbackSymmetry_hom_comp_snd, asIso_hom, pullback.lift_fst, pullbackSymmetry_hom_comp_fst] [GOAL] case this C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace V : Opens { x // x ∈ U } g : Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)) ⟶ Y := Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)) i1 : IsOpenImmersion g i2 : HasPullback f g h : Scheme.restrict (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))) (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map (f ∣_ U).val.base).obj V))) ⟶ pullback f g := (pullbackRestrictIsoRestrict (f ∣_ U) V).inv ≫ (pullbackSymmetry (f ∣_ U) (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)))).hom ≫ pullback.map (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V))) (f ∣_ U) (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V))) pullback.fst (𝟙 (Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)))) ((pullbackRestrictIsoRestrict f U).inv ≫ (pullbackSymmetry f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))).hom) (𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))) (_ : Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)) ≫ 𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) = 𝟙 (Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V))) ≫ Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V))) (_ : (f ∣_ U) ≫ 𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) = ((pullbackRestrictIsoRestrict f U).inv ≫ (pullbackSymmetry f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))).hom) ≫ pullback.fst) ≫ (pullbackRightPullbackFstIso (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) f (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)))).hom ≫ (pullbackSymmetry (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) f).hom i3 : IsIso h ⊢ f ∣_ U ∣_ V = (pullbackRestrictIsoRestrict (f ∣_ U) V).inv ≫ pullback.snd [PROOFSTEP] rfl [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace V : Opens { x // x ∈ U } g : Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)) ⟶ Y := Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)) i1 : IsOpenImmersion g i2 : HasPullback f g h : Scheme.restrict (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))) (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map (f ∣_ U).val.base).obj V))) ⟶ pullback f g := (pullbackRestrictIsoRestrict (f ∣_ U) V).inv ≫ (pullbackSymmetry (f ∣_ U) (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)))).hom ≫ pullback.map (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V))) (f ∣_ U) (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V))) pullback.fst (𝟙 (Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)))) ((pullbackRestrictIsoRestrict f U).inv ≫ (pullbackSymmetry f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))).hom) (𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))) (_ : Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)) ≫ 𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) = 𝟙 (Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V))) ≫ Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V))) (_ : (f ∣_ U) ≫ 𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) = ((pullbackRestrictIsoRestrict f U).inv ≫ (pullbackSymmetry f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))).hom) ≫ pullback.fst) ≫ (pullbackRightPullbackFstIso (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) f (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)))).hom ≫ (pullbackSymmetry (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) f).hom i3 : IsIso h this : (f ∣_ U ∣_ V) ≫ (Iso.refl (Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)))).hom = (asIso h).hom ≫ pullback.snd ⊢ Arrow.mk (f ∣_ U ∣_ V) ≅ Arrow.mk (f ∣_ (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V) [PROOFSTEP] refine' Arrow.isoMk' _ _ _ _ this.symm ≪≫ (morphismRestrictOpensRange _ _).symm ≪≫ morphismRestrictEq _ _ [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace V : Opens { x // x ∈ U } g : Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)) ⟶ Y := Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)) i1 : IsOpenImmersion g i2 : HasPullback f g h : Scheme.restrict (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))) (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map (f ∣_ U).val.base).obj V))) ⟶ pullback f g := (pullbackRestrictIsoRestrict (f ∣_ U) V).inv ≫ (pullbackSymmetry (f ∣_ U) (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)))).hom ≫ pullback.map (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V))) (f ∣_ U) (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V))) pullback.fst (𝟙 (Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)))) ((pullbackRestrictIsoRestrict f U).inv ≫ (pullbackSymmetry f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))).hom) (𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))) (_ : Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)) ≫ 𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) = 𝟙 (Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V))) ≫ Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V))) (_ : (f ∣_ U) ≫ 𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) = ((pullbackRestrictIsoRestrict f U).inv ≫ (pullbackSymmetry f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))).hom) ≫ pullback.fst) ≫ (pullbackRightPullbackFstIso (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) f (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)))).hom ≫ (pullbackSymmetry (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) f).hom i3 : IsIso h this : (f ∣_ U ∣_ V) ≫ (Iso.refl (Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)))).hom = (asIso h).hom ≫ pullback.snd ⊢ Scheme.Hom.opensRange g = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V [PROOFSTEP] ext1 [GOAL] case h C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace V : Opens { x // x ∈ U } g : Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)) ⟶ Y := Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)) i1 : IsOpenImmersion g i2 : HasPullback f g h : Scheme.restrict (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))) (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map (f ∣_ U).val.base).obj V))) ⟶ pullback f g := (pullbackRestrictIsoRestrict (f ∣_ U) V).inv ≫ (pullbackSymmetry (f ∣_ U) (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)))).hom ≫ pullback.map (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V))) (f ∣_ U) (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V))) pullback.fst (𝟙 (Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)))) ((pullbackRestrictIsoRestrict f U).inv ≫ (pullbackSymmetry f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))).hom) (𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))) (_ : Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)) ≫ 𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) = 𝟙 (Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V))) ≫ Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V))) (_ : (f ∣_ U) ≫ 𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) = ((pullbackRestrictIsoRestrict f U).inv ≫ (pullbackSymmetry f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))).hom) ≫ pullback.fst) ≫ (pullbackRightPullbackFstIso (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) f (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)))).hom ≫ (pullbackSymmetry (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) f).hom i3 : IsIso h this : (f ∣_ U ∣_ V) ≫ (Iso.refl (Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)))).hom = (asIso h).hom ≫ pullback.snd ⊢ ↑(Scheme.Hom.opensRange g) = ↑((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V) [PROOFSTEP] dsimp [GOAL] case h C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace V : Opens { x // x ∈ U } g : Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)) ⟶ Y := Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)) i1 : IsOpenImmersion g i2 : HasPullback f g h : Scheme.restrict (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))) (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map (f ∣_ U).val.base).obj V))) ⟶ pullback f g := (pullbackRestrictIsoRestrict (f ∣_ U) V).inv ≫ (pullbackSymmetry (f ∣_ U) (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)))).hom ≫ pullback.map (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V))) (f ∣_ U) (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V))) pullback.fst (𝟙 (Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)))) ((pullbackRestrictIsoRestrict f U).inv ≫ (pullbackSymmetry f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))).hom) (𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))) (_ : Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)) ≫ 𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) = 𝟙 (Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V))) ≫ Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V))) (_ : (f ∣_ U) ≫ 𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) = ((pullbackRestrictIsoRestrict f U).inv ≫ (pullbackSymmetry f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))).hom) ≫ pullback.fst) ≫ (pullbackRightPullbackFstIso (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) f (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)))).hom ≫ (pullbackSymmetry (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) f).hom i3 : IsIso h this : (f ∣_ U ∣_ V) ≫ (Iso.refl (Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)))).hom = (asIso h).hom ≫ pullback.snd ⊢ Set.range ↑(Opens.inclusion V ≫ Opens.inclusion U) = ↑(Opens.inclusion U) '' ↑V [PROOFSTEP] rw [coe_comp, Set.range_comp] [GOAL] case h C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace V : Opens { x // x ∈ U } g : Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)) ⟶ Y := Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)) i1 : IsOpenImmersion g i2 : HasPullback f g h : Scheme.restrict (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))) (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map (f ∣_ U).val.base).obj V))) ⟶ pullback f g := (pullbackRestrictIsoRestrict (f ∣_ U) V).inv ≫ (pullbackSymmetry (f ∣_ U) (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)))).hom ≫ pullback.map (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V))) (f ∣_ U) (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V))) pullback.fst (𝟙 (Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)))) ((pullbackRestrictIsoRestrict f U).inv ≫ (pullbackSymmetry f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))).hom) (𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))) (_ : Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)) ≫ 𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) = 𝟙 (Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V))) ≫ Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V))) (_ : (f ∣_ U) ≫ 𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) = ((pullbackRestrictIsoRestrict f U).inv ≫ (pullbackSymmetry f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))).hom) ≫ pullback.fst) ≫ (pullbackRightPullbackFstIso (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) f (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)))).hom ≫ (pullbackSymmetry (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) f).hom i3 : IsIso h this : (f ∣_ U ∣_ V) ≫ (Iso.refl (Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)))).hom = (asIso h).hom ≫ pullback.snd ⊢ ↑(Opens.inclusion U) '' Set.range ↑(Opens.inclusion V) = ↑(Opens.inclusion U) '' ↑V [PROOFSTEP] apply congr_arg (U.inclusion '' ·) [GOAL] case h C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace V : Opens { x // x ∈ U } g : Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)) ⟶ Y := Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)) i1 : IsOpenImmersion g i2 : HasPullback f g h : Scheme.restrict (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))) (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map (f ∣_ U).val.base).obj V))) ⟶ pullback f g := (pullbackRestrictIsoRestrict (f ∣_ U) V).inv ≫ (pullbackSymmetry (f ∣_ U) (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)))).hom ≫ pullback.map (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V))) (f ∣_ U) (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V))) pullback.fst (𝟙 (Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)))) ((pullbackRestrictIsoRestrict f U).inv ≫ (pullbackSymmetry f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))).hom) (𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))) (_ : Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)) ≫ 𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) = 𝟙 (Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V))) ≫ Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V))) (_ : (f ∣_ U) ≫ 𝟙 (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) = ((pullbackRestrictIsoRestrict f U).inv ≫ (pullbackSymmetry f (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U)))).hom) ≫ pullback.fst) ≫ (pullbackRightPullbackFstIso (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) f (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)))).hom ≫ (pullbackSymmetry (Scheme.ofRestrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)) ≫ Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) f).hom i3 : IsIso h this : (f ∣_ U ∣_ V) ≫ (Iso.refl (Scheme.restrict (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (_ : OpenEmbedding ↑(Opens.inclusion V)))).hom = (asIso h).hom ≫ pullback.snd ⊢ Set.range ↑(Opens.inclusion V) = ↑V [PROOFSTEP] exact Subtype.range_val [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace r : ↑(Y.presheaf.obj (op U)) ⊢ Arrow.mk (f ∣_ U ∣_ Scheme.basicOpen (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (↑(Y.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤ = U)).op) r)) ≅ Arrow.mk (f ∣_ Scheme.basicOpen Y r) [PROOFSTEP] refine' morphismRestrictRestrict _ _ _ ≪≫ morphismRestrictEq _ _ [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace r : ↑(Y.presheaf.obj (op U)) ⊢ (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj (Scheme.basicOpen (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (↑(Y.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤ = U)).op) r)) = Scheme.basicOpen Y r [PROOFSTEP] have e := Scheme.preimage_basicOpen (Y.ofRestrict U.openEmbedding) r [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace r : ↑(Y.presheaf.obj (op U)) e : (Opens.map (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).obj (Scheme.basicOpen Y r) = Scheme.basicOpen (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (↑(NatTrans.app (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.c (op U)) r) ⊢ (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj (Scheme.basicOpen (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (↑(Y.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤ = U)).op) r)) = Scheme.basicOpen Y r [PROOFSTEP] erw [Scheme.ofRestrict_val_c_app, Opens.adjunction_counit_app_self, eqToHom_op] at e [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace r : ↑(Y.presheaf.obj (op U)) e : (Opens.map (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).obj (Scheme.basicOpen Y r) = Scheme.basicOpen (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (↑(Y.presheaf.map (eqToHom (_ : op (op U).unop = op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ((Opens.map (Opens.inclusion U)).obj (op U).unop))))) r) ⊢ (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj (Scheme.basicOpen (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (↑(Y.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤ = U)).op) r)) = Scheme.basicOpen Y r [PROOFSTEP] rw [← (Y.restrict U.openEmbedding).basicOpen_res_eq _ (eqToHom U.inclusion_map_eq_top).op] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace r : ↑(Y.presheaf.obj (op U)) e : (Opens.map (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).obj (Scheme.basicOpen Y r) = Scheme.basicOpen (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (↑(Y.presheaf.map (eqToHom (_ : op (op U).unop = op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ((Opens.map (Opens.inclusion U)).obj (op U).unop))))) r) ⊢ (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj (Scheme.basicOpen (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (↑((Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.map (eqToHom (_ : (Opens.map (Opens.inclusion U)).obj U = ⊤)).op) (↑(Y.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤ = U)).op) r))) = Scheme.basicOpen Y r [PROOFSTEP] erw [← comp_apply] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace r : ↑(Y.presheaf.obj (op U)) e : (Opens.map (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).obj (Scheme.basicOpen Y r) = Scheme.basicOpen (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (↑(Y.presheaf.map (eqToHom (_ : op (op U).unop = op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ((Opens.map (Opens.inclusion U)).obj (op U).unop))))) r) ⊢ (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj (Scheme.basicOpen (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (↑(Y.presheaf.map (eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤ = U)).op ≫ (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf.map (eqToHom (_ : (Opens.map (Opens.inclusion U)).obj U = ⊤)).op) r)) = Scheme.basicOpen Y r [PROOFSTEP] erw [← Y.presheaf.map_comp] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace r : ↑(Y.presheaf.obj (op U)) e : (Opens.map (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).obj (Scheme.basicOpen Y r) = Scheme.basicOpen (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (↑(Y.presheaf.map (eqToHom (_ : op (op U).unop = op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ((Opens.map (Opens.inclusion U)).obj (op U).unop))))) r) ⊢ (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj (Scheme.basicOpen (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (↑(Y.presheaf.map ((eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ⊤ = U)).op ≫ (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).op.map (eqToHom (_ : (Opens.map (Opens.inclusion U)).obj U = ⊤)).op)) r)) = Scheme.basicOpen Y r [PROOFSTEP] rw [eqToHom_op, eqToHom_op, eqToHom_map, eqToHom_trans] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace r : ↑(Y.presheaf.obj (op U)) e : (Opens.map (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).obj (Scheme.basicOpen Y r) = Scheme.basicOpen (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (↑(Y.presheaf.map (eqToHom (_ : op (op U).unop = op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ((Opens.map (Opens.inclusion U)).obj (op U).unop))))) r) ⊢ (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj (Scheme.basicOpen (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (↑(Y.presheaf.map (eqToHom (_ : op U = (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).op.obj (op ((Opens.map (Opens.inclusion U)).obj U))))) r)) = Scheme.basicOpen Y r [PROOFSTEP] erw [← e] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace r : ↑(Y.presheaf.obj (op U)) e : (Opens.map (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).obj (Scheme.basicOpen Y r) = Scheme.basicOpen (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (↑(Y.presheaf.map (eqToHom (_ : op (op U).unop = op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ((Opens.map (Opens.inclusion U)).obj (op U).unop))))) r) ⊢ (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ((Opens.map (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).obj (Scheme.basicOpen Y r)) = Scheme.basicOpen Y r [PROOFSTEP] ext1 [GOAL] case h C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace r : ↑(Y.presheaf.obj (op U)) e : (Opens.map (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).obj (Scheme.basicOpen Y r) = Scheme.basicOpen (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (↑(Y.presheaf.map (eqToHom (_ : op (op U).unop = op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ((Opens.map (Opens.inclusion U)).obj (op U).unop))))) r) ⊢ ↑((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ((Opens.map (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).obj (Scheme.basicOpen Y r))) = ↑(Scheme.basicOpen Y r) [PROOFSTEP] dsimp [Opens.map, Opens.inclusion] [GOAL] case h C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace r : ↑(Y.presheaf.obj (op U)) e : (Opens.map (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).obj (Scheme.basicOpen Y r) = Scheme.basicOpen (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (↑(Y.presheaf.map (eqToHom (_ : op (op U).unop = op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ((Opens.map (Opens.inclusion U)).obj (op U).unop))))) r) ⊢ ↑(ContinuousMap.mk Subtype.val) '' (↑(ContinuousMap.mk Subtype.val) ⁻¹' ↑(Scheme.basicOpen Y r)) = ↑(Scheme.basicOpen Y r) [PROOFSTEP] rw [Set.image_preimage_eq_inter_range, Set.inter_eq_left_iff_subset, ContinuousMap.coe_mk, Subtype.range_val] [GOAL] case h C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace r : ↑(Y.presheaf.obj (op U)) e : (Opens.map (Scheme.ofRestrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).val.base).obj (Scheme.basicOpen Y r) = Scheme.basicOpen (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))) (↑(Y.presheaf.map (eqToHom (_ : op (op U).unop = op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj ((Opens.map (Opens.inclusion U)).obj (op U).unop))))) r) ⊢ ↑(Scheme.basicOpen Y r) ⊆ ↑U [PROOFSTEP] exact Y.basicOpen_le r [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace x : ↑↑(Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace ⊢ Arrow.mk (PresheafedSpace.stalkMap (f ∣_ U).val x) ≅ Arrow.mk (PresheafedSpace.stalkMap f.val ↑x) [PROOFSTEP] fapply Arrow.isoMk' [GOAL] case e₁ C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace x : ↑↑(Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace ⊢ PresheafedSpace.stalk (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace (↑(f ∣_ U).val.base x) ≅ PresheafedSpace.stalk Y.toPresheafedSpace (↑f.val.base ↑x) [PROOFSTEP] refine' Y.restrictStalkIso U.openEmbedding ((f ∣_ U).1.1 x) ≪≫ TopCat.Presheaf.stalkCongr _ _ [GOAL] case e₁ C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace x : ↑↑(Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace ⊢ Inseparable (↑(Opens.inclusion U) (↑(f ∣_ U).val.base x)) (↑f.val.base ↑x) [PROOFSTEP] apply Inseparable.of_eq [GOAL] case e₁.e C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace x : ↑↑(Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace ⊢ ↑(Opens.inclusion U) (↑(f ∣_ U).val.base x) = ↑f.val.base ↑x [PROOFSTEP] exact morphismRestrict_base_coe f U x [GOAL] case e₂ C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace x : ↑↑(Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace ⊢ PresheafedSpace.stalk (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace x ≅ PresheafedSpace.stalk X.toPresheafedSpace ↑x [PROOFSTEP] exact X.restrictStalkIso (Opens.openEmbedding _) _ [GOAL] case h C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace x : ↑↑(Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace ⊢ autoParam ((PresheafedSpace.restrictStalkIso Y.toPresheafedSpace (_ : OpenEmbedding ↑(Opens.inclusion U)) (↑(f ∣_ U).val.base x) ≪≫ TopCat.Presheaf.stalkCongr Y.presheaf (_ : Inseparable (↑(Opens.inclusion U) (↑(f ∣_ U).val.base x)) (↑f.val.base ↑x))).hom ≫ PresheafedSpace.stalkMap f.val ↑x = PresheafedSpace.stalkMap (f ∣_ U).val x ≫ (PresheafedSpace.restrictStalkIso X.toPresheafedSpace (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))) x).hom) _auto✝ [PROOFSTEP] apply TopCat.Presheaf.stalk_hom_ext [GOAL] case h.ih C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace x : ↑↑(Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace ⊢ ∀ (U_1 : Opens ↑↑(Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace) (hxU : ↑(f ∣_ U).val.base x ∈ U_1), TopCat.Presheaf.germ (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf { val := ↑(f ∣_ U).val.base x, property := hxU } ≫ (PresheafedSpace.restrictStalkIso Y.toPresheafedSpace (_ : OpenEmbedding ↑(Opens.inclusion U)) (↑(f ∣_ U).val.base x) ≪≫ TopCat.Presheaf.stalkCongr Y.presheaf (_ : Inseparable (↑(Opens.inclusion U) (↑(f ∣_ U).val.base x)) (↑f.val.base ↑x))).hom ≫ PresheafedSpace.stalkMap f.val ↑x = TopCat.Presheaf.germ (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf { val := ↑(f ∣_ U).val.base x, property := hxU } ≫ PresheafedSpace.stalkMap (f ∣_ U).val x ≫ (PresheafedSpace.restrictStalkIso X.toPresheafedSpace (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))) x).hom [PROOFSTEP] intro V hxV [GOAL] case h.ih C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace x : ↑↑(Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace V : Opens ↑↑(Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace hxV : ↑(f ∣_ U).val.base x ∈ V ⊢ TopCat.Presheaf.germ (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf { val := ↑(f ∣_ U).val.base x, property := hxV } ≫ (PresheafedSpace.restrictStalkIso Y.toPresheafedSpace (_ : OpenEmbedding ↑(Opens.inclusion U)) (↑(f ∣_ U).val.base x) ≪≫ TopCat.Presheaf.stalkCongr Y.presheaf (_ : Inseparable (↑(Opens.inclusion U) (↑(f ∣_ U).val.base x)) (↑f.val.base ↑x))).hom ≫ PresheafedSpace.stalkMap f.val ↑x = TopCat.Presheaf.germ (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf { val := ↑(f ∣_ U).val.base x, property := hxV } ≫ PresheafedSpace.stalkMap (f ∣_ U).val x ≫ (PresheafedSpace.restrictStalkIso X.toPresheafedSpace (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))) x).hom [PROOFSTEP] simp only [TopCat.Presheaf.stalkCongr_hom, CategoryTheory.Category.assoc, CategoryTheory.Iso.trans_hom] [GOAL] case h.ih C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace x : ↑↑(Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace V : Opens ↑↑(Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace hxV : ↑(f ∣_ U).val.base x ∈ V ⊢ TopCat.Presheaf.germ (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf { val := ↑(f ∣_ U).val.base x, property := hxV } ≫ (PresheafedSpace.restrictStalkIso Y.toPresheafedSpace (_ : OpenEmbedding ↑(Opens.inclusion U)) (↑(f ∣_ U).val.base x)).hom ≫ TopCat.Presheaf.stalkSpecializes Y.presheaf (_ : nhds (↑f.val.base ↑x) ≤ nhds (↑(Opens.inclusion U) (↑(f ∣_ U).val.base x))) ≫ PresheafedSpace.stalkMap f.val ↑x = TopCat.Presheaf.germ (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf { val := ↑(f ∣_ U).val.base x, property := hxV } ≫ PresheafedSpace.stalkMap (f ∣_ U).val x ≫ (PresheafedSpace.restrictStalkIso X.toPresheafedSpace (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))) x).hom [PROOFSTEP] erw [PresheafedSpace.restrictStalkIso_hom_eq_germ_assoc] [GOAL] case h.ih C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace x : ↑↑(Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace V : Opens ↑↑(Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace hxV : ↑(f ∣_ U).val.base x ∈ V ⊢ TopCat.Presheaf.germ Y.presheaf { val := ↑(Opens.inclusion U) (↑(f ∣_ U).val.base x), property := (_ : ∃ a, a ∈ ↑V ∧ ↑(Opens.inclusion U) a = ↑(Opens.inclusion U) (↑(f ∣_ U).val.base x)) } ≫ TopCat.Presheaf.stalkSpecializes Y.presheaf (_ : nhds (↑f.val.base ↑x) ≤ nhds (↑(Opens.inclusion U) (↑(f ∣_ U).val.base x))) ≫ PresheafedSpace.stalkMap f.val ↑x = TopCat.Presheaf.germ (Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf { val := ↑(f ∣_ U).val.base x, property := hxV } ≫ PresheafedSpace.stalkMap (f ∣_ U).val x ≫ (PresheafedSpace.restrictStalkIso X.toPresheafedSpace (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))) x).hom [PROOFSTEP] erw [PresheafedSpace.stalkMap_germ_assoc _ V ⟨_, hxV⟩] [GOAL] case h.ih C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace x : ↑↑(Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace V : Opens ↑↑(Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace hxV : ↑(f ∣_ U).val.base x ∈ V ⊢ TopCat.Presheaf.germ Y.presheaf { val := ↑(Opens.inclusion U) (↑(f ∣_ U).val.base x), property := (_ : ∃ a, a ∈ ↑V ∧ ↑(Opens.inclusion U) a = ↑(Opens.inclusion U) (↑(f ∣_ U).val.base x)) } ≫ TopCat.Presheaf.stalkSpecializes Y.presheaf (_ : nhds (↑f.val.base ↑x) ≤ nhds (↑(Opens.inclusion U) (↑(f ∣_ U).val.base x))) ≫ PresheafedSpace.stalkMap f.val ↑x = NatTrans.app (f ∣_ U).val.c (op V) ≫ TopCat.Presheaf.germ (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf { val := x, property := hxV } ≫ (PresheafedSpace.restrictStalkIso X.toPresheafedSpace (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))) x).hom [PROOFSTEP] rw [TopCat.Presheaf.germ_stalk_specializes'_assoc] -- Porting note : explicit variables and proofs were not necessary [GOAL] case h.ih C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace x : ↑↑(Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace V : Opens ↑↑(Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace hxV : ↑(f ∣_ U).val.base x ∈ V ⊢ TopCat.Presheaf.germ Y.presheaf { val := ↑f.val.base ↑x, property := (_ : ↑f.val.base ↑x ∈ ↑((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) } ≫ PresheafedSpace.stalkMap f.val ↑x = NatTrans.app (f ∣_ U).val.c (op V) ≫ TopCat.Presheaf.germ (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf { val := x, property := hxV } ≫ (PresheafedSpace.restrictStalkIso X.toPresheafedSpace (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))) x).hom [PROOFSTEP] erw [PresheafedSpace.stalkMap_germ _ (U.openEmbedding.isOpenMap.functor.obj V) ⟨x.1, ⟨⟨f.1.base x.1, x.2⟩, _, rfl⟩⟩] [GOAL] case h.ih C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace x : ↑↑(Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace V : Opens ↑↑(Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace hxV : ↑(f ∣_ U).val.base x ∈ V ⊢ NatTrans.app f.val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫ TopCat.Presheaf.germ X.presheaf { val := ↑x, property := (_ : ∃ a, a ∈ ↑V ∧ ↑(Opens.inclusion U) a = ↑f.val.base ↑x) } = NatTrans.app (f ∣_ U).val.c (op V) ≫ TopCat.Presheaf.germ (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf { val := x, property := hxV } ≫ (PresheafedSpace.restrictStalkIso X.toPresheafedSpace (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))) x).hom C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace x : ↑↑(Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace V : Opens ↑↑(Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace hxV : ↑(f ∣_ U).val.base x ∈ V ⊢ { val := ↑f.val.base ↑x, property := (_ : ↑x ∈ (Opens.map f.val.base).obj U) } ∈ ↑V [PROOFSTEP] swap [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace x : ↑↑(Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace V : Opens ↑↑(Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace hxV : ↑(f ∣_ U).val.base x ∈ V ⊢ { val := ↑f.val.base ↑x, property := (_ : ↑x ∈ (Opens.map f.val.base).obj U) } ∈ ↑V [PROOFSTEP] rw [morphismRestrict_val_base] at hxV [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace x : ↑↑(Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace V : Opens ↑↑(Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace hxV : Set.restrictPreimage U.carrier (↑f.val.base) x ∈ V ⊢ { val := ↑f.val.base ↑x, property := (_ : ↑x ∈ (Opens.map f.val.base).obj U) } ∈ ↑V [PROOFSTEP] exact hxV [GOAL] case h.ih C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace x : ↑↑(Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace V : Opens ↑↑(Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace hxV : ↑(f ∣_ U).val.base x ∈ V ⊢ NatTrans.app f.val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫ TopCat.Presheaf.germ X.presheaf { val := ↑x, property := (_ : ∃ a, a ∈ ↑V ∧ ↑(Opens.inclusion U) a = ↑f.val.base ↑x) } = NatTrans.app (f ∣_ U).val.c (op V) ≫ TopCat.Presheaf.germ (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace.presheaf { val := x, property := hxV } ≫ (PresheafedSpace.restrictStalkIso X.toPresheafedSpace (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U))) x).hom [PROOFSTEP] erw [PresheafedSpace.restrictStalkIso_hom_eq_germ] [GOAL] case h.ih C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace x : ↑↑(Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace V : Opens ↑↑(Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace hxV : ↑(f ∣_ U).val.base x ∈ V ⊢ NatTrans.app f.val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫ TopCat.Presheaf.germ X.presheaf { val := ↑x, property := (_ : ∃ a, a ∈ ↑V ∧ ↑(Opens.inclusion U) a = ↑f.val.base ↑x) } = NatTrans.app (f ∣_ U).val.c (op V) ≫ TopCat.Presheaf.germ X.presheaf { val := ↑(Opens.inclusion ((Opens.map f.val.base).obj U)) x, property := (_ : ↑(Opens.inclusion ((Opens.map f.val.base).obj U)) x ∈ (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).obj ((Opens.map (f ∣_ U).val.base).obj V)) } [PROOFSTEP] rw [morphismRestrict_c_app, Category.assoc, TopCat.Presheaf.germ_res] [GOAL] case h.ih C : Type u inst✝ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace x : ↑↑(Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace V : Opens ↑↑(Scheme.restrict Y (_ : OpenEmbedding ↑(Opens.inclusion U))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace hxV : ↑(f ∣_ U).val.base x ∈ V ⊢ NatTrans.app f.val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫ TopCat.Presheaf.germ X.presheaf { val := ↑x, property := (_ : ∃ a, a ∈ ↑V ∧ ↑(Opens.inclusion U) a = ↑f.val.base ↑x) } = NatTrans.app f.val.c (op ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V)) ≫ TopCat.Presheaf.germ X.presheaf ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑((Opens.map f.val.base).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion U))).obj V))) }) { val := ↑(Opens.inclusion ((Opens.map f.val.base).obj U)) x, property := (_ : ↑(Opens.inclusion ((Opens.map f.val.base).obj U)) x ∈ (IsOpenMap.functor (_ : IsOpenMap ↑(Opens.inclusion ((Opens.map f.val.base).obj U)))).obj ((Opens.map (f ∣_ U).val.base).obj V)) }) [PROOFSTEP] rfl [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace inst✝ : IsOpenImmersion f ⊢ IsOpenImmersion (f ∣_ U) [PROOFSTEP] delta morphismRestrict [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y : Scheme f : X ⟶ Y U : Opens ↑↑Y.toPresheafedSpace inst✝ : IsOpenImmersion f ⊢ IsOpenImmersion ((pullbackRestrictIsoRestrict f U).inv ≫ pullback.snd) [PROOFSTEP] refine PresheafedSpace.IsOpenImmersion.comp _ _
{"mathlib_filename": "Mathlib.AlgebraicGeometry.OpenImmersion.Scheme", "llama_tokens": 132619}
[GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P x y : α →₀ M ⊢ ↑(x + y) = ↑x + ↑y [PROOFSTEP] ext [GOAL] case h α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P x y : α →₀ M x✝ : α ⊢ ↑(x + y) x✝ = (↑x + ↑y) x✝ [PROOFSTEP] simp [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P x : R y : α →₀ M ⊢ AddHom.toFun { toFun := FunLike.coe, map_add' := (_ : ∀ (x y : α →₀ M), ↑(x + y) = ↑x + ↑y) } (x • y) = ↑(RingHom.id R) x • AddHom.toFun { toFun := FunLike.coe, map_add' := (_ : ∀ (x y : α →₀ M), ↑(x + y) = ↑x + ↑y) } y [PROOFSTEP] ext [GOAL] case h α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P x : R y : α →₀ M x✝ : α ⊢ AddHom.toFun { toFun := FunLike.coe, map_add' := (_ : ∀ (x y : α →₀ M), ↑(x + y) = ↑x + ↑y) } (x • y) x✝ = (↑(RingHom.id R) x • AddHom.toFun { toFun := FunLike.coe, map_add' := (_ : ∀ (x y : α →₀ M), ↑(x + y) = ↑x + ↑y) } y) x✝ [PROOFSTEP] simp [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P s t : Set α h : Disjoint s t ⊢ ⨆ (a : α) (_ : a ∈ s), LinearMap.range (lsingle a) ≤ ⨅ (a : α) (_ : a ∈ t), ker (lapply a) [PROOFSTEP] refine' iSup_le fun a₁ => iSup_le fun h₁ => range_le_iff_comap.2 _ [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P s t : Set α h : Disjoint s t a₁ : α h₁ : a₁ ∈ s ⊢ comap (lsingle a₁) (⨅ (a : α) (_ : a ∈ t), ker (lapply a)) = ⊤ [PROOFSTEP] simp only [(ker_comp _ _).symm, eq_top_iff, SetLike.le_def, mem_ker, comap_iInf, mem_iInf] [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P s t : Set α h : Disjoint s t a₁ : α h₁ : a₁ ∈ s ⊢ ∀ ⦃x : M⦄, x ∈ ⊤ → ∀ (i : α), i ∈ t → ↑(comp (lapply i) (lsingle a₁)) x = 0 [PROOFSTEP] intro b _ a₂ h₂ [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P s t : Set α h : Disjoint s t a₁ : α h₁ : a₁ ∈ s b : M a✝ : b ∈ ⊤ a₂ : α h₂ : a₂ ∈ t ⊢ ↑(comp (lapply a₂) (lsingle a₁)) b = 0 [PROOFSTEP] have : a₁ ≠ a₂ := fun eq => h.le_bot ⟨h₁, eq.symm ▸ h₂⟩ [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P s t : Set α h : Disjoint s t a₁ : α h₁ : a₁ ∈ s b : M a✝ : b ∈ ⊤ a₂ : α h₂ : a₂ ∈ t this : a₁ ≠ a₂ ⊢ ↑(comp (lapply a₂) (lsingle a₁)) b = 0 [PROOFSTEP] exact single_eq_of_ne this [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P ⊢ ⨅ (a : α), ker (lapply a) ≤ ⊥ [PROOFSTEP] simp only [SetLike.le_def, mem_iInf, mem_ker, mem_bot, lapply_apply] [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P ⊢ ∀ ⦃x : α →₀ M⦄, (∀ (i : α), ↑x i = 0) → x = 0 [PROOFSTEP] exact fun a h => Finsupp.ext h [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P ⊢ ⨆ (a : α), LinearMap.range (lsingle a) = ⊤ [PROOFSTEP] refine' eq_top_iff.2 <| SetLike.le_def.2 fun f _ => _ [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P f : α →₀ M x✝ : f ∈ ⊤ ⊢ f ∈ ⨆ (a : α), LinearMap.range (lsingle a) [PROOFSTEP] rw [← sum_single f] [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P f : α →₀ M x✝ : f ∈ ⊤ ⊢ sum f single ∈ ⨆ (a : α), LinearMap.range (lsingle a) [PROOFSTEP] exact sum_mem fun a _ => Submodule.mem_iSup_of_mem a ⟨_, rfl⟩ [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P s t : Set α hs : Disjoint s t ⊢ Disjoint (⨆ (a : α) (_ : a ∈ s), LinearMap.range (lsingle a)) (⨆ (a : α) (_ : a ∈ t), LinearMap.range (lsingle a)) [PROOFSTEP] refine' (Disjoint.mono (lsingle_range_le_ker_lapply s sᶜ _) (lsingle_range_le_ker_lapply t tᶜ _)) _ [GOAL] case refine'_1 α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P s t : Set α hs : Disjoint s t ⊢ Disjoint s sᶜ [PROOFSTEP] apply disjoint_compl_right [GOAL] case refine'_2 α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P s t : Set α hs : Disjoint s t ⊢ Disjoint t tᶜ [PROOFSTEP] apply disjoint_compl_right [GOAL] case refine'_3 α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P s t : Set α hs : Disjoint s t ⊢ Disjoint (⨅ (a : α) (_ : a ∈ sᶜ), ker (lapply a)) (⨅ (a : α) (_ : a ∈ tᶜ), ker (lapply a)) [PROOFSTEP] rw [disjoint_iff_inf_le] [GOAL] case refine'_3 α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P s t : Set α hs : Disjoint s t ⊢ (⨅ (a : α) (_ : a ∈ sᶜ), ker (lapply a)) ⊓ ⨅ (a : α) (_ : a ∈ tᶜ), ker (lapply a) ≤ ⊥ [PROOFSTEP] refine' le_trans (le_iInf fun i => _) iInf_ker_lapply_le_bot [GOAL] case refine'_3 α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P s t : Set α hs : Disjoint s t i : α ⊢ (⨅ (a : α) (_ : a ∈ sᶜ), ker (lapply a)) ⊓ ⨅ (a : α) (_ : a ∈ tᶜ), ker (lapply a) ≤ ker (lapply i) [PROOFSTEP] classical by_cases his : i ∈ s · by_cases hit : i ∈ t · exact (hs.le_bot ⟨his, hit⟩).elim exact inf_le_of_right_le (iInf_le_of_le i <| iInf_le _ hit) exact inf_le_of_left_le (iInf_le_of_le i <| iInf_le _ his) [GOAL] case refine'_3 α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P s t : Set α hs : Disjoint s t i : α ⊢ (⨅ (a : α) (_ : a ∈ sᶜ), ker (lapply a)) ⊓ ⨅ (a : α) (_ : a ∈ tᶜ), ker (lapply a) ≤ ker (lapply i) [PROOFSTEP] by_cases his : i ∈ s [GOAL] case pos α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P s t : Set α hs : Disjoint s t i : α his : i ∈ s ⊢ (⨅ (a : α) (_ : a ∈ sᶜ), ker (lapply a)) ⊓ ⨅ (a : α) (_ : a ∈ tᶜ), ker (lapply a) ≤ ker (lapply i) [PROOFSTEP] by_cases hit : i ∈ t [GOAL] case pos α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P s t : Set α hs : Disjoint s t i : α his : i ∈ s hit : i ∈ t ⊢ (⨅ (a : α) (_ : a ∈ sᶜ), ker (lapply a)) ⊓ ⨅ (a : α) (_ : a ∈ tᶜ), ker (lapply a) ≤ ker (lapply i) [PROOFSTEP] exact (hs.le_bot ⟨his, hit⟩).elim [GOAL] case neg α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P s t : Set α hs : Disjoint s t i : α his : i ∈ s hit : ¬i ∈ t ⊢ (⨅ (a : α) (_ : a ∈ sᶜ), ker (lapply a)) ⊓ ⨅ (a : α) (_ : a ∈ tᶜ), ker (lapply a) ≤ ker (lapply i) [PROOFSTEP] exact inf_le_of_right_le (iInf_le_of_le i <| iInf_le _ hit) [GOAL] case neg α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P s t : Set α hs : Disjoint s t i : α his : ¬i ∈ s ⊢ (⨅ (a : α) (_ : a ∈ sᶜ), ker (lapply a)) ⊓ ⨅ (a : α) (_ : a ∈ tᶜ), ker (lapply a) ≤ ker (lapply i) [PROOFSTEP] exact inf_le_of_left_le (iInf_le_of_le i <| iInf_le _ his) [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P s : Set M a : α ⊢ span R (single a '' s) = map (lsingle a) (span R s) [PROOFSTEP] rw [← span_image] [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P s : Set M a : α ⊢ span R (single a '' s) = span R (↑(lsingle a) '' s) [PROOFSTEP] rfl [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P s : Set α p q : α →₀ M hp : p ∈ {p | ↑p.support ⊆ s} hq : q ∈ {p | ↑p.support ⊆ s} ⊢ p + q ∈ {p | ↑p.support ⊆ s} [PROOFSTEP] classical refine' Subset.trans (Subset.trans (Finset.coe_subset.2 support_add) _) (union_subset hp hq) rw [Finset.coe_union] [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P s : Set α p q : α →₀ M hp : p ∈ {p | ↑p.support ⊆ s} hq : q ∈ {p | ↑p.support ⊆ s} ⊢ p + q ∈ {p | ↑p.support ⊆ s} [PROOFSTEP] refine' Subset.trans (Subset.trans (Finset.coe_subset.2 support_add) _) (union_subset hp hq) [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P s : Set α p q : α →₀ M hp : p ∈ {p | ↑p.support ⊆ s} hq : q ∈ {p | ↑p.support ⊆ s} ⊢ ↑(p.support ∪ q.support) ⊆ ↑p.support ∪ ↑q.support [PROOFSTEP] rw [Finset.coe_union] [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P s : Set α ⊢ 0 ∈ { carrier := {p | ↑p.support ⊆ s}, add_mem' := (_ : ∀ {p q : α →₀ M}, p ∈ {p | ↑p.support ⊆ s} → q ∈ {p | ↑p.support ⊆ s} → ↑(p + q).support ⊆ s) }.carrier [PROOFSTEP] simp only [subset_def, Finset.mem_coe, Set.mem_setOf_eq, mem_support_iff, zero_apply] [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P s : Set α ⊢ ∀ (x : α), 0 ≠ 0 → x ∈ s [PROOFSTEP] intro h ha [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P s : Set α h : α ha : 0 ≠ 0 ⊢ h ∈ s [PROOFSTEP] exact (ha rfl).elim [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P s : Set α p : α →₀ M ⊢ p ∈ supported M R s ↔ ∀ (x : α), ¬x ∈ s → ↑p x = 0 [PROOFSTEP] haveI := Classical.decPred fun x : α => x ∈ s [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P s : Set α p : α →₀ M this : DecidablePred fun x => x ∈ s ⊢ p ∈ supported M R s ↔ ∀ (x : α), ¬x ∈ s → ↑p x = 0 [PROOFSTEP] simp [mem_supported, Set.subset_def, not_imp_comm] [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P p : α →₀ M ⊢ p ∈ supported M R ↑p.support [PROOFSTEP] rw [Finsupp.mem_supported] [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P s : Set α ⊢ supported R R s = span R ((fun i => single i 1) '' s) [PROOFSTEP] refine' (span_eq_of_le _ _ (SetLike.le_def.2 fun l hl => _)).symm [GOAL] case refine'_1 α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P s : Set α ⊢ (fun i => single i 1) '' s ⊆ ↑(supported R R s) [PROOFSTEP] rintro _ ⟨_, hp, rfl⟩ [GOAL] case refine'_1.intro.intro α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P s : Set α w✝ : α hp : w✝ ∈ s ⊢ (fun i => single i 1) w✝ ∈ ↑(supported R R s) [PROOFSTEP] exact single_mem_supported R 1 hp [GOAL] case refine'_2 α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P s : Set α l : α →₀ R hl : l ∈ supported R R s ⊢ l ∈ span R ((fun i => single i 1) '' s) [PROOFSTEP] rw [← l.sum_single] [GOAL] case refine'_2 α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P s : Set α l : α →₀ R hl : l ∈ supported R R s ⊢ sum l single ∈ span R ((fun i => single i 1) '' s) [PROOFSTEP] refine' sum_mem fun i il => _ -- Porting note: Needed to help this convert quite a bit replacing underscores [GOAL] case refine'_2 α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P s : Set α l : α →₀ R hl : l ∈ supported R R s i : α il : i ∈ l.support ⊢ single i (↑l i) ∈ span R ((fun i => single i 1) '' s) [PROOFSTEP] convert smul_mem (M := α →₀ R) (x := single i 1) (span R ((fun i => single i 1) '' s)) (l i) ?_ [GOAL] case h.e'_4 α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P s : Set α l : α →₀ R hl : l ∈ supported R R s i : α il : i ∈ l.support ⊢ single i (↑l i) = ↑l i • single i 1 [PROOFSTEP] simp [span] [GOAL] case refine'_2 α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P s : Set α l : α →₀ R hl : l ∈ supported R R s i : α il : i ∈ l.support ⊢ single i 1 ∈ span R ((fun i => single i 1) '' s) [PROOFSTEP] apply subset_span [GOAL] case refine'_2.a α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P s : Set α l : α →₀ R hl : l ∈ supported R R s i : α il : i ∈ l.support ⊢ single i 1 ∈ (fun i => single i 1) '' s [PROOFSTEP] apply Set.mem_image_of_mem _ (hl il) [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P s : Set α ⊢ comp (restrictDom M R s) (Submodule.subtype (supported M R s)) = LinearMap.id [PROOFSTEP] ext l a [GOAL] case h.a.h α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P s : Set α l : { x // x ∈ supported M R s } a : α ⊢ ↑↑(↑(comp (restrictDom M R s) (Submodule.subtype (supported M R s))) l) a = ↑↑(↑LinearMap.id l) a [PROOFSTEP] by_cases h : a ∈ s [GOAL] case pos α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P s : Set α l : { x // x ∈ supported M R s } a : α h : a ∈ s ⊢ ↑↑(↑(comp (restrictDom M R s) (Submodule.subtype (supported M R s))) l) a = ↑↑(↑LinearMap.id l) a [PROOFSTEP] simp [h] [GOAL] case neg α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P s : Set α l : { x // x ∈ supported M R s } a : α h : ¬a ∈ s ⊢ ↑↑(↑(comp (restrictDom M R s) (Submodule.subtype (supported M R s))) l) a = ↑↑(↑LinearMap.id l) a [PROOFSTEP] simp [h] [GOAL] case neg α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P s : Set α l : { x // x ∈ supported M R s } a : α h : ¬a ∈ s ⊢ 0 = ↑↑l a [PROOFSTEP] exact ((mem_supported' R l.1).1 l.2 a h).symm [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P l : α →₀ M h : l ∈ supported M R ∅ ⊢ l = 0 [PROOFSTEP] ext [GOAL] case h α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P l : α →₀ M h : l ∈ supported M R ∅ a✝ : α ⊢ ↑l a✝ = ↑0 a✝ [PROOFSTEP] simp_all [mem_supported'] [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P δ : Type u_7 s : δ → Set α ⊢ supported M R (⋃ (i : δ), s i) = ⨆ (i : δ), supported M R (s i) [PROOFSTEP] refine' le_antisymm _ (iSup_le fun i => supported_mono <| Set.subset_iUnion _ _) [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P δ : Type u_7 s : δ → Set α ⊢ supported M R (⋃ (i : δ), s i) ≤ ⨆ (i : δ), supported M R (s i) [PROOFSTEP] haveI := Classical.decPred fun x => x ∈ ⋃ i, s i [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P δ : Type u_7 s : δ → Set α this : DecidablePred fun x => x ∈ ⋃ (i : δ), s i ⊢ supported M R (⋃ (i : δ), s i) ≤ ⨆ (i : δ), supported M R (s i) [PROOFSTEP] suffices LinearMap.range ((Submodule.subtype _).comp (restrictDom M R (⋃ i, s i))) ≤ ⨆ i, supported M R (s i) by rwa [LinearMap.range_comp, range_restrictDom, Submodule.map_top, range_subtype] at this [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P δ : Type u_7 s : δ → Set α this✝ : DecidablePred fun x => x ∈ ⋃ (i : δ), s i this : LinearMap.range (comp (Submodule.subtype (supported M R (⋃ (i : δ), s i))) (restrictDom M R (⋃ (i : δ), s i))) ≤ ⨆ (i : δ), supported M R (s i) ⊢ supported M R (⋃ (i : δ), s i) ≤ ⨆ (i : δ), supported M R (s i) [PROOFSTEP] rwa [LinearMap.range_comp, range_restrictDom, Submodule.map_top, range_subtype] at this [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P δ : Type u_7 s : δ → Set α this : DecidablePred fun x => x ∈ ⋃ (i : δ), s i ⊢ LinearMap.range (comp (Submodule.subtype (supported M R (⋃ (i : δ), s i))) (restrictDom M R (⋃ (i : δ), s i))) ≤ ⨆ (i : δ), supported M R (s i) [PROOFSTEP] rw [range_le_iff_comap, eq_top_iff] [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P δ : Type u_7 s : δ → Set α this : DecidablePred fun x => x ∈ ⋃ (i : δ), s i ⊢ ⊤ ≤ comap (comp (Submodule.subtype (supported M R (⋃ (i : δ), s i))) (restrictDom M R (⋃ (i : δ), s i))) (⨆ (i : δ), supported M R (s i)) [PROOFSTEP] rintro l ⟨⟩ -- Porting note: Was ported as `induction l using Finsupp.induction` [GOAL] case intro α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P δ : Type u_7 s : δ → Set α this : DecidablePred fun x => x ∈ ⋃ (i : δ), s i l : α →₀ M ⊢ l ∈ comap (comp (Submodule.subtype (supported M R (⋃ (i : δ), s i))) (restrictDom M R (⋃ (i : δ), s i))) (⨆ (i : δ), supported M R (s i)) [PROOFSTEP] refine Finsupp.induction l ?_ ?_ [GOAL] case intro.refine_1 α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P δ : Type u_7 s : δ → Set α this : DecidablePred fun x => x ∈ ⋃ (i : δ), s i l : α →₀ M ⊢ 0 ∈ comap (comp (Submodule.subtype (supported M R (⋃ (i : δ), s i))) (restrictDom M R (⋃ (i : δ), s i))) (⨆ (i : δ), supported M R (s i)) [PROOFSTEP] exact zero_mem _ [GOAL] case intro.refine_2 α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P δ : Type u_7 s : δ → Set α this : DecidablePred fun x => x ∈ ⋃ (i : δ), s i l : α →₀ M ⊢ ∀ (a : α) (b : M) (f : α →₀ M), ¬a ∈ f.support → b ≠ 0 → f ∈ comap (comp (Submodule.subtype (supported M R (⋃ (i : δ), s i))) (restrictDom M R (⋃ (i : δ), s i))) (⨆ (i : δ), supported M R (s i)) → single a b + f ∈ comap (comp (Submodule.subtype (supported M R (⋃ (i : δ), s i))) (restrictDom M R (⋃ (i : δ), s i))) (⨆ (i : δ), supported M R (s i)) [PROOFSTEP] refine' fun x a l _ _ => add_mem _ [GOAL] case intro.refine_2 α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P δ : Type u_7 s : δ → Set α this : DecidablePred fun x => x ∈ ⋃ (i : δ), s i l✝ : α →₀ M x : α a : M l : α →₀ M x✝¹ : ¬x ∈ l.support x✝ : a ≠ 0 ⊢ single x a ∈ comap (comp (Submodule.subtype (supported M R (⋃ (i : δ), s i))) (restrictDom M R (⋃ (i : δ), s i))) (⨆ (i : δ), supported M R (s i)) [PROOFSTEP] by_cases h : ∃ i, x ∈ s i [GOAL] case pos α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P δ : Type u_7 s : δ → Set α this : DecidablePred fun x => x ∈ ⋃ (i : δ), s i l✝ : α →₀ M x : α a : M l : α →₀ M x✝¹ : ¬x ∈ l.support x✝ : a ≠ 0 h : ∃ i, x ∈ s i ⊢ single x a ∈ comap (comp (Submodule.subtype (supported M R (⋃ (i : δ), s i))) (restrictDom M R (⋃ (i : δ), s i))) (⨆ (i : δ), supported M R (s i)) [PROOFSTEP] simp [h] [GOAL] case neg α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P δ : Type u_7 s : δ → Set α this : DecidablePred fun x => x ∈ ⋃ (i : δ), s i l✝ : α →₀ M x : α a : M l : α →₀ M x✝¹ : ¬x ∈ l.support x✝ : a ≠ 0 h : ¬∃ i, x ∈ s i ⊢ single x a ∈ comap (comp (Submodule.subtype (supported M R (⋃ (i : δ), s i))) (restrictDom M R (⋃ (i : δ), s i))) (⨆ (i : δ), supported M R (s i)) [PROOFSTEP] simp [h] [GOAL] case pos α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P δ : Type u_7 s : δ → Set α this : DecidablePred fun x => x ∈ ⋃ (i : δ), s i l✝ : α →₀ M x : α a : M l : α →₀ M x✝¹ : ¬x ∈ l.support x✝ : a ≠ 0 h : ∃ i, x ∈ s i ⊢ single x a ∈ ⨆ (i : δ), supported M R (s i) [PROOFSTEP] cases' h with i hi [GOAL] case pos.intro α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P δ : Type u_7 s : δ → Set α this : DecidablePred fun x => x ∈ ⋃ (i : δ), s i l✝ : α →₀ M x : α a : M l : α →₀ M x✝¹ : ¬x ∈ l.support x✝ : a ≠ 0 i : δ hi : x ∈ s i ⊢ single x a ∈ ⨆ (i : δ), supported M R (s i) [PROOFSTEP] exact le_iSup (fun i => supported M R (s i)) i (single_mem_supported R _ hi) [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P s t : Set α ⊢ supported M R (s ∪ t) = supported M R s ⊔ supported M R t [PROOFSTEP] erw [Set.union_eq_iUnion, supported_iUnion, iSup_bool_eq] [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P s t : Set α ⊢ supported M R (bif true then s else t) ⊔ supported M R (bif false then s else t) = supported M R s ⊔ supported M R t [PROOFSTEP] rfl [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P ι : Type u_7 s : ι → Set α x : α →₀ M ⊢ x ∈ supported M R (⋂ (i : ι), s i) ↔ x ∈ ⨅ (i : ι), supported M R (s i) [PROOFSTEP] simp [mem_supported, subset_iInter_iff] [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P s t : Set α ⊢ supported M R (s ∩ t) = supported M R s ⊓ supported M R t [PROOFSTEP] rw [Set.inter_eq_iInter, supported_iInter, iInf_bool_eq] [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P s t : Set α ⊢ supported M R (bif true then s else t) ⊓ supported M R (bif false then s else t) = supported M R s ⊓ supported M R t [PROOFSTEP] rfl [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P s t : Set α h : Disjoint s t ⊢ supported M R s ⊓ supported M R t = ⊥ [PROOFSTEP] rw [← supported_inter, disjoint_iff_inter_eq_empty.1 h, supported_empty] [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁸ : Semiring R inst✝⁷ : Semiring S inst✝⁶ : AddCommMonoid M inst✝⁵ : Module R M inst✝⁴ : AddCommMonoid N inst✝³ : Module R N inst✝² : AddCommMonoid P inst✝¹ : Module R P inst✝ : Nontrivial M s t : Set α ⊢ Disjoint (supported M R s) (supported M R t) ↔ Disjoint s t [PROOFSTEP] refine' ⟨fun h => Set.disjoint_left.mpr fun x hx1 hx2 => _, disjoint_supported_supported⟩ [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁸ : Semiring R inst✝⁷ : Semiring S inst✝⁶ : AddCommMonoid M inst✝⁵ : Module R M inst✝⁴ : AddCommMonoid N inst✝³ : Module R N inst✝² : AddCommMonoid P inst✝¹ : Module R P inst✝ : Nontrivial M s t : Set α h : Disjoint (supported M R s) (supported M R t) x : α hx1 : x ∈ s hx2 : x ∈ t ⊢ False [PROOFSTEP] rcases exists_ne (0 : M) with ⟨y, hy⟩ [GOAL] case intro α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁸ : Semiring R inst✝⁷ : Semiring S inst✝⁶ : AddCommMonoid M inst✝⁵ : Module R M inst✝⁴ : AddCommMonoid N inst✝³ : Module R N inst✝² : AddCommMonoid P inst✝¹ : Module R P inst✝ : Nontrivial M s t : Set α h : Disjoint (supported M R s) (supported M R t) x : α hx1 : x ∈ s hx2 : x ∈ t y : M hy : y ≠ 0 ⊢ False [PROOFSTEP] have := h.le_bot ⟨single_mem_supported R y hx1, single_mem_supported R y hx2⟩ [GOAL] case intro α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁸ : Semiring R inst✝⁷ : Semiring S inst✝⁶ : AddCommMonoid M inst✝⁵ : Module R M inst✝⁴ : AddCommMonoid N inst✝³ : Module R N inst✝² : AddCommMonoid P inst✝¹ : Module R P inst✝ : Nontrivial M s t : Set α h : Disjoint (supported M R s) (supported M R t) x : α hx1 : x ∈ s hx2 : x ∈ t y : M hy : y ≠ 0 this : single x y ∈ ⊥ ⊢ False [PROOFSTEP] rw [mem_bot, single_eq_zero] at this [GOAL] case intro α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁸ : Semiring R inst✝⁷ : Semiring S inst✝⁶ : AddCommMonoid M inst✝⁵ : Module R M inst✝⁴ : AddCommMonoid N inst✝³ : Module R N inst✝² : AddCommMonoid P inst✝¹ : Module R P inst✝ : Nontrivial M s t : Set α h : Disjoint (supported M R s) (supported M R t) x : α hx1 : x ∈ s hx2 : x ∈ t y : M hy : y ≠ 0 this : y = 0 ⊢ False [PROOFSTEP] exact hy this [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P s : Set α ⊢ { x // x ∈ supported M R s } ≃ₗ[R] ↑s →₀ M [PROOFSTEP] let F : supported M R s ≃ (s →₀ M) := restrictSupportEquiv s M [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P s : Set α F : { x // x ∈ supported M R s } ≃ (↑s →₀ M) := restrictSupportEquiv s M ⊢ { x // x ∈ supported M R s } ≃ₗ[R] ↑s →₀ M [PROOFSTEP] refine' F.toLinearEquiv _ [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P s : Set α F : { x // x ∈ supported M R s } ≃ (↑s →₀ M) := restrictSupportEquiv s M ⊢ IsLinearMap R ↑F [PROOFSTEP] have : (F : supported M R s → ↥s →₀ M) = (lsubtypeDomain s : (α →₀ M) →ₗ[R] s →₀ M).comp (Submodule.subtype (supported M R s)) := rfl [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P s : Set α F : { x // x ∈ supported M R s } ≃ (↑s →₀ M) := restrictSupportEquiv s M this : ↑F = ↑(comp (lsubtypeDomain s) (Submodule.subtype (supported M R s))) ⊢ IsLinearMap R ↑F [PROOFSTEP] rw [this] [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P s : Set α F : { x // x ∈ supported M R s } ≃ (↑s →₀ M) := restrictSupportEquiv s M this : ↑F = ↑(comp (lsubtypeDomain s) (Submodule.subtype (supported M R s))) ⊢ IsLinearMap R ↑(comp (lsubtypeDomain s) (Submodule.subtype (supported M R s))) [PROOFSTEP] exact LinearMap.isLinear _ [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P inst✝¹ : Module S N inst✝ : SMulCommClass R S N F : α → M →ₗ[R] N c : R f : α →₀ M ⊢ AddHom.toFun { toFun := fun d => sum d fun i => ↑(F i), map_add' := (_ : ∀ (a b : α →₀ M), ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) = ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a + ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := fun d => sum d fun i => ↑(F i), map_add' := (_ : ∀ (a b : α →₀ M), ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) = ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a + ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) } f [PROOFSTEP] simp [sum_smul_index', smul_sum] [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P inst✝¹ : Module S N inst✝ : SMulCommClass R S N F G : α → M →ₗ[R] N ⊢ (fun F => { toAddHom := { toFun := fun d => sum d fun i => ↑(F i), map_add' := (_ : ∀ (a b : α →₀ M), ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) = ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a + ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) }, map_smul' := (_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) }) (F + G) = (fun F => { toAddHom := { toFun := fun d => sum d fun i => ↑(F i), map_add' := (_ : ∀ (a b : α →₀ M), ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) = ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a + ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) }, map_smul' := (_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) }) F + (fun F => { toAddHom := { toFun := fun d => sum d fun i => ↑(F i), map_add' := (_ : ∀ (a b : α →₀ M), ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) = ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a + ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) }, map_smul' := (_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) }) G [PROOFSTEP] ext x y [GOAL] case h.h α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P inst✝¹ : Module S N inst✝ : SMulCommClass R S N F G : α → M →ₗ[R] N x : α y : M ⊢ ↑(comp ((fun F => { toAddHom := { toFun := fun d => sum d fun i => ↑(F i), map_add' := (_ : ∀ (a b : α →₀ M), ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) = ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a + ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) }, map_smul' := (_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) }) (F + G)) (lsingle x)) y = ↑(comp ((fun F => { toAddHom := { toFun := fun d => sum d fun i => ↑(F i), map_add' := (_ : ∀ (a b : α →₀ M), ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) = ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a + ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) }, map_smul' := (_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) }) F + (fun F => { toAddHom := { toFun := fun d => sum d fun i => ↑(F i), map_add' := (_ : ∀ (a b : α →₀ M), ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) = ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a + ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) }, map_smul' := (_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) }) G) (lsingle x)) y [PROOFSTEP] simp [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P inst✝¹ : Module S N inst✝ : SMulCommClass R S N F : S G : α → M →ₗ[R] N ⊢ AddHom.toFun { toFun := fun F => { toAddHom := { toFun := fun d => sum d fun i => ↑(F i), map_add' := (_ : ∀ (a b : α →₀ M), ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) = ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a + ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) }, map_smul' := (_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) }, map_add' := (_ : ∀ (F G : α → M →ₗ[R] N), (fun F => { toAddHom := { toFun := fun d => sum d fun i => ↑(F i), map_add' := (_ : ∀ (a b : α →₀ M), ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) = ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a + ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) }, map_smul' := (_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) }) (F + G) = (fun F => { toAddHom := { toFun := fun d => sum d fun i => ↑(F i), map_add' := (_ : ∀ (a b : α →₀ M), ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) = ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a + ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) }, map_smul' := (_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) }) F + (fun F => { toAddHom := { toFun := fun d => sum d fun i => ↑(F i), map_add' := (_ : ∀ (a b : α →₀ M), ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) = ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a + ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) }, map_smul' := (_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) }) G) } (F • G) = ↑(RingHom.id S) F • AddHom.toFun { toFun := fun F => { toAddHom := { toFun := fun d => sum d fun i => ↑(F i), map_add' := (_ : ∀ (a b : α →₀ M), ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) = ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a + ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) }, map_smul' := (_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) }, map_add' := (_ : ∀ (F G : α → M →ₗ[R] N), (fun F => { toAddHom := { toFun := fun d => sum d fun i => ↑(F i), map_add' := (_ : ∀ (a b : α →₀ M), ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) = ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a + ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) }, map_smul' := (_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) }) (F + G) = (fun F => { toAddHom := { toFun := fun d => sum d fun i => ↑(F i), map_add' := (_ : ∀ (a b : α →₀ M), ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) = ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a + ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) }, map_smul' := (_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) }) F + (fun F => { toAddHom := { toFun := fun d => sum d fun i => ↑(F i), map_add' := (_ : ∀ (a b : α →₀ M), ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) = ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a + ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) }, map_smul' := (_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) }) G) } G [PROOFSTEP] ext x y [GOAL] case h.h α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P inst✝¹ : Module S N inst✝ : SMulCommClass R S N F : S G : α → M →ₗ[R] N x : α y : M ⊢ ↑(comp (AddHom.toFun { toFun := fun F => { toAddHom := { toFun := fun d => sum d fun i => ↑(F i), map_add' := (_ : ∀ (a b : α →₀ M), ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) = ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a + ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) }, map_smul' := (_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) }, map_add' := (_ : ∀ (F G : α → M →ₗ[R] N), (fun F => { toAddHom := { toFun := fun d => sum d fun i => ↑(F i), map_add' := (_ : ∀ (a b : α →₀ M), ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) = ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a + ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) }, map_smul' := (_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) }) (F + G) = (fun F => { toAddHom := { toFun := fun d => sum d fun i => ↑(F i), map_add' := (_ : ∀ (a b : α →₀ M), ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) = ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a + ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) }, map_smul' := (_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) }) F + (fun F => { toAddHom := { toFun := fun d => sum d fun i => ↑(F i), map_add' := (_ : ∀ (a b : α →₀ M), ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) = ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a + ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) }, map_smul' := (_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) }) G) } (F • G)) (lsingle x)) y = ↑(comp (↑(RingHom.id S) F • AddHom.toFun { toFun := fun F => { toAddHom := { toFun := fun d => sum d fun i => ↑(F i), map_add' := (_ : ∀ (a b : α →₀ M), ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) = ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a + ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) }, map_smul' := (_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) }, map_add' := (_ : ∀ (F G : α → M →ₗ[R] N), (fun F => { toAddHom := { toFun := fun d => sum d fun i => ↑(F i), map_add' := (_ : ∀ (a b : α →₀ M), ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) = ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a + ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) }, map_smul' := (_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) }) (F + G) = (fun F => { toAddHom := { toFun := fun d => sum d fun i => ↑(F i), map_add' := (_ : ∀ (a b : α →₀ M), ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) = ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a + ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) }, map_smul' := (_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) }) F + (fun F => { toAddHom := { toFun := fun d => sum d fun i => ↑(F i), map_add' := (_ : ∀ (a b : α →₀ M), ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) = ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a + ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) }, map_smul' := (_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) }) G) } G) (lsingle x)) y [PROOFSTEP] simp [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P inst✝¹ : Module S N inst✝ : SMulCommClass R S N F : α → M →ₗ[R] N ⊢ (fun F x => comp F (lsingle x)) (AddHom.toFun { toAddHom := { toFun := fun F => { toAddHom := { toFun := fun d => sum d fun i => ↑(F i), map_add' := (_ : ∀ (a b : α →₀ M), ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) = ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a + ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) }, map_smul' := (_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) }, map_add' := (_ : ∀ (F G : α → M →ₗ[R] N), (fun F => { toAddHom := { toFun := fun d => sum d fun i => ↑(F i), map_add' := (_ : ∀ (a b : α →₀ M), ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) = ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a + ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) }, map_smul' := (_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) }) (F + G) = (fun F => { toAddHom := { toFun := fun d => sum d fun i => ↑(F i), map_add' := (_ : ∀ (a b : α →₀ M), ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) = ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a + ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) }, map_smul' := (_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) }) F + (fun F => { toAddHom := { toFun := fun d => sum d fun i => ↑(F i), map_add' := (_ : ∀ (a b : α →₀ M), ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) = ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a + ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) }, map_smul' := (_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) }) G) }, map_smul' := (_ : ∀ (F : S) (G : α → M →ₗ[R] N), AddHom.toFun { toFun := fun F => { toAddHom := { toFun := fun d => sum d fun i => ↑(F i), map_add' := (_ : ∀ (a b : α →₀ M), ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) = ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a + ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) }, map_smul' := (_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) }, map_add' := (_ : ∀ (F G : α → M →ₗ[R] N), (fun F => { toAddHom := { toFun := fun d => sum d fun i => ↑(F i), map_add' := (_ : ∀ (a b : α →₀ M), ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) = ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a + ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) }, map_smul' := (_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) }) (F + G) = (fun F => { toAddHom := { toFun := fun d => sum d fun i => ↑(F i), map_add' := (_ : ∀ (a b : α →₀ M), ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) = ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a + ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) }, map_smul' := (_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) }) F + (fun F => { toAddHom := { toFun := fun d => sum d fun i => ↑(F i), map_add' := (_ : ∀ (a b : α →₀ M), ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) = ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a + ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) }, map_smul' := (_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) }) G) } (F • G) = ↑(RingHom.id S) F • AddHom.toFun { toFun := fun F => { toAddHom := { toFun := fun d => sum d fun i => ↑(F i), map_add' := (_ : ∀ (a b : α →₀ M), ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) = ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a + ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) }, map_smul' := (_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) }, map_add' := (_ : ∀ (F G : α → M →ₗ[R] N), (fun F => { toAddHom := { toFun := fun d => sum d fun i => ↑(F i), map_add' := (_ : ∀ (a b : α →₀ M), ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) = ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a + ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) }, map_smul' := (_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) }) (F + G) = (fun F => { toAddHom := { toFun := fun d => sum d fun i => ↑(F i), map_add' := (_ : ∀ (a b : α →₀ M), ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) = ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a + ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) }, map_smul' := (_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) }) F + (fun F => { toAddHom := { toFun := fun d => sum d fun i => ↑(F i), map_add' := (_ : ∀ (a b : α →₀ M), ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) = ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a + ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) }, map_smul' := (_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) }) G) } G) }.toAddHom F) = F [PROOFSTEP] ext x y [GOAL] case h.h α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P inst✝¹ : Module S N inst✝ : SMulCommClass R S N F : α → M →ₗ[R] N x : α y : M ⊢ ↑((fun F x => comp F (lsingle x)) (AddHom.toFun { toAddHom := { toFun := fun F => { toAddHom := { toFun := fun d => sum d fun i => ↑(F i), map_add' := (_ : ∀ (a b : α →₀ M), ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) = ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a + ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) }, map_smul' := (_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) }, map_add' := (_ : ∀ (F G : α → M →ₗ[R] N), (fun F => { toAddHom := { toFun := fun d => sum d fun i => ↑(F i), map_add' := (_ : ∀ (a b : α →₀ M), ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) = ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a + ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) }, map_smul' := (_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) }) (F + G) = (fun F => { toAddHom := { toFun := fun d => sum d fun i => ↑(F i), map_add' := (_ : ∀ (a b : α →₀ M), ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) = ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a + ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) }, map_smul' := (_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) }) F + (fun F => { toAddHom := { toFun := fun d => sum d fun i => ↑(F i), map_add' := (_ : ∀ (a b : α →₀ M), ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) = ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a + ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) }, map_smul' := (_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) }) G) }, map_smul' := (_ : ∀ (F : S) (G : α → M →ₗ[R] N), AddHom.toFun { toFun := fun F => { toAddHom := { toFun := fun d => sum d fun i => ↑(F i), map_add' := (_ : ∀ (a b : α →₀ M), ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) = ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a + ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) }, map_smul' := (_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) }, map_add' := (_ : ∀ (F G : α → M →ₗ[R] N), (fun F => { toAddHom := { toFun := fun d => sum d fun i => ↑(F i), map_add' := (_ : ∀ (a b : α →₀ M), ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) = ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a + ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) }, map_smul' := (_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) }) (F + G) = (fun F => { toAddHom := { toFun := fun d => sum d fun i => ↑(F i), map_add' := (_ : ∀ (a b : α →₀ M), ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) = ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a + ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) }, map_smul' := (_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) }) F + (fun F => { toAddHom := { toFun := fun d => sum d fun i => ↑(F i), map_add' := (_ : ∀ (a b : α →₀ M), ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) = ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a + ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) }, map_smul' := (_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) }) G) } (F • G) = ↑(RingHom.id S) F • AddHom.toFun { toFun := fun F => { toAddHom := { toFun := fun d => sum d fun i => ↑(F i), map_add' := (_ : ∀ (a b : α →₀ M), ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) = ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a + ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) }, map_smul' := (_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) }, map_add' := (_ : ∀ (F G : α → M →ₗ[R] N), (fun F => { toAddHom := { toFun := fun d => sum d fun i => ↑(F i), map_add' := (_ : ∀ (a b : α →₀ M), ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) = ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a + ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) }, map_smul' := (_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) }) (F + G) = (fun F => { toAddHom := { toFun := fun d => sum d fun i => ↑(F i), map_add' := (_ : ∀ (a b : α →₀ M), ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) = ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a + ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) }, map_smul' := (_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) }) F + (fun F => { toAddHom := { toFun := fun d => sum d fun i => ↑(F i), map_add' := (_ : ∀ (a b : α →₀ M), ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) = ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a + ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) }, map_smul' := (_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) }) G) } G) }.toAddHom F) x) y = ↑(F x) y [PROOFSTEP] simp [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P inst✝¹ : Module S N inst✝ : SMulCommClass R S N F : (α →₀ M) →ₗ[R] N ⊢ AddHom.toFun { toAddHom := { toFun := fun F => { toAddHom := { toFun := fun d => sum d fun i => ↑(F i), map_add' := (_ : ∀ (a b : α →₀ M), ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) = ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a + ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) }, map_smul' := (_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) }, map_add' := (_ : ∀ (F G : α → M →ₗ[R] N), (fun F => { toAddHom := { toFun := fun d => sum d fun i => ↑(F i), map_add' := (_ : ∀ (a b : α →₀ M), ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) = ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a + ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) }, map_smul' := (_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) }) (F + G) = (fun F => { toAddHom := { toFun := fun d => sum d fun i => ↑(F i), map_add' := (_ : ∀ (a b : α →₀ M), ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) = ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a + ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) }, map_smul' := (_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) }) F + (fun F => { toAddHom := { toFun := fun d => sum d fun i => ↑(F i), map_add' := (_ : ∀ (a b : α →₀ M), ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) = ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a + ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) }, map_smul' := (_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) }) G) }, map_smul' := (_ : ∀ (F : S) (G : α → M →ₗ[R] N), AddHom.toFun { toFun := fun F => { toAddHom := { toFun := fun d => sum d fun i => ↑(F i), map_add' := (_ : ∀ (a b : α →₀ M), ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) = ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a + ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) }, map_smul' := (_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) }, map_add' := (_ : ∀ (F G : α → M →ₗ[R] N), (fun F => { toAddHom := { toFun := fun d => sum d fun i => ↑(F i), map_add' := (_ : ∀ (a b : α →₀ M), ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) = ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a + ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) }, map_smul' := (_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) }) (F + G) = (fun F => { toAddHom := { toFun := fun d => sum d fun i => ↑(F i), map_add' := (_ : ∀ (a b : α →₀ M), ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) = ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a + ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) }, map_smul' := (_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) }) F + (fun F => { toAddHom := { toFun := fun d => sum d fun i => ↑(F i), map_add' := (_ : ∀ (a b : α →₀ M), ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) = ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a + ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) }, map_smul' := (_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) }) G) } (F • G) = ↑(RingHom.id S) F • AddHom.toFun { toFun := fun F => { toAddHom := { toFun := fun d => sum d fun i => ↑(F i), map_add' := (_ : ∀ (a b : α →₀ M), ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) = ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a + ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) }, map_smul' := (_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) }, map_add' := (_ : ∀ (F G : α → M →ₗ[R] N), (fun F => { toAddHom := { toFun := fun d => sum d fun i => ↑(F i), map_add' := (_ : ∀ (a b : α →₀ M), ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) = ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a + ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) }, map_smul' := (_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) }) (F + G) = (fun F => { toAddHom := { toFun := fun d => sum d fun i => ↑(F i), map_add' := (_ : ∀ (a b : α →₀ M), ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) = ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a + ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) }, map_smul' := (_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) }) F + (fun F => { toAddHom := { toFun := fun d => sum d fun i => ↑(F i), map_add' := (_ : ∀ (a b : α →₀ M), ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) = ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a + ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) }, map_smul' := (_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) }) G) } G) }.toAddHom ((fun F x => comp F (lsingle x)) F) = F [PROOFSTEP] ext x y [GOAL] case h.h α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P inst✝¹ : Module S N inst✝ : SMulCommClass R S N F : (α →₀ M) →ₗ[R] N x : α y : M ⊢ ↑(comp (AddHom.toFun { toAddHom := { toFun := fun F => { toAddHom := { toFun := fun d => sum d fun i => ↑(F i), map_add' := (_ : ∀ (a b : α →₀ M), ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) = ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a + ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) }, map_smul' := (_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) }, map_add' := (_ : ∀ (F G : α → M →ₗ[R] N), (fun F => { toAddHom := { toFun := fun d => sum d fun i => ↑(F i), map_add' := (_ : ∀ (a b : α →₀ M), ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) = ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a + ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) }, map_smul' := (_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) }) (F + G) = (fun F => { toAddHom := { toFun := fun d => sum d fun i => ↑(F i), map_add' := (_ : ∀ (a b : α →₀ M), ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) = ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a + ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) }, map_smul' := (_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) }) F + (fun F => { toAddHom := { toFun := fun d => sum d fun i => ↑(F i), map_add' := (_ : ∀ (a b : α →₀ M), ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) = ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a + ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) }, map_smul' := (_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) }) G) }, map_smul' := (_ : ∀ (F : S) (G : α → M →ₗ[R] N), AddHom.toFun { toFun := fun F => { toAddHom := { toFun := fun d => sum d fun i => ↑(F i), map_add' := (_ : ∀ (a b : α →₀ M), ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) = ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a + ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) }, map_smul' := (_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) }, map_add' := (_ : ∀ (F G : α → M →ₗ[R] N), (fun F => { toAddHom := { toFun := fun d => sum d fun i => ↑(F i), map_add' := (_ : ∀ (a b : α →₀ M), ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) = ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a + ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) }, map_smul' := (_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) }) (F + G) = (fun F => { toAddHom := { toFun := fun d => sum d fun i => ↑(F i), map_add' := (_ : ∀ (a b : α →₀ M), ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) = ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a + ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) }, map_smul' := (_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) }) F + (fun F => { toAddHom := { toFun := fun d => sum d fun i => ↑(F i), map_add' := (_ : ∀ (a b : α →₀ M), ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) = ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a + ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) }, map_smul' := (_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) }) G) } (F • G) = ↑(RingHom.id S) F • AddHom.toFun { toFun := fun F => { toAddHom := { toFun := fun d => sum d fun i => ↑(F i), map_add' := (_ : ∀ (a b : α →₀ M), ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) = ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a + ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) }, map_smul' := (_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) }, map_add' := (_ : ∀ (F G : α → M →ₗ[R] N), (fun F => { toAddHom := { toFun := fun d => sum d fun i => ↑(F i), map_add' := (_ : ∀ (a b : α →₀ M), ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) = ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a + ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) }, map_smul' := (_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) }) (F + G) = (fun F => { toAddHom := { toFun := fun d => sum d fun i => ↑(F i), map_add' := (_ : ∀ (a b : α →₀ M), ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) = ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a + ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) }, map_smul' := (_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) }) F + (fun F => { toAddHom := { toFun := fun d => sum d fun i => ↑(F i), map_add' := (_ : ∀ (a b : α →₀ M), ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) (a + b) = ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) a + ↑(↑liftAddHom fun x => toAddMonoidHom (F x)) b) }, map_smul' := (_ : ∀ (c : R) (f : α →₀ M), (sum (c • f) fun i => ↑(F i)) = c • sum f fun i => ↑(F i)) }) G) } G) }.toAddHom ((fun F x => comp F (lsingle x)) F)) (lsingle x)) y = ↑(comp F (lsingle x)) y [PROOFSTEP] simp [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P X : Type u_7 inst✝¹ : Module S M inst✝ : SMulCommClass R S M src✝ : (X → M) ≃+ ((X →₀ R) →ₗ[R] M) := lift M R X ⊢ ∀ (r : S) (x : X → M), AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (x y : X → M), Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) } (r • x) = ↑(RingHom.id S) r • AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (x y : X → M), Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) } x [PROOFSTEP] intros [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P X : Type u_7 inst✝¹ : Module S M inst✝ : SMulCommClass R S M src✝ : (X → M) ≃+ ((X →₀ R) →ₗ[R] M) := lift M R X r✝ : S x✝ : X → M ⊢ AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (x y : X → M), Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) } (r✝ • x✝) = ↑(RingHom.id S) r✝ • AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (x y : X → M), Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) } x✝ [PROOFSTEP] dsimp [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P X : Type u_7 inst✝¹ : Module S M inst✝ : SMulCommClass R S M src✝ : (X → M) ≃+ ((X →₀ R) →ₗ[R] M) := lift M R X r✝ : S x✝ : X → M ⊢ ↑(lift M R X) (r✝ • x✝) = r✝ • ↑(lift M R X) x✝ [PROOFSTEP] ext [GOAL] case h.h α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P X : Type u_7 inst✝¹ : Module S M inst✝ : SMulCommClass R S M src✝ : (X → M) ≃+ ((X →₀ R) →ₗ[R] M) := lift M R X r✝ : S x✝ : X → M a✝ : X ⊢ ↑(comp (↑(lift M R X) (r✝ • x✝)) (lsingle a✝)) 1 = ↑(comp (r✝ • ↑(lift M R X) x✝) (lsingle a✝)) 1 [PROOFSTEP] simp only [coe_comp, Function.comp_apply, lsingle_apply, lift_apply, Pi.smul_apply, sum_single_index, zero_smul, one_smul, LinearMap.smul_apply] [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P α' : Type u_7 α'' : Type u_8 f : α → α' s : Set α' ⊢ supported M R (f ⁻¹' s) ≤ comap (lmapDomain M R f) (supported M R s) [PROOFSTEP] classical intro l (hl : (l.support : Set α) ⊆ f ⁻¹' s) show ↑(mapDomain f l).support ⊆ s rw [← Set.image_subset_iff, ← Finset.coe_image] at hl exact Set.Subset.trans mapDomain_support hl [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P α' : Type u_7 α'' : Type u_8 f : α → α' s : Set α' ⊢ supported M R (f ⁻¹' s) ≤ comap (lmapDomain M R f) (supported M R s) [PROOFSTEP] intro l (hl : (l.support : Set α) ⊆ f ⁻¹' s) [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P α' : Type u_7 α'' : Type u_8 f : α → α' s : Set α' l : α →₀ M hl : ↑l.support ⊆ f ⁻¹' s ⊢ l ∈ comap (lmapDomain M R f) (supported M R s) [PROOFSTEP] show ↑(mapDomain f l).support ⊆ s [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P α' : Type u_7 α'' : Type u_8 f : α → α' s : Set α' l : α →₀ M hl : ↑l.support ⊆ f ⁻¹' s ⊢ ↑(mapDomain f l).support ⊆ s [PROOFSTEP] rw [← Set.image_subset_iff, ← Finset.coe_image] at hl [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P α' : Type u_7 α'' : Type u_8 f : α → α' s : Set α' l : α →₀ M hl✝ : f '' ↑l.support ⊆ s hl : ↑(Finset.image f l.support) ⊆ s ⊢ ↑(mapDomain f l).support ⊆ s [PROOFSTEP] exact Set.Subset.trans mapDomain_support hl [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁸ : Semiring R inst✝⁷ : Semiring S inst✝⁶ : AddCommMonoid M inst✝⁵ : Module R M inst✝⁴ : AddCommMonoid N inst✝³ : Module R N inst✝² : AddCommMonoid P inst✝¹ : Module R P α' : Type u_7 α'' : Type u_8 inst✝ : Nonempty α f : α → α' s : Set α ⊢ map (lmapDomain M R f) (supported M R s) = supported M R (f '' s) [PROOFSTEP] classical inhabit α refine le_antisymm (map_le_iff_le_comap.2 <| le_trans (supported_mono <| Set.subset_preimage_image _ _) (supported_comap_lmapDomain M R _ _)) ?_ intro l hl refine' ⟨(lmapDomain M R (Function.invFunOn f s) : (α' →₀ M) →ₗ[R] α →₀ M) l, fun x hx => _, _⟩ · rcases Finset.mem_image.1 (mapDomain_support hx) with ⟨c, hc, rfl⟩ exact Function.invFunOn_mem (by simpa using hl hc) · rw [← LinearMap.comp_apply, ← lmapDomain_comp] refine' (mapDomain_congr fun c hc => _).trans mapDomain_id exact Function.invFunOn_eq (by simpa using hl hc) [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁸ : Semiring R inst✝⁷ : Semiring S inst✝⁶ : AddCommMonoid M inst✝⁵ : Module R M inst✝⁴ : AddCommMonoid N inst✝³ : Module R N inst✝² : AddCommMonoid P inst✝¹ : Module R P α' : Type u_7 α'' : Type u_8 inst✝ : Nonempty α f : α → α' s : Set α ⊢ map (lmapDomain M R f) (supported M R s) = supported M R (f '' s) [PROOFSTEP] inhabit α [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁸ : Semiring R inst✝⁷ : Semiring S inst✝⁶ : AddCommMonoid M inst✝⁵ : Module R M inst✝⁴ : AddCommMonoid N inst✝³ : Module R N inst✝² : AddCommMonoid P inst✝¹ : Module R P α' : Type u_7 α'' : Type u_8 inst✝ : Nonempty α f : α → α' s : Set α inhabited_h : Inhabited α ⊢ map (lmapDomain M R f) (supported M R s) = supported M R (f '' s) [PROOFSTEP] refine le_antisymm (map_le_iff_le_comap.2 <| le_trans (supported_mono <| Set.subset_preimage_image _ _) (supported_comap_lmapDomain M R _ _)) ?_ [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁸ : Semiring R inst✝⁷ : Semiring S inst✝⁶ : AddCommMonoid M inst✝⁵ : Module R M inst✝⁴ : AddCommMonoid N inst✝³ : Module R N inst✝² : AddCommMonoid P inst✝¹ : Module R P α' : Type u_7 α'' : Type u_8 inst✝ : Nonempty α f : α → α' s : Set α inhabited_h : Inhabited α ⊢ supported M R (f '' s) ≤ map (lmapDomain M R f) (supported M R s) [PROOFSTEP] intro l hl [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁸ : Semiring R inst✝⁷ : Semiring S inst✝⁶ : AddCommMonoid M inst✝⁵ : Module R M inst✝⁴ : AddCommMonoid N inst✝³ : Module R N inst✝² : AddCommMonoid P inst✝¹ : Module R P α' : Type u_7 α'' : Type u_8 inst✝ : Nonempty α f : α → α' s : Set α inhabited_h : Inhabited α l : α' →₀ M hl : l ∈ supported M R (f '' s) ⊢ l ∈ map (lmapDomain M R f) (supported M R s) [PROOFSTEP] refine' ⟨(lmapDomain M R (Function.invFunOn f s) : (α' →₀ M) →ₗ[R] α →₀ M) l, fun x hx => _, _⟩ [GOAL] case refine'_1 α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁸ : Semiring R inst✝⁷ : Semiring S inst✝⁶ : AddCommMonoid M inst✝⁵ : Module R M inst✝⁴ : AddCommMonoid N inst✝³ : Module R N inst✝² : AddCommMonoid P inst✝¹ : Module R P α' : Type u_7 α'' : Type u_8 inst✝ : Nonempty α f : α → α' s : Set α inhabited_h : Inhabited α l : α' →₀ M hl : l ∈ supported M R (f '' s) x : α hx : x ∈ ↑(↑(lmapDomain M R (Function.invFunOn f s)) l).support ⊢ x ∈ s [PROOFSTEP] rcases Finset.mem_image.1 (mapDomain_support hx) with ⟨c, hc, rfl⟩ [GOAL] case refine'_1.intro.intro α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁸ : Semiring R inst✝⁷ : Semiring S inst✝⁶ : AddCommMonoid M inst✝⁵ : Module R M inst✝⁴ : AddCommMonoid N inst✝³ : Module R N inst✝² : AddCommMonoid P inst✝¹ : Module R P α' : Type u_7 α'' : Type u_8 inst✝ : Nonempty α f : α → α' s : Set α inhabited_h : Inhabited α l : α' →₀ M hl : l ∈ supported M R (f '' s) c : α' hc : c ∈ l.support hx : Function.invFunOn f s c ∈ ↑(↑(lmapDomain M R (Function.invFunOn f s)) l).support ⊢ Function.invFunOn f s c ∈ s [PROOFSTEP] exact Function.invFunOn_mem (by simpa using hl hc) [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁸ : Semiring R inst✝⁷ : Semiring S inst✝⁶ : AddCommMonoid M inst✝⁵ : Module R M inst✝⁴ : AddCommMonoid N inst✝³ : Module R N inst✝² : AddCommMonoid P inst✝¹ : Module R P α' : Type u_7 α'' : Type u_8 inst✝ : Nonempty α f : α → α' s : Set α inhabited_h : Inhabited α l : α' →₀ M hl : l ∈ supported M R (f '' s) c : α' hc : c ∈ l.support hx : Function.invFunOn f s c ∈ ↑(↑(lmapDomain M R (Function.invFunOn f s)) l).support ⊢ ∃ a, a ∈ s ∧ f a = c [PROOFSTEP] simpa using hl hc [GOAL] case refine'_2 α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁸ : Semiring R inst✝⁷ : Semiring S inst✝⁶ : AddCommMonoid M inst✝⁵ : Module R M inst✝⁴ : AddCommMonoid N inst✝³ : Module R N inst✝² : AddCommMonoid P inst✝¹ : Module R P α' : Type u_7 α'' : Type u_8 inst✝ : Nonempty α f : α → α' s : Set α inhabited_h : Inhabited α l : α' →₀ M hl : l ∈ supported M R (f '' s) ⊢ ↑(lmapDomain M R f) (↑(lmapDomain M R (Function.invFunOn f s)) l) = l [PROOFSTEP] rw [← LinearMap.comp_apply, ← lmapDomain_comp] [GOAL] case refine'_2 α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁸ : Semiring R inst✝⁷ : Semiring S inst✝⁶ : AddCommMonoid M inst✝⁵ : Module R M inst✝⁴ : AddCommMonoid N inst✝³ : Module R N inst✝² : AddCommMonoid P inst✝¹ : Module R P α' : Type u_7 α'' : Type u_8 inst✝ : Nonempty α f : α → α' s : Set α inhabited_h : Inhabited α l : α' →₀ M hl : l ∈ supported M R (f '' s) ⊢ ↑(lmapDomain M R (f ∘ Function.invFunOn f s)) l = l [PROOFSTEP] refine' (mapDomain_congr fun c hc => _).trans mapDomain_id [GOAL] case refine'_2 α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁸ : Semiring R inst✝⁷ : Semiring S inst✝⁶ : AddCommMonoid M inst✝⁵ : Module R M inst✝⁴ : AddCommMonoid N inst✝³ : Module R N inst✝² : AddCommMonoid P inst✝¹ : Module R P α' : Type u_7 α'' : Type u_8 inst✝ : Nonempty α f : α → α' s : Set α inhabited_h : Inhabited α l : α' →₀ M hl : l ∈ supported M R (f '' s) c : α' hc : c ∈ l.support ⊢ (f ∘ Function.invFunOn f s) c = _root_.id c [PROOFSTEP] exact Function.invFunOn_eq (by simpa using hl hc) [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁸ : Semiring R inst✝⁷ : Semiring S inst✝⁶ : AddCommMonoid M inst✝⁵ : Module R M inst✝⁴ : AddCommMonoid N inst✝³ : Module R N inst✝² : AddCommMonoid P inst✝¹ : Module R P α' : Type u_7 α'' : Type u_8 inst✝ : Nonempty α f : α → α' s : Set α inhabited_h : Inhabited α l : α' →₀ M hl : l ∈ supported M R (f '' s) c : α' hc : c ∈ l.support ⊢ ∃ a, a ∈ s ∧ f a = c [PROOFSTEP] simpa using hl hc [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P α' : Type u_7 α'' : Type u_8 f : α → α' s : Set α H : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ s → f a = f b → a = b ⊢ Disjoint (supported M R s) (ker (lmapDomain M R f)) [PROOFSTEP] rw [disjoint_iff_inf_le] [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P α' : Type u_7 α'' : Type u_8 f : α → α' s : Set α H : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ s → f a = f b → a = b ⊢ supported M R s ⊓ ker (lmapDomain M R f) ≤ ⊥ [PROOFSTEP] rintro l ⟨h₁, h₂⟩ [GOAL] case intro α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P α' : Type u_7 α'' : Type u_8 f : α → α' s : Set α H : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ s → f a = f b → a = b l : α →₀ M h₁ : l ∈ ↑(supported M R s) h₂ : l ∈ ↑(ker (lmapDomain M R f)) ⊢ l ∈ ⊥ [PROOFSTEP] rw [SetLike.mem_coe, mem_ker, lmapDomain_apply, mapDomain] at h₂ [GOAL] case intro α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P α' : Type u_7 α'' : Type u_8 f : α → α' s : Set α H : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ s → f a = f b → a = b l : α →₀ M h₁ : l ∈ ↑(supported M R s) h₂ : (sum l fun a => single (f a)) = 0 ⊢ l ∈ ⊥ [PROOFSTEP] simp [GOAL] case intro α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P α' : Type u_7 α'' : Type u_8 f : α → α' s : Set α H : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ s → f a = f b → a = b l : α →₀ M h₁ : l ∈ ↑(supported M R s) h₂ : (sum l fun a => single (f a)) = 0 ⊢ l = 0 [PROOFSTEP] ext x [GOAL] case intro.h α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P α' : Type u_7 α'' : Type u_8 f : α → α' s : Set α H : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ s → f a = f b → a = b l : α →₀ M h₁ : l ∈ ↑(supported M R s) h₂ : (sum l fun a => single (f a)) = 0 x : α ⊢ ↑l x = ↑0 x [PROOFSTEP] haveI := Classical.decPred fun x => x ∈ s [GOAL] case intro.h α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P α' : Type u_7 α'' : Type u_8 f : α → α' s : Set α H : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ s → f a = f b → a = b l : α →₀ M h₁ : l ∈ ↑(supported M R s) h₂ : (sum l fun a => single (f a)) = 0 x : α this : DecidablePred fun x => x ∈ s ⊢ ↑l x = ↑0 x [PROOFSTEP] by_cases xs : x ∈ s [GOAL] case pos α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P α' : Type u_7 α'' : Type u_8 f : α → α' s : Set α H : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ s → f a = f b → a = b l : α →₀ M h₁ : l ∈ ↑(supported M R s) h₂ : (sum l fun a => single (f a)) = 0 x : α this : DecidablePred fun x => x ∈ s xs : x ∈ s ⊢ ↑l x = ↑0 x [PROOFSTEP] have : Finsupp.sum l (fun a => Finsupp.single (f a)) (f x) = 0 := by rw [h₂] rfl [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P α' : Type u_7 α'' : Type u_8 f : α → α' s : Set α H : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ s → f a = f b → a = b l : α →₀ M h₁ : l ∈ ↑(supported M R s) h₂ : (sum l fun a => single (f a)) = 0 x : α this : DecidablePred fun x => x ∈ s xs : x ∈ s ⊢ ↑(sum l fun a => single (f a)) (f x) = 0 [PROOFSTEP] rw [h₂] [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P α' : Type u_7 α'' : Type u_8 f : α → α' s : Set α H : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ s → f a = f b → a = b l : α →₀ M h₁ : l ∈ ↑(supported M R s) h₂ : (sum l fun a => single (f a)) = 0 x : α this : DecidablePred fun x => x ∈ s xs : x ∈ s ⊢ ↑0 (f x) = 0 [PROOFSTEP] rfl [GOAL] case pos α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P α' : Type u_7 α'' : Type u_8 f : α → α' s : Set α H : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ s → f a = f b → a = b l : α →₀ M h₁ : l ∈ ↑(supported M R s) h₂ : (sum l fun a => single (f a)) = 0 x : α this✝ : DecidablePred fun x => x ∈ s xs : x ∈ s this : ↑(sum l fun a => single (f a)) (f x) = 0 ⊢ ↑l x = ↑0 x [PROOFSTEP] rw [Finsupp.sum_apply, Finsupp.sum, Finset.sum_eq_single x, single_eq_same] at this [GOAL] case pos α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P α' : Type u_7 α'' : Type u_8 f : α → α' s : Set α H : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ s → f a = f b → a = b l : α →₀ M h₁ : l ∈ ↑(supported M R s) h₂ : (sum l fun a => single (f a)) = 0 x : α this✝ : DecidablePred fun x => x ∈ s xs : x ∈ s this : ↑l x = 0 ⊢ ↑l x = ↑0 x [PROOFSTEP] simpa [GOAL] case pos.h₀ α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P α' : Type u_7 α'' : Type u_8 f : α → α' s : Set α H : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ s → f a = f b → a = b l : α →₀ M h₁ : l ∈ ↑(supported M R s) h₂ : (sum l fun a => single (f a)) = 0 x : α this✝ : DecidablePred fun x => x ∈ s xs : x ∈ s this : ∑ a in l.support, ↑(single (f a) (↑l a)) (f x) = 0 ⊢ ∀ (b : α), b ∈ l.support → b ≠ x → ↑(single (f b) (↑l b)) (f x) = 0 [PROOFSTEP] intro y hy xy [GOAL] case pos.h₀ α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P α' : Type u_7 α'' : Type u_8 f : α → α' s : Set α H : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ s → f a = f b → a = b l : α →₀ M h₁ : l ∈ ↑(supported M R s) h₂ : (sum l fun a => single (f a)) = 0 x : α this✝ : DecidablePred fun x => x ∈ s xs : x ∈ s this : ∑ a in l.support, ↑(single (f a) (↑l a)) (f x) = 0 y : α hy : y ∈ l.support xy : y ≠ x ⊢ ↑(single (f y) (↑l y)) (f x) = 0 [PROOFSTEP] simp [mt (H _ (h₁ hy) _ xs) xy] [GOAL] case pos.h₁ α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P α' : Type u_7 α'' : Type u_8 f : α → α' s : Set α H : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ s → f a = f b → a = b l : α →₀ M h₁ : l ∈ ↑(supported M R s) h₂ : (sum l fun a => single (f a)) = 0 x : α this✝ : DecidablePred fun x => x ∈ s xs : x ∈ s this : ∑ a in l.support, ↑(single (f a) (↑l a)) (f x) = 0 ⊢ ¬x ∈ l.support → ↑(single (f x) (↑l x)) (f x) = 0 [PROOFSTEP] simp (config := { contextual := true }) [GOAL] case neg α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P α' : Type u_7 α'' : Type u_8 f : α → α' s : Set α H : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ s → f a = f b → a = b l : α →₀ M h₁ : l ∈ ↑(supported M R s) h₂ : (sum l fun a => single (f a)) = 0 x : α this : DecidablePred fun x => x ∈ s xs : ¬x ∈ s ⊢ ↑l x = ↑0 x [PROOFSTEP] by_contra h [GOAL] case neg α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P α' : Type u_7 α'' : Type u_8 f : α → α' s : Set α H : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ s → f a = f b → a = b l : α →₀ M h₁ : l ∈ ↑(supported M R s) h₂ : (sum l fun a => single (f a)) = 0 x : α this : DecidablePred fun x => x ∈ s xs : ¬x ∈ s h : ¬↑l x = ↑0 x ⊢ False [PROOFSTEP] exact xs (h₁ <| Finsupp.mem_support_iff.2 h) [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P β : Type u_7 f : α → β hf : Function.Injective f x y : β →₀ M ⊢ (fun l => comapDomain f l (_ : InjOn f (f ⁻¹' ↑l.support))) (x + y) = (fun l => comapDomain f l (_ : InjOn f (f ⁻¹' ↑l.support))) x + (fun l => comapDomain f l (_ : InjOn f (f ⁻¹' ↑l.support))) y [PROOFSTEP] ext [GOAL] case h α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P β : Type u_7 f : α → β hf : Function.Injective f x y : β →₀ M a✝ : α ⊢ ↑((fun l => comapDomain f l (_ : InjOn f (f ⁻¹' ↑l.support))) (x + y)) a✝ = ↑((fun l => comapDomain f l (_ : InjOn f (f ⁻¹' ↑l.support))) x + (fun l => comapDomain f l (_ : InjOn f (f ⁻¹' ↑l.support))) y) a✝ [PROOFSTEP] simp [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P β : Type u_7 f : α → β hf : Function.Injective f c : R x : β →₀ M ⊢ AddHom.toFun { toFun := fun l => comapDomain f l (_ : InjOn f (f ⁻¹' ↑l.support)), map_add' := (_ : ∀ (x y : β →₀ M), (fun l => comapDomain f l (_ : InjOn f (f ⁻¹' ↑l.support))) (x + y) = (fun l => comapDomain f l (_ : InjOn f (f ⁻¹' ↑l.support))) x + (fun l => comapDomain f l (_ : InjOn f (f ⁻¹' ↑l.support))) y) } (c • x) = ↑(RingHom.id R) c • AddHom.toFun { toFun := fun l => comapDomain f l (_ : InjOn f (f ⁻¹' ↑l.support)), map_add' := (_ : ∀ (x y : β →₀ M), (fun l => comapDomain f l (_ : InjOn f (f ⁻¹' ↑l.support))) (x + y) = (fun l => comapDomain f l (_ : InjOn f (f ⁻¹' ↑l.support))) x + (fun l => comapDomain f l (_ : InjOn f (f ⁻¹' ↑l.support))) y) } x [PROOFSTEP] ext [GOAL] case h α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P β : Type u_7 f : α → β hf : Function.Injective f c : R x : β →₀ M a✝ : α ⊢ ↑(AddHom.toFun { toFun := fun l => comapDomain f l (_ : InjOn f (f ⁻¹' ↑l.support)), map_add' := (_ : ∀ (x y : β →₀ M), (fun l => comapDomain f l (_ : InjOn f (f ⁻¹' ↑l.support))) (x + y) = (fun l => comapDomain f l (_ : InjOn f (f ⁻¹' ↑l.support))) x + (fun l => comapDomain f l (_ : InjOn f (f ⁻¹' ↑l.support))) y) } (c • x)) a✝ = ↑(↑(RingHom.id R) c • AddHom.toFun { toFun := fun l => comapDomain f l (_ : InjOn f (f ⁻¹' ↑l.support)), map_add' := (_ : ∀ (x y : β →₀ M), (fun l => comapDomain f l (_ : InjOn f (f ⁻¹' ↑l.support))) (x + y) = (fun l => comapDomain f l (_ : InjOn f (f ⁻¹' ↑l.support))) x + (fun l => comapDomain f l (_ : InjOn f (f ⁻¹' ↑l.support))) y) } x) a✝ [PROOFSTEP] simp [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' l : α →₀ R s : Finset α hs : l ∈ supported R R ↑s x : α x✝ : x ∈ s hxg : ¬x ∈ l.support ⊢ ↑l x • v x = 0 [PROOFSTEP] rw [not_mem_support_iff.1 hxg, zero_smul] [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' c : R a : α ⊢ ↑(Finsupp.total α M R v) (single a c) = c • v a [PROOFSTEP] simp [total_apply, sum_single_index] [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' x : α →₀ R ⊢ ↑(Finsupp.total α M R 0) x = 0 [PROOFSTEP] simp [Finsupp.total_apply] [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v✝ : α → M v' : α' → M' f : M →ₗ[R] M' v : α → M l : α →₀ R ⊢ ↑f (↑(Finsupp.total α M R v) l) = ↑(Finsupp.total α M' R (↑f ∘ v)) l [PROOFSTEP] apply Finsupp.induction_linear l [GOAL] case h0 α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v✝ : α → M v' : α' → M' f : M →ₗ[R] M' v : α → M l : α →₀ R ⊢ ↑f (↑(Finsupp.total α M R v) 0) = ↑(Finsupp.total α M' R (↑f ∘ v)) 0 [PROOFSTEP] simp (config := { contextual := true }) [GOAL] case hadd α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v✝ : α → M v' : α' → M' f : M →ₗ[R] M' v : α → M l : α →₀ R ⊢ ∀ (f_1 g : α →₀ R), ↑f (↑(Finsupp.total α M R v) f_1) = ↑(Finsupp.total α M' R (↑f ∘ v)) f_1 → ↑f (↑(Finsupp.total α M R v) g) = ↑(Finsupp.total α M' R (↑f ∘ v)) g → ↑f (↑(Finsupp.total α M R v) (f_1 + g)) = ↑(Finsupp.total α M' R (↑f ∘ v)) (f_1 + g) [PROOFSTEP] simp (config := { contextual := true }) [GOAL] case hsingle α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v✝ : α → M v' : α' → M' f : M →ₗ[R] M' v : α → M l : α →₀ R ⊢ ∀ (a : α) (b : R), ↑f (↑(Finsupp.total α M R v) (single a b)) = ↑(Finsupp.total α M' R (↑f ∘ v)) (single a b) [PROOFSTEP] simp (config := { contextual := true }) [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝¹⁰ : Semiring R inst✝⁹ : Semiring S inst✝⁸ : AddCommMonoid M inst✝⁷ : Module R M inst✝⁶ : AddCommMonoid N inst✝⁵ : Module R N inst✝⁴ : AddCommMonoid P inst✝³ : Module R P α' : Type u_7 M' : Type u_8 inst✝² : AddCommMonoid M' inst✝¹ : Module R M' v✝ : α → M v' : α' → M' inst✝ : Unique α l : α →₀ R v : α → M ⊢ ↑(Finsupp.total α M R v) l = ↑l default • v default [PROOFSTEP] rw [← total_single, ← unique_single l] [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' h : Function.Surjective v ⊢ Function.Surjective ↑(Finsupp.total α M R v) [PROOFSTEP] intro x [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' h : Function.Surjective v x : M ⊢ ∃ a, ↑(Finsupp.total α M R v) a = x [PROOFSTEP] obtain ⟨y, hy⟩ := h x [GOAL] case intro α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' h : Function.Surjective v x : M y : α hy : v y = x ⊢ ∃ a, ↑(Finsupp.total α M R v) a = x [PROOFSTEP] exact ⟨Finsupp.single y 1, by simp [hy]⟩ [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' h : Function.Surjective v x : M y : α hy : v y = x ⊢ ↑(Finsupp.total α M R v) (single y 1) = x [PROOFSTEP] simp [hy] [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' ⊢ LinearMap.range (Finsupp.total α M R v) = span R (Set.range v) [PROOFSTEP] ext x [GOAL] case h α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' x : M ⊢ x ∈ LinearMap.range (Finsupp.total α M R v) ↔ x ∈ span R (Set.range v) [PROOFSTEP] constructor [GOAL] case h.mp α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' x : M ⊢ x ∈ LinearMap.range (Finsupp.total α M R v) → x ∈ span R (Set.range v) [PROOFSTEP] intro hx [GOAL] case h.mp α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' x : M hx : x ∈ LinearMap.range (Finsupp.total α M R v) ⊢ x ∈ span R (Set.range v) [PROOFSTEP] rw [LinearMap.mem_range] at hx [GOAL] case h.mp α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' x : M hx : ∃ y, ↑(Finsupp.total α M R v) y = x ⊢ x ∈ span R (Set.range v) [PROOFSTEP] rcases hx with ⟨l, hl⟩ [GOAL] case h.mp.intro α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' x : M l : α →₀ R hl : ↑(Finsupp.total α M R v) l = x ⊢ x ∈ span R (Set.range v) [PROOFSTEP] rw [← hl] [GOAL] case h.mp.intro α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' x : M l : α →₀ R hl : ↑(Finsupp.total α M R v) l = x ⊢ ↑(Finsupp.total α M R v) l ∈ span R (Set.range v) [PROOFSTEP] rw [Finsupp.total_apply] [GOAL] case h.mp.intro α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' x : M l : α →₀ R hl : ↑(Finsupp.total α M R v) l = x ⊢ (sum l fun i a => a • v i) ∈ span R (Set.range v) [PROOFSTEP] exact sum_mem fun i _ => Submodule.smul_mem _ _ (subset_span (mem_range_self i)) [GOAL] case h.mpr α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' x : M ⊢ x ∈ span R (Set.range v) → x ∈ LinearMap.range (Finsupp.total α M R v) [PROOFSTEP] apply span_le.2 [GOAL] case h.mpr.a α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' x : M ⊢ Set.range v ⊆ ↑(LinearMap.range (Finsupp.total α M R v)) [PROOFSTEP] intro x hx [GOAL] case h.mpr.a α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' x✝ x : M hx : x ∈ Set.range v ⊢ x ∈ ↑(LinearMap.range (Finsupp.total α M R v)) [PROOFSTEP] rcases hx with ⟨i, hi⟩ [GOAL] case h.mpr.a.intro α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' x✝ x : M i : α hi : v i = x ⊢ x ∈ ↑(LinearMap.range (Finsupp.total α M R v)) [PROOFSTEP] rw [SetLike.mem_coe, LinearMap.mem_range] [GOAL] case h.mpr.a.intro α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' x✝ x : M i : α hi : v i = x ⊢ ∃ y, ↑(Finsupp.total α M R v) y = x [PROOFSTEP] use Finsupp.single i 1 [GOAL] case h α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' x✝ x : M i : α hi : v i = x ⊢ ↑(Finsupp.total α M R v) (single i 1) = x [PROOFSTEP] simp [hi] [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' f : α → α' g : M →ₗ[R] M' h : ∀ (i : α), ↑g (v i) = v' (f i) ⊢ comp (Finsupp.total α' M' R v') (lmapDomain R R f) = comp g (Finsupp.total α M R v) [PROOFSTEP] ext l [GOAL] case h.h α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' f : α → α' g : M →ₗ[R] M' h : ∀ (i : α), ↑g (v i) = v' (f i) l : α ⊢ ↑(comp (comp (Finsupp.total α' M' R v') (lmapDomain R R f)) (lsingle l)) 1 = ↑(comp (comp g (Finsupp.total α M R v)) (lsingle l)) 1 [PROOFSTEP] simp [total_apply, Finsupp.sum_mapDomain_index, add_smul, h] [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' f : α → α' ⊢ comp (Finsupp.total α' M' R v') (lmapDomain R R f) = Finsupp.total α M' R (v' ∘ f) [PROOFSTEP] ext [GOAL] case h.h α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' f : α → α' a✝ : α ⊢ ↑(comp (comp (Finsupp.total α' M' R v') (lmapDomain R R f)) (lsingle a✝)) 1 = ↑(comp (Finsupp.total α M' R (v' ∘ f)) (lsingle a✝)) 1 [PROOFSTEP] simp [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' f : α ↪ α' l : α →₀ R ⊢ ↑(Finsupp.total α' M' R v') (embDomain f l) = ↑(Finsupp.total α M' R (v' ∘ ↑f)) l [PROOFSTEP] simp [total_apply, Finsupp.sum, support_embDomain, embDomain_apply] [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' f : α ≃ α' l : α →₀ R ⊢ ↑(Finsupp.total α' M' R v') (equivMapDomain f l) = ↑(Finsupp.total α M' R (v' ∘ ↑f)) l [PROOFSTEP] rw [equivMapDomain_eq_mapDomain, total_mapDomain] [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' s : Set M ⊢ span R s = LinearMap.range (Finsupp.total (↑s) M R Subtype.val) [PROOFSTEP] rw [range_total, Subtype.range_coe_subtype, Set.setOf_mem_eq] [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v✝ : α → M v' : α' → M' v : α → M x : M ⊢ x ∈ span R (Set.range v) ↔ ∃ c, (sum c fun i a => a • v i) = x [PROOFSTEP] simp only [← Finsupp.range_total, LinearMap.mem_range, Finsupp.total_apply] [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' s : Set α ⊢ span R (v '' s) = map (Finsupp.total α M R v) (supported R R s) [PROOFSTEP] apply span_eq_of_le [GOAL] case h₁ α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' s : Set α ⊢ v '' s ⊆ ↑(map (Finsupp.total α M R v) (supported R R s)) [PROOFSTEP] intro x hx [GOAL] case h₁ α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' s : Set α x : M hx : x ∈ v '' s ⊢ x ∈ ↑(map (Finsupp.total α M R v) (supported R R s)) [PROOFSTEP] rw [Set.mem_image] at hx [GOAL] case h₁ α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' s : Set α x : M hx : ∃ x_1, x_1 ∈ s ∧ v x_1 = x ⊢ x ∈ ↑(map (Finsupp.total α M R v) (supported R R s)) [PROOFSTEP] apply Exists.elim hx [GOAL] case h₁ α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' s : Set α x : M hx : ∃ x_1, x_1 ∈ s ∧ v x_1 = x ⊢ ∀ (a : α), a ∈ s ∧ v a = x → x ∈ ↑(map (Finsupp.total α M R v) (supported R R s)) [PROOFSTEP] intro i hi [GOAL] case h₁ α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' s : Set α x : M hx : ∃ x_1, x_1 ∈ s ∧ v x_1 = x i : α hi : i ∈ s ∧ v i = x ⊢ x ∈ ↑(map (Finsupp.total α M R v) (supported R R s)) [PROOFSTEP] exact ⟨_, Finsupp.single_mem_supported R 1 hi.1, by simp [hi.2]⟩ [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' s : Set α x : M hx : ∃ x_1, x_1 ∈ s ∧ v x_1 = x i : α hi : i ∈ s ∧ v i = x ⊢ ↑(Finsupp.total α M R v) (single i 1) = x [PROOFSTEP] simp [hi.2] [GOAL] case h₂ α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' s : Set α ⊢ map (Finsupp.total α M R v) (supported R R s) ≤ span R (v '' s) [PROOFSTEP] refine' map_le_iff_le_comap.2 fun z hz => _ [GOAL] case h₂ α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' s : Set α z : α →₀ R hz : z ∈ supported R R s ⊢ z ∈ comap (Finsupp.total α M R v) (span R (v '' s)) [PROOFSTEP] have : ∀ i, z i • v i ∈ span R (v '' s) := by intro c haveI := Classical.decPred fun x => x ∈ s by_cases h : c ∈ s · exact smul_mem _ _ (subset_span (Set.mem_image_of_mem _ h)) · simp [(Finsupp.mem_supported' R _).1 hz _ h] -- Porting note: `rw` is required to infer metavariables in `sum_mem`. [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' s : Set α z : α →₀ R hz : z ∈ supported R R s ⊢ ∀ (i : α), ↑z i • v i ∈ span R (v '' s) [PROOFSTEP] intro c [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' s : Set α z : α →₀ R hz : z ∈ supported R R s c : α ⊢ ↑z c • v c ∈ span R (v '' s) [PROOFSTEP] haveI := Classical.decPred fun x => x ∈ s [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' s : Set α z : α →₀ R hz : z ∈ supported R R s c : α this : DecidablePred fun x => x ∈ s ⊢ ↑z c • v c ∈ span R (v '' s) [PROOFSTEP] by_cases h : c ∈ s [GOAL] case pos α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' s : Set α z : α →₀ R hz : z ∈ supported R R s c : α this : DecidablePred fun x => x ∈ s h : c ∈ s ⊢ ↑z c • v c ∈ span R (v '' s) [PROOFSTEP] exact smul_mem _ _ (subset_span (Set.mem_image_of_mem _ h)) [GOAL] case neg α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' s : Set α z : α →₀ R hz : z ∈ supported R R s c : α this : DecidablePred fun x => x ∈ s h : ¬c ∈ s ⊢ ↑z c • v c ∈ span R (v '' s) [PROOFSTEP] simp [(Finsupp.mem_supported' R _).1 hz _ h] -- Porting note: `rw` is required to infer metavariables in `sum_mem`. [GOAL] case h₂ α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' s : Set α z : α →₀ R hz : z ∈ supported R R s this : ∀ (i : α), ↑z i • v i ∈ span R (v '' s) ⊢ z ∈ comap (Finsupp.total α M R v) (span R (v '' s)) [PROOFSTEP] rw [mem_comap, total_apply] [GOAL] case h₂ α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' s : Set α z : α →₀ R hz : z ∈ supported R R s this : ∀ (i : α), ↑z i • v i ∈ span R (v '' s) ⊢ (sum z fun i a => a • v i) ∈ span R (v '' s) [PROOFSTEP] refine' sum_mem _ [GOAL] case h₂ α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' s : Set α z : α →₀ R hz : z ∈ supported R R s this : ∀ (i : α), ↑z i • v i ∈ span R (v '' s) ⊢ ∀ (c : α), c ∈ z.support → (fun i a => a • v i) c (↑z c) ∈ span R (v '' s) [PROOFSTEP] simp [this] [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' s : Set α x : M ⊢ x ∈ span R (v '' s) ↔ ∃ l, l ∈ supported R R s ∧ ↑(Finsupp.total α M R v) l = x [PROOFSTEP] rw [span_image_eq_map_total] [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' s : Set α x : M ⊢ x ∈ map (Finsupp.total α M R v) (supported R R s) ↔ ∃ l, l ∈ supported R R s ∧ ↑(Finsupp.total α M R v) l = x [PROOFSTEP] simp [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v✝ : α → M v' : α' → M' v : Option α → M f : Option α →₀ R ⊢ ↑(Finsupp.total (Option α) M R v) f = ↑f none • v none + ↑(Finsupp.total α M R (v ∘ Option.some)) (some f) [PROOFSTEP] rw [total_apply, sum_option_index_smul, total_apply] [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v✝ : α → M v' : α' → M' v : Option α → M f : Option α →₀ R ⊢ (↑f none • v none + sum (some f) fun a r => r • v (Option.some a)) = ↑f none • v none + sum (some f) fun i a => a • (v ∘ Option.some) i [PROOFSTEP] simp [GOAL] α✝ : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α✝ → M v' : α' → M' α : Type u_9 β : Type u_10 A : α → M B : β → α →₀ R f : β →₀ R ⊢ ↑(Finsupp.total α M R A) (↑(Finsupp.total β (α →₀ R) R B) f) = ↑(Finsupp.total β M R fun b => ↑(Finsupp.total α M R A) (B b)) f [PROOFSTEP] classical simp only [total_apply] apply induction_linear f · simp only [sum_zero_index] · intro f₁ f₂ h₁ h₂ simp [sum_add_index, h₁, h₂, add_smul] · simp [sum_single_index, sum_smul_index, smul_sum, mul_smul] [GOAL] α✝ : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α✝ → M v' : α' → M' α : Type u_9 β : Type u_10 A : α → M B : β → α →₀ R f : β →₀ R ⊢ ↑(Finsupp.total α M R A) (↑(Finsupp.total β (α →₀ R) R B) f) = ↑(Finsupp.total β M R fun b => ↑(Finsupp.total α M R A) (B b)) f [PROOFSTEP] simp only [total_apply] [GOAL] α✝ : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α✝ → M v' : α' → M' α : Type u_9 β : Type u_10 A : α → M B : β → α →₀ R f : β →₀ R ⊢ (sum (sum f fun i a => a • B i) fun i a => a • A i) = sum f fun i a => a • sum (B i) fun i a => a • A i [PROOFSTEP] apply induction_linear f [GOAL] case h0 α✝ : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α✝ → M v' : α' → M' α : Type u_9 β : Type u_10 A : α → M B : β → α →₀ R f : β →₀ R ⊢ (sum (sum 0 fun i a => a • B i) fun i a => a • A i) = sum 0 fun i a => a • sum (B i) fun i a => a • A i [PROOFSTEP] simp only [sum_zero_index] [GOAL] case hadd α✝ : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α✝ → M v' : α' → M' α : Type u_9 β : Type u_10 A : α → M B : β → α →₀ R f : β →₀ R ⊢ ∀ (f g : β →₀ R), ((sum (sum f fun i a => a • B i) fun i a => a • A i) = sum f fun i a => a • sum (B i) fun i a => a • A i) → ((sum (sum g fun i a => a • B i) fun i a => a • A i) = sum g fun i a => a • sum (B i) fun i a => a • A i) → (sum (sum (f + g) fun i a => a • B i) fun i a => a • A i) = sum (f + g) fun i a => a • sum (B i) fun i a => a • A i [PROOFSTEP] intro f₁ f₂ h₁ h₂ [GOAL] case hadd α✝ : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α✝ → M v' : α' → M' α : Type u_9 β : Type u_10 A : α → M B : β → α →₀ R f : β →₀ R f₁ f₂ : β →₀ R h₁ : (sum (sum f₁ fun i a => a • B i) fun i a => a • A i) = sum f₁ fun i a => a • sum (B i) fun i a => a • A i h₂ : (sum (sum f₂ fun i a => a • B i) fun i a => a • A i) = sum f₂ fun i a => a • sum (B i) fun i a => a • A i ⊢ (sum (sum (f₁ + f₂) fun i a => a • B i) fun i a => a • A i) = sum (f₁ + f₂) fun i a => a • sum (B i) fun i a => a • A i [PROOFSTEP] simp [sum_add_index, h₁, h₂, add_smul] [GOAL] case hsingle α✝ : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α✝ → M v' : α' → M' α : Type u_9 β : Type u_10 A : α → M B : β → α →₀ R f : β →₀ R ⊢ ∀ (a : β) (b : R), (sum (sum (single a b) fun i a => a • B i) fun i a => a • A i) = sum (single a b) fun i a => a • sum (B i) fun i a => a • A i [PROOFSTEP] simp [sum_single_index, sum_smul_index, smul_sum, mul_smul] [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' f : Fin 0 → M ⊢ Finsupp.total (Fin 0) M R f = 0 [PROOFSTEP] ext i [GOAL] case h.h α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' f : Fin 0 → M i : Fin 0 ⊢ ↑(comp (Finsupp.total (Fin 0) M R f) (lsingle i)) 1 = ↑(comp 0 (lsingle i)) 1 [PROOFSTEP] apply finZeroElim i [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' s : Set α ⊢ LinearMap.range (Finsupp.totalOn α M R v s) = ⊤ [PROOFSTEP] rw [Finsupp.totalOn, LinearMap.range_eq_map, LinearMap.map_codRestrict, ← LinearMap.range_le_iff_comap, range_subtype, Submodule.map_top, LinearMap.range_comp, range_subtype] [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' s : Set α ⊢ span R (v '' s) ≤ map (Finsupp.total α M R v) (supported R R s) [PROOFSTEP] exact (span_image_eq_map_total _ _).le [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' f : α' → α ⊢ Finsupp.total α' M R (v ∘ f) = comp (Finsupp.total α M R v) (lmapDomain R R f) [PROOFSTEP] ext [GOAL] case h.h α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' f : α' → α a✝ : α' ⊢ ↑(comp (Finsupp.total α' M R (v ∘ f)) (lsingle a✝)) 1 = ↑(comp (comp (Finsupp.total α M R v) (lmapDomain R R f)) (lsingle a✝)) 1 [PROOFSTEP] simp [total_apply] [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' f : α → α' l : α' →₀ R hf : InjOn f (f ⁻¹' ↑l.support) ⊢ ↑(Finsupp.total α M R v) (comapDomain f l hf) = ∑ i in Finset.preimage l.support f hf, ↑l (f i) • v i [PROOFSTEP] rw [Finsupp.total_apply] [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' f : α → α' l : α' →₀ R hf : InjOn f (f ⁻¹' ↑l.support) ⊢ (sum (comapDomain f l hf) fun i a => a • v i) = ∑ i in Finset.preimage l.support f hf, ↑l (f i) • v i [PROOFSTEP] rfl [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' s : Finset α f : α → R g : α → M hf : ∀ (a : α), f a ≠ 0 → a ∈ s ⊢ ↑(Finsupp.total α M R g) (onFinset s f hf) = ∑ x in s, f x • g x [PROOFSTEP] classical simp only [Finsupp.total_apply, Finsupp.sum, Finsupp.onFinset_apply, Finsupp.support_onFinset] rw [Finset.sum_filter_of_ne] intro x _ h contrapose! h simp [h] [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' s : Finset α f : α → R g : α → M hf : ∀ (a : α), f a ≠ 0 → a ∈ s ⊢ ↑(Finsupp.total α M R g) (onFinset s f hf) = ∑ x in s, f x • g x [PROOFSTEP] simp only [Finsupp.total_apply, Finsupp.sum, Finsupp.onFinset_apply, Finsupp.support_onFinset] [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' s : Finset α f : α → R g : α → M hf : ∀ (a : α), f a ≠ 0 → a ∈ s ⊢ ∑ x in Finset.filter (fun a => f a ≠ 0) s, f x • g x = ∑ x in s, f x • g x [PROOFSTEP] rw [Finset.sum_filter_of_ne] [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' s : Finset α f : α → R g : α → M hf : ∀ (a : α), f a ≠ 0 → a ∈ s ⊢ ∀ (x : α), x ∈ s → f x • g x ≠ 0 → f x ≠ 0 [PROOFSTEP] intro x _ h [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' s : Finset α f : α → R g : α → M hf : ∀ (a : α), f a ≠ 0 → a ∈ s x : α a✝ : x ∈ s h : f x • g x ≠ 0 ⊢ f x ≠ 0 [PROOFSTEP] contrapose! h [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' s : Finset α f : α → R g : α → M hf : ∀ (a : α), f a ≠ 0 → a ∈ s x : α a✝ : x ∈ s h : f x = 0 ⊢ f x • g x = 0 [PROOFSTEP] simp [h] [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P α₁ : Type u_7 α₂ : Type u_8 e : α₁ ≃ α₂ ⊢ ∀ (c : R) (x : α₁ →₀ M), ↑(Finsupp.domCongr e) (c • x) = c • ↑(Finsupp.domCongr e) x [PROOFSTEP] simpa only [equivMapDomain_eq_mapDomain, domCongr_apply] using (lmapDomain M R e).map_smul [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P α₁ : Type u_7 α₂ : Type u_8 e : α₁ ≃ α₂ i : α₁ m : M ⊢ ↑(Finsupp.domLCongr e) (single i m) = single (↑e i) m [PROOFSTEP] simp [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P α' : Type u_7 s : Set α t : Set α' e : ↑s ≃ ↑t ⊢ { x // x ∈ supported M R s } ≃ₗ[R] { x // x ∈ supported M R t } [PROOFSTEP] haveI := Classical.decPred fun x => x ∈ s [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P α' : Type u_7 s : Set α t : Set α' e : ↑s ≃ ↑t this : DecidablePred fun x => x ∈ s ⊢ { x // x ∈ supported M R s } ≃ₗ[R] { x // x ∈ supported M R t } [PROOFSTEP] haveI := Classical.decPred fun x => x ∈ t [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P α' : Type u_7 s : Set α t : Set α' e : ↑s ≃ ↑t this✝ : DecidablePred fun x => x ∈ s this : DecidablePred fun x => x ∈ t ⊢ { x // x ∈ supported M R s } ≃ₗ[R] { x // x ∈ supported M R t } [PROOFSTEP] exact Finsupp.supportedEquivFinsupp s ≪≫ₗ (Finsupp.domLCongr e ≪≫ₗ (Finsupp.supportedEquivFinsupp t).symm) [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P ι : Type u_7 κ : Type u_8 e₁ : ι ≃ κ e₂ : M ≃ₗ[R] N i : ι m : M ⊢ ↑(lcongr e₁ e₂) (single i m) = single (↑e₁ i) (↑e₂ m) [PROOFSTEP] simp [lcongr] [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P ι : Type u_7 κ : Type u_8 e₁ : ι ≃ κ e₂ : M ≃ₗ[R] N k : κ n : N ⊢ ↑(LinearEquiv.symm (lcongr e₁ e₂)) (single k n) = single (↑e₁.symm k) (↑(LinearEquiv.symm e₂) n) [PROOFSTEP] apply_fun (lcongr e₁ e₂ : (ι →₀ M) → (κ →₀ N)) using (lcongr e₁ e₂).injective [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P ι : Type u_7 κ : Type u_8 e₁ : ι ≃ κ e₂ : M ≃ₗ[R] N k : κ n : N ⊢ ↑(lcongr e₁ e₂) (↑(LinearEquiv.symm (lcongr e₁ e₂)) (single k n)) = ↑(lcongr e₁ e₂) (single (↑e₁.symm k) (↑(LinearEquiv.symm e₂) n)) [PROOFSTEP] simp [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P ι : Type u_7 κ : Type u_8 e₁ : ι ≃ κ e₂ : M ≃ₗ[R] N ⊢ LinearEquiv.symm (lcongr e₁ e₂) = lcongr e₁.symm (LinearEquiv.symm e₂) [PROOFSTEP] ext [GOAL] case h.h α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P ι : Type u_7 κ : Type u_8 e₁ : ι ≃ κ e₂ : M ≃ₗ[R] N x✝ : κ →₀ N a✝ : ι ⊢ ↑(↑(LinearEquiv.symm (lcongr e₁ e₂)) x✝) a✝ = ↑(↑(lcongr e₁.symm (LinearEquiv.symm e₂)) x✝) a✝ [PROOFSTEP] rfl [GOAL] α✝ : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P α : Type u_7 β : Type u_8 src✝ : (α ⊕ β →₀ M) ≃+ (α →₀ M) × (β →₀ M) := sumFinsuppAddEquivProdFinsupp ⊢ ∀ (r : R) (x : α ⊕ β →₀ M), AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (x y : α ⊕ β →₀ M), Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) } (r • x) = ↑(RingHom.id R) r • AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (x y : α ⊕ β →₀ M), Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) } x [PROOFSTEP] intros [GOAL] α✝ : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P α : Type u_7 β : Type u_8 src✝ : (α ⊕ β →₀ M) ≃+ (α →₀ M) × (β →₀ M) := sumFinsuppAddEquivProdFinsupp r✝ : R x✝ : α ⊕ β →₀ M ⊢ AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (x y : α ⊕ β →₀ M), Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) } (r✝ • x✝) = ↑(RingHom.id R) r✝ • AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (x y : α ⊕ β →₀ M), Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) } x✝ [PROOFSTEP] ext [GOAL] case h₁.h α✝ : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P α : Type u_7 β : Type u_8 src✝ : (α ⊕ β →₀ M) ≃+ (α →₀ M) × (β →₀ M) := sumFinsuppAddEquivProdFinsupp r✝ : R x✝ : α ⊕ β →₀ M a✝ : α ⊢ ↑(AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (x y : α ⊕ β →₀ M), Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) } (r✝ • x✝)).fst a✝ = ↑(↑(RingHom.id R) r✝ • AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (x y : α ⊕ β →₀ M), Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) } x✝).fst a✝ [PROOFSTEP] simp only [Equiv.toFun_as_coe, AddEquiv.toEquiv_eq_coe, AddEquiv.coe_toEquiv, Prod.smul_fst, Prod.smul_snd, smul_apply, snd_sumFinsuppAddEquivProdFinsupp, fst_sumFinsuppAddEquivProdFinsupp, RingHom.id_apply] [GOAL] case h₂.h α✝ : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁷ : Semiring R inst✝⁶ : Semiring S inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid N inst✝² : Module R N inst✝¹ : AddCommMonoid P inst✝ : Module R P α : Type u_7 β : Type u_8 src✝ : (α ⊕ β →₀ M) ≃+ (α →₀ M) × (β →₀ M) := sumFinsuppAddEquivProdFinsupp r✝ : R x✝ : α ⊕ β →₀ M a✝ : β ⊢ ↑(AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (x y : α ⊕ β →₀ M), Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) } (r✝ • x✝)).snd a✝ = ↑(↑(RingHom.id R) r✝ • AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (x y : α ⊕ β →₀ M), Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) } x✝).snd a✝ [PROOFSTEP] simp only [Equiv.toFun_as_coe, AddEquiv.toEquiv_eq_coe, AddEquiv.coe_toEquiv, Prod.smul_fst, Prod.smul_snd, smul_apply, snd_sumFinsuppAddEquivProdFinsupp, fst_sumFinsuppAddEquivProdFinsupp, RingHom.id_apply] [GOAL] α : Type u_1 M✝ : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝¹¹ : Semiring R inst✝¹⁰ : Semiring S inst✝⁹ : AddCommMonoid M✝ inst✝⁸ : Module R M✝ inst✝⁷ : AddCommMonoid N inst✝⁶ : Module R N inst✝⁵ : AddCommMonoid P inst✝⁴ : Module R P η : Type u_7 inst✝³ : Fintype η ιs✝ : η → Type u_8 inst✝² : Zero α M : Type u_9 ιs : η → Type u_10 inst✝¹ : AddCommMonoid M inst✝ : Module R M src✝ : ((j : η) × ιs j →₀ M) ≃+ ((j : η) → ιs j →₀ M) := sigmaFinsuppAddEquivPiFinsupp c : R f : (j : η) × ιs j →₀ M ⊢ AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (x y : (j : η) × ιs j →₀ M), Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (x y : (j : η) × ιs j →₀ M), Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) } f [PROOFSTEP] ext [GOAL] case h.h α : Type u_1 M✝ : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝¹¹ : Semiring R inst✝¹⁰ : Semiring S inst✝⁹ : AddCommMonoid M✝ inst✝⁸ : Module R M✝ inst✝⁷ : AddCommMonoid N inst✝⁶ : Module R N inst✝⁵ : AddCommMonoid P inst✝⁴ : Module R P η : Type u_7 inst✝³ : Fintype η ιs✝ : η → Type u_8 inst✝² : Zero α M : Type u_9 ιs : η → Type u_10 inst✝¹ : AddCommMonoid M inst✝ : Module R M src✝ : ((j : η) × ιs j →₀ M) ≃+ ((j : η) → ιs j →₀ M) := sigmaFinsuppAddEquivPiFinsupp c : R f : (j : η) × ιs j →₀ M x✝ : η a✝ : ιs x✝ ⊢ ↑(AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (x y : (j : η) × ιs j →₀ M), Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) } (c • f) x✝) a✝ = ↑((↑(RingHom.id R) c • AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (x y : (j : η) × ιs j →₀ M), Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) } f) x✝) a✝ [PROOFSTEP] simp [GOAL] α✝ : Type u_1 M✝ : Type u_2 N : Type u_3 P : Type u_4 R✝ : Type u_5 S : Type u_6 inst✝¹⁰ : Semiring R✝ inst✝⁹ : Semiring S inst✝⁸ : AddCommMonoid M✝ inst✝⁷ : Module R✝ M✝ inst✝⁶ : AddCommMonoid N inst✝⁵ : Module R✝ N inst✝⁴ : AddCommMonoid P inst✝³ : Module R✝ P α : Type u_7 β : Type u_8 R : Type u_9 M : Type u_10 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M src✝ : (α × β →₀ M) ≃ (α →₀ β →₀ M) := finsuppProdEquiv f g : α × β →₀ M ⊢ Equiv.toFun src✝ (f + g) = Equiv.toFun src✝ f + Equiv.toFun src✝ g [PROOFSTEP] ext [GOAL] case h.h α✝ : Type u_1 M✝ : Type u_2 N : Type u_3 P : Type u_4 R✝ : Type u_5 S : Type u_6 inst✝¹⁰ : Semiring R✝ inst✝⁹ : Semiring S inst✝⁸ : AddCommMonoid M✝ inst✝⁷ : Module R✝ M✝ inst✝⁶ : AddCommMonoid N inst✝⁵ : Module R✝ N inst✝⁴ : AddCommMonoid P inst✝³ : Module R✝ P α : Type u_7 β : Type u_8 R : Type u_9 M : Type u_10 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M src✝ : (α × β →₀ M) ≃ (α →₀ β →₀ M) := finsuppProdEquiv f g : α × β →₀ M a✝¹ : α a✝ : β ⊢ ↑(↑(Equiv.toFun src✝ (f + g)) a✝¹) a✝ = ↑(↑(Equiv.toFun src✝ f + Equiv.toFun src✝ g) a✝¹) a✝ [PROOFSTEP] simp [finsuppProdEquiv, curry_apply] [GOAL] α✝ : Type u_1 M✝ : Type u_2 N : Type u_3 P : Type u_4 R✝ : Type u_5 S : Type u_6 inst✝¹⁰ : Semiring R✝ inst✝⁹ : Semiring S inst✝⁸ : AddCommMonoid M✝ inst✝⁷ : Module R✝ M✝ inst✝⁶ : AddCommMonoid N inst✝⁵ : Module R✝ N inst✝⁴ : AddCommMonoid P inst✝³ : Module R✝ P α : Type u_7 β : Type u_8 R : Type u_9 M : Type u_10 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M src✝ : (α × β →₀ M) ≃ (α →₀ β →₀ M) := finsuppProdEquiv c : R f : α × β →₀ M ⊢ AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (f g : α × β →₀ M), Equiv.toFun src✝ (f + g) = Equiv.toFun src✝ f + Equiv.toFun src✝ g) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (f g : α × β →₀ M), Equiv.toFun src✝ (f + g) = Equiv.toFun src✝ f + Equiv.toFun src✝ g) } f [PROOFSTEP] ext [GOAL] case h.h α✝ : Type u_1 M✝ : Type u_2 N : Type u_3 P : Type u_4 R✝ : Type u_5 S : Type u_6 inst✝¹⁰ : Semiring R✝ inst✝⁹ : Semiring S inst✝⁸ : AddCommMonoid M✝ inst✝⁷ : Module R✝ M✝ inst✝⁶ : AddCommMonoid N inst✝⁵ : Module R✝ N inst✝⁴ : AddCommMonoid P inst✝³ : Module R✝ P α : Type u_7 β : Type u_8 R : Type u_9 M : Type u_10 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M src✝ : (α × β →₀ M) ≃ (α →₀ β →₀ M) := finsuppProdEquiv c : R f : α × β →₀ M a✝¹ : α a✝ : β ⊢ ↑(↑(AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (f g : α × β →₀ M), Equiv.toFun src✝ (f + g) = Equiv.toFun src✝ f + Equiv.toFun src✝ g) } (c • f)) a✝¹) a✝ = ↑(↑(↑(RingHom.id R) c • AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (f g : α × β →₀ M), Equiv.toFun src✝ (f + g) = Equiv.toFun src✝ f + Equiv.toFun src✝ g) } f) a✝¹) a✝ [PROOFSTEP] simp [finsuppProdEquiv, curry_apply] [GOAL] α✝ : Type u_1 M✝ : Type u_2 N : Type u_3 P : Type u_4 R✝ : Type u_5 S : Type u_6 inst✝¹⁰ : Semiring R✝ inst✝⁹ : Semiring S inst✝⁸ : AddCommMonoid M✝ inst✝⁷ : Module R✝ M✝ inst✝⁶ : AddCommMonoid N inst✝⁵ : Module R✝ N inst✝⁴ : AddCommMonoid P inst✝³ : Module R✝ P α : Type u_7 β : Type u_8 R : Type u_9 M : Type u_10 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M f : α × β →₀ M x : α y : β ⊢ ↑(↑(↑(finsuppProdLEquiv R) f) x) y = ↑f (x, y) [PROOFSTEP] rw [finsuppProdLEquiv, LinearEquiv.coe_mk, finsuppProdEquiv, Finsupp.curry_apply] [GOAL] α✝ : Type u_1 M✝ : Type u_2 N : Type u_3 P : Type u_4 R✝ : Type u_5 S : Type u_6 inst✝¹⁰ : Semiring R✝ inst✝⁹ : Semiring S inst✝⁸ : AddCommMonoid M✝ inst✝⁷ : Module R✝ M✝ inst✝⁶ : AddCommMonoid N inst✝⁵ : Module R✝ N inst✝⁴ : AddCommMonoid P inst✝³ : Module R✝ P α : Type u_7 β : Type u_8 R : Type u_9 M : Type u_10 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M f : α →₀ β →₀ M xy : α × β ⊢ ↑(↑(LinearEquiv.symm (finsuppProdLEquiv R)) f) xy = ↑(↑f xy.fst) xy.snd [PROOFSTEP] conv_rhs => rw [← (finsuppProdLEquiv R).apply_symm_apply f, finsuppProdLEquiv_apply, Prod.mk.eta] [GOAL] α✝ : Type u_1 M✝ : Type u_2 N : Type u_3 P : Type u_4 R✝ : Type u_5 S : Type u_6 inst✝¹⁰ : Semiring R✝ inst✝⁹ : Semiring S inst✝⁸ : AddCommMonoid M✝ inst✝⁷ : Module R✝ M✝ inst✝⁶ : AddCommMonoid N inst✝⁵ : Module R✝ N inst✝⁴ : AddCommMonoid P inst✝³ : Module R✝ P α : Type u_7 β : Type u_8 R : Type u_9 M : Type u_10 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M f : α →₀ β →₀ M xy : α × β | ↑(↑f xy.fst) xy.snd [PROOFSTEP] rw [← (finsuppProdLEquiv R).apply_symm_apply f, finsuppProdLEquiv_apply, Prod.mk.eta] [GOAL] α✝ : Type u_1 M✝ : Type u_2 N : Type u_3 P : Type u_4 R✝ : Type u_5 S : Type u_6 inst✝¹⁰ : Semiring R✝ inst✝⁹ : Semiring S inst✝⁸ : AddCommMonoid M✝ inst✝⁷ : Module R✝ M✝ inst✝⁶ : AddCommMonoid N inst✝⁵ : Module R✝ N inst✝⁴ : AddCommMonoid P inst✝³ : Module R✝ P α : Type u_7 β : Type u_8 R : Type u_9 M : Type u_10 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M f : α →₀ β →₀ M xy : α × β | ↑(↑f xy.fst) xy.snd [PROOFSTEP] rw [← (finsuppProdLEquiv R).apply_symm_apply f, finsuppProdLEquiv_apply, Prod.mk.eta] [GOAL] α✝ : Type u_1 M✝ : Type u_2 N : Type u_3 P : Type u_4 R✝ : Type u_5 S : Type u_6 inst✝¹⁰ : Semiring R✝ inst✝⁹ : Semiring S inst✝⁸ : AddCommMonoid M✝ inst✝⁷ : Module R✝ M✝ inst✝⁶ : AddCommMonoid N inst✝⁵ : Module R✝ N inst✝⁴ : AddCommMonoid P inst✝³ : Module R✝ P α : Type u_7 β : Type u_8 R : Type u_9 M : Type u_10 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M f : α →₀ β →₀ M xy : α × β | ↑(↑f xy.fst) xy.snd [PROOFSTEP] rw [← (finsuppProdLEquiv R).apply_symm_apply f, finsuppProdLEquiv_apply, Prod.mk.eta] [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P ι : Type u_7 inst✝¹ : Countable R inst✝ : Countable ι v : ι → M ⊢ Countable { x // x ∈ span R (Set.range v) } [PROOFSTEP] refine Set.countable_coe_iff.mpr (Set.Countable.mono ?_ (Set.countable_range (fun c : (ι →₀ R) => c.sum fun i _ => (c i) • v i))) [GOAL] α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P ι : Type u_7 inst✝¹ : Countable R inst✝ : Countable ι v : ι → M ⊢ ↑(span R (Set.range v)) ⊆ Set.range fun c => sum c fun i x => ↑c i • v i [PROOFSTEP] exact fun _ h => Finsupp.mem_span_range_iff_exists_finsupp.mp (SetLike.mem_coe.mp h) [GOAL] α : Type u_1 M : Type u_2 R : Type u_3 inst✝⁶ : Fintype α inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M S : Type u_4 inst✝² : Semiring S inst✝¹ : Module S M inst✝ : SMulCommClass R S M v✝ v : α → M f g : α → R ⊢ (fun f => ∑ i : α, f i • v i) (f + g) = (fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g [PROOFSTEP] simp_rw [← Finset.sum_add_distrib, ← add_smul] [GOAL] α : Type u_1 M : Type u_2 R : Type u_3 inst✝⁶ : Fintype α inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M S : Type u_4 inst✝² : Semiring S inst✝¹ : Module S M inst✝ : SMulCommClass R S M v✝ v : α → M f g : α → R ⊢ ∑ i : α, (f + g) i • v i = ∑ x : α, (f x + g x) • v x [PROOFSTEP] rfl [GOAL] α : Type u_1 M : Type u_2 R : Type u_3 inst✝⁶ : Fintype α inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M S : Type u_4 inst✝² : Semiring S inst✝¹ : Module S M inst✝ : SMulCommClass R S M v✝ v : α → M r : R f : α → R ⊢ AddHom.toFun { toFun := fun f => ∑ i : α, f i • v i, map_add' := (_ : ∀ (f g : α → R), (fun f => ∑ i : α, f i • v i) (f + g) = (fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) } (r • f) = ↑(RingHom.id R) r • AddHom.toFun { toFun := fun f => ∑ i : α, f i • v i, map_add' := (_ : ∀ (f g : α → R), (fun f => ∑ i : α, f i • v i) (f + g) = (fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) } f [PROOFSTEP] simp_rw [Finset.smul_sum, smul_smul] [GOAL] α : Type u_1 M : Type u_2 R : Type u_3 inst✝⁶ : Fintype α inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M S : Type u_4 inst✝² : Semiring S inst✝¹ : Module S M inst✝ : SMulCommClass R S M v✝ v : α → M r : R f : α → R ⊢ ∑ i : α, (r • f) i • v i = ∑ x : α, (↑(RingHom.id R) r * f x) • v x [PROOFSTEP] rfl [GOAL] α : Type u_1 M : Type u_2 R : Type u_3 inst✝⁶ : Fintype α inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M S : Type u_4 inst✝² : Semiring S inst✝¹ : Module S M inst✝ : SMulCommClass R S M v✝ u v : α → M ⊢ (fun v => { toAddHom := { toFun := fun f => ∑ i : α, f i • v i, map_add' := (_ : ∀ (f g : α → R), (fun f => ∑ i : α, f i • v i) (f + g) = (fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) }, map_smul' := (_ : ∀ (r : R) (f : α → R), AddHom.toFun { toFun := fun f => ∑ i : α, f i • v i, map_add' := (_ : ∀ (f g : α → R), (fun f => ∑ i : α, f i • v i) (f + g) = (fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) } (r • f) = ↑(RingHom.id R) r • AddHom.toFun { toFun := fun f => ∑ i : α, f i • v i, map_add' := (_ : ∀ (f g : α → R), (fun f => ∑ i : α, f i • v i) (f + g) = (fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) } f) }) (u + v) = (fun v => { toAddHom := { toFun := fun f => ∑ i : α, f i • v i, map_add' := (_ : ∀ (f g : α → R), (fun f => ∑ i : α, f i • v i) (f + g) = (fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) }, map_smul' := (_ : ∀ (r : R) (f : α → R), AddHom.toFun { toFun := fun f => ∑ i : α, f i • v i, map_add' := (_ : ∀ (f g : α → R), (fun f => ∑ i : α, f i • v i) (f + g) = (fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) } (r • f) = ↑(RingHom.id R) r • AddHom.toFun { toFun := fun f => ∑ i : α, f i • v i, map_add' := (_ : ∀ (f g : α → R), (fun f => ∑ i : α, f i • v i) (f + g) = (fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) } f) }) u + (fun v => { toAddHom := { toFun := fun f => ∑ i : α, f i • v i, map_add' := (_ : ∀ (f g : α → R), (fun f => ∑ i : α, f i • v i) (f + g) = (fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) }, map_smul' := (_ : ∀ (r : R) (f : α → R), AddHom.toFun { toFun := fun f => ∑ i : α, f i • v i, map_add' := (_ : ∀ (f g : α → R), (fun f => ∑ i : α, f i • v i) (f + g) = (fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) } (r • f) = ↑(RingHom.id R) r • AddHom.toFun { toFun := fun f => ∑ i : α, f i • v i, map_add' := (_ : ∀ (f g : α → R), (fun f => ∑ i : α, f i • v i) (f + g) = (fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) } f) }) v [PROOFSTEP] ext [GOAL] case h α : Type u_1 M : Type u_2 R : Type u_3 inst✝⁶ : Fintype α inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M S : Type u_4 inst✝² : Semiring S inst✝¹ : Module S M inst✝ : SMulCommClass R S M v✝ u v : α → M x✝ : α → R ⊢ ↑((fun v => { toAddHom := { toFun := fun f => ∑ i : α, f i • v i, map_add' := (_ : ∀ (f g : α → R), (fun f => ∑ i : α, f i • v i) (f + g) = (fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) }, map_smul' := (_ : ∀ (r : R) (f : α → R), AddHom.toFun { toFun := fun f => ∑ i : α, f i • v i, map_add' := (_ : ∀ (f g : α → R), (fun f => ∑ i : α, f i • v i) (f + g) = (fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) } (r • f) = ↑(RingHom.id R) r • AddHom.toFun { toFun := fun f => ∑ i : α, f i • v i, map_add' := (_ : ∀ (f g : α → R), (fun f => ∑ i : α, f i • v i) (f + g) = (fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) } f) }) (u + v)) x✝ = ↑((fun v => { toAddHom := { toFun := fun f => ∑ i : α, f i • v i, map_add' := (_ : ∀ (f g : α → R), (fun f => ∑ i : α, f i • v i) (f + g) = (fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) }, map_smul' := (_ : ∀ (r : R) (f : α → R), AddHom.toFun { toFun := fun f => ∑ i : α, f i • v i, map_add' := (_ : ∀ (f g : α → R), (fun f => ∑ i : α, f i • v i) (f + g) = (fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) } (r • f) = ↑(RingHom.id R) r • AddHom.toFun { toFun := fun f => ∑ i : α, f i • v i, map_add' := (_ : ∀ (f g : α → R), (fun f => ∑ i : α, f i • v i) (f + g) = (fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) } f) }) u + (fun v => { toAddHom := { toFun := fun f => ∑ i : α, f i • v i, map_add' := (_ : ∀ (f g : α → R), (fun f => ∑ i : α, f i • v i) (f + g) = (fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) }, map_smul' := (_ : ∀ (r : R) (f : α → R), AddHom.toFun { toFun := fun f => ∑ i : α, f i • v i, map_add' := (_ : ∀ (f g : α → R), (fun f => ∑ i : α, f i • v i) (f + g) = (fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) } (r • f) = ↑(RingHom.id R) r • AddHom.toFun { toFun := fun f => ∑ i : α, f i • v i, map_add' := (_ : ∀ (f g : α → R), (fun f => ∑ i : α, f i • v i) (f + g) = (fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) } f) }) v) x✝ [PROOFSTEP] simp [Finset.sum_add_distrib, Pi.add_apply, smul_add] [GOAL] α : Type u_1 M : Type u_2 R : Type u_3 inst✝⁶ : Fintype α inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M S : Type u_4 inst✝² : Semiring S inst✝¹ : Module S M inst✝ : SMulCommClass R S M v✝ : α → M r : S v : α → M ⊢ AddHom.toFun { toFun := fun v => { toAddHom := { toFun := fun f => ∑ i : α, f i • v i, map_add' := (_ : ∀ (f g : α → R), (fun f => ∑ i : α, f i • v i) (f + g) = (fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) }, map_smul' := (_ : ∀ (r : R) (f : α → R), AddHom.toFun { toFun := fun f => ∑ i : α, f i • v i, map_add' := (_ : ∀ (f g : α → R), (fun f => ∑ i : α, f i • v i) (f + g) = (fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) } (r • f) = ↑(RingHom.id R) r • AddHom.toFun { toFun := fun f => ∑ i : α, f i • v i, map_add' := (_ : ∀ (f g : α → R), (fun f => ∑ i : α, f i • v i) (f + g) = (fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) } f) }, map_add' := (_ : ∀ (u v : α → M), (fun v => { toAddHom := { toFun := fun f => ∑ i : α, f i • v i, map_add' := (_ : ∀ (f g : α → R), (fun f => ∑ i : α, f i • v i) (f + g) = (fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) }, map_smul' := (_ : ∀ (r : R) (f : α → R), AddHom.toFun { toFun := fun f => ∑ i : α, f i • v i, map_add' := (_ : ∀ (f g : α → R), (fun f => ∑ i : α, f i • v i) (f + g) = (fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) } (r • f) = ↑(RingHom.id R) r • AddHom.toFun { toFun := fun f => ∑ i : α, f i • v i, map_add' := (_ : ∀ (f g : α → R), (fun f => ∑ i : α, f i • v i) (f + g) = (fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) } f) }) (u + v) = (fun v => { toAddHom := { toFun := fun f => ∑ i : α, f i • v i, map_add' := (_ : ∀ (f g : α → R), (fun f => ∑ i : α, f i • v i) (f + g) = (fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) }, map_smul' := (_ : ∀ (r : R) (f : α → R), AddHom.toFun { toFun := fun f => ∑ i : α, f i • v i, map_add' := (_ : ∀ (f g : α → R), (fun f => ∑ i : α, f i • v i) (f + g) = (fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) } (r • f) = ↑(RingHom.id R) r • AddHom.toFun { toFun := fun f => ∑ i : α, f i • v i, map_add' := (_ : ∀ (f g : α → R), (fun f => ∑ i : α, f i • v i) (f + g) = (fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) } f) }) u + (fun v => { toAddHom := { toFun := fun f => ∑ i : α, f i • v i, map_add' := (_ : ∀ (f g : α → R), (fun f => ∑ i : α, f i • v i) (f + g) = (fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) }, map_smul' := (_ : ∀ (r : R) (f : α → R), AddHom.toFun { toFun := fun f => ∑ i : α, f i • v i, map_add' := (_ : ∀ (f g : α → R), (fun f => ∑ i : α, f i • v i) (f + g) = (fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) } (r • f) = ↑(RingHom.id R) r • AddHom.toFun { toFun := fun f => ∑ i : α, f i • v i, map_add' := (_ : ∀ (f g : α → R), (fun f => ∑ i : α, f i • v i) (f + g) = (fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) } f) }) v) } (r • v) = ↑(RingHom.id S) r • AddHom.toFun { toFun := fun v => { toAddHom := { toFun := fun f => ∑ i : α, f i • v i, map_add' := (_ : ∀ (f g : α → R), (fun f => ∑ i : α, f i • v i) (f + g) = (fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) }, map_smul' := (_ : ∀ (r : R) (f : α → R), AddHom.toFun { toFun := fun f => ∑ i : α, f i • v i, map_add' := (_ : ∀ (f g : α → R), (fun f => ∑ i : α, f i • v i) (f + g) = (fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) } (r • f) = ↑(RingHom.id R) r • AddHom.toFun { toFun := fun f => ∑ i : α, f i • v i, map_add' := (_ : ∀ (f g : α → R), (fun f => ∑ i : α, f i • v i) (f + g) = (fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) } f) }, map_add' := (_ : ∀ (u v : α → M), (fun v => { toAddHom := { toFun := fun f => ∑ i : α, f i • v i, map_add' := (_ : ∀ (f g : α → R), (fun f => ∑ i : α, f i • v i) (f + g) = (fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) }, map_smul' := (_ : ∀ (r : R) (f : α → R), AddHom.toFun { toFun := fun f => ∑ i : α, f i • v i, map_add' := (_ : ∀ (f g : α → R), (fun f => ∑ i : α, f i • v i) (f + g) = (fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) } (r • f) = ↑(RingHom.id R) r • AddHom.toFun { toFun := fun f => ∑ i : α, f i • v i, map_add' := (_ : ∀ (f g : α → R), (fun f => ∑ i : α, f i • v i) (f + g) = (fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) } f) }) (u + v) = (fun v => { toAddHom := { toFun := fun f => ∑ i : α, f i • v i, map_add' := (_ : ∀ (f g : α → R), (fun f => ∑ i : α, f i • v i) (f + g) = (fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) }, map_smul' := (_ : ∀ (r : R) (f : α → R), AddHom.toFun { toFun := fun f => ∑ i : α, f i • v i, map_add' := (_ : ∀ (f g : α → R), (fun f => ∑ i : α, f i • v i) (f + g) = (fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) } (r • f) = ↑(RingHom.id R) r • AddHom.toFun { toFun := fun f => ∑ i : α, f i • v i, map_add' := (_ : ∀ (f g : α → R), (fun f => ∑ i : α, f i • v i) (f + g) = (fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) } f) }) u + (fun v => { toAddHom := { toFun := fun f => ∑ i : α, f i • v i, map_add' := (_ : ∀ (f g : α → R), (fun f => ∑ i : α, f i • v i) (f + g) = (fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) }, map_smul' := (_ : ∀ (r : R) (f : α → R), AddHom.toFun { toFun := fun f => ∑ i : α, f i • v i, map_add' := (_ : ∀ (f g : α → R), (fun f => ∑ i : α, f i • v i) (f + g) = (fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) } (r • f) = ↑(RingHom.id R) r • AddHom.toFun { toFun := fun f => ∑ i : α, f i • v i, map_add' := (_ : ∀ (f g : α → R), (fun f => ∑ i : α, f i • v i) (f + g) = (fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) } f) }) v) } v [PROOFSTEP] ext [GOAL] case h α : Type u_1 M : Type u_2 R : Type u_3 inst✝⁶ : Fintype α inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M S : Type u_4 inst✝² : Semiring S inst✝¹ : Module S M inst✝ : SMulCommClass R S M v✝ : α → M r : S v : α → M x✝ : α → R ⊢ ↑(AddHom.toFun { toFun := fun v => { toAddHom := { toFun := fun f => ∑ i : α, f i • v i, map_add' := (_ : ∀ (f g : α → R), (fun f => ∑ i : α, f i • v i) (f + g) = (fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) }, map_smul' := (_ : ∀ (r : R) (f : α → R), AddHom.toFun { toFun := fun f => ∑ i : α, f i • v i, map_add' := (_ : ∀ (f g : α → R), (fun f => ∑ i : α, f i • v i) (f + g) = (fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) } (r • f) = ↑(RingHom.id R) r • AddHom.toFun { toFun := fun f => ∑ i : α, f i • v i, map_add' := (_ : ∀ (f g : α → R), (fun f => ∑ i : α, f i • v i) (f + g) = (fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) } f) }, map_add' := (_ : ∀ (u v : α → M), (fun v => { toAddHom := { toFun := fun f => ∑ i : α, f i • v i, map_add' := (_ : ∀ (f g : α → R), (fun f => ∑ i : α, f i • v i) (f + g) = (fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) }, map_smul' := (_ : ∀ (r : R) (f : α → R), AddHom.toFun { toFun := fun f => ∑ i : α, f i • v i, map_add' := (_ : ∀ (f g : α → R), (fun f => ∑ i : α, f i • v i) (f + g) = (fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) } (r • f) = ↑(RingHom.id R) r • AddHom.toFun { toFun := fun f => ∑ i : α, f i • v i, map_add' := (_ : ∀ (f g : α → R), (fun f => ∑ i : α, f i • v i) (f + g) = (fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) } f) }) (u + v) = (fun v => { toAddHom := { toFun := fun f => ∑ i : α, f i • v i, map_add' := (_ : ∀ (f g : α → R), (fun f => ∑ i : α, f i • v i) (f + g) = (fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) }, map_smul' := (_ : ∀ (r : R) (f : α → R), AddHom.toFun { toFun := fun f => ∑ i : α, f i • v i, map_add' := (_ : ∀ (f g : α → R), (fun f => ∑ i : α, f i • v i) (f + g) = (fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) } (r • f) = ↑(RingHom.id R) r • AddHom.toFun { toFun := fun f => ∑ i : α, f i • v i, map_add' := (_ : ∀ (f g : α → R), (fun f => ∑ i : α, f i • v i) (f + g) = (fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) } f) }) u + (fun v => { toAddHom := { toFun := fun f => ∑ i : α, f i • v i, map_add' := (_ : ∀ (f g : α → R), (fun f => ∑ i : α, f i • v i) (f + g) = (fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) }, map_smul' := (_ : ∀ (r : R) (f : α → R), AddHom.toFun { toFun := fun f => ∑ i : α, f i • v i, map_add' := (_ : ∀ (f g : α → R), (fun f => ∑ i : α, f i • v i) (f + g) = (fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) } (r • f) = ↑(RingHom.id R) r • AddHom.toFun { toFun := fun f => ∑ i : α, f i • v i, map_add' := (_ : ∀ (f g : α → R), (fun f => ∑ i : α, f i • v i) (f + g) = (fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) } f) }) v) } (r • v)) x✝ = ↑(↑(RingHom.id S) r • AddHom.toFun { toFun := fun v => { toAddHom := { toFun := fun f => ∑ i : α, f i • v i, map_add' := (_ : ∀ (f g : α → R), (fun f => ∑ i : α, f i • v i) (f + g) = (fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) }, map_smul' := (_ : ∀ (r : R) (f : α → R), AddHom.toFun { toFun := fun f => ∑ i : α, f i • v i, map_add' := (_ : ∀ (f g : α → R), (fun f => ∑ i : α, f i • v i) (f + g) = (fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) } (r • f) = ↑(RingHom.id R) r • AddHom.toFun { toFun := fun f => ∑ i : α, f i • v i, map_add' := (_ : ∀ (f g : α → R), (fun f => ∑ i : α, f i • v i) (f + g) = (fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) } f) }, map_add' := (_ : ∀ (u v : α → M), (fun v => { toAddHom := { toFun := fun f => ∑ i : α, f i • v i, map_add' := (_ : ∀ (f g : α → R), (fun f => ∑ i : α, f i • v i) (f + g) = (fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) }, map_smul' := (_ : ∀ (r : R) (f : α → R), AddHom.toFun { toFun := fun f => ∑ i : α, f i • v i, map_add' := (_ : ∀ (f g : α → R), (fun f => ∑ i : α, f i • v i) (f + g) = (fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) } (r • f) = ↑(RingHom.id R) r • AddHom.toFun { toFun := fun f => ∑ i : α, f i • v i, map_add' := (_ : ∀ (f g : α → R), (fun f => ∑ i : α, f i • v i) (f + g) = (fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) } f) }) (u + v) = (fun v => { toAddHom := { toFun := fun f => ∑ i : α, f i • v i, map_add' := (_ : ∀ (f g : α → R), (fun f => ∑ i : α, f i • v i) (f + g) = (fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) }, map_smul' := (_ : ∀ (r : R) (f : α → R), AddHom.toFun { toFun := fun f => ∑ i : α, f i • v i, map_add' := (_ : ∀ (f g : α → R), (fun f => ∑ i : α, f i • v i) (f + g) = (fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) } (r • f) = ↑(RingHom.id R) r • AddHom.toFun { toFun := fun f => ∑ i : α, f i • v i, map_add' := (_ : ∀ (f g : α → R), (fun f => ∑ i : α, f i • v i) (f + g) = (fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) } f) }) u + (fun v => { toAddHom := { toFun := fun f => ∑ i : α, f i • v i, map_add' := (_ : ∀ (f g : α → R), (fun f => ∑ i : α, f i • v i) (f + g) = (fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) }, map_smul' := (_ : ∀ (r : R) (f : α → R), AddHom.toFun { toFun := fun f => ∑ i : α, f i • v i, map_add' := (_ : ∀ (f g : α → R), (fun f => ∑ i : α, f i • v i) (f + g) = (fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) } (r • f) = ↑(RingHom.id R) r • AddHom.toFun { toFun := fun f => ∑ i : α, f i • v i, map_add' := (_ : ∀ (f g : α → R), (fun f => ∑ i : α, f i • v i) (f + g) = (fun f => ∑ i : α, f i • v i) f + (fun f => ∑ i : α, f i • v i) g) } f) }) v) } v) x✝ [PROOFSTEP] simp [Finset.smul_sum, smul_comm] [GOAL] α : Type u_1 M : Type u_2 R : Type u_3 inst✝⁷ : Fintype α inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M S : Type u_4 inst✝³ : Semiring S inst✝² : Module S M inst✝¹ : SMulCommClass R S M v : α → M inst✝ : DecidableEq α i : α r : R ⊢ ↑(↑(Fintype.total R S) v) (Pi.single i r) = r • v i [PROOFSTEP] simp_rw [Fintype.total_apply, Pi.single_apply, ite_smul, zero_smul] [GOAL] α : Type u_1 M : Type u_2 R : Type u_3 inst✝⁷ : Fintype α inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M S : Type u_4 inst✝³ : Semiring S inst✝² : Module S M inst✝¹ : SMulCommClass R S M v : α → M inst✝ : DecidableEq α i : α r : R ⊢ (∑ x : α, if x = i then r • v x else 0) = r • v i [PROOFSTEP] rw [Finset.sum_ite_eq', if_pos (Finset.mem_univ _)] [GOAL] α : Type u_1 M : Type u_2 R : Type u_3 inst✝⁶ : Fintype α inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M S : Type u_4 inst✝² : Semiring S inst✝¹ : Module S M inst✝ : SMulCommClass R S M v : α → M x : α → R ⊢ ↑(Finsupp.total α M R v) (↑(LinearEquiv.symm (linearEquivFunOnFinite R R α)) x) = ↑(↑(Fintype.total R S) v) x [PROOFSTEP] apply Finset.sum_subset [GOAL] case h α : Type u_1 M : Type u_2 R : Type u_3 inst✝⁶ : Fintype α inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M S : Type u_4 inst✝² : Semiring S inst✝¹ : Module S M inst✝ : SMulCommClass R S M v : α → M x : α → R ⊢ (↑(LinearEquiv.symm (linearEquivFunOnFinite R R α)) x).support ⊆ Finset.univ [PROOFSTEP] exact Finset.subset_univ _ [GOAL] case hf α : Type u_1 M : Type u_2 R : Type u_3 inst✝⁶ : Fintype α inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M S : Type u_4 inst✝² : Semiring S inst✝¹ : Module S M inst✝ : SMulCommClass R S M v : α → M x : α → R ⊢ ∀ (x_1 : α), x_1 ∈ Finset.univ → ¬x_1 ∈ (↑(LinearEquiv.symm (linearEquivFunOnFinite R R α)) x).support → (fun i => ↑((fun i => smulRight LinearMap.id (v i)) i)) x_1 (↑(↑(LinearEquiv.symm (linearEquivFunOnFinite R R α)) x) x_1) = 0 [PROOFSTEP] intro x _ hx [GOAL] case hf α : Type u_1 M : Type u_2 R : Type u_3 inst✝⁶ : Fintype α inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M S : Type u_4 inst✝² : Semiring S inst✝¹ : Module S M inst✝ : SMulCommClass R S M v : α → M x✝ : α → R x : α a✝ : x ∈ Finset.univ hx : ¬x ∈ (↑(LinearEquiv.symm (linearEquivFunOnFinite R R α)) x✝).support ⊢ (fun i => ↑((fun i => smulRight LinearMap.id (v i)) i)) x (↑(↑(LinearEquiv.symm (linearEquivFunOnFinite R R α)) x✝) x) = 0 [PROOFSTEP] rw [Finsupp.not_mem_support_iff.mp hx] [GOAL] case hf α : Type u_1 M : Type u_2 R : Type u_3 inst✝⁶ : Fintype α inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M S : Type u_4 inst✝² : Semiring S inst✝¹ : Module S M inst✝ : SMulCommClass R S M v : α → M x✝ : α → R x : α a✝ : x ∈ Finset.univ hx : ¬x ∈ (↑(LinearEquiv.symm (linearEquivFunOnFinite R R α)) x✝).support ⊢ (fun i => ↑((fun i => smulRight LinearMap.id (v i)) i)) x 0 = 0 [PROOFSTEP] exact zero_smul _ _ [GOAL] α : Type u_1 M : Type u_2 R : Type u_3 inst✝⁶ : Fintype α inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M S : Type u_4 inst✝² : Semiring S inst✝¹ : Module S M inst✝ : SMulCommClass R S M v : α → M ⊢ LinearMap.range (↑(Fintype.total R S) v) = span R (Set.range v) [PROOFSTEP] rw [← Finsupp.total_eq_fintype_total, LinearMap.range_comp, LinearEquiv.range, Submodule.map_top, Finsupp.range_total] [GOAL] α : Type u_1 M : Type u_2 R : Type u_3 inst✝⁶ : Fintype α inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M S : Type u_4 inst✝² : Semiring S inst✝¹ : Module S M inst✝ : SMulCommClass R S M v : α → M x : M ⊢ x ∈ span R (Set.range v) ↔ ∃ c, ∑ i : α, c i • v i = x [PROOFSTEP] rw [Finsupp.equivFunOnFinite.surjective.exists] [GOAL] α : Type u_1 M : Type u_2 R : Type u_3 inst✝⁶ : Fintype α inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M S : Type u_4 inst✝² : Semiring S inst✝¹ : Module S M inst✝ : SMulCommClass R S M v : α → M x : M ⊢ x ∈ span R (Set.range v) ↔ ∃ x_1, ∑ i : α, ↑Finsupp.equivFunOnFinite x_1 i • v i = x [PROOFSTEP] simp [Finsupp.mem_span_range_iff_exists_finsupp, Finsupp.equivFunOnFinite_apply] [GOAL] α : Type u_1 M : Type u_2 R : Type u_3 inst✝⁶ : Fintype α inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M S : Type u_4 inst✝² : Semiring S inst✝¹ : Module S M inst✝ : SMulCommClass R S M v : α → M x : M ⊢ (∃ c, (Finsupp.sum c fun i a => a • v i) = x) ↔ ∃ x_1, ∑ x : α, ↑x_1 x • v x = x [PROOFSTEP] exact exists_congr fun c => Eq.congr_left <| Finsupp.sum_fintype _ _ fun i => zero_smul _ _ [GOAL] α : Type u_1 M : Type u_2 R : Type u_3 inst✝⁶ : Fintype α inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M S : Type u_4 inst✝² : Semiring S inst✝¹ : Module S M inst✝ : SMulCommClass R S M v : α → M x : M ⊢ ⊤ ≤ span R (Set.range v) ↔ ∀ (x : M), ∃ c, ∑ i : α, c i • v i = x [PROOFSTEP] simp_rw [← mem_span_range_iff_exists_fun] [GOAL] α : Type u_1 M : Type u_2 R : Type u_3 inst✝⁶ : Fintype α inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M S : Type u_4 inst✝² : Semiring S inst✝¹ : Module S M inst✝ : SMulCommClass R S M v : α → M x : M ⊢ ⊤ ≤ span R (Set.range v) ↔ ∀ (x : M), x ∈ span R (Set.range fun i => v i) [PROOFSTEP] exact ⟨fun h x => h trivial, fun h x _ => h x⟩ [GOAL] R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid N inst✝ : Module R N w : Set M x : { x // x ∈ span R w } ⊢ ↑(Finsupp.total (↑w) M R Subtype.val) (repr R w x) = ↑x [PROOFSTEP] rw [Span.repr_def] [GOAL] R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid N inst✝ : Module R N w : Set M x : { x // x ∈ span R w } ⊢ ↑(Finsupp.total (↑w) M R Subtype.val) (Exists.choose (_ : ∃ l, ↑(Finsupp.total (↑w) M R Subtype.val) l = ↑x)) = ↑x [PROOFSTEP] exact ((Finsupp.mem_span_iff_total _ _ _).mp x.2).choose_spec [GOAL] R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid N inst✝ : Module R N f : M →ₗ[R] N ι : Type u_4 g : ι → M l : ι →₀ R ⊢ ↑f (↑(Finsupp.total ι M R g) l) = ↑(Finsupp.total ι N R (↑f ∘ g)) l [PROOFSTEP] simp only [Finsupp.total_apply, Finsupp.total_apply, Finsupp.sum, f.map_sum, f.map_smul, (· ∘ ·)] [GOAL] R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid N inst✝ : Module R N ι : Type u_4 p : ι → Submodule R M m : M hm : m ∈ ⨆ (i : ι), p i ⊢ ∃ s, m ∈ ⨆ (i : ι) (_ : i ∈ s), p i [PROOFSTEP] have := CompleteLattice.IsCompactElement.exists_finset_of_le_iSup (Submodule R M) (Submodule.singleton_span_isCompactElement m) p [GOAL] R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid N inst✝ : Module R N ι : Type u_4 p : ι → Submodule R M m : M hm : m ∈ ⨆ (i : ι), p i this : span R {m} ≤ ⨆ (i : ι), p i → ∃ s, span R {m} ≤ ⨆ (i : ι) (_ : i ∈ s), p i ⊢ ∃ s, m ∈ ⨆ (i : ι) (_ : i ∈ s), p i [PROOFSTEP] simp only [Submodule.span_singleton_le_iff_mem] at this [GOAL] R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid N inst✝ : Module R N ι : Type u_4 p : ι → Submodule R M m : M hm : m ∈ ⨆ (i : ι), p i this : m ∈ ⨆ (i : ι), p i → ∃ s, m ∈ ⨆ (i : ι) (_ : i ∈ s), p i ⊢ ∃ s, m ∈ ⨆ (i : ι) (_ : i ∈ s), p i [PROOFSTEP] exact this hm [GOAL] R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid N inst✝ : Module R N s : Finset M x : M hx : x ∈ span R ↑s ⊢ x ∈ span R (_root_.id '' ↑s) [PROOFSTEP] rwa [Set.image_id] [GOAL] R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid N inst✝ : Module R N m : M s : Set M ⊢ m ∈ span R s ↔ ∃ c, ↑c.support ⊆ s ∧ (Finsupp.sum c fun mi r => r • mi) = m [PROOFSTEP] conv_lhs => rw [← Set.image_id s] [GOAL] R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid N inst✝ : Module R N m : M s : Set M | m ∈ span R s [PROOFSTEP] rw [← Set.image_id s] [GOAL] R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid N inst✝ : Module R N m : M s : Set M | m ∈ span R s [PROOFSTEP] rw [← Set.image_id s] [GOAL] R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid N inst✝ : Module R N m : M s : Set M | m ∈ span R s [PROOFSTEP] rw [← Set.image_id s] [GOAL] R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid N inst✝ : Module R N m : M s : Set M ⊢ m ∈ span R (_root_.id '' s) ↔ ∃ c, ↑c.support ⊆ s ∧ (Finsupp.sum c fun mi r => r • mi) = m [PROOFSTEP] exact Finsupp.mem_span_image_iff_total R (v := _root_.id (α := M)) [GOAL] R✝ : Type u_1 M✝ : Type u_2 N : Type u_3 inst✝⁸ : Semiring R✝ inst✝⁷ : AddCommMonoid M✝ inst✝⁶ : Module R✝ M✝ inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R✝ N R : Type u_4 M : Type u_5 ι : Type u_6 inst✝³ : Semiring R inst✝² : Subsingleton R inst✝¹ : AddCommMonoid M inst✝ : Module R M m : M ⊢ (fun x => 0) (AddHom.toFun { toAddHom := { toFun := fun x => 0, map_add' := (_ : M → M → 0 = 0 + 0) }, map_smul' := (_ : ∀ (r : R), M → 0 = r • 0) }.toAddHom m) = m [PROOFSTEP] letI := Module.subsingleton R M [GOAL] R✝ : Type u_1 M✝ : Type u_2 N : Type u_3 inst✝⁸ : Semiring R✝ inst✝⁷ : AddCommMonoid M✝ inst✝⁶ : Module R✝ M✝ inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R✝ N R : Type u_4 M : Type u_5 ι : Type u_6 inst✝³ : Semiring R inst✝² : Subsingleton R inst✝¹ : AddCommMonoid M inst✝ : Module R M m : M this : Subsingleton M := Module.subsingleton R M ⊢ (fun x => 0) (AddHom.toFun { toAddHom := { toFun := fun x => 0, map_add' := (_ : M → M → 0 = 0 + 0) }, map_smul' := (_ : ∀ (r : R), M → 0 = r • 0) }.toAddHom m) = m [PROOFSTEP] simp only [eq_iff_true_of_subsingleton] [GOAL] R✝ : Type u_1 M✝ : Type u_2 N : Type u_3 inst✝⁸ : Semiring R✝ inst✝⁷ : AddCommMonoid M✝ inst✝⁶ : Module R✝ M✝ inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R✝ N R : Type u_4 M : Type u_5 ι : Type u_6 inst✝³ : Semiring R inst✝² : Subsingleton R inst✝¹ : AddCommMonoid M inst✝ : Module R M f : ι →₀ R ⊢ AddHom.toFun { toAddHom := { toFun := fun x => 0, map_add' := (_ : M → M → 0 = 0 + 0) }, map_smul' := (_ : ∀ (r : R), M → 0 = r • 0) }.toAddHom ((fun x => 0) f) = f [PROOFSTEP] simp only [eq_iff_true_of_subsingleton] [GOAL] R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid N inst✝ : Module R N α : Type u_4 f : M →ₗ[R] α →₀ R s : Surjective ↑f ⊢ comp f (splittingOfFinsuppSurjective f s) = id [PROOFSTEP] refine lhom_ext' fun x => ext_ring <| Finsupp.ext fun y => ?_ [GOAL] R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid N inst✝ : Module R N α : Type u_4 f : M →ₗ[R] α →₀ R s : Surjective ↑f x y : α ⊢ ↑(↑(comp (comp f (splittingOfFinsuppSurjective f s)) (lsingle x)) 1) y = ↑(↑(comp id (lsingle x)) 1) y [PROOFSTEP] dsimp [splittingOfFinsuppSurjective] [GOAL] R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid N inst✝ : Module R N α : Type u_4 f : M →ₗ[R] α →₀ R s : Surjective ↑f x y : α ⊢ ↑(↑f (sum (Finsupp.single x 1) fun x r => r • Exists.choose (_ : ∃ a, ↑f a = Finsupp.single x 1))) y = ↑(Finsupp.single x 1) y [PROOFSTEP] congr [GOAL] case e_a R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid N inst✝ : Module R N α : Type u_4 f : M →ₗ[R] α →₀ R s : Surjective ↑f x y : α ⊢ ↑f (sum (Finsupp.single x 1) fun x r => r • Exists.choose (_ : ∃ a, ↑f a = Finsupp.single x 1)) = Finsupp.single x 1 [PROOFSTEP] rw [sum_single_index, one_smul] [GOAL] case e_a R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid N inst✝ : Module R N α : Type u_4 f : M →ₗ[R] α →₀ R s : Surjective ↑f x y : α ⊢ ↑f (Exists.choose (_ : ∃ a, ↑f a = Finsupp.single x 1)) = Finsupp.single x 1 [PROOFSTEP] exact (s (Finsupp.single x 1)).choose_spec [GOAL] case e_a R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid N inst✝ : Module R N α : Type u_4 f : M →ₗ[R] α →₀ R s : Surjective ↑f x y : α ⊢ 0 • Exists.choose (_ : ∃ a, ↑f a = Finsupp.single x 1) = 0 [PROOFSTEP] rw [zero_smul] [GOAL] R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : AddCommMonoid N inst✝¹ : Module R N α : Type u_4 inst✝ : Fintype α f : M →ₗ[R] α → R s : Surjective ↑f ⊢ comp f (splittingOfFunOnFintypeSurjective f s) = id [PROOFSTEP] classical -- Porting note: `ext` can't find appropriate theorems. refine pi_ext' fun x => ext_ring <| funext fun y => ?_ dsimp [splittingOfFunOnFintypeSurjective] rw [linearEquivFunOnFinite_symm_single, Finsupp.sum_single_index, one_smul, (s (Finsupp.single x 1)).choose_spec, Finsupp.single_eq_pi_single] rw [zero_smul] [GOAL] R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : AddCommMonoid N inst✝¹ : Module R N α : Type u_4 inst✝ : Fintype α f : M →ₗ[R] α → R s : Surjective ↑f ⊢ comp f (splittingOfFunOnFintypeSurjective f s) = id [PROOFSTEP] refine pi_ext' fun x => ext_ring <| funext fun y => ?_ [GOAL] R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : AddCommMonoid N inst✝¹ : Module R N α : Type u_4 inst✝ : Fintype α f : M →ₗ[R] α → R s : Surjective ↑f x y : α ⊢ ↑(comp (comp f (splittingOfFunOnFintypeSurjective f s)) (single x)) 1 y = ↑(comp id (single x)) 1 y [PROOFSTEP] dsimp [splittingOfFunOnFintypeSurjective] [GOAL] R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : AddCommMonoid N inst✝¹ : Module R N α : Type u_4 inst✝ : Fintype α f : M →ₗ[R] α → R s : Surjective ↑f x y : α ⊢ ↑f (sum (↑(LinearEquiv.symm (linearEquivFunOnFinite R R α)) (Pi.single x 1)) fun x r => r • Exists.choose (_ : ∃ a, ↑f a = ↑(Finsupp.single x 1))) y = Pi.single x 1 y [PROOFSTEP] rw [linearEquivFunOnFinite_symm_single, Finsupp.sum_single_index, one_smul, (s (Finsupp.single x 1)).choose_spec, Finsupp.single_eq_pi_single] [GOAL] R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : AddCommMonoid N inst✝¹ : Module R N α : Type u_4 inst✝ : Fintype α f : M →ₗ[R] α → R s : Surjective ↑f x y : α ⊢ 0 • Exists.choose (_ : ∃ a, ↑f a = ↑(Finsupp.single x 1)) = 0 [PROOFSTEP] rw [zero_smul]
{"mathlib_filename": "Mathlib.LinearAlgebra.Finsupp", "llama_tokens": 101013}
[GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝¹² : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝¹¹ : (i : ι) → AddCommMonoid (s i) inst✝¹⁰ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁹ : AddCommMonoid M inst✝⁸ : Module R M E : Type u_9 inst✝⁷ : AddCommMonoid E inst✝⁶ : Module R E F : Type u_10 inst✝⁵ : AddCommMonoid F inst✝⁴ : DecidableEq ι z : R f : (i : ι) → s i i : ι r : R₁ inst✝³ : SMul R₁ R inst✝² : IsScalarTower R₁ R R inst✝¹ : SMul R₁ (s i) inst✝ : IsScalarTower R₁ R (s i) ⊢ tprodCoeff R z (update f i (r • f i)) = tprodCoeff R (r • z) f [PROOFSTEP] have h₁ : r • z = r • (1 : R) * z := by rw [smul_mul_assoc, one_mul] [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝¹² : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝¹¹ : (i : ι) → AddCommMonoid (s i) inst✝¹⁰ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁹ : AddCommMonoid M inst✝⁸ : Module R M E : Type u_9 inst✝⁷ : AddCommMonoid E inst✝⁶ : Module R E F : Type u_10 inst✝⁵ : AddCommMonoid F inst✝⁴ : DecidableEq ι z : R f : (i : ι) → s i i : ι r : R₁ inst✝³ : SMul R₁ R inst✝² : IsScalarTower R₁ R R inst✝¹ : SMul R₁ (s i) inst✝ : IsScalarTower R₁ R (s i) ⊢ r • z = r • 1 * z [PROOFSTEP] rw [smul_mul_assoc, one_mul] [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝¹² : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝¹¹ : (i : ι) → AddCommMonoid (s i) inst✝¹⁰ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁹ : AddCommMonoid M inst✝⁸ : Module R M E : Type u_9 inst✝⁷ : AddCommMonoid E inst✝⁶ : Module R E F : Type u_10 inst✝⁵ : AddCommMonoid F inst✝⁴ : DecidableEq ι z : R f : (i : ι) → s i i : ι r : R₁ inst✝³ : SMul R₁ R inst✝² : IsScalarTower R₁ R R inst✝¹ : SMul R₁ (s i) inst✝ : IsScalarTower R₁ R (s i) h₁ : r • z = r • 1 * z ⊢ tprodCoeff R z (update f i (r • f i)) = tprodCoeff R (r • z) f [PROOFSTEP] have h₂ : r • f i = (r • (1 : R)) • f i := (smul_one_smul _ _ _).symm [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝¹² : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝¹¹ : (i : ι) → AddCommMonoid (s i) inst✝¹⁰ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁹ : AddCommMonoid M inst✝⁸ : Module R M E : Type u_9 inst✝⁷ : AddCommMonoid E inst✝⁶ : Module R E F : Type u_10 inst✝⁵ : AddCommMonoid F inst✝⁴ : DecidableEq ι z : R f : (i : ι) → s i i : ι r : R₁ inst✝³ : SMul R₁ R inst✝² : IsScalarTower R₁ R R inst✝¹ : SMul R₁ (s i) inst✝ : IsScalarTower R₁ R (s i) h₁ : r • z = r • 1 * z h₂ : r • f i = (r • 1) • f i ⊢ tprodCoeff R z (update f i (r • f i)) = tprodCoeff R (r • z) f [PROOFSTEP] rw [h₁, h₂] [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝¹² : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝¹¹ : (i : ι) → AddCommMonoid (s i) inst✝¹⁰ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁹ : AddCommMonoid M inst✝⁸ : Module R M E : Type u_9 inst✝⁷ : AddCommMonoid E inst✝⁶ : Module R E F : Type u_10 inst✝⁵ : AddCommMonoid F inst✝⁴ : DecidableEq ι z : R f : (i : ι) → s i i : ι r : R₁ inst✝³ : SMul R₁ R inst✝² : IsScalarTower R₁ R R inst✝¹ : SMul R₁ (s i) inst✝ : IsScalarTower R₁ R (s i) h₁ : r • z = r • 1 * z h₂ : r • f i = (r • 1) • f i ⊢ tprodCoeff R z (update f i ((r • 1) • f i)) = tprodCoeff R (r • 1 * z) f [PROOFSTEP] exact smul_tprodCoeff_aux z f i _ [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F φ : R × ((i : ι) → s i) → F C0 : ∀ (r : R) (f : (i : ι) → s i) (i : ι), f i = 0 → φ (r, f) = 0 C0' : ∀ (f : (i : ι) → s i), φ (0, f) = 0 C_add : ∀ [inst : DecidableEq ι] (r : R) (f : (i : ι) → s i) (i : ι) (m₁ m₂ : s i), φ (r, update f i m₁) + φ (r, update f i m₂) = φ (r, update f i (m₁ + m₂)) C_add_scalar : ∀ (r r' : R) (f : (i : ι) → s i), φ (r, f) + φ (r', f) = φ (r + r', f) C_smul : ∀ [inst : DecidableEq ι] (r : R) (f : (i : ι) → s i) (i : ι) (r' : R), φ (r, update f i (r' • f i)) = φ (r' * r, f) x y : FreeAddMonoid (R × ((i : ι) → s i)) hxy : Eqv R s x y r' : R f : (i : ι) → s i i : ι hf : f i = 0 ⊢ ↑(↑FreeAddMonoid.lift φ) (FreeAddMonoid.of (r', f)) = ↑(↑FreeAddMonoid.lift φ) 0 [PROOFSTEP] simp [FreeAddMonoid.lift_eval_of, C0 r' f i hf] [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F φ : R × ((i : ι) → s i) → F C0 : ∀ (r : R) (f : (i : ι) → s i) (i : ι), f i = 0 → φ (r, f) = 0 C0' : ∀ (f : (i : ι) → s i), φ (0, f) = 0 C_add : ∀ [inst : DecidableEq ι] (r : R) (f : (i : ι) → s i) (i : ι) (m₁ m₂ : s i), φ (r, update f i m₁) + φ (r, update f i m₂) = φ (r, update f i (m₁ + m₂)) C_add_scalar : ∀ (r r' : R) (f : (i : ι) → s i), φ (r, f) + φ (r', f) = φ (r + r', f) C_smul : ∀ [inst : DecidableEq ι] (r : R) (f : (i : ι) → s i) (i : ι) (r' : R), φ (r, update f i (r' • f i)) = φ (r' * r, f) x y : FreeAddMonoid (R × ((i : ι) → s i)) hxy : Eqv R s x y f : (i : ι) → s i ⊢ ↑(↑FreeAddMonoid.lift φ) (FreeAddMonoid.of (0, f)) = ↑(↑FreeAddMonoid.lift φ) 0 [PROOFSTEP] simp [FreeAddMonoid.lift_eval_of, C0'] [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F φ : R × ((i : ι) → s i) → F C0 : ∀ (r : R) (f : (i : ι) → s i) (i : ι), f i = 0 → φ (r, f) = 0 C0' : ∀ (f : (i : ι) → s i), φ (0, f) = 0 C_add : ∀ [inst : DecidableEq ι] (r : R) (f : (i : ι) → s i) (i : ι) (m₁ m₂ : s i), φ (r, update f i m₁) + φ (r, update f i m₂) = φ (r, update f i (m₁ + m₂)) C_add_scalar : ∀ (r r' : R) (f : (i : ι) → s i), φ (r, f) + φ (r', f) = φ (r + r', f) C_smul : ∀ [inst : DecidableEq ι] (r : R) (f : (i : ι) → s i) (i : ι) (r' : R), φ (r, update f i (r' • f i)) = φ (r' * r, f) x y : FreeAddMonoid (R × ((i : ι) → s i)) hxy : Eqv R s x y inst : DecidableEq ι z : R f : (i : ι) → s i i : ι m₁ m₂ : s i ⊢ ↑(↑FreeAddMonoid.lift φ) (FreeAddMonoid.of (z, update f i m₁) + FreeAddMonoid.of (z, update f i m₂)) = ↑(↑FreeAddMonoid.lift φ) (FreeAddMonoid.of (z, update f i (m₁ + m₂))) [PROOFSTEP] simp [FreeAddMonoid.lift_eval_of, @C_add inst] [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F φ : R × ((i : ι) → s i) → F C0 : ∀ (r : R) (f : (i : ι) → s i) (i : ι), f i = 0 → φ (r, f) = 0 C0' : ∀ (f : (i : ι) → s i), φ (0, f) = 0 C_add : ∀ [inst : DecidableEq ι] (r : R) (f : (i : ι) → s i) (i : ι) (m₁ m₂ : s i), φ (r, update f i m₁) + φ (r, update f i m₂) = φ (r, update f i (m₁ + m₂)) C_add_scalar : ∀ (r r' : R) (f : (i : ι) → s i), φ (r, f) + φ (r', f) = φ (r + r', f) C_smul : ∀ [inst : DecidableEq ι] (r : R) (f : (i : ι) → s i) (i : ι) (r' : R), φ (r, update f i (r' • f i)) = φ (r' * r, f) x y : FreeAddMonoid (R × ((i : ι) → s i)) hxy : Eqv R s x y z₁ z₂ : R f : (i : ι) → s i ⊢ ↑(↑FreeAddMonoid.lift φ) (FreeAddMonoid.of (z₁, f) + FreeAddMonoid.of (z₂, f)) = ↑(↑FreeAddMonoid.lift φ) (FreeAddMonoid.of (z₁ + z₂, f)) [PROOFSTEP] simp [FreeAddMonoid.lift_eval_of, C_add_scalar] [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F φ : R × ((i : ι) → s i) → F C0 : ∀ (r : R) (f : (i : ι) → s i) (i : ι), f i = 0 → φ (r, f) = 0 C0' : ∀ (f : (i : ι) → s i), φ (0, f) = 0 C_add : ∀ [inst : DecidableEq ι] (r : R) (f : (i : ι) → s i) (i : ι) (m₁ m₂ : s i), φ (r, update f i m₁) + φ (r, update f i m₂) = φ (r, update f i (m₁ + m₂)) C_add_scalar : ∀ (r r' : R) (f : (i : ι) → s i), φ (r, f) + φ (r', f) = φ (r + r', f) C_smul : ∀ [inst : DecidableEq ι] (r : R) (f : (i : ι) → s i) (i : ι) (r' : R), φ (r, update f i (r' • f i)) = φ (r' * r, f) x y : FreeAddMonoid (R × ((i : ι) → s i)) hxy : Eqv R s x y inst : DecidableEq ι z : R f : (i : ι) → s i i : ι r' : R ⊢ ↑(↑FreeAddMonoid.lift φ) (FreeAddMonoid.of (z, update f i (r' • f i))) = ↑(↑FreeAddMonoid.lift φ) (FreeAddMonoid.of (r' * z, f)) [PROOFSTEP] simp [FreeAddMonoid.lift_eval_of, @C_smul inst] [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F φ : R × ((i : ι) → s i) → F C0 : ∀ (r : R) (f : (i : ι) → s i) (i : ι), f i = 0 → φ (r, f) = 0 C0' : ∀ (f : (i : ι) → s i), φ (0, f) = 0 C_add : ∀ [inst : DecidableEq ι] (r : R) (f : (i : ι) → s i) (i : ι) (m₁ m₂ : s i), φ (r, update f i m₁) + φ (r, update f i m₂) = φ (r, update f i (m₁ + m₂)) C_add_scalar : ∀ (r r' : R) (f : (i : ι) → s i), φ (r, f) + φ (r', f) = φ (r + r', f) C_smul : ∀ [inst : DecidableEq ι] (r : R) (f : (i : ι) → s i) (i : ι) (r' : R), φ (r, update f i (r' • f i)) = φ (r' * r, f) x✝ y✝ : FreeAddMonoid (R × ((i : ι) → s i)) hxy : Eqv R s x✝ y✝ x y : FreeAddMonoid (R × ((i : ι) → s i)) ⊢ ↑(↑FreeAddMonoid.lift φ) (x + y) = ↑(↑FreeAddMonoid.lift φ) (y + x) [PROOFSTEP] simp_rw [AddMonoidHom.map_add, add_comm] [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F C : (⨂[R] (i : ι), s i) → Prop z : ⨂[R] (i : ι), s i C1 : ∀ {r : R} {f : (i : ι) → s i}, C (tprodCoeff R r f) Cp : ∀ {x y : ⨂[R] (i : ι), s i}, C x → C y → C (x + y) ⊢ C z [PROOFSTEP] have C0 : C 0 := by have h₁ := @C1 0 0 rwa [zero_tprodCoeff] at h₁ [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F C : (⨂[R] (i : ι), s i) → Prop z : ⨂[R] (i : ι), s i C1 : ∀ {r : R} {f : (i : ι) → s i}, C (tprodCoeff R r f) Cp : ∀ {x y : ⨂[R] (i : ι), s i}, C x → C y → C (x + y) ⊢ C 0 [PROOFSTEP] have h₁ := @C1 0 0 [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F C : (⨂[R] (i : ι), s i) → Prop z : ⨂[R] (i : ι), s i C1 : ∀ {r : R} {f : (i : ι) → s i}, C (tprodCoeff R r f) Cp : ∀ {x y : ⨂[R] (i : ι), s i}, C x → C y → C (x + y) h₁ : C (tprodCoeff R 0 0) ⊢ C 0 [PROOFSTEP] rwa [zero_tprodCoeff] at h₁ [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F C : (⨂[R] (i : ι), s i) → Prop z : ⨂[R] (i : ι), s i C1 : ∀ {r : R} {f : (i : ι) → s i}, C (tprodCoeff R r f) Cp : ∀ {x y : ⨂[R] (i : ι), s i}, C x → C y → C (x + y) C0 : C 0 ⊢ C z [PROOFSTEP] refine' AddCon.induction_on z fun x ↦ FreeAddMonoid.recOn x C0 _ [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F C : (⨂[R] (i : ι), s i) → Prop z : ⨂[R] (i : ι), s i C1 : ∀ {r : R} {f : (i : ι) → s i}, C (tprodCoeff R r f) Cp : ∀ {x y : ⨂[R] (i : ι), s i}, C x → C y → C (x + y) C0 : C 0 x : FreeAddMonoid (R × ((i : ι) → (fun i => s i) i)) ⊢ ∀ (x : R × ((i : ι) → (fun i => s i) i)) (xs : FreeAddMonoid (R × ((i : ι) → (fun i => s i) i))), C ↑xs → C ↑(FreeAddMonoid.of x + xs) [PROOFSTEP] simp_rw [AddCon.coe_add] [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F C : (⨂[R] (i : ι), s i) → Prop z : ⨂[R] (i : ι), s i C1 : ∀ {r : R} {f : (i : ι) → s i}, C (tprodCoeff R r f) Cp : ∀ {x y : ⨂[R] (i : ι), s i}, C x → C y → C (x + y) C0 : C 0 x : FreeAddMonoid (R × ((i : ι) → (fun i => s i) i)) ⊢ ∀ (x : R × ((i : ι) → (fun i => s i) i)) (xs : FreeAddMonoid (R × ((i : ι) → (fun i => s i) i))), C ↑xs → C (↑(FreeAddMonoid.of x) + ↑xs) [PROOFSTEP] refine' fun f y ih ↦ Cp _ ih [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F C : (⨂[R] (i : ι), s i) → Prop z : ⨂[R] (i : ι), s i C1 : ∀ {r : R} {f : (i : ι) → s i}, C (tprodCoeff R r f) Cp : ∀ {x y : ⨂[R] (i : ι), s i}, C x → C y → C (x + y) C0 : C 0 x : FreeAddMonoid (R × ((i : ι) → (fun i => s i) i)) f : R × ((i : ι) → (fun i => s i) i) y : FreeAddMonoid (R × ((i : ι) → (fun i => s i) i)) ih : C ↑y ⊢ C ↑(FreeAddMonoid.of f) [PROOFSTEP] convert @C1 f.1 f.2 [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝¹³ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝¹² : (i : ι) → AddCommMonoid (s i) inst✝¹¹ : (i : ι) → Module R (s i) M : Type u_8 inst✝¹⁰ : AddCommMonoid M inst✝⁹ : Module R M E : Type u_9 inst✝⁸ : AddCommMonoid E inst✝⁷ : Module R E F : Type u_10 inst✝⁶ : AddCommMonoid F inst✝⁵ : Monoid R₁ inst✝⁴ : DistribMulAction R₁ R inst✝³ : SMulCommClass R₁ R R inst✝² : Monoid R₂ inst✝¹ : DistribMulAction R₂ R inst✝ : SMulCommClass R₂ R R r : R₁ r' : R f : (i : ι) → s i i : ι hf : f i = 0 ⊢ (fun f => tprodCoeff R (r • f.fst) f.snd) (r', f) = 0 [PROOFSTEP] simp_rw [zero_tprodCoeff' _ f i hf] [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝¹³ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝¹² : (i : ι) → AddCommMonoid (s i) inst✝¹¹ : (i : ι) → Module R (s i) M : Type u_8 inst✝¹⁰ : AddCommMonoid M inst✝⁹ : Module R M E : Type u_9 inst✝⁸ : AddCommMonoid E inst✝⁷ : Module R E F : Type u_10 inst✝⁶ : AddCommMonoid F inst✝⁵ : Monoid R₁ inst✝⁴ : DistribMulAction R₁ R inst✝³ : SMulCommClass R₁ R R inst✝² : Monoid R₂ inst✝¹ : DistribMulAction R₂ R inst✝ : SMulCommClass R₂ R R r : R₁ f : (i : ι) → s i ⊢ (fun f => tprodCoeff R (r • f.fst) f.snd) (0, f) = 0 [PROOFSTEP] simp [zero_tprodCoeff] [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝¹⁴ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝¹³ : (i : ι) → AddCommMonoid (s i) inst✝¹² : (i : ι) → Module R (s i) M : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : Module R M E : Type u_9 inst✝⁹ : AddCommMonoid E inst✝⁸ : Module R E F : Type u_10 inst✝⁷ : AddCommMonoid F inst✝⁶ : Monoid R₁ inst✝⁵ : DistribMulAction R₁ R inst✝⁴ : SMulCommClass R₁ R R inst✝³ : Monoid R₂ inst✝² : DistribMulAction R₂ R inst✝¹ : SMulCommClass R₂ R R r : R₁ inst✝ : DecidableEq ι r' : R f : (i : ι) → s i i : ι m₁ m₂ : s i ⊢ (fun f => tprodCoeff R (r • f.fst) f.snd) (r', update f i m₁) + (fun f => tprodCoeff R (r • f.fst) f.snd) (r', update f i m₂) = (fun f => tprodCoeff R (r • f.fst) f.snd) (r', update f i (m₁ + m₂)) [PROOFSTEP] simp [add_tprodCoeff] [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝¹³ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝¹² : (i : ι) → AddCommMonoid (s i) inst✝¹¹ : (i : ι) → Module R (s i) M : Type u_8 inst✝¹⁰ : AddCommMonoid M inst✝⁹ : Module R M E : Type u_9 inst✝⁸ : AddCommMonoid E inst✝⁷ : Module R E F : Type u_10 inst✝⁶ : AddCommMonoid F inst✝⁵ : Monoid R₁ inst✝⁴ : DistribMulAction R₁ R inst✝³ : SMulCommClass R₁ R R inst✝² : Monoid R₂ inst✝¹ : DistribMulAction R₂ R inst✝ : SMulCommClass R₂ R R r : R₁ r' r'' : R f : (i : ι) → s i ⊢ (fun f => tprodCoeff R (r • f.fst) f.snd) (r', f) + (fun f => tprodCoeff R (r • f.fst) f.snd) (r'', f) = (fun f => tprodCoeff R (r • f.fst) f.snd) (r' + r'', f) [PROOFSTEP] simp [add_tprodCoeff', mul_add] [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝¹⁴ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝¹³ : (i : ι) → AddCommMonoid (s i) inst✝¹² : (i : ι) → Module R (s i) M : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : Module R M E : Type u_9 inst✝⁹ : AddCommMonoid E inst✝⁸ : Module R E F : Type u_10 inst✝⁷ : AddCommMonoid F inst✝⁶ : Monoid R₁ inst✝⁵ : DistribMulAction R₁ R inst✝⁴ : SMulCommClass R₁ R R inst✝³ : Monoid R₂ inst✝² : DistribMulAction R₂ R inst✝¹ : SMulCommClass R₂ R R r : R₁ inst✝ : DecidableEq ι z : R f : (i : ι) → s i i : ι r' : R ⊢ (fun f => tprodCoeff R (r • f.fst) f.snd) (z, update f i (r' • f i)) = (fun f => tprodCoeff R (r • f.fst) f.snd) (r' * z, f) [PROOFSTEP] simp [smul_tprodCoeff, mul_smul_comm] [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝¹³ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝¹² : (i : ι) → AddCommMonoid (s i) inst✝¹¹ : (i : ι) → Module R (s i) M : Type u_8 inst✝¹⁰ : AddCommMonoid M inst✝⁹ : Module R M E : Type u_9 inst✝⁸ : AddCommMonoid E inst✝⁷ : Module R E F : Type u_10 inst✝⁶ : AddCommMonoid F inst✝⁵ : Monoid R₁ inst✝⁴ : DistribMulAction R₁ R inst✝³ : SMulCommClass R₁ R R inst✝² : Monoid R₂ inst✝¹ : DistribMulAction R₂ R inst✝ : SMulCommClass R₂ R R x : ⨂[R] (i : ι), s i r : R f : (i : ι) → s i ⊢ 1 • tprodCoeff R r f = tprodCoeff R r f [PROOFSTEP] rw [smul_tprodCoeff', one_smul] [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝¹³ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝¹² : (i : ι) → AddCommMonoid (s i) inst✝¹¹ : (i : ι) → Module R (s i) M : Type u_8 inst✝¹⁰ : AddCommMonoid M inst✝⁹ : Module R M E : Type u_9 inst✝⁸ : AddCommMonoid E inst✝⁷ : Module R E F : Type u_10 inst✝⁶ : AddCommMonoid F inst✝⁵ : Monoid R₁ inst✝⁴ : DistribMulAction R₁ R inst✝³ : SMulCommClass R₁ R R inst✝² : Monoid R₂ inst✝¹ : DistribMulAction R₂ R inst✝ : SMulCommClass R₂ R R x z y : ⨂[R] (i : ι), s i ihz : 1 • z = z ihy : 1 • y = y ⊢ 1 • (z + y) = z + y [PROOFSTEP] simp_rw [PiTensorProduct.smul_add, ihz, ihy] [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝¹³ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝¹² : (i : ι) → AddCommMonoid (s i) inst✝¹¹ : (i : ι) → Module R (s i) M : Type u_8 inst✝¹⁰ : AddCommMonoid M inst✝⁹ : Module R M E : Type u_9 inst✝⁸ : AddCommMonoid E inst✝⁷ : Module R E F : Type u_10 inst✝⁶ : AddCommMonoid F inst✝⁵ : Monoid R₁ inst✝⁴ : DistribMulAction R₁ R inst✝³ : SMulCommClass R₁ R R inst✝² : Monoid R₂ inst✝¹ : DistribMulAction R₂ R inst✝ : SMulCommClass R₂ R R r r' : R₁ x : ⨂[R] (i : ι), s i r'' : R f : (i : ι) → s i ⊢ (r * r') • tprodCoeff R r'' f = r • r' • tprodCoeff R r'' f [PROOFSTEP] simp [smul_tprodCoeff', smul_smul] [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝¹³ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝¹² : (i : ι) → AddCommMonoid (s i) inst✝¹¹ : (i : ι) → Module R (s i) M : Type u_8 inst✝¹⁰ : AddCommMonoid M inst✝⁹ : Module R M E : Type u_9 inst✝⁸ : AddCommMonoid E inst✝⁷ : Module R E F : Type u_10 inst✝⁶ : AddCommMonoid F inst✝⁵ : Monoid R₁ inst✝⁴ : DistribMulAction R₁ R inst✝³ : SMulCommClass R₁ R R inst✝² : Monoid R₂ inst✝¹ : DistribMulAction R₂ R inst✝ : SMulCommClass R₂ R R r r' : R₁ x✝ x y : ⨂[R] (i : ι), s i ihx : (r * r') • x = r • r' • x ihy : (r * r') • y = r • r' • y ⊢ (r * r') • (x + y) = r • r' • (x + y) [PROOFSTEP] simp_rw [PiTensorProduct.smul_add, ihx, ihy] [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝¹⁴ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝¹³ : (i : ι) → AddCommMonoid (s i) inst✝¹² : (i : ι) → Module R (s i) M : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : Module R M E : Type u_9 inst✝⁹ : AddCommMonoid E inst✝⁸ : Module R E F : Type u_10 inst✝⁷ : AddCommMonoid F inst✝⁶ : Monoid R₁ inst✝⁵ : DistribMulAction R₁ R inst✝⁴ : SMulCommClass R₁ R R inst✝³ : Monoid R₂ inst✝² : DistribMulAction R₂ R inst✝¹ : SMulCommClass R₂ R R inst✝ : SMulCommClass R₁ R₂ R r' : R₁ r'' : R₂ x : ⨂[R] (i : ι), s i xr : R xf : (i : ι) → s i ⊢ r' • r'' • tprodCoeff R xr xf = r'' • r' • tprodCoeff R xr xf [PROOFSTEP] simp only [smul_tprodCoeff', smul_comm] [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝¹⁴ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝¹³ : (i : ι) → AddCommMonoid (s i) inst✝¹² : (i : ι) → Module R (s i) M : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : Module R M E : Type u_9 inst✝⁹ : AddCommMonoid E inst✝⁸ : Module R E F : Type u_10 inst✝⁷ : AddCommMonoid F inst✝⁶ : Monoid R₁ inst✝⁵ : DistribMulAction R₁ R inst✝⁴ : SMulCommClass R₁ R R inst✝³ : Monoid R₂ inst✝² : DistribMulAction R₂ R inst✝¹ : SMulCommClass R₂ R R inst✝ : SMulCommClass R₁ R₂ R r' : R₁ r'' : R₂ x z y : ⨂[R] (i : ι), s i ihz : r' • r'' • z = r'' • r' • z ihy : r' • r'' • y = r'' • r' • y ⊢ r' • r'' • (z + y) = r'' • r' • (z + y) [PROOFSTEP] simp_rw [PiTensorProduct.smul_add, ihz, ihy] [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝¹⁵ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝¹⁴ : (i : ι) → AddCommMonoid (s i) inst✝¹³ : (i : ι) → Module R (s i) M : Type u_8 inst✝¹² : AddCommMonoid M inst✝¹¹ : Module R M E : Type u_9 inst✝¹⁰ : AddCommMonoid E inst✝⁹ : Module R E F : Type u_10 inst✝⁸ : AddCommMonoid F inst✝⁷ : Monoid R₁ inst✝⁶ : DistribMulAction R₁ R inst✝⁵ : SMulCommClass R₁ R R inst✝⁴ : Monoid R₂ inst✝³ : DistribMulAction R₂ R inst✝² : SMulCommClass R₂ R R inst✝¹ : SMul R₁ R₂ inst✝ : IsScalarTower R₁ R₂ R r' : R₁ r'' : R₂ x : ⨂[R] (i : ι), s i xr : R xf : (i : ι) → s i ⊢ (r' • r'') • tprodCoeff R xr xf = r' • r'' • tprodCoeff R xr xf [PROOFSTEP] simp only [smul_tprodCoeff', smul_assoc] [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝¹⁵ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝¹⁴ : (i : ι) → AddCommMonoid (s i) inst✝¹³ : (i : ι) → Module R (s i) M : Type u_8 inst✝¹² : AddCommMonoid M inst✝¹¹ : Module R M E : Type u_9 inst✝¹⁰ : AddCommMonoid E inst✝⁹ : Module R E F : Type u_10 inst✝⁸ : AddCommMonoid F inst✝⁷ : Monoid R₁ inst✝⁶ : DistribMulAction R₁ R inst✝⁵ : SMulCommClass R₁ R R inst✝⁴ : Monoid R₂ inst✝³ : DistribMulAction R₂ R inst✝² : SMulCommClass R₂ R R inst✝¹ : SMul R₁ R₂ inst✝ : IsScalarTower R₁ R₂ R r' : R₁ r'' : R₂ x z y : ⨂[R] (i : ι), s i ihz : (r' • r'') • z = r' • r'' • z ihy : (r' • r'') • y = r' • r'' • y ⊢ (r' • r'') • (z + y) = r' • r'' • (z + y) [PROOFSTEP] simp_rw [PiTensorProduct.smul_add, ihz, ihy] [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝¹⁰ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁹ : (i : ι) → AddCommMonoid (s i) inst✝⁸ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M E : Type u_9 inst✝⁵ : AddCommMonoid E inst✝⁴ : Module R E F : Type u_10 inst✝³ : AddCommMonoid F inst✝² : Semiring R₁ inst✝¹ : Module R₁ R inst✝ : SMulCommClass R₁ R R src✝ : DistribMulAction R₁ (⨂[R] (i : ι), s i) := distribMulAction' r✝ r' : R₁ x : ⨂[R] (i : ι), s i r : R f : (i : ι) → s i ⊢ (r✝ + r') • tprodCoeff R r f = r✝ • tprodCoeff R r f + r' • tprodCoeff R r f [PROOFSTEP] simp_rw [smul_tprodCoeff', add_smul, add_tprodCoeff'] [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝¹⁰ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁹ : (i : ι) → AddCommMonoid (s i) inst✝⁸ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M E : Type u_9 inst✝⁵ : AddCommMonoid E inst✝⁴ : Module R E F : Type u_10 inst✝³ : AddCommMonoid F inst✝² : Semiring R₁ inst✝¹ : Module R₁ R inst✝ : SMulCommClass R₁ R R src✝ : DistribMulAction R₁ (⨂[R] (i : ι), s i) := distribMulAction' r r' : R₁ x✝ x y : ⨂[R] (i : ι), s i ihx : (r + r') • x = r • x + r' • x ihy : (r + r') • y = r • y + r' • y ⊢ (r + r') • (x + y) = r • (x + y) + r' • (x + y) [PROOFSTEP] simp_rw [PiTensorProduct.smul_add, ihx, ihy, add_add_add_comm] [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝¹⁰ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁹ : (i : ι) → AddCommMonoid (s i) inst✝⁸ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M E : Type u_9 inst✝⁵ : AddCommMonoid E inst✝⁴ : Module R E F : Type u_10 inst✝³ : AddCommMonoid F inst✝² : Semiring R₁ inst✝¹ : Module R₁ R inst✝ : SMulCommClass R₁ R R src✝ : DistribMulAction R₁ (⨂[R] (i : ι), s i) := distribMulAction' x : ⨂[R] (i : ι), s i r : R f : (i : ι) → s i ⊢ 0 • tprodCoeff R r f = 0 [PROOFSTEP] simp_rw [smul_tprodCoeff', zero_smul, zero_tprodCoeff] [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝¹⁰ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁹ : (i : ι) → AddCommMonoid (s i) inst✝⁸ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M E : Type u_9 inst✝⁵ : AddCommMonoid E inst✝⁴ : Module R E F : Type u_10 inst✝³ : AddCommMonoid F inst✝² : Semiring R₁ inst✝¹ : Module R₁ R inst✝ : SMulCommClass R₁ R R src✝ : DistribMulAction R₁ (⨂[R] (i : ι), s i) := distribMulAction' x✝ x y : ⨂[R] (i : ι), s i ihx : 0 • x = 0 ihy : 0 • y = 0 ⊢ 0 • (x + y) = 0 [PROOFSTEP] simp_rw [PiTensorProduct.smul_add, ihx, ihy, add_zero] [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F x✝ : DecidableEq ι f : (i : ι) → s i i : ι r : R x : s i ⊢ tprodCoeff R 1 (update f i (r • x)) = r • tprodCoeff R 1 (update f i x) [PROOFSTEP] rw [smul_tprodCoeff', ← smul_tprodCoeff (1 : R) _ i, update_idem, update_same] [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F z : R f : (i : ι) → s i ⊢ tprodCoeff R z f = z • ↑(tprod R) f [PROOFSTEP] have : z = z • (1 : R) := by simp only [mul_one, Algebra.id.smul_eq_mul] [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F z : R f : (i : ι) → s i ⊢ z = z • 1 [PROOFSTEP] simp only [mul_one, Algebra.id.smul_eq_mul] [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F z : R f : (i : ι) → s i this : z = z • 1 ⊢ tprodCoeff R z f = z • ↑(tprod R) f [PROOFSTEP] conv_lhs => rw [this] [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F z : R f : (i : ι) → s i this : z = z • 1 | tprodCoeff R z f [PROOFSTEP] rw [this] [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F z : R f : (i : ι) → s i this : z = z • 1 | tprodCoeff R z f [PROOFSTEP] rw [this] [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F z : R f : (i : ι) → s i this : z = z • 1 | tprodCoeff R z f [PROOFSTEP] rw [this] [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F C : (⨂[R] (i : ι), s i) → Prop z : ⨂[R] (i : ι), s i C1 : ∀ {r : R} {f : (i : ι) → s i}, C (r • ↑(tprod R) f) Cp : ∀ {x y : ⨂[R] (i : ι), s i}, C x → C y → C (x + y) ⊢ C z [PROOFSTEP] simp_rw [← tprodCoeff_eq_smul_tprod] at C1 [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F C : (⨂[R] (i : ι), s i) → Prop z : ⨂[R] (i : ι), s i Cp : ∀ {x y : ⨂[R] (i : ι), s i}, C x → C y → C (x + y) C1 : ∀ {r : R} {f : (i : ι) → s i}, C (tprodCoeff R r f) ⊢ C z [PROOFSTEP] exact PiTensorProduct.induction_on' z @C1 @Cp [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F φ₁ φ₂ : (⨂[R] (i : ι), s i) →ₗ[R] E H : LinearMap.compMultilinearMap φ₁ (tprod R) = LinearMap.compMultilinearMap φ₂ (tprod R) ⊢ φ₁ = φ₂ [PROOFSTEP] refine' LinearMap.ext _ [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F φ₁ φ₂ : (⨂[R] (i : ι), s i) →ₗ[R] E H : LinearMap.compMultilinearMap φ₁ (tprod R) = LinearMap.compMultilinearMap φ₂ (tprod R) ⊢ ∀ (x : ⨂[R] (i : ι), s i), ↑φ₁ x = ↑φ₂ x [PROOFSTEP] refine' fun z ↦ PiTensorProduct.induction_on' z _ fun {x y} hx hy ↦ by rw [φ₁.map_add, φ₂.map_add, hx, hy] [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F φ₁ φ₂ : (⨂[R] (i : ι), s i) →ₗ[R] E H : LinearMap.compMultilinearMap φ₁ (tprod R) = LinearMap.compMultilinearMap φ₂ (tprod R) z x y : ⨂[R] (i : ι), s i hx : ↑φ₁ x = ↑φ₂ x hy : ↑φ₁ y = ↑φ₂ y ⊢ ↑φ₁ (x + y) = ↑φ₂ (x + y) [PROOFSTEP] rw [φ₁.map_add, φ₂.map_add, hx, hy] [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F φ₁ φ₂ : (⨂[R] (i : ι), s i) →ₗ[R] E H : LinearMap.compMultilinearMap φ₁ (tprod R) = LinearMap.compMultilinearMap φ₂ (tprod R) z : ⨂[R] (i : ι), s i ⊢ ∀ {r : R} {f : (i : ι) → s i}, ↑φ₁ (tprodCoeff R r f) = ↑φ₂ (tprodCoeff R r f) [PROOFSTEP] intro r f [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F φ₁ φ₂ : (⨂[R] (i : ι), s i) →ₗ[R] E H : LinearMap.compMultilinearMap φ₁ (tprod R) = LinearMap.compMultilinearMap φ₂ (tprod R) z : ⨂[R] (i : ι), s i r : R f : (i : ι) → s i ⊢ ↑φ₁ (tprodCoeff R r f) = ↑φ₂ (tprodCoeff R r f) [PROOFSTEP] rw [tprodCoeff_eq_smul_tprod, φ₁.map_smul, φ₂.map_smul] [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F φ₁ φ₂ : (⨂[R] (i : ι), s i) →ₗ[R] E H : LinearMap.compMultilinearMap φ₁ (tprod R) = LinearMap.compMultilinearMap φ₂ (tprod R) z : ⨂[R] (i : ι), s i r : R f : (i : ι) → s i ⊢ r • ↑φ₁ (↑(tprod R) f) = r • ↑φ₂ (↑(tprod R) f) [PROOFSTEP] apply _root_.congr_arg [GOAL] case h ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F φ₁ φ₂ : (⨂[R] (i : ι), s i) →ₗ[R] E H : LinearMap.compMultilinearMap φ₁ (tprod R) = LinearMap.compMultilinearMap φ₂ (tprod R) z : ⨂[R] (i : ι), s i r : R f : (i : ι) → s i ⊢ ↑φ₁ (↑(tprod R) f) = ↑φ₂ (↑(tprod R) f) [PROOFSTEP] exact MultilinearMap.congr_fun H f [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F φ : MultilinearMap R s E z : R f : (i : ι) → s i i : ι hf : f i = 0 ⊢ (fun p => p.fst • ↑φ p.snd) (z, f) = 0 [PROOFSTEP] simp_rw [map_coord_zero φ i hf, smul_zero] [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F φ : MultilinearMap R s E f : (i : ι) → s i ⊢ (fun p => p.fst • ↑φ p.snd) (0, f) = 0 [PROOFSTEP] simp_rw [zero_smul] [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁸ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁷ : (i : ι) → AddCommMonoid (s i) inst✝⁶ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M E : Type u_9 inst✝³ : AddCommMonoid E inst✝² : Module R E F : Type u_10 inst✝¹ : AddCommMonoid F φ : MultilinearMap R s E inst✝ : DecidableEq ι z : R f : (i : ι) → s i i : ι m₁ m₂ : s i ⊢ (fun p => p.fst • ↑φ p.snd) (z, update f i m₁) + (fun p => p.fst • ↑φ p.snd) (z, update f i m₂) = (fun p => p.fst • ↑φ p.snd) (z, update f i (m₁ + m₂)) [PROOFSTEP] simp_rw [← smul_add, φ.map_add] [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F φ : MultilinearMap R s E z₁ z₂ : R f : (i : ι) → s i ⊢ (fun p => p.fst • ↑φ p.snd) (z₁, f) + (fun p => p.fst • ↑φ p.snd) (z₂, f) = (fun p => p.fst • ↑φ p.snd) (z₁ + z₂, f) [PROOFSTEP] rw [← add_smul] [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁸ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁷ : (i : ι) → AddCommMonoid (s i) inst✝⁶ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M E : Type u_9 inst✝³ : AddCommMonoid E inst✝² : Module R E F : Type u_10 inst✝¹ : AddCommMonoid F φ : MultilinearMap R s E inst✝ : DecidableEq ι z : R f : (i : ι) → s i i : ι r : R ⊢ (fun p => p.fst • ↑φ p.snd) (z, update f i (r • f i)) = (fun p => p.fst • ↑φ p.snd) (r * z, f) [PROOFSTEP] simp [φ.map_smul, smul_smul, mul_comm] [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F φ : MultilinearMap R s E f : (i : ι) → s i ⊢ ↑(liftAux φ) (↑(tprod R) f) = ↑φ f [PROOFSTEP] simp only [liftAux, liftAddHom, tprod_eq_tprodCoeff_one, tprodCoeff, AddCon.coe_mk'] [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F φ : MultilinearMap R s E f : (i : ι) → s i ⊢ ↑(AddCon.lift (addConGen (Eqv R fun i => s i)) (↑FreeAddMonoid.lift fun p => p.fst • ↑φ p.snd) (_ : addConGen (Eqv R fun i => s i) ≤ AddCon.ker (↑FreeAddMonoid.lift fun p => p.fst • ↑φ p.snd))) ↑(FreeAddMonoid.of (1, f)) = ↑φ f [PROOFSTEP] rw [FreeAddMonoid.of, FreeAddMonoid.ofList, Equiv.refl_apply, AddCon.lift_coe] [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F φ : MultilinearMap R s E f : (i : ι) → s i ⊢ ↑(↑FreeAddMonoid.lift fun p => p.fst • ↑φ p.snd) [(1, f)] = ↑φ f [PROOFSTEP] dsimp [FreeAddMonoid.lift, FreeAddMonoid.sumAux] [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F φ : MultilinearMap R s E f : (i : ι) → s i ⊢ (FreeAddMonoid.sumAux.match_1 (fun x => E) [1 • ↑φ f] (fun _ => 0) fun x xs => List.foldl (fun x x_1 => x + x_1) x xs) = ↑φ f [PROOFSTEP] show _ • _ = _ [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F φ : MultilinearMap R s E f : (i : ι) → s i ⊢ 1 • ↑φ f = ↑φ f [PROOFSTEP] rw [one_smul] [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F φ : MultilinearMap R s E r : R x : ⨂[R] (i : ι), s i ⊢ ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x [PROOFSTEP] refine' PiTensorProduct.induction_on' x _ _ [GOAL] case refine'_1 ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F φ : MultilinearMap R s E r : R x : ⨂[R] (i : ι), s i ⊢ ∀ {r_1 : R} {f : (i : ι) → s i}, ↑(liftAux φ) (r • tprodCoeff R r_1 f) = r • ↑(liftAux φ) (tprodCoeff R r_1 f) [PROOFSTEP] intro z f [GOAL] case refine'_1 ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F φ : MultilinearMap R s E r : R x : ⨂[R] (i : ι), s i z : R f : (i : ι) → s i ⊢ ↑(liftAux φ) (r • tprodCoeff R z f) = r • ↑(liftAux φ) (tprodCoeff R z f) [PROOFSTEP] rw [smul_tprodCoeff' r z f, liftAux_tprodCoeff, liftAux_tprodCoeff, smul_assoc] [GOAL] case refine'_2 ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F φ : MultilinearMap R s E r : R x : ⨂[R] (i : ι), s i ⊢ ∀ {x y : ⨂[R] (i : ι), s i}, ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x → ↑(liftAux φ) (r • y) = r • ↑(liftAux φ) y → ↑(liftAux φ) (r • (x + y)) = r • ↑(liftAux φ) (x + y) [PROOFSTEP] intro z y ihz ihy [GOAL] case refine'_2 ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F φ : MultilinearMap R s E r : R x z y : ⨂[R] (i : ι), s i ihz : ↑(liftAux φ) (r • z) = r • ↑(liftAux φ) z ihy : ↑(liftAux φ) (r • y) = r • ↑(liftAux φ) y ⊢ ↑(liftAux φ) (r • (z + y)) = r • ↑(liftAux φ) (z + y) [PROOFSTEP] rw [smul_add, (liftAux φ).map_add, ihz, ihy, (liftAux φ).map_add, smul_add] [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F φ₁ φ₂ : MultilinearMap R s E ⊢ (fun φ => let src := liftAux φ; { toAddHom := { toFun := src.toFun, map_add' := (_ : ∀ (x y : ⨂[R] (i : ι), s i), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) }) (φ₁ + φ₂) = (fun φ => let src := liftAux φ; { toAddHom := { toFun := src.toFun, map_add' := (_ : ∀ (x y : ⨂[R] (i : ι), s i), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) }) φ₁ + (fun φ => let src := liftAux φ; { toAddHom := { toFun := src.toFun, map_add' := (_ : ∀ (x y : ⨂[R] (i : ι), s i), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) }) φ₂ [PROOFSTEP] ext [GOAL] case H.H ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F φ₁ φ₂ : MultilinearMap R s E x✝ : (i : ι) → s i ⊢ ↑(LinearMap.compMultilinearMap ((fun φ => let src := liftAux φ; { toAddHom := { toFun := src.toFun, map_add' := (_ : ∀ (x y : ⨂[R] (i : ι), s i), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) }) (φ₁ + φ₂)) (tprod R)) x✝ = ↑(LinearMap.compMultilinearMap ((fun φ => let src := liftAux φ; { toAddHom := { toFun := src.toFun, map_add' := (_ : ∀ (x y : ⨂[R] (i : ι), s i), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) }) φ₁ + (fun φ => let src := liftAux φ; { toAddHom := { toFun := src.toFun, map_add' := (_ : ∀ (x y : ⨂[R] (i : ι), s i), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) }) φ₂) (tprod R)) x✝ [PROOFSTEP] simp [liftAux_tprod] [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F r : R φ₂ : MultilinearMap R s E ⊢ AddHom.toFun { toFun := fun φ => let src := liftAux φ; { toAddHom := { toFun := src.toFun, map_add' := (_ : ∀ (x y : ⨂[R] (i : ι), s i), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) }, map_add' := (_ : ∀ (φ₁ φ₂ : MultilinearMap R s E), (fun φ => let src := liftAux φ; { toAddHom := { toFun := src.toFun, map_add' := (_ : ∀ (x y : ⨂[R] (i : ι), s i), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) }) (φ₁ + φ₂) = (fun φ => let src := liftAux φ; { toAddHom := { toFun := src.toFun, map_add' := (_ : ∀ (x y : ⨂[R] (i : ι), s i), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) }) φ₁ + (fun φ => let src := liftAux φ; { toAddHom := { toFun := src.toFun, map_add' := (_ : ∀ (x y : ⨂[R] (i : ι), s i), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) }) φ₂) } (r • φ₂) = ↑(RingHom.id R) r • AddHom.toFun { toFun := fun φ => let src := liftAux φ; { toAddHom := { toFun := src.toFun, map_add' := (_ : ∀ (x y : ⨂[R] (i : ι), s i), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) }, map_add' := (_ : ∀ (φ₁ φ₂ : MultilinearMap R s E), (fun φ => let src := liftAux φ; { toAddHom := { toFun := src.toFun, map_add' := (_ : ∀ (x y : ⨂[R] (i : ι), s i), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) }) (φ₁ + φ₂) = (fun φ => let src := liftAux φ; { toAddHom := { toFun := src.toFun, map_add' := (_ : ∀ (x y : ⨂[R] (i : ι), s i), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) }) φ₁ + (fun φ => let src := liftAux φ; { toAddHom := { toFun := src.toFun, map_add' := (_ : ∀ (x y : ⨂[R] (i : ι), s i), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) }) φ₂) } φ₂ [PROOFSTEP] ext [GOAL] case H.H ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F r : R φ₂ : MultilinearMap R s E x✝ : (i : ι) → s i ⊢ ↑(LinearMap.compMultilinearMap (AddHom.toFun { toFun := fun φ => let src := liftAux φ; { toAddHom := { toFun := src.toFun, map_add' := (_ : ∀ (x y : ⨂[R] (i : ι), s i), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) }, map_add' := (_ : ∀ (φ₁ φ₂ : MultilinearMap R s E), (fun φ => let src := liftAux φ; { toAddHom := { toFun := src.toFun, map_add' := (_ : ∀ (x y : ⨂[R] (i : ι), s i), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) }) (φ₁ + φ₂) = (fun φ => let src := liftAux φ; { toAddHom := { toFun := src.toFun, map_add' := (_ : ∀ (x y : ⨂[R] (i : ι), s i), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) }) φ₁ + (fun φ => let src := liftAux φ; { toAddHom := { toFun := src.toFun, map_add' := (_ : ∀ (x y : ⨂[R] (i : ι), s i), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) }) φ₂) } (r • φ₂)) (tprod R)) x✝ = ↑(LinearMap.compMultilinearMap (↑(RingHom.id R) r • AddHom.toFun { toFun := fun φ => let src := liftAux φ; { toAddHom := { toFun := src.toFun, map_add' := (_ : ∀ (x y : ⨂[R] (i : ι), s i), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) }, map_add' := (_ : ∀ (φ₁ φ₂ : MultilinearMap R s E), (fun φ => let src := liftAux φ; { toAddHom := { toFun := src.toFun, map_add' := (_ : ∀ (x y : ⨂[R] (i : ι), s i), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) }) (φ₁ + φ₂) = (fun φ => let src := liftAux φ; { toAddHom := { toFun := src.toFun, map_add' := (_ : ∀ (x y : ⨂[R] (i : ι), s i), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) }) φ₁ + (fun φ => let src := liftAux φ; { toAddHom := { toFun := src.toFun, map_add' := (_ : ∀ (x y : ⨂[R] (i : ι), s i), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) }) φ₂) } φ₂) (tprod R)) x✝ [PROOFSTEP] simp [liftAux_tprod] [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F φ : MultilinearMap R s E ⊢ (fun φ' => LinearMap.compMultilinearMap φ' (tprod R)) (AddHom.toFun { toAddHom := { toFun := fun φ => let src := liftAux φ; { toAddHom := { toFun := src.toFun, map_add' := (_ : ∀ (x y : ⨂[R] (i : ι), s i), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) }, map_add' := (_ : ∀ (φ₁ φ₂ : MultilinearMap R s E), (fun φ => let src := liftAux φ; { toAddHom := { toFun := src.toFun, map_add' := (_ : ∀ (x y : ⨂[R] (i : ι), s i), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) }) (φ₁ + φ₂) = (fun φ => let src := liftAux φ; { toAddHom := { toFun := src.toFun, map_add' := (_ : ∀ (x y : ⨂[R] (i : ι), s i), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) }) φ₁ + (fun φ => let src := liftAux φ; { toAddHom := { toFun := src.toFun, map_add' := (_ : ∀ (x y : ⨂[R] (i : ι), s i), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) }) φ₂) }, map_smul' := (_ : ∀ (r : R) (φ₂ : MultilinearMap R s E), AddHom.toFun { toFun := fun φ => let src := liftAux φ; { toAddHom := { toFun := src.toFun, map_add' := (_ : ∀ (x y : ⨂[R] (i : ι), s i), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) }, map_add' := (_ : ∀ (φ₁ φ₂ : MultilinearMap R s E), (fun φ => let src := liftAux φ; { toAddHom := { toFun := src.toFun, map_add' := (_ : ∀ (x y : ⨂[R] (i : ι), s i), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) }) (φ₁ + φ₂) = (fun φ => let src := liftAux φ; { toAddHom := { toFun := src.toFun, map_add' := (_ : ∀ (x y : ⨂[R] (i : ι), s i), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) }) φ₁ + (fun φ => let src := liftAux φ; { toAddHom := { toFun := src.toFun, map_add' := (_ : ∀ (x y : ⨂[R] (i : ι), s i), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) }) φ₂) } (r • φ₂) = ↑(RingHom.id R) r • AddHom.toFun { toFun := fun φ => let src := liftAux φ; { toAddHom := { toFun := src.toFun, map_add' := (_ : ∀ (x y : ⨂[R] (i : ι), s i), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) }, map_add' := (_ : ∀ (φ₁ φ₂ : MultilinearMap R s E), (fun φ => let src := liftAux φ; { toAddHom := { toFun := src.toFun, map_add' := (_ : ∀ (x y : ⨂[R] (i : ι), s i), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) }) (φ₁ + φ₂) = (fun φ => let src := liftAux φ; { toAddHom := { toFun := src.toFun, map_add' := (_ : ∀ (x y : ⨂[R] (i : ι), s i), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) }) φ₁ + (fun φ => let src := liftAux φ; { toAddHom := { toFun := src.toFun, map_add' := (_ : ∀ (x y : ⨂[R] (i : ι), s i), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) }) φ₂) } φ₂) }.toAddHom φ) = φ [PROOFSTEP] ext [GOAL] case H ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F φ : MultilinearMap R s E x✝ : (i : ι) → s i ⊢ ↑((fun φ' => LinearMap.compMultilinearMap φ' (tprod R)) (AddHom.toFun { toAddHom := { toFun := fun φ => let src := liftAux φ; { toAddHom := { toFun := src.toFun, map_add' := (_ : ∀ (x y : ⨂[R] (i : ι), s i), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) }, map_add' := (_ : ∀ (φ₁ φ₂ : MultilinearMap R s E), (fun φ => let src := liftAux φ; { toAddHom := { toFun := src.toFun, map_add' := (_ : ∀ (x y : ⨂[R] (i : ι), s i), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) }) (φ₁ + φ₂) = (fun φ => let src := liftAux φ; { toAddHom := { toFun := src.toFun, map_add' := (_ : ∀ (x y : ⨂[R] (i : ι), s i), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) }) φ₁ + (fun φ => let src := liftAux φ; { toAddHom := { toFun := src.toFun, map_add' := (_ : ∀ (x y : ⨂[R] (i : ι), s i), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) }) φ₂) }, map_smul' := (_ : ∀ (r : R) (φ₂ : MultilinearMap R s E), AddHom.toFun { toFun := fun φ => let src := liftAux φ; { toAddHom := { toFun := src.toFun, map_add' := (_ : ∀ (x y : ⨂[R] (i : ι), s i), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) }, map_add' := (_ : ∀ (φ₁ φ₂ : MultilinearMap R s E), (fun φ => let src := liftAux φ; { toAddHom := { toFun := src.toFun, map_add' := (_ : ∀ (x y : ⨂[R] (i : ι), s i), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) }) (φ₁ + φ₂) = (fun φ => let src := liftAux φ; { toAddHom := { toFun := src.toFun, map_add' := (_ : ∀ (x y : ⨂[R] (i : ι), s i), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) }) φ₁ + (fun φ => let src := liftAux φ; { toAddHom := { toFun := src.toFun, map_add' := (_ : ∀ (x y : ⨂[R] (i : ι), s i), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) }) φ₂) } (r • φ₂) = ↑(RingHom.id R) r • AddHom.toFun { toFun := fun φ => let src := liftAux φ; { toAddHom := { toFun := src.toFun, map_add' := (_ : ∀ (x y : ⨂[R] (i : ι), s i), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) }, map_add' := (_ : ∀ (φ₁ φ₂ : MultilinearMap R s E), (fun φ => let src := liftAux φ; { toAddHom := { toFun := src.toFun, map_add' := (_ : ∀ (x y : ⨂[R] (i : ι), s i), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) }) (φ₁ + φ₂) = (fun φ => let src := liftAux φ; { toAddHom := { toFun := src.toFun, map_add' := (_ : ∀ (x y : ⨂[R] (i : ι), s i), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) }) φ₁ + (fun φ => let src := liftAux φ; { toAddHom := { toFun := src.toFun, map_add' := (_ : ∀ (x y : ⨂[R] (i : ι), s i), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) }) φ₂) } φ₂) }.toAddHom φ)) x✝ = ↑φ x✝ [PROOFSTEP] simp [liftAux_tprod, LinearMap.compMultilinearMap] [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F φ : (⨂[R] (i : ι), s i) →ₗ[R] E ⊢ AddHom.toFun { toAddHom := { toFun := fun φ => let src := liftAux φ; { toAddHom := { toFun := src.toFun, map_add' := (_ : ∀ (x y : ⨂[R] (i : ι), s i), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) }, map_add' := (_ : ∀ (φ₁ φ₂ : MultilinearMap R s E), (fun φ => let src := liftAux φ; { toAddHom := { toFun := src.toFun, map_add' := (_ : ∀ (x y : ⨂[R] (i : ι), s i), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) }) (φ₁ + φ₂) = (fun φ => let src := liftAux φ; { toAddHom := { toFun := src.toFun, map_add' := (_ : ∀ (x y : ⨂[R] (i : ι), s i), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) }) φ₁ + (fun φ => let src := liftAux φ; { toAddHom := { toFun := src.toFun, map_add' := (_ : ∀ (x y : ⨂[R] (i : ι), s i), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) }) φ₂) }, map_smul' := (_ : ∀ (r : R) (φ₂ : MultilinearMap R s E), AddHom.toFun { toFun := fun φ => let src := liftAux φ; { toAddHom := { toFun := src.toFun, map_add' := (_ : ∀ (x y : ⨂[R] (i : ι), s i), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) }, map_add' := (_ : ∀ (φ₁ φ₂ : MultilinearMap R s E), (fun φ => let src := liftAux φ; { toAddHom := { toFun := src.toFun, map_add' := (_ : ∀ (x y : ⨂[R] (i : ι), s i), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) }) (φ₁ + φ₂) = (fun φ => let src := liftAux φ; { toAddHom := { toFun := src.toFun, map_add' := (_ : ∀ (x y : ⨂[R] (i : ι), s i), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) }) φ₁ + (fun φ => let src := liftAux φ; { toAddHom := { toFun := src.toFun, map_add' := (_ : ∀ (x y : ⨂[R] (i : ι), s i), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) }) φ₂) } (r • φ₂) = ↑(RingHom.id R) r • AddHom.toFun { toFun := fun φ => let src := liftAux φ; { toAddHom := { toFun := src.toFun, map_add' := (_ : ∀ (x y : ⨂[R] (i : ι), s i), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) }, map_add' := (_ : ∀ (φ₁ φ₂ : MultilinearMap R s E), (fun φ => let src := liftAux φ; { toAddHom := { toFun := src.toFun, map_add' := (_ : ∀ (x y : ⨂[R] (i : ι), s i), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) }) (φ₁ + φ₂) = (fun φ => let src := liftAux φ; { toAddHom := { toFun := src.toFun, map_add' := (_ : ∀ (x y : ⨂[R] (i : ι), s i), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) }) φ₁ + (fun φ => let src := liftAux φ; { toAddHom := { toFun := src.toFun, map_add' := (_ : ∀ (x y : ⨂[R] (i : ι), s i), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) }) φ₂) } φ₂) }.toAddHom ((fun φ' => LinearMap.compMultilinearMap φ' (tprod R)) φ) = φ [PROOFSTEP] ext [GOAL] case H.H ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F φ : (⨂[R] (i : ι), s i) →ₗ[R] E x✝ : (i : ι) → s i ⊢ ↑(LinearMap.compMultilinearMap (AddHom.toFun { toAddHom := { toFun := fun φ => let src := liftAux φ; { toAddHom := { toFun := src.toFun, map_add' := (_ : ∀ (x y : ⨂[R] (i : ι), s i), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) }, map_add' := (_ : ∀ (φ₁ φ₂ : MultilinearMap R s E), (fun φ => let src := liftAux φ; { toAddHom := { toFun := src.toFun, map_add' := (_ : ∀ (x y : ⨂[R] (i : ι), s i), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) }) (φ₁ + φ₂) = (fun φ => let src := liftAux φ; { toAddHom := { toFun := src.toFun, map_add' := (_ : ∀ (x y : ⨂[R] (i : ι), s i), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) }) φ₁ + (fun φ => let src := liftAux φ; { toAddHom := { toFun := src.toFun, map_add' := (_ : ∀ (x y : ⨂[R] (i : ι), s i), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) }) φ₂) }, map_smul' := (_ : ∀ (r : R) (φ₂ : MultilinearMap R s E), AddHom.toFun { toFun := fun φ => let src := liftAux φ; { toAddHom := { toFun := src.toFun, map_add' := (_ : ∀ (x y : ⨂[R] (i : ι), s i), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) }, map_add' := (_ : ∀ (φ₁ φ₂ : MultilinearMap R s E), (fun φ => let src := liftAux φ; { toAddHom := { toFun := src.toFun, map_add' := (_ : ∀ (x y : ⨂[R] (i : ι), s i), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) }) (φ₁ + φ₂) = (fun φ => let src := liftAux φ; { toAddHom := { toFun := src.toFun, map_add' := (_ : ∀ (x y : ⨂[R] (i : ι), s i), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) }) φ₁ + (fun φ => let src := liftAux φ; { toAddHom := { toFun := src.toFun, map_add' := (_ : ∀ (x y : ⨂[R] (i : ι), s i), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) }) φ₂) } (r • φ₂) = ↑(RingHom.id R) r • AddHom.toFun { toFun := fun φ => let src := liftAux φ; { toAddHom := { toFun := src.toFun, map_add' := (_ : ∀ (x y : ⨂[R] (i : ι), s i), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) }, map_add' := (_ : ∀ (φ₁ φ₂ : MultilinearMap R s E), (fun φ => let src := liftAux φ; { toAddHom := { toFun := src.toFun, map_add' := (_ : ∀ (x y : ⨂[R] (i : ι), s i), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) }) (φ₁ + φ₂) = (fun φ => let src := liftAux φ; { toAddHom := { toFun := src.toFun, map_add' := (_ : ∀ (x y : ⨂[R] (i : ι), s i), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) }) φ₁ + (fun φ => let src := liftAux φ; { toAddHom := { toFun := src.toFun, map_add' := (_ : ∀ (x y : ⨂[R] (i : ι), s i), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (i : ι), s i), ↑(liftAux φ) (r • x) = r • ↑(liftAux φ) x) }) φ₂) } φ₂) }.toAddHom ((fun φ' => LinearMap.compMultilinearMap φ' (tprod R)) φ)) (tprod R)) x✝ = ↑(LinearMap.compMultilinearMap φ (tprod R)) x✝ [PROOFSTEP] simp [liftAux_tprod] [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F φ : MultilinearMap R s E e : ι ≃ ι₂ ⊢ LinearMap.comp (↑lift (domDomCongr e.symm (tprod R))) (↑lift (domDomCongr e (tprod R))) = LinearMap.id [PROOFSTEP] ext [GOAL] case H.H ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F φ : MultilinearMap R s E e : ι ≃ ι₂ x✝ : ι₂ → M ⊢ ↑(LinearMap.compMultilinearMap (LinearMap.comp (↑lift (domDomCongr e.symm (tprod R))) (↑lift (domDomCongr e (tprod R)))) (tprod R)) x✝ = ↑(LinearMap.compMultilinearMap LinearMap.id (tprod R)) x✝ [PROOFSTEP] simp only [LinearMap.comp_apply, LinearMap.id_apply, lift_tprod, LinearMap.compMultilinearMap_apply, lift.tprod, domDomCongr_apply] [GOAL] case H.H ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F φ : MultilinearMap R s E e : ι ≃ ι₂ x✝ : ι₂ → M ⊢ (⨂ₜ[R] (i : ι₂), x✝ (↑e (↑e.symm i))) = ↑(tprod R) x✝ [PROOFSTEP] congr [GOAL] case H.H.h.e_6.h ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F φ : MultilinearMap R s E e : ι ≃ ι₂ x✝ : ι₂ → M ⊢ (fun i => x✝ (↑e (↑e.symm i))) = x✝ [PROOFSTEP] ext [GOAL] case H.H.h.e_6.h.h ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F φ : MultilinearMap R s E e : ι ≃ ι₂ x✝¹ : ι₂ → M x✝ : ι₂ ⊢ x✝¹ (↑e (↑e.symm x✝)) = x✝¹ x✝ [PROOFSTEP] rw [e.apply_symm_apply] [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F φ : MultilinearMap R s E e : ι ≃ ι₂ ⊢ LinearMap.comp (↑lift (domDomCongr e (tprod R))) (↑lift (domDomCongr e.symm (tprod R))) = LinearMap.id [PROOFSTEP] ext [GOAL] case H.H ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F φ : MultilinearMap R s E e : ι ≃ ι₂ x✝ : ι → M ⊢ ↑(LinearMap.compMultilinearMap (LinearMap.comp (↑lift (domDomCongr e (tprod R))) (↑lift (domDomCongr e.symm (tprod R)))) (tprod R)) x✝ = ↑(LinearMap.compMultilinearMap LinearMap.id (tprod R)) x✝ [PROOFSTEP] simp only [LinearMap.comp_apply, LinearMap.id_apply, lift_tprod, LinearMap.compMultilinearMap_apply, lift.tprod, domDomCongr_apply] [GOAL] case H.H ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F φ : MultilinearMap R s E e : ι ≃ ι₂ x✝ : ι → M ⊢ (⨂ₜ[R] (i : ι), x✝ (↑e.symm (↑e i))) = ↑(tprod R) x✝ [PROOFSTEP] congr [GOAL] case H.H.h.e_6.h ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F φ : MultilinearMap R s E e : ι ≃ ι₂ x✝ : ι → M ⊢ (fun i => x✝ (↑e.symm (↑e i))) = x✝ [PROOFSTEP] ext [GOAL] case H.H.h.e_6.h.h ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F φ : MultilinearMap R s E e : ι ≃ ι₂ x✝¹ : ι → M x✝ : ι ⊢ x✝¹ (↑e.symm (↑e x✝)) = x✝¹ x✝ [PROOFSTEP] rw [e.symm_apply_apply] [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F φ : MultilinearMap R s E e : ι ≃ ι₂ f : ι → M ⊢ ↑(reindex R M e) (↑(tprod R) f) = ⨂ₜ[R] (i : ι₂), f (↑e.symm i) [PROOFSTEP] dsimp [reindex] [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F φ : MultilinearMap R s E e : ι ≃ ι₂ f : ι → M ⊢ ↑(↑lift (domDomCongr e.symm (tprod R))) (↑(tprod R) f) = ⨂ₜ[R] (i : ι₂), f (↑e.symm i) [PROOFSTEP] exact liftAux_tprod _ f [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F φ✝ : MultilinearMap R s E e : ι ≃ ι₂ φ : MultilinearMap R (fun x => M) E ⊢ LinearMap.comp (↑lift φ) ↑(reindex R M e) = ↑lift (domDomCongr e.symm φ) [PROOFSTEP] ext [GOAL] case H.H ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F φ✝ : MultilinearMap R s E e : ι ≃ ι₂ φ : MultilinearMap R (fun x => M) E x✝ : ι → M ⊢ ↑(LinearMap.compMultilinearMap (LinearMap.comp (↑lift φ) ↑(reindex R M e)) (tprod R)) x✝ = ↑(LinearMap.compMultilinearMap (↑lift (domDomCongr e.symm φ)) (tprod R)) x✝ [PROOFSTEP] simp [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F φ : MultilinearMap R s E e : ι ≃ ι₂ e' : ι₂ ≃ ι₃ ⊢ LinearEquiv.trans (reindex R M e) (reindex R M e') = reindex R M (e.trans e') [PROOFSTEP] apply LinearEquiv.toLinearMap_injective [GOAL] case a ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F φ : MultilinearMap R s E e : ι ≃ ι₂ e' : ι₂ ≃ ι₃ ⊢ ↑(LinearEquiv.trans (reindex R M e) (reindex R M e')) = ↑(reindex R M (e.trans e')) [PROOFSTEP] ext f [GOAL] case a.H.H ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F φ : MultilinearMap R s E e : ι ≃ ι₂ e' : ι₂ ≃ ι₃ f : ι → M ⊢ ↑(LinearMap.compMultilinearMap (↑(LinearEquiv.trans (reindex R M e) (reindex R M e'))) (tprod R)) f = ↑(LinearMap.compMultilinearMap (↑(reindex R M (e.trans e'))) (tprod R)) f [PROOFSTEP] simp only [LinearEquiv.trans_apply, LinearEquiv.coe_coe, reindex_tprod, LinearMap.coe_compMultilinearMap, Function.comp_apply, MultilinearMap.domDomCongr_apply, reindex_comp_tprod] [GOAL] case a.H.H ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F φ : MultilinearMap R s E e : ι ≃ ι₂ e' : ι₂ ≃ ι₃ f : ι → M ⊢ (⨂ₜ[R] (i : ι₃), f (↑e.symm (↑e'.symm i))) = ⨂ₜ[R] (i : ι₃), f (↑(e.trans e').symm i) [PROOFSTEP] congr [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F φ : MultilinearMap R s E ⊢ reindex R M (Equiv.refl ι) = LinearEquiv.refl R (⨂[R] (x : ι), M) [PROOFSTEP] apply LinearEquiv.toLinearMap_injective [GOAL] case a ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F φ : MultilinearMap R s E ⊢ ↑(reindex R M (Equiv.refl ι)) = ↑(LinearEquiv.refl R (⨂[R] (x : ι), M)) [PROOFSTEP] ext [GOAL] case a.H.H ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F φ : MultilinearMap R s E x✝ : ι → M ⊢ ↑(LinearMap.compMultilinearMap (↑(reindex R M (Equiv.refl ι))) (tprod R)) x✝ = ↑(LinearMap.compMultilinearMap (↑(LinearEquiv.refl R (⨂[R] (x : ι), M))) (tprod R)) x✝ [PROOFSTEP] rw [reindex_comp_tprod, LinearEquiv.refl_toLinearMap, Equiv.refl_symm] [GOAL] case a.H.H ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F φ : MultilinearMap R s E x✝ : ι → M ⊢ ↑(domDomCongr (Equiv.refl ι) (tprod R)) x✝ = ↑(LinearMap.compMultilinearMap LinearMap.id (tprod R)) x✝ [PROOFSTEP] rfl [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁸ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁷ : (i : ι) → AddCommMonoid (s i) inst✝⁶ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M E : Type u_9 inst✝³ : AddCommMonoid E inst✝² : Module R E F : Type u_10 inst✝¹ : AddCommMonoid F φ : MultilinearMap R s E inst✝ : IsEmpty ι r : R x : ⨂[R] (x : ι), M ⊢ AddHom.toFun { toFun := ↑(↑lift (constOfIsEmpty R (fun i => M) 1)), map_add' := (_ : ∀ (x y : ⨂[R] (x : ι), M), ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) (x + y) = ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) x + ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) y) } (r • x) = ↑(RingHom.id R) r • AddHom.toFun { toFun := ↑(↑lift (constOfIsEmpty R (fun i => M) 1)), map_add' := (_ : ∀ (x y : ⨂[R] (x : ι), M), ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) (x + y) = ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) x + ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) y) } x [PROOFSTEP] simp only [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁸ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁷ : (i : ι) → AddCommMonoid (s i) inst✝⁶ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M E : Type u_9 inst✝³ : AddCommMonoid E inst✝² : Module R E F : Type u_10 inst✝¹ : AddCommMonoid F φ : MultilinearMap R s E inst✝ : IsEmpty ι r : R x : ⨂[R] (x : ι), M ⊢ ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) (r • x) = ↑(RingHom.id R) r • ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) x [PROOFSTEP] exact LinearMap.map_smul _ r x [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁸ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁷ : (i : ι) → AddCommMonoid (s i) inst✝⁶ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M E : Type u_9 inst✝³ : AddCommMonoid E inst✝² : Module R E F : Type u_10 inst✝¹ : AddCommMonoid F φ : MultilinearMap R s E inst✝ : IsEmpty ι x : ⨂[R] (x : ι), M ⊢ (fun r => r • ↑(tprod R) isEmptyElim) (AddHom.toFun { toAddHom := { toFun := ↑(↑lift (constOfIsEmpty R (fun i => M) 1)), map_add' := (_ : ∀ (x y : ⨂[R] (x : ι), M), ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) (x + y) = ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) x + ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (x : ι), M), AddHom.toFun { toFun := ↑(↑lift (constOfIsEmpty R (fun i => M) 1)), map_add' := (_ : ∀ (x y : ⨂[R] (x : ι), M), ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) (x + y) = ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) x + ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) y) } (r • x) = ↑(RingHom.id R) r • AddHom.toFun { toFun := ↑(↑lift (constOfIsEmpty R (fun i => M) 1)), map_add' := (_ : ∀ (x y : ⨂[R] (x : ι), M), ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) (x + y) = ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) x + ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) y) } x) }.toAddHom x) = x [PROOFSTEP] refine x.induction_on ?_ ?_ [GOAL] case refine_1 ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁸ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁷ : (i : ι) → AddCommMonoid (s i) inst✝⁶ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M E : Type u_9 inst✝³ : AddCommMonoid E inst✝² : Module R E F : Type u_10 inst✝¹ : AddCommMonoid F φ : MultilinearMap R s E inst✝ : IsEmpty ι x : ⨂[R] (x : ι), M ⊢ ∀ {r : R} {f : ι → M}, (fun r => r • ↑(tprod R) isEmptyElim) (AddHom.toFun { toAddHom := { toFun := ↑(↑lift (constOfIsEmpty R (fun i => M) 1)), map_add' := (_ : ∀ (x y : ⨂[R] (x : ι), M), ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) (x + y) = ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) x + ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (x : ι), M), AddHom.toFun { toFun := ↑(↑lift (constOfIsEmpty R (fun i => M) 1)), map_add' := (_ : ∀ (x y : ⨂[R] (x : ι), M), ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) (x + y) = ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) x + ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) y) } (r • x) = ↑(RingHom.id R) r • AddHom.toFun { toFun := ↑(↑lift (constOfIsEmpty R (fun i => M) 1)), map_add' := (_ : ∀ (x y : ⨂[R] (x : ι), M), ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) (x + y) = ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) x + ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) y) } x) }.toAddHom (r • ↑(tprod R) f)) = r • ↑(tprod R) f [PROOFSTEP] intro x y [GOAL] case refine_1 ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁸ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁷ : (i : ι) → AddCommMonoid (s i) inst✝⁶ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M E : Type u_9 inst✝³ : AddCommMonoid E inst✝² : Module R E F : Type u_10 inst✝¹ : AddCommMonoid F φ : MultilinearMap R s E inst✝ : IsEmpty ι x✝ : ⨂[R] (x : ι), M x : R y : ι → M ⊢ (fun r => r • ↑(tprod R) isEmptyElim) (AddHom.toFun { toAddHom := { toFun := ↑(↑lift (constOfIsEmpty R (fun i => M) 1)), map_add' := (_ : ∀ (x y : ⨂[R] (x : ι), M), ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) (x + y) = ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) x + ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (x : ι), M), AddHom.toFun { toFun := ↑(↑lift (constOfIsEmpty R (fun i => M) 1)), map_add' := (_ : ∀ (x y : ⨂[R] (x : ι), M), ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) (x + y) = ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) x + ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) y) } (r • x) = ↑(RingHom.id R) r • AddHom.toFun { toFun := ↑(↑lift (constOfIsEmpty R (fun i => M) 1)), map_add' := (_ : ∀ (x y : ⨂[R] (x : ι), M), ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) (x + y) = ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) x + ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) y) } x) }.toAddHom (x • ↑(tprod R) y)) = x • ↑(tprod R) y [PROOFSTEP] simp only [map_smulₛₗ, RingHom.id_apply, lift.tprod, constOfIsEmpty_apply, const_apply, smul_eq_mul, mul_one] [GOAL] case refine_1 ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁸ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁷ : (i : ι) → AddCommMonoid (s i) inst✝⁶ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M E : Type u_9 inst✝³ : AddCommMonoid E inst✝² : Module R E F : Type u_10 inst✝¹ : AddCommMonoid F φ : MultilinearMap R s E inst✝ : IsEmpty ι x✝ : ⨂[R] (x : ι), M x : R y : ι → M ⊢ x • ↑(tprod R) isEmptyElim = x • ↑(tprod R) y [PROOFSTEP] congr [GOAL] case refine_1.e_a.h.e_6.h ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁸ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁷ : (i : ι) → AddCommMonoid (s i) inst✝⁶ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M E : Type u_9 inst✝³ : AddCommMonoid E inst✝² : Module R E F : Type u_10 inst✝¹ : AddCommMonoid F φ : MultilinearMap R s E inst✝ : IsEmpty ι x✝ : ⨂[R] (x : ι), M x : R y : ι → M ⊢ isEmptyElim = y [PROOFSTEP] aesop [GOAL] case refine_2 ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁸ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁷ : (i : ι) → AddCommMonoid (s i) inst✝⁶ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M E : Type u_9 inst✝³ : AddCommMonoid E inst✝² : Module R E F : Type u_10 inst✝¹ : AddCommMonoid F φ : MultilinearMap R s E inst✝ : IsEmpty ι x : ⨂[R] (x : ι), M ⊢ ∀ {x y : ⨂[R] (i : ι), M}, (fun r => r • ↑(tprod R) isEmptyElim) (AddHom.toFun { toAddHom := { toFun := ↑(↑lift (constOfIsEmpty R (fun i => M) 1)), map_add' := (_ : ∀ (x y : ⨂[R] (x : ι), M), ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) (x + y) = ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) x + ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (x : ι), M), AddHom.toFun { toFun := ↑(↑lift (constOfIsEmpty R (fun i => M) 1)), map_add' := (_ : ∀ (x y : ⨂[R] (x : ι), M), ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) (x + y) = ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) x + ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) y) } (r • x) = ↑(RingHom.id R) r • AddHom.toFun { toFun := ↑(↑lift (constOfIsEmpty R (fun i => M) 1)), map_add' := (_ : ∀ (x y : ⨂[R] (x : ι), M), ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) (x + y) = ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) x + ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) y) } x) }.toAddHom x) = x → (fun r => r • ↑(tprod R) isEmptyElim) (AddHom.toFun { toAddHom := { toFun := ↑(↑lift (constOfIsEmpty R (fun i => M) 1)), map_add' := (_ : ∀ (x y : ⨂[R] (x : ι), M), ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) (x + y) = ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) x + ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (x : ι), M), AddHom.toFun { toFun := ↑(↑lift (constOfIsEmpty R (fun i => M) 1)), map_add' := (_ : ∀ (x y : ⨂[R] (x : ι), M), ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) (x + y) = ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) x + ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) y) } (r • x) = ↑(RingHom.id R) r • AddHom.toFun { toFun := ↑(↑lift (constOfIsEmpty R (fun i => M) 1)), map_add' := (_ : ∀ (x y : ⨂[R] (x : ι), M), ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) (x + y) = ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) x + ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) y) } x) }.toAddHom y) = y → (fun r => r • ↑(tprod R) isEmptyElim) (AddHom.toFun { toAddHom := { toFun := ↑(↑lift (constOfIsEmpty R (fun i => M) 1)), map_add' := (_ : ∀ (x y : ⨂[R] (x : ι), M), ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) (x + y) = ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) x + ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (x : ι), M), AddHom.toFun { toFun := ↑(↑lift (constOfIsEmpty R (fun i => M) 1)), map_add' := (_ : ∀ (x y : ⨂[R] (x : ι), M), ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) (x + y) = ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) x + ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) y) } (r • x) = ↑(RingHom.id R) r • AddHom.toFun { toFun := ↑(↑lift (constOfIsEmpty R (fun i => M) 1)), map_add' := (_ : ∀ (x y : ⨂[R] (x : ι), M), ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) (x + y) = ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) x + ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) y) } x) }.toAddHom (x + y)) = x + y [PROOFSTEP] simp only [GOAL] case refine_2 ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁸ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁷ : (i : ι) → AddCommMonoid (s i) inst✝⁶ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M E : Type u_9 inst✝³ : AddCommMonoid E inst✝² : Module R E F : Type u_10 inst✝¹ : AddCommMonoid F φ : MultilinearMap R s E inst✝ : IsEmpty ι x : ⨂[R] (x : ι), M ⊢ ∀ {x y : ⨂[R] (i : ι), M}, ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) x • ↑(tprod R) isEmptyElim = x → ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) y • ↑(tprod R) isEmptyElim = y → ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) (x + y) • ↑(tprod R) isEmptyElim = x + y [PROOFSTEP] intro x y hx hy [GOAL] case refine_2 ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁸ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁷ : (i : ι) → AddCommMonoid (s i) inst✝⁶ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M E : Type u_9 inst✝³ : AddCommMonoid E inst✝² : Module R E F : Type u_10 inst✝¹ : AddCommMonoid F φ : MultilinearMap R s E inst✝ : IsEmpty ι x✝ x y : ⨂[R] (i : ι), M hx : ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) x • ↑(tprod R) isEmptyElim = x hy : ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) y • ↑(tprod R) isEmptyElim = y ⊢ ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) (x + y) • ↑(tprod R) isEmptyElim = x + y [PROOFSTEP] rw [map_add, add_smul, hx, hy] [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁸ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁷ : (i : ι) → AddCommMonoid (s i) inst✝⁶ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M E : Type u_9 inst✝³ : AddCommMonoid E inst✝² : Module R E F : Type u_10 inst✝¹ : AddCommMonoid F φ : MultilinearMap R s E inst✝ : IsEmpty ι t : R ⊢ AddHom.toFun { toAddHom := { toFun := ↑(↑lift (constOfIsEmpty R (fun i => M) 1)), map_add' := (_ : ∀ (x y : ⨂[R] (x : ι), M), ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) (x + y) = ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) x + ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (x : ι), M), AddHom.toFun { toFun := ↑(↑lift (constOfIsEmpty R (fun i => M) 1)), map_add' := (_ : ∀ (x y : ⨂[R] (x : ι), M), ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) (x + y) = ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) x + ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) y) } (r • x) = ↑(RingHom.id R) r • AddHom.toFun { toFun := ↑(↑lift (constOfIsEmpty R (fun i => M) 1)), map_add' := (_ : ∀ (x y : ⨂[R] (x : ι), M), ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) (x + y) = ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) x + ↑(↑lift (constOfIsEmpty R (fun i => M) 1)) y) } x) }.toAddHom ((fun r => r • ↑(tprod R) isEmptyElim) t) = t [PROOFSTEP] simp [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁸ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁷ : (i : ι) → AddCommMonoid (s i) inst✝⁶ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M E : Type u_9 inst✝³ : AddCommMonoid E inst✝² : Module R E F : Type u_10 inst✝¹ : AddCommMonoid F φ : MultilinearMap R s E inst✝ : Subsingleton ι i₀ : ι r : R x : ⨂[R] (x : ι), M ⊢ AddHom.toFun { toFun := ↑(↑lift (ofSubsingleton R M i₀)), map_add' := (_ : ∀ (x y : ⨂[R] (x : ι), M), ↑(↑lift (ofSubsingleton R M i₀)) (x + y) = ↑(↑lift (ofSubsingleton R M i₀)) x + ↑(↑lift (ofSubsingleton R M i₀)) y) } (r • x) = ↑(RingHom.id R) r • AddHom.toFun { toFun := ↑(↑lift (ofSubsingleton R M i₀)), map_add' := (_ : ∀ (x y : ⨂[R] (x : ι), M), ↑(↑lift (ofSubsingleton R M i₀)) (x + y) = ↑(↑lift (ofSubsingleton R M i₀)) x + ↑(↑lift (ofSubsingleton R M i₀)) y) } x [PROOFSTEP] simp only [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁸ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁷ : (i : ι) → AddCommMonoid (s i) inst✝⁶ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M E : Type u_9 inst✝³ : AddCommMonoid E inst✝² : Module R E F : Type u_10 inst✝¹ : AddCommMonoid F φ : MultilinearMap R s E inst✝ : Subsingleton ι i₀ : ι r : R x : ⨂[R] (x : ι), M ⊢ ↑(↑lift (ofSubsingleton R M i₀)) (r • x) = ↑(RingHom.id R) r • ↑(↑lift (ofSubsingleton R M i₀)) x [PROOFSTEP] exact LinearMap.map_smul _ r x [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁸ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁷ : (i : ι) → AddCommMonoid (s i) inst✝⁶ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M E : Type u_9 inst✝³ : AddCommMonoid E inst✝² : Module R E F : Type u_10 inst✝¹ : AddCommMonoid F φ : MultilinearMap R s E inst✝ : Subsingleton ι i₀ : ι x : ⨂[R] (x : ι), M ⊢ (fun m => ⨂ₜ[R] (x : ι), m) (AddHom.toFun { toAddHom := { toFun := ↑(↑lift (ofSubsingleton R M i₀)), map_add' := (_ : ∀ (x y : ⨂[R] (x : ι), M), ↑(↑lift (ofSubsingleton R M i₀)) (x + y) = ↑(↑lift (ofSubsingleton R M i₀)) x + ↑(↑lift (ofSubsingleton R M i₀)) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (x : ι), M), AddHom.toFun { toFun := ↑(↑lift (ofSubsingleton R M i₀)), map_add' := (_ : ∀ (x y : ⨂[R] (x : ι), M), ↑(↑lift (ofSubsingleton R M i₀)) (x + y) = ↑(↑lift (ofSubsingleton R M i₀)) x + ↑(↑lift (ofSubsingleton R M i₀)) y) } (r • x) = ↑(RingHom.id R) r • AddHom.toFun { toFun := ↑(↑lift (ofSubsingleton R M i₀)), map_add' := (_ : ∀ (x y : ⨂[R] (x : ι), M), ↑(↑lift (ofSubsingleton R M i₀)) (x + y) = ↑(↑lift (ofSubsingleton R M i₀)) x + ↑(↑lift (ofSubsingleton R M i₀)) y) } x) }.toAddHom x) = x [PROOFSTEP] dsimp only [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁸ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁷ : (i : ι) → AddCommMonoid (s i) inst✝⁶ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M E : Type u_9 inst✝³ : AddCommMonoid E inst✝² : Module R E F : Type u_10 inst✝¹ : AddCommMonoid F φ : MultilinearMap R s E inst✝ : Subsingleton ι i₀ : ι x : ⨂[R] (x : ι), M ⊢ (⨂ₜ[R] (x_1 : ι), ↑(↑lift (ofSubsingleton R M i₀)) x) = x [PROOFSTEP] have : ∀ (f : ι → M) (z : M), (fun _ : ι ↦ z) = update f i₀ z := by intro f z ext i rw [Subsingleton.elim i i₀, Function.update_same] [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁸ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁷ : (i : ι) → AddCommMonoid (s i) inst✝⁶ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M E : Type u_9 inst✝³ : AddCommMonoid E inst✝² : Module R E F : Type u_10 inst✝¹ : AddCommMonoid F φ : MultilinearMap R s E inst✝ : Subsingleton ι i₀ : ι x : ⨂[R] (x : ι), M ⊢ ∀ (f : ι → M) (z : M), (fun x => z) = update f i₀ z [PROOFSTEP] intro f z [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁸ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁷ : (i : ι) → AddCommMonoid (s i) inst✝⁶ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M E : Type u_9 inst✝³ : AddCommMonoid E inst✝² : Module R E F : Type u_10 inst✝¹ : AddCommMonoid F φ : MultilinearMap R s E inst✝ : Subsingleton ι i₀ : ι x : ⨂[R] (x : ι), M f : ι → M z : M ⊢ (fun x => z) = update f i₀ z [PROOFSTEP] ext i [GOAL] case h ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁸ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁷ : (i : ι) → AddCommMonoid (s i) inst✝⁶ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M E : Type u_9 inst✝³ : AddCommMonoid E inst✝² : Module R E F : Type u_10 inst✝¹ : AddCommMonoid F φ : MultilinearMap R s E inst✝ : Subsingleton ι i₀ : ι x : ⨂[R] (x : ι), M f : ι → M z : M i : ι ⊢ z = update f i₀ z i [PROOFSTEP] rw [Subsingleton.elim i i₀, Function.update_same] [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁸ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁷ : (i : ι) → AddCommMonoid (s i) inst✝⁶ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M E : Type u_9 inst✝³ : AddCommMonoid E inst✝² : Module R E F : Type u_10 inst✝¹ : AddCommMonoid F φ : MultilinearMap R s E inst✝ : Subsingleton ι i₀ : ι x : ⨂[R] (x : ι), M this : ∀ (f : ι → M) (z : M), (fun x => z) = update f i₀ z ⊢ (⨂ₜ[R] (x_1 : ι), ↑(↑lift (ofSubsingleton R M i₀)) x) = x [PROOFSTEP] refine x.induction_on ?_ ?_ [GOAL] case refine_1 ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁸ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁷ : (i : ι) → AddCommMonoid (s i) inst✝⁶ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M E : Type u_9 inst✝³ : AddCommMonoid E inst✝² : Module R E F : Type u_10 inst✝¹ : AddCommMonoid F φ : MultilinearMap R s E inst✝ : Subsingleton ι i₀ : ι x : ⨂[R] (x : ι), M this : ∀ (f : ι → M) (z : M), (fun x => z) = update f i₀ z ⊢ ∀ {r : R} {f : ι → M}, (⨂ₜ[R] (x : ι), ↑(↑lift (ofSubsingleton R M i₀)) (r • ↑(tprod R) f)) = r • ↑(tprod R) f [PROOFSTEP] intro r f [GOAL] case refine_1 ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁸ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁷ : (i : ι) → AddCommMonoid (s i) inst✝⁶ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M E : Type u_9 inst✝³ : AddCommMonoid E inst✝² : Module R E F : Type u_10 inst✝¹ : AddCommMonoid F φ : MultilinearMap R s E inst✝ : Subsingleton ι i₀ : ι x : ⨂[R] (x : ι), M this : ∀ (f : ι → M) (z : M), (fun x => z) = update f i₀ z r : R f : ι → M ⊢ (⨂ₜ[R] (x : ι), ↑(↑lift (ofSubsingleton R M i₀)) (r • ↑(tprod R) f)) = r • ↑(tprod R) f [PROOFSTEP] simp only [LinearMap.map_smul, lift.tprod, ofSubsingleton_apply, Function.eval, this f, MultilinearMap.map_smul, update_eq_self] [GOAL] case refine_2 ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁸ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁷ : (i : ι) → AddCommMonoid (s i) inst✝⁶ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M E : Type u_9 inst✝³ : AddCommMonoid E inst✝² : Module R E F : Type u_10 inst✝¹ : AddCommMonoid F φ : MultilinearMap R s E inst✝ : Subsingleton ι i₀ : ι x : ⨂[R] (x : ι), M this : ∀ (f : ι → M) (z : M), (fun x => z) = update f i₀ z ⊢ ∀ {x y : ⨂[R] (i : ι), M}, (⨂ₜ[R] (x_1 : ι), ↑(↑lift (ofSubsingleton R M i₀)) x) = x → (⨂ₜ[R] (x : ι), ↑(↑lift (ofSubsingleton R M i₀)) y) = y → (⨂ₜ[R] (x_1 : ι), ↑(↑lift (ofSubsingleton R M i₀)) (x + y)) = x + y [PROOFSTEP] intro x y hx hy [GOAL] case refine_2 ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁸ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁷ : (i : ι) → AddCommMonoid (s i) inst✝⁶ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M E : Type u_9 inst✝³ : AddCommMonoid E inst✝² : Module R E F : Type u_10 inst✝¹ : AddCommMonoid F φ : MultilinearMap R s E inst✝ : Subsingleton ι i₀ : ι x✝ : ⨂[R] (x : ι), M this : ∀ (f : ι → M) (z : M), (fun x => z) = update f i₀ z x y : ⨂[R] (i : ι), M hx : (⨂ₜ[R] (x_1 : ι), ↑(↑lift (ofSubsingleton R M i₀)) x) = x hy : (⨂ₜ[R] (x : ι), ↑(↑lift (ofSubsingleton R M i₀)) y) = y ⊢ (⨂ₜ[R] (x_1 : ι), ↑(↑lift (ofSubsingleton R M i₀)) (x + y)) = x + y [PROOFSTEP] rw [LinearMap.map_add, this 0 (_ + _), MultilinearMap.map_add, ← this 0 (lift _ _), hx, ← this 0 (lift _ _), hy] [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁸ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁷ : (i : ι) → AddCommMonoid (s i) inst✝⁶ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M E : Type u_9 inst✝³ : AddCommMonoid E inst✝² : Module R E F : Type u_10 inst✝¹ : AddCommMonoid F φ : MultilinearMap R s E inst✝ : Subsingleton ι i₀ : ι t : M ⊢ AddHom.toFun { toAddHom := { toFun := ↑(↑lift (ofSubsingleton R M i₀)), map_add' := (_ : ∀ (x y : ⨂[R] (x : ι), M), ↑(↑lift (ofSubsingleton R M i₀)) (x + y) = ↑(↑lift (ofSubsingleton R M i₀)) x + ↑(↑lift (ofSubsingleton R M i₀)) y) }, map_smul' := (_ : ∀ (r : R) (x : ⨂[R] (x : ι), M), AddHom.toFun { toFun := ↑(↑lift (ofSubsingleton R M i₀)), map_add' := (_ : ∀ (x y : ⨂[R] (x : ι), M), ↑(↑lift (ofSubsingleton R M i₀)) (x + y) = ↑(↑lift (ofSubsingleton R M i₀)) x + ↑(↑lift (ofSubsingleton R M i₀)) y) } (r • x) = ↑(RingHom.id R) r • AddHom.toFun { toFun := ↑(↑lift (ofSubsingleton R M i₀)), map_add' := (_ : ∀ (x y : ⨂[R] (x : ι), M), ↑(↑lift (ofSubsingleton R M i₀)) (x + y) = ↑(↑lift (ofSubsingleton R M i₀)) x + ↑(↑lift (ofSubsingleton R M i₀)) y) } x) }.toAddHom ((fun m => ⨂ₜ[R] (x : ι), m) t) = t [PROOFSTEP] simp only [ofSubsingleton_apply, lift.tprod, Function.eval_apply] [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F φ : MultilinearMap R s E a b : ⨂[R] (x : ι), M ⊢ (fun a => ↑lift (↑(↑lift (↑(currySumEquiv R ι (⨂[R] (i : ι ⊕ ι₂), M) M ι₂) (tprod R))) a)) (a + b) = (fun a => ↑lift (↑(↑lift (↑(currySumEquiv R ι (⨂[R] (i : ι ⊕ ι₂), M) M ι₂) (tprod R))) a)) a + (fun a => ↑lift (↑(↑lift (↑(currySumEquiv R ι (⨂[R] (i : ι ⊕ ι₂), M) M ι₂) (tprod R))) a)) b [PROOFSTEP] simp only [LinearEquiv.map_add, LinearMap.map_add] [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F φ : MultilinearMap R s E r : R a : ⨂[R] (x : ι), M ⊢ AddHom.toFun { toFun := fun a => ↑lift (↑(↑lift (↑(currySumEquiv R ι (⨂[R] (i : ι ⊕ ι₂), M) M ι₂) (tprod R))) a), map_add' := (_ : ∀ (a b : ⨂[R] (x : ι), M), ↑lift (↑(↑lift (↑(currySumEquiv R ι (⨂[R] (i : ι ⊕ ι₂), M) M ι₂) (tprod R))) (a + b)) = ↑lift (↑(↑lift (↑(currySumEquiv R ι (⨂[R] (i : ι ⊕ ι₂), M) M ι₂) (tprod R))) a) + ↑lift (↑(↑lift (↑(currySumEquiv R ι (⨂[R] (i : ι ⊕ ι₂), M) M ι₂) (tprod R))) b)) } (r • a) = ↑(RingHom.id R) r • AddHom.toFun { toFun := fun a => ↑lift (↑(↑lift (↑(currySumEquiv R ι (⨂[R] (i : ι ⊕ ι₂), M) M ι₂) (tprod R))) a), map_add' := (_ : ∀ (a b : ⨂[R] (x : ι), M), ↑lift (↑(↑lift (↑(currySumEquiv R ι (⨂[R] (i : ι ⊕ ι₂), M) M ι₂) (tprod R))) (a + b)) = ↑lift (↑(↑lift (↑(currySumEquiv R ι (⨂[R] (i : ι ⊕ ι₂), M) M ι₂) (tprod R))) a) + ↑lift (↑(↑lift (↑(currySumEquiv R ι (⨂[R] (i : ι ⊕ ι₂), M) M ι₂) (tprod R))) b)) } a [PROOFSTEP] simp only [LinearEquiv.map_smul, LinearMap.map_smul, RingHom.id_apply] [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F φ : MultilinearMap R s E a : ι → M b : ι₂ → M ⊢ ↑PiTensorProduct.tmul ((⨂ₜ[R] (i : ι), a i) ⊗ₜ[R] ⨂ₜ[R] (i : ι₂), b i) = ⨂ₜ[R] (i : ι ⊕ ι₂), Sum.elim a b i [PROOFSTEP] erw [TensorProduct.lift.tmul, PiTensorProduct.lift.tprod, PiTensorProduct.lift.tprod] [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F φ : MultilinearMap R s E a : ι → M b : ι₂ → M ⊢ (↑(↑(↑(currySumEquiv R ι (⨂[R] (i : ι ⊕ ι₂), M) M ι₂) (tprod R)) fun i => a i) fun i => b i) = ⨂ₜ[R] (i : ι ⊕ ι₂), Sum.elim a b i [PROOFSTEP] rfl [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F φ : MultilinearMap R s E ⊢ LinearMap.comp PiTensorProduct.tmul PiTensorProduct.tmulSymm = LinearMap.id [PROOFSTEP] ext x [GOAL] case H.H ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F φ : MultilinearMap R s E x : ι ⊕ ι₂ → M ⊢ ↑(LinearMap.compMultilinearMap (LinearMap.comp PiTensorProduct.tmul PiTensorProduct.tmulSymm) (tprod R)) x = ↑(LinearMap.compMultilinearMap LinearMap.id (tprod R)) x [PROOFSTEP] show tmul (tmulSymm (tprod R x)) = tprod R x [GOAL] case H.H ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F φ : MultilinearMap R s E x : ι ⊕ ι₂ → M ⊢ ↑PiTensorProduct.tmul (↑PiTensorProduct.tmulSymm (↑(tprod R) x)) = ↑(tprod R) x [PROOFSTEP] simp only [tmulSymm_apply, tmul_apply] -- Porting note (https://github.com/leanprover-community/mathlib4/issues/5026): -- was part of `simp only` above [GOAL] case H.H ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F φ : MultilinearMap R s E x : ι ⊕ ι₂ → M ⊢ (⨂ₜ[R] (i : ι ⊕ ι₂), Sum.elim (fun i => x (Sum.inl i)) (fun i => x (Sum.inr i)) i) = ↑(tprod R) x [PROOFSTEP] erw [Sum.elim_comp_inl_inr] [GOAL] ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F φ : MultilinearMap R s E ⊢ LinearMap.comp PiTensorProduct.tmulSymm PiTensorProduct.tmul = LinearMap.id [PROOFSTEP] ext x y [GOAL] case H.H.H.H.H ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F φ : MultilinearMap R s E x : ι → M y : ι₂ → M ⊢ ↑(LinearMap.compMultilinearMap (↑(LinearMap.compMultilinearMap (LinearMap.compr₂ (TensorProduct.mk R (⨂[R] (x : ι), M) (⨂[R] (x : ι₂), M)) (LinearMap.comp PiTensorProduct.tmulSymm PiTensorProduct.tmul)) (tprod R)) x) (tprod R)) y = ↑(LinearMap.compMultilinearMap (↑(LinearMap.compMultilinearMap (LinearMap.compr₂ (TensorProduct.mk R (⨂[R] (x : ι), M) (⨂[R] (x : ι₂), M)) LinearMap.id) (tprod R)) x) (tprod R)) y [PROOFSTEP] show tmulSymm (tmul (tprod R x ⊗ₜ[R] tprod R y)) = tprod R x ⊗ₜ[R] tprod R y [GOAL] case H.H.H.H.H ι : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 R : Type u_4 inst✝⁷ : CommSemiring R R₁ : Type u_5 R₂ : Type u_6 s : ι → Type u_7 inst✝⁶ : (i : ι) → AddCommMonoid (s i) inst✝⁵ : (i : ι) → Module R (s i) M : Type u_8 inst✝⁴ : AddCommMonoid M inst✝³ : Module R M E : Type u_9 inst✝² : AddCommMonoid E inst✝¹ : Module R E F : Type u_10 inst✝ : AddCommMonoid F φ : MultilinearMap R s E x : ι → M y : ι₂ → M ⊢ ↑PiTensorProduct.tmulSymm (↑PiTensorProduct.tmul (↑(tprod R) x ⊗ₜ[R] ↑(tprod R) y)) = ↑(tprod R) x ⊗ₜ[R] ↑(tprod R) y [PROOFSTEP] simp only [tmul_apply, tmulSymm_apply, Sum.elim_inl, Sum.elim_inr]
{"mathlib_filename": "Mathlib.LinearAlgebra.PiTensorProduct", "llama_tokens": 66964}
[GOAL] R : Type u inst✝ : CommRing R W : WeierstrassCurve R ⊢ 4 * b₈ W = b₂ W * b₆ W - b₄ W ^ 2 [PROOFSTEP] simp only [b₂, b₄, b₆, b₈] [GOAL] R : Type u inst✝ : CommRing R W : WeierstrassCurve R ⊢ 4 * (W.a₁ ^ 2 * W.a₆ + 4 * W.a₂ * W.a₆ - W.a₁ * W.a₃ * W.a₄ + W.a₂ * W.a₃ ^ 2 - W.a₄ ^ 2) = (W.a₁ ^ 2 + 4 * W.a₂) * (W.a₃ ^ 2 + 4 * W.a₆) - (2 * W.a₄ + W.a₁ * W.a₃) ^ 2 [PROOFSTEP] ring1 [GOAL] R : Type u inst✝ : CommRing R W : WeierstrassCurve R ⊢ 1728 * Δ W = c₄ W ^ 3 - c₆ W ^ 2 [PROOFSTEP] simp only [b₂, b₄, b₆, b₈, c₄, c₆, Δ] [GOAL] R : Type u inst✝ : CommRing R W : WeierstrassCurve R ⊢ 1728 * (-(W.a₁ ^ 2 + 4 * W.a₂) ^ 2 * (W.a₁ ^ 2 * W.a₆ + 4 * W.a₂ * W.a₆ - W.a₁ * W.a₃ * W.a₄ + W.a₂ * W.a₃ ^ 2 - W.a₄ ^ 2) - 8 * (2 * W.a₄ + W.a₁ * W.a₃) ^ 3 - 27 * (W.a₃ ^ 2 + 4 * W.a₆) ^ 2 + 9 * (W.a₁ ^ 2 + 4 * W.a₂) * (2 * W.a₄ + W.a₁ * W.a₃) * (W.a₃ ^ 2 + 4 * W.a₆)) = ((W.a₁ ^ 2 + 4 * W.a₂) ^ 2 - 24 * (2 * W.a₄ + W.a₁ * W.a₃)) ^ 3 - (-(W.a₁ ^ 2 + 4 * W.a₂) ^ 3 + 36 * (W.a₁ ^ 2 + 4 * W.a₂) * (2 * W.a₄ + W.a₁ * W.a₃) - 216 * (W.a₃ ^ 2 + 4 * W.a₆)) ^ 2 [PROOFSTEP] ring1 [GOAL] R : Type u inst✝ : CommRing R W : WeierstrassCurve R ⊢ c₄ (ofJ0 R) = 0 [PROOFSTEP] rw [ofJ0, c₄, b₂, b₄] [GOAL] R : Type u inst✝ : CommRing R W : WeierstrassCurve R ⊢ ({ a₁ := 0, a₂ := 0, a₃ := 1, a₄ := 0, a₆ := 0 }.a₁ ^ 2 + 4 * { a₁ := 0, a₂ := 0, a₃ := 1, a₄ := 0, a₆ := 0 }.a₂) ^ 2 - 24 * (2 * { a₁ := 0, a₂ := 0, a₃ := 1, a₄ := 0, a₆ := 0 }.a₄ + { a₁ := 0, a₂ := 0, a₃ := 1, a₄ := 0, a₆ := 0 }.a₁ * { a₁ := 0, a₂ := 0, a₃ := 1, a₄ := 0, a₆ := 0 }.a₃) = 0 [PROOFSTEP] norm_num1 [GOAL] R : Type u inst✝ : CommRing R W : WeierstrassCurve R ⊢ Δ (ofJ0 R) = -27 [PROOFSTEP] rw [ofJ0, Δ, b₂, b₄, b₆, b₈] [GOAL] R : Type u inst✝ : CommRing R W : WeierstrassCurve R ⊢ -({ a₁ := 0, a₂ := 0, a₃ := 1, a₄ := 0, a₆ := 0 }.a₁ ^ 2 + 4 * { a₁ := 0, a₂ := 0, a₃ := 1, a₄ := 0, a₆ := 0 }.a₂) ^ 2 * ({ a₁ := 0, a₂ := 0, a₃ := 1, a₄ := 0, a₆ := 0 }.a₁ ^ 2 * { a₁ := 0, a₂ := 0, a₃ := 1, a₄ := 0, a₆ := 0 }.a₆ + 4 * { a₁ := 0, a₂ := 0, a₃ := 1, a₄ := 0, a₆ := 0 }.a₂ * { a₁ := 0, a₂ := 0, a₃ := 1, a₄ := 0, a₆ := 0 }.a₆ - { a₁ := 0, a₂ := 0, a₃ := 1, a₄ := 0, a₆ := 0 }.a₁ * { a₁ := 0, a₂ := 0, a₃ := 1, a₄ := 0, a₆ := 0 }.a₃ * { a₁ := 0, a₂ := 0, a₃ := 1, a₄ := 0, a₆ := 0 }.a₄ + { a₁ := 0, a₂ := 0, a₃ := 1, a₄ := 0, a₆ := 0 }.a₂ * { a₁ := 0, a₂ := 0, a₃ := 1, a₄ := 0, a₆ := 0 }.a₃ ^ 2 - { a₁ := 0, a₂ := 0, a₃ := 1, a₄ := 0, a₆ := 0 }.a₄ ^ 2) - 8 * (2 * { a₁ := 0, a₂ := 0, a₃ := 1, a₄ := 0, a₆ := 0 }.a₄ + { a₁ := 0, a₂ := 0, a₃ := 1, a₄ := 0, a₆ := 0 }.a₁ * { a₁ := 0, a₂ := 0, a₃ := 1, a₄ := 0, a₆ := 0 }.a₃) ^ 3 - 27 * ({ a₁ := 0, a₂ := 0, a₃ := 1, a₄ := 0, a₆ := 0 }.a₃ ^ 2 + 4 * { a₁ := 0, a₂ := 0, a₃ := 1, a₄ := 0, a₆ := 0 }.a₆) ^ 2 + 9 * ({ a₁ := 0, a₂ := 0, a₃ := 1, a₄ := 0, a₆ := 0 }.a₁ ^ 2 + 4 * { a₁ := 0, a₂ := 0, a₃ := 1, a₄ := 0, a₆ := 0 }.a₂) * (2 * { a₁ := 0, a₂ := 0, a₃ := 1, a₄ := 0, a₆ := 0 }.a₄ + { a₁ := 0, a₂ := 0, a₃ := 1, a₄ := 0, a₆ := 0 }.a₁ * { a₁ := 0, a₂ := 0, a₃ := 1, a₄ := 0, a₆ := 0 }.a₃) * ({ a₁ := 0, a₂ := 0, a₃ := 1, a₄ := 0, a₆ := 0 }.a₃ ^ 2 + 4 * { a₁ := 0, a₂ := 0, a₃ := 1, a₄ := 0, a₆ := 0 }.a₆) = -27 [PROOFSTEP] norm_num1 [GOAL] R : Type u inst✝ : CommRing R W : WeierstrassCurve R ⊢ c₄ (ofJ1728 R) = -48 [PROOFSTEP] rw [ofJ1728, c₄, b₂, b₄] [GOAL] R : Type u inst✝ : CommRing R W : WeierstrassCurve R ⊢ ({ a₁ := 0, a₂ := 0, a₃ := 0, a₄ := 1, a₆ := 0 }.a₁ ^ 2 + 4 * { a₁ := 0, a₂ := 0, a₃ := 0, a₄ := 1, a₆ := 0 }.a₂) ^ 2 - 24 * (2 * { a₁ := 0, a₂ := 0, a₃ := 0, a₄ := 1, a₆ := 0 }.a₄ + { a₁ := 0, a₂ := 0, a₃ := 0, a₄ := 1, a₆ := 0 }.a₁ * { a₁ := 0, a₂ := 0, a₃ := 0, a₄ := 1, a₆ := 0 }.a₃) = -48 [PROOFSTEP] norm_num1 [GOAL] R : Type u inst✝ : CommRing R W : WeierstrassCurve R ⊢ Δ (ofJ1728 R) = -64 [PROOFSTEP] rw [ofJ1728, Δ, b₂, b₄, b₆, b₈] [GOAL] R : Type u inst✝ : CommRing R W : WeierstrassCurve R ⊢ -({ a₁ := 0, a₂ := 0, a₃ := 0, a₄ := 1, a₆ := 0 }.a₁ ^ 2 + 4 * { a₁ := 0, a₂ := 0, a₃ := 0, a₄ := 1, a₆ := 0 }.a₂) ^ 2 * ({ a₁ := 0, a₂ := 0, a₃ := 0, a₄ := 1, a₆ := 0 }.a₁ ^ 2 * { a₁ := 0, a₂ := 0, a₃ := 0, a₄ := 1, a₆ := 0 }.a₆ + 4 * { a₁ := 0, a₂ := 0, a₃ := 0, a₄ := 1, a₆ := 0 }.a₂ * { a₁ := 0, a₂ := 0, a₃ := 0, a₄ := 1, a₆ := 0 }.a₆ - { a₁ := 0, a₂ := 0, a₃ := 0, a₄ := 1, a₆ := 0 }.a₁ * { a₁ := 0, a₂ := 0, a₃ := 0, a₄ := 1, a₆ := 0 }.a₃ * { a₁ := 0, a₂ := 0, a₃ := 0, a₄ := 1, a₆ := 0 }.a₄ + { a₁ := 0, a₂ := 0, a₃ := 0, a₄ := 1, a₆ := 0 }.a₂ * { a₁ := 0, a₂ := 0, a₃ := 0, a₄ := 1, a₆ := 0 }.a₃ ^ 2 - { a₁ := 0, a₂ := 0, a₃ := 0, a₄ := 1, a₆ := 0 }.a₄ ^ 2) - 8 * (2 * { a₁ := 0, a₂ := 0, a₃ := 0, a₄ := 1, a₆ := 0 }.a₄ + { a₁ := 0, a₂ := 0, a₃ := 0, a₄ := 1, a₆ := 0 }.a₁ * { a₁ := 0, a₂ := 0, a₃ := 0, a₄ := 1, a₆ := 0 }.a₃) ^ 3 - 27 * ({ a₁ := 0, a₂ := 0, a₃ := 0, a₄ := 1, a₆ := 0 }.a₃ ^ 2 + 4 * { a₁ := 0, a₂ := 0, a₃ := 0, a₄ := 1, a₆ := 0 }.a₆) ^ 2 + 9 * ({ a₁ := 0, a₂ := 0, a₃ := 0, a₄ := 1, a₆ := 0 }.a₁ ^ 2 + 4 * { a₁ := 0, a₂ := 0, a₃ := 0, a₄ := 1, a₆ := 0 }.a₂) * (2 * { a₁ := 0, a₂ := 0, a₃ := 0, a₄ := 1, a₆ := 0 }.a₄ + { a₁ := 0, a₂ := 0, a₃ := 0, a₄ := 1, a₆ := 0 }.a₁ * { a₁ := 0, a₂ := 0, a₃ := 0, a₄ := 1, a₆ := 0 }.a₃) * ({ a₁ := 0, a₂ := 0, a₃ := 0, a₄ := 1, a₆ := 0 }.a₃ ^ 2 + 4 * { a₁ := 0, a₂ := 0, a₃ := 0, a₄ := 1, a₆ := 0 }.a₆) = -64 [PROOFSTEP] norm_num1 [GOAL] R : Type u inst✝ : CommRing R W : WeierstrassCurve R j : R ⊢ c₄ (ofJ j) = j * (j - 1728) ^ 3 [PROOFSTEP] simp only [ofJ, c₄, b₂, b₄] [GOAL] R : Type u inst✝ : CommRing R W : WeierstrassCurve R j : R ⊢ ((j - 1728) ^ 2 + 4 * 0) ^ 2 - 24 * (2 * (-36 * (j - 1728) ^ 3) + (j - 1728) * 0) = j * (j - 1728) ^ 3 [PROOFSTEP] ring1 [GOAL] R : Type u inst✝ : CommRing R W : WeierstrassCurve R j : R ⊢ Δ (ofJ j) = j ^ 2 * (j - 1728) ^ 9 [PROOFSTEP] simp only [ofJ, Δ, b₂, b₄, b₆, b₈] [GOAL] R : Type u inst✝ : CommRing R W : WeierstrassCurve R j : R ⊢ -((j - 1728) ^ 2 + 4 * 0) ^ 2 * ((j - 1728) ^ 2 * -(j - 1728) ^ 5 + 4 * 0 * -(j - 1728) ^ 5 - (j - 1728) * 0 * (-36 * (j - 1728) ^ 3) + 0 * 0 ^ 2 - (-36 * (j - 1728) ^ 3) ^ 2) - 8 * (2 * (-36 * (j - 1728) ^ 3) + (j - 1728) * 0) ^ 3 - 27 * (0 ^ 2 + 4 * -(j - 1728) ^ 5) ^ 2 + 9 * ((j - 1728) ^ 2 + 4 * 0) * (2 * (-36 * (j - 1728) ^ 3) + (j - 1728) * 0) * (0 ^ 2 + 4 * -(j - 1728) ^ 5) = j ^ 2 * (j - 1728) ^ 9 [PROOFSTEP] ring1 [GOAL] R : Type u inst✝ : CommRing R W : WeierstrassCurve R C✝ C' C'' C : VariableChange R ⊢ comp id C = C [PROOFSTEP] simp only [comp, id, zero_add, zero_mul, mul_zero, one_mul] [GOAL] R : Type u inst✝ : CommRing R W : WeierstrassCurve R C✝ C' C'' C : VariableChange R ⊢ comp C id = C [PROOFSTEP] simp only [comp, id, add_zero, mul_zero, one_mul, mul_one, one_pow, Units.val_one] [GOAL] R : Type u inst✝ : CommRing R W : WeierstrassCurve R C✝ C' C'' C : VariableChange R ⊢ comp (inv C) C = id [PROOFSTEP] rw [comp, id, inv] [GOAL] R : Type u inst✝ : CommRing R W : WeierstrassCurve R C✝ C' C'' C : VariableChange R ⊢ { u := { u := C.u⁻¹, r := -C.r * ↑C.u⁻¹ ^ 2, s := -C.s * ↑C.u⁻¹, t := (C.r * C.s - C.t) * ↑C.u⁻¹ ^ 3 }.u * C.u, r := { u := C.u⁻¹, r := -C.r * ↑C.u⁻¹ ^ 2, s := -C.s * ↑C.u⁻¹, t := (C.r * C.s - C.t) * ↑C.u⁻¹ ^ 3 }.r * ↑C.u ^ 2 + C.r, s := ↑C.u * { u := C.u⁻¹, r := -C.r * ↑C.u⁻¹ ^ 2, s := -C.s * ↑C.u⁻¹, t := (C.r * C.s - C.t) * ↑C.u⁻¹ ^ 3 }.s + C.s, t := { u := C.u⁻¹, r := -C.r * ↑C.u⁻¹ ^ 2, s := -C.s * ↑C.u⁻¹, t := (C.r * C.s - C.t) * ↑C.u⁻¹ ^ 3 }.t * ↑C.u ^ 3 + { u := C.u⁻¹, r := -C.r * ↑C.u⁻¹ ^ 2, s := -C.s * ↑C.u⁻¹, t := (C.r * C.s - C.t) * ↑C.u⁻¹ ^ 3 }.r * C.s * ↑C.u ^ 2 + C.t } = { u := 1, r := 0, s := 0, t := 0 } [PROOFSTEP] ext [GOAL] case u.a R : Type u inst✝ : CommRing R W : WeierstrassCurve R C✝ C' C'' C : VariableChange R ⊢ ↑{ u := { u := C.u⁻¹, r := -C.r * ↑C.u⁻¹ ^ 2, s := -C.s * ↑C.u⁻¹, t := (C.r * C.s - C.t) * ↑C.u⁻¹ ^ 3 }.u * C.u, r := { u := C.u⁻¹, r := -C.r * ↑C.u⁻¹ ^ 2, s := -C.s * ↑C.u⁻¹, t := (C.r * C.s - C.t) * ↑C.u⁻¹ ^ 3 }.r * ↑C.u ^ 2 + C.r, s := ↑C.u * { u := C.u⁻¹, r := -C.r * ↑C.u⁻¹ ^ 2, s := -C.s * ↑C.u⁻¹, t := (C.r * C.s - C.t) * ↑C.u⁻¹ ^ 3 }.s + C.s, t := { u := C.u⁻¹, r := -C.r * ↑C.u⁻¹ ^ 2, s := -C.s * ↑C.u⁻¹, t := (C.r * C.s - C.t) * ↑C.u⁻¹ ^ 3 }.t * ↑C.u ^ 3 + { u := C.u⁻¹, r := -C.r * ↑C.u⁻¹ ^ 2, s := -C.s * ↑C.u⁻¹, t := (C.r * C.s - C.t) * ↑C.u⁻¹ ^ 3 }.r * C.s * ↑C.u ^ 2 + C.t }.u = ↑{ u := 1, r := 0, s := 0, t := 0 }.u [PROOFSTEP] dsimp only [GOAL] case r R : Type u inst✝ : CommRing R W : WeierstrassCurve R C✝ C' C'' C : VariableChange R ⊢ { u := { u := C.u⁻¹, r := -C.r * ↑C.u⁻¹ ^ 2, s := -C.s * ↑C.u⁻¹, t := (C.r * C.s - C.t) * ↑C.u⁻¹ ^ 3 }.u * C.u, r := { u := C.u⁻¹, r := -C.r * ↑C.u⁻¹ ^ 2, s := -C.s * ↑C.u⁻¹, t := (C.r * C.s - C.t) * ↑C.u⁻¹ ^ 3 }.r * ↑C.u ^ 2 + C.r, s := ↑C.u * { u := C.u⁻¹, r := -C.r * ↑C.u⁻¹ ^ 2, s := -C.s * ↑C.u⁻¹, t := (C.r * C.s - C.t) * ↑C.u⁻¹ ^ 3 }.s + C.s, t := { u := C.u⁻¹, r := -C.r * ↑C.u⁻¹ ^ 2, s := -C.s * ↑C.u⁻¹, t := (C.r * C.s - C.t) * ↑C.u⁻¹ ^ 3 }.t * ↑C.u ^ 3 + { u := C.u⁻¹, r := -C.r * ↑C.u⁻¹ ^ 2, s := -C.s * ↑C.u⁻¹, t := (C.r * C.s - C.t) * ↑C.u⁻¹ ^ 3 }.r * C.s * ↑C.u ^ 2 + C.t }.r = { u := 1, r := 0, s := 0, t := 0 }.r [PROOFSTEP] dsimp only [GOAL] case s R : Type u inst✝ : CommRing R W : WeierstrassCurve R C✝ C' C'' C : VariableChange R ⊢ { u := { u := C.u⁻¹, r := -C.r * ↑C.u⁻¹ ^ 2, s := -C.s * ↑C.u⁻¹, t := (C.r * C.s - C.t) * ↑C.u⁻¹ ^ 3 }.u * C.u, r := { u := C.u⁻¹, r := -C.r * ↑C.u⁻¹ ^ 2, s := -C.s * ↑C.u⁻¹, t := (C.r * C.s - C.t) * ↑C.u⁻¹ ^ 3 }.r * ↑C.u ^ 2 + C.r, s := ↑C.u * { u := C.u⁻¹, r := -C.r * ↑C.u⁻¹ ^ 2, s := -C.s * ↑C.u⁻¹, t := (C.r * C.s - C.t) * ↑C.u⁻¹ ^ 3 }.s + C.s, t := { u := C.u⁻¹, r := -C.r * ↑C.u⁻¹ ^ 2, s := -C.s * ↑C.u⁻¹, t := (C.r * C.s - C.t) * ↑C.u⁻¹ ^ 3 }.t * ↑C.u ^ 3 + { u := C.u⁻¹, r := -C.r * ↑C.u⁻¹ ^ 2, s := -C.s * ↑C.u⁻¹, t := (C.r * C.s - C.t) * ↑C.u⁻¹ ^ 3 }.r * C.s * ↑C.u ^ 2 + C.t }.s = { u := 1, r := 0, s := 0, t := 0 }.s [PROOFSTEP] dsimp only [GOAL] case t R : Type u inst✝ : CommRing R W : WeierstrassCurve R C✝ C' C'' C : VariableChange R ⊢ { u := { u := C.u⁻¹, r := -C.r * ↑C.u⁻¹ ^ 2, s := -C.s * ↑C.u⁻¹, t := (C.r * C.s - C.t) * ↑C.u⁻¹ ^ 3 }.u * C.u, r := { u := C.u⁻¹, r := -C.r * ↑C.u⁻¹ ^ 2, s := -C.s * ↑C.u⁻¹, t := (C.r * C.s - C.t) * ↑C.u⁻¹ ^ 3 }.r * ↑C.u ^ 2 + C.r, s := ↑C.u * { u := C.u⁻¹, r := -C.r * ↑C.u⁻¹ ^ 2, s := -C.s * ↑C.u⁻¹, t := (C.r * C.s - C.t) * ↑C.u⁻¹ ^ 3 }.s + C.s, t := { u := C.u⁻¹, r := -C.r * ↑C.u⁻¹ ^ 2, s := -C.s * ↑C.u⁻¹, t := (C.r * C.s - C.t) * ↑C.u⁻¹ ^ 3 }.t * ↑C.u ^ 3 + { u := C.u⁻¹, r := -C.r * ↑C.u⁻¹ ^ 2, s := -C.s * ↑C.u⁻¹, t := (C.r * C.s - C.t) * ↑C.u⁻¹ ^ 3 }.r * C.s * ↑C.u ^ 2 + C.t }.t = { u := 1, r := 0, s := 0, t := 0 }.t [PROOFSTEP] dsimp only [GOAL] case u.a R : Type u inst✝ : CommRing R W : WeierstrassCurve R C✝ C' C'' C : VariableChange R ⊢ ↑(C.u⁻¹ * C.u) = ↑1 [PROOFSTEP] exact C.u.inv_mul [GOAL] case r R : Type u inst✝ : CommRing R W : WeierstrassCurve R C✝ C' C'' C : VariableChange R ⊢ -C.r * ↑C.u⁻¹ ^ 2 * ↑C.u ^ 2 + C.r = 0 [PROOFSTEP] linear_combination (norm := ring1) -C.r * pow_mul_pow_eq_one 2 C.u.inv_mul [GOAL] case a R : Type u inst✝ : CommRing R W : WeierstrassCurve R C✝ C' C'' C : VariableChange R ⊢ -C.r * ↑C.u⁻¹ ^ 2 * ↑C.u ^ 2 + C.r - 0 - (-C.r * (↑C.u⁻¹ ^ 2 * ↑C.u ^ 2) - -C.r * 1) = 0 [PROOFSTEP] ring1 [GOAL] case s R : Type u inst✝ : CommRing R W : WeierstrassCurve R C✝ C' C'' C : VariableChange R ⊢ ↑C.u * (-C.s * ↑C.u⁻¹) + C.s = 0 [PROOFSTEP] linear_combination (norm := ring1) -C.s * C.u.inv_mul [GOAL] case a R : Type u inst✝ : CommRing R W : WeierstrassCurve R C✝ C' C'' C : VariableChange R ⊢ ↑C.u * (-C.s * ↑C.u⁻¹) + C.s - 0 - (-C.s * (↑C.u⁻¹ * ↑C.u) - -C.s * 1) = 0 [PROOFSTEP] ring1 [GOAL] case t R : Type u inst✝ : CommRing R W : WeierstrassCurve R C✝ C' C'' C : VariableChange R ⊢ (C.r * C.s - C.t) * ↑C.u⁻¹ ^ 3 * ↑C.u ^ 3 + -C.r * ↑C.u⁻¹ ^ 2 * C.s * ↑C.u ^ 2 + C.t = 0 [PROOFSTEP] linear_combination (norm := ring1) (C.r * C.s - C.t) * pow_mul_pow_eq_one 3 C.u.inv_mul + -C.r * C.s * pow_mul_pow_eq_one 2 C.u.inv_mul [GOAL] case a R : Type u inst✝ : CommRing R W : WeierstrassCurve R C✝ C' C'' C : VariableChange R ⊢ (C.r * C.s - C.t) * ↑C.u⁻¹ ^ 3 * ↑C.u ^ 3 + -C.r * ↑C.u⁻¹ ^ 2 * C.s * ↑C.u ^ 2 + C.t - 0 - ((C.r * C.s - C.t) * (↑C.u⁻¹ ^ 3 * ↑C.u ^ 3) + -C.r * C.s * (↑C.u⁻¹ ^ 2 * ↑C.u ^ 2) - ((C.r * C.s - C.t) * 1 + -C.r * C.s * 1)) = 0 [PROOFSTEP] ring1 [GOAL] R : Type u inst✝ : CommRing R W : WeierstrassCurve R C✝ C'✝ C''✝ C C' C'' : VariableChange R ⊢ comp (comp C C') C'' = comp C (comp C' C'') [PROOFSTEP] ext [GOAL] case u.a R : Type u inst✝ : CommRing R W : WeierstrassCurve R C✝ C'✝ C''✝ C C' C'' : VariableChange R ⊢ ↑(comp (comp C C') C'').u = ↑(comp C (comp C' C'')).u [PROOFSTEP] simp only [comp, Units.val_mul] [GOAL] case r R : Type u inst✝ : CommRing R W : WeierstrassCurve R C✝ C'✝ C''✝ C C' C'' : VariableChange R ⊢ (comp (comp C C') C'').r = (comp C (comp C' C'')).r [PROOFSTEP] simp only [comp, Units.val_mul] [GOAL] case s R : Type u inst✝ : CommRing R W : WeierstrassCurve R C✝ C'✝ C''✝ C C' C'' : VariableChange R ⊢ (comp (comp C C') C'').s = (comp C (comp C' C'')).s [PROOFSTEP] simp only [comp, Units.val_mul] [GOAL] case t R : Type u inst✝ : CommRing R W : WeierstrassCurve R C✝ C'✝ C''✝ C C' C'' : VariableChange R ⊢ (comp (comp C C') C'').t = (comp C (comp C' C'')).t [PROOFSTEP] simp only [comp, Units.val_mul] [GOAL] case u.a R : Type u inst✝ : CommRing R W : WeierstrassCurve R C✝ C'✝ C''✝ C C' C'' : VariableChange R ⊢ ↑C.u * ↑C'.u * ↑C''.u = ↑C.u * (↑C'.u * ↑C''.u) [PROOFSTEP] ring1 [GOAL] case r R : Type u inst✝ : CommRing R W : WeierstrassCurve R C✝ C'✝ C''✝ C C' C'' : VariableChange R ⊢ (C.r * ↑C'.u ^ 2 + C'.r) * ↑C''.u ^ 2 + C''.r = C.r * (↑C'.u * ↑C''.u) ^ 2 + (C'.r * ↑C''.u ^ 2 + C''.r) [PROOFSTEP] ring1 [GOAL] case s R : Type u inst✝ : CommRing R W : WeierstrassCurve R C✝ C'✝ C''✝ C C' C'' : VariableChange R ⊢ ↑C''.u * (↑C'.u * C.s + C'.s) + C''.s = ↑C'.u * ↑C''.u * C.s + (↑C''.u * C'.s + C''.s) [PROOFSTEP] ring1 [GOAL] case t R : Type u inst✝ : CommRing R W : WeierstrassCurve R C✝ C'✝ C''✝ C C' C'' : VariableChange R ⊢ (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t) * ↑C''.u ^ 3 + (C.r * ↑C'.u ^ 2 + C'.r) * C''.s * ↑C''.u ^ 2 + C''.t = C.t * (↑C'.u * ↑C''.u) ^ 3 + C.r * (↑C''.u * C'.s + C''.s) * (↑C'.u * ↑C''.u) ^ 2 + (C'.t * ↑C''.u ^ 3 + C'.r * C''.s * ↑C''.u ^ 2 + C''.t) [PROOFSTEP] ring1 [GOAL] R : Type u inst✝ : CommRing R W : WeierstrassCurve R C : VariableChange R ⊢ variableChange W VariableChange.id = W [PROOFSTEP] rw [VariableChange.id, variableChange, inv_one, Units.val_one] [GOAL] R : Type u inst✝ : CommRing R W : WeierstrassCurve R C : VariableChange R ⊢ { a₁ := 1 * (W.a₁ + 2 * { u := 1, r := 0, s := 0, t := 0 }.s), a₂ := 1 ^ 2 * (W.a₂ - { u := 1, r := 0, s := 0, t := 0 }.s * W.a₁ + 3 * { u := 1, r := 0, s := 0, t := 0 }.r - { u := 1, r := 0, s := 0, t := 0 }.s ^ 2), a₃ := 1 ^ 3 * (W.a₃ + { u := 1, r := 0, s := 0, t := 0 }.r * W.a₁ + 2 * { u := 1, r := 0, s := 0, t := 0 }.t), a₄ := 1 ^ 4 * (W.a₄ - { u := 1, r := 0, s := 0, t := 0 }.s * W.a₃ + 2 * { u := 1, r := 0, s := 0, t := 0 }.r * W.a₂ - ({ u := 1, r := 0, s := 0, t := 0 }.t + { u := 1, r := 0, s := 0, t := 0 }.r * { u := 1, r := 0, s := 0, t := 0 }.s) * W.a₁ + 3 * { u := 1, r := 0, s := 0, t := 0 }.r ^ 2 - 2 * { u := 1, r := 0, s := 0, t := 0 }.s * { u := 1, r := 0, s := 0, t := 0 }.t), a₆ := 1 ^ 6 * (W.a₆ + { u := 1, r := 0, s := 0, t := 0 }.r * W.a₄ + { u := 1, r := 0, s := 0, t := 0 }.r ^ 2 * W.a₂ + { u := 1, r := 0, s := 0, t := 0 }.r ^ 3 - { u := 1, r := 0, s := 0, t := 0 }.t * W.a₃ - { u := 1, r := 0, s := 0, t := 0 }.t ^ 2 - { u := 1, r := 0, s := 0, t := 0 }.r * { u := 1, r := 0, s := 0, t := 0 }.t * W.a₁) } = W [PROOFSTEP] ext [GOAL] case a₁ R : Type u inst✝ : CommRing R W : WeierstrassCurve R C : VariableChange R ⊢ { a₁ := 1 * (W.a₁ + 2 * { u := 1, r := 0, s := 0, t := 0 }.s), a₂ := 1 ^ 2 * (W.a₂ - { u := 1, r := 0, s := 0, t := 0 }.s * W.a₁ + 3 * { u := 1, r := 0, s := 0, t := 0 }.r - { u := 1, r := 0, s := 0, t := 0 }.s ^ 2), a₃ := 1 ^ 3 * (W.a₃ + { u := 1, r := 0, s := 0, t := 0 }.r * W.a₁ + 2 * { u := 1, r := 0, s := 0, t := 0 }.t), a₄ := 1 ^ 4 * (W.a₄ - { u := 1, r := 0, s := 0, t := 0 }.s * W.a₃ + 2 * { u := 1, r := 0, s := 0, t := 0 }.r * W.a₂ - ({ u := 1, r := 0, s := 0, t := 0 }.t + { u := 1, r := 0, s := 0, t := 0 }.r * { u := 1, r := 0, s := 0, t := 0 }.s) * W.a₁ + 3 * { u := 1, r := 0, s := 0, t := 0 }.r ^ 2 - 2 * { u := 1, r := 0, s := 0, t := 0 }.s * { u := 1, r := 0, s := 0, t := 0 }.t), a₆ := 1 ^ 6 * (W.a₆ + { u := 1, r := 0, s := 0, t := 0 }.r * W.a₄ + { u := 1, r := 0, s := 0, t := 0 }.r ^ 2 * W.a₂ + { u := 1, r := 0, s := 0, t := 0 }.r ^ 3 - { u := 1, r := 0, s := 0, t := 0 }.t * W.a₃ - { u := 1, r := 0, s := 0, t := 0 }.t ^ 2 - { u := 1, r := 0, s := 0, t := 0 }.r * { u := 1, r := 0, s := 0, t := 0 }.t * W.a₁) }.a₁ = W.a₁ [PROOFSTEP] dsimp only [GOAL] case a₁ R : Type u inst✝ : CommRing R W : WeierstrassCurve R C : VariableChange R ⊢ 1 * (W.a₁ + 2 * 0) = W.a₁ [PROOFSTEP] ring1 [GOAL] case a₂ R : Type u inst✝ : CommRing R W : WeierstrassCurve R C : VariableChange R ⊢ { a₁ := 1 * (W.a₁ + 2 * { u := 1, r := 0, s := 0, t := 0 }.s), a₂ := 1 ^ 2 * (W.a₂ - { u := 1, r := 0, s := 0, t := 0 }.s * W.a₁ + 3 * { u := 1, r := 0, s := 0, t := 0 }.r - { u := 1, r := 0, s := 0, t := 0 }.s ^ 2), a₃ := 1 ^ 3 * (W.a₃ + { u := 1, r := 0, s := 0, t := 0 }.r * W.a₁ + 2 * { u := 1, r := 0, s := 0, t := 0 }.t), a₄ := 1 ^ 4 * (W.a₄ - { u := 1, r := 0, s := 0, t := 0 }.s * W.a₃ + 2 * { u := 1, r := 0, s := 0, t := 0 }.r * W.a₂ - ({ u := 1, r := 0, s := 0, t := 0 }.t + { u := 1, r := 0, s := 0, t := 0 }.r * { u := 1, r := 0, s := 0, t := 0 }.s) * W.a₁ + 3 * { u := 1, r := 0, s := 0, t := 0 }.r ^ 2 - 2 * { u := 1, r := 0, s := 0, t := 0 }.s * { u := 1, r := 0, s := 0, t := 0 }.t), a₆ := 1 ^ 6 * (W.a₆ + { u := 1, r := 0, s := 0, t := 0 }.r * W.a₄ + { u := 1, r := 0, s := 0, t := 0 }.r ^ 2 * W.a₂ + { u := 1, r := 0, s := 0, t := 0 }.r ^ 3 - { u := 1, r := 0, s := 0, t := 0 }.t * W.a₃ - { u := 1, r := 0, s := 0, t := 0 }.t ^ 2 - { u := 1, r := 0, s := 0, t := 0 }.r * { u := 1, r := 0, s := 0, t := 0 }.t * W.a₁) }.a₂ = W.a₂ [PROOFSTEP] dsimp only [GOAL] case a₂ R : Type u inst✝ : CommRing R W : WeierstrassCurve R C : VariableChange R ⊢ 1 ^ 2 * (W.a₂ - 0 * W.a₁ + 3 * 0 - 0 ^ 2) = W.a₂ [PROOFSTEP] ring1 [GOAL] case a₃ R : Type u inst✝ : CommRing R W : WeierstrassCurve R C : VariableChange R ⊢ { a₁ := 1 * (W.a₁ + 2 * { u := 1, r := 0, s := 0, t := 0 }.s), a₂ := 1 ^ 2 * (W.a₂ - { u := 1, r := 0, s := 0, t := 0 }.s * W.a₁ + 3 * { u := 1, r := 0, s := 0, t := 0 }.r - { u := 1, r := 0, s := 0, t := 0 }.s ^ 2), a₃ := 1 ^ 3 * (W.a₃ + { u := 1, r := 0, s := 0, t := 0 }.r * W.a₁ + 2 * { u := 1, r := 0, s := 0, t := 0 }.t), a₄ := 1 ^ 4 * (W.a₄ - { u := 1, r := 0, s := 0, t := 0 }.s * W.a₃ + 2 * { u := 1, r := 0, s := 0, t := 0 }.r * W.a₂ - ({ u := 1, r := 0, s := 0, t := 0 }.t + { u := 1, r := 0, s := 0, t := 0 }.r * { u := 1, r := 0, s := 0, t := 0 }.s) * W.a₁ + 3 * { u := 1, r := 0, s := 0, t := 0 }.r ^ 2 - 2 * { u := 1, r := 0, s := 0, t := 0 }.s * { u := 1, r := 0, s := 0, t := 0 }.t), a₆ := 1 ^ 6 * (W.a₆ + { u := 1, r := 0, s := 0, t := 0 }.r * W.a₄ + { u := 1, r := 0, s := 0, t := 0 }.r ^ 2 * W.a₂ + { u := 1, r := 0, s := 0, t := 0 }.r ^ 3 - { u := 1, r := 0, s := 0, t := 0 }.t * W.a₃ - { u := 1, r := 0, s := 0, t := 0 }.t ^ 2 - { u := 1, r := 0, s := 0, t := 0 }.r * { u := 1, r := 0, s := 0, t := 0 }.t * W.a₁) }.a₃ = W.a₃ [PROOFSTEP] dsimp only [GOAL] case a₃ R : Type u inst✝ : CommRing R W : WeierstrassCurve R C : VariableChange R ⊢ 1 ^ 3 * (W.a₃ + 0 * W.a₁ + 2 * 0) = W.a₃ [PROOFSTEP] ring1 [GOAL] case a₄ R : Type u inst✝ : CommRing R W : WeierstrassCurve R C : VariableChange R ⊢ { a₁ := 1 * (W.a₁ + 2 * { u := 1, r := 0, s := 0, t := 0 }.s), a₂ := 1 ^ 2 * (W.a₂ - { u := 1, r := 0, s := 0, t := 0 }.s * W.a₁ + 3 * { u := 1, r := 0, s := 0, t := 0 }.r - { u := 1, r := 0, s := 0, t := 0 }.s ^ 2), a₃ := 1 ^ 3 * (W.a₃ + { u := 1, r := 0, s := 0, t := 0 }.r * W.a₁ + 2 * { u := 1, r := 0, s := 0, t := 0 }.t), a₄ := 1 ^ 4 * (W.a₄ - { u := 1, r := 0, s := 0, t := 0 }.s * W.a₃ + 2 * { u := 1, r := 0, s := 0, t := 0 }.r * W.a₂ - ({ u := 1, r := 0, s := 0, t := 0 }.t + { u := 1, r := 0, s := 0, t := 0 }.r * { u := 1, r := 0, s := 0, t := 0 }.s) * W.a₁ + 3 * { u := 1, r := 0, s := 0, t := 0 }.r ^ 2 - 2 * { u := 1, r := 0, s := 0, t := 0 }.s * { u := 1, r := 0, s := 0, t := 0 }.t), a₆ := 1 ^ 6 * (W.a₆ + { u := 1, r := 0, s := 0, t := 0 }.r * W.a₄ + { u := 1, r := 0, s := 0, t := 0 }.r ^ 2 * W.a₂ + { u := 1, r := 0, s := 0, t := 0 }.r ^ 3 - { u := 1, r := 0, s := 0, t := 0 }.t * W.a₃ - { u := 1, r := 0, s := 0, t := 0 }.t ^ 2 - { u := 1, r := 0, s := 0, t := 0 }.r * { u := 1, r := 0, s := 0, t := 0 }.t * W.a₁) }.a₄ = W.a₄ [PROOFSTEP] dsimp only [GOAL] case a₄ R : Type u inst✝ : CommRing R W : WeierstrassCurve R C : VariableChange R ⊢ 1 ^ 4 * (W.a₄ - 0 * W.a₃ + 2 * 0 * W.a₂ - (0 + 0 * 0) * W.a₁ + 3 * 0 ^ 2 - 2 * 0 * 0) = W.a₄ [PROOFSTEP] ring1 [GOAL] case a₆ R : Type u inst✝ : CommRing R W : WeierstrassCurve R C : VariableChange R ⊢ { a₁ := 1 * (W.a₁ + 2 * { u := 1, r := 0, s := 0, t := 0 }.s), a₂ := 1 ^ 2 * (W.a₂ - { u := 1, r := 0, s := 0, t := 0 }.s * W.a₁ + 3 * { u := 1, r := 0, s := 0, t := 0 }.r - { u := 1, r := 0, s := 0, t := 0 }.s ^ 2), a₃ := 1 ^ 3 * (W.a₃ + { u := 1, r := 0, s := 0, t := 0 }.r * W.a₁ + 2 * { u := 1, r := 0, s := 0, t := 0 }.t), a₄ := 1 ^ 4 * (W.a₄ - { u := 1, r := 0, s := 0, t := 0 }.s * W.a₃ + 2 * { u := 1, r := 0, s := 0, t := 0 }.r * W.a₂ - ({ u := 1, r := 0, s := 0, t := 0 }.t + { u := 1, r := 0, s := 0, t := 0 }.r * { u := 1, r := 0, s := 0, t := 0 }.s) * W.a₁ + 3 * { u := 1, r := 0, s := 0, t := 0 }.r ^ 2 - 2 * { u := 1, r := 0, s := 0, t := 0 }.s * { u := 1, r := 0, s := 0, t := 0 }.t), a₆ := 1 ^ 6 * (W.a₆ + { u := 1, r := 0, s := 0, t := 0 }.r * W.a₄ + { u := 1, r := 0, s := 0, t := 0 }.r ^ 2 * W.a₂ + { u := 1, r := 0, s := 0, t := 0 }.r ^ 3 - { u := 1, r := 0, s := 0, t := 0 }.t * W.a₃ - { u := 1, r := 0, s := 0, t := 0 }.t ^ 2 - { u := 1, r := 0, s := 0, t := 0 }.r * { u := 1, r := 0, s := 0, t := 0 }.t * W.a₁) }.a₆ = W.a₆ [PROOFSTEP] dsimp only [GOAL] case a₆ R : Type u inst✝ : CommRing R W : WeierstrassCurve R C : VariableChange R ⊢ 1 ^ 6 * (W.a₆ + 0 * W.a₄ + 0 ^ 2 * W.a₂ + 0 ^ 3 - 0 * W.a₃ - 0 ^ 2 - 0 * 0 * W.a₁) = W.a₆ [PROOFSTEP] ring1 [GOAL] R : Type u inst✝ : CommRing R W✝ : WeierstrassCurve R C✝ C C' : VariableChange R W : WeierstrassCurve R ⊢ variableChange W (VariableChange.comp C C') = variableChange (variableChange W C') C [PROOFSTEP] simp only [VariableChange.comp, variableChange] [GOAL] R : Type u inst✝ : CommRing R W✝ : WeierstrassCurve R C✝ C C' : VariableChange R W : WeierstrassCurve R ⊢ { a₁ := ↑(C.u * C'.u)⁻¹ * (W.a₁ + 2 * (↑C'.u * C.s + C'.s)), a₂ := ↑(C.u * C'.u)⁻¹ ^ 2 * (W.a₂ - (↑C'.u * C.s + C'.s) * W.a₁ + 3 * (C.r * ↑C'.u ^ 2 + C'.r) - (↑C'.u * C.s + C'.s) ^ 2), a₃ := ↑(C.u * C'.u)⁻¹ ^ 3 * (W.a₃ + (C.r * ↑C'.u ^ 2 + C'.r) * W.a₁ + 2 * (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t)), a₄ := ↑(C.u * C'.u)⁻¹ ^ 4 * (W.a₄ - (↑C'.u * C.s + C'.s) * W.a₃ + 2 * (C.r * ↑C'.u ^ 2 + C'.r) * W.a₂ - (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t + (C.r * ↑C'.u ^ 2 + C'.r) * (↑C'.u * C.s + C'.s)) * W.a₁ + 3 * (C.r * ↑C'.u ^ 2 + C'.r) ^ 2 - 2 * (↑C'.u * C.s + C'.s) * (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t)), a₆ := ↑(C.u * C'.u)⁻¹ ^ 6 * (W.a₆ + (C.r * ↑C'.u ^ 2 + C'.r) * W.a₄ + (C.r * ↑C'.u ^ 2 + C'.r) ^ 2 * W.a₂ + (C.r * ↑C'.u ^ 2 + C'.r) ^ 3 - (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t) * W.a₃ - (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t) ^ 2 - (C.r * ↑C'.u ^ 2 + C'.r) * (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t) * W.a₁) } = { a₁ := ↑C.u⁻¹ * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s) + 2 * C.s), a₂ := ↑C.u⁻¹ ^ 2 * (↑C'.u⁻¹ ^ 2 * (W.a₂ - C'.s * W.a₁ + 3 * C'.r - C'.s ^ 2) - C.s * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s)) + 3 * C.r - C.s ^ 2), a₃ := ↑C.u⁻¹ ^ 3 * (↑C'.u⁻¹ ^ 3 * (W.a₃ + C'.r * W.a₁ + 2 * C'.t) + C.r * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s)) + 2 * C.t), a₄ := ↑C.u⁻¹ ^ 4 * (↑C'.u⁻¹ ^ 4 * (W.a₄ - C'.s * W.a₃ + 2 * C'.r * W.a₂ - (C'.t + C'.r * C'.s) * W.a₁ + 3 * C'.r ^ 2 - 2 * C'.s * C'.t) - C.s * (↑C'.u⁻¹ ^ 3 * (W.a₃ + C'.r * W.a₁ + 2 * C'.t)) + 2 * C.r * (↑C'.u⁻¹ ^ 2 * (W.a₂ - C'.s * W.a₁ + 3 * C'.r - C'.s ^ 2)) - (C.t + C.r * C.s) * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s)) + 3 * C.r ^ 2 - 2 * C.s * C.t), a₆ := ↑C.u⁻¹ ^ 6 * (↑C'.u⁻¹ ^ 6 * (W.a₆ + C'.r * W.a₄ + C'.r ^ 2 * W.a₂ + C'.r ^ 3 - C'.t * W.a₃ - C'.t ^ 2 - C'.r * C'.t * W.a₁) + C.r * (↑C'.u⁻¹ ^ 4 * (W.a₄ - C'.s * W.a₃ + 2 * C'.r * W.a₂ - (C'.t + C'.r * C'.s) * W.a₁ + 3 * C'.r ^ 2 - 2 * C'.s * C'.t)) + C.r ^ 2 * (↑C'.u⁻¹ ^ 2 * (W.a₂ - C'.s * W.a₁ + 3 * C'.r - C'.s ^ 2)) + C.r ^ 3 - C.t * (↑C'.u⁻¹ ^ 3 * (W.a₃ + C'.r * W.a₁ + 2 * C'.t)) - C.t ^ 2 - C.r * C.t * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s))) } [PROOFSTEP] ext [GOAL] case a₁ R : Type u inst✝ : CommRing R W✝ : WeierstrassCurve R C✝ C C' : VariableChange R W : WeierstrassCurve R ⊢ { a₁ := ↑(C.u * C'.u)⁻¹ * (W.a₁ + 2 * (↑C'.u * C.s + C'.s)), a₂ := ↑(C.u * C'.u)⁻¹ ^ 2 * (W.a₂ - (↑C'.u * C.s + C'.s) * W.a₁ + 3 * (C.r * ↑C'.u ^ 2 + C'.r) - (↑C'.u * C.s + C'.s) ^ 2), a₃ := ↑(C.u * C'.u)⁻¹ ^ 3 * (W.a₃ + (C.r * ↑C'.u ^ 2 + C'.r) * W.a₁ + 2 * (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t)), a₄ := ↑(C.u * C'.u)⁻¹ ^ 4 * (W.a₄ - (↑C'.u * C.s + C'.s) * W.a₃ + 2 * (C.r * ↑C'.u ^ 2 + C'.r) * W.a₂ - (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t + (C.r * ↑C'.u ^ 2 + C'.r) * (↑C'.u * C.s + C'.s)) * W.a₁ + 3 * (C.r * ↑C'.u ^ 2 + C'.r) ^ 2 - 2 * (↑C'.u * C.s + C'.s) * (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t)), a₆ := ↑(C.u * C'.u)⁻¹ ^ 6 * (W.a₆ + (C.r * ↑C'.u ^ 2 + C'.r) * W.a₄ + (C.r * ↑C'.u ^ 2 + C'.r) ^ 2 * W.a₂ + (C.r * ↑C'.u ^ 2 + C'.r) ^ 3 - (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t) * W.a₃ - (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t) ^ 2 - (C.r * ↑C'.u ^ 2 + C'.r) * (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t) * W.a₁) }.a₁ = { a₁ := ↑C.u⁻¹ * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s) + 2 * C.s), a₂ := ↑C.u⁻¹ ^ 2 * (↑C'.u⁻¹ ^ 2 * (W.a₂ - C'.s * W.a₁ + 3 * C'.r - C'.s ^ 2) - C.s * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s)) + 3 * C.r - C.s ^ 2), a₃ := ↑C.u⁻¹ ^ 3 * (↑C'.u⁻¹ ^ 3 * (W.a₃ + C'.r * W.a₁ + 2 * C'.t) + C.r * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s)) + 2 * C.t), a₄ := ↑C.u⁻¹ ^ 4 * (↑C'.u⁻¹ ^ 4 * (W.a₄ - C'.s * W.a₃ + 2 * C'.r * W.a₂ - (C'.t + C'.r * C'.s) * W.a₁ + 3 * C'.r ^ 2 - 2 * C'.s * C'.t) - C.s * (↑C'.u⁻¹ ^ 3 * (W.a₃ + C'.r * W.a₁ + 2 * C'.t)) + 2 * C.r * (↑C'.u⁻¹ ^ 2 * (W.a₂ - C'.s * W.a₁ + 3 * C'.r - C'.s ^ 2)) - (C.t + C.r * C.s) * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s)) + 3 * C.r ^ 2 - 2 * C.s * C.t), a₆ := ↑C.u⁻¹ ^ 6 * (↑C'.u⁻¹ ^ 6 * (W.a₆ + C'.r * W.a₄ + C'.r ^ 2 * W.a₂ + C'.r ^ 3 - C'.t * W.a₃ - C'.t ^ 2 - C'.r * C'.t * W.a₁) + C.r * (↑C'.u⁻¹ ^ 4 * (W.a₄ - C'.s * W.a₃ + 2 * C'.r * W.a₂ - (C'.t + C'.r * C'.s) * W.a₁ + 3 * C'.r ^ 2 - 2 * C'.s * C'.t)) + C.r ^ 2 * (↑C'.u⁻¹ ^ 2 * (W.a₂ - C'.s * W.a₁ + 3 * C'.r - C'.s ^ 2)) + C.r ^ 3 - C.t * (↑C'.u⁻¹ ^ 3 * (W.a₃ + C'.r * W.a₁ + 2 * C'.t)) - C.t ^ 2 - C.r * C.t * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s))) }.a₁ [PROOFSTEP] simp only [mul_inv, Units.val_mul] [GOAL] case a₂ R : Type u inst✝ : CommRing R W✝ : WeierstrassCurve R C✝ C C' : VariableChange R W : WeierstrassCurve R ⊢ { a₁ := ↑(C.u * C'.u)⁻¹ * (W.a₁ + 2 * (↑C'.u * C.s + C'.s)), a₂ := ↑(C.u * C'.u)⁻¹ ^ 2 * (W.a₂ - (↑C'.u * C.s + C'.s) * W.a₁ + 3 * (C.r * ↑C'.u ^ 2 + C'.r) - (↑C'.u * C.s + C'.s) ^ 2), a₃ := ↑(C.u * C'.u)⁻¹ ^ 3 * (W.a₃ + (C.r * ↑C'.u ^ 2 + C'.r) * W.a₁ + 2 * (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t)), a₄ := ↑(C.u * C'.u)⁻¹ ^ 4 * (W.a₄ - (↑C'.u * C.s + C'.s) * W.a₃ + 2 * (C.r * ↑C'.u ^ 2 + C'.r) * W.a₂ - (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t + (C.r * ↑C'.u ^ 2 + C'.r) * (↑C'.u * C.s + C'.s)) * W.a₁ + 3 * (C.r * ↑C'.u ^ 2 + C'.r) ^ 2 - 2 * (↑C'.u * C.s + C'.s) * (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t)), a₆ := ↑(C.u * C'.u)⁻¹ ^ 6 * (W.a₆ + (C.r * ↑C'.u ^ 2 + C'.r) * W.a₄ + (C.r * ↑C'.u ^ 2 + C'.r) ^ 2 * W.a₂ + (C.r * ↑C'.u ^ 2 + C'.r) ^ 3 - (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t) * W.a₃ - (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t) ^ 2 - (C.r * ↑C'.u ^ 2 + C'.r) * (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t) * W.a₁) }.a₂ = { a₁ := ↑C.u⁻¹ * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s) + 2 * C.s), a₂ := ↑C.u⁻¹ ^ 2 * (↑C'.u⁻¹ ^ 2 * (W.a₂ - C'.s * W.a₁ + 3 * C'.r - C'.s ^ 2) - C.s * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s)) + 3 * C.r - C.s ^ 2), a₃ := ↑C.u⁻¹ ^ 3 * (↑C'.u⁻¹ ^ 3 * (W.a₃ + C'.r * W.a₁ + 2 * C'.t) + C.r * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s)) + 2 * C.t), a₄ := ↑C.u⁻¹ ^ 4 * (↑C'.u⁻¹ ^ 4 * (W.a₄ - C'.s * W.a₃ + 2 * C'.r * W.a₂ - (C'.t + C'.r * C'.s) * W.a₁ + 3 * C'.r ^ 2 - 2 * C'.s * C'.t) - C.s * (↑C'.u⁻¹ ^ 3 * (W.a₃ + C'.r * W.a₁ + 2 * C'.t)) + 2 * C.r * (↑C'.u⁻¹ ^ 2 * (W.a₂ - C'.s * W.a₁ + 3 * C'.r - C'.s ^ 2)) - (C.t + C.r * C.s) * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s)) + 3 * C.r ^ 2 - 2 * C.s * C.t), a₆ := ↑C.u⁻¹ ^ 6 * (↑C'.u⁻¹ ^ 6 * (W.a₆ + C'.r * W.a₄ + C'.r ^ 2 * W.a₂ + C'.r ^ 3 - C'.t * W.a₃ - C'.t ^ 2 - C'.r * C'.t * W.a₁) + C.r * (↑C'.u⁻¹ ^ 4 * (W.a₄ - C'.s * W.a₃ + 2 * C'.r * W.a₂ - (C'.t + C'.r * C'.s) * W.a₁ + 3 * C'.r ^ 2 - 2 * C'.s * C'.t)) + C.r ^ 2 * (↑C'.u⁻¹ ^ 2 * (W.a₂ - C'.s * W.a₁ + 3 * C'.r - C'.s ^ 2)) + C.r ^ 3 - C.t * (↑C'.u⁻¹ ^ 3 * (W.a₃ + C'.r * W.a₁ + 2 * C'.t)) - C.t ^ 2 - C.r * C.t * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s))) }.a₂ [PROOFSTEP] simp only [mul_inv, Units.val_mul] [GOAL] case a₃ R : Type u inst✝ : CommRing R W✝ : WeierstrassCurve R C✝ C C' : VariableChange R W : WeierstrassCurve R ⊢ { a₁ := ↑(C.u * C'.u)⁻¹ * (W.a₁ + 2 * (↑C'.u * C.s + C'.s)), a₂ := ↑(C.u * C'.u)⁻¹ ^ 2 * (W.a₂ - (↑C'.u * C.s + C'.s) * W.a₁ + 3 * (C.r * ↑C'.u ^ 2 + C'.r) - (↑C'.u * C.s + C'.s) ^ 2), a₃ := ↑(C.u * C'.u)⁻¹ ^ 3 * (W.a₃ + (C.r * ↑C'.u ^ 2 + C'.r) * W.a₁ + 2 * (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t)), a₄ := ↑(C.u * C'.u)⁻¹ ^ 4 * (W.a₄ - (↑C'.u * C.s + C'.s) * W.a₃ + 2 * (C.r * ↑C'.u ^ 2 + C'.r) * W.a₂ - (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t + (C.r * ↑C'.u ^ 2 + C'.r) * (↑C'.u * C.s + C'.s)) * W.a₁ + 3 * (C.r * ↑C'.u ^ 2 + C'.r) ^ 2 - 2 * (↑C'.u * C.s + C'.s) * (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t)), a₆ := ↑(C.u * C'.u)⁻¹ ^ 6 * (W.a₆ + (C.r * ↑C'.u ^ 2 + C'.r) * W.a₄ + (C.r * ↑C'.u ^ 2 + C'.r) ^ 2 * W.a₂ + (C.r * ↑C'.u ^ 2 + C'.r) ^ 3 - (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t) * W.a₃ - (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t) ^ 2 - (C.r * ↑C'.u ^ 2 + C'.r) * (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t) * W.a₁) }.a₃ = { a₁ := ↑C.u⁻¹ * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s) + 2 * C.s), a₂ := ↑C.u⁻¹ ^ 2 * (↑C'.u⁻¹ ^ 2 * (W.a₂ - C'.s * W.a₁ + 3 * C'.r - C'.s ^ 2) - C.s * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s)) + 3 * C.r - C.s ^ 2), a₃ := ↑C.u⁻¹ ^ 3 * (↑C'.u⁻¹ ^ 3 * (W.a₃ + C'.r * W.a₁ + 2 * C'.t) + C.r * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s)) + 2 * C.t), a₄ := ↑C.u⁻¹ ^ 4 * (↑C'.u⁻¹ ^ 4 * (W.a₄ - C'.s * W.a₃ + 2 * C'.r * W.a₂ - (C'.t + C'.r * C'.s) * W.a₁ + 3 * C'.r ^ 2 - 2 * C'.s * C'.t) - C.s * (↑C'.u⁻¹ ^ 3 * (W.a₃ + C'.r * W.a₁ + 2 * C'.t)) + 2 * C.r * (↑C'.u⁻¹ ^ 2 * (W.a₂ - C'.s * W.a₁ + 3 * C'.r - C'.s ^ 2)) - (C.t + C.r * C.s) * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s)) + 3 * C.r ^ 2 - 2 * C.s * C.t), a₆ := ↑C.u⁻¹ ^ 6 * (↑C'.u⁻¹ ^ 6 * (W.a₆ + C'.r * W.a₄ + C'.r ^ 2 * W.a₂ + C'.r ^ 3 - C'.t * W.a₃ - C'.t ^ 2 - C'.r * C'.t * W.a₁) + C.r * (↑C'.u⁻¹ ^ 4 * (W.a₄ - C'.s * W.a₃ + 2 * C'.r * W.a₂ - (C'.t + C'.r * C'.s) * W.a₁ + 3 * C'.r ^ 2 - 2 * C'.s * C'.t)) + C.r ^ 2 * (↑C'.u⁻¹ ^ 2 * (W.a₂ - C'.s * W.a₁ + 3 * C'.r - C'.s ^ 2)) + C.r ^ 3 - C.t * (↑C'.u⁻¹ ^ 3 * (W.a₃ + C'.r * W.a₁ + 2 * C'.t)) - C.t ^ 2 - C.r * C.t * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s))) }.a₃ [PROOFSTEP] simp only [mul_inv, Units.val_mul] [GOAL] case a₄ R : Type u inst✝ : CommRing R W✝ : WeierstrassCurve R C✝ C C' : VariableChange R W : WeierstrassCurve R ⊢ { a₁ := ↑(C.u * C'.u)⁻¹ * (W.a₁ + 2 * (↑C'.u * C.s + C'.s)), a₂ := ↑(C.u * C'.u)⁻¹ ^ 2 * (W.a₂ - (↑C'.u * C.s + C'.s) * W.a₁ + 3 * (C.r * ↑C'.u ^ 2 + C'.r) - (↑C'.u * C.s + C'.s) ^ 2), a₃ := ↑(C.u * C'.u)⁻¹ ^ 3 * (W.a₃ + (C.r * ↑C'.u ^ 2 + C'.r) * W.a₁ + 2 * (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t)), a₄ := ↑(C.u * C'.u)⁻¹ ^ 4 * (W.a₄ - (↑C'.u * C.s + C'.s) * W.a₃ + 2 * (C.r * ↑C'.u ^ 2 + C'.r) * W.a₂ - (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t + (C.r * ↑C'.u ^ 2 + C'.r) * (↑C'.u * C.s + C'.s)) * W.a₁ + 3 * (C.r * ↑C'.u ^ 2 + C'.r) ^ 2 - 2 * (↑C'.u * C.s + C'.s) * (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t)), a₆ := ↑(C.u * C'.u)⁻¹ ^ 6 * (W.a₆ + (C.r * ↑C'.u ^ 2 + C'.r) * W.a₄ + (C.r * ↑C'.u ^ 2 + C'.r) ^ 2 * W.a₂ + (C.r * ↑C'.u ^ 2 + C'.r) ^ 3 - (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t) * W.a₃ - (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t) ^ 2 - (C.r * ↑C'.u ^ 2 + C'.r) * (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t) * W.a₁) }.a₄ = { a₁ := ↑C.u⁻¹ * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s) + 2 * C.s), a₂ := ↑C.u⁻¹ ^ 2 * (↑C'.u⁻¹ ^ 2 * (W.a₂ - C'.s * W.a₁ + 3 * C'.r - C'.s ^ 2) - C.s * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s)) + 3 * C.r - C.s ^ 2), a₃ := ↑C.u⁻¹ ^ 3 * (↑C'.u⁻¹ ^ 3 * (W.a₃ + C'.r * W.a₁ + 2 * C'.t) + C.r * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s)) + 2 * C.t), a₄ := ↑C.u⁻¹ ^ 4 * (↑C'.u⁻¹ ^ 4 * (W.a₄ - C'.s * W.a₃ + 2 * C'.r * W.a₂ - (C'.t + C'.r * C'.s) * W.a₁ + 3 * C'.r ^ 2 - 2 * C'.s * C'.t) - C.s * (↑C'.u⁻¹ ^ 3 * (W.a₃ + C'.r * W.a₁ + 2 * C'.t)) + 2 * C.r * (↑C'.u⁻¹ ^ 2 * (W.a₂ - C'.s * W.a₁ + 3 * C'.r - C'.s ^ 2)) - (C.t + C.r * C.s) * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s)) + 3 * C.r ^ 2 - 2 * C.s * C.t), a₆ := ↑C.u⁻¹ ^ 6 * (↑C'.u⁻¹ ^ 6 * (W.a₆ + C'.r * W.a₄ + C'.r ^ 2 * W.a₂ + C'.r ^ 3 - C'.t * W.a₃ - C'.t ^ 2 - C'.r * C'.t * W.a₁) + C.r * (↑C'.u⁻¹ ^ 4 * (W.a₄ - C'.s * W.a₃ + 2 * C'.r * W.a₂ - (C'.t + C'.r * C'.s) * W.a₁ + 3 * C'.r ^ 2 - 2 * C'.s * C'.t)) + C.r ^ 2 * (↑C'.u⁻¹ ^ 2 * (W.a₂ - C'.s * W.a₁ + 3 * C'.r - C'.s ^ 2)) + C.r ^ 3 - C.t * (↑C'.u⁻¹ ^ 3 * (W.a₃ + C'.r * W.a₁ + 2 * C'.t)) - C.t ^ 2 - C.r * C.t * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s))) }.a₄ [PROOFSTEP] simp only [mul_inv, Units.val_mul] [GOAL] case a₆ R : Type u inst✝ : CommRing R W✝ : WeierstrassCurve R C✝ C C' : VariableChange R W : WeierstrassCurve R ⊢ { a₁ := ↑(C.u * C'.u)⁻¹ * (W.a₁ + 2 * (↑C'.u * C.s + C'.s)), a₂ := ↑(C.u * C'.u)⁻¹ ^ 2 * (W.a₂ - (↑C'.u * C.s + C'.s) * W.a₁ + 3 * (C.r * ↑C'.u ^ 2 + C'.r) - (↑C'.u * C.s + C'.s) ^ 2), a₃ := ↑(C.u * C'.u)⁻¹ ^ 3 * (W.a₃ + (C.r * ↑C'.u ^ 2 + C'.r) * W.a₁ + 2 * (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t)), a₄ := ↑(C.u * C'.u)⁻¹ ^ 4 * (W.a₄ - (↑C'.u * C.s + C'.s) * W.a₃ + 2 * (C.r * ↑C'.u ^ 2 + C'.r) * W.a₂ - (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t + (C.r * ↑C'.u ^ 2 + C'.r) * (↑C'.u * C.s + C'.s)) * W.a₁ + 3 * (C.r * ↑C'.u ^ 2 + C'.r) ^ 2 - 2 * (↑C'.u * C.s + C'.s) * (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t)), a₆ := ↑(C.u * C'.u)⁻¹ ^ 6 * (W.a₆ + (C.r * ↑C'.u ^ 2 + C'.r) * W.a₄ + (C.r * ↑C'.u ^ 2 + C'.r) ^ 2 * W.a₂ + (C.r * ↑C'.u ^ 2 + C'.r) ^ 3 - (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t) * W.a₃ - (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t) ^ 2 - (C.r * ↑C'.u ^ 2 + C'.r) * (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t) * W.a₁) }.a₆ = { a₁ := ↑C.u⁻¹ * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s) + 2 * C.s), a₂ := ↑C.u⁻¹ ^ 2 * (↑C'.u⁻¹ ^ 2 * (W.a₂ - C'.s * W.a₁ + 3 * C'.r - C'.s ^ 2) - C.s * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s)) + 3 * C.r - C.s ^ 2), a₃ := ↑C.u⁻¹ ^ 3 * (↑C'.u⁻¹ ^ 3 * (W.a₃ + C'.r * W.a₁ + 2 * C'.t) + C.r * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s)) + 2 * C.t), a₄ := ↑C.u⁻¹ ^ 4 * (↑C'.u⁻¹ ^ 4 * (W.a₄ - C'.s * W.a₃ + 2 * C'.r * W.a₂ - (C'.t + C'.r * C'.s) * W.a₁ + 3 * C'.r ^ 2 - 2 * C'.s * C'.t) - C.s * (↑C'.u⁻¹ ^ 3 * (W.a₃ + C'.r * W.a₁ + 2 * C'.t)) + 2 * C.r * (↑C'.u⁻¹ ^ 2 * (W.a₂ - C'.s * W.a₁ + 3 * C'.r - C'.s ^ 2)) - (C.t + C.r * C.s) * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s)) + 3 * C.r ^ 2 - 2 * C.s * C.t), a₆ := ↑C.u⁻¹ ^ 6 * (↑C'.u⁻¹ ^ 6 * (W.a₆ + C'.r * W.a₄ + C'.r ^ 2 * W.a₂ + C'.r ^ 3 - C'.t * W.a₃ - C'.t ^ 2 - C'.r * C'.t * W.a₁) + C.r * (↑C'.u⁻¹ ^ 4 * (W.a₄ - C'.s * W.a₃ + 2 * C'.r * W.a₂ - (C'.t + C'.r * C'.s) * W.a₁ + 3 * C'.r ^ 2 - 2 * C'.s * C'.t)) + C.r ^ 2 * (↑C'.u⁻¹ ^ 2 * (W.a₂ - C'.s * W.a₁ + 3 * C'.r - C'.s ^ 2)) + C.r ^ 3 - C.t * (↑C'.u⁻¹ ^ 3 * (W.a₃ + C'.r * W.a₁ + 2 * C'.t)) - C.t ^ 2 - C.r * C.t * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s))) }.a₆ [PROOFSTEP] simp only [mul_inv, Units.val_mul] [GOAL] case a₁ R : Type u inst✝ : CommRing R W✝ : WeierstrassCurve R C✝ C C' : VariableChange R W : WeierstrassCurve R ⊢ ↑C.u⁻¹ * ↑C'.u⁻¹ * (W.a₁ + 2 * (↑C'.u * C.s + C'.s)) = ↑C.u⁻¹ * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s) + 2 * C.s) [PROOFSTEP] linear_combination (norm := ring1) ↑C.u⁻¹ * C.s * 2 * C'.u.inv_mul [GOAL] case a R : Type u inst✝ : CommRing R W✝ : WeierstrassCurve R C✝ C C' : VariableChange R W : WeierstrassCurve R ⊢ ↑C.u⁻¹ * ↑C'.u⁻¹ * (W.a₁ + 2 * (↑C'.u * C.s + C'.s)) - ↑C.u⁻¹ * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s) + 2 * C.s) - (↑C.u⁻¹ * C.s * 2 * (↑C'.u⁻¹ * ↑C'.u) - ↑C.u⁻¹ * C.s * 2 * 1) = 0 [PROOFSTEP] ring1 [GOAL] case a₂ R : Type u inst✝ : CommRing R W✝ : WeierstrassCurve R C✝ C C' : VariableChange R W : WeierstrassCurve R ⊢ (↑C.u⁻¹ * ↑C'.u⁻¹) ^ 2 * (W.a₂ - (↑C'.u * C.s + C'.s) * W.a₁ + 3 * (C.r * ↑C'.u ^ 2 + C'.r) - (↑C'.u * C.s + C'.s) ^ 2) = ↑C.u⁻¹ ^ 2 * (↑C'.u⁻¹ ^ 2 * (W.a₂ - C'.s * W.a₁ + 3 * C'.r - C'.s ^ 2) - C.s * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s)) + 3 * C.r - C.s ^ 2) [PROOFSTEP] linear_combination (norm := ring1) C.s * (-C'.s * 2 - W.a₁) * (↑C.u⁻¹ : R) ^ 2 * ↑C'.u⁻¹ * C'.u.inv_mul + (C.r * 3 - C.s ^ 2) * (↑C.u⁻¹ : R) ^ 2 * pow_mul_pow_eq_one 2 C'.u.inv_mul [GOAL] case a R : Type u inst✝ : CommRing R W✝ : WeierstrassCurve R C✝ C C' : VariableChange R W : WeierstrassCurve R ⊢ (↑C.u⁻¹ * ↑C'.u⁻¹) ^ 2 * (W.a₂ - (↑C'.u * C.s + C'.s) * W.a₁ + 3 * (C.r * ↑C'.u ^ 2 + C'.r) - (↑C'.u * C.s + C'.s) ^ 2) - ↑C.u⁻¹ ^ 2 * (↑C'.u⁻¹ ^ 2 * (W.a₂ - C'.s * W.a₁ + 3 * C'.r - C'.s ^ 2) - C.s * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s)) + 3 * C.r - C.s ^ 2) - (C.s * (-C'.s * 2 - W.a₁) * ↑C.u⁻¹ ^ 2 * ↑C'.u⁻¹ * (↑C'.u⁻¹ * ↑C'.u) + (C.r * 3 - C.s ^ 2) * ↑C.u⁻¹ ^ 2 * (↑C'.u⁻¹ ^ 2 * ↑C'.u ^ 2) - (C.s * (-C'.s * 2 - W.a₁) * ↑C.u⁻¹ ^ 2 * ↑C'.u⁻¹ * 1 + (C.r * 3 - C.s ^ 2) * ↑C.u⁻¹ ^ 2 * 1)) = 0 [PROOFSTEP] ring1 [GOAL] case a₃ R : Type u inst✝ : CommRing R W✝ : WeierstrassCurve R C✝ C C' : VariableChange R W : WeierstrassCurve R ⊢ (↑C.u⁻¹ * ↑C'.u⁻¹) ^ 3 * (W.a₃ + (C.r * ↑C'.u ^ 2 + C'.r) * W.a₁ + 2 * (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t)) = ↑C.u⁻¹ ^ 3 * (↑C'.u⁻¹ ^ 3 * (W.a₃ + C'.r * W.a₁ + 2 * C'.t) + C.r * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s)) + 2 * C.t) [PROOFSTEP] linear_combination (norm := ring1) C.r * (C'.s * 2 + W.a₁) * (↑C.u⁻¹ : R) ^ 3 * ↑C'.u⁻¹ * pow_mul_pow_eq_one 2 C'.u.inv_mul + C.t * 2 * (↑C.u⁻¹ : R) ^ 3 * pow_mul_pow_eq_one 3 C'.u.inv_mul [GOAL] case a R : Type u inst✝ : CommRing R W✝ : WeierstrassCurve R C✝ C C' : VariableChange R W : WeierstrassCurve R ⊢ (↑C.u⁻¹ * ↑C'.u⁻¹) ^ 3 * (W.a₃ + (C.r * ↑C'.u ^ 2 + C'.r) * W.a₁ + 2 * (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t)) - ↑C.u⁻¹ ^ 3 * (↑C'.u⁻¹ ^ 3 * (W.a₃ + C'.r * W.a₁ + 2 * C'.t) + C.r * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s)) + 2 * C.t) - (C.r * (C'.s * 2 + W.a₁) * ↑C.u⁻¹ ^ 3 * ↑C'.u⁻¹ * (↑C'.u⁻¹ ^ 2 * ↑C'.u ^ 2) + C.t * 2 * ↑C.u⁻¹ ^ 3 * (↑C'.u⁻¹ ^ 3 * ↑C'.u ^ 3) - (C.r * (C'.s * 2 + W.a₁) * ↑C.u⁻¹ ^ 3 * ↑C'.u⁻¹ * 1 + C.t * 2 * ↑C.u⁻¹ ^ 3 * 1)) = 0 [PROOFSTEP] ring1 [GOAL] case a₄ R : Type u inst✝ : CommRing R W✝ : WeierstrassCurve R C✝ C C' : VariableChange R W : WeierstrassCurve R ⊢ (↑C.u⁻¹ * ↑C'.u⁻¹) ^ 4 * (W.a₄ - (↑C'.u * C.s + C'.s) * W.a₃ + 2 * (C.r * ↑C'.u ^ 2 + C'.r) * W.a₂ - (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t + (C.r * ↑C'.u ^ 2 + C'.r) * (↑C'.u * C.s + C'.s)) * W.a₁ + 3 * (C.r * ↑C'.u ^ 2 + C'.r) ^ 2 - 2 * (↑C'.u * C.s + C'.s) * (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t)) = ↑C.u⁻¹ ^ 4 * (↑C'.u⁻¹ ^ 4 * (W.a₄ - C'.s * W.a₃ + 2 * C'.r * W.a₂ - (C'.t + C'.r * C'.s) * W.a₁ + 3 * C'.r ^ 2 - 2 * C'.s * C'.t) - C.s * (↑C'.u⁻¹ ^ 3 * (W.a₃ + C'.r * W.a₁ + 2 * C'.t)) + 2 * C.r * (↑C'.u⁻¹ ^ 2 * (W.a₂ - C'.s * W.a₁ + 3 * C'.r - C'.s ^ 2)) - (C.t + C.r * C.s) * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s)) + 3 * C.r ^ 2 - 2 * C.s * C.t) [PROOFSTEP] linear_combination (norm := ring1) C.s * (-W.a₃ - C'.r * W.a₁ - C'.t * 2) * (↑C.u⁻¹ : R) ^ 4 * (↑C'.u⁻¹ : R) ^ 3 * C'.u.inv_mul + (↑C.u⁻¹ : R) ^ 4 * (↑C'.u⁻¹ : R) ^ 2 * (C.r * C'.r * 6 + C.r * W.a₂ * 2 - C'.s * C.r * W.a₁ * 2 - C'.s ^ 2 * C.r * 2) * pow_mul_pow_eq_one 2 C'.u.inv_mul + -(↑C.u⁻¹ : R) ^ 4 * ↑C'.u⁻¹ * (C.s * C'.s * C.r * 2 + C.s * C.r * W.a₁ + C'.s * C.t * 2 + C.t * W.a₁) * pow_mul_pow_eq_one 3 C'.u.inv_mul + (↑C.u⁻¹ : R) ^ 4 * (C.r ^ 2 * 3 - C.s * C.t * 2) * pow_mul_pow_eq_one 4 C'.u.inv_mul [GOAL] case a R : Type u inst✝ : CommRing R W✝ : WeierstrassCurve R C✝ C C' : VariableChange R W : WeierstrassCurve R ⊢ (↑C.u⁻¹ * ↑C'.u⁻¹) ^ 4 * (W.a₄ - (↑C'.u * C.s + C'.s) * W.a₃ + 2 * (C.r * ↑C'.u ^ 2 + C'.r) * W.a₂ - (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t + (C.r * ↑C'.u ^ 2 + C'.r) * (↑C'.u * C.s + C'.s)) * W.a₁ + 3 * (C.r * ↑C'.u ^ 2 + C'.r) ^ 2 - 2 * (↑C'.u * C.s + C'.s) * (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t)) - ↑C.u⁻¹ ^ 4 * (↑C'.u⁻¹ ^ 4 * (W.a₄ - C'.s * W.a₃ + 2 * C'.r * W.a₂ - (C'.t + C'.r * C'.s) * W.a₁ + 3 * C'.r ^ 2 - 2 * C'.s * C'.t) - C.s * (↑C'.u⁻¹ ^ 3 * (W.a₃ + C'.r * W.a₁ + 2 * C'.t)) + 2 * C.r * (↑C'.u⁻¹ ^ 2 * (W.a₂ - C'.s * W.a₁ + 3 * C'.r - C'.s ^ 2)) - (C.t + C.r * C.s) * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s)) + 3 * C.r ^ 2 - 2 * C.s * C.t) - (C.s * (-W.a₃ - C'.r * W.a₁ - C'.t * 2) * ↑C.u⁻¹ ^ 4 * ↑C'.u⁻¹ ^ 3 * (↑C'.u⁻¹ * ↑C'.u) + ↑C.u⁻¹ ^ 4 * ↑C'.u⁻¹ ^ 2 * (C.r * C'.r * 6 + C.r * W.a₂ * 2 - C'.s * C.r * W.a₁ * 2 - C'.s ^ 2 * C.r * 2) * (↑C'.u⁻¹ ^ 2 * ↑C'.u ^ 2) + -↑C.u⁻¹ ^ 4 * ↑C'.u⁻¹ * (C.s * C'.s * C.r * 2 + C.s * C.r * W.a₁ + C'.s * C.t * 2 + C.t * W.a₁) * (↑C'.u⁻¹ ^ 3 * ↑C'.u ^ 3) + ↑C.u⁻¹ ^ 4 * (C.r ^ 2 * 3 - C.s * C.t * 2) * (↑C'.u⁻¹ ^ 4 * ↑C'.u ^ 4) - (C.s * (-W.a₃ - C'.r * W.a₁ - C'.t * 2) * ↑C.u⁻¹ ^ 4 * ↑C'.u⁻¹ ^ 3 * 1 + ↑C.u⁻¹ ^ 4 * ↑C'.u⁻¹ ^ 2 * (C.r * C'.r * 6 + C.r * W.a₂ * 2 - C'.s * C.r * W.a₁ * 2 - C'.s ^ 2 * C.r * 2) * 1 + -↑C.u⁻¹ ^ 4 * ↑C'.u⁻¹ * (C.s * C'.s * C.r * 2 + C.s * C.r * W.a₁ + C'.s * C.t * 2 + C.t * W.a₁) * 1 + ↑C.u⁻¹ ^ 4 * (C.r ^ 2 * 3 - C.s * C.t * 2) * 1)) = 0 [PROOFSTEP] ring1 [GOAL] case a₆ R : Type u inst✝ : CommRing R W✝ : WeierstrassCurve R C✝ C C' : VariableChange R W : WeierstrassCurve R ⊢ (↑C.u⁻¹ * ↑C'.u⁻¹) ^ 6 * (W.a₆ + (C.r * ↑C'.u ^ 2 + C'.r) * W.a₄ + (C.r * ↑C'.u ^ 2 + C'.r) ^ 2 * W.a₂ + (C.r * ↑C'.u ^ 2 + C'.r) ^ 3 - (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t) * W.a₃ - (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t) ^ 2 - (C.r * ↑C'.u ^ 2 + C'.r) * (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t) * W.a₁) = ↑C.u⁻¹ ^ 6 * (↑C'.u⁻¹ ^ 6 * (W.a₆ + C'.r * W.a₄ + C'.r ^ 2 * W.a₂ + C'.r ^ 3 - C'.t * W.a₃ - C'.t ^ 2 - C'.r * C'.t * W.a₁) + C.r * (↑C'.u⁻¹ ^ 4 * (W.a₄ - C'.s * W.a₃ + 2 * C'.r * W.a₂ - (C'.t + C'.r * C'.s) * W.a₁ + 3 * C'.r ^ 2 - 2 * C'.s * C'.t)) + C.r ^ 2 * (↑C'.u⁻¹ ^ 2 * (W.a₂ - C'.s * W.a₁ + 3 * C'.r - C'.s ^ 2)) + C.r ^ 3 - C.t * (↑C'.u⁻¹ ^ 3 * (W.a₃ + C'.r * W.a₁ + 2 * C'.t)) - C.t ^ 2 - C.r * C.t * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s))) [PROOFSTEP] linear_combination (norm := ring1) C.r * (↑C.u⁻¹ : R) ^ 6 * (↑C'.u⁻¹ : R) ^ 4 * (C'.r * W.a₂ * 2 - C'.r * C'.s * W.a₁ + C'.r ^ 2 * 3 + W.a₄ - C'.s * C'.t * 2 - C'.s * W.a₃ - C'.t * W.a₁) * pow_mul_pow_eq_one 2 C'.u.inv_mul + -(↑C.u⁻¹ : R) ^ 6 * (↑C'.u⁻¹ : R) ^ 3 * C.t * (C'.r * W.a₁ + C'.t * 2 + W.a₃) * pow_mul_pow_eq_one 3 C'.u.inv_mul + C.r ^ 2 * (↑C.u⁻¹ : R) ^ 6 * (↑C'.u⁻¹ : R) ^ 2 * (C'.r * 3 + W.a₂ - C'.s * W.a₁ - C'.s ^ 2) * pow_mul_pow_eq_one 4 C'.u.inv_mul + -C.r * C.t * (↑C.u⁻¹ : R) ^ 6 * ↑C'.u⁻¹ * (C'.s * 2 + W.a₁) * pow_mul_pow_eq_one 5 C'.u.inv_mul + (↑C.u⁻¹ : R) ^ 6 * (C.r ^ 3 - C.t ^ 2) * pow_mul_pow_eq_one 6 C'.u.inv_mul [GOAL] case a R : Type u inst✝ : CommRing R W✝ : WeierstrassCurve R C✝ C C' : VariableChange R W : WeierstrassCurve R ⊢ (↑C.u⁻¹ * ↑C'.u⁻¹) ^ 6 * (W.a₆ + (C.r * ↑C'.u ^ 2 + C'.r) * W.a₄ + (C.r * ↑C'.u ^ 2 + C'.r) ^ 2 * W.a₂ + (C.r * ↑C'.u ^ 2 + C'.r) ^ 3 - (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t) * W.a₃ - (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t) ^ 2 - (C.r * ↑C'.u ^ 2 + C'.r) * (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t) * W.a₁) - ↑C.u⁻¹ ^ 6 * (↑C'.u⁻¹ ^ 6 * (W.a₆ + C'.r * W.a₄ + C'.r ^ 2 * W.a₂ + C'.r ^ 3 - C'.t * W.a₃ - C'.t ^ 2 - C'.r * C'.t * W.a₁) + C.r * (↑C'.u⁻¹ ^ 4 * (W.a₄ - C'.s * W.a₃ + 2 * C'.r * W.a₂ - (C'.t + C'.r * C'.s) * W.a₁ + 3 * C'.r ^ 2 - 2 * C'.s * C'.t)) + C.r ^ 2 * (↑C'.u⁻¹ ^ 2 * (W.a₂ - C'.s * W.a₁ + 3 * C'.r - C'.s ^ 2)) + C.r ^ 3 - C.t * (↑C'.u⁻¹ ^ 3 * (W.a₃ + C'.r * W.a₁ + 2 * C'.t)) - C.t ^ 2 - C.r * C.t * (↑C'.u⁻¹ * (W.a₁ + 2 * C'.s))) - (C.r * ↑C.u⁻¹ ^ 6 * ↑C'.u⁻¹ ^ 4 * (C'.r * W.a₂ * 2 - C'.r * C'.s * W.a₁ + C'.r ^ 2 * 3 + W.a₄ - C'.s * C'.t * 2 - C'.s * W.a₃ - C'.t * W.a₁) * (↑C'.u⁻¹ ^ 2 * ↑C'.u ^ 2) + -↑C.u⁻¹ ^ 6 * ↑C'.u⁻¹ ^ 3 * C.t * (C'.r * W.a₁ + C'.t * 2 + W.a₃) * (↑C'.u⁻¹ ^ 3 * ↑C'.u ^ 3) + C.r ^ 2 * ↑C.u⁻¹ ^ 6 * ↑C'.u⁻¹ ^ 2 * (C'.r * 3 + W.a₂ - C'.s * W.a₁ - C'.s ^ 2) * (↑C'.u⁻¹ ^ 4 * ↑C'.u ^ 4) + -C.r * C.t * ↑C.u⁻¹ ^ 6 * ↑C'.u⁻¹ * (C'.s * 2 + W.a₁) * (↑C'.u⁻¹ ^ 5 * ↑C'.u ^ 5) + ↑C.u⁻¹ ^ 6 * (C.r ^ 3 - C.t ^ 2) * (↑C'.u⁻¹ ^ 6 * ↑C'.u ^ 6) - (C.r * ↑C.u⁻¹ ^ 6 * ↑C'.u⁻¹ ^ 4 * (C'.r * W.a₂ * 2 - C'.r * C'.s * W.a₁ + C'.r ^ 2 * 3 + W.a₄ - C'.s * C'.t * 2 - C'.s * W.a₃ - C'.t * W.a₁) * 1 + -↑C.u⁻¹ ^ 6 * ↑C'.u⁻¹ ^ 3 * C.t * (C'.r * W.a₁ + C'.t * 2 + W.a₃) * 1 + C.r ^ 2 * ↑C.u⁻¹ ^ 6 * ↑C'.u⁻¹ ^ 2 * (C'.r * 3 + W.a₂ - C'.s * W.a₁ - C'.s ^ 2) * 1 + -C.r * C.t * ↑C.u⁻¹ ^ 6 * ↑C'.u⁻¹ * (C'.s * 2 + W.a₁) * 1 + ↑C.u⁻¹ ^ 6 * (C.r ^ 3 - C.t ^ 2) * 1)) = 0 [PROOFSTEP] ring1 [GOAL] R : Type u inst✝ : CommRing R W : WeierstrassCurve R C : VariableChange R ⊢ b₂ (variableChange W C) = ↑C.u⁻¹ ^ 2 * (b₂ W + 12 * C.r) [PROOFSTEP] simp only [b₂, variableChange_a₁, variableChange_a₂] [GOAL] R : Type u inst✝ : CommRing R W : WeierstrassCurve R C : VariableChange R ⊢ (↑C.u⁻¹ * (W.a₁ + 2 * C.s)) ^ 2 + 4 * (↑C.u⁻¹ ^ 2 * (W.a₂ - C.s * W.a₁ + 3 * C.r - C.s ^ 2)) = ↑C.u⁻¹ ^ 2 * (W.a₁ ^ 2 + 4 * W.a₂ + 12 * C.r) [PROOFSTEP] ring1 [GOAL] R : Type u inst✝ : CommRing R W : WeierstrassCurve R C : VariableChange R ⊢ b₄ (variableChange W C) = ↑C.u⁻¹ ^ 4 * (b₄ W + C.r * b₂ W + 6 * C.r ^ 2) [PROOFSTEP] simp only [b₂, b₄, variableChange_a₁, variableChange_a₃, variableChange_a₄] [GOAL] R : Type u inst✝ : CommRing R W : WeierstrassCurve R C : VariableChange R ⊢ 2 * (↑C.u⁻¹ ^ 4 * (W.a₄ - C.s * W.a₃ + 2 * C.r * W.a₂ - (C.t + C.r * C.s) * W.a₁ + 3 * C.r ^ 2 - 2 * C.s * C.t)) + ↑C.u⁻¹ * (W.a₁ + 2 * C.s) * (↑C.u⁻¹ ^ 3 * (W.a₃ + C.r * W.a₁ + 2 * C.t)) = ↑C.u⁻¹ ^ 4 * (2 * W.a₄ + W.a₁ * W.a₃ + C.r * (W.a₁ ^ 2 + 4 * W.a₂) + 6 * C.r ^ 2) [PROOFSTEP] ring1 [GOAL] R : Type u inst✝ : CommRing R W : WeierstrassCurve R C : VariableChange R ⊢ b₆ (variableChange W C) = ↑C.u⁻¹ ^ 6 * (b₆ W + 2 * C.r * b₄ W + C.r ^ 2 * b₂ W + 4 * C.r ^ 3) [PROOFSTEP] simp only [b₂, b₄, b₆, variableChange_a₃, variableChange_a₆] [GOAL] R : Type u inst✝ : CommRing R W : WeierstrassCurve R C : VariableChange R ⊢ (↑C.u⁻¹ ^ 3 * (W.a₃ + C.r * W.a₁ + 2 * C.t)) ^ 2 + 4 * (↑C.u⁻¹ ^ 6 * (W.a₆ + C.r * W.a₄ + C.r ^ 2 * W.a₂ + C.r ^ 3 - C.t * W.a₃ - C.t ^ 2 - C.r * C.t * W.a₁)) = ↑C.u⁻¹ ^ 6 * (W.a₃ ^ 2 + 4 * W.a₆ + 2 * C.r * (2 * W.a₄ + W.a₁ * W.a₃) + C.r ^ 2 * (W.a₁ ^ 2 + 4 * W.a₂) + 4 * C.r ^ 3) [PROOFSTEP] ring1 [GOAL] R : Type u inst✝ : CommRing R W : WeierstrassCurve R C : VariableChange R ⊢ b₈ (variableChange W C) = ↑C.u⁻¹ ^ 8 * (b₈ W + 3 * C.r * b₆ W + 3 * C.r ^ 2 * b₄ W + C.r ^ 3 * b₂ W + 3 * C.r ^ 4) [PROOFSTEP] simp only [b₂, b₄, b₆, b₈, variableChange_a₁, variableChange_a₂, variableChange_a₃, variableChange_a₄, variableChange_a₆] [GOAL] R : Type u inst✝ : CommRing R W : WeierstrassCurve R C : VariableChange R ⊢ (↑C.u⁻¹ * (W.a₁ + 2 * C.s)) ^ 2 * (↑C.u⁻¹ ^ 6 * (W.a₆ + C.r * W.a₄ + C.r ^ 2 * W.a₂ + C.r ^ 3 - C.t * W.a₃ - C.t ^ 2 - C.r * C.t * W.a₁)) + 4 * (↑C.u⁻¹ ^ 2 * (W.a₂ - C.s * W.a₁ + 3 * C.r - C.s ^ 2)) * (↑C.u⁻¹ ^ 6 * (W.a₆ + C.r * W.a₄ + C.r ^ 2 * W.a₂ + C.r ^ 3 - C.t * W.a₃ - C.t ^ 2 - C.r * C.t * W.a₁)) - ↑C.u⁻¹ * (W.a₁ + 2 * C.s) * (↑C.u⁻¹ ^ 3 * (W.a₃ + C.r * W.a₁ + 2 * C.t)) * (↑C.u⁻¹ ^ 4 * (W.a₄ - C.s * W.a₃ + 2 * C.r * W.a₂ - (C.t + C.r * C.s) * W.a₁ + 3 * C.r ^ 2 - 2 * C.s * C.t)) + ↑C.u⁻¹ ^ 2 * (W.a₂ - C.s * W.a₁ + 3 * C.r - C.s ^ 2) * (↑C.u⁻¹ ^ 3 * (W.a₃ + C.r * W.a₁ + 2 * C.t)) ^ 2 - (↑C.u⁻¹ ^ 4 * (W.a₄ - C.s * W.a₃ + 2 * C.r * W.a₂ - (C.t + C.r * C.s) * W.a₁ + 3 * C.r ^ 2 - 2 * C.s * C.t)) ^ 2 = ↑C.u⁻¹ ^ 8 * (W.a₁ ^ 2 * W.a₆ + 4 * W.a₂ * W.a₆ - W.a₁ * W.a₃ * W.a₄ + W.a₂ * W.a₃ ^ 2 - W.a₄ ^ 2 + 3 * C.r * (W.a₃ ^ 2 + 4 * W.a₆) + 3 * C.r ^ 2 * (2 * W.a₄ + W.a₁ * W.a₃) + C.r ^ 3 * (W.a₁ ^ 2 + 4 * W.a₂) + 3 * C.r ^ 4) [PROOFSTEP] ring1 [GOAL] R : Type u inst✝ : CommRing R W : WeierstrassCurve R C : VariableChange R ⊢ c₄ (variableChange W C) = ↑C.u⁻¹ ^ 4 * c₄ W [PROOFSTEP] simp only [c₄, variableChange_b₂, variableChange_b₄] [GOAL] R : Type u inst✝ : CommRing R W : WeierstrassCurve R C : VariableChange R ⊢ (↑C.u⁻¹ ^ 2 * (b₂ W + 12 * C.r)) ^ 2 - 24 * (↑C.u⁻¹ ^ 4 * (b₄ W + C.r * b₂ W + 6 * C.r ^ 2)) = ↑C.u⁻¹ ^ 4 * (b₂ W ^ 2 - 24 * b₄ W) [PROOFSTEP] ring1 [GOAL] R : Type u inst✝ : CommRing R W : WeierstrassCurve R C : VariableChange R ⊢ c₆ (variableChange W C) = ↑C.u⁻¹ ^ 6 * c₆ W [PROOFSTEP] simp only [c₆, variableChange_b₂, variableChange_b₄, variableChange_b₆] [GOAL] R : Type u inst✝ : CommRing R W : WeierstrassCurve R C : VariableChange R ⊢ -(↑C.u⁻¹ ^ 2 * (b₂ W + 12 * C.r)) ^ 3 + 36 * (↑C.u⁻¹ ^ 2 * (b₂ W + 12 * C.r)) * (↑C.u⁻¹ ^ 4 * (b₄ W + C.r * b₂ W + 6 * C.r ^ 2)) - 216 * (↑C.u⁻¹ ^ 6 * (b₆ W + 2 * C.r * b₄ W + C.r ^ 2 * b₂ W + 4 * C.r ^ 3)) = ↑C.u⁻¹ ^ 6 * (-b₂ W ^ 3 + 36 * b₂ W * b₄ W - 216 * b₆ W) [PROOFSTEP] ring1 [GOAL] R : Type u inst✝ : CommRing R W : WeierstrassCurve R C : VariableChange R ⊢ Δ (variableChange W C) = ↑C.u⁻¹ ^ 12 * Δ W [PROOFSTEP] simp only [b₂, b₄, b₆, b₈, Δ, variableChange_a₁, variableChange_a₂, variableChange_a₃, variableChange_a₄, variableChange_a₆] [GOAL] R : Type u inst✝ : CommRing R W : WeierstrassCurve R C : VariableChange R ⊢ -((↑C.u⁻¹ * (W.a₁ + 2 * C.s)) ^ 2 + 4 * (↑C.u⁻¹ ^ 2 * (W.a₂ - C.s * W.a₁ + 3 * C.r - C.s ^ 2))) ^ 2 * ((↑C.u⁻¹ * (W.a₁ + 2 * C.s)) ^ 2 * (↑C.u⁻¹ ^ 6 * (W.a₆ + C.r * W.a₄ + C.r ^ 2 * W.a₂ + C.r ^ 3 - C.t * W.a₃ - C.t ^ 2 - C.r * C.t * W.a₁)) + 4 * (↑C.u⁻¹ ^ 2 * (W.a₂ - C.s * W.a₁ + 3 * C.r - C.s ^ 2)) * (↑C.u⁻¹ ^ 6 * (W.a₆ + C.r * W.a₄ + C.r ^ 2 * W.a₂ + C.r ^ 3 - C.t * W.a₃ - C.t ^ 2 - C.r * C.t * W.a₁)) - ↑C.u⁻¹ * (W.a₁ + 2 * C.s) * (↑C.u⁻¹ ^ 3 * (W.a₃ + C.r * W.a₁ + 2 * C.t)) * (↑C.u⁻¹ ^ 4 * (W.a₄ - C.s * W.a₃ + 2 * C.r * W.a₂ - (C.t + C.r * C.s) * W.a₁ + 3 * C.r ^ 2 - 2 * C.s * C.t)) + ↑C.u⁻¹ ^ 2 * (W.a₂ - C.s * W.a₁ + 3 * C.r - C.s ^ 2) * (↑C.u⁻¹ ^ 3 * (W.a₃ + C.r * W.a₁ + 2 * C.t)) ^ 2 - (↑C.u⁻¹ ^ 4 * (W.a₄ - C.s * W.a₃ + 2 * C.r * W.a₂ - (C.t + C.r * C.s) * W.a₁ + 3 * C.r ^ 2 - 2 * C.s * C.t)) ^ 2) - 8 * (2 * (↑C.u⁻¹ ^ 4 * (W.a₄ - C.s * W.a₃ + 2 * C.r * W.a₂ - (C.t + C.r * C.s) * W.a₁ + 3 * C.r ^ 2 - 2 * C.s * C.t)) + ↑C.u⁻¹ * (W.a₁ + 2 * C.s) * (↑C.u⁻¹ ^ 3 * (W.a₃ + C.r * W.a₁ + 2 * C.t))) ^ 3 - 27 * ((↑C.u⁻¹ ^ 3 * (W.a₃ + C.r * W.a₁ + 2 * C.t)) ^ 2 + 4 * (↑C.u⁻¹ ^ 6 * (W.a₆ + C.r * W.a₄ + C.r ^ 2 * W.a₂ + C.r ^ 3 - C.t * W.a₃ - C.t ^ 2 - C.r * C.t * W.a₁))) ^ 2 + 9 * ((↑C.u⁻¹ * (W.a₁ + 2 * C.s)) ^ 2 + 4 * (↑C.u⁻¹ ^ 2 * (W.a₂ - C.s * W.a₁ + 3 * C.r - C.s ^ 2))) * (2 * (↑C.u⁻¹ ^ 4 * (W.a₄ - C.s * W.a₃ + 2 * C.r * W.a₂ - (C.t + C.r * C.s) * W.a₁ + 3 * C.r ^ 2 - 2 * C.s * C.t)) + ↑C.u⁻¹ * (W.a₁ + 2 * C.s) * (↑C.u⁻¹ ^ 3 * (W.a₃ + C.r * W.a₁ + 2 * C.t))) * ((↑C.u⁻¹ ^ 3 * (W.a₃ + C.r * W.a₁ + 2 * C.t)) ^ 2 + 4 * (↑C.u⁻¹ ^ 6 * (W.a₆ + C.r * W.a₄ + C.r ^ 2 * W.a₂ + C.r ^ 3 - C.t * W.a₃ - C.t ^ 2 - C.r * C.t * W.a₁))) = ↑C.u⁻¹ ^ 12 * (-(W.a₁ ^ 2 + 4 * W.a₂) ^ 2 * (W.a₁ ^ 2 * W.a₆ + 4 * W.a₂ * W.a₆ - W.a₁ * W.a₃ * W.a₄ + W.a₂ * W.a₃ ^ 2 - W.a₄ ^ 2) - 8 * (2 * W.a₄ + W.a₁ * W.a₃) ^ 3 - 27 * (W.a₃ ^ 2 + 4 * W.a₆) ^ 2 + 9 * (W.a₁ ^ 2 + 4 * W.a₂) * (2 * W.a₄ + W.a₁ * W.a₃) * (W.a₃ ^ 2 + 4 * W.a₆)) [PROOFSTEP] ring1 [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B ⊢ b₂ (baseChange W A) = ↑(algebraMap R A) (b₂ W) [PROOFSTEP] simp only [b₂, baseChange_a₁, baseChange_a₂] [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B ⊢ ↑(algebraMap R A) W.a₁ ^ 2 + 4 * ↑(algebraMap R A) W.a₂ = ↑(algebraMap R A) (W.a₁ ^ 2 + 4 * W.a₂) [PROOFSTEP] map_simp [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B ⊢ b₄ (baseChange W A) = ↑(algebraMap R A) (b₄ W) [PROOFSTEP] simp only [b₄, baseChange_a₁, baseChange_a₃, baseChange_a₄] [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B ⊢ 2 * ↑(algebraMap R A) W.a₄ + ↑(algebraMap R A) W.a₁ * ↑(algebraMap R A) W.a₃ = ↑(algebraMap R A) (2 * W.a₄ + W.a₁ * W.a₃) [PROOFSTEP] map_simp [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B ⊢ b₆ (baseChange W A) = ↑(algebraMap R A) (b₆ W) [PROOFSTEP] simp only [b₆, baseChange_a₃, baseChange_a₆] [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B ⊢ ↑(algebraMap R A) W.a₃ ^ 2 + 4 * ↑(algebraMap R A) W.a₆ = ↑(algebraMap R A) (W.a₃ ^ 2 + 4 * W.a₆) [PROOFSTEP] map_simp [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B ⊢ b₈ (baseChange W A) = ↑(algebraMap R A) (b₈ W) [PROOFSTEP] simp only [b₈, baseChange_a₁, baseChange_a₂, baseChange_a₃, baseChange_a₄, baseChange_a₆] [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B ⊢ ↑(algebraMap R A) W.a₁ ^ 2 * ↑(algebraMap R A) W.a₆ + 4 * ↑(algebraMap R A) W.a₂ * ↑(algebraMap R A) W.a₆ - ↑(algebraMap R A) W.a₁ * ↑(algebraMap R A) W.a₃ * ↑(algebraMap R A) W.a₄ + ↑(algebraMap R A) W.a₂ * ↑(algebraMap R A) W.a₃ ^ 2 - ↑(algebraMap R A) W.a₄ ^ 2 = ↑(algebraMap R A) (W.a₁ ^ 2 * W.a₆ + 4 * W.a₂ * W.a₆ - W.a₁ * W.a₃ * W.a₄ + W.a₂ * W.a₃ ^ 2 - W.a₄ ^ 2) [PROOFSTEP] map_simp [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B ⊢ c₄ (baseChange W A) = ↑(algebraMap R A) (c₄ W) [PROOFSTEP] simp only [c₄, baseChange_b₂, baseChange_b₄] [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B ⊢ ↑(algebraMap R A) (b₂ W) ^ 2 - 24 * ↑(algebraMap R A) (b₄ W) = ↑(algebraMap R A) (b₂ W ^ 2 - 24 * b₄ W) [PROOFSTEP] map_simp [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B ⊢ c₆ (baseChange W A) = ↑(algebraMap R A) (c₆ W) [PROOFSTEP] simp only [c₆, baseChange_b₂, baseChange_b₄, baseChange_b₆] [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B ⊢ -↑(algebraMap R A) (b₂ W) ^ 3 + 36 * ↑(algebraMap R A) (b₂ W) * ↑(algebraMap R A) (b₄ W) - 216 * ↑(algebraMap R A) (b₆ W) = ↑(algebraMap R A) (-b₂ W ^ 3 + 36 * b₂ W * b₄ W - 216 * b₆ W) [PROOFSTEP] map_simp [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B ⊢ Δ (baseChange W A) = ↑(algebraMap R A) (Δ W) [PROOFSTEP] simp only [Δ, baseChange_b₂, baseChange_b₄, baseChange_b₆, baseChange_b₈] [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B ⊢ -↑(algebraMap R A) (b₂ W) ^ 2 * ↑(algebraMap R A) (b₈ W) - 8 * ↑(algebraMap R A) (b₄ W) ^ 3 - 27 * ↑(algebraMap R A) (b₆ W) ^ 2 + 9 * ↑(algebraMap R A) (b₂ W) * ↑(algebraMap R A) (b₄ W) * ↑(algebraMap R A) (b₆ W) = ↑(algebraMap R A) (-b₂ W ^ 2 * b₈ W - 8 * b₄ W ^ 3 - 27 * b₆ W ^ 2 + 9 * b₂ W * b₄ W * b₆ W) [PROOFSTEP] map_simp [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B ⊢ baseChange W R = W [PROOFSTEP] ext [GOAL] case a₁ R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B ⊢ (baseChange W R).a₁ = W.a₁ [PROOFSTEP] rfl [GOAL] case a₂ R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B ⊢ (baseChange W R).a₂ = W.a₂ [PROOFSTEP] rfl [GOAL] case a₃ R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B ⊢ (baseChange W R).a₃ = W.a₃ [PROOFSTEP] rfl [GOAL] case a₄ R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B ⊢ (baseChange W R).a₄ = W.a₄ [PROOFSTEP] rfl [GOAL] case a₆ R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B ⊢ (baseChange W R).a₆ = W.a₆ [PROOFSTEP] rfl [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B ⊢ baseChange (baseChange W A) B = baseChange W B [PROOFSTEP] ext [GOAL] case a₁ R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B ⊢ (baseChange (baseChange W A) B).a₁ = (baseChange W B).a₁ [PROOFSTEP] exact (IsScalarTower.algebraMap_apply R A B _).symm [GOAL] case a₂ R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B ⊢ (baseChange (baseChange W A) B).a₂ = (baseChange W B).a₂ [PROOFSTEP] exact (IsScalarTower.algebraMap_apply R A B _).symm [GOAL] case a₃ R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B ⊢ (baseChange (baseChange W A) B).a₃ = (baseChange W B).a₃ [PROOFSTEP] exact (IsScalarTower.algebraMap_apply R A B _).symm [GOAL] case a₄ R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B ⊢ (baseChange (baseChange W A) B).a₄ = (baseChange W B).a₄ [PROOFSTEP] exact (IsScalarTower.algebraMap_apply R A B _).symm [GOAL] case a₆ R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B ⊢ (baseChange (baseChange W A) B).a₆ = (baseChange W B).a₆ [PROOFSTEP] exact (IsScalarTower.algebraMap_apply R A B _).symm [GOAL] R : Type u inst✝⁶ : CommRing R W✝ : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B h : Function.Injective ↑(algebraMap R A) W W' : WeierstrassCurve R h1 : (fun W => baseChange W A) W = (fun W => baseChange W A) W' ⊢ W = W' [PROOFSTEP] rcases mk.inj h1 with ⟨_, _, _, _, _⟩ [GOAL] case intro.intro.intro.intro R : Type u inst✝⁶ : CommRing R W✝ : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B h : Function.Injective ↑(algebraMap R A) W W' : WeierstrassCurve R h1 : (fun W => baseChange W A) W = (fun W => baseChange W A) W' left✝³ : ↑(algebraMap R A) W.a₁ = ↑(algebraMap R A) W'.a₁ left✝² : ↑(algebraMap R A) W.a₂ = ↑(algebraMap R A) W'.a₂ left✝¹ : ↑(algebraMap R A) W.a₃ = ↑(algebraMap R A) W'.a₃ left✝ : ↑(algebraMap R A) W.a₄ = ↑(algebraMap R A) W'.a₄ right✝ : ↑(algebraMap R A) W.a₆ = ↑(algebraMap R A) W'.a₆ ⊢ W = W' [PROOFSTEP] ext [GOAL] case intro.intro.intro.intro.a₁ R : Type u inst✝⁶ : CommRing R W✝ : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B h : Function.Injective ↑(algebraMap R A) W W' : WeierstrassCurve R h1 : (fun W => baseChange W A) W = (fun W => baseChange W A) W' left✝³ : ↑(algebraMap R A) W.a₁ = ↑(algebraMap R A) W'.a₁ left✝² : ↑(algebraMap R A) W.a₂ = ↑(algebraMap R A) W'.a₂ left✝¹ : ↑(algebraMap R A) W.a₃ = ↑(algebraMap R A) W'.a₃ left✝ : ↑(algebraMap R A) W.a₄ = ↑(algebraMap R A) W'.a₄ right✝ : ↑(algebraMap R A) W.a₆ = ↑(algebraMap R A) W'.a₆ ⊢ W.a₁ = W'.a₁ [PROOFSTEP] apply_fun _ using h [GOAL] case intro.intro.intro.intro.a₂ R : Type u inst✝⁶ : CommRing R W✝ : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B h : Function.Injective ↑(algebraMap R A) W W' : WeierstrassCurve R h1 : (fun W => baseChange W A) W = (fun W => baseChange W A) W' left✝³ : ↑(algebraMap R A) W.a₁ = ↑(algebraMap R A) W'.a₁ left✝² : ↑(algebraMap R A) W.a₂ = ↑(algebraMap R A) W'.a₂ left✝¹ : ↑(algebraMap R A) W.a₃ = ↑(algebraMap R A) W'.a₃ left✝ : ↑(algebraMap R A) W.a₄ = ↑(algebraMap R A) W'.a₄ right✝ : ↑(algebraMap R A) W.a₆ = ↑(algebraMap R A) W'.a₆ ⊢ W.a₂ = W'.a₂ [PROOFSTEP] apply_fun _ using h [GOAL] case intro.intro.intro.intro.a₃ R : Type u inst✝⁶ : CommRing R W✝ : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B h : Function.Injective ↑(algebraMap R A) W W' : WeierstrassCurve R h1 : (fun W => baseChange W A) W = (fun W => baseChange W A) W' left✝³ : ↑(algebraMap R A) W.a₁ = ↑(algebraMap R A) W'.a₁ left✝² : ↑(algebraMap R A) W.a₂ = ↑(algebraMap R A) W'.a₂ left✝¹ : ↑(algebraMap R A) W.a₃ = ↑(algebraMap R A) W'.a₃ left✝ : ↑(algebraMap R A) W.a₄ = ↑(algebraMap R A) W'.a₄ right✝ : ↑(algebraMap R A) W.a₆ = ↑(algebraMap R A) W'.a₆ ⊢ W.a₃ = W'.a₃ [PROOFSTEP] apply_fun _ using h [GOAL] case intro.intro.intro.intro.a₄ R : Type u inst✝⁶ : CommRing R W✝ : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B h : Function.Injective ↑(algebraMap R A) W W' : WeierstrassCurve R h1 : (fun W => baseChange W A) W = (fun W => baseChange W A) W' left✝³ : ↑(algebraMap R A) W.a₁ = ↑(algebraMap R A) W'.a₁ left✝² : ↑(algebraMap R A) W.a₂ = ↑(algebraMap R A) W'.a₂ left✝¹ : ↑(algebraMap R A) W.a₃ = ↑(algebraMap R A) W'.a₃ left✝ : ↑(algebraMap R A) W.a₄ = ↑(algebraMap R A) W'.a₄ right✝ : ↑(algebraMap R A) W.a₆ = ↑(algebraMap R A) W'.a₆ ⊢ W.a₄ = W'.a₄ [PROOFSTEP] apply_fun _ using h [GOAL] case intro.intro.intro.intro.a₆ R : Type u inst✝⁶ : CommRing R W✝ : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B h : Function.Injective ↑(algebraMap R A) W W' : WeierstrassCurve R h1 : (fun W => baseChange W A) W = (fun W => baseChange W A) W' left✝³ : ↑(algebraMap R A) W.a₁ = ↑(algebraMap R A) W'.a₁ left✝² : ↑(algebraMap R A) W.a₂ = ↑(algebraMap R A) W'.a₂ left✝¹ : ↑(algebraMap R A) W.a₃ = ↑(algebraMap R A) W'.a₃ left✝ : ↑(algebraMap R A) W.a₄ = ↑(algebraMap R A) W'.a₄ right✝ : ↑(algebraMap R A) W.a₆ = ↑(algebraMap R A) W'.a₆ ⊢ W.a₆ = W'.a₆ [PROOFSTEP] apply_fun _ using h [GOAL] case intro.intro.intro.intro.a₁ R : Type u inst✝⁶ : CommRing R W✝ : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B h : Function.Injective ↑(algebraMap R A) W W' : WeierstrassCurve R h1 : (fun W => baseChange W A) W = (fun W => baseChange W A) W' left✝³ : ↑(algebraMap R A) W.a₁ = ↑(algebraMap R A) W'.a₁ left✝² : ↑(algebraMap R A) W.a₂ = ↑(algebraMap R A) W'.a₂ left✝¹ : ↑(algebraMap R A) W.a₃ = ↑(algebraMap R A) W'.a₃ left✝ : ↑(algebraMap R A) W.a₄ = ↑(algebraMap R A) W'.a₄ right✝ : ↑(algebraMap R A) W.a₆ = ↑(algebraMap R A) W'.a₆ ⊢ ↑(algebraMap R A) W.a₁ = ↑(algebraMap R A) W'.a₁ [PROOFSTEP] assumption [GOAL] case intro.intro.intro.intro.a₂ R : Type u inst✝⁶ : CommRing R W✝ : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B h : Function.Injective ↑(algebraMap R A) W W' : WeierstrassCurve R h1 : (fun W => baseChange W A) W = (fun W => baseChange W A) W' left✝³ : ↑(algebraMap R A) W.a₁ = ↑(algebraMap R A) W'.a₁ left✝² : ↑(algebraMap R A) W.a₂ = ↑(algebraMap R A) W'.a₂ left✝¹ : ↑(algebraMap R A) W.a₃ = ↑(algebraMap R A) W'.a₃ left✝ : ↑(algebraMap R A) W.a₄ = ↑(algebraMap R A) W'.a₄ right✝ : ↑(algebraMap R A) W.a₆ = ↑(algebraMap R A) W'.a₆ ⊢ ↑(algebraMap R A) W.a₂ = ↑(algebraMap R A) W'.a₂ [PROOFSTEP] assumption [GOAL] case intro.intro.intro.intro.a₃ R : Type u inst✝⁶ : CommRing R W✝ : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B h : Function.Injective ↑(algebraMap R A) W W' : WeierstrassCurve R h1 : (fun W => baseChange W A) W = (fun W => baseChange W A) W' left✝³ : ↑(algebraMap R A) W.a₁ = ↑(algebraMap R A) W'.a₁ left✝² : ↑(algebraMap R A) W.a₂ = ↑(algebraMap R A) W'.a₂ left✝¹ : ↑(algebraMap R A) W.a₃ = ↑(algebraMap R A) W'.a₃ left✝ : ↑(algebraMap R A) W.a₄ = ↑(algebraMap R A) W'.a₄ right✝ : ↑(algebraMap R A) W.a₆ = ↑(algebraMap R A) W'.a₆ ⊢ ↑(algebraMap R A) W.a₃ = ↑(algebraMap R A) W'.a₃ [PROOFSTEP] assumption [GOAL] case intro.intro.intro.intro.a₄ R : Type u inst✝⁶ : CommRing R W✝ : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B h : Function.Injective ↑(algebraMap R A) W W' : WeierstrassCurve R h1 : (fun W => baseChange W A) W = (fun W => baseChange W A) W' left✝³ : ↑(algebraMap R A) W.a₁ = ↑(algebraMap R A) W'.a₁ left✝² : ↑(algebraMap R A) W.a₂ = ↑(algebraMap R A) W'.a₂ left✝¹ : ↑(algebraMap R A) W.a₃ = ↑(algebraMap R A) W'.a₃ left✝ : ↑(algebraMap R A) W.a₄ = ↑(algebraMap R A) W'.a₄ right✝ : ↑(algebraMap R A) W.a₆ = ↑(algebraMap R A) W'.a₆ ⊢ ↑(algebraMap R A) W.a₄ = ↑(algebraMap R A) W'.a₄ [PROOFSTEP] assumption [GOAL] case intro.intro.intro.intro.a₆ R : Type u inst✝⁶ : CommRing R W✝ : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B h : Function.Injective ↑(algebraMap R A) W W' : WeierstrassCurve R h1 : (fun W => baseChange W A) W = (fun W => baseChange W A) W' left✝³ : ↑(algebraMap R A) W.a₁ = ↑(algebraMap R A) W'.a₁ left✝² : ↑(algebraMap R A) W.a₂ = ↑(algebraMap R A) W'.a₂ left✝¹ : ↑(algebraMap R A) W.a₃ = ↑(algebraMap R A) W'.a₃ left✝ : ↑(algebraMap R A) W.a₄ = ↑(algebraMap R A) W'.a₄ right✝ : ↑(algebraMap R A) W.a₆ = ↑(algebraMap R A) W'.a₆ ⊢ ↑(algebraMap R A) W.a₆ = ↑(algebraMap R A) W'.a₆ [PROOFSTEP] assumption [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B C : VariableChange R ⊢ baseChange A id = id [PROOFSTEP] simp only [id, baseChange] [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B C : VariableChange R ⊢ { u := ↑(Units.map ↑(algebraMap R A)) 1, r := ↑(algebraMap R A) 0, s := ↑(algebraMap R A) 0, t := ↑(algebraMap R A) 0 } = { u := 1, r := 0, s := 0, t := 0 } [PROOFSTEP] ext [GOAL] case u.a R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B C : VariableChange R ⊢ ↑{ u := ↑(Units.map ↑(algebraMap R A)) 1, r := ↑(algebraMap R A) 0, s := ↑(algebraMap R A) 0, t := ↑(algebraMap R A) 0 }.u = ↑{ u := 1, r := 0, s := 0, t := 0 }.u [PROOFSTEP] simp only [map_one, Units.val_one, map_zero] [GOAL] case r R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B C : VariableChange R ⊢ { u := ↑(Units.map ↑(algebraMap R A)) 1, r := ↑(algebraMap R A) 0, s := ↑(algebraMap R A) 0, t := ↑(algebraMap R A) 0 }.r = { u := 1, r := 0, s := 0, t := 0 }.r [PROOFSTEP] simp only [map_one, Units.val_one, map_zero] [GOAL] case s R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B C : VariableChange R ⊢ { u := ↑(Units.map ↑(algebraMap R A)) 1, r := ↑(algebraMap R A) 0, s := ↑(algebraMap R A) 0, t := ↑(algebraMap R A) 0 }.s = { u := 1, r := 0, s := 0, t := 0 }.s [PROOFSTEP] simp only [map_one, Units.val_one, map_zero] [GOAL] case t R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B C : VariableChange R ⊢ { u := ↑(Units.map ↑(algebraMap R A)) 1, r := ↑(algebraMap R A) 0, s := ↑(algebraMap R A) 0, t := ↑(algebraMap R A) 0 }.t = { u := 1, r := 0, s := 0, t := 0 }.t [PROOFSTEP] simp only [map_one, Units.val_one, map_zero] [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B C C' : VariableChange R ⊢ baseChange A (comp C C') = comp (baseChange A C) (baseChange A C') [PROOFSTEP] simp only [comp, baseChange] [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B C C' : VariableChange R ⊢ { u := ↑(Units.map ↑(algebraMap R A)) (C.u * C'.u), r := ↑(algebraMap R A) (C.r * ↑C'.u ^ 2 + C'.r), s := ↑(algebraMap R A) (↑C'.u * C.s + C'.s), t := ↑(algebraMap R A) (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t) } = { u := ↑(Units.map ↑(algebraMap R A)) C.u * ↑(Units.map ↑(algebraMap R A)) C'.u, r := ↑(algebraMap R A) C.r * ↑(↑(Units.map ↑(algebraMap R A)) C'.u) ^ 2 + ↑(algebraMap R A) C'.r, s := ↑(↑(Units.map ↑(algebraMap R A)) C'.u) * ↑(algebraMap R A) C.s + ↑(algebraMap R A) C'.s, t := ↑(algebraMap R A) C.t * ↑(↑(Units.map ↑(algebraMap R A)) C'.u) ^ 3 + ↑(algebraMap R A) C.r * ↑(algebraMap R A) C'.s * ↑(↑(Units.map ↑(algebraMap R A)) C'.u) ^ 2 + ↑(algebraMap R A) C'.t } [PROOFSTEP] ext [GOAL] case u.a R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B C C' : VariableChange R ⊢ ↑{ u := ↑(Units.map ↑(algebraMap R A)) (C.u * C'.u), r := ↑(algebraMap R A) (C.r * ↑C'.u ^ 2 + C'.r), s := ↑(algebraMap R A) (↑C'.u * C.s + C'.s), t := ↑(algebraMap R A) (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t) }.u = ↑{ u := ↑(Units.map ↑(algebraMap R A)) C.u * ↑(Units.map ↑(algebraMap R A)) C'.u, r := ↑(algebraMap R A) C.r * ↑(↑(Units.map ↑(algebraMap R A)) C'.u) ^ 2 + ↑(algebraMap R A) C'.r, s := ↑(↑(Units.map ↑(algebraMap R A)) C'.u) * ↑(algebraMap R A) C.s + ↑(algebraMap R A) C'.s, t := ↑(algebraMap R A) C.t * ↑(↑(Units.map ↑(algebraMap R A)) C'.u) ^ 3 + ↑(algebraMap R A) C.r * ↑(algebraMap R A) C'.s * ↑(↑(Units.map ↑(algebraMap R A)) C'.u) ^ 2 + ↑(algebraMap R A) C'.t }.u [PROOFSTEP] simp only [Units.coe_map, Units.coe_map_inv, MonoidHom.coe_coe, map_ofNat, map_neg, map_add, map_sub, map_mul, map_pow] [GOAL] case r R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B C C' : VariableChange R ⊢ { u := ↑(Units.map ↑(algebraMap R A)) (C.u * C'.u), r := ↑(algebraMap R A) (C.r * ↑C'.u ^ 2 + C'.r), s := ↑(algebraMap R A) (↑C'.u * C.s + C'.s), t := ↑(algebraMap R A) (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t) }.r = { u := ↑(Units.map ↑(algebraMap R A)) C.u * ↑(Units.map ↑(algebraMap R A)) C'.u, r := ↑(algebraMap R A) C.r * ↑(↑(Units.map ↑(algebraMap R A)) C'.u) ^ 2 + ↑(algebraMap R A) C'.r, s := ↑(↑(Units.map ↑(algebraMap R A)) C'.u) * ↑(algebraMap R A) C.s + ↑(algebraMap R A) C'.s, t := ↑(algebraMap R A) C.t * ↑(↑(Units.map ↑(algebraMap R A)) C'.u) ^ 3 + ↑(algebraMap R A) C.r * ↑(algebraMap R A) C'.s * ↑(↑(Units.map ↑(algebraMap R A)) C'.u) ^ 2 + ↑(algebraMap R A) C'.t }.r [PROOFSTEP] simp only [Units.coe_map, Units.coe_map_inv, MonoidHom.coe_coe, map_ofNat, map_neg, map_add, map_sub, map_mul, map_pow] [GOAL] case s R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B C C' : VariableChange R ⊢ { u := ↑(Units.map ↑(algebraMap R A)) (C.u * C'.u), r := ↑(algebraMap R A) (C.r * ↑C'.u ^ 2 + C'.r), s := ↑(algebraMap R A) (↑C'.u * C.s + C'.s), t := ↑(algebraMap R A) (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t) }.s = { u := ↑(Units.map ↑(algebraMap R A)) C.u * ↑(Units.map ↑(algebraMap R A)) C'.u, r := ↑(algebraMap R A) C.r * ↑(↑(Units.map ↑(algebraMap R A)) C'.u) ^ 2 + ↑(algebraMap R A) C'.r, s := ↑(↑(Units.map ↑(algebraMap R A)) C'.u) * ↑(algebraMap R A) C.s + ↑(algebraMap R A) C'.s, t := ↑(algebraMap R A) C.t * ↑(↑(Units.map ↑(algebraMap R A)) C'.u) ^ 3 + ↑(algebraMap R A) C.r * ↑(algebraMap R A) C'.s * ↑(↑(Units.map ↑(algebraMap R A)) C'.u) ^ 2 + ↑(algebraMap R A) C'.t }.s [PROOFSTEP] simp only [Units.coe_map, Units.coe_map_inv, MonoidHom.coe_coe, map_ofNat, map_neg, map_add, map_sub, map_mul, map_pow] [GOAL] case t R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B C C' : VariableChange R ⊢ { u := ↑(Units.map ↑(algebraMap R A)) (C.u * C'.u), r := ↑(algebraMap R A) (C.r * ↑C'.u ^ 2 + C'.r), s := ↑(algebraMap R A) (↑C'.u * C.s + C'.s), t := ↑(algebraMap R A) (C.t * ↑C'.u ^ 3 + C.r * C'.s * ↑C'.u ^ 2 + C'.t) }.t = { u := ↑(Units.map ↑(algebraMap R A)) C.u * ↑(Units.map ↑(algebraMap R A)) C'.u, r := ↑(algebraMap R A) C.r * ↑(↑(Units.map ↑(algebraMap R A)) C'.u) ^ 2 + ↑(algebraMap R A) C'.r, s := ↑(↑(Units.map ↑(algebraMap R A)) C'.u) * ↑(algebraMap R A) C.s + ↑(algebraMap R A) C'.s, t := ↑(algebraMap R A) C.t * ↑(↑(Units.map ↑(algebraMap R A)) C'.u) ^ 3 + ↑(algebraMap R A) C.r * ↑(algebraMap R A) C'.s * ↑(↑(Units.map ↑(algebraMap R A)) C'.u) ^ 2 + ↑(algebraMap R A) C'.t }.t [PROOFSTEP] simp only [Units.coe_map, Units.coe_map_inv, MonoidHom.coe_coe, map_ofNat, map_neg, map_add, map_sub, map_mul, map_pow] [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B C : VariableChange R ⊢ baseChange B (baseChange A C) = baseChange B C [PROOFSTEP] ext [GOAL] case u.a R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B C : VariableChange R ⊢ ↑(baseChange B (baseChange A C)).u = ↑(baseChange B C).u [PROOFSTEP] exact (IsScalarTower.algebraMap_apply R A B _).symm [GOAL] case r R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B C : VariableChange R ⊢ (baseChange B (baseChange A C)).r = (baseChange B C).r [PROOFSTEP] exact (IsScalarTower.algebraMap_apply R A B _).symm [GOAL] case s R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B C : VariableChange R ⊢ (baseChange B (baseChange A C)).s = (baseChange B C).s [PROOFSTEP] exact (IsScalarTower.algebraMap_apply R A B _).symm [GOAL] case t R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B C : VariableChange R ⊢ (baseChange B (baseChange A C)).t = (baseChange B C).t [PROOFSTEP] exact (IsScalarTower.algebraMap_apply R A B _).symm [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B C✝ : VariableChange R h : Function.Injective ↑(algebraMap R A) C C' : VariableChange R h1 : baseChange A C = baseChange A C' ⊢ C = C' [PROOFSTEP] rcases mk.inj h1 with ⟨h1, _, _, _⟩ [GOAL] case intro.intro.intro R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B C✝ : VariableChange R h : Function.Injective ↑(algebraMap R A) C C' : VariableChange R h1✝ : baseChange A C = baseChange A C' h1 : ↑(Units.map ↑(algebraMap R A)) C.u = ↑(Units.map ↑(algebraMap R A)) C'.u left✝¹ : ↑(algebraMap R A) C.r = ↑(algebraMap R A) C'.r left✝ : ↑(algebraMap R A) C.s = ↑(algebraMap R A) C'.s right✝ : ↑(algebraMap R A) C.t = ↑(algebraMap R A) C'.t ⊢ C = C' [PROOFSTEP] replace h1 := (Units.mk.inj h1).left [GOAL] case intro.intro.intro R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B C✝ : VariableChange R h : Function.Injective ↑(algebraMap R A) C C' : VariableChange R h1✝ : baseChange A C = baseChange A C' left✝¹ : ↑(algebraMap R A) C.r = ↑(algebraMap R A) C'.r left✝ : ↑(algebraMap R A) C.s = ↑(algebraMap R A) C'.s right✝ : ↑(algebraMap R A) C.t = ↑(algebraMap R A) C'.t h1 : ↑↑(algebraMap R A) ↑C.u = ↑↑(algebraMap R A) ↑C'.u ⊢ C = C' [PROOFSTEP] ext [GOAL] case intro.intro.intro.u.a R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B C✝ : VariableChange R h : Function.Injective ↑(algebraMap R A) C C' : VariableChange R h1✝ : baseChange A C = baseChange A C' left✝¹ : ↑(algebraMap R A) C.r = ↑(algebraMap R A) C'.r left✝ : ↑(algebraMap R A) C.s = ↑(algebraMap R A) C'.s right✝ : ↑(algebraMap R A) C.t = ↑(algebraMap R A) C'.t h1 : ↑↑(algebraMap R A) ↑C.u = ↑↑(algebraMap R A) ↑C'.u ⊢ ↑C.u = ↑C'.u [PROOFSTEP] apply_fun _ using h [GOAL] case intro.intro.intro.r R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B C✝ : VariableChange R h : Function.Injective ↑(algebraMap R A) C C' : VariableChange R h1✝ : baseChange A C = baseChange A C' left✝¹ : ↑(algebraMap R A) C.r = ↑(algebraMap R A) C'.r left✝ : ↑(algebraMap R A) C.s = ↑(algebraMap R A) C'.s right✝ : ↑(algebraMap R A) C.t = ↑(algebraMap R A) C'.t h1 : ↑↑(algebraMap R A) ↑C.u = ↑↑(algebraMap R A) ↑C'.u ⊢ C.r = C'.r [PROOFSTEP] apply_fun _ using h [GOAL] case intro.intro.intro.s R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B C✝ : VariableChange R h : Function.Injective ↑(algebraMap R A) C C' : VariableChange R h1✝ : baseChange A C = baseChange A C' left✝¹ : ↑(algebraMap R A) C.r = ↑(algebraMap R A) C'.r left✝ : ↑(algebraMap R A) C.s = ↑(algebraMap R A) C'.s right✝ : ↑(algebraMap R A) C.t = ↑(algebraMap R A) C'.t h1 : ↑↑(algebraMap R A) ↑C.u = ↑↑(algebraMap R A) ↑C'.u ⊢ C.s = C'.s [PROOFSTEP] apply_fun _ using h [GOAL] case intro.intro.intro.t R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B C✝ : VariableChange R h : Function.Injective ↑(algebraMap R A) C C' : VariableChange R h1✝ : baseChange A C = baseChange A C' left✝¹ : ↑(algebraMap R A) C.r = ↑(algebraMap R A) C'.r left✝ : ↑(algebraMap R A) C.s = ↑(algebraMap R A) C'.s right✝ : ↑(algebraMap R A) C.t = ↑(algebraMap R A) C'.t h1 : ↑↑(algebraMap R A) ↑C.u = ↑↑(algebraMap R A) ↑C'.u ⊢ C.t = C'.t [PROOFSTEP] apply_fun _ using h [GOAL] case intro.intro.intro.u.a R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B C✝ : VariableChange R h : Function.Injective ↑(algebraMap R A) C C' : VariableChange R h1✝ : baseChange A C = baseChange A C' left✝¹ : ↑(algebraMap R A) C.r = ↑(algebraMap R A) C'.r left✝ : ↑(algebraMap R A) C.s = ↑(algebraMap R A) C'.s right✝ : ↑(algebraMap R A) C.t = ↑(algebraMap R A) C'.t h1 : ↑↑(algebraMap R A) ↑C.u = ↑↑(algebraMap R A) ↑C'.u ⊢ ↑(algebraMap R A) ↑C.u = ↑(algebraMap R A) ↑C'.u [PROOFSTEP] assumption [GOAL] case intro.intro.intro.r R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B C✝ : VariableChange R h : Function.Injective ↑(algebraMap R A) C C' : VariableChange R h1✝ : baseChange A C = baseChange A C' left✝¹ : ↑(algebraMap R A) C.r = ↑(algebraMap R A) C'.r left✝ : ↑(algebraMap R A) C.s = ↑(algebraMap R A) C'.s right✝ : ↑(algebraMap R A) C.t = ↑(algebraMap R A) C'.t h1 : ↑↑(algebraMap R A) ↑C.u = ↑↑(algebraMap R A) ↑C'.u ⊢ ↑(algebraMap R A) C.r = ↑(algebraMap R A) C'.r [PROOFSTEP] assumption [GOAL] case intro.intro.intro.s R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B C✝ : VariableChange R h : Function.Injective ↑(algebraMap R A) C C' : VariableChange R h1✝ : baseChange A C = baseChange A C' left✝¹ : ↑(algebraMap R A) C.r = ↑(algebraMap R A) C'.r left✝ : ↑(algebraMap R A) C.s = ↑(algebraMap R A) C'.s right✝ : ↑(algebraMap R A) C.t = ↑(algebraMap R A) C'.t h1 : ↑↑(algebraMap R A) ↑C.u = ↑↑(algebraMap R A) ↑C'.u ⊢ ↑(algebraMap R A) C.s = ↑(algebraMap R A) C'.s [PROOFSTEP] assumption [GOAL] case intro.intro.intro.t R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B C✝ : VariableChange R h : Function.Injective ↑(algebraMap R A) C C' : VariableChange R h1✝ : baseChange A C = baseChange A C' left✝¹ : ↑(algebraMap R A) C.r = ↑(algebraMap R A) C'.r left✝ : ↑(algebraMap R A) C.s = ↑(algebraMap R A) C'.s right✝ : ↑(algebraMap R A) C.t = ↑(algebraMap R A) C'.t h1 : ↑↑(algebraMap R A) ↑C.u = ↑↑(algebraMap R A) ↑C'.u ⊢ ↑(algebraMap R A) C.t = ↑(algebraMap R A) C'.t [PROOFSTEP] assumption [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B C : VariableChange R ⊢ variableChange (baseChange W A) (VariableChange.baseChange A C) = baseChange (variableChange W C) A [PROOFSTEP] simp only [baseChange, variableChange, VariableChange.baseChange] [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B C : VariableChange R ⊢ { a₁ := ↑(↑(Units.map ↑(algebraMap R A)) C.u)⁻¹ * (↑(algebraMap R A) W.a₁ + 2 * ↑(algebraMap R A) C.s), a₂ := ↑(↑(Units.map ↑(algebraMap R A)) C.u)⁻¹ ^ 2 * (↑(algebraMap R A) W.a₂ - ↑(algebraMap R A) C.s * ↑(algebraMap R A) W.a₁ + 3 * ↑(algebraMap R A) C.r - ↑(algebraMap R A) C.s ^ 2), a₃ := ↑(↑(Units.map ↑(algebraMap R A)) C.u)⁻¹ ^ 3 * (↑(algebraMap R A) W.a₃ + ↑(algebraMap R A) C.r * ↑(algebraMap R A) W.a₁ + 2 * ↑(algebraMap R A) C.t), a₄ := ↑(↑(Units.map ↑(algebraMap R A)) C.u)⁻¹ ^ 4 * (↑(algebraMap R A) W.a₄ - ↑(algebraMap R A) C.s * ↑(algebraMap R A) W.a₃ + 2 * ↑(algebraMap R A) C.r * ↑(algebraMap R A) W.a₂ - (↑(algebraMap R A) C.t + ↑(algebraMap R A) C.r * ↑(algebraMap R A) C.s) * ↑(algebraMap R A) W.a₁ + 3 * ↑(algebraMap R A) C.r ^ 2 - 2 * ↑(algebraMap R A) C.s * ↑(algebraMap R A) C.t), a₆ := ↑(↑(Units.map ↑(algebraMap R A)) C.u)⁻¹ ^ 6 * (↑(algebraMap R A) W.a₆ + ↑(algebraMap R A) C.r * ↑(algebraMap R A) W.a₄ + ↑(algebraMap R A) C.r ^ 2 * ↑(algebraMap R A) W.a₂ + ↑(algebraMap R A) C.r ^ 3 - ↑(algebraMap R A) C.t * ↑(algebraMap R A) W.a₃ - ↑(algebraMap R A) C.t ^ 2 - ↑(algebraMap R A) C.r * ↑(algebraMap R A) C.t * ↑(algebraMap R A) W.a₁) } = { a₁ := ↑(algebraMap R A) (↑C.u⁻¹ * (W.a₁ + 2 * C.s)), a₂ := ↑(algebraMap R A) (↑C.u⁻¹ ^ 2 * (W.a₂ - C.s * W.a₁ + 3 * C.r - C.s ^ 2)), a₃ := ↑(algebraMap R A) (↑C.u⁻¹ ^ 3 * (W.a₃ + C.r * W.a₁ + 2 * C.t)), a₄ := ↑(algebraMap R A) (↑C.u⁻¹ ^ 4 * (W.a₄ - C.s * W.a₃ + 2 * C.r * W.a₂ - (C.t + C.r * C.s) * W.a₁ + 3 * C.r ^ 2 - 2 * C.s * C.t)), a₆ := ↑(algebraMap R A) (↑C.u⁻¹ ^ 6 * (W.a₆ + C.r * W.a₄ + C.r ^ 2 * W.a₂ + C.r ^ 3 - C.t * W.a₃ - C.t ^ 2 - C.r * C.t * W.a₁)) } [PROOFSTEP] ext [GOAL] case a₁ R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B C : VariableChange R ⊢ { a₁ := ↑(↑(Units.map ↑(algebraMap R A)) C.u)⁻¹ * (↑(algebraMap R A) W.a₁ + 2 * ↑(algebraMap R A) C.s), a₂ := ↑(↑(Units.map ↑(algebraMap R A)) C.u)⁻¹ ^ 2 * (↑(algebraMap R A) W.a₂ - ↑(algebraMap R A) C.s * ↑(algebraMap R A) W.a₁ + 3 * ↑(algebraMap R A) C.r - ↑(algebraMap R A) C.s ^ 2), a₃ := ↑(↑(Units.map ↑(algebraMap R A)) C.u)⁻¹ ^ 3 * (↑(algebraMap R A) W.a₃ + ↑(algebraMap R A) C.r * ↑(algebraMap R A) W.a₁ + 2 * ↑(algebraMap R A) C.t), a₄ := ↑(↑(Units.map ↑(algebraMap R A)) C.u)⁻¹ ^ 4 * (↑(algebraMap R A) W.a₄ - ↑(algebraMap R A) C.s * ↑(algebraMap R A) W.a₃ + 2 * ↑(algebraMap R A) C.r * ↑(algebraMap R A) W.a₂ - (↑(algebraMap R A) C.t + ↑(algebraMap R A) C.r * ↑(algebraMap R A) C.s) * ↑(algebraMap R A) W.a₁ + 3 * ↑(algebraMap R A) C.r ^ 2 - 2 * ↑(algebraMap R A) C.s * ↑(algebraMap R A) C.t), a₆ := ↑(↑(Units.map ↑(algebraMap R A)) C.u)⁻¹ ^ 6 * (↑(algebraMap R A) W.a₆ + ↑(algebraMap R A) C.r * ↑(algebraMap R A) W.a₄ + ↑(algebraMap R A) C.r ^ 2 * ↑(algebraMap R A) W.a₂ + ↑(algebraMap R A) C.r ^ 3 - ↑(algebraMap R A) C.t * ↑(algebraMap R A) W.a₃ - ↑(algebraMap R A) C.t ^ 2 - ↑(algebraMap R A) C.r * ↑(algebraMap R A) C.t * ↑(algebraMap R A) W.a₁) }.a₁ = { a₁ := ↑(algebraMap R A) (↑C.u⁻¹ * (W.a₁ + 2 * C.s)), a₂ := ↑(algebraMap R A) (↑C.u⁻¹ ^ 2 * (W.a₂ - C.s * W.a₁ + 3 * C.r - C.s ^ 2)), a₃ := ↑(algebraMap R A) (↑C.u⁻¹ ^ 3 * (W.a₃ + C.r * W.a₁ + 2 * C.t)), a₄ := ↑(algebraMap R A) (↑C.u⁻¹ ^ 4 * (W.a₄ - C.s * W.a₃ + 2 * C.r * W.a₂ - (C.t + C.r * C.s) * W.a₁ + 3 * C.r ^ 2 - 2 * C.s * C.t)), a₆ := ↑(algebraMap R A) (↑C.u⁻¹ ^ 6 * (W.a₆ + C.r * W.a₄ + C.r ^ 2 * W.a₂ + C.r ^ 3 - C.t * W.a₃ - C.t ^ 2 - C.r * C.t * W.a₁)) }.a₁ [PROOFSTEP] simp only [Units.coe_map, Units.coe_map_inv, MonoidHom.coe_coe, map_ofNat, map_neg, map_add, map_sub, map_mul, map_pow] [GOAL] case a₂ R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B C : VariableChange R ⊢ { a₁ := ↑(↑(Units.map ↑(algebraMap R A)) C.u)⁻¹ * (↑(algebraMap R A) W.a₁ + 2 * ↑(algebraMap R A) C.s), a₂ := ↑(↑(Units.map ↑(algebraMap R A)) C.u)⁻¹ ^ 2 * (↑(algebraMap R A) W.a₂ - ↑(algebraMap R A) C.s * ↑(algebraMap R A) W.a₁ + 3 * ↑(algebraMap R A) C.r - ↑(algebraMap R A) C.s ^ 2), a₃ := ↑(↑(Units.map ↑(algebraMap R A)) C.u)⁻¹ ^ 3 * (↑(algebraMap R A) W.a₃ + ↑(algebraMap R A) C.r * ↑(algebraMap R A) W.a₁ + 2 * ↑(algebraMap R A) C.t), a₄ := ↑(↑(Units.map ↑(algebraMap R A)) C.u)⁻¹ ^ 4 * (↑(algebraMap R A) W.a₄ - ↑(algebraMap R A) C.s * ↑(algebraMap R A) W.a₃ + 2 * ↑(algebraMap R A) C.r * ↑(algebraMap R A) W.a₂ - (↑(algebraMap R A) C.t + ↑(algebraMap R A) C.r * ↑(algebraMap R A) C.s) * ↑(algebraMap R A) W.a₁ + 3 * ↑(algebraMap R A) C.r ^ 2 - 2 * ↑(algebraMap R A) C.s * ↑(algebraMap R A) C.t), a₆ := ↑(↑(Units.map ↑(algebraMap R A)) C.u)⁻¹ ^ 6 * (↑(algebraMap R A) W.a₆ + ↑(algebraMap R A) C.r * ↑(algebraMap R A) W.a₄ + ↑(algebraMap R A) C.r ^ 2 * ↑(algebraMap R A) W.a₂ + ↑(algebraMap R A) C.r ^ 3 - ↑(algebraMap R A) C.t * ↑(algebraMap R A) W.a₃ - ↑(algebraMap R A) C.t ^ 2 - ↑(algebraMap R A) C.r * ↑(algebraMap R A) C.t * ↑(algebraMap R A) W.a₁) }.a₂ = { a₁ := ↑(algebraMap R A) (↑C.u⁻¹ * (W.a₁ + 2 * C.s)), a₂ := ↑(algebraMap R A) (↑C.u⁻¹ ^ 2 * (W.a₂ - C.s * W.a₁ + 3 * C.r - C.s ^ 2)), a₃ := ↑(algebraMap R A) (↑C.u⁻¹ ^ 3 * (W.a₃ + C.r * W.a₁ + 2 * C.t)), a₄ := ↑(algebraMap R A) (↑C.u⁻¹ ^ 4 * (W.a₄ - C.s * W.a₃ + 2 * C.r * W.a₂ - (C.t + C.r * C.s) * W.a₁ + 3 * C.r ^ 2 - 2 * C.s * C.t)), a₆ := ↑(algebraMap R A) (↑C.u⁻¹ ^ 6 * (W.a₆ + C.r * W.a₄ + C.r ^ 2 * W.a₂ + C.r ^ 3 - C.t * W.a₃ - C.t ^ 2 - C.r * C.t * W.a₁)) }.a₂ [PROOFSTEP] simp only [Units.coe_map, Units.coe_map_inv, MonoidHom.coe_coe, map_ofNat, map_neg, map_add, map_sub, map_mul, map_pow] [GOAL] case a₃ R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B C : VariableChange R ⊢ { a₁ := ↑(↑(Units.map ↑(algebraMap R A)) C.u)⁻¹ * (↑(algebraMap R A) W.a₁ + 2 * ↑(algebraMap R A) C.s), a₂ := ↑(↑(Units.map ↑(algebraMap R A)) C.u)⁻¹ ^ 2 * (↑(algebraMap R A) W.a₂ - ↑(algebraMap R A) C.s * ↑(algebraMap R A) W.a₁ + 3 * ↑(algebraMap R A) C.r - ↑(algebraMap R A) C.s ^ 2), a₃ := ↑(↑(Units.map ↑(algebraMap R A)) C.u)⁻¹ ^ 3 * (↑(algebraMap R A) W.a₃ + ↑(algebraMap R A) C.r * ↑(algebraMap R A) W.a₁ + 2 * ↑(algebraMap R A) C.t), a₄ := ↑(↑(Units.map ↑(algebraMap R A)) C.u)⁻¹ ^ 4 * (↑(algebraMap R A) W.a₄ - ↑(algebraMap R A) C.s * ↑(algebraMap R A) W.a₃ + 2 * ↑(algebraMap R A) C.r * ↑(algebraMap R A) W.a₂ - (↑(algebraMap R A) C.t + ↑(algebraMap R A) C.r * ↑(algebraMap R A) C.s) * ↑(algebraMap R A) W.a₁ + 3 * ↑(algebraMap R A) C.r ^ 2 - 2 * ↑(algebraMap R A) C.s * ↑(algebraMap R A) C.t), a₆ := ↑(↑(Units.map ↑(algebraMap R A)) C.u)⁻¹ ^ 6 * (↑(algebraMap R A) W.a₆ + ↑(algebraMap R A) C.r * ↑(algebraMap R A) W.a₄ + ↑(algebraMap R A) C.r ^ 2 * ↑(algebraMap R A) W.a₂ + ↑(algebraMap R A) C.r ^ 3 - ↑(algebraMap R A) C.t * ↑(algebraMap R A) W.a₃ - ↑(algebraMap R A) C.t ^ 2 - ↑(algebraMap R A) C.r * ↑(algebraMap R A) C.t * ↑(algebraMap R A) W.a₁) }.a₃ = { a₁ := ↑(algebraMap R A) (↑C.u⁻¹ * (W.a₁ + 2 * C.s)), a₂ := ↑(algebraMap R A) (↑C.u⁻¹ ^ 2 * (W.a₂ - C.s * W.a₁ + 3 * C.r - C.s ^ 2)), a₃ := ↑(algebraMap R A) (↑C.u⁻¹ ^ 3 * (W.a₃ + C.r * W.a₁ + 2 * C.t)), a₄ := ↑(algebraMap R A) (↑C.u⁻¹ ^ 4 * (W.a₄ - C.s * W.a₃ + 2 * C.r * W.a₂ - (C.t + C.r * C.s) * W.a₁ + 3 * C.r ^ 2 - 2 * C.s * C.t)), a₆ := ↑(algebraMap R A) (↑C.u⁻¹ ^ 6 * (W.a₆ + C.r * W.a₄ + C.r ^ 2 * W.a₂ + C.r ^ 3 - C.t * W.a₃ - C.t ^ 2 - C.r * C.t * W.a₁)) }.a₃ [PROOFSTEP] simp only [Units.coe_map, Units.coe_map_inv, MonoidHom.coe_coe, map_ofNat, map_neg, map_add, map_sub, map_mul, map_pow] [GOAL] case a₄ R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B C : VariableChange R ⊢ { a₁ := ↑(↑(Units.map ↑(algebraMap R A)) C.u)⁻¹ * (↑(algebraMap R A) W.a₁ + 2 * ↑(algebraMap R A) C.s), a₂ := ↑(↑(Units.map ↑(algebraMap R A)) C.u)⁻¹ ^ 2 * (↑(algebraMap R A) W.a₂ - ↑(algebraMap R A) C.s * ↑(algebraMap R A) W.a₁ + 3 * ↑(algebraMap R A) C.r - ↑(algebraMap R A) C.s ^ 2), a₃ := ↑(↑(Units.map ↑(algebraMap R A)) C.u)⁻¹ ^ 3 * (↑(algebraMap R A) W.a₃ + ↑(algebraMap R A) C.r * ↑(algebraMap R A) W.a₁ + 2 * ↑(algebraMap R A) C.t), a₄ := ↑(↑(Units.map ↑(algebraMap R A)) C.u)⁻¹ ^ 4 * (↑(algebraMap R A) W.a₄ - ↑(algebraMap R A) C.s * ↑(algebraMap R A) W.a₃ + 2 * ↑(algebraMap R A) C.r * ↑(algebraMap R A) W.a₂ - (↑(algebraMap R A) C.t + ↑(algebraMap R A) C.r * ↑(algebraMap R A) C.s) * ↑(algebraMap R A) W.a₁ + 3 * ↑(algebraMap R A) C.r ^ 2 - 2 * ↑(algebraMap R A) C.s * ↑(algebraMap R A) C.t), a₆ := ↑(↑(Units.map ↑(algebraMap R A)) C.u)⁻¹ ^ 6 * (↑(algebraMap R A) W.a₆ + ↑(algebraMap R A) C.r * ↑(algebraMap R A) W.a₄ + ↑(algebraMap R A) C.r ^ 2 * ↑(algebraMap R A) W.a₂ + ↑(algebraMap R A) C.r ^ 3 - ↑(algebraMap R A) C.t * ↑(algebraMap R A) W.a₃ - ↑(algebraMap R A) C.t ^ 2 - ↑(algebraMap R A) C.r * ↑(algebraMap R A) C.t * ↑(algebraMap R A) W.a₁) }.a₄ = { a₁ := ↑(algebraMap R A) (↑C.u⁻¹ * (W.a₁ + 2 * C.s)), a₂ := ↑(algebraMap R A) (↑C.u⁻¹ ^ 2 * (W.a₂ - C.s * W.a₁ + 3 * C.r - C.s ^ 2)), a₃ := ↑(algebraMap R A) (↑C.u⁻¹ ^ 3 * (W.a₃ + C.r * W.a₁ + 2 * C.t)), a₄ := ↑(algebraMap R A) (↑C.u⁻¹ ^ 4 * (W.a₄ - C.s * W.a₃ + 2 * C.r * W.a₂ - (C.t + C.r * C.s) * W.a₁ + 3 * C.r ^ 2 - 2 * C.s * C.t)), a₆ := ↑(algebraMap R A) (↑C.u⁻¹ ^ 6 * (W.a₆ + C.r * W.a₄ + C.r ^ 2 * W.a₂ + C.r ^ 3 - C.t * W.a₃ - C.t ^ 2 - C.r * C.t * W.a₁)) }.a₄ [PROOFSTEP] simp only [Units.coe_map, Units.coe_map_inv, MonoidHom.coe_coe, map_ofNat, map_neg, map_add, map_sub, map_mul, map_pow] [GOAL] case a₆ R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B C : VariableChange R ⊢ { a₁ := ↑(↑(Units.map ↑(algebraMap R A)) C.u)⁻¹ * (↑(algebraMap R A) W.a₁ + 2 * ↑(algebraMap R A) C.s), a₂ := ↑(↑(Units.map ↑(algebraMap R A)) C.u)⁻¹ ^ 2 * (↑(algebraMap R A) W.a₂ - ↑(algebraMap R A) C.s * ↑(algebraMap R A) W.a₁ + 3 * ↑(algebraMap R A) C.r - ↑(algebraMap R A) C.s ^ 2), a₃ := ↑(↑(Units.map ↑(algebraMap R A)) C.u)⁻¹ ^ 3 * (↑(algebraMap R A) W.a₃ + ↑(algebraMap R A) C.r * ↑(algebraMap R A) W.a₁ + 2 * ↑(algebraMap R A) C.t), a₄ := ↑(↑(Units.map ↑(algebraMap R A)) C.u)⁻¹ ^ 4 * (↑(algebraMap R A) W.a₄ - ↑(algebraMap R A) C.s * ↑(algebraMap R A) W.a₃ + 2 * ↑(algebraMap R A) C.r * ↑(algebraMap R A) W.a₂ - (↑(algebraMap R A) C.t + ↑(algebraMap R A) C.r * ↑(algebraMap R A) C.s) * ↑(algebraMap R A) W.a₁ + 3 * ↑(algebraMap R A) C.r ^ 2 - 2 * ↑(algebraMap R A) C.s * ↑(algebraMap R A) C.t), a₆ := ↑(↑(Units.map ↑(algebraMap R A)) C.u)⁻¹ ^ 6 * (↑(algebraMap R A) W.a₆ + ↑(algebraMap R A) C.r * ↑(algebraMap R A) W.a₄ + ↑(algebraMap R A) C.r ^ 2 * ↑(algebraMap R A) W.a₂ + ↑(algebraMap R A) C.r ^ 3 - ↑(algebraMap R A) C.t * ↑(algebraMap R A) W.a₃ - ↑(algebraMap R A) C.t ^ 2 - ↑(algebraMap R A) C.r * ↑(algebraMap R A) C.t * ↑(algebraMap R A) W.a₁) }.a₆ = { a₁ := ↑(algebraMap R A) (↑C.u⁻¹ * (W.a₁ + 2 * C.s)), a₂ := ↑(algebraMap R A) (↑C.u⁻¹ ^ 2 * (W.a₂ - C.s * W.a₁ + 3 * C.r - C.s ^ 2)), a₃ := ↑(algebraMap R A) (↑C.u⁻¹ ^ 3 * (W.a₃ + C.r * W.a₁ + 2 * C.t)), a₄ := ↑(algebraMap R A) (↑C.u⁻¹ ^ 4 * (W.a₄ - C.s * W.a₃ + 2 * C.r * W.a₂ - (C.t + C.r * C.s) * W.a₁ + 3 * C.r ^ 2 - 2 * C.s * C.t)), a₆ := ↑(algebraMap R A) (↑C.u⁻¹ ^ 6 * (W.a₆ + C.r * W.a₄ + C.r ^ 2 * W.a₂ + C.r ^ 3 - C.t * W.a₃ - C.t ^ 2 - C.r * C.t * W.a₁)) }.a₆ [PROOFSTEP] simp only [Units.coe_map, Units.coe_map_inv, MonoidHom.coe_coe, map_ofNat, map_neg, map_add, map_sub, map_mul, map_pow] [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B ⊢ Cubic.disc (twoTorsionPolynomial W) = 16 * Δ W [PROOFSTEP] simp only [b₂, b₄, b₆, b₈, Δ, twoTorsionPolynomial, Cubic.disc] [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B ⊢ (W.a₁ ^ 2 + 4 * W.a₂) ^ 2 * (2 * (2 * W.a₄ + W.a₁ * W.a₃)) ^ 2 - 4 * 4 * (2 * (2 * W.a₄ + W.a₁ * W.a₃)) ^ 3 - 4 * (W.a₁ ^ 2 + 4 * W.a₂) ^ 3 * (W.a₃ ^ 2 + 4 * W.a₆) - 27 * 4 ^ 2 * (W.a₃ ^ 2 + 4 * W.a₆) ^ 2 + 18 * 4 * (W.a₁ ^ 2 + 4 * W.a₂) * (2 * (2 * W.a₄ + W.a₁ * W.a₃)) * (W.a₃ ^ 2 + 4 * W.a₆) = 16 * (-(W.a₁ ^ 2 + 4 * W.a₂) ^ 2 * (W.a₁ ^ 2 * W.a₆ + 4 * W.a₂ * W.a₆ - W.a₁ * W.a₃ * W.a₄ + W.a₂ * W.a₃ ^ 2 - W.a₄ ^ 2) - 8 * (2 * W.a₄ + W.a₁ * W.a₃) ^ 3 - 27 * (W.a₃ ^ 2 + 4 * W.a₆) ^ 2 + 9 * (W.a₁ ^ 2 + 4 * W.a₂) * (2 * W.a₄ + W.a₁ * W.a₃) * (W.a₃ ^ 2 + 4 * W.a₆)) [PROOFSTEP] ring1 [GOAL] R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B inst✝ : Invertible 2 ⊢ IsUnit (Cubic.disc (twoTorsionPolynomial W)) ↔ IsUnit (Δ W) [PROOFSTEP] rw [twoTorsionPolynomial_disc, IsUnit.mul_iff, show (16 : R) = 2 ^ 4 by norm_num1] [GOAL] R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B inst✝ : Invertible 2 ⊢ 16 = 2 ^ 4 [PROOFSTEP] norm_num1 [GOAL] R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B inst✝ : Invertible 2 ⊢ IsUnit (2 ^ 4) ∧ IsUnit (Δ W) ↔ IsUnit (Δ W) [PROOFSTEP] exact and_iff_right <| isUnit_of_invertible <| 2 ^ 4 [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B ⊢ WeierstrassCurve.polynomial W = Cubic.toPoly { a := 0, b := 1, c := Cubic.toPoly { a := 0, b := 0, c := W.a₁, d := W.a₃ }, d := Cubic.toPoly { a := -1, b := -W.a₂, c := -W.a₄, d := -W.a₆ } } [PROOFSTEP] simp only [WeierstrassCurve.polynomial, Cubic.toPoly] [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B ⊢ Y ^ 2 + ↑C (↑C W.a₁ * Y + ↑C W.a₃) * Y - ↑C (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆) = ↑C 0 * Y ^ 3 + ↑C 1 * Y ^ 2 + ↑C (↑C 0 * Y ^ 3 + ↑C 0 * Y ^ 2 + ↑C W.a₁ * Y + ↑C W.a₃) * Y + ↑C (↑C (-1) * Y ^ 3 + ↑C (-W.a₂) * Y ^ 2 + ↑C (-W.a₄) * Y + ↑C (-W.a₆)) [PROOFSTEP] C_simp [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B ⊢ Y ^ 2 + (↑C (↑C W.a₁) * ↑C Y + ↑C (↑C W.a₃)) * Y - (↑C Y ^ 3 + ↑C (↑C W.a₂) * ↑C Y ^ 2 + ↑C (↑C W.a₄) * ↑C Y + ↑C (↑C W.a₆)) = 0 * Y ^ 3 + 1 * Y ^ 2 + (0 * ↑C Y ^ 3 + 0 * ↑C Y ^ 2 + ↑C (↑C W.a₁) * ↑C Y + ↑C (↑C W.a₃)) * Y + (-1 * ↑C Y ^ 3 + -↑C (↑C W.a₂) * ↑C Y ^ 2 + -↑C (↑C W.a₄) * ↑C Y + -↑C (↑C W.a₆)) [PROOFSTEP] ring1 [GOAL] R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B inst✝ : Nontrivial R ⊢ WeierstrassCurve.polynomial W ≠ 0 [PROOFSTEP] rw [polynomial_eq] [GOAL] R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B inst✝ : Nontrivial R ⊢ Cubic.toPoly { a := 0, b := 1, c := Cubic.toPoly { a := 0, b := 0, c := W.a₁, d := W.a₃ }, d := Cubic.toPoly { a := -1, b := -W.a₂, c := -W.a₄, d := -W.a₆ } } ≠ 0 [PROOFSTEP] exact Cubic.ne_zero_of_b_ne_zero one_ne_zero [GOAL] R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B inst✝ : Nontrivial R ⊢ degree (WeierstrassCurve.polynomial W) = 2 [PROOFSTEP] rw [polynomial_eq] [GOAL] R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B inst✝ : Nontrivial R ⊢ degree (Cubic.toPoly { a := 0, b := 1, c := Cubic.toPoly { a := 0, b := 0, c := W.a₁, d := W.a₃ }, d := Cubic.toPoly { a := -1, b := -W.a₂, c := -W.a₄, d := -W.a₆ } }) = 2 [PROOFSTEP] exact Cubic.degree_of_b_ne_zero' one_ne_zero [GOAL] R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B inst✝ : Nontrivial R ⊢ natDegree (WeierstrassCurve.polynomial W) = 2 [PROOFSTEP] rw [polynomial_eq] [GOAL] R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B inst✝ : Nontrivial R ⊢ natDegree (Cubic.toPoly { a := 0, b := 1, c := Cubic.toPoly { a := 0, b := 0, c := W.a₁, d := W.a₃ }, d := Cubic.toPoly { a := -1, b := -W.a₂, c := -W.a₄, d := -W.a₆ } }) = 2 [PROOFSTEP] exact Cubic.natDegree_of_b_ne_zero' one_ne_zero [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B ⊢ Monic (WeierstrassCurve.polynomial W) [PROOFSTEP] nontriviality R [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B ✝ : Nontrivial R ⊢ Monic (WeierstrassCurve.polynomial W) [PROOFSTEP] simpa only [polynomial_eq] using Cubic.monic_of_b_eq_one' [GOAL] R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B inst✝ : IsDomain R ⊢ Irreducible (WeierstrassCurve.polynomial W) [PROOFSTEP] by_contra h [GOAL] R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B inst✝ : IsDomain R h : ¬Irreducible (WeierstrassCurve.polynomial W) ⊢ False [PROOFSTEP] rcases(W.monic_polynomial.not_irreducible_iff_exists_add_mul_eq_coeff W.natDegree_polynomial).mp h with ⟨f, g, h0, h1⟩ [GOAL] case intro.intro.intro R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B inst✝ : IsDomain R h : ¬Irreducible (WeierstrassCurve.polynomial W) f g : R[X] h0 : coeff (WeierstrassCurve.polynomial W) 0 = f * g h1 : coeff (WeierstrassCurve.polynomial W) 1 = f + g ⊢ False [PROOFSTEP] simp only [polynomial_eq, Cubic.coeff_eq_c, Cubic.coeff_eq_d] at h0 h1 [GOAL] case intro.intro.intro R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B inst✝ : IsDomain R h : ¬Irreducible (WeierstrassCurve.polynomial W) f g : R[X] h0 : Cubic.toPoly { a := -1, b := -W.a₂, c := -W.a₄, d := -W.a₆ } = f * g h1 : Cubic.toPoly { a := 0, b := 0, c := W.a₁, d := W.a₃ } = f + g ⊢ False [PROOFSTEP] apply_fun degree at h0 h1 [GOAL] case intro.intro.intro R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B inst✝ : IsDomain R h : ¬Irreducible (WeierstrassCurve.polynomial W) f g : R[X] h0 : degree (Cubic.toPoly { a := -1, b := -W.a₂, c := -W.a₄, d := -W.a₆ }) = degree (f * g) h1 : degree (Cubic.toPoly { a := 0, b := 0, c := W.a₁, d := W.a₃ }) = degree (f + g) ⊢ False [PROOFSTEP] rw [Cubic.degree_of_a_ne_zero' <| neg_ne_zero.mpr <| one_ne_zero' R, degree_mul] at h0 [GOAL] case intro.intro.intro R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B inst✝ : IsDomain R h : ¬Irreducible (WeierstrassCurve.polynomial W) f g : R[X] h0 : 3 = degree f + degree g h1 : degree (Cubic.toPoly { a := 0, b := 0, c := W.a₁, d := W.a₃ }) = degree (f + g) ⊢ False [PROOFSTEP] apply (h1.symm.le.trans Cubic.degree_of_b_eq_zero').not_lt [GOAL] case intro.intro.intro R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B inst✝ : IsDomain R h : ¬Irreducible (WeierstrassCurve.polynomial W) f g : R[X] h0 : 3 = degree f + degree g h1 : degree (Cubic.toPoly { a := 0, b := 0, c := W.a₁, d := W.a₃ }) = degree (f + g) ⊢ 1 < degree (f + g) [PROOFSTEP] rcases Nat.WithBot.add_eq_three_iff.mp h0.symm with h | h | h | h [GOAL] case intro.intro.intro.inl R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B inst✝ : IsDomain R h✝ : ¬Irreducible (WeierstrassCurve.polynomial W) f g : R[X] h0 : 3 = degree f + degree g h1 : degree (Cubic.toPoly { a := 0, b := 0, c := W.a₁, d := W.a₃ }) = degree (f + g) h : degree f = 0 ∧ degree g = 3 ⊢ 1 < degree (f + g) case intro.intro.intro.inr.inl R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B inst✝ : IsDomain R h✝ : ¬Irreducible (WeierstrassCurve.polynomial W) f g : R[X] h0 : 3 = degree f + degree g h1 : degree (Cubic.toPoly { a := 0, b := 0, c := W.a₁, d := W.a₃ }) = degree (f + g) h : degree f = 1 ∧ degree g = 2 ⊢ 1 < degree (f + g) case intro.intro.intro.inr.inr.inl R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B inst✝ : IsDomain R h✝ : ¬Irreducible (WeierstrassCurve.polynomial W) f g : R[X] h0 : 3 = degree f + degree g h1 : degree (Cubic.toPoly { a := 0, b := 0, c := W.a₁, d := W.a₃ }) = degree (f + g) h : degree f = 2 ∧ degree g = 1 ⊢ 1 < degree (f + g) case intro.intro.intro.inr.inr.inr R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B inst✝ : IsDomain R h✝ : ¬Irreducible (WeierstrassCurve.polynomial W) f g : R[X] h0 : 3 = degree f + degree g h1 : degree (Cubic.toPoly { a := 0, b := 0, c := W.a₁, d := W.a₃ }) = degree (f + g) h : degree f = 3 ∧ degree g = 0 ⊢ 1 < degree (f + g) [PROOFSTEP] iterate 2 rw [degree_add_eq_right_of_degree_lt] <;> simp only [h] [GOAL] case intro.intro.intro.inl R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B inst✝ : IsDomain R h✝ : ¬Irreducible (WeierstrassCurve.polynomial W) f g : R[X] h0 : 3 = degree f + degree g h1 : degree (Cubic.toPoly { a := 0, b := 0, c := W.a₁, d := W.a₃ }) = degree (f + g) h : degree f = 0 ∧ degree g = 3 ⊢ 1 < degree (f + g) [PROOFSTEP] rw [degree_add_eq_right_of_degree_lt] [GOAL] case intro.intro.intro.inl R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B inst✝ : IsDomain R h✝ : ¬Irreducible (WeierstrassCurve.polynomial W) f g : R[X] h0 : 3 = degree f + degree g h1 : degree (Cubic.toPoly { a := 0, b := 0, c := W.a₁, d := W.a₃ }) = degree (f + g) h : degree f = 0 ∧ degree g = 3 ⊢ 1 < degree g [PROOFSTEP] simp only [h] [GOAL] case intro.intro.intro.inl R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B inst✝ : IsDomain R h✝ : ¬Irreducible (WeierstrassCurve.polynomial W) f g : R[X] h0 : 3 = degree f + degree g h1 : degree (Cubic.toPoly { a := 0, b := 0, c := W.a₁, d := W.a₃ }) = degree (f + g) h : degree f = 0 ∧ degree g = 3 ⊢ degree f < degree g [PROOFSTEP] simp only [h] [GOAL] case intro.intro.intro.inr.inl R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B inst✝ : IsDomain R h✝ : ¬Irreducible (WeierstrassCurve.polynomial W) f g : R[X] h0 : 3 = degree f + degree g h1 : degree (Cubic.toPoly { a := 0, b := 0, c := W.a₁, d := W.a₃ }) = degree (f + g) h : degree f = 1 ∧ degree g = 2 ⊢ 1 < degree (f + g) [PROOFSTEP] rw [degree_add_eq_right_of_degree_lt] [GOAL] case intro.intro.intro.inr.inl R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B inst✝ : IsDomain R h✝ : ¬Irreducible (WeierstrassCurve.polynomial W) f g : R[X] h0 : 3 = degree f + degree g h1 : degree (Cubic.toPoly { a := 0, b := 0, c := W.a₁, d := W.a₃ }) = degree (f + g) h : degree f = 1 ∧ degree g = 2 ⊢ 1 < degree g [PROOFSTEP] simp only [h] [GOAL] case intro.intro.intro.inr.inl R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B inst✝ : IsDomain R h✝ : ¬Irreducible (WeierstrassCurve.polynomial W) f g : R[X] h0 : 3 = degree f + degree g h1 : degree (Cubic.toPoly { a := 0, b := 0, c := W.a₁, d := W.a₃ }) = degree (f + g) h : degree f = 1 ∧ degree g = 2 ⊢ degree f < degree g [PROOFSTEP] simp only [h] [GOAL] case intro.intro.intro.inr.inr.inl R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B inst✝ : IsDomain R h✝ : ¬Irreducible (WeierstrassCurve.polynomial W) f g : R[X] h0 : 3 = degree f + degree g h1 : degree (Cubic.toPoly { a := 0, b := 0, c := W.a₁, d := W.a₃ }) = degree (f + g) h : degree f = 2 ∧ degree g = 1 ⊢ 1 < degree (f + g) case intro.intro.intro.inr.inr.inr R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B inst✝ : IsDomain R h✝ : ¬Irreducible (WeierstrassCurve.polynomial W) f g : R[X] h0 : 3 = degree f + degree g h1 : degree (Cubic.toPoly { a := 0, b := 0, c := W.a₁, d := W.a₃ }) = degree (f + g) h : degree f = 3 ∧ degree g = 0 ⊢ 1 < degree (f + g) [PROOFSTEP] iterate 2 rw [degree_add_eq_left_of_degree_lt] <;> simp only [h] [GOAL] case intro.intro.intro.inr.inr.inl R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B inst✝ : IsDomain R h✝ : ¬Irreducible (WeierstrassCurve.polynomial W) f g : R[X] h0 : 3 = degree f + degree g h1 : degree (Cubic.toPoly { a := 0, b := 0, c := W.a₁, d := W.a₃ }) = degree (f + g) h : degree f = 2 ∧ degree g = 1 ⊢ 1 < degree (f + g) [PROOFSTEP] rw [degree_add_eq_left_of_degree_lt] [GOAL] case intro.intro.intro.inr.inr.inl R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B inst✝ : IsDomain R h✝ : ¬Irreducible (WeierstrassCurve.polynomial W) f g : R[X] h0 : 3 = degree f + degree g h1 : degree (Cubic.toPoly { a := 0, b := 0, c := W.a₁, d := W.a₃ }) = degree (f + g) h : degree f = 2 ∧ degree g = 1 ⊢ 1 < degree f [PROOFSTEP] simp only [h] [GOAL] case intro.intro.intro.inr.inr.inl R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B inst✝ : IsDomain R h✝ : ¬Irreducible (WeierstrassCurve.polynomial W) f g : R[X] h0 : 3 = degree f + degree g h1 : degree (Cubic.toPoly { a := 0, b := 0, c := W.a₁, d := W.a₃ }) = degree (f + g) h : degree f = 2 ∧ degree g = 1 ⊢ degree g < degree f [PROOFSTEP] simp only [h] [GOAL] case intro.intro.intro.inr.inr.inr R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B inst✝ : IsDomain R h✝ : ¬Irreducible (WeierstrassCurve.polynomial W) f g : R[X] h0 : 3 = degree f + degree g h1 : degree (Cubic.toPoly { a := 0, b := 0, c := W.a₁, d := W.a₃ }) = degree (f + g) h : degree f = 3 ∧ degree g = 0 ⊢ 1 < degree (f + g) [PROOFSTEP] rw [degree_add_eq_left_of_degree_lt] [GOAL] case intro.intro.intro.inr.inr.inr R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B inst✝ : IsDomain R h✝ : ¬Irreducible (WeierstrassCurve.polynomial W) f g : R[X] h0 : 3 = degree f + degree g h1 : degree (Cubic.toPoly { a := 0, b := 0, c := W.a₁, d := W.a₃ }) = degree (f + g) h : degree f = 3 ∧ degree g = 0 ⊢ 1 < degree f [PROOFSTEP] simp only [h] [GOAL] case intro.intro.intro.inr.inr.inr R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B inst✝ : IsDomain R h✝ : ¬Irreducible (WeierstrassCurve.polynomial W) f g : R[X] h0 : 3 = degree f + degree g h1 : degree (Cubic.toPoly { a := 0, b := 0, c := W.a₁, d := W.a₃ }) = degree (f + g) h : degree f = 3 ∧ degree g = 0 ⊢ degree g < degree f [PROOFSTEP] simp only [h] [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B x y : R ⊢ eval x (eval (↑C y) (WeierstrassCurve.polynomial W)) = y ^ 2 + W.a₁ * x * y + W.a₃ * y - (x ^ 3 + W.a₂ * x ^ 2 + W.a₄ * x + W.a₆) [PROOFSTEP] simp only [WeierstrassCurve.polynomial] [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B x y : R ⊢ eval x (eval (↑C y) (Y ^ 2 + ↑C (↑C W.a₁ * Y + ↑C W.a₃) * Y - ↑C (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆))) = y ^ 2 + W.a₁ * x * y + W.a₃ * y - (x ^ 3 + W.a₂ * x ^ 2 + W.a₄ * x + W.a₆) [PROOFSTEP] eval_simp [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B x y : R ⊢ y ^ 2 + (W.a₁ * x + W.a₃) * y - (x ^ 3 + W.a₂ * x ^ 2 + W.a₄ * x + W.a₆) = y ^ 2 + W.a₁ * x * y + W.a₃ * y - (x ^ 3 + W.a₂ * x ^ 2 + W.a₄ * x + W.a₆) [PROOFSTEP] rw [add_mul, ← add_assoc] [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B ⊢ eval 0 (eval 0 (WeierstrassCurve.polynomial W)) = -W.a₆ [PROOFSTEP] simp only [← C_0, eval_polynomial, zero_add, zero_sub, mul_zero, zero_pow <| Nat.zero_lt_succ _] [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B x y : R ⊢ WeierstrassCurve.equation W x y ↔ y ^ 2 + W.a₁ * x * y + W.a₃ * y - (x ^ 3 + W.a₂ * x ^ 2 + W.a₄ * x + W.a₆) = 0 [PROOFSTEP] rw [WeierstrassCurve.equation, eval_polynomial] [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B x y : R ⊢ WeierstrassCurve.equation W x y ↔ y ^ 2 + W.a₁ * x * y + W.a₃ * y = x ^ 3 + W.a₂ * x ^ 2 + W.a₄ * x + W.a₆ [PROOFSTEP] rw [equation_iff', sub_eq_zero] [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B ⊢ WeierstrassCurve.equation W 0 0 ↔ W.a₆ = 0 [PROOFSTEP] rw [WeierstrassCurve.equation, C_0, eval_polynomial_zero, neg_eq_zero] [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B x y : R ⊢ WeierstrassCurve.equation W x y ↔ WeierstrassCurve.equation (variableChange W { u := 1, r := x, s := 0, t := y }) 0 0 [PROOFSTEP] rw [equation_iff', ← neg_eq_zero, equation_zero, variableChange_a₆, inv_one, Units.val_one] [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B x y : R ⊢ -(y ^ 2 + W.a₁ * x * y + W.a₃ * y - (x ^ 3 + W.a₂ * x ^ 2 + W.a₄ * x + W.a₆)) = 0 ↔ 1 ^ 6 * (W.a₆ + { u := 1, r := x, s := 0, t := y }.r * W.a₄ + { u := 1, r := x, s := 0, t := y }.r ^ 2 * W.a₂ + { u := 1, r := x, s := 0, t := y }.r ^ 3 - { u := 1, r := x, s := 0, t := y }.t * W.a₃ - { u := 1, r := x, s := 0, t := y }.t ^ 2 - { u := 1, r := x, s := 0, t := y }.r * { u := 1, r := x, s := 0, t := y }.t * W.a₁) = 0 [PROOFSTEP] congr! 1 [GOAL] case a.h.e'_2 R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B x y : R ⊢ -(y ^ 2 + W.a₁ * x * y + W.a₃ * y - (x ^ 3 + W.a₂ * x ^ 2 + W.a₄ * x + W.a₆)) = 1 ^ 6 * (W.a₆ + { u := 1, r := x, s := 0, t := y }.r * W.a₄ + { u := 1, r := x, s := 0, t := y }.r ^ 2 * W.a₂ + { u := 1, r := x, s := 0, t := y }.r ^ 3 - { u := 1, r := x, s := 0, t := y }.t * W.a₃ - { u := 1, r := x, s := 0, t := y }.t ^ 2 - { u := 1, r := x, s := 0, t := y }.r * { u := 1, r := x, s := 0, t := y }.t * W.a₁) [PROOFSTEP] ring1 [GOAL] R : Type u inst✝⁸ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁷ : CommRing A inst✝⁶ : Algebra R A B : Type w inst✝⁵ : CommRing B inst✝⁴ : Algebra R B inst✝³ : Algebra A B inst✝² : IsScalarTower R A B inst✝¹ : Nontrivial A inst✝ : NoZeroSMulDivisors R A x y : R ⊢ WeierstrassCurve.equation W x y ↔ WeierstrassCurve.equation (baseChange W A) (↑(algebraMap R A) x) (↑(algebraMap R A) y) [PROOFSTEP] simp only [equation_iff] [GOAL] R : Type u inst✝⁸ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁷ : CommRing A inst✝⁶ : Algebra R A B : Type w inst✝⁵ : CommRing B inst✝⁴ : Algebra R B inst✝³ : Algebra A B inst✝² : IsScalarTower R A B inst✝¹ : Nontrivial A inst✝ : NoZeroSMulDivisors R A x y : R ⊢ y ^ 2 + W.a₁ * x * y + W.a₃ * y = x ^ 3 + W.a₂ * x ^ 2 + W.a₄ * x + W.a₆ ↔ ↑(algebraMap R A) y ^ 2 + (baseChange W A).a₁ * ↑(algebraMap R A) x * ↑(algebraMap R A) y + (baseChange W A).a₃ * ↑(algebraMap R A) y = ↑(algebraMap R A) x ^ 3 + (baseChange W A).a₂ * ↑(algebraMap R A) x ^ 2 + (baseChange W A).a₄ * ↑(algebraMap R A) x + (baseChange W A).a₆ [PROOFSTEP] exact ⟨fun h => by convert congr_arg (algebraMap R A) h <;> map_simp <;> rfl, fun h => by apply NoZeroSMulDivisors.algebraMap_injective R A; map_simp; exact h⟩ [GOAL] R : Type u inst✝⁸ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁷ : CommRing A inst✝⁶ : Algebra R A B : Type w inst✝⁵ : CommRing B inst✝⁴ : Algebra R B inst✝³ : Algebra A B inst✝² : IsScalarTower R A B inst✝¹ : Nontrivial A inst✝ : NoZeroSMulDivisors R A x y : R h : y ^ 2 + W.a₁ * x * y + W.a₃ * y = x ^ 3 + W.a₂ * x ^ 2 + W.a₄ * x + W.a₆ ⊢ ↑(algebraMap R A) y ^ 2 + (baseChange W A).a₁ * ↑(algebraMap R A) x * ↑(algebraMap R A) y + (baseChange W A).a₃ * ↑(algebraMap R A) y = ↑(algebraMap R A) x ^ 3 + (baseChange W A).a₂ * ↑(algebraMap R A) x ^ 2 + (baseChange W A).a₄ * ↑(algebraMap R A) x + (baseChange W A).a₆ [PROOFSTEP] convert congr_arg (algebraMap R A) h [GOAL] case h.e'_2 R : Type u inst✝⁸ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁷ : CommRing A inst✝⁶ : Algebra R A B : Type w inst✝⁵ : CommRing B inst✝⁴ : Algebra R B inst✝³ : Algebra A B inst✝² : IsScalarTower R A B inst✝¹ : Nontrivial A inst✝ : NoZeroSMulDivisors R A x y : R h : y ^ 2 + W.a₁ * x * y + W.a₃ * y = x ^ 3 + W.a₂ * x ^ 2 + W.a₄ * x + W.a₆ ⊢ ↑(algebraMap R A) y ^ 2 + (baseChange W A).a₁ * ↑(algebraMap R A) x * ↑(algebraMap R A) y + (baseChange W A).a₃ * ↑(algebraMap R A) y = ↑(algebraMap R A) (y ^ 2 + W.a₁ * x * y + W.a₃ * y) [PROOFSTEP] map_simp [GOAL] case h.e'_3 R : Type u inst✝⁸ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁷ : CommRing A inst✝⁶ : Algebra R A B : Type w inst✝⁵ : CommRing B inst✝⁴ : Algebra R B inst✝³ : Algebra A B inst✝² : IsScalarTower R A B inst✝¹ : Nontrivial A inst✝ : NoZeroSMulDivisors R A x y : R h : y ^ 2 + W.a₁ * x * y + W.a₃ * y = x ^ 3 + W.a₂ * x ^ 2 + W.a₄ * x + W.a₆ ⊢ ↑(algebraMap R A) x ^ 3 + (baseChange W A).a₂ * ↑(algebraMap R A) x ^ 2 + (baseChange W A).a₄ * ↑(algebraMap R A) x + (baseChange W A).a₆ = ↑(algebraMap R A) (x ^ 3 + W.a₂ * x ^ 2 + W.a₄ * x + W.a₆) [PROOFSTEP] map_simp [GOAL] case h.e'_2 R : Type u inst✝⁸ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁷ : CommRing A inst✝⁶ : Algebra R A B : Type w inst✝⁵ : CommRing B inst✝⁴ : Algebra R B inst✝³ : Algebra A B inst✝² : IsScalarTower R A B inst✝¹ : Nontrivial A inst✝ : NoZeroSMulDivisors R A x y : R h : y ^ 2 + W.a₁ * x * y + W.a₃ * y = x ^ 3 + W.a₂ * x ^ 2 + W.a₄ * x + W.a₆ ⊢ ↑(algebraMap R A) y ^ 2 + (baseChange W A).a₁ * ↑(algebraMap R A) x * ↑(algebraMap R A) y + (baseChange W A).a₃ * ↑(algebraMap R A) y = ↑(algebraMap R A) y ^ 2 + ↑(algebraMap R A) W.a₁ * ↑(algebraMap R A) x * ↑(algebraMap R A) y + ↑(algebraMap R A) W.a₃ * ↑(algebraMap R A) y [PROOFSTEP] rfl [GOAL] case h.e'_3 R : Type u inst✝⁸ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁷ : CommRing A inst✝⁶ : Algebra R A B : Type w inst✝⁵ : CommRing B inst✝⁴ : Algebra R B inst✝³ : Algebra A B inst✝² : IsScalarTower R A B inst✝¹ : Nontrivial A inst✝ : NoZeroSMulDivisors R A x y : R h : y ^ 2 + W.a₁ * x * y + W.a₃ * y = x ^ 3 + W.a₂ * x ^ 2 + W.a₄ * x + W.a₆ ⊢ ↑(algebraMap R A) x ^ 3 + (baseChange W A).a₂ * ↑(algebraMap R A) x ^ 2 + (baseChange W A).a₄ * ↑(algebraMap R A) x + (baseChange W A).a₆ = ↑(algebraMap R A) x ^ 3 + ↑(algebraMap R A) W.a₂ * ↑(algebraMap R A) x ^ 2 + ↑(algebraMap R A) W.a₄ * ↑(algebraMap R A) x + ↑(algebraMap R A) W.a₆ [PROOFSTEP] rfl [GOAL] R : Type u inst✝⁸ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁷ : CommRing A inst✝⁶ : Algebra R A B : Type w inst✝⁵ : CommRing B inst✝⁴ : Algebra R B inst✝³ : Algebra A B inst✝² : IsScalarTower R A B inst✝¹ : Nontrivial A inst✝ : NoZeroSMulDivisors R A x y : R h : ↑(algebraMap R A) y ^ 2 + (baseChange W A).a₁ * ↑(algebraMap R A) x * ↑(algebraMap R A) y + (baseChange W A).a₃ * ↑(algebraMap R A) y = ↑(algebraMap R A) x ^ 3 + (baseChange W A).a₂ * ↑(algebraMap R A) x ^ 2 + (baseChange W A).a₄ * ↑(algebraMap R A) x + (baseChange W A).a₆ ⊢ y ^ 2 + W.a₁ * x * y + W.a₃ * y = x ^ 3 + W.a₂ * x ^ 2 + W.a₄ * x + W.a₆ [PROOFSTEP] apply NoZeroSMulDivisors.algebraMap_injective R A [GOAL] case a R : Type u inst✝⁸ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁷ : CommRing A inst✝⁶ : Algebra R A B : Type w inst✝⁵ : CommRing B inst✝⁴ : Algebra R B inst✝³ : Algebra A B inst✝² : IsScalarTower R A B inst✝¹ : Nontrivial A inst✝ : NoZeroSMulDivisors R A x y : R h : ↑(algebraMap R A) y ^ 2 + (baseChange W A).a₁ * ↑(algebraMap R A) x * ↑(algebraMap R A) y + (baseChange W A).a₃ * ↑(algebraMap R A) y = ↑(algebraMap R A) x ^ 3 + (baseChange W A).a₂ * ↑(algebraMap R A) x ^ 2 + (baseChange W A).a₄ * ↑(algebraMap R A) x + (baseChange W A).a₆ ⊢ ↑(algebraMap R A) (y ^ 2 + W.a₁ * x * y + W.a₃ * y) = ↑(algebraMap R A) (x ^ 3 + W.a₂ * x ^ 2 + W.a₄ * x + W.a₆) [PROOFSTEP] map_simp [GOAL] case a R : Type u inst✝⁸ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁷ : CommRing A inst✝⁶ : Algebra R A B : Type w inst✝⁵ : CommRing B inst✝⁴ : Algebra R B inst✝³ : Algebra A B inst✝² : IsScalarTower R A B inst✝¹ : Nontrivial A inst✝ : NoZeroSMulDivisors R A x y : R h : ↑(algebraMap R A) y ^ 2 + (baseChange W A).a₁ * ↑(algebraMap R A) x * ↑(algebraMap R A) y + (baseChange W A).a₃ * ↑(algebraMap R A) y = ↑(algebraMap R A) x ^ 3 + (baseChange W A).a₂ * ↑(algebraMap R A) x ^ 2 + (baseChange W A).a₄ * ↑(algebraMap R A) x + (baseChange W A).a₆ ⊢ ↑(algebraMap R A) y ^ 2 + ↑(algebraMap R A) W.a₁ * ↑(algebraMap R A) x * ↑(algebraMap R A) y + ↑(algebraMap R A) W.a₃ * ↑(algebraMap R A) y = ↑(algebraMap R A) x ^ 3 + ↑(algebraMap R A) W.a₂ * ↑(algebraMap R A) x ^ 2 + ↑(algebraMap R A) W.a₄ * ↑(algebraMap R A) x + ↑(algebraMap R A) W.a₆ [PROOFSTEP] exact h [GOAL] R : Type u inst✝⁸ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁷ : CommRing A inst✝⁶ : Algebra R A B : Type w inst✝⁵ : CommRing B inst✝⁴ : Algebra R B inst✝³ : Algebra A B inst✝² : IsScalarTower R A B inst✝¹ : Nontrivial B inst✝ : NoZeroSMulDivisors A B x y : A ⊢ WeierstrassCurve.equation (baseChange W A) x y ↔ WeierstrassCurve.equation (baseChange W B) (↑(algebraMap A B) x) (↑(algebraMap A B) y) [PROOFSTEP] rw [equation_iff_baseChange (W.baseChange A) B, baseChange_baseChange] [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B x y : R ⊢ eval x (eval (↑C y) (WeierstrassCurve.polynomialX W)) = W.a₁ * y - (3 * x ^ 2 + 2 * W.a₂ * x + W.a₄) [PROOFSTEP] simp only [WeierstrassCurve.polynomialX] [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B x y : R ⊢ eval x (eval (↑C y) (↑C (↑C W.a₁) * Y - ↑C (↑C 3 * Y ^ 2 + ↑C (2 * W.a₂) * Y + ↑C W.a₄))) = W.a₁ * y - (3 * x ^ 2 + 2 * W.a₂ * x + W.a₄) [PROOFSTEP] eval_simp [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B ⊢ eval 0 (eval 0 (WeierstrassCurve.polynomialX W)) = -W.a₄ [PROOFSTEP] simp only [← C_0, eval_polynomialX, zero_add, zero_sub, mul_zero, zero_pow zero_lt_two] [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B x y : R ⊢ eval x (eval (↑C y) (WeierstrassCurve.polynomialY W)) = 2 * y + W.a₁ * x + W.a₃ [PROOFSTEP] simp only [WeierstrassCurve.polynomialY] [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B x y : R ⊢ eval x (eval (↑C y) (↑C (↑C 2) * Y + ↑C (↑C W.a₁ * Y + ↑C W.a₃))) = 2 * y + W.a₁ * x + W.a₃ [PROOFSTEP] eval_simp [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B x y : R ⊢ 2 * y + (W.a₁ * x + W.a₃) = 2 * y + W.a₁ * x + W.a₃ [PROOFSTEP] rw [← add_assoc] [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B ⊢ eval 0 (eval 0 (WeierstrassCurve.polynomialY W)) = W.a₃ [PROOFSTEP] simp only [← C_0, eval_polynomialY, zero_add, mul_zero] [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B x y : R ⊢ WeierstrassCurve.nonsingular W x y ↔ WeierstrassCurve.equation W x y ∧ (W.a₁ * y - (3 * x ^ 2 + 2 * W.a₂ * x + W.a₄) ≠ 0 ∨ 2 * y + W.a₁ * x + W.a₃ ≠ 0) [PROOFSTEP] rw [WeierstrassCurve.nonsingular, equation_iff', eval_polynomialX, eval_polynomialY] [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B x y : R ⊢ WeierstrassCurve.nonsingular W x y ↔ WeierstrassCurve.equation W x y ∧ (W.a₁ * y ≠ 3 * x ^ 2 + 2 * W.a₂ * x + W.a₄ ∨ y ≠ -y - W.a₁ * x - W.a₃) [PROOFSTEP] rw [nonsingular_iff', sub_ne_zero, ← @sub_ne_zero _ _ y] [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B x y : R ⊢ WeierstrassCurve.equation W x y ∧ (W.a₁ * y ≠ 3 * x ^ 2 + 2 * W.a₂ * x + W.a₄ ∨ 2 * y + W.a₁ * x + W.a₃ ≠ 0) ↔ WeierstrassCurve.equation W x y ∧ (W.a₁ * y ≠ 3 * x ^ 2 + 2 * W.a₂ * x + W.a₄ ∨ y - (-y - W.a₁ * x - W.a₃) ≠ 0) [PROOFSTEP] congr! 3 [GOAL] case a.h.e'_2.h.e'_2.h.e'_2 R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B x y : R ⊢ 2 * y + W.a₁ * x + W.a₃ = y - (-y - W.a₁ * x - W.a₃) [PROOFSTEP] ring1 [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B ⊢ WeierstrassCurve.nonsingular W 0 0 ↔ W.a₆ = 0 ∧ (W.a₃ ≠ 0 ∨ W.a₄ ≠ 0) [PROOFSTEP] rw [WeierstrassCurve.nonsingular, equation_zero, C_0, eval_polynomialX_zero, neg_ne_zero, eval_polynomialY_zero, or_comm] [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B x y : R ⊢ WeierstrassCurve.nonsingular W x y ↔ WeierstrassCurve.nonsingular (variableChange W { u := 1, r := x, s := 0, t := y }) 0 0 [PROOFSTEP] rw [nonsingular_iff', equation_iff_variableChange, equation_zero, ← neg_ne_zero, or_comm, nonsingular_zero, variableChange_a₃, variableChange_a₄, inv_one, Units.val_one] [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B x y : R ⊢ (variableChange W { u := 1, r := x, s := 0, t := y }).a₆ = 0 ∧ (2 * y + W.a₁ * x + W.a₃ ≠ 0 ∨ -(W.a₁ * y - (3 * x ^ 2 + 2 * W.a₂ * x + W.a₄)) ≠ 0) ↔ (variableChange W { u := 1, r := x, s := 0, t := y }).a₆ = 0 ∧ (1 ^ 3 * (W.a₃ + { u := 1, r := x, s := 0, t := y }.r * W.a₁ + 2 * { u := 1, r := x, s := 0, t := y }.t) ≠ 0 ∨ 1 ^ 4 * (W.a₄ - { u := 1, r := x, s := 0, t := y }.s * W.a₃ + 2 * { u := 1, r := x, s := 0, t := y }.r * W.a₂ - ({ u := 1, r := x, s := 0, t := y }.t + { u := 1, r := x, s := 0, t := y }.r * { u := 1, r := x, s := 0, t := y }.s) * W.a₁ + 3 * { u := 1, r := x, s := 0, t := y }.r ^ 2 - 2 * { u := 1, r := x, s := 0, t := y }.s * { u := 1, r := x, s := 0, t := y }.t) ≠ 0) [PROOFSTEP] simp only [variableChange] [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B x y : R ⊢ ↑1⁻¹ ^ 6 * (W.a₆ + x * W.a₄ + x ^ 2 * W.a₂ + x ^ 3 - y * W.a₃ - y ^ 2 - x * y * W.a₁) = 0 ∧ (2 * y + W.a₁ * x + W.a₃ ≠ 0 ∨ -(W.a₁ * y - (3 * x ^ 2 + 2 * W.a₂ * x + W.a₄)) ≠ 0) ↔ ↑1⁻¹ ^ 6 * (W.a₆ + x * W.a₄ + x ^ 2 * W.a₂ + x ^ 3 - y * W.a₃ - y ^ 2 - x * y * W.a₁) = 0 ∧ (1 ^ 3 * (W.a₃ + x * W.a₁ + 2 * y) ≠ 0 ∨ 1 ^ 4 * (W.a₄ - 0 * W.a₃ + 2 * x * W.a₂ - (y + x * 0) * W.a₁ + 3 * x ^ 2 - 2 * 0 * y) ≠ 0) [PROOFSTEP] congr! 3 [GOAL] case a.h.e'_2.h.e'_1.h.e'_2 R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B x y : R ⊢ 2 * y + W.a₁ * x + W.a₃ = 1 ^ 3 * (W.a₃ + x * W.a₁ + 2 * y) [PROOFSTEP] ring1 [GOAL] case a.h.e'_2.h.e'_2.h.e'_2 R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B x y : R ⊢ -(W.a₁ * y - (3 * x ^ 2 + 2 * W.a₂ * x + W.a₄)) = 1 ^ 4 * (W.a₄ - 0 * W.a₃ + 2 * x * W.a₂ - (y + x * 0) * W.a₁ + 3 * x ^ 2 - 2 * 0 * y) [PROOFSTEP] ring1 [GOAL] R : Type u inst✝⁸ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁷ : CommRing A inst✝⁶ : Algebra R A B : Type w inst✝⁵ : CommRing B inst✝⁴ : Algebra R B inst✝³ : Algebra A B inst✝² : IsScalarTower R A B inst✝¹ : Nontrivial A inst✝ : NoZeroSMulDivisors R A x y : R ⊢ WeierstrassCurve.nonsingular W x y ↔ WeierstrassCurve.nonsingular (baseChange W A) (↑(algebraMap R A) x) (↑(algebraMap R A) y) [PROOFSTEP] rw [nonsingular_iff, nonsingular_iff, and_congr <| W.equation_iff_baseChange A x y] [GOAL] R : Type u inst✝⁸ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁷ : CommRing A inst✝⁶ : Algebra R A B : Type w inst✝⁵ : CommRing B inst✝⁴ : Algebra R B inst✝³ : Algebra A B inst✝² : IsScalarTower R A B inst✝¹ : Nontrivial A inst✝ : NoZeroSMulDivisors R A x y : R ⊢ W.a₁ * y ≠ 3 * x ^ 2 + 2 * W.a₂ * x + W.a₄ ∨ y ≠ -y - W.a₁ * x - W.a₃ ↔ (baseChange W A).a₁ * ↑(algebraMap R A) y ≠ 3 * ↑(algebraMap R A) x ^ 2 + 2 * (baseChange W A).a₂ * ↑(algebraMap R A) x + (baseChange W A).a₄ ∨ ↑(algebraMap R A) y ≠ -↑(algebraMap R A) y - (baseChange W A).a₁ * ↑(algebraMap R A) x - (baseChange W A).a₃ [PROOFSTEP] refine ⟨Or.imp (not_imp_not.mpr fun h => ?_) (not_imp_not.mpr fun h => ?_), Or.imp (not_imp_not.mpr fun h => ?_) (not_imp_not.mpr fun h => ?_)⟩ [GOAL] case refine_1 R : Type u inst✝⁸ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁷ : CommRing A inst✝⁶ : Algebra R A B : Type w inst✝⁵ : CommRing B inst✝⁴ : Algebra R B inst✝³ : Algebra A B inst✝² : IsScalarTower R A B inst✝¹ : Nontrivial A inst✝ : NoZeroSMulDivisors R A x y : R h : (baseChange W A).a₁ * ↑(algebraMap R A) y = 3 * ↑(algebraMap R A) x ^ 2 + 2 * (baseChange W A).a₂ * ↑(algebraMap R A) x + (baseChange W A).a₄ ⊢ W.a₁ * y = 3 * x ^ 2 + 2 * W.a₂ * x + W.a₄ case refine_2 R : Type u inst✝⁸ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁷ : CommRing A inst✝⁶ : Algebra R A B : Type w inst✝⁵ : CommRing B inst✝⁴ : Algebra R B inst✝³ : Algebra A B inst✝² : IsScalarTower R A B inst✝¹ : Nontrivial A inst✝ : NoZeroSMulDivisors R A x y : R h : ↑(algebraMap R A) y = -↑(algebraMap R A) y - (baseChange W A).a₁ * ↑(algebraMap R A) x - (baseChange W A).a₃ ⊢ y = -y - W.a₁ * x - W.a₃ case refine_3 R : Type u inst✝⁸ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁷ : CommRing A inst✝⁶ : Algebra R A B : Type w inst✝⁵ : CommRing B inst✝⁴ : Algebra R B inst✝³ : Algebra A B inst✝² : IsScalarTower R A B inst✝¹ : Nontrivial A inst✝ : NoZeroSMulDivisors R A x y : R h : W.a₁ * y = 3 * x ^ 2 + 2 * W.a₂ * x + W.a₄ ⊢ (baseChange W A).a₁ * ↑(algebraMap R A) y = 3 * ↑(algebraMap R A) x ^ 2 + 2 * (baseChange W A).a₂ * ↑(algebraMap R A) x + (baseChange W A).a₄ case refine_4 R : Type u inst✝⁸ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁷ : CommRing A inst✝⁶ : Algebra R A B : Type w inst✝⁵ : CommRing B inst✝⁴ : Algebra R B inst✝³ : Algebra A B inst✝² : IsScalarTower R A B inst✝¹ : Nontrivial A inst✝ : NoZeroSMulDivisors R A x y : R h : y = -y - W.a₁ * x - W.a₃ ⊢ ↑(algebraMap R A) y = -↑(algebraMap R A) y - (baseChange W A).a₁ * ↑(algebraMap R A) x - (baseChange W A).a₃ [PROOFSTEP] any_goals apply NoZeroSMulDivisors.algebraMap_injective R A; map_simp; exact h [GOAL] case refine_1 R : Type u inst✝⁸ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁷ : CommRing A inst✝⁶ : Algebra R A B : Type w inst✝⁵ : CommRing B inst✝⁴ : Algebra R B inst✝³ : Algebra A B inst✝² : IsScalarTower R A B inst✝¹ : Nontrivial A inst✝ : NoZeroSMulDivisors R A x y : R h : (baseChange W A).a₁ * ↑(algebraMap R A) y = 3 * ↑(algebraMap R A) x ^ 2 + 2 * (baseChange W A).a₂ * ↑(algebraMap R A) x + (baseChange W A).a₄ ⊢ W.a₁ * y = 3 * x ^ 2 + 2 * W.a₂ * x + W.a₄ [PROOFSTEP] apply NoZeroSMulDivisors.algebraMap_injective R A [GOAL] case refine_1.a R : Type u inst✝⁸ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁷ : CommRing A inst✝⁶ : Algebra R A B : Type w inst✝⁵ : CommRing B inst✝⁴ : Algebra R B inst✝³ : Algebra A B inst✝² : IsScalarTower R A B inst✝¹ : Nontrivial A inst✝ : NoZeroSMulDivisors R A x y : R h : (baseChange W A).a₁ * ↑(algebraMap R A) y = 3 * ↑(algebraMap R A) x ^ 2 + 2 * (baseChange W A).a₂ * ↑(algebraMap R A) x + (baseChange W A).a₄ ⊢ ↑(algebraMap R A) (W.a₁ * y) = ↑(algebraMap R A) (3 * x ^ 2 + 2 * W.a₂ * x + W.a₄) [PROOFSTEP] map_simp [GOAL] case refine_1.a R : Type u inst✝⁸ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁷ : CommRing A inst✝⁶ : Algebra R A B : Type w inst✝⁵ : CommRing B inst✝⁴ : Algebra R B inst✝³ : Algebra A B inst✝² : IsScalarTower R A B inst✝¹ : Nontrivial A inst✝ : NoZeroSMulDivisors R A x y : R h : (baseChange W A).a₁ * ↑(algebraMap R A) y = 3 * ↑(algebraMap R A) x ^ 2 + 2 * (baseChange W A).a₂ * ↑(algebraMap R A) x + (baseChange W A).a₄ ⊢ ↑(algebraMap R A) W.a₁ * ↑(algebraMap R A) y = 3 * ↑(algebraMap R A) x ^ 2 + 2 * ↑(algebraMap R A) W.a₂ * ↑(algebraMap R A) x + ↑(algebraMap R A) W.a₄ [PROOFSTEP] exact h [GOAL] case refine_2 R : Type u inst✝⁸ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁷ : CommRing A inst✝⁶ : Algebra R A B : Type w inst✝⁵ : CommRing B inst✝⁴ : Algebra R B inst✝³ : Algebra A B inst✝² : IsScalarTower R A B inst✝¹ : Nontrivial A inst✝ : NoZeroSMulDivisors R A x y : R h : ↑(algebraMap R A) y = -↑(algebraMap R A) y - (baseChange W A).a₁ * ↑(algebraMap R A) x - (baseChange W A).a₃ ⊢ y = -y - W.a₁ * x - W.a₃ [PROOFSTEP] apply NoZeroSMulDivisors.algebraMap_injective R A [GOAL] case refine_2.a R : Type u inst✝⁸ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁷ : CommRing A inst✝⁶ : Algebra R A B : Type w inst✝⁵ : CommRing B inst✝⁴ : Algebra R B inst✝³ : Algebra A B inst✝² : IsScalarTower R A B inst✝¹ : Nontrivial A inst✝ : NoZeroSMulDivisors R A x y : R h : ↑(algebraMap R A) y = -↑(algebraMap R A) y - (baseChange W A).a₁ * ↑(algebraMap R A) x - (baseChange W A).a₃ ⊢ ↑(algebraMap R A) y = ↑(algebraMap R A) (-y - W.a₁ * x - W.a₃) [PROOFSTEP] map_simp [GOAL] case refine_2.a R : Type u inst✝⁸ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁷ : CommRing A inst✝⁶ : Algebra R A B : Type w inst✝⁵ : CommRing B inst✝⁴ : Algebra R B inst✝³ : Algebra A B inst✝² : IsScalarTower R A B inst✝¹ : Nontrivial A inst✝ : NoZeroSMulDivisors R A x y : R h : ↑(algebraMap R A) y = -↑(algebraMap R A) y - (baseChange W A).a₁ * ↑(algebraMap R A) x - (baseChange W A).a₃ ⊢ ↑(algebraMap R A) y = -↑(algebraMap R A) y - ↑(algebraMap R A) W.a₁ * ↑(algebraMap R A) x - ↑(algebraMap R A) W.a₃ [PROOFSTEP] exact h [GOAL] case refine_3 R : Type u inst✝⁸ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁷ : CommRing A inst✝⁶ : Algebra R A B : Type w inst✝⁵ : CommRing B inst✝⁴ : Algebra R B inst✝³ : Algebra A B inst✝² : IsScalarTower R A B inst✝¹ : Nontrivial A inst✝ : NoZeroSMulDivisors R A x y : R h : W.a₁ * y = 3 * x ^ 2 + 2 * W.a₂ * x + W.a₄ ⊢ (baseChange W A).a₁ * ↑(algebraMap R A) y = 3 * ↑(algebraMap R A) x ^ 2 + 2 * (baseChange W A).a₂ * ↑(algebraMap R A) x + (baseChange W A).a₄ [PROOFSTEP] apply NoZeroSMulDivisors.algebraMap_injective R A [GOAL] case refine_4 R : Type u inst✝⁸ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁷ : CommRing A inst✝⁶ : Algebra R A B : Type w inst✝⁵ : CommRing B inst✝⁴ : Algebra R B inst✝³ : Algebra A B inst✝² : IsScalarTower R A B inst✝¹ : Nontrivial A inst✝ : NoZeroSMulDivisors R A x y : R h : y = -y - W.a₁ * x - W.a₃ ⊢ ↑(algebraMap R A) y = -↑(algebraMap R A) y - (baseChange W A).a₁ * ↑(algebraMap R A) x - (baseChange W A).a₃ [PROOFSTEP] apply NoZeroSMulDivisors.algebraMap_injective R A [GOAL] case refine_3 R : Type u inst✝⁸ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁷ : CommRing A inst✝⁶ : Algebra R A B : Type w inst✝⁵ : CommRing B inst✝⁴ : Algebra R B inst✝³ : Algebra A B inst✝² : IsScalarTower R A B inst✝¹ : Nontrivial A inst✝ : NoZeroSMulDivisors R A x y : R h : W.a₁ * y = 3 * x ^ 2 + 2 * W.a₂ * x + W.a₄ ⊢ (baseChange W A).a₁ * ↑(algebraMap R A) y = 3 * ↑(algebraMap R A) x ^ 2 + 2 * (baseChange W A).a₂ * ↑(algebraMap R A) x + (baseChange W A).a₄ case refine_4 R : Type u inst✝⁸ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁷ : CommRing A inst✝⁶ : Algebra R A B : Type w inst✝⁵ : CommRing B inst✝⁴ : Algebra R B inst✝³ : Algebra A B inst✝² : IsScalarTower R A B inst✝¹ : Nontrivial A inst✝ : NoZeroSMulDivisors R A x y : R h : y = -y - W.a₁ * x - W.a₃ ⊢ ↑(algebraMap R A) y = -↑(algebraMap R A) y - (baseChange W A).a₁ * ↑(algebraMap R A) x - (baseChange W A).a₃ [PROOFSTEP] any_goals convert congr_arg (algebraMap R A) h <;> map_simp <;> rfl [GOAL] case refine_3 R : Type u inst✝⁸ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁷ : CommRing A inst✝⁶ : Algebra R A B : Type w inst✝⁵ : CommRing B inst✝⁴ : Algebra R B inst✝³ : Algebra A B inst✝² : IsScalarTower R A B inst✝¹ : Nontrivial A inst✝ : NoZeroSMulDivisors R A x y : R h : W.a₁ * y = 3 * x ^ 2 + 2 * W.a₂ * x + W.a₄ ⊢ (baseChange W A).a₁ * ↑(algebraMap R A) y = 3 * ↑(algebraMap R A) x ^ 2 + 2 * (baseChange W A).a₂ * ↑(algebraMap R A) x + (baseChange W A).a₄ [PROOFSTEP] convert congr_arg (algebraMap R A) h [GOAL] case h.e'_2 R : Type u inst✝⁸ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁷ : CommRing A inst✝⁶ : Algebra R A B : Type w inst✝⁵ : CommRing B inst✝⁴ : Algebra R B inst✝³ : Algebra A B inst✝² : IsScalarTower R A B inst✝¹ : Nontrivial A inst✝ : NoZeroSMulDivisors R A x y : R h : W.a₁ * y = 3 * x ^ 2 + 2 * W.a₂ * x + W.a₄ ⊢ (baseChange W A).a₁ * ↑(algebraMap R A) y = ↑(algebraMap R A) (W.a₁ * y) [PROOFSTEP] map_simp [GOAL] case h.e'_3 R : Type u inst✝⁸ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁷ : CommRing A inst✝⁶ : Algebra R A B : Type w inst✝⁵ : CommRing B inst✝⁴ : Algebra R B inst✝³ : Algebra A B inst✝² : IsScalarTower R A B inst✝¹ : Nontrivial A inst✝ : NoZeroSMulDivisors R A x y : R h : W.a₁ * y = 3 * x ^ 2 + 2 * W.a₂ * x + W.a₄ ⊢ 3 * ↑(algebraMap R A) x ^ 2 + 2 * (baseChange W A).a₂ * ↑(algebraMap R A) x + (baseChange W A).a₄ = ↑(algebraMap R A) (3 * x ^ 2 + 2 * W.a₂ * x + W.a₄) [PROOFSTEP] map_simp [GOAL] case h.e'_2 R : Type u inst✝⁸ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁷ : CommRing A inst✝⁶ : Algebra R A B : Type w inst✝⁵ : CommRing B inst✝⁴ : Algebra R B inst✝³ : Algebra A B inst✝² : IsScalarTower R A B inst✝¹ : Nontrivial A inst✝ : NoZeroSMulDivisors R A x y : R h : W.a₁ * y = 3 * x ^ 2 + 2 * W.a₂ * x + W.a₄ ⊢ (baseChange W A).a₁ * ↑(algebraMap R A) y = ↑(algebraMap R A) W.a₁ * ↑(algebraMap R A) y [PROOFSTEP] rfl [GOAL] case h.e'_3 R : Type u inst✝⁸ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁷ : CommRing A inst✝⁶ : Algebra R A B : Type w inst✝⁵ : CommRing B inst✝⁴ : Algebra R B inst✝³ : Algebra A B inst✝² : IsScalarTower R A B inst✝¹ : Nontrivial A inst✝ : NoZeroSMulDivisors R A x y : R h : W.a₁ * y = 3 * x ^ 2 + 2 * W.a₂ * x + W.a₄ ⊢ 3 * ↑(algebraMap R A) x ^ 2 + 2 * (baseChange W A).a₂ * ↑(algebraMap R A) x + (baseChange W A).a₄ = 3 * ↑(algebraMap R A) x ^ 2 + 2 * ↑(algebraMap R A) W.a₂ * ↑(algebraMap R A) x + ↑(algebraMap R A) W.a₄ [PROOFSTEP] rfl [GOAL] case refine_4 R : Type u inst✝⁸ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁷ : CommRing A inst✝⁶ : Algebra R A B : Type w inst✝⁵ : CommRing B inst✝⁴ : Algebra R B inst✝³ : Algebra A B inst✝² : IsScalarTower R A B inst✝¹ : Nontrivial A inst✝ : NoZeroSMulDivisors R A x y : R h : y = -y - W.a₁ * x - W.a₃ ⊢ ↑(algebraMap R A) y = -↑(algebraMap R A) y - (baseChange W A).a₁ * ↑(algebraMap R A) x - (baseChange W A).a₃ [PROOFSTEP] convert congr_arg (algebraMap R A) h [GOAL] case h.e'_3 R : Type u inst✝⁸ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁷ : CommRing A inst✝⁶ : Algebra R A B : Type w inst✝⁵ : CommRing B inst✝⁴ : Algebra R B inst✝³ : Algebra A B inst✝² : IsScalarTower R A B inst✝¹ : Nontrivial A inst✝ : NoZeroSMulDivisors R A x y : R h : y = -y - W.a₁ * x - W.a₃ ⊢ -↑(algebraMap R A) y - (baseChange W A).a₁ * ↑(algebraMap R A) x - (baseChange W A).a₃ = ↑(algebraMap R A) (-y - W.a₁ * x - W.a₃) [PROOFSTEP] map_simp [GOAL] case h.e'_3 R : Type u inst✝⁸ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁷ : CommRing A inst✝⁶ : Algebra R A B : Type w inst✝⁵ : CommRing B inst✝⁴ : Algebra R B inst✝³ : Algebra A B inst✝² : IsScalarTower R A B inst✝¹ : Nontrivial A inst✝ : NoZeroSMulDivisors R A x y : R h : y = -y - W.a₁ * x - W.a₃ ⊢ -↑(algebraMap R A) y - (baseChange W A).a₁ * ↑(algebraMap R A) x - (baseChange W A).a₃ = -↑(algebraMap R A) y - ↑(algebraMap R A) W.a₁ * ↑(algebraMap R A) x - ↑(algebraMap R A) W.a₃ [PROOFSTEP] rfl [GOAL] R : Type u inst✝⁸ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁷ : CommRing A inst✝⁶ : Algebra R A B : Type w inst✝⁵ : CommRing B inst✝⁴ : Algebra R B inst✝³ : Algebra A B inst✝² : IsScalarTower R A B inst✝¹ : Nontrivial B inst✝ : NoZeroSMulDivisors A B x y : A ⊢ WeierstrassCurve.nonsingular (baseChange W A) x y ↔ WeierstrassCurve.nonsingular (baseChange W B) (↑(algebraMap A B) x) (↑(algebraMap A B) y) [PROOFSTEP] rw [nonsingular_iff_baseChange (W.baseChange A) B, baseChange_baseChange] [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B h : WeierstrassCurve.equation W 0 0 hΔ : Δ W ≠ 0 ⊢ WeierstrassCurve.nonsingular W 0 0 [PROOFSTEP] simp only [equation_zero, nonsingular_zero] at * [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B hΔ : Δ W ≠ 0 h : W.a₆ = 0 ⊢ W.a₆ = 0 ∧ (W.a₃ ≠ 0 ∨ W.a₄ ≠ 0) [PROOFSTEP] contrapose! hΔ [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B h : W.a₆ = 0 hΔ : W.a₆ = 0 → W.a₃ = 0 ∧ W.a₄ = 0 ⊢ Δ W = 0 [PROOFSTEP] simp only [b₂, b₄, b₆, b₈, Δ, h, hΔ] [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B h : W.a₆ = 0 hΔ : W.a₆ = 0 → W.a₃ = 0 ∧ W.a₄ = 0 ⊢ -(W.a₁ ^ 2 + 4 * W.a₂) ^ 2 * (W.a₁ ^ 2 * 0 + 4 * W.a₂ * 0 - W.a₁ * 0 * 0 + W.a₂ * 0 ^ 2 - 0 ^ 2) - 8 * (2 * 0 + W.a₁ * 0) ^ 3 - 27 * (0 ^ 2 + 4 * 0) ^ 2 + 9 * (W.a₁ ^ 2 + 4 * W.a₂) * (2 * 0 + W.a₁ * 0) * (0 ^ 2 + 4 * 0) = 0 [PROOFSTEP] ring1 [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B x y : R h : WeierstrassCurve.equation W x y hΔ : Δ W ≠ 0 ⊢ Δ (variableChange W { u := 1, r := x, s := 0, t := y }) ≠ 0 [PROOFSTEP] rwa [variableChange_Δ, inv_one, Units.val_one, one_pow, one_mul] [GOAL] R : Type u inst✝⁸ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁷ : CommRing A inst✝⁶ : Algebra R A B : Type w inst✝⁵ : CommRing B inst✝⁴ : Algebra R B inst✝³ : Algebra A B inst✝² : IsScalarTower R A B inst✝¹ : IsDomain R inst✝ : NormalizedGCDMonoid R ⊢ IsPrime (span {WeierstrassCurve.polynomial W}) [PROOFSTEP] simpa only [span_singleton_prime W.polynomial_ne_zero, ← GCDMonoid.irreducible_iff_prime] using W.irreducible_polynomial [GOAL] R : Type u inst✝⁷ : CommRing R W✝ : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B F : Type u inst✝ : Field F W : WeierstrassCurve F ⊢ IsDomain (CoordinateRing W) [PROOFSTEP] classical exact instIsDomainCoordinateRing W [GOAL] R : Type u inst✝⁷ : CommRing R W✝ : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B F : Type u inst✝ : Field F W : WeierstrassCurve F ⊢ IsDomain (CoordinateRing W) [PROOFSTEP] exact instIsDomainCoordinateRing W [GOAL] R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B x : R y : R[X] inst✝ : Nontrivial R ⊢ natDegree (↑C (Y - ↑C x)) < natDegree (WeierstrassCurve.polynomial W) [PROOFSTEP] rw [natDegree_polynomial, natDegree_C] [GOAL] R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B x : R y : R[X] inst✝ : Nontrivial R ⊢ 0 < 2 [PROOFSTEP] norm_num1 [GOAL] R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B x : R y : R[X] inst✝ : Nontrivial R ⊢ natDegree (Y - ↑C y) < natDegree (WeierstrassCurve.polynomial W) [PROOFSTEP] rw [natDegree_polynomial, natDegree_X_sub_C] [GOAL] R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B x : R y : R[X] inst✝ : Nontrivial R ⊢ 1 < 2 [PROOFSTEP] norm_num1 [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B x✝ : R y✝ : R[X] x : R y : R[X] h : eval x (eval y (WeierstrassCurve.polynomial W)) = 0 ⊢ XYIdeal W x y = Ideal.map (Quotient.mkₐ R (span {WeierstrassCurve.polynomial W})) (span {↑C (Y - ↑C x), Y - ↑C y}) [PROOFSTEP] simp only [XYIdeal, XClass, YClass, ← Set.image_pair, ← map_span] [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B x✝ : R y✝ : R[X] x : R y : R[X] h : eval x (eval y (WeierstrassCurve.polynomial W)) = 0 ⊢ Ideal.map (mk W) (span {↑C (Y - ↑C x), Y - ↑C y}) = Ideal.map (Quotient.mkₐ R (span {WeierstrassCurve.polynomial W})) (span {↑C (Y - ↑C x), Y - ↑C y}) [PROOFSTEP] rfl [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B x : R y : R[X] ⊢ Basis (Fin 2) R[X] (CoordinateRing W) [PROOFSTEP] classical exact (subsingleton_or_nontrivial R).by_cases (fun _ => default) fun _ => (AdjoinRoot.powerBasis' W.monic_polynomial).basis.reindex <| finCongr W.natDegree_polynomial [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B x : R y : R[X] ⊢ Basis (Fin 2) R[X] (CoordinateRing W) [PROOFSTEP] exact (subsingleton_or_nontrivial R).by_cases (fun _ => default) fun _ => (AdjoinRoot.powerBasis' W.monic_polynomial).basis.reindex <| finCongr W.natDegree_polynomial [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B x : R y : R[X] n : Fin 2 ⊢ ↑(CoordinateRing.basis W) n = (AdjoinRoot.powerBasis' (_ : Monic (WeierstrassCurve.polynomial W))).gen ^ ↑n [PROOFSTEP] classical nontriviality R rw [CoordinateRing.basis, Or.by_cases, dif_neg <| not_subsingleton R, Basis.reindex_apply, PowerBasis.basis_eq_pow] rfl [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B x : R y : R[X] n : Fin 2 ⊢ ↑(CoordinateRing.basis W) n = (AdjoinRoot.powerBasis' (_ : Monic (WeierstrassCurve.polynomial W))).gen ^ ↑n [PROOFSTEP] nontriviality R [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B x : R y : R[X] n : Fin 2 ✝ : Nontrivial R ⊢ ↑(CoordinateRing.basis W) n = (AdjoinRoot.powerBasis' (_ : Monic (WeierstrassCurve.polynomial W))).gen ^ ↑n [PROOFSTEP] rw [CoordinateRing.basis, Or.by_cases, dif_neg <| not_subsingleton R, Basis.reindex_apply, PowerBasis.basis_eq_pow] [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B x : R y : R[X] n : Fin 2 ✝ : Nontrivial R ⊢ (AdjoinRoot.powerBasis' (_ : Monic (WeierstrassCurve.polynomial W))).gen ^ ↑(↑(finCongr (_ : natDegree (WeierstrassCurve.polynomial W) = 2)).symm n) = (AdjoinRoot.powerBasis' (_ : Monic (WeierstrassCurve.polynomial W))).gen ^ ↑n [PROOFSTEP] rfl [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B x : R y : R[X] ⊢ ↑(CoordinateRing.basis W) 0 = 1 [PROOFSTEP] simpa only [basis_apply] using pow_zero _ [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B x : R y : R[X] ⊢ ↑(CoordinateRing.basis W) 1 = ↑(mk W) Y [PROOFSTEP] simpa only [basis_apply] using pow_one _ [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B x : R y : R[X] ⊢ ↑(CoordinateRing.basis W) = ![1, ↑(mk W) Y] [PROOFSTEP] ext n [GOAL] case h R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B x : R y : R[X] n : Fin 2 ⊢ ↑(CoordinateRing.basis W) n = Matrix.vecCons 1 ![↑(mk W) Y] n [PROOFSTEP] fin_cases n [GOAL] case h.head R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B x : R y : R[X] ⊢ ↑(CoordinateRing.basis W) { val := 0, isLt := (_ : 0 < 2) } = Matrix.vecCons 1 ![↑(mk W) Y] { val := 0, isLt := (_ : 0 < 2) } case h.tail.head R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B x : R y : R[X] ⊢ ↑(CoordinateRing.basis W) { val := 1, isLt := (_ : (fun a => a < 2) 1) } = Matrix.vecCons 1 ![↑(mk W) Y] { val := 1, isLt := (_ : (fun a => a < 2) 1) } [PROOFSTEP] exacts [basis_zero W, basis_one W] [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B x : R y p q : R[X] hpq : p • 1 + q • ↑(mk W) Y = 0 ⊢ p = 0 ∧ q = 0 [PROOFSTEP] have h := Fintype.linearIndependent_iff.mp (CoordinateRing.basis W).linearIndependent ![p, q] [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B x : R y p q : R[X] hpq : p • 1 + q • ↑(mk W) Y = 0 h : (Finset.sum Finset.univ fun i => Matrix.vecCons p ![q] i • ↑(CoordinateRing.basis W) i) = 0 → ∀ (i : Fin 2), Matrix.vecCons p ![q] i = 0 ⊢ p = 0 ∧ q = 0 [PROOFSTEP] erw [Fin.sum_univ_succ, basis_zero, Fin.sum_univ_one, basis_one] at h [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B x : R y p q : R[X] hpq : p • 1 + q • ↑(mk W) Y = 0 h : Matrix.vecCons p ![q] 0 • 1 + Matrix.vecCons p ![q] (Fin.succ 0) • ↑(mk W) Y = 0 → ∀ (i : Fin 2), Matrix.vecCons p ![q] i = 0 ⊢ p = 0 ∧ q = 0 [PROOFSTEP] exact ⟨h hpq 0, h hpq 1⟩ [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B x✝ : R y : R[X] x : CoordinateRing W ⊢ ∃ p q, p • 1 + q • ↑(mk W) Y = x [PROOFSTEP] have h := (CoordinateRing.basis W).sum_equivFun x [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B x✝ : R y : R[X] x : CoordinateRing W h : (Finset.sum Finset.univ fun i => ↑(Basis.equivFun (CoordinateRing.basis W)) x i • ↑(CoordinateRing.basis W) i) = x ⊢ ∃ p q, p • 1 + q • ↑(mk W) Y = x [PROOFSTEP] erw [Fin.sum_univ_succ, Fin.sum_univ_one, basis_zero, basis_one] at h [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B x✝ : R y : R[X] x : CoordinateRing W h : ↑(Basis.equivFun (CoordinateRing.basis W)) x 0 • 1 + ↑(Basis.equivFun (CoordinateRing.basis W)) x (Fin.succ 0) • ↑(mk W) Y = x ⊢ ∃ p q, p • 1 + q • ↑(mk W) Y = x [PROOFSTEP] exact ⟨_, _, h⟩ [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B x : R y p q : R[X] ⊢ (p • 1 + q • ↑(mk W) Y) * ↑(mk W) (↑C y) = (p * y) • 1 + (q * y) • ↑(mk W) Y [PROOFSTEP] simp only [smul, _root_.map_mul] [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B x : R y p q : R[X] ⊢ (↑(mk W) (↑C p) * 1 + ↑(mk W) (↑C q) * ↑(mk W) Y) * ↑(mk W) (↑C y) = ↑(mk W) (↑C p) * ↑(mk W) (↑C y) * 1 + ↑(mk W) (↑C q) * ↑(mk W) (↑C y) * ↑(mk W) Y [PROOFSTEP] ring1 [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B x : R y p q : R[X] ⊢ (p • 1 + q • ↑(mk W) Y) * ↑(mk W) Y = (q * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) • 1 + (p - q * (↑C W.a₁ * Y + ↑C W.a₃)) • ↑(mk W) Y [PROOFSTEP] have Y_sq : mk W Y ^ 2 = mk W (C (X ^ 3 + C W.a₂ * X ^ 2 + C W.a₄ * X + C W.a₆) - C (C W.a₁ * X + C W.a₃) * Y) := by exact AdjoinRoot.mk_eq_mk.mpr ⟨1, by rw [WeierstrassCurve.polynomial]; ring1⟩ [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B x : R y p q : R[X] ⊢ ↑(mk W) Y ^ 2 = ↑(mk W) (↑C (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆) - ↑C (↑C W.a₁ * Y + ↑C W.a₃) * Y) [PROOFSTEP] exact AdjoinRoot.mk_eq_mk.mpr ⟨1, by rw [WeierstrassCurve.polynomial]; ring1⟩ [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B x : R y p q : R[X] ⊢ (fun x => x ^ 2) Y - (↑C (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆) - ↑C (↑C W.a₁ * Y + ↑C W.a₃) * Y) = WeierstrassCurve.polynomial W * 1 [PROOFSTEP] rw [WeierstrassCurve.polynomial] [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B x : R y p q : R[X] ⊢ (fun x => x ^ 2) Y - (↑C (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆) - ↑C (↑C W.a₁ * Y + ↑C W.a₃) * Y) = (Y ^ 2 + ↑C (↑C W.a₁ * Y + ↑C W.a₃) * Y - ↑C (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) * 1 [PROOFSTEP] ring1 [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B x : R y p q : R[X] Y_sq : ↑(mk W) Y ^ 2 = ↑(mk W) (↑C (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆) - ↑C (↑C W.a₁ * Y + ↑C W.a₃) * Y) ⊢ (p • 1 + q • ↑(mk W) Y) * ↑(mk W) Y = (q * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) • 1 + (p - q * (↑C W.a₁ * Y + ↑C W.a₃)) • ↑(mk W) Y [PROOFSTEP] simp_rw [smul, add_mul, mul_assoc, ← sq, Y_sq, C_sub, map_sub, C_mul, _root_.map_mul] [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B x : R y p q : R[X] Y_sq : ↑(mk W) Y ^ 2 = ↑(mk W) (↑C (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆) - ↑C (↑C W.a₁ * Y + ↑C W.a₃) * Y) ⊢ ↑(mk W) (↑C p) * (1 * ↑(mk W) Y) + ↑(mk W) (↑C q) * (↑(mk W) (↑C (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) - ↑(mk W) (↑C (↑C W.a₁ * Y + ↑C W.a₃)) * ↑(mk W) Y) = ↑(mk W) (↑C q) * ↑(mk W) (↑C (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) * 1 + (↑(mk W) (↑C p) - ↑(mk W) (↑C q) * ↑(mk W) (↑C (↑C W.a₁ * Y + ↑C W.a₃))) * ↑(mk W) Y [PROOFSTEP] ring1 [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B x : R y p q : R[X] ⊢ ↑(Algebra.norm R[X]) (p • 1 + q • ↑(mk W) Y) = p ^ 2 - p * q * (↑C W.a₁ * Y + ↑C W.a₃) - q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆) [PROOFSTEP] simp_rw [Algebra.norm_eq_matrix_det <| CoordinateRing.basis W, Matrix.det_fin_two, Algebra.leftMulMatrix_eq_repr_mul, basis_zero, mul_one, basis_one, smul_basis_mul_Y, map_add, Finsupp.add_apply, map_smul, Finsupp.smul_apply, ← basis_zero, ← basis_one, Basis.repr_self_apply, if_pos, if_neg, smul_eq_mul] [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B x : R y p q : R[X] ⊢ (p * 1 + q * 0) * (q * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆) * 0 + (p - q * (↑C W.a₁ * Y + ↑C W.a₃)) * 1) - (q * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆) * 1 + (p - q * (↑C W.a₁ * Y + ↑C W.a₃)) * 0) * (p * 0 + q * 1) = p ^ 2 - p * q * (↑C W.a₁ * Y + ↑C W.a₃) - q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆) [PROOFSTEP] ring1 [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B x : R y p q : R[X] ⊢ ↑C (↑(Algebra.norm R[X]) (p • 1 + q • ↑(mk W) Y)) - (↑C p + ↑C q * Y) * (↑C p + ↑C q * (-Y - ↑C (↑C W.a₁ * Y + ↑C W.a₃))) = WeierstrassCurve.polynomial W * ↑C q ^ 2 [PROOFSTEP] simp only [norm_smul_basis, WeierstrassCurve.polynomial] [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B x : R y p q : R[X] ⊢ ↑C (p ^ 2 - p * q * (↑C W.a₁ * Y + ↑C W.a₃) - q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) - (↑C p + ↑C q * Y) * (↑C p + ↑C q * (-Y - ↑C (↑C W.a₁ * Y + ↑C W.a₃))) = (Y ^ 2 + ↑C (↑C W.a₁ * Y + ↑C W.a₃) * Y - ↑C (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) * ↑C q ^ 2 [PROOFSTEP] C_simp [GOAL] R : Type u inst✝⁶ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁵ : CommRing A inst✝⁴ : Algebra R A B : Type w inst✝³ : CommRing B inst✝² : Algebra R B inst✝¹ : Algebra A B inst✝ : IsScalarTower R A B x : R y p q : R[X] ⊢ ↑C p ^ 2 - ↑C p * ↑C q * (↑C (↑C W.a₁) * ↑C Y + ↑C (↑C W.a₃)) - ↑C q ^ 2 * (↑C Y ^ 3 + ↑C (↑C W.a₂) * ↑C Y ^ 2 + ↑C (↑C W.a₄) * ↑C Y + ↑C (↑C W.a₆)) - (↑C p + ↑C q * Y) * (↑C p + ↑C q * (-Y - (↑C (↑C W.a₁) * ↑C Y + ↑C (↑C W.a₃)))) = (Y ^ 2 + (↑C (↑C W.a₁) * ↑C Y + ↑C (↑C W.a₃)) * Y - (↑C Y ^ 3 + ↑C (↑C W.a₂) * ↑C Y ^ 2 + ↑C (↑C W.a₄) * ↑C Y + ↑C (↑C W.a₆))) * ↑C q ^ 2 [PROOFSTEP] ring1 [GOAL] R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B x : R y : R[X] inst✝ : IsDomain R p q : R[X] ⊢ degree (↑(Algebra.norm R[X]) (p • 1 + q • ↑(mk W) Y)) = max (2 • degree p) (2 • degree q + 3) [PROOFSTEP] have hdp : (p ^ 2).degree = 2 • p.degree := degree_pow p 2 [GOAL] R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B x : R y : R[X] inst✝ : IsDomain R p q : R[X] hdp : degree (p ^ 2) = 2 • degree p ⊢ degree (↑(Algebra.norm R[X]) (p • 1 + q • ↑(mk W) Y)) = max (2 • degree p) (2 • degree q + 3) [PROOFSTEP] have hdpq : (p * q * (C W.a₁ * X + C W.a₃)).degree ≤ p.degree + q.degree + 1 := by simpa only [degree_mul] using add_le_add_left degree_linear_le (p.degree + q.degree) [GOAL] R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B x : R y : R[X] inst✝ : IsDomain R p q : R[X] hdp : degree (p ^ 2) = 2 • degree p ⊢ degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ degree p + degree q + 1 [PROOFSTEP] simpa only [degree_mul] using add_le_add_left degree_linear_le (p.degree + q.degree) [GOAL] R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B x : R y : R[X] inst✝ : IsDomain R p q : R[X] hdp : degree (p ^ 2) = 2 • degree p hdpq : degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ degree p + degree q + 1 ⊢ degree (↑(Algebra.norm R[X]) (p • 1 + q • ↑(mk W) Y)) = max (2 • degree p) (2 • degree q + 3) [PROOFSTEP] have hdq : (q ^ 2 * (X ^ 3 + C W.a₂ * X ^ 2 + C W.a₄ * X + C W.a₆)).degree = 2 • q.degree + 3 := by rw [degree_mul, degree_pow, ← one_mul <| X ^ 3, ← C_1, degree_cubic <| one_ne_zero' R] [GOAL] R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B x : R y : R[X] inst✝ : IsDomain R p q : R[X] hdp : degree (p ^ 2) = 2 • degree p hdpq : degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ degree p + degree q + 1 ⊢ degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = 2 • degree q + 3 [PROOFSTEP] rw [degree_mul, degree_pow, ← one_mul <| X ^ 3, ← C_1, degree_cubic <| one_ne_zero' R] [GOAL] R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B x : R y : R[X] inst✝ : IsDomain R p q : R[X] hdp : degree (p ^ 2) = 2 • degree p hdpq : degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ degree p + degree q + 1 hdq : degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = 2 • degree q + 3 ⊢ degree (↑(Algebra.norm R[X]) (p • 1 + q • ↑(mk W) Y)) = max (2 • degree p) (2 • degree q + 3) [PROOFSTEP] rw [norm_smul_basis] [GOAL] R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B x : R y : R[X] inst✝ : IsDomain R p q : R[X] hdp : degree (p ^ 2) = 2 • degree p hdpq : degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ degree p + degree q + 1 hdq : degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = 2 • degree q + 3 ⊢ degree (p ^ 2 - p * q * (↑C W.a₁ * Y + ↑C W.a₃) - q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = max (2 • degree p) (2 • degree q + 3) [PROOFSTEP] by_cases hp : p = 0 [GOAL] case pos R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B x : R y : R[X] inst✝ : IsDomain R p q : R[X] hdp : degree (p ^ 2) = 2 • degree p hdpq : degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ degree p + degree q + 1 hdq : degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = 2 • degree q + 3 hp : p = 0 ⊢ degree (p ^ 2 - p * q * (↑C W.a₁ * Y + ↑C W.a₃) - q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = max (2 • degree p) (2 • degree q + 3) [PROOFSTEP] simpa only [hp, hdq, neg_zero, zero_sub, zero_mul, zero_pow zero_lt_two, degree_neg] using (max_bot_left _).symm [GOAL] case neg R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B x : R y : R[X] inst✝ : IsDomain R p q : R[X] hdp : degree (p ^ 2) = 2 • degree p hdpq : degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ degree p + degree q + 1 hdq : degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = 2 • degree q + 3 hp : ¬p = 0 ⊢ degree (p ^ 2 - p * q * (↑C W.a₁ * Y + ↑C W.a₃) - q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = max (2 • degree p) (2 • degree q + 3) [PROOFSTEP] by_cases hq : q = 0 [GOAL] case pos R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B x : R y : R[X] inst✝ : IsDomain R p q : R[X] hdp : degree (p ^ 2) = 2 • degree p hdpq : degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ degree p + degree q + 1 hdq : degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = 2 • degree q + 3 hp : ¬p = 0 hq : q = 0 ⊢ degree (p ^ 2 - p * q * (↑C W.a₁ * Y + ↑C W.a₃) - q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = max (2 • degree p) (2 • degree q + 3) [PROOFSTEP] simpa only [hq, hdp, sub_zero, zero_mul, mul_zero, zero_pow zero_lt_two] using (max_bot_right _).symm [GOAL] case neg R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B x : R y : R[X] inst✝ : IsDomain R p q : R[X] hdp : degree (p ^ 2) = 2 • degree p hdpq : degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ degree p + degree q + 1 hdq : degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = 2 • degree q + 3 hp : ¬p = 0 hq : ¬q = 0 ⊢ degree (p ^ 2 - p * q * (↑C W.a₁ * Y + ↑C W.a₃) - q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = max (2 • degree p) (2 • degree q + 3) [PROOFSTEP] rw [← not_congr degree_eq_bot] at hp hq [GOAL] case neg R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B x : R y : R[X] inst✝ : IsDomain R p q : R[X] hdp : degree (p ^ 2) = 2 • degree p hdpq : degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ degree p + degree q + 1 hdq : degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = 2 • degree q + 3 hp : ¬degree p = ⊥ hq : ¬degree q = ⊥ ⊢ degree (p ^ 2 - p * q * (↑C W.a₁ * Y + ↑C W.a₃) - q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = max (2 • degree p) (2 • degree q + 3) [PROOFSTEP] rcases hp' : p.degree with _ | dp [GOAL] case neg.none R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B x : R y : R[X] inst✝ : IsDomain R p q : R[X] hdp : degree (p ^ 2) = 2 • degree p hdpq : degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ degree p + degree q + 1 hdq : degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = 2 • degree q + 3 hp : ¬degree p = ⊥ hq : ¬degree q = ⊥ hp' : degree p = none ⊢ degree (p ^ 2 - p * q * (↑C W.a₁ * Y + ↑C W.a₃) - q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = max (2 • none) (2 • degree q + 3) [PROOFSTEP] exact (hp hp').elim [GOAL] case neg.some R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B x : R y : R[X] inst✝ : IsDomain R p q : R[X] hdp : degree (p ^ 2) = 2 • degree p hdpq : degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ degree p + degree q + 1 hdq : degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = 2 • degree q + 3 hp : ¬degree p = ⊥ hq : ¬degree q = ⊥ dp : ℕ hp' : degree p = some dp ⊢ degree (p ^ 2 - p * q * (↑C W.a₁ * Y + ↑C W.a₃) - q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = max (2 • some dp) (2 • degree q + 3) [PROOFSTEP] rw [hp'] at hdp hdpq [GOAL] case neg.some R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B x : R y : R[X] inst✝ : IsDomain R p q : R[X] hdq : degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = 2 • degree q + 3 hp : ¬degree p = ⊥ hq : ¬degree q = ⊥ dp : ℕ hdpq : degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ some dp + degree q + 1 hdp : degree (p ^ 2) = 2 • some dp hp' : degree p = some dp ⊢ degree (p ^ 2 - p * q * (↑C W.a₁ * Y + ↑C W.a₃) - q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = max (2 • some dp) (2 • degree q + 3) [PROOFSTEP] rcases hq' : q.degree with _ | dq [GOAL] case neg.some.none R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B x : R y : R[X] inst✝ : IsDomain R p q : R[X] hdq : degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = 2 • degree q + 3 hp : ¬degree p = ⊥ hq : ¬degree q = ⊥ dp : ℕ hdpq : degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ some dp + degree q + 1 hdp : degree (p ^ 2) = 2 • some dp hp' : degree p = some dp hq' : degree q = none ⊢ degree (p ^ 2 - p * q * (↑C W.a₁ * Y + ↑C W.a₃) - q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = max (2 • some dp) (2 • none + 3) [PROOFSTEP] exact (hq hq').elim [GOAL] case neg.some.some R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B x : R y : R[X] inst✝ : IsDomain R p q : R[X] hdq : degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = 2 • degree q + 3 hp : ¬degree p = ⊥ hq : ¬degree q = ⊥ dp : ℕ hdpq : degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ some dp + degree q + 1 hdp : degree (p ^ 2) = 2 • some dp hp' : degree p = some dp dq : ℕ hq' : degree q = some dq ⊢ degree (p ^ 2 - p * q * (↑C W.a₁ * Y + ↑C W.a₃) - q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = max (2 • some dp) (2 • some dq + 3) [PROOFSTEP] rw [hq'] at hdpq hdq [GOAL] case neg.some.some R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B x : R y : R[X] inst✝ : IsDomain R p q : R[X] hp : ¬degree p = ⊥ hq : ¬degree q = ⊥ dp : ℕ hdp : degree (p ^ 2) = 2 • some dp hp' : degree p = some dp dq : ℕ hdq : degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = 2 • some dq + 3 hdpq : degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ some dp + some dq + 1 hq' : degree q = some dq ⊢ degree (p ^ 2 - p * q * (↑C W.a₁ * Y + ↑C W.a₃) - q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = max (2 • some dp) (2 • some dq + 3) [PROOFSTEP] rcases le_or_lt dp (dq + 1) with hpq | hpq [GOAL] case neg.some.some.inl R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B x : R y : R[X] inst✝ : IsDomain R p q : R[X] hp : ¬degree p = ⊥ hq : ¬degree q = ⊥ dp : ℕ hdp : degree (p ^ 2) = 2 • some dp hp' : degree p = some dp dq : ℕ hdq : degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = 2 • some dq + 3 hdpq : degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ some dp + some dq + 1 hq' : degree q = some dq hpq : dp ≤ dq + 1 ⊢ degree (p ^ 2 - p * q * (↑C W.a₁ * Y + ↑C W.a₃) - q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = max (2 • some dp) (2 • some dq + 3) [PROOFSTEP] convert (degree_sub_eq_right_of_degree_lt <| (degree_sub_le _ _).trans_lt <| max_lt_iff.mpr ⟨hdp.trans_lt _, hdpq.trans_lt _⟩).trans (max_eq_right_of_lt _).symm [GOAL] case h.e'_3.h.e'_4 R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B x : R y : R[X] inst✝ : IsDomain R p q : R[X] hp : ¬degree p = ⊥ hq : ¬degree q = ⊥ dp : ℕ hdp : degree (p ^ 2) = 2 • some dp hp' : degree p = some dp dq : ℕ hdq : degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = 2 • some dq + 3 hdpq : degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ some dp + some dq + 1 hq' : degree q = some dq hpq : dp ≤ dq + 1 ⊢ 2 • some dq + 3 = degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) [PROOFSTEP] rw [hdq] [GOAL] case neg.some.some.inl.convert_2 R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B x : R y : R[X] inst✝ : IsDomain R p q : R[X] hp : ¬degree p = ⊥ hq : ¬degree q = ⊥ dp : ℕ hdp : degree (p ^ 2) = 2 • some dp hp' : degree p = some dp dq : ℕ hdq : degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = 2 • some dq + 3 hdpq : degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ some dp + some dq + 1 hq' : degree q = some dq hpq : dp ≤ dq + 1 ⊢ 2 • some dp < degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) [PROOFSTEP] rw [hdq] [GOAL] case neg.some.some.inl.convert_3 R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B x : R y : R[X] inst✝ : IsDomain R p q : R[X] hp : ¬degree p = ⊥ hq : ¬degree q = ⊥ dp : ℕ hdp : degree (p ^ 2) = 2 • some dp hp' : degree p = some dp dq : ℕ hdq : degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = 2 • some dq + 3 hdpq : degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ some dp + some dq + 1 hq' : degree q = some dq hpq : dp ≤ dq + 1 ⊢ some dp + some dq + 1 < degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) [PROOFSTEP] rw [hdq] [GOAL] case neg.some.some.inl.convert_5 R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B x : R y : R[X] inst✝ : IsDomain R p q : R[X] hp : ¬degree p = ⊥ hq : ¬degree q = ⊥ dp : ℕ hdp : degree (p ^ 2) = 2 • some dp hp' : degree p = some dp dq : ℕ hdq : degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = 2 • some dq + 3 hdpq : degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ some dp + some dq + 1 hq' : degree q = some dq hpq : dp ≤ dq + 1 ⊢ 2 • some dp < degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) [PROOFSTEP] rw [hdq] [GOAL] case neg.some.some.inl.convert_2 R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B x : R y : R[X] inst✝ : IsDomain R p q : R[X] hp : ¬degree p = ⊥ hq : ¬degree q = ⊥ dp : ℕ hdp : degree (p ^ 2) = 2 • some dp hp' : degree p = some dp dq : ℕ hdq : degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = 2 • some dq + 3 hdpq : degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ some dp + some dq + 1 hq' : degree q = some dq hpq : dp ≤ dq + 1 ⊢ 2 • some dp < 2 • some dq + 3 [PROOFSTEP] exact WithBot.coe_lt_coe.mpr <| by linarith only [hpq] [GOAL] R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B x : R y : R[X] inst✝ : IsDomain R p q : R[X] hp : ¬degree p = ⊥ hq : ¬degree q = ⊥ dp : ℕ hdp : degree (p ^ 2) = 2 • some dp hp' : degree p = some dp dq : ℕ hdq : degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = 2 • some dq + 3 hdpq : degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ some dp + some dq + 1 hq' : degree q = some dq hpq : dp ≤ dq + 1 ⊢ (fun x x_1 => x + x_1) dp ((fun x x_1 => x + x_1) dp 0) < (fun x x_1 => x + x_1) ((fun x x_1 => x + x_1) dq ((fun x x_1 => x + x_1) dq 0)) ↑3 [PROOFSTEP] linarith only [hpq] [GOAL] case neg.some.some.inl.convert_3 R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B x : R y : R[X] inst✝ : IsDomain R p q : R[X] hp : ¬degree p = ⊥ hq : ¬degree q = ⊥ dp : ℕ hdp : degree (p ^ 2) = 2 • some dp hp' : degree p = some dp dq : ℕ hdq : degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = 2 • some dq + 3 hdpq : degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ some dp + some dq + 1 hq' : degree q = some dq hpq : dp ≤ dq + 1 ⊢ some dp + some dq + 1 < 2 • some dq + 3 [PROOFSTEP] exact WithBot.coe_lt_coe.mpr <| by linarith only [hpq] [GOAL] R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B x : R y : R[X] inst✝ : IsDomain R p q : R[X] hp : ¬degree p = ⊥ hq : ¬degree q = ⊥ dp : ℕ hdp : degree (p ^ 2) = 2 • some dp hp' : degree p = some dp dq : ℕ hdq : degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = 2 • some dq + 3 hdpq : degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ some dp + some dq + 1 hq' : degree q = some dq hpq : dp ≤ dq + 1 ⊢ (fun x x_1 => x + x_1) ((fun x x_1 => x + x_1) dp dq) 1 < (fun x x_1 => x + x_1) ((fun x x_1 => x + x_1) dq ((fun x x_1 => x + x_1) dq 0)) ↑3 [PROOFSTEP] linarith only [hpq] [GOAL] case neg.some.some.inl.convert_5 R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B x : R y : R[X] inst✝ : IsDomain R p q : R[X] hp : ¬degree p = ⊥ hq : ¬degree q = ⊥ dp : ℕ hdp : degree (p ^ 2) = 2 • some dp hp' : degree p = some dp dq : ℕ hdq : degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = 2 • some dq + 3 hdpq : degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ some dp + some dq + 1 hq' : degree q = some dq hpq : dp ≤ dq + 1 ⊢ 2 • some dp < 2 • some dq + 3 [PROOFSTEP] exact WithBot.coe_lt_coe.mpr <| by linarith only [hpq] [GOAL] R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B x : R y : R[X] inst✝ : IsDomain R p q : R[X] hp : ¬degree p = ⊥ hq : ¬degree q = ⊥ dp : ℕ hdp : degree (p ^ 2) = 2 • some dp hp' : degree p = some dp dq : ℕ hdq : degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = 2 • some dq + 3 hdpq : degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ some dp + some dq + 1 hq' : degree q = some dq hpq : dp ≤ dq + 1 ⊢ (fun x x_1 => x + x_1) dp ((fun x x_1 => x + x_1) dp 0) < (fun x x_1 => x + x_1) ((fun x x_1 => x + x_1) dq ((fun x x_1 => x + x_1) dq 0)) ↑3 [PROOFSTEP] linarith only [hpq] [GOAL] case neg.some.some.inr R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B x : R y : R[X] inst✝ : IsDomain R p q : R[X] hp : ¬degree p = ⊥ hq : ¬degree q = ⊥ dp : ℕ hdp : degree (p ^ 2) = 2 • some dp hp' : degree p = some dp dq : ℕ hdq : degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = 2 • some dq + 3 hdpq : degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ some dp + some dq + 1 hq' : degree q = some dq hpq : dq + 1 < dp ⊢ degree (p ^ 2 - p * q * (↑C W.a₁ * Y + ↑C W.a₃) - q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = max (2 • some dp) (2 • some dq + 3) [PROOFSTEP] rw [sub_sub] [GOAL] case neg.some.some.inr R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B x : R y : R[X] inst✝ : IsDomain R p q : R[X] hp : ¬degree p = ⊥ hq : ¬degree q = ⊥ dp : ℕ hdp : degree (p ^ 2) = 2 • some dp hp' : degree p = some dp dq : ℕ hdq : degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = 2 • some dq + 3 hdpq : degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ some dp + some dq + 1 hq' : degree q = some dq hpq : dq + 1 < dp ⊢ degree (p ^ 2 - (p * q * (↑C W.a₁ * Y + ↑C W.a₃) + q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆))) = max (2 • some dp) (2 • some dq + 3) [PROOFSTEP] convert (degree_sub_eq_left_of_degree_lt <| (degree_add_le _ _).trans_lt <| max_lt_iff.mpr ⟨hdpq.trans_lt _, hdq.trans_lt _⟩).trans (max_eq_left_of_lt _).symm [GOAL] case h.e'_3.h.e'_3 R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B x : R y : R[X] inst✝ : IsDomain R p q : R[X] hp : ¬degree p = ⊥ hq : ¬degree q = ⊥ dp : ℕ hdp : degree (p ^ 2) = 2 • some dp hp' : degree p = some dp dq : ℕ hdq : degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = 2 • some dq + 3 hdpq : degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ some dp + some dq + 1 hq' : degree q = some dq hpq : dq + 1 < dp ⊢ 2 • some dp = degree (p ^ 2) [PROOFSTEP] rw [hdp] [GOAL] case neg.some.some.inr.convert_2 R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B x : R y : R[X] inst✝ : IsDomain R p q : R[X] hp : ¬degree p = ⊥ hq : ¬degree q = ⊥ dp : ℕ hdp : degree (p ^ 2) = 2 • some dp hp' : degree p = some dp dq : ℕ hdq : degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = 2 • some dq + 3 hdpq : degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ some dp + some dq + 1 hq' : degree q = some dq hpq : dq + 1 < dp ⊢ some dp + some dq + 1 < degree (p ^ 2) [PROOFSTEP] rw [hdp] [GOAL] case neg.some.some.inr.convert_3 R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B x : R y : R[X] inst✝ : IsDomain R p q : R[X] hp : ¬degree p = ⊥ hq : ¬degree q = ⊥ dp : ℕ hdp : degree (p ^ 2) = 2 • some dp hp' : degree p = some dp dq : ℕ hdq : degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = 2 • some dq + 3 hdpq : degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ some dp + some dq + 1 hq' : degree q = some dq hpq : dq + 1 < dp ⊢ 2 • some dq + 3 < degree (p ^ 2) [PROOFSTEP] rw [hdp] [GOAL] case neg.some.some.inr.convert_5 R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B x : R y : R[X] inst✝ : IsDomain R p q : R[X] hp : ¬degree p = ⊥ hq : ¬degree q = ⊥ dp : ℕ hdp : degree (p ^ 2) = 2 • some dp hp' : degree p = some dp dq : ℕ hdq : degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = 2 • some dq + 3 hdpq : degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ some dp + some dq + 1 hq' : degree q = some dq hpq : dq + 1 < dp ⊢ 2 • some dq + 3 < degree (p ^ 2) [PROOFSTEP] rw [hdp] [GOAL] case neg.some.some.inr.convert_2 R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B x : R y : R[X] inst✝ : IsDomain R p q : R[X] hp : ¬degree p = ⊥ hq : ¬degree q = ⊥ dp : ℕ hdp : degree (p ^ 2) = 2 • some dp hp' : degree p = some dp dq : ℕ hdq : degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = 2 • some dq + 3 hdpq : degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ some dp + some dq + 1 hq' : degree q = some dq hpq : dq + 1 < dp ⊢ some dp + some dq + 1 < 2 • some dp [PROOFSTEP] exact WithBot.coe_lt_coe.mpr <| by linarith only [hpq] [GOAL] R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B x : R y : R[X] inst✝ : IsDomain R p q : R[X] hp : ¬degree p = ⊥ hq : ¬degree q = ⊥ dp : ℕ hdp : degree (p ^ 2) = 2 • some dp hp' : degree p = some dp dq : ℕ hdq : degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = 2 • some dq + 3 hdpq : degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ some dp + some dq + 1 hq' : degree q = some dq hpq : dq + 1 < dp ⊢ (fun x x_1 => x + x_1) ((fun x x_1 => x + x_1) dp dq) 1 < (fun x x_1 => x + x_1) dp ((fun x x_1 => x + x_1) dp 0) [PROOFSTEP] linarith only [hpq] [GOAL] case neg.some.some.inr.convert_3 R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B x : R y : R[X] inst✝ : IsDomain R p q : R[X] hp : ¬degree p = ⊥ hq : ¬degree q = ⊥ dp : ℕ hdp : degree (p ^ 2) = 2 • some dp hp' : degree p = some dp dq : ℕ hdq : degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = 2 • some dq + 3 hdpq : degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ some dp + some dq + 1 hq' : degree q = some dq hpq : dq + 1 < dp ⊢ 2 • some dq + 3 < 2 • some dp [PROOFSTEP] exact WithBot.coe_lt_coe.mpr <| by linarith only [hpq] [GOAL] R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B x : R y : R[X] inst✝ : IsDomain R p q : R[X] hp : ¬degree p = ⊥ hq : ¬degree q = ⊥ dp : ℕ hdp : degree (p ^ 2) = 2 • some dp hp' : degree p = some dp dq : ℕ hdq : degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = 2 • some dq + 3 hdpq : degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ some dp + some dq + 1 hq' : degree q = some dq hpq : dq + 1 < dp ⊢ (fun x x_1 => x + x_1) ((fun x x_1 => x + x_1) dq ((fun x x_1 => x + x_1) dq 0)) ↑3 < (fun x x_1 => x + x_1) dp ((fun x x_1 => x + x_1) dp 0) [PROOFSTEP] linarith only [hpq] [GOAL] case neg.some.some.inr.convert_5 R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B x : R y : R[X] inst✝ : IsDomain R p q : R[X] hp : ¬degree p = ⊥ hq : ¬degree q = ⊥ dp : ℕ hdp : degree (p ^ 2) = 2 • some dp hp' : degree p = some dp dq : ℕ hdq : degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = 2 • some dq + 3 hdpq : degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ some dp + some dq + 1 hq' : degree q = some dq hpq : dq + 1 < dp ⊢ 2 • some dq + 3 < 2 • some dp [PROOFSTEP] exact WithBot.coe_lt_coe.mpr <| by linarith only [hpq] [GOAL] R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B x : R y : R[X] inst✝ : IsDomain R p q : R[X] hp : ¬degree p = ⊥ hq : ¬degree q = ⊥ dp : ℕ hdp : degree (p ^ 2) = 2 • some dp hp' : degree p = some dp dq : ℕ hdq : degree (q ^ 2 * (Y ^ 3 + ↑C W.a₂ * Y ^ 2 + ↑C W.a₄ * Y + ↑C W.a₆)) = 2 • some dq + 3 hdpq : degree (p * q * (↑C W.a₁ * Y + ↑C W.a₃)) ≤ some dp + some dq + 1 hq' : degree q = some dq hpq : dq + 1 < dp ⊢ (fun x x_1 => x + x_1) ((fun x x_1 => x + x_1) dq ((fun x x_1 => x + x_1) dq 0)) ↑3 < (fun x x_1 => x + x_1) dp ((fun x x_1 => x + x_1) dp 0) [PROOFSTEP] linarith only [hpq] [GOAL] R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B x✝ : R y : R[X] inst✝ : IsDomain R x : CoordinateRing W ⊢ degree (↑(Algebra.norm R[X]) x) ≠ 1 [PROOFSTEP] rcases exists_smul_basis_eq x with ⟨p, q, rfl⟩ [GOAL] case intro.intro R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B x : R y : R[X] inst✝ : IsDomain R p q : R[X] ⊢ degree (↑(Algebra.norm R[X]) (p • 1 + q • ↑(mk W) Y)) ≠ 1 [PROOFSTEP] rw [degree_norm_smul_basis] [GOAL] case intro.intro R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B x : R y : R[X] inst✝ : IsDomain R p q : R[X] ⊢ max (2 • degree p) (2 • degree q + 3) ≠ 1 [PROOFSTEP] rcases p.degree with (_ | _ | _ | _) [GOAL] case intro.intro.none R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B x : R y : R[X] inst✝ : IsDomain R p q : R[X] ⊢ max (2 • none) (2 • degree q + 3) ≠ 1 [PROOFSTEP] cases q.degree [GOAL] case intro.intro.some.zero R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B x : R y : R[X] inst✝ : IsDomain R p q : R[X] ⊢ max (2 • some Nat.zero) (2 • degree q + 3) ≠ 1 [PROOFSTEP] cases q.degree [GOAL] case intro.intro.some.succ.zero R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B x : R y : R[X] inst✝ : IsDomain R p q : R[X] ⊢ max (2 • some (Nat.succ Nat.zero)) (2 • degree q + 3) ≠ 1 [PROOFSTEP] cases q.degree [GOAL] case intro.intro.some.succ.succ R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B x : R y : R[X] inst✝ : IsDomain R p q : R[X] n✝ : ℕ ⊢ max (2 • some (Nat.succ (Nat.succ n✝))) (2 • degree q + 3) ≠ 1 [PROOFSTEP] cases q.degree [GOAL] case intro.intro.none.none R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B x : R y : R[X] inst✝ : IsDomain R p q : R[X] ⊢ max (2 • none) (2 • none + 3) ≠ 1 case intro.intro.none.some R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B x : R y : R[X] inst✝ : IsDomain R p q : R[X] val✝ : ℕ ⊢ max (2 • none) (2 • some val✝ + 3) ≠ 1 case intro.intro.some.zero.none R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B x : R y : R[X] inst✝ : IsDomain R p q : R[X] ⊢ max (2 • some Nat.zero) (2 • none + 3) ≠ 1 case intro.intro.some.zero.some R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B x : R y : R[X] inst✝ : IsDomain R p q : R[X] val✝ : ℕ ⊢ max (2 • some Nat.zero) (2 • some val✝ + 3) ≠ 1 case intro.intro.some.succ.zero.none R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B x : R y : R[X] inst✝ : IsDomain R p q : R[X] ⊢ max (2 • some (Nat.succ Nat.zero)) (2 • none + 3) ≠ 1 case intro.intro.some.succ.zero.some R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B x : R y : R[X] inst✝ : IsDomain R p q : R[X] val✝ : ℕ ⊢ max (2 • some (Nat.succ Nat.zero)) (2 • some val✝ + 3) ≠ 1 case intro.intro.some.succ.succ.none R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B x : R y : R[X] inst✝ : IsDomain R p q : R[X] n✝ : ℕ ⊢ max (2 • some (Nat.succ (Nat.succ n✝))) (2 • none + 3) ≠ 1 case intro.intro.some.succ.succ.some R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B x : R y : R[X] inst✝ : IsDomain R p q : R[X] n✝ val✝ : ℕ ⊢ max (2 • some (Nat.succ (Nat.succ n✝))) (2 • some val✝ + 3) ≠ 1 [PROOFSTEP] any_goals rintro (_ | _) -- porting note: replaced `dec_trivial` with `(cmp_eq_lt_iff _ _).mp rfl` but cannot be inlined [GOAL] case intro.intro.none.none R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B x : R y : R[X] inst✝ : IsDomain R p q : R[X] ⊢ max (2 • none) (2 • none + 3) ≠ 1 [PROOFSTEP] rintro (_ | _) -- porting note: replaced `dec_trivial` with `(cmp_eq_lt_iff _ _).mp rfl` but cannot be inlined [GOAL] case intro.intro.none.some R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B x : R y : R[X] inst✝ : IsDomain R p q : R[X] val✝ : ℕ ⊢ max (2 • none) (2 • some val✝ + 3) ≠ 1 [PROOFSTEP] rintro (_ | _) -- porting note: replaced `dec_trivial` with `(cmp_eq_lt_iff _ _).mp rfl` but cannot be inlined [GOAL] case intro.intro.some.zero.none R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B x : R y : R[X] inst✝ : IsDomain R p q : R[X] ⊢ max (2 • some Nat.zero) (2 • none + 3) ≠ 1 [PROOFSTEP] rintro (_ | _) -- porting note: replaced `dec_trivial` with `(cmp_eq_lt_iff _ _).mp rfl` but cannot be inlined [GOAL] case intro.intro.some.zero.some R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B x : R y : R[X] inst✝ : IsDomain R p q : R[X] val✝ : ℕ ⊢ max (2 • some Nat.zero) (2 • some val✝ + 3) ≠ 1 [PROOFSTEP] rintro (_ | _) -- porting note: replaced `dec_trivial` with `(cmp_eq_lt_iff _ _).mp rfl` but cannot be inlined [GOAL] case intro.intro.some.succ.zero.none R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B x : R y : R[X] inst✝ : IsDomain R p q : R[X] ⊢ max (2 • some (Nat.succ Nat.zero)) (2 • none + 3) ≠ 1 [PROOFSTEP] rintro (_ | _) -- porting note: replaced `dec_trivial` with `(cmp_eq_lt_iff _ _).mp rfl` but cannot be inlined [GOAL] case intro.intro.some.succ.zero.some R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B x : R y : R[X] inst✝ : IsDomain R p q : R[X] val✝ : ℕ ⊢ max (2 • some (Nat.succ Nat.zero)) (2 • some val✝ + 3) ≠ 1 [PROOFSTEP] rintro (_ | _) -- porting note: replaced `dec_trivial` with `(cmp_eq_lt_iff _ _).mp rfl` but cannot be inlined [GOAL] case intro.intro.some.succ.succ.none R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B x : R y : R[X] inst✝ : IsDomain R p q : R[X] n✝ : ℕ ⊢ max (2 • some (Nat.succ (Nat.succ n✝))) (2 • none + 3) ≠ 1 [PROOFSTEP] rintro (_ | _) -- porting note: replaced `dec_trivial` with `(cmp_eq_lt_iff _ _).mp rfl` but cannot be inlined [GOAL] case intro.intro.some.succ.succ.some R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B x : R y : R[X] inst✝ : IsDomain R p q : R[X] n✝ val✝ : ℕ ⊢ max (2 • some (Nat.succ (Nat.succ n✝))) (2 • some val✝ + 3) ≠ 1 [PROOFSTEP] rintro (_ | _) -- porting note: replaced `dec_trivial` with `(cmp_eq_lt_iff _ _).mp rfl` but cannot be inlined [GOAL] case intro.intro.some.succ.succ.some R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B x : R y : R[X] inst✝ : IsDomain R p q : R[X] n✝ val✝ : ℕ ⊢ max (2 • some (Nat.succ (Nat.succ n✝))) (2 • some val✝ + 3) ≠ 1 [PROOFSTEP] apply (lt_max_of_lt_right _).ne' [GOAL] R : Type u inst✝⁷ : CommRing R W : WeierstrassCurve R A : Type v inst✝⁶ : CommRing A inst✝⁵ : Algebra R A B : Type w inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : Algebra A B inst✝¹ : IsScalarTower R A B x : R y : R[X] inst✝ : IsDomain R p q : R[X] n✝ val✝ : ℕ ⊢ 1 < 2 • some val✝ + 3 [PROOFSTEP] exact (cmp_eq_lt_iff _ _).mp rfl [GOAL] R : Type u inst✝¹ : CommRing R E : EllipticCurve R inst✝ : Invertible 3 this : Invertible (-3 ^ 3) ⊢ ↑(unitOfInvertible (-3 ^ 3)) = WeierstrassCurve.Δ (WeierstrassCurve.ofJ0 R) [PROOFSTEP] rw [unitOfInvertible_val, WeierstrassCurve.ofJ0_Δ R] [GOAL] R : Type u inst✝¹ : CommRing R E : EllipticCurve R inst✝ : Invertible 3 this : Invertible (-3 ^ 3) ⊢ -3 ^ 3 = -27 [PROOFSTEP] norm_num1 [GOAL] R : Type u inst✝¹ : CommRing R E : EllipticCurve R inst✝ : Invertible 3 ⊢ j (ofJ0 R) = 0 [PROOFSTEP] simp only [j, ofJ0, WeierstrassCurve.ofJ0_c₄] [GOAL] R : Type u inst✝¹ : CommRing R E : EllipticCurve R inst✝ : Invertible 3 ⊢ ↑(unitOfInvertible (-3 ^ 3))⁻¹ * 0 ^ 3 = 0 [PROOFSTEP] ring1 [GOAL] R : Type u inst✝¹ : CommRing R E : EllipticCurve R inst✝ : Invertible 2 this : Invertible (-2 ^ 6) ⊢ ↑(unitOfInvertible (-2 ^ 6)) = WeierstrassCurve.Δ (WeierstrassCurve.ofJ1728 R) [PROOFSTEP] rw [unitOfInvertible_val, WeierstrassCurve.ofJ1728_Δ R] [GOAL] R : Type u inst✝¹ : CommRing R E : EllipticCurve R inst✝ : Invertible 2 this : Invertible (-2 ^ 6) ⊢ -2 ^ 6 = -64 [PROOFSTEP] norm_num1 [GOAL] R : Type u inst✝¹ : CommRing R E : EllipticCurve R inst✝ : Invertible 2 ⊢ j (ofJ1728 R) = 1728 [PROOFSTEP] field_simp [j, ofJ1728, @unitOfInvertible_val _ _ _ <| invertibleNeg _, WeierstrassCurve.ofJ1728_c₄] [GOAL] R : Type u inst✝¹ : CommRing R E : EllipticCurve R inst✝ : Invertible 2 ⊢ -(1728 * 2 ^ 6) = (-48) ^ 3 [PROOFSTEP] norm_num1 [GOAL] R : Type u inst✝² : CommRing R E : EllipticCurve R j : R inst✝¹ : Invertible j inst✝ : Invertible (j - 1728) ⊢ EllipticCurve.j (ofJ' j) = j [PROOFSTEP] field_simp [EllipticCurve.j, ofJ', @unitOfInvertible_val _ _ _ <| invertibleMul _ _, WeierstrassCurve.ofJ_c₄] [GOAL] R : Type u inst✝² : CommRing R E : EllipticCurve R j : R inst✝¹ : Invertible j inst✝ : Invertible (j - 1728) ⊢ j * (j ^ 2 * (j - 1728) ^ 9) = (j * (j - 1728) ^ 3) ^ 3 [PROOFSTEP] ring1 [GOAL] R : Type u inst✝¹ : CommRing R E : EllipticCurve R F : Type u inst✝ : Field F j : F ⊢ Nat.coprime 2 3 [PROOFSTEP] norm_num1 [GOAL] R : Type u inst✝² : CommRing R E : EllipticCurve R F : Type u inst✝¹ : Field F j : F inst✝ : DecidableEq F h0 : ¬j = 0 h1728 : j = 1728 h : 2 = 0 ⊢ j = 0 [PROOFSTEP] rw [h1728, show (1728 : F) = 2 * 864 by norm_num1, h, zero_mul] [GOAL] R : Type u inst✝² : CommRing R E : EllipticCurve R F : Type u inst✝¹ : Field F j : F inst✝ : DecidableEq F h0 : ¬j = 0 h1728 : j = 1728 h : 2 = 0 ⊢ 1728 = 2 * 864 [PROOFSTEP] norm_num1 [GOAL] R : Type u inst✝² : CommRing R E : EllipticCurve R F : Type u inst✝¹ : Field F j : F inst✝ : DecidableEq F h3 : NeZero 3 ⊢ ofJ 0 = ofJ0 F [PROOFSTEP] rw [ofJ, dif_pos rfl, dif_neg h3.out] [GOAL] R : Type u inst✝² : CommRing R E : EllipticCurve R F : Type u inst✝¹ : Field F j : F inst✝ : DecidableEq F h3 : 3 = 0 ⊢ ofJ 0 = ofJ1728 F [PROOFSTEP] rw [ofJ, dif_pos rfl, dif_pos h3] [GOAL] R : Type u inst✝² : CommRing R E : EllipticCurve R F : Type u inst✝¹ : Field F j : F inst✝ : DecidableEq F h3 : 3 = 0 ⊢ ofJ 1728 = ofJ1728 F [PROOFSTEP] rw [ofJ, dif_pos <| by rw [show (1728 : F) = 3 * 576 by norm_num1, h3, zero_mul], dif_pos h3] [GOAL] R : Type u inst✝² : CommRing R E : EllipticCurve R F : Type u inst✝¹ : Field F j : F inst✝ : DecidableEq F h3 : 3 = 0 ⊢ 1728 = 0 [PROOFSTEP] rw [show (1728 : F) = 3 * 576 by norm_num1, h3, zero_mul] [GOAL] R : Type u inst✝² : CommRing R E : EllipticCurve R F : Type u inst✝¹ : Field F j : F inst✝ : DecidableEq F h3 : 3 = 0 ⊢ 1728 = 3 * 576 [PROOFSTEP] norm_num1 [GOAL] R : Type u inst✝² : CommRing R E : EllipticCurve R F : Type u inst✝¹ : Field F j : F inst✝ : DecidableEq F h2 : NeZero 2 ⊢ ofJ 1728 = ofJ1728 F [PROOFSTEP] by_cases h3 : (3 : F) = 0 [GOAL] case pos R : Type u inst✝² : CommRing R E : EllipticCurve R F : Type u inst✝¹ : Field F j : F inst✝ : DecidableEq F h2 : NeZero 2 h3 : 3 = 0 ⊢ ofJ 1728 = ofJ1728 F [PROOFSTEP] exact ofJ_1728_of_three_eq_zero h3 [GOAL] case neg R : Type u inst✝² : CommRing R E : EllipticCurve R F : Type u inst✝¹ : Field F j : F inst✝ : DecidableEq F h2 : NeZero 2 h3 : ¬3 = 0 ⊢ ofJ 1728 = ofJ1728 F [PROOFSTEP] have h : (1728 : F) ≠ 0 := fun h => or_iff_not_and_not.mp (mul_eq_zero.mp <| by rwa [show 2 ^ 6 * 3 ^ 3 = (1728 : F) by norm_num1]) ⟨pow_ne_zero 6 h2.out, pow_ne_zero 3 h3⟩ [GOAL] R : Type u inst✝² : CommRing R E : EllipticCurve R F : Type u inst✝¹ : Field F j : F inst✝ : DecidableEq F h2 : NeZero 2 h3 : ¬3 = 0 h : 1728 = 0 ⊢ 2 ^ 6 * 3 ^ 3 = 0 [PROOFSTEP] rwa [show 2 ^ 6 * 3 ^ 3 = (1728 : F) by norm_num1] [GOAL] R : Type u inst✝² : CommRing R E : EllipticCurve R F : Type u inst✝¹ : Field F j : F inst✝ : DecidableEq F h2 : NeZero 2 h3 : ¬3 = 0 h : 1728 = 0 ⊢ 2 ^ 6 * 3 ^ 3 = 1728 [PROOFSTEP] norm_num1 [GOAL] case neg R : Type u inst✝² : CommRing R E : EllipticCurve R F : Type u inst✝¹ : Field F j : F inst✝ : DecidableEq F h2 : NeZero 2 h3 : ¬3 = 0 h : 1728 ≠ 0 ⊢ ofJ 1728 = ofJ1728 F [PROOFSTEP] rw [ofJ, dif_neg h, dif_pos rfl] [GOAL] R : Type u inst✝² : CommRing R E : EllipticCurve R F : Type u inst✝¹ : Field F j : F inst✝ : DecidableEq F h2 : 2 = 0 ⊢ ofJ 1728 = ofJ0 F [PROOFSTEP] rw [ofJ, dif_pos <| by rw [show (1728 : F) = 2 * 864 by norm_num1, h2, zero_mul], dif_neg] [GOAL] R : Type u inst✝² : CommRing R E : EllipticCurve R F : Type u inst✝¹ : Field F j : F inst✝ : DecidableEq F h2 : 2 = 0 ⊢ 1728 = 0 [PROOFSTEP] rw [show (1728 : F) = 2 * 864 by norm_num1, h2, zero_mul] [GOAL] R : Type u inst✝² : CommRing R E : EllipticCurve R F : Type u inst✝¹ : Field F j : F inst✝ : DecidableEq F h2 : 2 = 0 ⊢ 1728 = 2 * 864 [PROOFSTEP] norm_num1 [GOAL] R : Type u inst✝² : CommRing R E : EllipticCurve R F : Type u inst✝¹ : Field F j : F inst✝ : DecidableEq F h0 : j ≠ 0 h1728 : j ≠ 1728 ⊢ ofJ j = ofJ' j [PROOFSTEP] rw [ofJ, dif_neg h0, dif_neg h1728] [GOAL] R : Type u inst✝² : CommRing R E : EllipticCurve R F : Type u inst✝¹ : Field F j : F inst✝ : DecidableEq F ⊢ EllipticCurve.j (ofJ j) = j [PROOFSTEP] by_cases h0 : j = 0 [GOAL] case pos R : Type u inst✝² : CommRing R E : EllipticCurve R F : Type u inst✝¹ : Field F j : F inst✝ : DecidableEq F h0 : j = 0 ⊢ EllipticCurve.j (ofJ j) = j [PROOFSTEP] by_cases h3 : (3 : F) = 0 [GOAL] case pos R : Type u inst✝² : CommRing R E : EllipticCurve R F : Type u inst✝¹ : Field F j : F inst✝ : DecidableEq F h0 : j = 0 h3 : 3 = 0 ⊢ EllipticCurve.j (ofJ j) = j [PROOFSTEP] rw [h0, ofJ_0_of_three_eq_zero h3, @ofJ1728_j _ _ <| invertibleOfNonzero <| two_or_three_ne_zero.neg_resolve_right h3, show (1728 : F) = 3 * 576 by norm_num1, h3, zero_mul] [GOAL] R : Type u inst✝² : CommRing R E : EllipticCurve R F : Type u inst✝¹ : Field F j : F inst✝ : DecidableEq F h0 : j = 0 h3 : 3 = 0 ⊢ 1728 = 3 * 576 [PROOFSTEP] norm_num1 [GOAL] case neg R : Type u inst✝² : CommRing R E : EllipticCurve R F : Type u inst✝¹ : Field F j : F inst✝ : DecidableEq F h0 : j = 0 h3 : ¬3 = 0 ⊢ EllipticCurve.j (ofJ j) = j [PROOFSTEP] rw [h0, ofJ_0_of_three_ne_zero (h3 := neZero_iff.2 h3), @ofJ0_j _ _ <| invertibleOfNonzero h3] [GOAL] case neg R : Type u inst✝² : CommRing R E : EllipticCurve R F : Type u inst✝¹ : Field F j : F inst✝ : DecidableEq F h0 : ¬j = 0 ⊢ EllipticCurve.j (ofJ j) = j [PROOFSTEP] by_cases h1728 : j = 1728 [GOAL] case pos R : Type u inst✝² : CommRing R E : EllipticCurve R F : Type u inst✝¹ : Field F j : F inst✝ : DecidableEq F h0 : ¬j = 0 h1728 : j = 1728 ⊢ EllipticCurve.j (ofJ j) = j [PROOFSTEP] have h2 : (2 : F) ≠ 0 := fun h => h0 <| by rw [h1728, show (1728 : F) = 2 * 864 by norm_num1, h, zero_mul] [GOAL] R : Type u inst✝² : CommRing R E : EllipticCurve R F : Type u inst✝¹ : Field F j : F inst✝ : DecidableEq F h0 : ¬j = 0 h1728 : j = 1728 h : 2 = 0 ⊢ j = 0 [PROOFSTEP] rw [h1728, show (1728 : F) = 2 * 864 by norm_num1, h, zero_mul] [GOAL] R : Type u inst✝² : CommRing R E : EllipticCurve R F : Type u inst✝¹ : Field F j : F inst✝ : DecidableEq F h0 : ¬j = 0 h1728 : j = 1728 h : 2 = 0 ⊢ 1728 = 2 * 864 [PROOFSTEP] norm_num1 [GOAL] case pos R : Type u inst✝² : CommRing R E : EllipticCurve R F : Type u inst✝¹ : Field F j : F inst✝ : DecidableEq F h0 : ¬j = 0 h1728 : j = 1728 h2 : 2 ≠ 0 ⊢ EllipticCurve.j (ofJ j) = j [PROOFSTEP] rw [h1728, ofJ_1728_of_two_ne_zero (h2 := neZero_iff.2 h2), @ofJ1728_j _ _ <| invertibleOfNonzero h2] [GOAL] case neg R : Type u inst✝² : CommRing R E : EllipticCurve R F : Type u inst✝¹ : Field F j : F inst✝ : DecidableEq F h0 : ¬j = 0 h1728 : ¬j = 1728 ⊢ EllipticCurve.j (ofJ j) = j [PROOFSTEP] rw [ofJ_ne_0_ne_1728 j h0 h1728, @ofJ'_j _ _ _ (invertibleOfNonzero h0) (invertibleOfNonzero <| sub_ne_zero_of_ne h1728)] [GOAL] R : Type u inst✝ : CommRing R E : EllipticCurve R C : WeierstrassCurve.VariableChange R ⊢ ↑(C.u⁻¹ ^ 12 * E.Δ') = WeierstrassCurve.Δ (WeierstrassCurve.variableChange E.toWeierstrassCurve C) [PROOFSTEP] rw [Units.val_mul, Units.val_pow_eq_pow_val, coe_Δ', E.variableChange_Δ] [GOAL] R : Type u inst✝ : CommRing R E : EllipticCurve R C : WeierstrassCurve.VariableChange R ⊢ variableChange E WeierstrassCurve.VariableChange.id = E [PROOFSTEP] simp only [variableChange, WeierstrassCurve.variableChange_id] [GOAL] R : Type u inst✝ : CommRing R E : EllipticCurve R C : WeierstrassCurve.VariableChange R ⊢ { toWeierstrassCurve := E.toWeierstrassCurve, Δ' := WeierstrassCurve.VariableChange.id.u⁻¹ ^ 12 * E.Δ', coe_Δ' := (_ : ↑(WeierstrassCurve.VariableChange.id.u⁻¹ ^ 12 * E.Δ') = WeierstrassCurve.Δ E.toWeierstrassCurve) } = E [PROOFSTEP] simp only [WeierstrassCurve.VariableChange.id, inv_one, one_pow, one_mul] [GOAL] R : Type u inst✝ : CommRing R E✝ : EllipticCurve R C✝ C C' : WeierstrassCurve.VariableChange R E : EllipticCurve R ⊢ variableChange E (WeierstrassCurve.VariableChange.comp C C') = variableChange (variableChange E C') C [PROOFSTEP] simp only [variableChange, WeierstrassCurve.variableChange_comp] [GOAL] R : Type u inst✝ : CommRing R E✝ : EllipticCurve R C✝ C C' : WeierstrassCurve.VariableChange R E : EllipticCurve R ⊢ { toWeierstrassCurve := WeierstrassCurve.variableChange (WeierstrassCurve.variableChange E.toWeierstrassCurve C') C, Δ' := (WeierstrassCurve.VariableChange.comp C C').u⁻¹ ^ 12 * E.Δ', coe_Δ' := (_ : ↑((WeierstrassCurve.VariableChange.comp C C').u⁻¹ ^ 12 * E.Δ') = WeierstrassCurve.Δ (WeierstrassCurve.variableChange (WeierstrassCurve.variableChange E.toWeierstrassCurve C') C)) } = { toWeierstrassCurve := WeierstrassCurve.variableChange (WeierstrassCurve.variableChange E.toWeierstrassCurve C') C, Δ' := C.u⁻¹ ^ 12 * (C'.u⁻¹ ^ 12 * E.Δ'), coe_Δ' := (_ : ↑(C.u⁻¹ ^ 12 * (C'.u⁻¹ ^ 12 * E.Δ')) = WeierstrassCurve.Δ (WeierstrassCurve.variableChange (WeierstrassCurve.variableChange E.toWeierstrassCurve C') C)) } [PROOFSTEP] simp only [WeierstrassCurve.VariableChange.comp, mul_inv, mul_pow, ← mul_assoc] [GOAL] R : Type u inst✝ : CommRing R E : EllipticCurve R C : WeierstrassCurve.VariableChange R ⊢ ↑(variableChange E C).Δ' = ↑C.u⁻¹ ^ 12 * ↑E.Δ' [PROOFSTEP] rw [variableChange_Δ', Units.val_mul, Units.val_pow_eq_pow_val] [GOAL] R : Type u inst✝ : CommRing R E : EllipticCurve R C : WeierstrassCurve.VariableChange R ⊢ ↑(variableChange E C).Δ'⁻¹ = ↑C.u ^ 12 * ↑E.Δ'⁻¹ [PROOFSTEP] rw [variableChange_Δ', mul_inv, inv_pow, inv_inv, Units.val_mul, Units.val_pow_eq_pow_val] [GOAL] R : Type u inst✝ : CommRing R E : EllipticCurve R C : WeierstrassCurve.VariableChange R ⊢ j (variableChange E C) = j E [PROOFSTEP] rw [j, coe_inv_variableChange_Δ'] [GOAL] R : Type u inst✝ : CommRing R E : EllipticCurve R C : WeierstrassCurve.VariableChange R ⊢ ↑C.u ^ 12 * ↑E.Δ'⁻¹ * WeierstrassCurve.c₄ (variableChange E C).toWeierstrassCurve ^ 3 = j E [PROOFSTEP] have hu : (C.u * ↑C.u⁻¹ : R) ^ 12 = 1 := by rw [C.u.mul_inv, one_pow] [GOAL] R : Type u inst✝ : CommRing R E : EllipticCurve R C : WeierstrassCurve.VariableChange R ⊢ (↑C.u * ↑C.u⁻¹) ^ 12 = 1 [PROOFSTEP] rw [C.u.mul_inv, one_pow] [GOAL] R : Type u inst✝ : CommRing R E : EllipticCurve R C : WeierstrassCurve.VariableChange R hu : (↑C.u * ↑C.u⁻¹) ^ 12 = 1 ⊢ ↑C.u ^ 12 * ↑E.Δ'⁻¹ * WeierstrassCurve.c₄ (variableChange E C).toWeierstrassCurve ^ 3 = j E [PROOFSTEP] linear_combination (norm := (rw [variableChange_toWeierstrassCurve, WeierstrassCurve.variableChange_c₄, j]; ring1)) E.j * hu [GOAL] case a R : Type u inst✝ : CommRing R E : EllipticCurve R C : WeierstrassCurve.VariableChange R hu : (↑C.u * ↑C.u⁻¹) ^ 12 = 1 ⊢ ↑C.u ^ 12 * ↑E.Δ'⁻¹ * WeierstrassCurve.c₄ (variableChange E C).toWeierstrassCurve ^ 3 - j E - (j E * (↑C.u * ↑C.u⁻¹) ^ 12 - j E * 1) = 0 [PROOFSTEP] rw [variableChange_toWeierstrassCurve, WeierstrassCurve.variableChange_c₄, j] [GOAL] case a R : Type u inst✝ : CommRing R E : EllipticCurve R C : WeierstrassCurve.VariableChange R hu : (↑C.u * ↑C.u⁻¹) ^ 12 = 1 ⊢ ↑C.u ^ 12 * ↑E.Δ'⁻¹ * (↑C.u⁻¹ ^ 4 * WeierstrassCurve.c₄ E.toWeierstrassCurve) ^ 3 - ↑E.Δ'⁻¹ * WeierstrassCurve.c₄ E.toWeierstrassCurve ^ 3 - (↑E.Δ'⁻¹ * WeierstrassCurve.c₄ E.toWeierstrassCurve ^ 3 * (↑C.u * ↑C.u⁻¹) ^ 12 - ↑E.Δ'⁻¹ * WeierstrassCurve.c₄ E.toWeierstrassCurve ^ 3 * 1) = 0 [PROOFSTEP] ring1 [GOAL] R : Type u inst✝² : CommRing R E : EllipticCurve R A : Type v inst✝¹ : CommRing A inst✝ : Algebra R A ⊢ ↑(↑(Units.map ↑(algebraMap R A)) E.Δ') = WeierstrassCurve.Δ (WeierstrassCurve.baseChange E.toWeierstrassCurve A) [PROOFSTEP] simp only [Units.coe_map, coe_Δ', E.baseChange_Δ] [GOAL] R : Type u inst✝² : CommRing R E : EllipticCurve R A : Type v inst✝¹ : CommRing A inst✝ : Algebra R A ⊢ ↑↑(algebraMap R A) (WeierstrassCurve.Δ E.toWeierstrassCurve) = ↑(algebraMap R A) (WeierstrassCurve.Δ E.toWeierstrassCurve) [PROOFSTEP] rfl [GOAL] R : Type u inst✝² : CommRing R E : EllipticCurve R A : Type v inst✝¹ : CommRing A inst✝ : Algebra R A ⊢ j (baseChange E A) = ↑(algebraMap R A) (j E) [PROOFSTEP] simp only [j, baseChange, E.baseChange_c₄] [GOAL] R : Type u inst✝² : CommRing R E : EllipticCurve R A : Type v inst✝¹ : CommRing A inst✝ : Algebra R A ⊢ ↑(↑(Units.map ↑(algebraMap R A)) E.Δ')⁻¹ * ↑(algebraMap R A) (WeierstrassCurve.c₄ E.toWeierstrassCurve) ^ 3 = ↑(algebraMap R A) (↑E.Δ'⁻¹ * WeierstrassCurve.c₄ E.toWeierstrassCurve ^ 3) [PROOFSTEP] map_simp [GOAL] R : Type u inst✝² : CommRing R E : EllipticCurve R A : Type v inst✝¹ : CommRing A inst✝ : Algebra R A ⊢ ↑(↑(Units.map ↑(algebraMap R A)) E.Δ')⁻¹ * ↑(algebraMap R A) (WeierstrassCurve.c₄ E.toWeierstrassCurve) ^ 3 = ↑(algebraMap R A) ↑E.Δ'⁻¹ * ↑(algebraMap R A) (WeierstrassCurve.c₄ E.toWeierstrassCurve) ^ 3 [PROOFSTEP] rfl [GOAL] R : Type u inst✝² : CommRing R E✝ : EllipticCurve R A : Type v inst✝¹ : CommRing A inst✝ : Algebra R A h : Function.Injective ↑(algebraMap R A) E E' : EllipticCurve R h1 : (fun E => baseChange E A) E = (fun E => baseChange E A) E' ⊢ E = E' [PROOFSTEP] rcases mk.inj h1 with ⟨h1, h2⟩ [GOAL] case intro R : Type u inst✝² : CommRing R E✝ : EllipticCurve R A : Type v inst✝¹ : CommRing A inst✝ : Algebra R A h : Function.Injective ↑(algebraMap R A) E E' : EllipticCurve R h1✝ : (fun E => baseChange E A) E = (fun E => baseChange E A) E' h1 : WeierstrassCurve.baseChange E.toWeierstrassCurve A = WeierstrassCurve.baseChange E'.toWeierstrassCurve A h2 : ↑(Units.map ↑(algebraMap R A)) E.Δ' = ↑(Units.map ↑(algebraMap R A)) E'.Δ' ⊢ E = E' [PROOFSTEP] replace h2 := (Units.mk.inj h2).left [GOAL] case intro R : Type u inst✝² : CommRing R E✝ : EllipticCurve R A : Type v inst✝¹ : CommRing A inst✝ : Algebra R A h : Function.Injective ↑(algebraMap R A) E E' : EllipticCurve R h1✝ : (fun E => baseChange E A) E = (fun E => baseChange E A) E' h1 : WeierstrassCurve.baseChange E.toWeierstrassCurve A = WeierstrassCurve.baseChange E'.toWeierstrassCurve A h2 : ↑↑(algebraMap R A) ↑E.Δ' = ↑↑(algebraMap R A) ↑E'.Δ' ⊢ E = E' [PROOFSTEP] rcases WeierstrassCurve.mk.inj h1 with ⟨_, _, _, _, _⟩ [GOAL] case intro.intro.intro.intro.intro R : Type u inst✝² : CommRing R E✝ : EllipticCurve R A : Type v inst✝¹ : CommRing A inst✝ : Algebra R A h : Function.Injective ↑(algebraMap R A) E E' : EllipticCurve R h1✝ : (fun E => baseChange E A) E = (fun E => baseChange E A) E' h1 : WeierstrassCurve.baseChange E.toWeierstrassCurve A = WeierstrassCurve.baseChange E'.toWeierstrassCurve A h2 : ↑↑(algebraMap R A) ↑E.Δ' = ↑↑(algebraMap R A) ↑E'.Δ' left✝³ : ↑(algebraMap R A) E.a₁ = ↑(algebraMap R A) E'.a₁ left✝² : ↑(algebraMap R A) E.a₂ = ↑(algebraMap R A) E'.a₂ left✝¹ : ↑(algebraMap R A) E.a₃ = ↑(algebraMap R A) E'.a₃ left✝ : ↑(algebraMap R A) E.a₄ = ↑(algebraMap R A) E'.a₄ right✝ : ↑(algebraMap R A) E.a₆ = ↑(algebraMap R A) E'.a₆ ⊢ E = E' [PROOFSTEP] ext [GOAL] case intro.intro.intro.intro.intro.a₁ R : Type u inst✝² : CommRing R E✝ : EllipticCurve R A : Type v inst✝¹ : CommRing A inst✝ : Algebra R A h : Function.Injective ↑(algebraMap R A) E E' : EllipticCurve R h1✝ : (fun E => baseChange E A) E = (fun E => baseChange E A) E' h1 : WeierstrassCurve.baseChange E.toWeierstrassCurve A = WeierstrassCurve.baseChange E'.toWeierstrassCurve A h2 : ↑↑(algebraMap R A) ↑E.Δ' = ↑↑(algebraMap R A) ↑E'.Δ' left✝³ : ↑(algebraMap R A) E.a₁ = ↑(algebraMap R A) E'.a₁ left✝² : ↑(algebraMap R A) E.a₂ = ↑(algebraMap R A) E'.a₂ left✝¹ : ↑(algebraMap R A) E.a₃ = ↑(algebraMap R A) E'.a₃ left✝ : ↑(algebraMap R A) E.a₄ = ↑(algebraMap R A) E'.a₄ right✝ : ↑(algebraMap R A) E.a₆ = ↑(algebraMap R A) E'.a₆ ⊢ E.a₁ = E'.a₁ [PROOFSTEP] apply_fun _ using h [GOAL] case intro.intro.intro.intro.intro.a₂ R : Type u inst✝² : CommRing R E✝ : EllipticCurve R A : Type v inst✝¹ : CommRing A inst✝ : Algebra R A h : Function.Injective ↑(algebraMap R A) E E' : EllipticCurve R h1✝ : (fun E => baseChange E A) E = (fun E => baseChange E A) E' h1 : WeierstrassCurve.baseChange E.toWeierstrassCurve A = WeierstrassCurve.baseChange E'.toWeierstrassCurve A h2 : ↑↑(algebraMap R A) ↑E.Δ' = ↑↑(algebraMap R A) ↑E'.Δ' left✝³ : ↑(algebraMap R A) E.a₁ = ↑(algebraMap R A) E'.a₁ left✝² : ↑(algebraMap R A) E.a₂ = ↑(algebraMap R A) E'.a₂ left✝¹ : ↑(algebraMap R A) E.a₃ = ↑(algebraMap R A) E'.a₃ left✝ : ↑(algebraMap R A) E.a₄ = ↑(algebraMap R A) E'.a₄ right✝ : ↑(algebraMap R A) E.a₆ = ↑(algebraMap R A) E'.a₆ ⊢ E.a₂ = E'.a₂ [PROOFSTEP] apply_fun _ using h [GOAL] case intro.intro.intro.intro.intro.a₃ R : Type u inst✝² : CommRing R E✝ : EllipticCurve R A : Type v inst✝¹ : CommRing A inst✝ : Algebra R A h : Function.Injective ↑(algebraMap R A) E E' : EllipticCurve R h1✝ : (fun E => baseChange E A) E = (fun E => baseChange E A) E' h1 : WeierstrassCurve.baseChange E.toWeierstrassCurve A = WeierstrassCurve.baseChange E'.toWeierstrassCurve A h2 : ↑↑(algebraMap R A) ↑E.Δ' = ↑↑(algebraMap R A) ↑E'.Δ' left✝³ : ↑(algebraMap R A) E.a₁ = ↑(algebraMap R A) E'.a₁ left✝² : ↑(algebraMap R A) E.a₂ = ↑(algebraMap R A) E'.a₂ left✝¹ : ↑(algebraMap R A) E.a₃ = ↑(algebraMap R A) E'.a₃ left✝ : ↑(algebraMap R A) E.a₄ = ↑(algebraMap R A) E'.a₄ right✝ : ↑(algebraMap R A) E.a₆ = ↑(algebraMap R A) E'.a₆ ⊢ E.a₃ = E'.a₃ [PROOFSTEP] apply_fun _ using h [GOAL] case intro.intro.intro.intro.intro.a₄ R : Type u inst✝² : CommRing R E✝ : EllipticCurve R A : Type v inst✝¹ : CommRing A inst✝ : Algebra R A h : Function.Injective ↑(algebraMap R A) E E' : EllipticCurve R h1✝ : (fun E => baseChange E A) E = (fun E => baseChange E A) E' h1 : WeierstrassCurve.baseChange E.toWeierstrassCurve A = WeierstrassCurve.baseChange E'.toWeierstrassCurve A h2 : ↑↑(algebraMap R A) ↑E.Δ' = ↑↑(algebraMap R A) ↑E'.Δ' left✝³ : ↑(algebraMap R A) E.a₁ = ↑(algebraMap R A) E'.a₁ left✝² : ↑(algebraMap R A) E.a₂ = ↑(algebraMap R A) E'.a₂ left✝¹ : ↑(algebraMap R A) E.a₃ = ↑(algebraMap R A) E'.a₃ left✝ : ↑(algebraMap R A) E.a₄ = ↑(algebraMap R A) E'.a₄ right✝ : ↑(algebraMap R A) E.a₆ = ↑(algebraMap R A) E'.a₆ ⊢ E.a₄ = E'.a₄ [PROOFSTEP] apply_fun _ using h [GOAL] case intro.intro.intro.intro.intro.a₆ R : Type u inst✝² : CommRing R E✝ : EllipticCurve R A : Type v inst✝¹ : CommRing A inst✝ : Algebra R A h : Function.Injective ↑(algebraMap R A) E E' : EllipticCurve R h1✝ : (fun E => baseChange E A) E = (fun E => baseChange E A) E' h1 : WeierstrassCurve.baseChange E.toWeierstrassCurve A = WeierstrassCurve.baseChange E'.toWeierstrassCurve A h2 : ↑↑(algebraMap R A) ↑E.Δ' = ↑↑(algebraMap R A) ↑E'.Δ' left✝³ : ↑(algebraMap R A) E.a₁ = ↑(algebraMap R A) E'.a₁ left✝² : ↑(algebraMap R A) E.a₂ = ↑(algebraMap R A) E'.a₂ left✝¹ : ↑(algebraMap R A) E.a₃ = ↑(algebraMap R A) E'.a₃ left✝ : ↑(algebraMap R A) E.a₄ = ↑(algebraMap R A) E'.a₄ right✝ : ↑(algebraMap R A) E.a₆ = ↑(algebraMap R A) E'.a₆ ⊢ E.a₆ = E'.a₆ [PROOFSTEP] apply_fun _ using h [GOAL] case intro.intro.intro.intro.intro.Δ'.a R : Type u inst✝² : CommRing R E✝ : EllipticCurve R A : Type v inst✝¹ : CommRing A inst✝ : Algebra R A h : Function.Injective ↑(algebraMap R A) E E' : EllipticCurve R h1✝ : (fun E => baseChange E A) E = (fun E => baseChange E A) E' h1 : WeierstrassCurve.baseChange E.toWeierstrassCurve A = WeierstrassCurve.baseChange E'.toWeierstrassCurve A h2 : ↑↑(algebraMap R A) ↑E.Δ' = ↑↑(algebraMap R A) ↑E'.Δ' left✝³ : ↑(algebraMap R A) E.a₁ = ↑(algebraMap R A) E'.a₁ left✝² : ↑(algebraMap R A) E.a₂ = ↑(algebraMap R A) E'.a₂ left✝¹ : ↑(algebraMap R A) E.a₃ = ↑(algebraMap R A) E'.a₃ left✝ : ↑(algebraMap R A) E.a₄ = ↑(algebraMap R A) E'.a₄ right✝ : ↑(algebraMap R A) E.a₆ = ↑(algebraMap R A) E'.a₆ ⊢ ↑E.Δ' = ↑E'.Δ' [PROOFSTEP] apply_fun _ using h [GOAL] case intro.intro.intro.intro.intro.a₁ R : Type u inst✝² : CommRing R E✝ : EllipticCurve R A : Type v inst✝¹ : CommRing A inst✝ : Algebra R A h : Function.Injective ↑(algebraMap R A) E E' : EllipticCurve R h1✝ : (fun E => baseChange E A) E = (fun E => baseChange E A) E' h1 : WeierstrassCurve.baseChange E.toWeierstrassCurve A = WeierstrassCurve.baseChange E'.toWeierstrassCurve A h2 : ↑↑(algebraMap R A) ↑E.Δ' = ↑↑(algebraMap R A) ↑E'.Δ' left✝³ : ↑(algebraMap R A) E.a₁ = ↑(algebraMap R A) E'.a₁ left✝² : ↑(algebraMap R A) E.a₂ = ↑(algebraMap R A) E'.a₂ left✝¹ : ↑(algebraMap R A) E.a₃ = ↑(algebraMap R A) E'.a₃ left✝ : ↑(algebraMap R A) E.a₄ = ↑(algebraMap R A) E'.a₄ right✝ : ↑(algebraMap R A) E.a₆ = ↑(algebraMap R A) E'.a₆ ⊢ ↑(algebraMap R A) E.a₁ = ↑(algebraMap R A) E'.a₁ [PROOFSTEP] assumption [GOAL] case intro.intro.intro.intro.intro.a₂ R : Type u inst✝² : CommRing R E✝ : EllipticCurve R A : Type v inst✝¹ : CommRing A inst✝ : Algebra R A h : Function.Injective ↑(algebraMap R A) E E' : EllipticCurve R h1✝ : (fun E => baseChange E A) E = (fun E => baseChange E A) E' h1 : WeierstrassCurve.baseChange E.toWeierstrassCurve A = WeierstrassCurve.baseChange E'.toWeierstrassCurve A h2 : ↑↑(algebraMap R A) ↑E.Δ' = ↑↑(algebraMap R A) ↑E'.Δ' left✝³ : ↑(algebraMap R A) E.a₁ = ↑(algebraMap R A) E'.a₁ left✝² : ↑(algebraMap R A) E.a₂ = ↑(algebraMap R A) E'.a₂ left✝¹ : ↑(algebraMap R A) E.a₃ = ↑(algebraMap R A) E'.a₃ left✝ : ↑(algebraMap R A) E.a₄ = ↑(algebraMap R A) E'.a₄ right✝ : ↑(algebraMap R A) E.a₆ = ↑(algebraMap R A) E'.a₆ ⊢ ↑(algebraMap R A) E.a₂ = ↑(algebraMap R A) E'.a₂ [PROOFSTEP] assumption [GOAL] case intro.intro.intro.intro.intro.a₃ R : Type u inst✝² : CommRing R E✝ : EllipticCurve R A : Type v inst✝¹ : CommRing A inst✝ : Algebra R A h : Function.Injective ↑(algebraMap R A) E E' : EllipticCurve R h1✝ : (fun E => baseChange E A) E = (fun E => baseChange E A) E' h1 : WeierstrassCurve.baseChange E.toWeierstrassCurve A = WeierstrassCurve.baseChange E'.toWeierstrassCurve A h2 : ↑↑(algebraMap R A) ↑E.Δ' = ↑↑(algebraMap R A) ↑E'.Δ' left✝³ : ↑(algebraMap R A) E.a₁ = ↑(algebraMap R A) E'.a₁ left✝² : ↑(algebraMap R A) E.a₂ = ↑(algebraMap R A) E'.a₂ left✝¹ : ↑(algebraMap R A) E.a₃ = ↑(algebraMap R A) E'.a₃ left✝ : ↑(algebraMap R A) E.a₄ = ↑(algebraMap R A) E'.a₄ right✝ : ↑(algebraMap R A) E.a₆ = ↑(algebraMap R A) E'.a₆ ⊢ ↑(algebraMap R A) E.a₃ = ↑(algebraMap R A) E'.a₃ [PROOFSTEP] assumption [GOAL] case intro.intro.intro.intro.intro.a₄ R : Type u inst✝² : CommRing R E✝ : EllipticCurve R A : Type v inst✝¹ : CommRing A inst✝ : Algebra R A h : Function.Injective ↑(algebraMap R A) E E' : EllipticCurve R h1✝ : (fun E => baseChange E A) E = (fun E => baseChange E A) E' h1 : WeierstrassCurve.baseChange E.toWeierstrassCurve A = WeierstrassCurve.baseChange E'.toWeierstrassCurve A h2 : ↑↑(algebraMap R A) ↑E.Δ' = ↑↑(algebraMap R A) ↑E'.Δ' left✝³ : ↑(algebraMap R A) E.a₁ = ↑(algebraMap R A) E'.a₁ left✝² : ↑(algebraMap R A) E.a₂ = ↑(algebraMap R A) E'.a₂ left✝¹ : ↑(algebraMap R A) E.a₃ = ↑(algebraMap R A) E'.a₃ left✝ : ↑(algebraMap R A) E.a₄ = ↑(algebraMap R A) E'.a₄ right✝ : ↑(algebraMap R A) E.a₆ = ↑(algebraMap R A) E'.a₆ ⊢ ↑(algebraMap R A) E.a₄ = ↑(algebraMap R A) E'.a₄ [PROOFSTEP] assumption [GOAL] case intro.intro.intro.intro.intro.a₆ R : Type u inst✝² : CommRing R E✝ : EllipticCurve R A : Type v inst✝¹ : CommRing A inst✝ : Algebra R A h : Function.Injective ↑(algebraMap R A) E E' : EllipticCurve R h1✝ : (fun E => baseChange E A) E = (fun E => baseChange E A) E' h1 : WeierstrassCurve.baseChange E.toWeierstrassCurve A = WeierstrassCurve.baseChange E'.toWeierstrassCurve A h2 : ↑↑(algebraMap R A) ↑E.Δ' = ↑↑(algebraMap R A) ↑E'.Δ' left✝³ : ↑(algebraMap R A) E.a₁ = ↑(algebraMap R A) E'.a₁ left✝² : ↑(algebraMap R A) E.a₂ = ↑(algebraMap R A) E'.a₂ left✝¹ : ↑(algebraMap R A) E.a₃ = ↑(algebraMap R A) E'.a₃ left✝ : ↑(algebraMap R A) E.a₄ = ↑(algebraMap R A) E'.a₄ right✝ : ↑(algebraMap R A) E.a₆ = ↑(algebraMap R A) E'.a₆ ⊢ ↑(algebraMap R A) E.a₆ = ↑(algebraMap R A) E'.a₆ [PROOFSTEP] assumption [GOAL] case intro.intro.intro.intro.intro.Δ'.a R : Type u inst✝² : CommRing R E✝ : EllipticCurve R A : Type v inst✝¹ : CommRing A inst✝ : Algebra R A h : Function.Injective ↑(algebraMap R A) E E' : EllipticCurve R h1✝ : (fun E => baseChange E A) E = (fun E => baseChange E A) E' h1 : WeierstrassCurve.baseChange E.toWeierstrassCurve A = WeierstrassCurve.baseChange E'.toWeierstrassCurve A h2 : ↑↑(algebraMap R A) ↑E.Δ' = ↑↑(algebraMap R A) ↑E'.Δ' left✝³ : ↑(algebraMap R A) E.a₁ = ↑(algebraMap R A) E'.a₁ left✝² : ↑(algebraMap R A) E.a₂ = ↑(algebraMap R A) E'.a₂ left✝¹ : ↑(algebraMap R A) E.a₃ = ↑(algebraMap R A) E'.a₃ left✝ : ↑(algebraMap R A) E.a₄ = ↑(algebraMap R A) E'.a₄ right✝ : ↑(algebraMap R A) E.a₆ = ↑(algebraMap R A) E'.a₆ ⊢ ↑(algebraMap R A) ↑E.Δ' = ↑(algebraMap R A) ↑E'.Δ' [PROOFSTEP] assumption
{"mathlib_filename": "Mathlib.AlgebraicGeometry.EllipticCurve.Weierstrass", "llama_tokens": 130835}
[GOAL] K : Type u inst✝³ : Field K V : Type v inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V ⊢ ↑(coevaluation K V) 1 = let bV := Basis.ofVectorSpace K V; ∑ i : ↑(Basis.ofVectorSpaceIndex K V), ↑bV i ⊗ₜ[K] Basis.coord bV i [PROOFSTEP] simp only [coevaluation, id] [GOAL] K : Type u inst✝³ : Field K V : Type v inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V ⊢ ↑(↑(Basis.constr (Basis.singleton Unit K) K) fun x => ∑ x : ↑(Basis.ofVectorSpaceIndex K V), ↑(Basis.ofVectorSpace K V) x ⊗ₜ[K] Basis.coord (Basis.ofVectorSpace K V) x) 1 = ∑ x : ↑(Basis.ofVectorSpaceIndex K V), ↑(Basis.ofVectorSpace K V) x ⊗ₜ[K] Basis.coord (Basis.ofVectorSpace K V) x [PROOFSTEP] rw [(Basis.singleton Unit K).constr_apply_fintype K] [GOAL] K : Type u inst✝³ : Field K V : Type v inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V ⊢ ∑ i : Unit, ↑(Basis.equivFun (Basis.singleton Unit K)) 1 i • ∑ x : ↑(Basis.ofVectorSpaceIndex K V), ↑(Basis.ofVectorSpace K V) x ⊗ₜ[K] Basis.coord (Basis.ofVectorSpace K V) x = ∑ x : ↑(Basis.ofVectorSpaceIndex K V), ↑(Basis.ofVectorSpace K V) x ⊗ₜ[K] Basis.coord (Basis.ofVectorSpace K V) x [PROOFSTEP] simp only [Fintype.univ_punit, Finset.sum_const, one_smul, Basis.singleton_repr, Basis.equivFun_apply, Basis.coe_ofVectorSpace, one_nsmul, Finset.card_singleton] [GOAL] K : Type u inst✝³ : Field K V : Type v inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V ⊢ LinearMap.comp (LinearMap.rTensor (Module.Dual K V) (contractLeft K V)) (LinearMap.comp (↑(LinearEquiv.symm (TensorProduct.assoc K (Module.Dual K V) V (Module.Dual K V)))) (LinearMap.lTensor (Module.Dual K V) (coevaluation K V))) = LinearMap.comp ↑(LinearEquiv.symm (TensorProduct.lid K (Module.Dual K V))) ↑(TensorProduct.rid K (Module.Dual K V)) [PROOFSTEP] letI := Classical.decEq (Basis.ofVectorSpaceIndex K V) [GOAL] K : Type u inst✝³ : Field K V : Type v inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V) ⊢ LinearMap.comp (LinearMap.rTensor (Module.Dual K V) (contractLeft K V)) (LinearMap.comp (↑(LinearEquiv.symm (TensorProduct.assoc K (Module.Dual K V) V (Module.Dual K V)))) (LinearMap.lTensor (Module.Dual K V) (coevaluation K V))) = LinearMap.comp ↑(LinearEquiv.symm (TensorProduct.lid K (Module.Dual K V))) ↑(TensorProduct.rid K (Module.Dual K V)) [PROOFSTEP] apply TensorProduct.ext [GOAL] case H K : Type u inst✝³ : Field K V : Type v inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V) ⊢ LinearMap.compr₂ (mk K (Module.Dual K V) K) (LinearMap.comp (LinearMap.rTensor (Module.Dual K V) (contractLeft K V)) (LinearMap.comp (↑(LinearEquiv.symm (TensorProduct.assoc K (Module.Dual K V) V (Module.Dual K V)))) (LinearMap.lTensor (Module.Dual K V) (coevaluation K V)))) = LinearMap.compr₂ (mk K (Module.Dual K V) K) (LinearMap.comp ↑(LinearEquiv.symm (TensorProduct.lid K (Module.Dual K V))) ↑(TensorProduct.rid K (Module.Dual K V))) [PROOFSTEP] apply (Basis.ofVectorSpace K V).dualBasis.ext [GOAL] case H K : Type u inst✝³ : Field K V : Type v inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V) ⊢ ∀ (i : ↑(Basis.ofVectorSpaceIndex K V)), ↑(LinearMap.compr₂ (mk K (Module.Dual K V) K) (LinearMap.comp (LinearMap.rTensor (Module.Dual K V) (contractLeft K V)) (LinearMap.comp (↑(LinearEquiv.symm (TensorProduct.assoc K (Module.Dual K V) V (Module.Dual K V)))) (LinearMap.lTensor (Module.Dual K V) (coevaluation K V))))) (↑(Basis.dualBasis (Basis.ofVectorSpace K V)) i) = ↑(LinearMap.compr₂ (mk K (Module.Dual K V) K) (LinearMap.comp ↑(LinearEquiv.symm (TensorProduct.lid K (Module.Dual K V))) ↑(TensorProduct.rid K (Module.Dual K V)))) (↑(Basis.dualBasis (Basis.ofVectorSpace K V)) i) [PROOFSTEP] intro j [GOAL] case H K : Type u inst✝³ : Field K V : Type v inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V) j : ↑(Basis.ofVectorSpaceIndex K V) ⊢ ↑(LinearMap.compr₂ (mk K (Module.Dual K V) K) (LinearMap.comp (LinearMap.rTensor (Module.Dual K V) (contractLeft K V)) (LinearMap.comp (↑(LinearEquiv.symm (TensorProduct.assoc K (Module.Dual K V) V (Module.Dual K V)))) (LinearMap.lTensor (Module.Dual K V) (coevaluation K V))))) (↑(Basis.dualBasis (Basis.ofVectorSpace K V)) j) = ↑(LinearMap.compr₂ (mk K (Module.Dual K V) K) (LinearMap.comp ↑(LinearEquiv.symm (TensorProduct.lid K (Module.Dual K V))) ↑(TensorProduct.rid K (Module.Dual K V)))) (↑(Basis.dualBasis (Basis.ofVectorSpace K V)) j) [PROOFSTEP] apply LinearMap.ext_ring [GOAL] case H.h K : Type u inst✝³ : Field K V : Type v inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V) j : ↑(Basis.ofVectorSpaceIndex K V) ⊢ ↑(↑(LinearMap.compr₂ (mk K (Module.Dual K V) K) (LinearMap.comp (LinearMap.rTensor (Module.Dual K V) (contractLeft K V)) (LinearMap.comp (↑(LinearEquiv.symm (TensorProduct.assoc K (Module.Dual K V) V (Module.Dual K V)))) (LinearMap.lTensor (Module.Dual K V) (coevaluation K V))))) (↑(Basis.dualBasis (Basis.ofVectorSpace K V)) j)) 1 = ↑(↑(LinearMap.compr₂ (mk K (Module.Dual K V) K) (LinearMap.comp ↑(LinearEquiv.symm (TensorProduct.lid K (Module.Dual K V))) ↑(TensorProduct.rid K (Module.Dual K V)))) (↑(Basis.dualBasis (Basis.ofVectorSpace K V)) j)) 1 [PROOFSTEP] rw [LinearMap.compr₂_apply, LinearMap.compr₂_apply, TensorProduct.mk_apply] [GOAL] case H.h K : Type u inst✝³ : Field K V : Type v inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V) j : ↑(Basis.ofVectorSpaceIndex K V) ⊢ ↑(LinearMap.comp (LinearMap.rTensor (Module.Dual K V) (contractLeft K V)) (LinearMap.comp (↑(LinearEquiv.symm (TensorProduct.assoc K (Module.Dual K V) V (Module.Dual K V)))) (LinearMap.lTensor (Module.Dual K V) (coevaluation K V)))) (↑(Basis.dualBasis (Basis.ofVectorSpace K V)) j ⊗ₜ[K] 1) = ↑(LinearMap.comp ↑(LinearEquiv.symm (TensorProduct.lid K (Module.Dual K V))) ↑(TensorProduct.rid K (Module.Dual K V))) (↑(Basis.dualBasis (Basis.ofVectorSpace K V)) j ⊗ₜ[K] 1) [PROOFSTEP] simp only [LinearMap.coe_comp, Function.comp_apply, LinearEquiv.coe_toLinearMap] [GOAL] case H.h K : Type u inst✝³ : Field K V : Type v inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V) j : ↑(Basis.ofVectorSpaceIndex K V) ⊢ ↑(LinearMap.rTensor (Module.Dual K V) (contractLeft K V)) (↑(LinearEquiv.symm (TensorProduct.assoc K (Module.Dual K V) V (Module.Dual K V))) (↑(LinearMap.lTensor (Module.Dual K V) (coevaluation K V)) (↑(Basis.dualBasis (Basis.ofVectorSpace K V)) j ⊗ₜ[K] 1))) = ↑(LinearEquiv.symm (TensorProduct.lid K (Module.Dual K V))) (↑(TensorProduct.rid K (Module.Dual K V)) (↑(Basis.dualBasis (Basis.ofVectorSpace K V)) j ⊗ₜ[K] 1)) [PROOFSTEP] rw [rid_tmul, one_smul, lid_symm_apply] [GOAL] case H.h K : Type u inst✝³ : Field K V : Type v inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V) j : ↑(Basis.ofVectorSpaceIndex K V) ⊢ ↑(LinearMap.rTensor (Module.Dual K V) (contractLeft K V)) (↑(LinearEquiv.symm (TensorProduct.assoc K (Module.Dual K V) V (Module.Dual K V))) (↑(LinearMap.lTensor (Module.Dual K V) (coevaluation K V)) (↑(Basis.dualBasis (Basis.ofVectorSpace K V)) j ⊗ₜ[K] 1))) = 1 ⊗ₜ[K] ↑(Basis.dualBasis (Basis.ofVectorSpace K V)) j [PROOFSTEP] simp only [LinearEquiv.coe_toLinearMap, LinearMap.lTensor_tmul, coevaluation_apply_one] [GOAL] case H.h K : Type u inst✝³ : Field K V : Type v inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V) j : ↑(Basis.ofVectorSpaceIndex K V) ⊢ ↑(LinearMap.rTensor (Module.Dual K V) (contractLeft K V)) (↑(LinearEquiv.symm (TensorProduct.assoc K (Module.Dual K V) V (Module.Dual K V))) (↑(Basis.dualBasis (Basis.ofVectorSpace K V)) j ⊗ₜ[K] ∑ x : ↑(Basis.ofVectorSpaceIndex K V), ↑(Basis.ofVectorSpace K V) x ⊗ₜ[K] Basis.coord (Basis.ofVectorSpace K V) x)) = 1 ⊗ₜ[K] ↑(Basis.dualBasis (Basis.ofVectorSpace K V)) j [PROOFSTEP] rw [TensorProduct.tmul_sum, LinearEquiv.map_sum] [GOAL] case H.h K : Type u inst✝³ : Field K V : Type v inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V) j : ↑(Basis.ofVectorSpaceIndex K V) ⊢ ↑(LinearMap.rTensor (Module.Dual K V) (contractLeft K V)) (∑ i : ↑(Basis.ofVectorSpaceIndex K V), ↑(LinearEquiv.symm (TensorProduct.assoc K (Module.Dual K V) V (Module.Dual K V))) (↑(Basis.dualBasis (Basis.ofVectorSpace K V)) j ⊗ₜ[K] ↑(Basis.ofVectorSpace K V) i ⊗ₜ[K] Basis.coord (Basis.ofVectorSpace K V) i)) = 1 ⊗ₜ[K] ↑(Basis.dualBasis (Basis.ofVectorSpace K V)) j [PROOFSTEP] simp only [assoc_symm_tmul] [GOAL] case H.h K : Type u inst✝³ : Field K V : Type v inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V) j : ↑(Basis.ofVectorSpaceIndex K V) ⊢ ↑(LinearMap.rTensor (Module.Dual K V) (contractLeft K V)) (∑ x : ↑(Basis.ofVectorSpaceIndex K V), (↑(Basis.dualBasis (Basis.ofVectorSpace K V)) j ⊗ₜ[K] ↑(Basis.ofVectorSpace K V) x) ⊗ₜ[K] Basis.coord (Basis.ofVectorSpace K V) x) = 1 ⊗ₜ[K] ↑(Basis.dualBasis (Basis.ofVectorSpace K V)) j [PROOFSTEP] rw [LinearMap.map_sum] [GOAL] case H.h K : Type u inst✝³ : Field K V : Type v inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V) j : ↑(Basis.ofVectorSpaceIndex K V) ⊢ ∑ i : ↑(Basis.ofVectorSpaceIndex K V), ↑(LinearMap.rTensor (Module.Dual K V) (contractLeft K V)) ((↑(Basis.dualBasis (Basis.ofVectorSpace K V)) j ⊗ₜ[K] ↑(Basis.ofVectorSpace K V) i) ⊗ₜ[K] Basis.coord (Basis.ofVectorSpace K V) i) = 1 ⊗ₜ[K] ↑(Basis.dualBasis (Basis.ofVectorSpace K V)) j [PROOFSTEP] simp only [LinearMap.rTensor_tmul, contractLeft_apply] [GOAL] case H.h K : Type u inst✝³ : Field K V : Type v inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V) j : ↑(Basis.ofVectorSpaceIndex K V) ⊢ ∑ x : ↑(Basis.ofVectorSpaceIndex K V), ↑(↑(Basis.dualBasis (Basis.ofVectorSpace K V)) j) (↑(Basis.ofVectorSpace K V) x) ⊗ₜ[K] Basis.coord (Basis.ofVectorSpace K V) x = 1 ⊗ₜ[K] ↑(Basis.dualBasis (Basis.ofVectorSpace K V)) j [PROOFSTEP] simp only [Basis.coe_dualBasis, Basis.coord_apply, Basis.repr_self_apply, TensorProduct.ite_tmul] [GOAL] case H.h K : Type u inst✝³ : Field K V : Type v inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V) j : ↑(Basis.ofVectorSpaceIndex K V) ⊢ (∑ x : ↑(Basis.ofVectorSpaceIndex K V), if x = j then 1 ⊗ₜ[K] Basis.coord (Basis.ofVectorSpace K V) x else 0) = 1 ⊗ₜ[K] Basis.coord (Basis.ofVectorSpace K V) j [PROOFSTEP] rw [Finset.sum_ite_eq'] [GOAL] case H.h K : Type u inst✝³ : Field K V : Type v inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V) j : ↑(Basis.ofVectorSpaceIndex K V) ⊢ (if j ∈ Finset.univ then 1 ⊗ₜ[K] Basis.coord (Basis.ofVectorSpace K V) j else 0) = 1 ⊗ₜ[K] Basis.coord (Basis.ofVectorSpace K V) j [PROOFSTEP] simp only [Finset.mem_univ, if_true] [GOAL] K : Type u inst✝³ : Field K V : Type v inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V ⊢ LinearMap.comp (LinearMap.lTensor V (contractLeft K V)) (LinearMap.comp (↑(TensorProduct.assoc K V (Module.Dual K V) V)) (LinearMap.rTensor V (coevaluation K V))) = LinearMap.comp ↑(LinearEquiv.symm (TensorProduct.rid K V)) ↑(TensorProduct.lid K V) [PROOFSTEP] letI := Classical.decEq (Basis.ofVectorSpaceIndex K V) [GOAL] K : Type u inst✝³ : Field K V : Type v inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V) ⊢ LinearMap.comp (LinearMap.lTensor V (contractLeft K V)) (LinearMap.comp (↑(TensorProduct.assoc K V (Module.Dual K V) V)) (LinearMap.rTensor V (coevaluation K V))) = LinearMap.comp ↑(LinearEquiv.symm (TensorProduct.rid K V)) ↑(TensorProduct.lid K V) [PROOFSTEP] apply TensorProduct.ext [GOAL] case H K : Type u inst✝³ : Field K V : Type v inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V) ⊢ LinearMap.compr₂ (mk K K V) (LinearMap.comp (LinearMap.lTensor V (contractLeft K V)) (LinearMap.comp (↑(TensorProduct.assoc K V (Module.Dual K V) V)) (LinearMap.rTensor V (coevaluation K V)))) = LinearMap.compr₂ (mk K K V) (LinearMap.comp ↑(LinearEquiv.symm (TensorProduct.rid K V)) ↑(TensorProduct.lid K V)) [PROOFSTEP] apply LinearMap.ext_ring [GOAL] case H.h K : Type u inst✝³ : Field K V : Type v inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V) ⊢ ↑(LinearMap.compr₂ (mk K K V) (LinearMap.comp (LinearMap.lTensor V (contractLeft K V)) (LinearMap.comp (↑(TensorProduct.assoc K V (Module.Dual K V) V)) (LinearMap.rTensor V (coevaluation K V))))) 1 = ↑(LinearMap.compr₂ (mk K K V) (LinearMap.comp ↑(LinearEquiv.symm (TensorProduct.rid K V)) ↑(TensorProduct.lid K V))) 1 [PROOFSTEP] apply (Basis.ofVectorSpace K V).ext [GOAL] case H.h K : Type u inst✝³ : Field K V : Type v inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V) ⊢ ∀ (i : ↑(Basis.ofVectorSpaceIndex K V)), ↑(↑(LinearMap.compr₂ (mk K K V) (LinearMap.comp (LinearMap.lTensor V (contractLeft K V)) (LinearMap.comp (↑(TensorProduct.assoc K V (Module.Dual K V) V)) (LinearMap.rTensor V (coevaluation K V))))) 1) (↑(Basis.ofVectorSpace K V) i) = ↑(↑(LinearMap.compr₂ (mk K K V) (LinearMap.comp ↑(LinearEquiv.symm (TensorProduct.rid K V)) ↑(TensorProduct.lid K V))) 1) (↑(Basis.ofVectorSpace K V) i) [PROOFSTEP] intro j [GOAL] case H.h K : Type u inst✝³ : Field K V : Type v inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V) j : ↑(Basis.ofVectorSpaceIndex K V) ⊢ ↑(↑(LinearMap.compr₂ (mk K K V) (LinearMap.comp (LinearMap.lTensor V (contractLeft K V)) (LinearMap.comp (↑(TensorProduct.assoc K V (Module.Dual K V) V)) (LinearMap.rTensor V (coevaluation K V))))) 1) (↑(Basis.ofVectorSpace K V) j) = ↑(↑(LinearMap.compr₂ (mk K K V) (LinearMap.comp ↑(LinearEquiv.symm (TensorProduct.rid K V)) ↑(TensorProduct.lid K V))) 1) (↑(Basis.ofVectorSpace K V) j) [PROOFSTEP] rw [LinearMap.compr₂_apply, LinearMap.compr₂_apply, TensorProduct.mk_apply] [GOAL] case H.h K : Type u inst✝³ : Field K V : Type v inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V) j : ↑(Basis.ofVectorSpaceIndex K V) ⊢ ↑(LinearMap.comp (LinearMap.lTensor V (contractLeft K V)) (LinearMap.comp (↑(TensorProduct.assoc K V (Module.Dual K V) V)) (LinearMap.rTensor V (coevaluation K V)))) (1 ⊗ₜ[K] ↑(Basis.ofVectorSpace K V) j) = ↑(LinearMap.comp ↑(LinearEquiv.symm (TensorProduct.rid K V)) ↑(TensorProduct.lid K V)) (1 ⊗ₜ[K] ↑(Basis.ofVectorSpace K V) j) [PROOFSTEP] simp only [LinearMap.coe_comp, Function.comp_apply, LinearEquiv.coe_toLinearMap] [GOAL] case H.h K : Type u inst✝³ : Field K V : Type v inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V) j : ↑(Basis.ofVectorSpaceIndex K V) ⊢ ↑(LinearMap.lTensor V (contractLeft K V)) (↑(TensorProduct.assoc K V (Module.Dual K V) V) (↑(LinearMap.rTensor V (coevaluation K V)) (1 ⊗ₜ[K] ↑(Basis.ofVectorSpace K V) j))) = ↑(LinearEquiv.symm (TensorProduct.rid K V)) (↑(TensorProduct.lid K V) (1 ⊗ₜ[K] ↑(Basis.ofVectorSpace K V) j)) [PROOFSTEP] rw [lid_tmul, one_smul, rid_symm_apply] [GOAL] case H.h K : Type u inst✝³ : Field K V : Type v inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V) j : ↑(Basis.ofVectorSpaceIndex K V) ⊢ ↑(LinearMap.lTensor V (contractLeft K V)) (↑(TensorProduct.assoc K V (Module.Dual K V) V) (↑(LinearMap.rTensor V (coevaluation K V)) (1 ⊗ₜ[K] ↑(Basis.ofVectorSpace K V) j))) = ↑(Basis.ofVectorSpace K V) j ⊗ₜ[K] 1 [PROOFSTEP] simp only [LinearEquiv.coe_toLinearMap, LinearMap.rTensor_tmul, coevaluation_apply_one] [GOAL] case H.h K : Type u inst✝³ : Field K V : Type v inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V) j : ↑(Basis.ofVectorSpaceIndex K V) ⊢ ↑(LinearMap.lTensor V (contractLeft K V)) (↑(TensorProduct.assoc K V (Module.Dual K V) V) ((∑ x : ↑(Basis.ofVectorSpaceIndex K V), ↑(Basis.ofVectorSpace K V) x ⊗ₜ[K] Basis.coord (Basis.ofVectorSpace K V) x) ⊗ₜ[K] ↑(Basis.ofVectorSpace K V) j)) = ↑(Basis.ofVectorSpace K V) j ⊗ₜ[K] 1 [PROOFSTEP] rw [TensorProduct.sum_tmul, LinearEquiv.map_sum] [GOAL] case H.h K : Type u inst✝³ : Field K V : Type v inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V) j : ↑(Basis.ofVectorSpaceIndex K V) ⊢ ↑(LinearMap.lTensor V (contractLeft K V)) (∑ i : ↑(Basis.ofVectorSpaceIndex K V), ↑(TensorProduct.assoc K V (Module.Dual K V) V) ((↑(Basis.ofVectorSpace K V) i ⊗ₜ[K] Basis.coord (Basis.ofVectorSpace K V) i) ⊗ₜ[K] ↑(Basis.ofVectorSpace K V) j)) = ↑(Basis.ofVectorSpace K V) j ⊗ₜ[K] 1 [PROOFSTEP] simp only [assoc_tmul] [GOAL] case H.h K : Type u inst✝³ : Field K V : Type v inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V) j : ↑(Basis.ofVectorSpaceIndex K V) ⊢ ↑(LinearMap.lTensor V (contractLeft K V)) (∑ x : ↑(Basis.ofVectorSpaceIndex K V), ↑(Basis.ofVectorSpace K V) x ⊗ₜ[K] Basis.coord (Basis.ofVectorSpace K V) x ⊗ₜ[K] ↑(Basis.ofVectorSpace K V) j) = ↑(Basis.ofVectorSpace K V) j ⊗ₜ[K] 1 [PROOFSTEP] rw [LinearMap.map_sum] [GOAL] case H.h K : Type u inst✝³ : Field K V : Type v inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V) j : ↑(Basis.ofVectorSpaceIndex K V) ⊢ ∑ i : ↑(Basis.ofVectorSpaceIndex K V), ↑(LinearMap.lTensor V (contractLeft K V)) (↑(Basis.ofVectorSpace K V) i ⊗ₜ[K] Basis.coord (Basis.ofVectorSpace K V) i ⊗ₜ[K] ↑(Basis.ofVectorSpace K V) j) = ↑(Basis.ofVectorSpace K V) j ⊗ₜ[K] 1 [PROOFSTEP] simp only [LinearMap.lTensor_tmul, contractLeft_apply] [GOAL] case H.h K : Type u inst✝³ : Field K V : Type v inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V) j : ↑(Basis.ofVectorSpaceIndex K V) ⊢ ∑ x : ↑(Basis.ofVectorSpaceIndex K V), ↑(Basis.ofVectorSpace K V) x ⊗ₜ[K] ↑(Basis.coord (Basis.ofVectorSpace K V) x) (↑(Basis.ofVectorSpace K V) j) = ↑(Basis.ofVectorSpace K V) j ⊗ₜ[K] 1 [PROOFSTEP] simp only [Basis.coord_apply, Basis.repr_self_apply, TensorProduct.tmul_ite] [GOAL] case H.h K : Type u inst✝³ : Field K V : Type v inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V) j : ↑(Basis.ofVectorSpaceIndex K V) ⊢ (∑ x : ↑(Basis.ofVectorSpaceIndex K V), if j = x then ↑(Basis.ofVectorSpace K V) x ⊗ₜ[K] 1 else 0) = ↑(Basis.ofVectorSpace K V) j ⊗ₜ[K] 1 [PROOFSTEP] rw [Finset.sum_ite_eq] [GOAL] case H.h K : Type u inst✝³ : Field K V : Type v inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V) j : ↑(Basis.ofVectorSpaceIndex K V) ⊢ (if j ∈ Finset.univ then ↑(Basis.ofVectorSpace K V) j ⊗ₜ[K] 1 else 0) = ↑(Basis.ofVectorSpace K V) j ⊗ₜ[K] 1 [PROOFSTEP] simp only [Finset.mem_univ, if_true]
{"mathlib_filename": "Mathlib.LinearAlgebra.Coevaluation", "llama_tokens": 9700}
[GOAL] X✝ Y : Scheme f : X✝ ⟶ Y X : Scheme ⊢ QuasiSeparatedSpace ↑↑X.toPresheafedSpace ↔ ∀ (U V : ↑(Scheme.affineOpens X)), IsCompact (↑↑U ∩ ↑↑V) [PROOFSTEP] rw [QuasiSeparatedSpace_iff] [GOAL] X✝ Y : Scheme f : X✝ ⟶ Y X : Scheme ⊢ (∀ (U V : Set ↑↑X.toPresheafedSpace), IsOpen U → IsCompact U → IsOpen V → IsCompact V → IsCompact (U ∩ V)) ↔ ∀ (U V : ↑(Scheme.affineOpens X)), IsCompact (↑↑U ∩ ↑↑V) [PROOFSTEP] constructor [GOAL] case mp X✝ Y : Scheme f : X✝ ⟶ Y X : Scheme ⊢ (∀ (U V : Set ↑↑X.toPresheafedSpace), IsOpen U → IsCompact U → IsOpen V → IsCompact V → IsCompact (U ∩ V)) → ∀ (U V : ↑(Scheme.affineOpens X)), IsCompact (↑↑U ∩ ↑↑V) [PROOFSTEP] intro H U V [GOAL] case mp X✝ Y : Scheme f : X✝ ⟶ Y X : Scheme H : ∀ (U V : Set ↑↑X.toPresheafedSpace), IsOpen U → IsCompact U → IsOpen V → IsCompact V → IsCompact (U ∩ V) U V : ↑(Scheme.affineOpens X) ⊢ IsCompact (↑↑U ∩ ↑↑V) [PROOFSTEP] exact H U V U.1.2 U.2.isCompact V.1.2 V.2.isCompact [GOAL] case mpr X✝ Y : Scheme f : X✝ ⟶ Y X : Scheme ⊢ (∀ (U V : ↑(Scheme.affineOpens X)), IsCompact (↑↑U ∩ ↑↑V)) → ∀ (U V : Set ↑↑X.toPresheafedSpace), IsOpen U → IsCompact U → IsOpen V → IsCompact V → IsCompact (U ∩ V) [PROOFSTEP] intro H [GOAL] case mpr X✝ Y : Scheme f : X✝ ⟶ Y X : Scheme H : ∀ (U V : ↑(Scheme.affineOpens X)), IsCompact (↑↑U ∩ ↑↑V) ⊢ ∀ (U V : Set ↑↑X.toPresheafedSpace), IsOpen U → IsCompact U → IsOpen V → IsCompact V → IsCompact (U ∩ V) [PROOFSTEP] suffices ∀ (U : Opens X.carrier) (_ : IsCompact U.1) (V : Opens X.carrier) (_ : IsCompact V.1), IsCompact (U ⊓ V).1 by intro U V hU hU' hV hV'; exact this ⟨U, hU⟩ hU' ⟨V, hV⟩ hV' [GOAL] X✝ Y : Scheme f : X✝ ⟶ Y X : Scheme H : ∀ (U V : ↑(Scheme.affineOpens X)), IsCompact (↑↑U ∩ ↑↑V) this : ∀ (U : Opens ↑↑X.toPresheafedSpace), IsCompact U.carrier → ∀ (V : Opens ↑↑X.toPresheafedSpace), IsCompact V.carrier → IsCompact (U ⊓ V).carrier ⊢ ∀ (U V : Set ↑↑X.toPresheafedSpace), IsOpen U → IsCompact U → IsOpen V → IsCompact V → IsCompact (U ∩ V) [PROOFSTEP] intro U V hU hU' hV hV' [GOAL] X✝ Y : Scheme f : X✝ ⟶ Y X : Scheme H : ∀ (U V : ↑(Scheme.affineOpens X)), IsCompact (↑↑U ∩ ↑↑V) this : ∀ (U : Opens ↑↑X.toPresheafedSpace), IsCompact U.carrier → ∀ (V : Opens ↑↑X.toPresheafedSpace), IsCompact V.carrier → IsCompact (U ⊓ V).carrier U V : Set ↑↑X.toPresheafedSpace hU : IsOpen U hU' : IsCompact U hV : IsOpen V hV' : IsCompact V ⊢ IsCompact (U ∩ V) [PROOFSTEP] exact this ⟨U, hU⟩ hU' ⟨V, hV⟩ hV' [GOAL] case mpr X✝ Y : Scheme f : X✝ ⟶ Y X : Scheme H : ∀ (U V : ↑(Scheme.affineOpens X)), IsCompact (↑↑U ∩ ↑↑V) ⊢ ∀ (U : Opens ↑↑X.toPresheafedSpace), IsCompact U.carrier → ∀ (V : Opens ↑↑X.toPresheafedSpace), IsCompact V.carrier → IsCompact (U ⊓ V).carrier [PROOFSTEP] intro U hU V hV [GOAL] case mpr X✝ Y : Scheme f : X✝ ⟶ Y X : Scheme H : ∀ (U V : ↑(Scheme.affineOpens X)), IsCompact (↑↑U ∩ ↑↑V) U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier V : Opens ↑↑X.toPresheafedSpace hV : IsCompact V.carrier ⊢ IsCompact (U ⊓ V).carrier [PROOFSTEP] apply compact_open_induction_on (P := _) V hV [GOAL] case mpr.h₁ X✝ Y : Scheme f : X✝ ⟶ Y X : Scheme H : ∀ (U V : ↑(Scheme.affineOpens X)), IsCompact (↑↑U ∩ ↑↑V) U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier V : Opens ↑↑X.toPresheafedSpace hV : IsCompact V.carrier ⊢ IsCompact (U ⊓ ⊥).carrier [PROOFSTEP] simp [GOAL] case mpr.h₂ X✝ Y : Scheme f : X✝ ⟶ Y X : Scheme H : ∀ (U V : ↑(Scheme.affineOpens X)), IsCompact (↑↑U ∩ ↑↑V) U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier V : Opens ↑↑X.toPresheafedSpace hV : IsCompact V.carrier ⊢ ∀ (S : Opens ↑↑X.toPresheafedSpace), IsCompact S.carrier → ∀ (U_1 : ↑(Scheme.affineOpens X)), IsCompact (U ⊓ S).carrier → IsCompact (U ⊓ (S ⊔ ↑U_1)).carrier [PROOFSTEP] intro S _ V hV [GOAL] case mpr.h₂ X✝ Y : Scheme f : X✝ ⟶ Y X : Scheme H : ∀ (U V : ↑(Scheme.affineOpens X)), IsCompact (↑↑U ∩ ↑↑V) U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier V✝ : Opens ↑↑X.toPresheafedSpace hV✝ : IsCompact V✝.carrier S : Opens ↑↑X.toPresheafedSpace x✝ : IsCompact S.carrier V : ↑(Scheme.affineOpens X) hV : IsCompact (U ⊓ S).carrier ⊢ IsCompact (U ⊓ (S ⊔ ↑V)).carrier [PROOFSTEP] change IsCompact (U.1 ∩ (S.1 ∪ V.1)) [GOAL] case mpr.h₂ X✝ Y : Scheme f : X✝ ⟶ Y X : Scheme H : ∀ (U V : ↑(Scheme.affineOpens X)), IsCompact (↑↑U ∩ ↑↑V) U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier V✝ : Opens ↑↑X.toPresheafedSpace hV✝ : IsCompact V✝.carrier S : Opens ↑↑X.toPresheafedSpace x✝ : IsCompact S.carrier V : ↑(Scheme.affineOpens X) hV : IsCompact (U ⊓ S).carrier ⊢ IsCompact (U.carrier ∩ (S.carrier ∪ ↑↑V)) [PROOFSTEP] rw [Set.inter_union_distrib_left] [GOAL] case mpr.h₂ X✝ Y : Scheme f : X✝ ⟶ Y X : Scheme H : ∀ (U V : ↑(Scheme.affineOpens X)), IsCompact (↑↑U ∩ ↑↑V) U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier V✝ : Opens ↑↑X.toPresheafedSpace hV✝ : IsCompact V✝.carrier S : Opens ↑↑X.toPresheafedSpace x✝ : IsCompact S.carrier V : ↑(Scheme.affineOpens X) hV : IsCompact (U ⊓ S).carrier ⊢ IsCompact (U.carrier ∩ S.carrier ∪ U.carrier ∩ ↑↑V) [PROOFSTEP] apply hV.union [GOAL] case mpr.h₂ X✝ Y : Scheme f : X✝ ⟶ Y X : Scheme H : ∀ (U V : ↑(Scheme.affineOpens X)), IsCompact (↑↑U ∩ ↑↑V) U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier V✝ : Opens ↑↑X.toPresheafedSpace hV✝ : IsCompact V✝.carrier S : Opens ↑↑X.toPresheafedSpace x✝ : IsCompact S.carrier V : ↑(Scheme.affineOpens X) hV : IsCompact (U ⊓ S).carrier ⊢ IsCompact (U.carrier ∩ ↑↑V) [PROOFSTEP] clear hV [GOAL] case mpr.h₂ X✝ Y : Scheme f : X✝ ⟶ Y X : Scheme H : ∀ (U V : ↑(Scheme.affineOpens X)), IsCompact (↑↑U ∩ ↑↑V) U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier V✝ : Opens ↑↑X.toPresheafedSpace hV : IsCompact V✝.carrier S : Opens ↑↑X.toPresheafedSpace x✝ : IsCompact S.carrier V : ↑(Scheme.affineOpens X) ⊢ IsCompact (U.carrier ∩ ↑↑V) [PROOFSTEP] apply compact_open_induction_on (P := _) U hU [GOAL] case mpr.h₂.h₁ X✝ Y : Scheme f : X✝ ⟶ Y X : Scheme H : ∀ (U V : ↑(Scheme.affineOpens X)), IsCompact (↑↑U ∩ ↑↑V) U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier V✝ : Opens ↑↑X.toPresheafedSpace hV : IsCompact V✝.carrier S : Opens ↑↑X.toPresheafedSpace x✝ : IsCompact S.carrier V : ↑(Scheme.affineOpens X) ⊢ IsCompact (⊥.carrier ∩ ↑↑V) [PROOFSTEP] simp [GOAL] case mpr.h₂.h₂ X✝ Y : Scheme f : X✝ ⟶ Y X : Scheme H : ∀ (U V : ↑(Scheme.affineOpens X)), IsCompact (↑↑U ∩ ↑↑V) U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier V✝ : Opens ↑↑X.toPresheafedSpace hV : IsCompact V✝.carrier S : Opens ↑↑X.toPresheafedSpace x✝ : IsCompact S.carrier V : ↑(Scheme.affineOpens X) ⊢ ∀ (S : Opens ↑↑X.toPresheafedSpace), IsCompact S.carrier → ∀ (U : ↑(Scheme.affineOpens X)), IsCompact (S.carrier ∩ ↑↑V) → IsCompact ((S ⊔ ↑U).carrier ∩ ↑↑V) [PROOFSTEP] intro S _ W hW [GOAL] case mpr.h₂.h₂ X✝ Y : Scheme f : X✝ ⟶ Y X : Scheme H : ∀ (U V : ↑(Scheme.affineOpens X)), IsCompact (↑↑U ∩ ↑↑V) U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier V✝ : Opens ↑↑X.toPresheafedSpace hV : IsCompact V✝.carrier S✝ : Opens ↑↑X.toPresheafedSpace x✝¹ : IsCompact S✝.carrier V : ↑(Scheme.affineOpens X) S : Opens ↑↑X.toPresheafedSpace x✝ : IsCompact S.carrier W : ↑(Scheme.affineOpens X) hW : IsCompact (S.carrier ∩ ↑↑V) ⊢ IsCompact ((S ⊔ ↑W).carrier ∩ ↑↑V) [PROOFSTEP] change IsCompact ((S.1 ∪ W.1) ∩ V.1) [GOAL] case mpr.h₂.h₂ X✝ Y : Scheme f : X✝ ⟶ Y X : Scheme H : ∀ (U V : ↑(Scheme.affineOpens X)), IsCompact (↑↑U ∩ ↑↑V) U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier V✝ : Opens ↑↑X.toPresheafedSpace hV : IsCompact V✝.carrier S✝ : Opens ↑↑X.toPresheafedSpace x✝¹ : IsCompact S✝.carrier V : ↑(Scheme.affineOpens X) S : Opens ↑↑X.toPresheafedSpace x✝ : IsCompact S.carrier W : ↑(Scheme.affineOpens X) hW : IsCompact (S.carrier ∩ ↑↑V) ⊢ IsCompact ((S.carrier ∪ ↑↑W) ∩ ↑↑V) [PROOFSTEP] rw [Set.union_inter_distrib_right] [GOAL] case mpr.h₂.h₂ X✝ Y : Scheme f : X✝ ⟶ Y X : Scheme H : ∀ (U V : ↑(Scheme.affineOpens X)), IsCompact (↑↑U ∩ ↑↑V) U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier V✝ : Opens ↑↑X.toPresheafedSpace hV : IsCompact V✝.carrier S✝ : Opens ↑↑X.toPresheafedSpace x✝¹ : IsCompact S✝.carrier V : ↑(Scheme.affineOpens X) S : Opens ↑↑X.toPresheafedSpace x✝ : IsCompact S.carrier W : ↑(Scheme.affineOpens X) hW : IsCompact (S.carrier ∩ ↑↑V) ⊢ IsCompact (S.carrier ∩ ↑↑V ∪ ↑↑W ∩ ↑↑V) [PROOFSTEP] apply hW.union [GOAL] case mpr.h₂.h₂ X✝ Y : Scheme f : X✝ ⟶ Y X : Scheme H : ∀ (U V : ↑(Scheme.affineOpens X)), IsCompact (↑↑U ∩ ↑↑V) U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier V✝ : Opens ↑↑X.toPresheafedSpace hV : IsCompact V✝.carrier S✝ : Opens ↑↑X.toPresheafedSpace x✝¹ : IsCompact S✝.carrier V : ↑(Scheme.affineOpens X) S : Opens ↑↑X.toPresheafedSpace x✝ : IsCompact S.carrier W : ↑(Scheme.affineOpens X) hW : IsCompact (S.carrier ∩ ↑↑V) ⊢ IsCompact (↑↑W ∩ ↑↑V) [PROOFSTEP] apply H [GOAL] X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme inst✝ : IsAffine Y f : X ⟶ Y ⊢ AffineTargetMorphismProperty.diagonal QuasiCompact.affineProperty f ↔ QuasiSeparatedSpace ↑↑X.toPresheafedSpace [PROOFSTEP] delta AffineTargetMorphismProperty.diagonal [GOAL] X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme inst✝ : IsAffine Y f : X ⟶ Y ⊢ (∀ {U₁ U₂ : Scheme} (f₁ : U₁ ⟶ X) (f₂ : U₂ ⟶ X) [inst : IsAffine U₁] [inst_1 : IsAffine U₂] [inst_2 : IsOpenImmersion f₁] [inst_3 : IsOpenImmersion f₂], QuasiCompact.affineProperty (pullback.mapDesc f₁ f₂ f)) ↔ QuasiSeparatedSpace ↑↑X.toPresheafedSpace [PROOFSTEP] rw [quasiSeparatedSpace_iff_affine] [GOAL] X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme inst✝ : IsAffine Y f : X ⟶ Y ⊢ (∀ {U₁ U₂ : Scheme} (f₁ : U₁ ⟶ X) (f₂ : U₂ ⟶ X) [inst : IsAffine U₁] [inst_1 : IsAffine U₂] [inst_2 : IsOpenImmersion f₁] [inst_3 : IsOpenImmersion f₂], QuasiCompact.affineProperty (pullback.mapDesc f₁ f₂ f)) ↔ ∀ (U V : ↑(Scheme.affineOpens X)), IsCompact (↑↑U ∩ ↑↑V) [PROOFSTEP] constructor [GOAL] case mp X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme inst✝ : IsAffine Y f : X ⟶ Y ⊢ (∀ {U₁ U₂ : Scheme} (f₁ : U₁ ⟶ X) (f₂ : U₂ ⟶ X) [inst : IsAffine U₁] [inst_1 : IsAffine U₂] [inst_2 : IsOpenImmersion f₁] [inst_3 : IsOpenImmersion f₂], QuasiCompact.affineProperty (pullback.mapDesc f₁ f₂ f)) → ∀ (U V : ↑(Scheme.affineOpens X)), IsCompact (↑↑U ∩ ↑↑V) [PROOFSTEP] intro H U V [GOAL] case mp X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme inst✝ : IsAffine Y f : X ⟶ Y H : ∀ {U₁ U₂ : Scheme} (f₁ : U₁ ⟶ X) (f₂ : U₂ ⟶ X) [inst : IsAffine U₁] [inst_1 : IsAffine U₂] [inst_2 : IsOpenImmersion f₁] [inst_3 : IsOpenImmersion f₂], QuasiCompact.affineProperty (pullback.mapDesc f₁ f₂ f) U V : ↑(Scheme.affineOpens X) ⊢ IsCompact (↑↑U ∩ ↑↑V) [PROOFSTEP] haveI : IsAffine _ := U.2 [GOAL] case mp X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme inst✝ : IsAffine Y f : X ⟶ Y H : ∀ {U₁ U₂ : Scheme} (f₁ : U₁ ⟶ X) (f₂ : U₂ ⟶ X) [inst : IsAffine U₁] [inst_1 : IsAffine U₂] [inst_2 : IsOpenImmersion f₁] [inst_3 : IsOpenImmersion f₂], QuasiCompact.affineProperty (pullback.mapDesc f₁ f₂ f) U V : ↑(Scheme.affineOpens X) this : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑U))) ⊢ IsCompact (↑↑U ∩ ↑↑V) [PROOFSTEP] haveI : IsAffine _ := V.2 [GOAL] case mp X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme inst✝ : IsAffine Y f : X ⟶ Y H : ∀ {U₁ U₂ : Scheme} (f₁ : U₁ ⟶ X) (f₂ : U₂ ⟶ X) [inst : IsAffine U₁] [inst_1 : IsAffine U₂] [inst_2 : IsOpenImmersion f₁] [inst_3 : IsOpenImmersion f₂], QuasiCompact.affineProperty (pullback.mapDesc f₁ f₂ f) U V : ↑(Scheme.affineOpens X) this✝ : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑U))) this : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑V))) ⊢ IsCompact (↑↑U ∩ ↑↑V) [PROOFSTEP] let g : pullback (X.ofRestrict U.1.openEmbedding) (X.ofRestrict V.1.openEmbedding) ⟶ X := pullback.fst ≫ X.ofRestrict _ -- Porting note: `inferInstance` does not work here [GOAL] case mp X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme inst✝ : IsAffine Y f : X ⟶ Y H : ∀ {U₁ U₂ : Scheme} (f₁ : U₁ ⟶ X) (f₂ : U₂ ⟶ X) [inst : IsAffine U₁] [inst_1 : IsAffine U₂] [inst_2 : IsOpenImmersion f₁] [inst_3 : IsOpenImmersion f₂], QuasiCompact.affineProperty (pullback.mapDesc f₁ f₂ f) U V : ↑(Scheme.affineOpens X) this✝ : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑U))) this : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑V))) g : pullback (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑U))) (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑V))) ⟶ X := pullback.fst ≫ Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑U)) ⊢ IsCompact (↑↑U ∩ ↑↑V) [PROOFSTEP] have : IsOpenImmersion g := PresheafedSpace.IsOpenImmersion.comp _ _ [GOAL] case mp X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme inst✝ : IsAffine Y f : X ⟶ Y H : ∀ {U₁ U₂ : Scheme} (f₁ : U₁ ⟶ X) (f₂ : U₂ ⟶ X) [inst : IsAffine U₁] [inst_1 : IsAffine U₂] [inst_2 : IsOpenImmersion f₁] [inst_3 : IsOpenImmersion f₂], QuasiCompact.affineProperty (pullback.mapDesc f₁ f₂ f) U V : ↑(Scheme.affineOpens X) this✝¹ : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑U))) this✝ : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑V))) g : pullback (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑U))) (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑V))) ⟶ X := pullback.fst ≫ Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑U)) this : IsOpenImmersion g ⊢ IsCompact (↑↑U ∩ ↑↑V) [PROOFSTEP] have e := Homeomorph.ofEmbedding _ this.base_open.toEmbedding [GOAL] case mp X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme inst✝ : IsAffine Y f : X ⟶ Y H : ∀ {U₁ U₂ : Scheme} (f₁ : U₁ ⟶ X) (f₂ : U₂ ⟶ X) [inst : IsAffine U₁] [inst_1 : IsAffine U₂] [inst_2 : IsOpenImmersion f₁] [inst_3 : IsOpenImmersion f₂], QuasiCompact.affineProperty (pullback.mapDesc f₁ f₂ f) U V : ↑(Scheme.affineOpens X) this✝¹ : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑U))) this✝ : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑V))) g : pullback (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑U))) (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑V))) ⟶ X := pullback.fst ≫ Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑U)) this : IsOpenImmersion g e : (forget TopCat).obj ↑(pullback (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑U))) (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑V)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace ≃ₜ ↑(Set.range ↑g.val.base) ⊢ IsCompact (↑↑U ∩ ↑↑V) [PROOFSTEP] rw [IsOpenImmersion.range_pullback_to_base_of_left] at e [GOAL] case mp X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme inst✝ : IsAffine Y f : X ⟶ Y H : ∀ {U₁ U₂ : Scheme} (f₁ : U₁ ⟶ X) (f₂ : U₂ ⟶ X) [inst : IsAffine U₁] [inst_1 : IsAffine U₂] [inst_2 : IsOpenImmersion f₁] [inst_3 : IsOpenImmersion f₂], QuasiCompact.affineProperty (pullback.mapDesc f₁ f₂ f) U V : ↑(Scheme.affineOpens X) this✝¹ : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑U))) this✝ : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑V))) g : pullback (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑U))) (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑V))) ⟶ X := pullback.fst ≫ Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑U)) this : IsOpenImmersion g e : (forget TopCat).obj ↑(pullback (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑U))) (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑V)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace ≃ₜ ↑(Set.range ↑(Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑U))).val.base ∩ Set.range ↑(Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑V))).val.base) ⊢ IsCompact (↑↑U ∩ ↑↑V) [PROOFSTEP] erw [Subtype.range_coe, Subtype.range_coe] at e [GOAL] case mp X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme inst✝ : IsAffine Y f : X ⟶ Y H : ∀ {U₁ U₂ : Scheme} (f₁ : U₁ ⟶ X) (f₂ : U₂ ⟶ X) [inst : IsAffine U₁] [inst_1 : IsAffine U₂] [inst_2 : IsOpenImmersion f₁] [inst_3 : IsOpenImmersion f₂], QuasiCompact.affineProperty (pullback.mapDesc f₁ f₂ f) U V : ↑(Scheme.affineOpens X) this✝¹ : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑U))) this✝ : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑V))) g : pullback (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑U))) (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑V))) ⟶ X := pullback.fst ≫ Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑U)) this : IsOpenImmersion g e : (forget TopCat).obj ↑(pullback (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑U))) (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑V)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace ≃ₜ ↑(↑↑U ∩ ↑↑V) ⊢ IsCompact (↑↑U ∩ ↑↑V) [PROOFSTEP] rw [isCompact_iff_compactSpace] [GOAL] case mp X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme inst✝ : IsAffine Y f : X ⟶ Y H : ∀ {U₁ U₂ : Scheme} (f₁ : U₁ ⟶ X) (f₂ : U₂ ⟶ X) [inst : IsAffine U₁] [inst_1 : IsAffine U₂] [inst_2 : IsOpenImmersion f₁] [inst_3 : IsOpenImmersion f₂], QuasiCompact.affineProperty (pullback.mapDesc f₁ f₂ f) U V : ↑(Scheme.affineOpens X) this✝¹ : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑U))) this✝ : IsAffine (Scheme.restrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑V))) g : pullback (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑U))) (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑V))) ⟶ X := pullback.fst ≫ Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑U)) this : IsOpenImmersion g e : (forget TopCat).obj ↑(pullback (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑U))) (Scheme.ofRestrict X (_ : OpenEmbedding ↑(Opens.inclusion ↑V)))).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace ≃ₜ ↑(↑↑U ∩ ↑↑V) ⊢ CompactSpace ↑(↑↑U ∩ ↑↑V) [PROOFSTEP] exact @Homeomorph.compactSpace _ _ _ _ (H _ _) e [GOAL] case mpr X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme inst✝ : IsAffine Y f : X ⟶ Y ⊢ (∀ (U V : ↑(Scheme.affineOpens X)), IsCompact (↑↑U ∩ ↑↑V)) → ∀ {U₁ U₂ : Scheme} (f₁ : U₁ ⟶ X) (f₂ : U₂ ⟶ X) [inst : IsAffine U₁] [inst_1 : IsAffine U₂] [inst_2 : IsOpenImmersion f₁] [inst_3 : IsOpenImmersion f₂], QuasiCompact.affineProperty (pullback.mapDesc f₁ f₂ f) [PROOFSTEP] introv H h₁ h₂ [GOAL] case mpr X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme inst✝² : IsAffine Y f : X ⟶ Y H : ∀ (U V : ↑(Scheme.affineOpens X)), IsCompact (↑↑U ∩ ↑↑V) U₁ U₂ : Scheme f₁ : U₁ ⟶ X f₂ : U₂ ⟶ X inst✝¹ : IsAffine U₁ inst✝ : IsAffine U₂ h₁ : IsOpenImmersion f₁ h₂ : IsOpenImmersion f₂ ⊢ QuasiCompact.affineProperty (pullback.mapDesc f₁ f₂ f) [PROOFSTEP] let g : pullback f₁ f₂ ⟶ X := pullback.fst ≫ f₁ [GOAL] case mpr X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme inst✝² : IsAffine Y f : X ⟶ Y H : ∀ (U V : ↑(Scheme.affineOpens X)), IsCompact (↑↑U ∩ ↑↑V) U₁ U₂ : Scheme f₁ : U₁ ⟶ X f₂ : U₂ ⟶ X inst✝¹ : IsAffine U₁ inst✝ : IsAffine U₂ h₁ : IsOpenImmersion f₁ h₂ : IsOpenImmersion f₂ g : pullback f₁ f₂ ⟶ X := pullback.fst ≫ f₁ ⊢ QuasiCompact.affineProperty (pullback.mapDesc f₁ f₂ f) [PROOFSTEP] have : IsOpenImmersion g := PresheafedSpace.IsOpenImmersion.comp _ _ [GOAL] case mpr X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme inst✝² : IsAffine Y f : X ⟶ Y H : ∀ (U V : ↑(Scheme.affineOpens X)), IsCompact (↑↑U ∩ ↑↑V) U₁ U₂ : Scheme f₁ : U₁ ⟶ X f₂ : U₂ ⟶ X inst✝¹ : IsAffine U₁ inst✝ : IsAffine U₂ h₁ : IsOpenImmersion f₁ h₂ : IsOpenImmersion f₂ g : pullback f₁ f₂ ⟶ X := pullback.fst ≫ f₁ this : IsOpenImmersion g ⊢ QuasiCompact.affineProperty (pullback.mapDesc f₁ f₂ f) [PROOFSTEP] have e := Homeomorph.ofEmbedding _ this.base_open.toEmbedding [GOAL] case mpr X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme inst✝² : IsAffine Y f : X ⟶ Y H : ∀ (U V : ↑(Scheme.affineOpens X)), IsCompact (↑↑U ∩ ↑↑V) U₁ U₂ : Scheme f₁ : U₁ ⟶ X f₂ : U₂ ⟶ X inst✝¹ : IsAffine U₁ inst✝ : IsAffine U₂ h₁ : IsOpenImmersion f₁ h₂ : IsOpenImmersion f₂ g : pullback f₁ f₂ ⟶ X := pullback.fst ≫ f₁ this : IsOpenImmersion g e : (forget TopCat).obj ↑(pullback f₁ f₂).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace ≃ₜ ↑(Set.range ↑g.val.base) ⊢ QuasiCompact.affineProperty (pullback.mapDesc f₁ f₂ f) [PROOFSTEP] rw [IsOpenImmersion.range_pullback_to_base_of_left] at e [GOAL] case mpr X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme inst✝² : IsAffine Y f : X ⟶ Y H : ∀ (U V : ↑(Scheme.affineOpens X)), IsCompact (↑↑U ∩ ↑↑V) U₁ U₂ : Scheme f₁ : U₁ ⟶ X f₂ : U₂ ⟶ X inst✝¹ : IsAffine U₁ inst✝ : IsAffine U₂ h₁ : IsOpenImmersion f₁ h₂ : IsOpenImmersion f₂ g : pullback f₁ f₂ ⟶ X := pullback.fst ≫ f₁ this : IsOpenImmersion g e : (forget TopCat).obj ↑(pullback f₁ f₂).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace ≃ₜ ↑(Set.range ↑f₁.val.base ∩ Set.range ↑f₂.val.base) ⊢ QuasiCompact.affineProperty (pullback.mapDesc f₁ f₂ f) [PROOFSTEP] simp_rw [isCompact_iff_compactSpace] at H [GOAL] case mpr X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme inst✝² : IsAffine Y f : X ⟶ Y U₁ U₂ : Scheme f₁ : U₁ ⟶ X f₂ : U₂ ⟶ X inst✝¹ : IsAffine U₁ inst✝ : IsAffine U₂ h₁ : IsOpenImmersion f₁ h₂ : IsOpenImmersion f₂ g : pullback f₁ f₂ ⟶ X := pullback.fst ≫ f₁ this : IsOpenImmersion g e : (forget TopCat).obj ↑(pullback f₁ f₂).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace ≃ₜ ↑(Set.range ↑f₁.val.base ∩ Set.range ↑f₂.val.base) H : ∀ (U V : ↑(Scheme.affineOpens X)), CompactSpace ↑(↑↑U ∩ ↑↑V) ⊢ QuasiCompact.affineProperty (pullback.mapDesc f₁ f₂ f) [PROOFSTEP] exact @Homeomorph.compactSpace _ _ _ _ (H ⟨⟨_, h₁.base_open.open_range⟩, rangeIsAffineOpenOfOpenImmersion _⟩ ⟨⟨_, h₂.base_open.open_range⟩, rangeIsAffineOpenOfOpenImmersion _⟩) e.symm [GOAL] X Y : Scheme f : X ⟶ Y ⊢ @QuasiSeparated = MorphismProperty.diagonal @QuasiCompact [PROOFSTEP] ext [GOAL] case h.h.h.a X Y : Scheme f : X ⟶ Y x✝² x✝¹ : Scheme x✝ : x✝² ⟶ x✝¹ ⊢ QuasiSeparated x✝ ↔ MorphismProperty.diagonal (@QuasiCompact) x✝ [PROOFSTEP] exact QuasiSeparated_iff _ [GOAL] X Y : Scheme f : X ⟶ Y ⊢ AffineTargetMorphismProperty.diagonal QuasiCompact.affineProperty = QuasiSeparated.affineProperty [PROOFSTEP] funext [GOAL] case h.h.h.h X Y : Scheme f : X ⟶ Y x✝³ x✝² : Scheme x✝¹ : x✝³ ⟶ x✝² x✝ : IsAffine x✝² ⊢ AffineTargetMorphismProperty.diagonal QuasiCompact.affineProperty x✝¹ = QuasiSeparated.affineProperty x✝¹ [PROOFSTEP] rw [quasi_compact_affineProperty_iff_quasiSeparatedSpace] [GOAL] case h.h.h.h X Y : Scheme f : X ⟶ Y x✝³ x✝² : Scheme x✝¹ : x✝³ ⟶ x✝² x✝ : IsAffine x✝² ⊢ QuasiSeparatedSpace ↑↑x✝³.toPresheafedSpace = QuasiSeparated.affineProperty x✝¹ [PROOFSTEP] rfl [GOAL] X Y : Scheme f : X ⟶ Y ⊢ @QuasiSeparated = targetAffineLocally (AffineTargetMorphismProperty.diagonal QuasiCompact.affineProperty) [PROOFSTEP] rw [quasiSeparated_eq_diagonal_is_quasiCompact, quasiCompact_eq_affineProperty] [GOAL] X Y : Scheme f : X ⟶ Y ⊢ MorphismProperty.diagonal (targetAffineLocally QuasiCompact.affineProperty) = targetAffineLocally (AffineTargetMorphismProperty.diagonal QuasiCompact.affineProperty) [PROOFSTEP] exact diagonal_targetAffineLocally_eq_targetAffineLocally _ QuasiCompact.affineProperty_isLocal [GOAL] X Y : Scheme f : X ⟶ Y ⊢ @QuasiSeparated = targetAffineLocally QuasiSeparated.affineProperty [PROOFSTEP] rw [quasiSeparated_eq_affineProperty_diagonal, quasi_compact_affineProperty_diagonal_eq] [GOAL] X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme f : X ⟶ Y ⊢ TFAE [QuasiSeparated f, ∃ 𝒰 x, ∀ (i : 𝒰.J), QuasiSeparatedSpace ↑↑(pullback f (Scheme.OpenCover.map 𝒰 i)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace, ∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), QuasiSeparatedSpace ↑↑(pullback f (Scheme.OpenCover.map 𝒰 i)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace, ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst : IsOpenImmersion g], QuasiSeparatedSpace ↑↑(pullback f g).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace, ∃ 𝒰 x 𝒰' x, ∀ (i : 𝒰.J) (j k : (𝒰' i).J), CompactSpace ↑↑(pullback (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace] [PROOFSTEP] have := QuasiCompact.affineProperty_isLocal.diagonal_affine_openCover_TFAE f [GOAL] X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme f : X ⟶ Y this : TFAE [MorphismProperty.diagonal (targetAffineLocally QuasiCompact.affineProperty) f, ∃ 𝒰 x, ∀ (i : 𝒰.J), AffineTargetMorphismProperty.diagonal QuasiCompact.affineProperty pullback.snd, ∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), AffineTargetMorphismProperty.diagonal QuasiCompact.affineProperty pullback.snd, ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], AffineTargetMorphismProperty.diagonal QuasiCompact.affineProperty pullback.snd, ∃ 𝒰 x 𝒰' x_1, ∀ (i : 𝒰.J) (j k : (𝒰' i).J), QuasiCompact.affineProperty (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd)] ⊢ TFAE [QuasiSeparated f, ∃ 𝒰 x, ∀ (i : 𝒰.J), QuasiSeparatedSpace ↑↑(pullback f (Scheme.OpenCover.map 𝒰 i)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace, ∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), QuasiSeparatedSpace ↑↑(pullback f (Scheme.OpenCover.map 𝒰 i)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace, ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst : IsOpenImmersion g], QuasiSeparatedSpace ↑↑(pullback f g).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace, ∃ 𝒰 x 𝒰' x, ∀ (i : 𝒰.J) (j k : (𝒰' i).J), CompactSpace ↑↑(pullback (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace] [PROOFSTEP] simp_rw [← quasiCompact_eq_affineProperty, ← quasiSeparated_eq_diagonal_is_quasiCompact, quasi_compact_affineProperty_diagonal_eq] at this [GOAL] X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme f : X ⟶ Y this : TFAE [QuasiSeparated f, ∃ 𝒰 h, ∀ (i : 𝒰.J), affineProperty pullback.snd, ∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), affineProperty pullback.snd, ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst_1 : IsOpenImmersion g], affineProperty pullback.snd, ∃ 𝒰 x 𝒰' x_1, ∀ (i : 𝒰.J) (j k : (𝒰' i).J), QuasiCompact.affineProperty (pullback.mapDesc (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k) pullback.snd)] ⊢ TFAE [QuasiSeparated f, ∃ 𝒰 x, ∀ (i : 𝒰.J), QuasiSeparatedSpace ↑↑(pullback f (Scheme.OpenCover.map 𝒰 i)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace, ∀ (𝒰 : Scheme.OpenCover Y) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), QuasiSeparatedSpace ↑↑(pullback f (Scheme.OpenCover.map 𝒰 i)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace, ∀ {U : Scheme} (g : U ⟶ Y) [inst : IsAffine U] [inst : IsOpenImmersion g], QuasiSeparatedSpace ↑↑(pullback f g).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace, ∃ 𝒰 x 𝒰' x, ∀ (i : 𝒰.J) (j k : (𝒰' i).J), CompactSpace ↑↑(pullback (Scheme.OpenCover.map (𝒰' i) j) (Scheme.OpenCover.map (𝒰' i) k)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace] [PROOFSTEP] exact this [GOAL] X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme f : X ⟶ Y inst✝ : IsAffine Y ⊢ QuasiSeparated f ↔ QuasiSeparatedSpace ↑↑X.toPresheafedSpace [PROOFSTEP] rw [quasiSeparated_eq_affineProperty, QuasiSeparated.affineProperty_isLocal.affine_target_iff f, QuasiSeparated.affineProperty] [GOAL] X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme 𝒰 : Scheme.OpenCover Y inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i) f : X ⟶ Y ⊢ QuasiSeparated f ↔ ∀ (i : 𝒰.J), QuasiSeparatedSpace ↑↑(pullback f (Scheme.OpenCover.map 𝒰 i)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace [PROOFSTEP] rw [quasiSeparated_eq_affineProperty, QuasiSeparated.affineProperty_isLocal.affine_openCover_iff f 𝒰] [GOAL] X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme 𝒰 : Scheme.OpenCover Y inst✝ : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i) f : X ⟶ Y ⊢ (∀ (i : 𝒰.J), affineProperty pullback.snd) ↔ ∀ (i : 𝒰.J), QuasiSeparatedSpace ↑↑(pullback f (Scheme.OpenCover.map 𝒰 i)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace [PROOFSTEP] rfl [GOAL] X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme f : X ⟶ Y hY : QuasiSeparatedSpace ↑↑Y.toPresheafedSpace inst✝ : QuasiSeparated f ⊢ QuasiSeparatedSpace ↑↑X.toPresheafedSpace [PROOFSTEP] rw [quasiSeparatedSpace_iff_quasiSeparated] at hY ⊢ [GOAL] X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme f : X ⟶ Y hY : QuasiSeparated (terminal.from Y) inst✝ : QuasiSeparated f ⊢ QuasiSeparated (terminal.from X) [PROOFSTEP] have : f ≫ terminal.from Y = terminal.from X := terminalIsTerminal.hom_ext _ _ [GOAL] X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme f : X ⟶ Y hY : QuasiSeparated (terminal.from Y) inst✝ : QuasiSeparated f this : f ≫ terminal.from Y = terminal.from X ⊢ QuasiSeparated (terminal.from X) [PROOFSTEP] rw [← this] [GOAL] X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y : Scheme f : X ⟶ Y hY : QuasiSeparated (terminal.from Y) inst✝ : QuasiSeparated f this : f ≫ terminal.from Y = terminal.from X ⊢ QuasiSeparated (f ≫ terminal.from Y) [PROOFSTEP] infer_instance [GOAL] X✝ Y : Scheme f : X✝ ⟶ Y X : Scheme inst✝ : IsAffine X ⊢ QuasiSeparatedSpace ↑↑X.toPresheafedSpace [PROOFSTEP] constructor [GOAL] case inter_isCompact X✝ Y : Scheme f : X✝ ⟶ Y X : Scheme inst✝ : IsAffine X ⊢ ∀ (U V : Set ↑↑X.toPresheafedSpace), IsOpen U → IsCompact U → IsOpen V → IsCompact V → IsCompact (U ∩ V) [PROOFSTEP] intro U V hU hU' hV hV' [GOAL] case inter_isCompact X✝ Y : Scheme f : X✝ ⟶ Y X : Scheme inst✝ : IsAffine X U V : Set ↑↑X.toPresheafedSpace hU : IsOpen U hU' : IsCompact U hV : IsOpen V hV' : IsCompact V ⊢ IsCompact (U ∩ V) [PROOFSTEP] obtain ⟨s, hs, e⟩ := (isCompact_open_iff_eq_basicOpen_union _).mp ⟨hU', hU⟩ [GOAL] case inter_isCompact.intro.intro X✝ Y : Scheme f : X✝ ⟶ Y X : Scheme inst✝ : IsAffine X U V : Set ↑↑X.toPresheafedSpace hU : IsOpen U hU' : IsCompact U hV : IsOpen V hV' : IsCompact V s : Set ↑(X.presheaf.obj (op ⊤)) hs : Set.Finite s e : U = ⋃ (i : ↑(X.presheaf.obj (op ⊤))) (_ : i ∈ s), ↑(Scheme.basicOpen X i) ⊢ IsCompact (U ∩ V) [PROOFSTEP] obtain ⟨s', hs', e'⟩ := (isCompact_open_iff_eq_basicOpen_union _).mp ⟨hV', hV⟩ [GOAL] case inter_isCompact.intro.intro.intro.intro X✝ Y : Scheme f : X✝ ⟶ Y X : Scheme inst✝ : IsAffine X U V : Set ↑↑X.toPresheafedSpace hU : IsOpen U hU' : IsCompact U hV : IsOpen V hV' : IsCompact V s : Set ↑(X.presheaf.obj (op ⊤)) hs : Set.Finite s e : U = ⋃ (i : ↑(X.presheaf.obj (op ⊤))) (_ : i ∈ s), ↑(Scheme.basicOpen X i) s' : Set ↑(X.presheaf.obj (op ⊤)) hs' : Set.Finite s' e' : V = ⋃ (i : ↑(X.presheaf.obj (op ⊤))) (_ : i ∈ s'), ↑(Scheme.basicOpen X i) ⊢ IsCompact (U ∩ V) [PROOFSTEP] rw [e, e', Set.iUnion₂_inter] [GOAL] case inter_isCompact.intro.intro.intro.intro X✝ Y : Scheme f : X✝ ⟶ Y X : Scheme inst✝ : IsAffine X U V : Set ↑↑X.toPresheafedSpace hU : IsOpen U hU' : IsCompact U hV : IsOpen V hV' : IsCompact V s : Set ↑(X.presheaf.obj (op ⊤)) hs : Set.Finite s e : U = ⋃ (i : ↑(X.presheaf.obj (op ⊤))) (_ : i ∈ s), ↑(Scheme.basicOpen X i) s' : Set ↑(X.presheaf.obj (op ⊤)) hs' : Set.Finite s' e' : V = ⋃ (i : ↑(X.presheaf.obj (op ⊤))) (_ : i ∈ s'), ↑(Scheme.basicOpen X i) ⊢ IsCompact (⋃ (i : ↑(X.presheaf.obj (op ⊤))) (_ : i ∈ s), ↑(Scheme.basicOpen X i) ∩ ⋃ (i : ↑(X.presheaf.obj (op ⊤))) (_ : i ∈ s'), ↑(Scheme.basicOpen X i)) [PROOFSTEP] simp_rw [Set.inter_iUnion₂] [GOAL] case inter_isCompact.intro.intro.intro.intro X✝ Y : Scheme f : X✝ ⟶ Y X : Scheme inst✝ : IsAffine X U V : Set ↑↑X.toPresheafedSpace hU : IsOpen U hU' : IsCompact U hV : IsOpen V hV' : IsCompact V s : Set ↑(X.presheaf.obj (op ⊤)) hs : Set.Finite s e : U = ⋃ (i : ↑(X.presheaf.obj (op ⊤))) (_ : i ∈ s), ↑(Scheme.basicOpen X i) s' : Set ↑(X.presheaf.obj (op ⊤)) hs' : Set.Finite s' e' : V = ⋃ (i : ↑(X.presheaf.obj (op ⊤))) (_ : i ∈ s'), ↑(Scheme.basicOpen X i) ⊢ IsCompact (⋃ (i : ↑(X.presheaf.obj (op ⊤))) (_ : i ∈ s) (i_1 : ↑(X.presheaf.obj (op ⊤))) (_ : i_1 ∈ s'), ↑(Scheme.basicOpen X i) ∩ ↑(Scheme.basicOpen X i_1)) [PROOFSTEP] apply hs.isCompact_biUnion [GOAL] case inter_isCompact.intro.intro.intro.intro X✝ Y : Scheme f : X✝ ⟶ Y X : Scheme inst✝ : IsAffine X U V : Set ↑↑X.toPresheafedSpace hU : IsOpen U hU' : IsCompact U hV : IsOpen V hV' : IsCompact V s : Set ↑(X.presheaf.obj (op ⊤)) hs : Set.Finite s e : U = ⋃ (i : ↑(X.presheaf.obj (op ⊤))) (_ : i ∈ s), ↑(Scheme.basicOpen X i) s' : Set ↑(X.presheaf.obj (op ⊤)) hs' : Set.Finite s' e' : V = ⋃ (i : ↑(X.presheaf.obj (op ⊤))) (_ : i ∈ s'), ↑(Scheme.basicOpen X i) ⊢ ∀ (i : ↑(X.presheaf.obj (op ⊤))), i ∈ s → IsCompact (⋃ (i_1 : ↑(X.presheaf.obj (op ⊤))) (_ : i_1 ∈ s'), ↑(Scheme.basicOpen X i) ∩ ↑(Scheme.basicOpen X i_1)) [PROOFSTEP] intro i _ [GOAL] case inter_isCompact.intro.intro.intro.intro X✝ Y : Scheme f : X✝ ⟶ Y X : Scheme inst✝ : IsAffine X U V : Set ↑↑X.toPresheafedSpace hU : IsOpen U hU' : IsCompact U hV : IsOpen V hV' : IsCompact V s : Set ↑(X.presheaf.obj (op ⊤)) hs : Set.Finite s e : U = ⋃ (i : ↑(X.presheaf.obj (op ⊤))) (_ : i ∈ s), ↑(Scheme.basicOpen X i) s' : Set ↑(X.presheaf.obj (op ⊤)) hs' : Set.Finite s' e' : V = ⋃ (i : ↑(X.presheaf.obj (op ⊤))) (_ : i ∈ s'), ↑(Scheme.basicOpen X i) i : ↑(X.presheaf.obj (op ⊤)) a✝ : i ∈ s ⊢ IsCompact (⋃ (i_1 : ↑(X.presheaf.obj (op ⊤))) (_ : i_1 ∈ s'), ↑(Scheme.basicOpen X i) ∩ ↑(Scheme.basicOpen X i_1)) [PROOFSTEP] apply hs'.isCompact_biUnion [GOAL] case inter_isCompact.intro.intro.intro.intro X✝ Y : Scheme f : X✝ ⟶ Y X : Scheme inst✝ : IsAffine X U V : Set ↑↑X.toPresheafedSpace hU : IsOpen U hU' : IsCompact U hV : IsOpen V hV' : IsCompact V s : Set ↑(X.presheaf.obj (op ⊤)) hs : Set.Finite s e : U = ⋃ (i : ↑(X.presheaf.obj (op ⊤))) (_ : i ∈ s), ↑(Scheme.basicOpen X i) s' : Set ↑(X.presheaf.obj (op ⊤)) hs' : Set.Finite s' e' : V = ⋃ (i : ↑(X.presheaf.obj (op ⊤))) (_ : i ∈ s'), ↑(Scheme.basicOpen X i) i : ↑(X.presheaf.obj (op ⊤)) a✝ : i ∈ s ⊢ ∀ (i_1 : ↑(X.presheaf.obj (op ⊤))), i_1 ∈ s' → IsCompact (↑(Scheme.basicOpen X i) ∩ ↑(Scheme.basicOpen X i_1)) [PROOFSTEP] intro i' _ [GOAL] case inter_isCompact.intro.intro.intro.intro X✝ Y : Scheme f : X✝ ⟶ Y X : Scheme inst✝ : IsAffine X U V : Set ↑↑X.toPresheafedSpace hU : IsOpen U hU' : IsCompact U hV : IsOpen V hV' : IsCompact V s : Set ↑(X.presheaf.obj (op ⊤)) hs : Set.Finite s e : U = ⋃ (i : ↑(X.presheaf.obj (op ⊤))) (_ : i ∈ s), ↑(Scheme.basicOpen X i) s' : Set ↑(X.presheaf.obj (op ⊤)) hs' : Set.Finite s' e' : V = ⋃ (i : ↑(X.presheaf.obj (op ⊤))) (_ : i ∈ s'), ↑(Scheme.basicOpen X i) i : ↑(X.presheaf.obj (op ⊤)) a✝¹ : i ∈ s i' : ↑(X.presheaf.obj (op ⊤)) a✝ : i' ∈ s' ⊢ IsCompact (↑(Scheme.basicOpen X i) ∩ ↑(Scheme.basicOpen X i')) [PROOFSTEP] change IsCompact (X.basicOpen i ⊓ X.basicOpen i').1 [GOAL] case inter_isCompact.intro.intro.intro.intro X✝ Y : Scheme f : X✝ ⟶ Y X : Scheme inst✝ : IsAffine X U V : Set ↑↑X.toPresheafedSpace hU : IsOpen U hU' : IsCompact U hV : IsOpen V hV' : IsCompact V s : Set ↑(X.presheaf.obj (op ⊤)) hs : Set.Finite s e : U = ⋃ (i : ↑(X.presheaf.obj (op ⊤))) (_ : i ∈ s), ↑(Scheme.basicOpen X i) s' : Set ↑(X.presheaf.obj (op ⊤)) hs' : Set.Finite s' e' : V = ⋃ (i : ↑(X.presheaf.obj (op ⊤))) (_ : i ∈ s'), ↑(Scheme.basicOpen X i) i : ↑(X.presheaf.obj (op ⊤)) a✝¹ : i ∈ s i' : ↑(X.presheaf.obj (op ⊤)) a✝ : i' ∈ s' ⊢ IsCompact (Scheme.basicOpen X i ⊓ Scheme.basicOpen X i').carrier [PROOFSTEP] rw [← Scheme.basicOpen_mul] [GOAL] case inter_isCompact.intro.intro.intro.intro X✝ Y : Scheme f : X✝ ⟶ Y X : Scheme inst✝ : IsAffine X U V : Set ↑↑X.toPresheafedSpace hU : IsOpen U hU' : IsCompact U hV : IsOpen V hV' : IsCompact V s : Set ↑(X.presheaf.obj (op ⊤)) hs : Set.Finite s e : U = ⋃ (i : ↑(X.presheaf.obj (op ⊤))) (_ : i ∈ s), ↑(Scheme.basicOpen X i) s' : Set ↑(X.presheaf.obj (op ⊤)) hs' : Set.Finite s' e' : V = ⋃ (i : ↑(X.presheaf.obj (op ⊤))) (_ : i ∈ s'), ↑(Scheme.basicOpen X i) i : ↑(X.presheaf.obj (op ⊤)) a✝¹ : i ∈ s i' : ↑(X.presheaf.obj (op ⊤)) a✝ : i' ∈ s' ⊢ IsCompact (Scheme.basicOpen X (i * i')).carrier [PROOFSTEP] exact ((topIsAffineOpen _).basicOpenIsAffine _).isCompact [GOAL] X✝ Y : Scheme f : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U ⊢ IsQuasiSeparated ↑U [PROOFSTEP] rw [isQuasiSeparated_iff_quasiSeparatedSpace] [GOAL] X✝ Y : Scheme f : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U ⊢ QuasiSeparatedSpace ↑↑U case hs X✝ Y : Scheme f : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U ⊢ IsOpen ↑U [PROOFSTEP] exacts [@AlgebraicGeometry.quasiSeparatedSpace_of_isAffine _ hU, U.isOpen] [GOAL] X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y Z : Scheme f : X ⟶ Y g : Y ⟶ Z H : QuasiSeparated (f ≫ g) ⊢ QuasiSeparated f [PROOFSTEP] have h01 := (QuasiSeparated.affine_openCover_TFAE f).out 0 1 [GOAL] X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y Z : Scheme f : X ⟶ Y g : Y ⟶ Z H : QuasiSeparated (f ≫ g) h01 : QuasiSeparated f ↔ ∃ 𝒰 x, ∀ (i : 𝒰.J), QuasiSeparatedSpace ↑↑(pullback f (Scheme.OpenCover.map 𝒰 i)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace ⊢ QuasiSeparated f [PROOFSTEP] rw [h01] [GOAL] X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y Z : Scheme f : X ⟶ Y g : Y ⟶ Z H : QuasiSeparated (f ≫ g) h01 : QuasiSeparated f ↔ ∃ 𝒰 x, ∀ (i : 𝒰.J), QuasiSeparatedSpace ↑↑(pullback f (Scheme.OpenCover.map 𝒰 i)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace ⊢ ∃ 𝒰 x, ∀ (i : 𝒰.J), QuasiSeparatedSpace ↑↑(pullback f (Scheme.OpenCover.map 𝒰 i)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace [PROOFSTEP] clear h01 [GOAL] X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y Z : Scheme f : X ⟶ Y g : Y ⟶ Z H : QuasiSeparated (f ≫ g) ⊢ ∃ 𝒰 x, ∀ (i : 𝒰.J), QuasiSeparatedSpace ↑↑(pullback f (Scheme.OpenCover.map 𝒰 i)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace [PROOFSTEP] have h02 := (QuasiSeparated.affine_openCover_TFAE (f ≫ g)).out 0 2 [GOAL] X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y Z : Scheme f : X ⟶ Y g : Y ⟶ Z H : QuasiSeparated (f ≫ g) h02 : QuasiSeparated (f ≫ g) ↔ ∀ (𝒰 : Scheme.OpenCover Z) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), QuasiSeparatedSpace ↑↑(pullback (f ≫ g) (Scheme.OpenCover.map 𝒰 i)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace ⊢ ∃ 𝒰 x, ∀ (i : 𝒰.J), QuasiSeparatedSpace ↑↑(pullback f (Scheme.OpenCover.map 𝒰 i)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace [PROOFSTEP] rw [h02] at H [GOAL] X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y Z : Scheme f : X ⟶ Y g : Y ⟶ Z H : ∀ (𝒰 : Scheme.OpenCover Z) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), QuasiSeparatedSpace ↑↑(pullback (f ≫ g) (Scheme.OpenCover.map 𝒰 i)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace h02 : QuasiSeparated (f ≫ g) ↔ ∀ (𝒰 : Scheme.OpenCover Z) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), QuasiSeparatedSpace ↑↑(pullback (f ≫ g) (Scheme.OpenCover.map 𝒰 i)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace ⊢ ∃ 𝒰 x, ∀ (i : 𝒰.J), QuasiSeparatedSpace ↑↑(pullback f (Scheme.OpenCover.map 𝒰 i)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace [PROOFSTEP] clear h02 [GOAL] X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y Z : Scheme f : X ⟶ Y g : Y ⟶ Z H : ∀ (𝒰 : Scheme.OpenCover Z) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), QuasiSeparatedSpace ↑↑(pullback (f ≫ g) (Scheme.OpenCover.map 𝒰 i)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace ⊢ ∃ 𝒰 x, ∀ (i : 𝒰.J), QuasiSeparatedSpace ↑↑(pullback f (Scheme.OpenCover.map 𝒰 i)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace [PROOFSTEP] refine ⟨(Z.affineCover.pullbackCover g).bind fun x => Scheme.affineCover _, ?_, ?_⟩ -- constructor [GOAL] case refine_1 X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y Z : Scheme f : X ⟶ Y g : Y ⟶ Z H : ∀ (𝒰 : Scheme.OpenCover Z) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), QuasiSeparatedSpace ↑↑(pullback (f ≫ g) (Scheme.OpenCover.map 𝒰 i)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace ⊢ ∀ (i : (Scheme.OpenCover.bind (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) fun x => Scheme.affineCover (Scheme.OpenCover.obj (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) x)).J), IsAffine (Scheme.OpenCover.obj (Scheme.OpenCover.bind (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) fun x => Scheme.affineCover (Scheme.OpenCover.obj (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) x)) i) [PROOFSTEP] intro i [GOAL] case refine_1 X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y Z : Scheme f : X ⟶ Y g : Y ⟶ Z H : ∀ (𝒰 : Scheme.OpenCover Z) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), QuasiSeparatedSpace ↑↑(pullback (f ≫ g) (Scheme.OpenCover.map 𝒰 i)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace i : (Scheme.OpenCover.bind (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) fun x => Scheme.affineCover (Scheme.OpenCover.obj (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) x)).J ⊢ IsAffine (Scheme.OpenCover.obj (Scheme.OpenCover.bind (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) fun x => Scheme.affineCover (Scheme.OpenCover.obj (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) x)) i) [PROOFSTEP] dsimp [GOAL] case refine_1 X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y Z : Scheme f : X ⟶ Y g : Y ⟶ Z H : ∀ (𝒰 : Scheme.OpenCover Z) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), QuasiSeparatedSpace ↑↑(pullback (f ≫ g) (Scheme.OpenCover.map 𝒰 i)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace i : (Scheme.OpenCover.bind (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) fun x => Scheme.affineCover (Scheme.OpenCover.obj (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) x)).J ⊢ IsAffine (Scheme.OpenCover.obj (Scheme.affineCover (pullback g (Scheme.OpenCover.map (Scheme.affineCover Z) i.fst))) i.snd) [PROOFSTEP] infer_instance [GOAL] case refine_2 X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y Z : Scheme f : X ⟶ Y g : Y ⟶ Z H : ∀ (𝒰 : Scheme.OpenCover Z) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), QuasiSeparatedSpace ↑↑(pullback (f ≫ g) (Scheme.OpenCover.map 𝒰 i)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace ⊢ ∀ (i : (Scheme.OpenCover.bind (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) fun x => Scheme.affineCover (Scheme.OpenCover.obj (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) x)).J), QuasiSeparatedSpace ↑↑(pullback f (Scheme.OpenCover.map (Scheme.OpenCover.bind (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) fun x => Scheme.affineCover (Scheme.OpenCover.obj (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) x)) i)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace [PROOFSTEP] rintro ⟨i, j⟩ [GOAL] case refine_2.mk X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y Z : Scheme f : X ⟶ Y g : Y ⟶ Z H : ∀ (𝒰 : Scheme.OpenCover Z) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), QuasiSeparatedSpace ↑↑(pullback (f ≫ g) (Scheme.OpenCover.map 𝒰 i)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace i : (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g).J j : ((fun x => Scheme.affineCover (Scheme.OpenCover.obj (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) x)) i).J ⊢ QuasiSeparatedSpace ↑↑(pullback f (Scheme.OpenCover.map (Scheme.OpenCover.bind (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) fun x => Scheme.affineCover (Scheme.OpenCover.obj (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) x)) { fst := i, snd := j })).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace [PROOFSTEP] dsimp at i j [GOAL] case refine_2.mk X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y Z : Scheme f : X ⟶ Y g : Y ⟶ Z H : ∀ (𝒰 : Scheme.OpenCover Z) [inst : ∀ (i : 𝒰.J), IsAffine (Scheme.OpenCover.obj 𝒰 i)] (i : 𝒰.J), QuasiSeparatedSpace ↑↑(pullback (f ≫ g) (Scheme.OpenCover.map 𝒰 i)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace i : (Scheme.affineCover Z).J j : (Scheme.affineCover (pullback g (Scheme.OpenCover.map (Scheme.affineCover Z) i))).J ⊢ QuasiSeparatedSpace ↑↑(pullback f (Scheme.OpenCover.map (Scheme.OpenCover.bind (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) fun x => Scheme.affineCover (Scheme.OpenCover.obj (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) x)) { fst := i, snd := j })).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace [PROOFSTEP] specialize H _ i [GOAL] case refine_2.mk X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y Z : Scheme f : X ⟶ Y g : Y ⟶ Z i : (Scheme.affineCover Z).J j : (Scheme.affineCover (pullback g (Scheme.OpenCover.map (Scheme.affineCover Z) i))).J H : QuasiSeparatedSpace ↑↑(pullback (f ≫ g) (Scheme.OpenCover.map (Scheme.affineCover Z) i)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace ⊢ QuasiSeparatedSpace ↑↑(pullback f (Scheme.OpenCover.map (Scheme.OpenCover.bind (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) fun x => Scheme.affineCover (Scheme.OpenCover.obj (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) x)) { fst := i, snd := j })).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace [PROOFSTEP] refine @quasiSeparatedSpace_of_quasiSeparated _ _ ?_ H ?_ [GOAL] case refine_2.mk.refine_1 X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y Z : Scheme f : X ⟶ Y g : Y ⟶ Z i : (Scheme.affineCover Z).J j : (Scheme.affineCover (pullback g (Scheme.OpenCover.map (Scheme.affineCover Z) i))).J H : QuasiSeparatedSpace ↑↑(pullback (f ≫ g) (Scheme.OpenCover.map (Scheme.affineCover Z) i)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace ⊢ pullback f (Scheme.OpenCover.map (Scheme.OpenCover.bind (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) fun x => Scheme.affineCover (Scheme.OpenCover.obj (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) x)) { fst := i, snd := j }) ⟶ pullback (f ≫ g) (Scheme.OpenCover.map (Scheme.affineCover Z) i) [PROOFSTEP] exact pullback.map _ _ _ _ (𝟙 _) _ _ (by simp) (Category.comp_id _) ≫ (pullbackRightPullbackFstIso g (Z.affineCover.map i) f).hom [GOAL] X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y Z : Scheme f : X ⟶ Y g : Y ⟶ Z i : (Scheme.affineCover Z).J j : (Scheme.affineCover (pullback g (Scheme.OpenCover.map (Scheme.affineCover Z) i))).J H : QuasiSeparatedSpace ↑↑(pullback (f ≫ g) (Scheme.OpenCover.map (Scheme.affineCover Z) i)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace ⊢ f ≫ 𝟙 Y = 𝟙 X ≫ f [PROOFSTEP] simp [GOAL] case refine_2.mk.refine_2 X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y Z : Scheme f : X ⟶ Y g : Y ⟶ Z i : (Scheme.affineCover Z).J j : (Scheme.affineCover (pullback g (Scheme.OpenCover.map (Scheme.affineCover Z) i))).J H : QuasiSeparatedSpace ↑↑(pullback (f ≫ g) (Scheme.OpenCover.map (Scheme.affineCover Z) i)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace ⊢ QuasiSeparated (pullback.map f (Scheme.OpenCover.map (Scheme.OpenCover.bind (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) fun x => Scheme.affineCover (Scheme.OpenCover.obj (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) x)) { fst := i, snd := j }) f (Scheme.OpenCover.map (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) { fst := i, snd := j }.fst) (𝟙 X) (Scheme.OpenCover.map ((fun x => Scheme.affineCover (Scheme.OpenCover.obj (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) x)) { fst := i, snd := j }.fst) { fst := i, snd := j }.snd) (𝟙 Y) (_ : f ≫ 𝟙 Y = 𝟙 X ≫ f) (_ : Scheme.OpenCover.map (Scheme.OpenCover.bind (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) fun x => Scheme.affineCover (Scheme.OpenCover.obj (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) x)) { fst := i, snd := j } ≫ 𝟙 Y = Scheme.OpenCover.map (Scheme.OpenCover.bind (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) fun x => Scheme.affineCover (Scheme.OpenCover.obj (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) x)) { fst := i, snd := j }) ≫ (pullbackRightPullbackFstIso g (Scheme.OpenCover.map (Scheme.affineCover Z) i) f).hom) [PROOFSTEP] apply (config := { allowSynthFailures := true }) AlgebraicGeometry.quasiSeparatedOfMono [GOAL] case inst X✝ Y✝ : Scheme f✝ : X✝ ⟶ Y✝ X Y Z : Scheme f : X ⟶ Y g : Y ⟶ Z i : (Scheme.affineCover Z).J j : (Scheme.affineCover (pullback g (Scheme.OpenCover.map (Scheme.affineCover Z) i))).J H : QuasiSeparatedSpace ↑↑(pullback (f ≫ g) (Scheme.OpenCover.map (Scheme.affineCover Z) i)).toLocallyRingedSpace.toSheafedSpace.toPresheafedSpace ⊢ Mono (pullback.map f (Scheme.OpenCover.map (Scheme.OpenCover.bind (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) fun x => Scheme.affineCover (Scheme.OpenCover.obj (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) x)) { fst := i, snd := j }) f (Scheme.OpenCover.map (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) { fst := i, snd := j }.fst) (𝟙 X) (Scheme.OpenCover.map ((fun x => Scheme.affineCover (Scheme.OpenCover.obj (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) x)) { fst := i, snd := j }.fst) { fst := i, snd := j }.snd) (𝟙 Y) (_ : f ≫ 𝟙 Y = 𝟙 X ≫ f) (_ : Scheme.OpenCover.map (Scheme.OpenCover.bind (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) fun x => Scheme.affineCover (Scheme.OpenCover.obj (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) x)) { fst := i, snd := j } ≫ 𝟙 Y = Scheme.OpenCover.map (Scheme.OpenCover.bind (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) fun x => Scheme.affineCover (Scheme.OpenCover.obj (Scheme.OpenCover.pullbackCover (Scheme.affineCover Z) g) x)) { fst := i, snd := j }) ≫ (pullbackRightPullbackFstIso g (Scheme.OpenCover.map (Scheme.affineCover Z) i) f).hom) [PROOFSTEP] apply mono_comp [GOAL] X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : ↑(X.presheaf.obj (op U)) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) ⊢ ∃ n y, y |_ Scheme.basicOpen X f = (f |_ Scheme.basicOpen X f) ^ n * x [PROOFSTEP] have := (isLocalization_basicOpen hU f).2 [GOAL] X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : ↑(X.presheaf.obj (op U)) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) this : ∀ (z : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ x, z * ↑(algebraMap ↑(X.presheaf.obj (op U)) ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))) ↑x.snd = ↑(algebraMap ↑(X.presheaf.obj (op U)) ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))) x.fst ⊢ ∃ n y, y |_ Scheme.basicOpen X f = (f |_ Scheme.basicOpen X f) ^ n * x [PROOFSTEP] obtain ⟨⟨y, _, n, rfl⟩, d⟩ := this x [GOAL] case intro.mk.mk.intro X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : ↑(X.presheaf.obj (op U)) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) this : ∀ (z : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ x, z * ↑(algebraMap ↑(X.presheaf.obj (op U)) ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))) ↑x.snd = ↑(algebraMap ↑(X.presheaf.obj (op U)) ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))) x.fst y : ↑(X.presheaf.obj (op U)) n : ℕ d : x * ↑(algebraMap ↑(X.presheaf.obj (op U)) ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))) ↑(y, { val := (fun x x_1 => x ^ x_1) f n, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n) }).snd = ↑(algebraMap ↑(X.presheaf.obj (op U)) ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))) (y, { val := (fun x x_1 => x ^ x_1) f n, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n) }).fst ⊢ ∃ n y, y |_ Scheme.basicOpen X f = (f |_ Scheme.basicOpen X f) ^ n * x [PROOFSTEP] use n, y [GOAL] case h X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : ↑(X.presheaf.obj (op U)) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) this : ∀ (z : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ x, z * ↑(algebraMap ↑(X.presheaf.obj (op U)) ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))) ↑x.snd = ↑(algebraMap ↑(X.presheaf.obj (op U)) ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))) x.fst y : ↑(X.presheaf.obj (op U)) n : ℕ d : x * ↑(algebraMap ↑(X.presheaf.obj (op U)) ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))) ↑(y, { val := (fun x x_1 => x ^ x_1) f n, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n) }).snd = ↑(algebraMap ↑(X.presheaf.obj (op U)) ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))) (y, { val := (fun x x_1 => x ^ x_1) f n, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n) }).fst ⊢ y |_ Scheme.basicOpen X f = (f |_ Scheme.basicOpen X f) ^ n * x [PROOFSTEP] delta TopCat.Presheaf.restrictOpen TopCat.Presheaf.restrict [GOAL] case h X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsAffineOpen U f : ↑(X.presheaf.obj (op U)) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) this : ∀ (z : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ x, z * ↑(algebraMap ↑(X.presheaf.obj (op U)) ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))) ↑x.snd = ↑(algebraMap ↑(X.presheaf.obj (op U)) ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))) x.fst y : ↑(X.presheaf.obj (op U)) n : ℕ d : x * ↑(algebraMap ↑(X.presheaf.obj (op U)) ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))) ↑(y, { val := (fun x x_1 => x ^ x_1) f n, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n) }).snd = ↑(algebraMap ↑(X.presheaf.obj (op U)) ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))) (y, { val := (fun x x_1 => x ^ x_1) f n, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n) }).fst ⊢ ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑U)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑U)).op) f ^ n * x [PROOFSTEP] simpa [mul_comm x] using d.symm [GOAL] X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme S : ↑(Scheme.affineOpens X) U₁ U₂ : Opens ↑↑X.toPresheafedSpace n₁ n₂ : ℕ y₁ : ↑(X.presheaf.obj (op U₁)) y₂ : ↑(X.presheaf.obj (op U₂)) f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) h₁ : ↑S ≤ U₁ h₂ : ↑S ≤ U₂ ⊢ Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁ [PROOFSTEP] erw [X.basicOpen_res] [GOAL] X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme S : ↑(Scheme.affineOpens X) U₁ U₂ : Opens ↑↑X.toPresheafedSpace n₁ n₂ : ℕ y₁ : ↑(X.presheaf.obj (op U₁)) y₂ : ↑(X.presheaf.obj (op U₂)) f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) h₁ : ↑S ≤ U₁ h₂ : ↑S ≤ U₂ ⊢ U₁ ⊓ Scheme.basicOpen X f ≤ U₁ [PROOFSTEP] exact inf_le_left [GOAL] X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme S : ↑(Scheme.affineOpens X) U₁ U₂ : Opens ↑↑X.toPresheafedSpace n₁ n₂ : ℕ y₁ : ↑(X.presheaf.obj (op U₁)) y₂ : ↑(X.presheaf.obj (op U₂)) f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) h₁ : ↑S ≤ U₁ h₂ : ↑S ≤ U₂ ⊢ Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f [PROOFSTEP] erw [X.basicOpen_res] [GOAL] X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme S : ↑(Scheme.affineOpens X) U₁ U₂ : Opens ↑↑X.toPresheafedSpace n₁ n₂ : ℕ y₁ : ↑(X.presheaf.obj (op U₁)) y₂ : ↑(X.presheaf.obj (op U₂)) f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) h₁ : ↑S ≤ U₁ h₂ : ↑S ≤ U₂ ⊢ U₁ ⊓ Scheme.basicOpen X f ≤ Scheme.basicOpen X f [PROOFSTEP] exact inf_le_right [GOAL] X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme S : ↑(Scheme.affineOpens X) U₁ U₂ : Opens ↑↑X.toPresheafedSpace n₁ n₂ : ℕ y₁ : ↑(X.presheaf.obj (op U₁)) y₂ : ↑(X.presheaf.obj (op U₂)) f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) h₁ : ↑S ≤ U₁ h₂ : ↑S ≤ U₂ e₁ : ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x ⊢ Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂ [PROOFSTEP] rw [X.basicOpen_res] [GOAL] X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme S : ↑(Scheme.affineOpens X) U₁ U₂ : Opens ↑↑X.toPresheafedSpace n₁ n₂ : ℕ y₁ : ↑(X.presheaf.obj (op U₁)) y₂ : ↑(X.presheaf.obj (op U₂)) f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) h₁ : ↑S ≤ U₁ h₂ : ↑S ≤ U₂ e₁ : ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x ⊢ U₂ ⊓ Scheme.basicOpen X f ≤ U₂ [PROOFSTEP] exact inf_le_left [GOAL] X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme S : ↑(Scheme.affineOpens X) U₁ U₂ : Opens ↑↑X.toPresheafedSpace n₁ n₂ : ℕ y₁ : ↑(X.presheaf.obj (op U₁)) y₂ : ↑(X.presheaf.obj (op U₂)) f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) h₁ : ↑S ≤ U₁ h₂ : ↑S ≤ U₂ e₁ : ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x ⊢ Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f [PROOFSTEP] rw [X.basicOpen_res] [GOAL] X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme S : ↑(Scheme.affineOpens X) U₁ U₂ : Opens ↑↑X.toPresheafedSpace n₁ n₂ : ℕ y₁ : ↑(X.presheaf.obj (op U₁)) y₂ : ↑(X.presheaf.obj (op U₂)) f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) h₁ : ↑S ≤ U₁ h₂ : ↑S ≤ U₂ e₁ : ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x ⊢ U₂ ⊓ Scheme.basicOpen X f ≤ Scheme.basicOpen X f [PROOFSTEP] exact inf_le_right [GOAL] X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme S : ↑(Scheme.affineOpens X) U₁ U₂ : Opens ↑↑X.toPresheafedSpace n₁ n₂ : ℕ y₁ : ↑(X.presheaf.obj (op U₁)) y₂ : ↑(X.presheaf.obj (op U₂)) f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) h₁ : ↑S ≤ U₁ h₂ : ↑S ≤ U₂ e₁ : ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x e₂ : ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x ⊢ ∃ n, ↑(X.presheaf.map (homOfLE h₁).op) (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f ^ (n + n₂) * y₁) = ↑(X.presheaf.map (homOfLE h₂).op) (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f ^ (n + n₁) * y₂) [PROOFSTEP] obtain ⟨⟨_, n, rfl⟩, e⟩ := (@IsLocalization.eq_iff_exists _ _ _ _ _ _ (isLocalization_basicOpen S.2 (X.presheaf.map (homOfLE <| le_trans h₁ le_sup_left).op f)) (X.presheaf.map (homOfLE <| h₁).op (X.presheaf.map (homOfLE le_sup_left).op f ^ n₂ * y₁)) (X.presheaf.map (homOfLE <| h₂).op (X.presheaf.map (homOfLE le_sup_right).op f ^ n₁ * y₂))).mp <| by -- Porting note: was just a `simp`, but know as some lemmas need `erw`, just a `simp` does not -- leave the goal in a desired form rw [RingHom.algebraMap_toAlgebra, map_mul, map_mul, map_pow, map_pow, map_mul, map_pow, map_mul] erw [map_pow] rw [← comp_apply, ← comp_apply] erw [← comp_apply, ← comp_apply, ← comp_apply, ← comp_apply] simp only [← Functor.map_comp, ← op_comp, homOfLE_comp] have h₃ : X.basicOpen ((X.presheaf.map (homOfLE (h₁.trans le_sup_left)).op) f) ≤ S.val := by simpa only [X.basicOpen_res] using inf_le_left trans X.presheaf.map (homOfLE <| h₃.trans <| h₁.trans le_sup_left).op f ^ (n₂ + n₁) * X.presheaf.map (homOfLE <| (X.basicOpen_res f _).trans_le inf_le_right).op x · rw [pow_add, mul_assoc]; congr 1 convert congr_arg (X.presheaf.map (homOfLE _).op) e₁ using 1 pick_goal 3 · rw [X.basicOpen_res, X.basicOpen_res]; rintro x ⟨H₁, H₂⟩; exact ⟨h₁ H₁, H₂⟩ · simp only [map_pow, map_mul, ← comp_apply, ← Functor.map_comp, ← op_comp]; congr 1 · simp only [map_pow, map_mul, ← comp_apply, ← Functor.map_comp, ← op_comp]; congr · rw [add_comm, pow_add, mul_assoc]; congr 1 convert congr_arg (X.presheaf.map (homOfLE _).op) e₂.symm · simp only [map_pow, map_mul, ← comp_apply, ← Functor.map_comp, ← op_comp]; congr · simp only [map_pow, map_mul, ← comp_apply, ← Functor.map_comp, ← op_comp]; congr · simp only [X.basicOpen_res] rintro x ⟨H₁, H₂⟩; exact ⟨h₂ H₁, H₂⟩ [GOAL] X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme S : ↑(Scheme.affineOpens X) U₁ U₂ : Opens ↑↑X.toPresheafedSpace n₁ n₂ : ℕ y₁ : ↑(X.presheaf.obj (op U₁)) y₂ : ↑(X.presheaf.obj (op U₂)) f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) h₁ : ↑S ≤ U₁ h₂ : ↑S ≤ U₂ e₁ : ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x e₂ : ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x ⊢ ↑(algebraMap ↑(X.presheaf.obj (op ↑S)) ↑(X.presheaf.obj (op (Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f))))) (↑(X.presheaf.map (homOfLE h₁).op) (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f ^ n₂ * y₁)) = ↑(algebraMap ↑(X.presheaf.obj (op ↑S)) ↑(X.presheaf.obj (op (Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f))))) (↑(X.presheaf.map (homOfLE h₂).op) (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f ^ n₁ * y₂)) [PROOFSTEP] rw [RingHom.algebraMap_toAlgebra, map_mul, map_mul, map_pow, map_pow, map_mul, map_pow, map_mul] [GOAL] X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme S : ↑(Scheme.affineOpens X) U₁ U₂ : Opens ↑↑X.toPresheafedSpace n₁ n₂ : ℕ y₁ : ↑(X.presheaf.obj (op U₁)) y₂ : ↑(X.presheaf.obj (op U₂)) f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) h₁ : ↑S ≤ U₁ h₂ : ↑S ≤ U₂ e₁ : ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x e₂ : ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x ⊢ ↑(X.presheaf.map (homOfLE (_ : RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ ↑S)).op) (↑(X.presheaf.map (homOfLE h₁).op) (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f)) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ ↑S)).op) (↑(X.presheaf.map (homOfLE h₁).op) y₁) = ↑(X.presheaf.map (homOfLE (_ : RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ ↑S)).op) (↑(X.presheaf.map (homOfLE h₂).op) (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ^ n₁) * ↑(X.presheaf.map (homOfLE (_ : RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ ↑S)).op) (↑(X.presheaf.map (homOfLE h₂).op) y₂) [PROOFSTEP] erw [map_pow] [GOAL] X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme S : ↑(Scheme.affineOpens X) U₁ U₂ : Opens ↑↑X.toPresheafedSpace n₁ n₂ : ℕ y₁ : ↑(X.presheaf.obj (op U₁)) y₂ : ↑(X.presheaf.obj (op U₂)) f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) h₁ : ↑S ≤ U₁ h₂ : ↑S ≤ U₂ e₁ : ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x e₂ : ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x ⊢ ↑(X.presheaf.map (homOfLE (_ : RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ ↑S)).op) (↑(X.presheaf.map (homOfLE h₁).op) (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f)) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ ↑S)).op) (↑(X.presheaf.map (homOfLE h₁).op) y₁) = ↑(X.presheaf.map (homOfLE (_ : RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ ↑S)).op) (↑(X.presheaf.map (homOfLE h₂).op) (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f)) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ ↑S)).op) (↑(X.presheaf.map (homOfLE h₂).op) y₂) [PROOFSTEP] rw [← comp_apply, ← comp_apply] [GOAL] X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme S : ↑(Scheme.affineOpens X) U₁ U₂ : Opens ↑↑X.toPresheafedSpace n₁ n₂ : ℕ y₁ : ↑(X.presheaf.obj (op U₁)) y₂ : ↑(X.presheaf.obj (op U₂)) f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) h₁ : ↑S ≤ U₁ h₂ : ↑S ≤ U₂ e₁ : ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x e₂ : ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x ⊢ ↑(X.presheaf.map (homOfLE (_ : RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op ≫ X.presheaf.map (homOfLE h₁).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ ↑S)).op) (↑(X.presheaf.map (homOfLE h₁).op) y₁) = ↑(X.presheaf.map (homOfLE (_ : RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op ≫ X.presheaf.map (homOfLE h₂).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ ↑S)).op) (↑(X.presheaf.map (homOfLE h₂).op) y₂) [PROOFSTEP] erw [← comp_apply, ← comp_apply, ← comp_apply, ← comp_apply] [GOAL] X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme S : ↑(Scheme.affineOpens X) U₁ U₂ : Opens ↑↑X.toPresheafedSpace n₁ n₂ : ℕ y₁ : ↑(X.presheaf.obj (op U₁)) y₂ : ↑(X.presheaf.obj (op U₂)) f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) h₁ : ↑S ≤ U₁ h₂ : ↑S ≤ U₂ e₁ : ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x e₂ : ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x ⊢ ↑((X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op ≫ X.presheaf.map (homOfLE h₁).op) ≫ X.presheaf.map (homOfLE (_ : RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ ↑S)).op) f ^ n₂ * ↑(X.presheaf.map (homOfLE h₁).op ≫ X.presheaf.map (homOfLE (_ : RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ ↑S)).op) y₁ = ↑((X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op ≫ X.presheaf.map (homOfLE h₂).op) ≫ X.presheaf.map (homOfLE (_ : RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ ↑S)).op) f ^ n₁ * ↑(X.presheaf.map (homOfLE h₂).op ≫ X.presheaf.map (homOfLE (_ : RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ ↑S)).op) y₂ [PROOFSTEP] simp only [← Functor.map_comp, ← op_comp, homOfLE_comp] [GOAL] X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme S : ↑(Scheme.affineOpens X) U₁ U₂ : Opens ↑↑X.toPresheafedSpace n₁ n₂ : ℕ y₁ : ↑(X.presheaf.obj (op U₁)) y₂ : ↑(X.presheaf.obj (op U₂)) f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) h₁ : ↑S ≤ U₁ h₂ : ↑S ≤ U₂ e₁ : ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x e₂ : ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x ⊢ ↑(X.presheaf.map (homOfLE (_ : RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ U₁ ⊔ U₂)).op) f ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ U₁ ⊔ U₂)).op) f ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) y₂ [PROOFSTEP] have h₃ : X.basicOpen ((X.presheaf.map (homOfLE (h₁.trans le_sup_left)).op) f) ≤ S.val := by simpa only [X.basicOpen_res] using inf_le_left [GOAL] X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme S : ↑(Scheme.affineOpens X) U₁ U₂ : Opens ↑↑X.toPresheafedSpace n₁ n₂ : ℕ y₁ : ↑(X.presheaf.obj (op U₁)) y₂ : ↑(X.presheaf.obj (op U₂)) f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) h₁ : ↑S ≤ U₁ h₂ : ↑S ≤ U₂ e₁ : ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x e₂ : ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x ⊢ Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ ↑S [PROOFSTEP] simpa only [X.basicOpen_res] using inf_le_left [GOAL] X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme S : ↑(Scheme.affineOpens X) U₁ U₂ : Opens ↑↑X.toPresheafedSpace n₁ n₂ : ℕ y₁ : ↑(X.presheaf.obj (op U₁)) y₂ : ↑(X.presheaf.obj (op U₂)) f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) h₁ : ↑S ≤ U₁ h₂ : ↑S ≤ U₂ e₁ : ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x e₂ : ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x h₃ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ ↑S ⊢ ↑(X.presheaf.map (homOfLE (_ : RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ U₁ ⊔ U₂)).op) f ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ U₁ ⊔ U₂)).op) f ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) y₂ [PROOFSTEP] trans X.presheaf.map (homOfLE <| h₃.trans <| h₁.trans le_sup_left).op f ^ (n₂ + n₁) * X.presheaf.map (homOfLE <| (X.basicOpen_res f _).trans_le inf_le_right).op x [GOAL] X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme S : ↑(Scheme.affineOpens X) U₁ U₂ : Opens ↑↑X.toPresheafedSpace n₁ n₂ : ℕ y₁ : ↑(X.presheaf.obj (op U₁)) y₂ : ↑(X.presheaf.obj (op U₂)) f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) h₁ : ↑S ≤ U₁ h₂ : ↑S ≤ U₂ e₁ : ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x e₂ : ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x h₃ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ ↑S ⊢ ↑(X.presheaf.map (homOfLE (_ : RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ U₁ ⊔ U₂)).op) f ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ U₁ ⊔ U₂)).op) f ^ (n₂ + n₁) * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x [PROOFSTEP] rw [pow_add, mul_assoc] [GOAL] X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme S : ↑(Scheme.affineOpens X) U₁ U₂ : Opens ↑↑X.toPresheafedSpace n₁ n₂ : ℕ y₁ : ↑(X.presheaf.obj (op U₁)) y₂ : ↑(X.presheaf.obj (op U₂)) f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) h₁ : ↑S ≤ U₁ h₂ : ↑S ≤ U₂ e₁ : ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x e₂ : ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x h₃ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ ↑S ⊢ ↑(X.presheaf.map (homOfLE (_ : RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ U₁ ⊔ U₂)).op) f ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ U₁ ⊔ U₂)).op) f ^ n₂ * (↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ U₁ ⊔ U₂)).op) f ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x) [PROOFSTEP] congr 1 [GOAL] case e_a X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme S : ↑(Scheme.affineOpens X) U₁ U₂ : Opens ↑↑X.toPresheafedSpace n₁ n₂ : ℕ y₁ : ↑(X.presheaf.obj (op U₁)) y₂ : ↑(X.presheaf.obj (op U₂)) f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) h₁ : ↑S ≤ U₁ h₂ : ↑S ≤ U₂ e₁ : ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x e₂ : ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x h₃ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ ↑S ⊢ ↑(X.presheaf.map (homOfLE (_ : RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ U₁ ⊔ U₂)).op) f ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x [PROOFSTEP] convert congr_arg (X.presheaf.map (homOfLE _).op) e₁ using 1 [GOAL] case h.e'_2 X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme S : ↑(Scheme.affineOpens X) U₁ U₂ : Opens ↑↑X.toPresheafedSpace n₁ n₂ : ℕ y₁ : ↑(X.presheaf.obj (op U₁)) y₂ : ↑(X.presheaf.obj (op U₂)) f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) h₁ : ↑S ≤ U₁ h₂ : ↑S ≤ U₂ e₁ : ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x e₂ : ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x h₃ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ ↑S ⊢ ↑(X.presheaf.map (homOfLE (_ : RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) y₁ = ↑(X.presheaf.map (homOfLE ?e_a.convert_1✝).op) (↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) y₁) case h.e'_3 X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme S : ↑(Scheme.affineOpens X) U₁ U₂ : Opens ↑↑X.toPresheafedSpace n₁ n₂ : ℕ y₁ : ↑(X.presheaf.obj (op U₁)) y₂ : ↑(X.presheaf.obj (op U₂)) f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) h₁ : ↑S ≤ U₁ h₂ : ↑S ≤ U₂ e₁ : ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x e₂ : ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x h₃ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ ↑S ⊢ ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ U₁ ⊔ U₂)).op) f ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x = ↑(X.presheaf.map (homOfLE ?e_a.convert_1✝).op) (↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x) case e_a.convert_1 X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme S : ↑(Scheme.affineOpens X) U₁ U₂ : Opens ↑↑X.toPresheafedSpace n₁ n₂ : ℕ y₁ : ↑(X.presheaf.obj (op U₁)) y₂ : ↑(X.presheaf.obj (op U₂)) f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) h₁ : ↑S ≤ U₁ h₂ : ↑S ≤ U₂ e₁ : ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x e₂ : ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x h₃ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ ↑S ⊢ Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) [PROOFSTEP] pick_goal 3 [GOAL] case e_a.convert_1 X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme S : ↑(Scheme.affineOpens X) U₁ U₂ : Opens ↑↑X.toPresheafedSpace n₁ n₂ : ℕ y₁ : ↑(X.presheaf.obj (op U₁)) y₂ : ↑(X.presheaf.obj (op U₂)) f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) h₁ : ↑S ≤ U₁ h₂ : ↑S ≤ U₂ e₁ : ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x e₂ : ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x h₃ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ ↑S ⊢ Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) [PROOFSTEP] rw [X.basicOpen_res, X.basicOpen_res] [GOAL] case e_a.convert_1 X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme S : ↑(Scheme.affineOpens X) U₁ U₂ : Opens ↑↑X.toPresheafedSpace n₁ n₂ : ℕ y₁ : ↑(X.presheaf.obj (op U₁)) y₂ : ↑(X.presheaf.obj (op U₂)) f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) h₁ : ↑S ≤ U₁ h₂ : ↑S ≤ U₂ e₁ : ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x e₂ : ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x h₃ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ ↑S ⊢ ↑S ⊓ Scheme.basicOpen X f ≤ U₁ ⊓ Scheme.basicOpen X f [PROOFSTEP] rintro x ⟨H₁, H₂⟩ [GOAL] case e_a.convert_1.intro X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme S : ↑(Scheme.affineOpens X) U₁ U₂ : Opens ↑↑X.toPresheafedSpace n₁ n₂ : ℕ y₁ : ↑(X.presheaf.obj (op U₁)) y₂ : ↑(X.presheaf.obj (op U₂)) f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂))) x✝ : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) h₁ : ↑S ≤ U₁ h₂ : ↑S ≤ U₂ e₁ : ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x✝ e₂ : ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x✝ h₃ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ ↑S x : ↑↑X.toPresheafedSpace H₁ : x ∈ ↑↑S H₂ : x ∈ ↑(Scheme.basicOpen X f) ⊢ x ∈ ↑(U₁ ⊓ Scheme.basicOpen X f) [PROOFSTEP] exact ⟨h₁ H₁, H₂⟩ [GOAL] case h.e'_2 X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme S : ↑(Scheme.affineOpens X) U₁ U₂ : Opens ↑↑X.toPresheafedSpace n₁ n₂ : ℕ y₁ : ↑(X.presheaf.obj (op U₁)) y₂ : ↑(X.presheaf.obj (op U₂)) f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) h₁ : ↑S ≤ U₁ h₂ : ↑S ≤ U₂ e₁ : ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x e₂ : ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x h₃ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ ↑S ⊢ ↑(X.presheaf.map (homOfLE (_ : RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f))).op) (↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) y₁) [PROOFSTEP] simp only [map_pow, map_mul, ← comp_apply, ← Functor.map_comp, ← op_comp] [GOAL] case h.e'_2 X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme S : ↑(Scheme.affineOpens X) U₁ U₂ : Opens ↑↑X.toPresheafedSpace n₁ n₂ : ℕ y₁ : ↑(X.presheaf.obj (op U₁)) y₂ : ↑(X.presheaf.obj (op U₂)) f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) h₁ : ↑S ≤ U₁ h₂ : ↑S ≤ U₂ e₁ : ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x e₂ : ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x h₃ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ ↑S ⊢ ↑(X.presheaf.map (homOfLE (_ : RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f)) ≫ homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) y₁ [PROOFSTEP] congr 1 [GOAL] case h.e'_3 X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme S : ↑(Scheme.affineOpens X) U₁ U₂ : Opens ↑↑X.toPresheafedSpace n₁ n₂ : ℕ y₁ : ↑(X.presheaf.obj (op U₁)) y₂ : ↑(X.presheaf.obj (op U₂)) f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) h₁ : ↑S ≤ U₁ h₂ : ↑S ≤ U₂ e₁ : ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x e₂ : ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x h₃ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ ↑S ⊢ ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ U₁ ⊔ U₂)).op) f ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f))).op) (↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x) [PROOFSTEP] simp only [map_pow, map_mul, ← comp_apply, ← Functor.map_comp, ← op_comp] [GOAL] case h.e'_3 X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme S : ↑(Scheme.affineOpens X) U₁ U₂ : Opens ↑↑X.toPresheafedSpace n₁ n₂ : ℕ y₁ : ↑(X.presheaf.obj (op U₁)) y₂ : ↑(X.presheaf.obj (op U₂)) f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) h₁ : ↑S ≤ U₁ h₂ : ↑S ≤ U₂ e₁ : ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x e₂ : ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x h₃ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ ↑S ⊢ ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ U₁ ⊔ U₂)).op) f ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f)) ≫ homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁) ≫ homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f)) ≫ homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x [PROOFSTEP] congr [GOAL] X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme S : ↑(Scheme.affineOpens X) U₁ U₂ : Opens ↑↑X.toPresheafedSpace n₁ n₂ : ℕ y₁ : ↑(X.presheaf.obj (op U₁)) y₂ : ↑(X.presheaf.obj (op U₂)) f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) h₁ : ↑S ≤ U₁ h₂ : ↑S ≤ U₂ e₁ : ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x e₂ : ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x h₃ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ ↑S ⊢ ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ U₁ ⊔ U₂)).op) f ^ (n₂ + n₁) * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x = ↑(X.presheaf.map (homOfLE (_ : RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ U₁ ⊔ U₂)).op) f ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) y₂ [PROOFSTEP] rw [add_comm, pow_add, mul_assoc] [GOAL] X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme S : ↑(Scheme.affineOpens X) U₁ U₂ : Opens ↑↑X.toPresheafedSpace n₁ n₂ : ℕ y₁ : ↑(X.presheaf.obj (op U₁)) y₂ : ↑(X.presheaf.obj (op U₂)) f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) h₁ : ↑S ≤ U₁ h₂ : ↑S ≤ U₂ e₁ : ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x e₂ : ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x h₃ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ ↑S ⊢ ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ U₁ ⊔ U₂)).op) f ^ n₁ * (↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ U₁ ⊔ U₂)).op) f ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x) = ↑(X.presheaf.map (homOfLE (_ : RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ U₁ ⊔ U₂)).op) f ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) y₂ [PROOFSTEP] congr 1 [GOAL] case e_a X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme S : ↑(Scheme.affineOpens X) U₁ U₂ : Opens ↑↑X.toPresheafedSpace n₁ n₂ : ℕ y₁ : ↑(X.presheaf.obj (op U₁)) y₂ : ↑(X.presheaf.obj (op U₂)) f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) h₁ : ↑S ≤ U₁ h₂ : ↑S ≤ U₂ e₁ : ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x e₂ : ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x h₃ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ ↑S ⊢ ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ U₁ ⊔ U₂)).op) f ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x = ↑(X.presheaf.map (homOfLE (_ : RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) y₂ [PROOFSTEP] convert congr_arg (X.presheaf.map (homOfLE _).op) e₂.symm [GOAL] case h.e'_2 X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme S : ↑(Scheme.affineOpens X) U₁ U₂ : Opens ↑↑X.toPresheafedSpace n₁ n₂ : ℕ y₁ : ↑(X.presheaf.obj (op U₁)) y₂ : ↑(X.presheaf.obj (op U₂)) f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) h₁ : ↑S ≤ U₁ h₂ : ↑S ≤ U₂ e₁ : ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x e₂ : ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x h₃ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ ↑S ⊢ ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ U₁ ⊔ U₂)).op) f ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x = ↑(X.presheaf.map (homOfLE ?e_a.convert_1✝).op) (↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x) [PROOFSTEP] simp only [map_pow, map_mul, ← comp_apply, ← Functor.map_comp, ← op_comp] [GOAL] case h.e'_2 X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme S : ↑(Scheme.affineOpens X) U₁ U₂ : Opens ↑↑X.toPresheafedSpace n₁ n₂ : ℕ y₁ : ↑(X.presheaf.obj (op U₁)) y₂ : ↑(X.presheaf.obj (op U₂)) f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) h₁ : ↑S ≤ U₁ h₂ : ↑S ≤ U₂ e₁ : ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x e₂ : ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x h₃ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ ↑S ⊢ ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ U₁ ⊔ U₂)).op) f ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x = ↑(X.presheaf.map (homOfLE ?e_a.convert_1✝ ≫ homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂) ≫ homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f ^ n₂ * ↑(X.presheaf.map (homOfLE ?e_a.convert_1✝ ≫ homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x [PROOFSTEP] congr [GOAL] case h.e'_3 X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme S : ↑(Scheme.affineOpens X) U₁ U₂ : Opens ↑↑X.toPresheafedSpace n₁ n₂ : ℕ y₁ : ↑(X.presheaf.obj (op U₁)) y₂ : ↑(X.presheaf.obj (op U₂)) f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) h₁ : ↑S ≤ U₁ h₂ : ↑S ≤ U₂ e₁ : ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x e₂ : ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x h₃ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ ↑S ⊢ ↑(X.presheaf.map (homOfLE (_ : RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) y₂ = ↑(X.presheaf.map (homOfLE ?e_a.convert_1✝).op) (↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) y₂) [PROOFSTEP] simp only [map_pow, map_mul, ← comp_apply, ← Functor.map_comp, ← op_comp] [GOAL] case h.e'_3 X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme S : ↑(Scheme.affineOpens X) U₁ U₂ : Opens ↑↑X.toPresheafedSpace n₁ n₂ : ℕ y₁ : ↑(X.presheaf.obj (op U₁)) y₂ : ↑(X.presheaf.obj (op U₂)) f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) h₁ : ↑S ≤ U₁ h₂ : ↑S ≤ U₂ e₁ : ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x e₂ : ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x h₃ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ ↑S ⊢ ↑(X.presheaf.map (homOfLE (_ : RingedSpace.basicOpen X.toSheafedSpace (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) y₂ = ↑(X.presheaf.map (homOfLE ?e_a.convert_1✝ ≫ homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) y₂ [PROOFSTEP] congr [GOAL] case e_a.convert_1 X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme S : ↑(Scheme.affineOpens X) U₁ U₂ : Opens ↑↑X.toPresheafedSpace n₁ n₂ : ℕ y₁ : ↑(X.presheaf.obj (op U₁)) y₂ : ↑(X.presheaf.obj (op U₂)) f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) h₁ : ↑S ≤ U₁ h₂ : ↑S ≤ U₂ e₁ : ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x e₂ : ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x h₃ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ ↑S ⊢ Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) [PROOFSTEP] simp only [X.basicOpen_res] [GOAL] case e_a.convert_1 X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme S : ↑(Scheme.affineOpens X) U₁ U₂ : Opens ↑↑X.toPresheafedSpace n₁ n₂ : ℕ y₁ : ↑(X.presheaf.obj (op U₁)) y₂ : ↑(X.presheaf.obj (op U₂)) f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) h₁ : ↑S ≤ U₁ h₂ : ↑S ≤ U₂ e₁ : ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x e₂ : ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x h₃ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ ↑S ⊢ ↑S ⊓ Scheme.basicOpen X f ≤ U₂ ⊓ Scheme.basicOpen X f [PROOFSTEP] rintro x ⟨H₁, H₂⟩ [GOAL] case e_a.convert_1.intro X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme S : ↑(Scheme.affineOpens X) U₁ U₂ : Opens ↑↑X.toPresheafedSpace n₁ n₂ : ℕ y₁ : ↑(X.presheaf.obj (op U₁)) y₂ : ↑(X.presheaf.obj (op U₂)) f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂))) x✝ : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) h₁ : ↑S ≤ U₁ h₂ : ↑S ≤ U₂ e₁ : ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x✝ e₂ : ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x✝ h₃ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) ≤ ↑S x : ↑↑X.toPresheafedSpace H₁ : x ∈ ↑↑S H₂ : x ∈ ↑(Scheme.basicOpen X f) ⊢ x ∈ ↑(U₂ ⊓ Scheme.basicOpen X f) [PROOFSTEP] exact ⟨h₂ H₁, H₂⟩ [GOAL] case intro.mk.intro X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme S : ↑(Scheme.affineOpens X) U₁ U₂ : Opens ↑↑X.toPresheafedSpace n₁ n₂ : ℕ y₁ : ↑(X.presheaf.obj (op U₁)) y₂ : ↑(X.presheaf.obj (op U₂)) f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) h₁ : ↑S ≤ U₁ h₂ : ↑S ≤ U₂ e₁ : ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x e₂ : ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x n : ℕ e : ↑{ val := (fun x x_1 => x ^ x_1) (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) n, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) y = (fun x x_1 => x ^ x_1) (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) n) } * ↑(X.presheaf.map (homOfLE h₁).op) (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f ^ n₂ * y₁) = ↑{ val := (fun x x_1 => x ^ x_1) (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) n, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) y = (fun x x_1 => x ^ x_1) (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) n) } * ↑(X.presheaf.map (homOfLE h₂).op) (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f ^ n₁ * y₂) ⊢ ∃ n, ↑(X.presheaf.map (homOfLE h₁).op) (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f ^ (n + n₂) * y₁) = ↑(X.presheaf.map (homOfLE h₂).op) (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f ^ (n + n₁) * y₂) [PROOFSTEP] use n [GOAL] case h X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme S : ↑(Scheme.affineOpens X) U₁ U₂ : Opens ↑↑X.toPresheafedSpace n₁ n₂ : ℕ y₁ : ↑(X.presheaf.obj (op U₁)) y₂ : ↑(X.presheaf.obj (op U₂)) f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) h₁ : ↑S ≤ U₁ h₂ : ↑S ≤ U₂ e₁ : ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x e₂ : ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x n : ℕ e : ↑{ val := (fun x x_1 => x ^ x_1) (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) n, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) y = (fun x x_1 => x ^ x_1) (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) n) } * ↑(X.presheaf.map (homOfLE h₁).op) (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f ^ n₂ * y₁) = ↑{ val := (fun x x_1 => x ^ x_1) (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) n, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) y = (fun x x_1 => x ^ x_1) (↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f) n) } * ↑(X.presheaf.map (homOfLE h₂).op) (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f ^ n₁ * y₂) ⊢ ↑(X.presheaf.map (homOfLE h₁).op) (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f ^ (n + n₂) * y₁) = ↑(X.presheaf.map (homOfLE h₂).op) (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f ^ (n + n₁) * y₂) [PROOFSTEP] simp only [pow_add, map_pow, map_mul, ← comp_apply, ← mul_assoc, ← Functor.map_comp, Subtype.coe_mk] at e ⊢ [GOAL] case h X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme S : ↑(Scheme.affineOpens X) U₁ U₂ : Opens ↑↑X.toPresheafedSpace n₁ n₂ : ℕ y₁ : ↑(X.presheaf.obj (op U₁)) y₂ : ↑(X.presheaf.obj (op U₂)) f : ↑(X.presheaf.obj (op (U₁ ⊔ U₂))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) h₁ : ↑S ≤ U₁ h₂ : ↑S ≤ U₂ e₁ : ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ U₁)).op) (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x e₂ : ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ U₂)).op) (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op) f) ≤ Scheme.basicOpen X f)).op) x n : ℕ e : ↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f ^ n * ↑(X.presheaf.map ((homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op ≫ (homOfLE h₁).op)) f ^ n₂ * ↑(X.presheaf.map (homOfLE h₁).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ↑S ≤ U₁ ⊔ U₂)).op) f ^ n * ↑(X.presheaf.map ((homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op ≫ (homOfLE h₂).op)) f ^ n₁ * ↑(X.presheaf.map (homOfLE h₂).op) y₂ ⊢ ↑(X.presheaf.map ((homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op ≫ (homOfLE h₁).op)) f ^ n * ↑(X.presheaf.map ((homOfLE (_ : U₁ ≤ U₁ ⊔ U₂)).op ≫ (homOfLE h₁).op)) f ^ n₂ * ↑(X.presheaf.map (homOfLE h₁).op) y₁ = ↑(X.presheaf.map ((homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op ≫ (homOfLE h₂).op)) f ^ n * ↑(X.presheaf.map ((homOfLE (_ : U₂ ≤ U₁ ⊔ U₂)).op ≫ (homOfLE h₂).op)) f ^ n₁ * ↑(X.presheaf.map (homOfLE h₂).op) y₂ [PROOFSTEP] exact e [GOAL] X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier hU' : IsQuasiSeparated U.carrier f : ↑(X.presheaf.obj (op U)) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) ⊢ ∃ n y, y |_ Scheme.basicOpen X f = (f |_ Scheme.basicOpen X f) ^ n * x [PROOFSTEP] delta TopCat.Presheaf.restrictOpen TopCat.Presheaf.restrict [GOAL] X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier hU' : IsQuasiSeparated U.carrier f : ↑(X.presheaf.obj (op U)) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) ⊢ ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑U)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑U)).op) f ^ n * x [PROOFSTEP] revert hU' f x [GOAL] X✝ Y : Scheme f : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier ⊢ IsQuasiSeparated U.carrier → ∀ (f : ↑(X.presheaf.obj (op U))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑U)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑U)).op) f ^ n * x [PROOFSTEP] apply compact_open_induction_on (P := _) U hU [GOAL] case h₁ X✝ Y : Scheme f : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier ⊢ IsQuasiSeparated ⊥.carrier → ∀ (f : ↑(X.presheaf.obj (op ⊥))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑⊥)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑⊥)).op) f ^ n * x [PROOFSTEP] intro _ f x [GOAL] case h₁ X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier hU'✝ : IsQuasiSeparated ⊥.carrier f : ↑(X.presheaf.obj (op ⊥)) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) ⊢ ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑⊥)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑⊥)).op) f ^ n * x [PROOFSTEP] use 0, f [GOAL] case h X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier hU'✝ : IsQuasiSeparated ⊥.carrier f : ↑(X.presheaf.obj (op ⊥)) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) ⊢ ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑⊥)).op) f = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑⊥)).op) f ^ 0 * x [PROOFSTEP] refine' @Subsingleton.elim _ (CommRingCat.subsingleton_of_isTerminal (X.sheaf.isTerminalOfEqEmpty _)) _ _ [GOAL] case h X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier hU'✝ : IsQuasiSeparated ⊥.carrier f : ↑(X.presheaf.obj (op ⊥)) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) ⊢ Scheme.basicOpen X f = ⊥ [PROOFSTEP] erw [eq_bot_iff] [GOAL] case h X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier hU'✝ : IsQuasiSeparated ⊥.carrier f : ↑(X.presheaf.obj (op ⊥)) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) ⊢ Scheme.basicOpen X f ≤ ⊥ [PROOFSTEP] exact X.basicOpen_le f [GOAL] case h₂ X✝ Y : Scheme f : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier ⊢ ∀ (S : Opens ↑↑X.toPresheafedSpace), IsCompact S.carrier → ∀ (U : ↑(Scheme.affineOpens X)), (IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x) → IsQuasiSeparated (S ⊔ ↑U).carrier → ∀ (f : ↑(X.presheaf.obj (op (S ⊔ ↑U)))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) f ^ n * x [PROOFSTEP] intro S hS U hU hSU f x [GOAL] case h₂ X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) ⊢ ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) f ^ n * x [PROOFSTEP] obtain ⟨n₁, y₁, hy₁⟩ := hU (hSU.of_subset <| Set.subset_union_left _ _) (X.presheaf.map (homOfLE le_sup_left).op f) (X.presheaf.map (homOfLE _).op x) -- · rw [X.basicOpen_res]; exact inf_le_right -- We know that such `y₂, n₂` exists on `U` since `U` is affine. [GOAL] case h₂.intro.intro X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE ?m.483627).op) x ⊢ ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) f ^ n * x [PROOFSTEP] obtain ⟨n₂, y₂, hy₂⟩ := exists_eq_pow_mul_of_isAffineOpen X _ U.2 (X.presheaf.map (homOfLE le_sup_right).op f) (X.presheaf.map (homOfLE _).op x) [GOAL] case h₂.intro.intro.intro.intro X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE ?m.483627).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : y₂ |_ Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) = (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f |_ Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) ^ n₂ * ↑(X.presheaf.map (homOfLE ?m.484649).op) x ⊢ ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) f ^ n * x [PROOFSTEP] delta TopCat.Presheaf.restrictOpen TopCat.Presheaf.restrict at hy₂ [GOAL] case h₂.intro.intro.intro.intro X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE ?m.483627).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE ?m.484649).op) x ⊢ ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) f ^ n * x [PROOFSTEP] obtain ⟨s, hs', hs⟩ := (isCompact_open_iff_eq_finset_affine_union _).mp ⟨hSU _ _ (Set.subset_union_left _ _) S.2 hS (Set.subset_union_right _ _) U.1.2 U.2.isCompact, (S ⊓ U.1).2⟩ [GOAL] case h₂.intro.intro.intro.intro.intro.intro X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE ?m.483627).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE ?m.484649).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s hs : ↑S ∩ ↑↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i ⊢ ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) f ^ n * x [PROOFSTEP] haveI := hs'.to_subtype [GOAL] case h₂.intro.intro.intro.intro.intro.intro X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE ?m.483627).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE ?m.484649).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s hs : ↑S ∩ ↑↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i this : Finite ↑s ⊢ ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) f ^ n * x [PROOFSTEP] cases nonempty_fintype s [GOAL] case h₂.intro.intro.intro.intro.intro.intro.intro X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE ?m.483627).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE ?m.484649).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s hs : ↑S ∩ ↑↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i this : Finite ↑s val✝ : Fintype ↑s ⊢ ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) f ^ n * x [PROOFSTEP] replace hs : S ⊓ U.1 = iSup fun i : s => (i : Opens X.carrier) := by ext1; simpa using hs [GOAL] X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE ?m.483627).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE ?m.484649).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s hs : ↑S ∩ ↑↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i this : Finite ↑s val✝ : Fintype ↑s ⊢ S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i [PROOFSTEP] ext1 [GOAL] case h X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE ?m.483627).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE ?m.484649).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s hs : ↑S ∩ ↑↑U = ⋃ (i : ↑(Scheme.affineOpens X)) (_ : i ∈ s), ↑↑i this : Finite ↑s val✝ : Fintype ↑s ⊢ ↑(S ⊓ ↑U) = ↑(⨆ (i : ↑s), ↑↑i) [PROOFSTEP] simpa using hs [GOAL] case h₂.intro.intro.intro.intro.intro.intro.intro X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE ?m.483627).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE ?m.484649).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i ⊢ ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) f ^ n * x [PROOFSTEP] have hs₁ : ∀ i : s, i.1.1 ≤ S := by intro i; change (i : Opens X.carrier) ≤ S refine' le_trans _ inf_le_left; swap; exact U.1; erw [hs] -- Porting note: have to add argument explicitly exact @le_iSup (Opens X) s _ (fun (i : s) => (i : Opens X)) i [GOAL] X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE ?m.483627).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE ?m.484649).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i ⊢ ∀ (i : ↑s), ↑↑i ≤ S [PROOFSTEP] intro i [GOAL] X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE ?m.483627).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE ?m.484649).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i i : ↑s ⊢ ↑↑i ≤ S [PROOFSTEP] change (i : Opens X.carrier) ≤ S [GOAL] X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE ?m.483627).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE ?m.484649).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i i : ↑s ⊢ ↑↑i ≤ S [PROOFSTEP] refine' le_trans _ inf_le_left [GOAL] case refine'_1 X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE ?m.483627).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE ?m.484649).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i i : ↑s ⊢ ↑↑i ≤ S ⊓ ?refine'_2 case refine'_2 X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE ?m.483627).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE ?m.484649).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i i : ↑s ⊢ Opens ↑↑X.toPresheafedSpace [PROOFSTEP] swap [GOAL] case refine'_2 X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE ?m.483627).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE ?m.484649).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i i : ↑s ⊢ Opens ↑↑X.toPresheafedSpace case refine'_1 X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE ?m.483627).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE ?m.484649).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i i : ↑s ⊢ ↑↑i ≤ S ⊓ ?refine'_2 [PROOFSTEP] exact U.1 [GOAL] case refine'_1 X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE ?m.483627).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE ?m.484649).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i i : ↑s ⊢ ↑↑i ≤ S ⊓ ↑U [PROOFSTEP] erw [hs] -- Porting note: have to add argument explicitly [GOAL] case refine'_1 X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE ?m.483627).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE ?m.484649).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i i : ↑s ⊢ ↑↑i ≤ ⨆ (i : ↑s), ↑↑i [PROOFSTEP] exact @le_iSup (Opens X) s _ (fun (i : s) => (i : Opens X)) i [GOAL] case h₂.intro.intro.intro.intro.intro.intro.intro X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE ?m.483627).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE ?m.484649).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i hs₁ : ∀ (i : ↑s), ↑↑i ≤ S ⊢ ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) f ^ n * x [PROOFSTEP] have hs₂ : ∀ i : s, i.1.1 ≤ U.1 := by intro i; change (i : Opens X.carrier) ≤ U refine' le_trans _ inf_le_right; swap; exact S; erw [hs] -- Porting note: have to add argument explicitly exact @le_iSup (Opens X) s _ (fun (i : s) => (i : Opens X)) i [GOAL] X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE ?m.483627).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE ?m.484649).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i hs₁ : ∀ (i : ↑s), ↑↑i ≤ S ⊢ ∀ (i : ↑s), ↑↑i ≤ ↑U [PROOFSTEP] intro i [GOAL] X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE ?m.483627).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE ?m.484649).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i hs₁ : ∀ (i : ↑s), ↑↑i ≤ S i : ↑s ⊢ ↑↑i ≤ ↑U [PROOFSTEP] change (i : Opens X.carrier) ≤ U [GOAL] X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE ?m.483627).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE ?m.484649).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i hs₁ : ∀ (i : ↑s), ↑↑i ≤ S i : ↑s ⊢ ↑↑i ≤ ↑U [PROOFSTEP] refine' le_trans _ inf_le_right [GOAL] case refine'_1 X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE ?m.483627).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE ?m.484649).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i hs₁ : ∀ (i : ↑s), ↑↑i ≤ S i : ↑s ⊢ ↑↑i ≤ ?refine'_2 ⊓ ↑U case refine'_2 X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE ?m.483627).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE ?m.484649).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i hs₁ : ∀ (i : ↑s), ↑↑i ≤ S i : ↑s ⊢ Opens ↑↑X.toPresheafedSpace [PROOFSTEP] swap [GOAL] case refine'_2 X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE ?m.483627).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE ?m.484649).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i hs₁ : ∀ (i : ↑s), ↑↑i ≤ S i : ↑s ⊢ Opens ↑↑X.toPresheafedSpace case refine'_1 X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE ?m.483627).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE ?m.484649).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i hs₁ : ∀ (i : ↑s), ↑↑i ≤ S i : ↑s ⊢ ↑↑i ≤ ?refine'_2 ⊓ ↑U [PROOFSTEP] exact S [GOAL] case refine'_1 X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE ?m.483627).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE ?m.484649).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i hs₁ : ∀ (i : ↑s), ↑↑i ≤ S i : ↑s ⊢ ↑↑i ≤ S ⊓ ↑U [PROOFSTEP] erw [hs] -- Porting note: have to add argument explicitly [GOAL] case refine'_1 X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE ?m.483627).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE ?m.484649).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i hs₁ : ∀ (i : ↑s), ↑↑i ≤ S i : ↑s ⊢ ↑↑i ≤ ⨆ (i : ↑s), ↑↑i [PROOFSTEP] exact @le_iSup (Opens X) s _ (fun (i : s) => (i : Opens X)) i [GOAL] case h₂.intro.intro.intro.intro.intro.intro.intro X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE ?m.483627).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE ?m.484649).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i hs₁ : ∀ (i : ↑s), ↑↑i ≤ S hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U ⊢ ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) f ^ n * x [PROOFSTEP] have : ∀ i : s, ∃ n : ℕ, X.presheaf.map (homOfLE <| hs₁ i).op (X.presheaf.map (homOfLE le_sup_left).op f ^ (n + n₂) * y₁) = X.presheaf.map (homOfLE <| hs₂ i).op (X.presheaf.map (homOfLE le_sup_right).op f ^ (n + n₁) * y₂) := by intro i exact exists_eq_pow_mul_of_is_compact_of_quasi_separated_space_aux X i.1 S U (hs₁ i) (hs₂ i) hy₁ hy₂ [GOAL] X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE ?m.483627).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE ?m.484649).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i hs₁ : ∀ (i : ↑s), ↑↑i ≤ S hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U ⊢ ∀ (i : ↑s), ∃ n, ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n + n₁) * y₂) [PROOFSTEP] intro i [GOAL] X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE ?m.483627).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE ?m.484649).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i hs₁ : ∀ (i : ↑s), ↑↑i ≤ S hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U i : ↑s ⊢ ∃ n, ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n + n₁) * y₂) [PROOFSTEP] exact exists_eq_pow_mul_of_is_compact_of_quasi_separated_space_aux X i.1 S U (hs₁ i) (hs₂ i) hy₁ hy₂ [GOAL] case h₂.intro.intro.intro.intro.intro.intro.intro X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this✝ : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i hs₁ : ∀ (i : ↑s), ↑↑i ≤ S hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U this : ∀ (i : ↑s), ∃ n, ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n + n₁) * y₂) ⊢ ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) f ^ n * x [PROOFSTEP] choose n hn using this [GOAL] case h₂.intro.intro.intro.intro.intro.intro.intro X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i hs₁ : ∀ (i : ↑s), ↑↑i ≤ S hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U n : ↑s → ℕ hn : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂) ⊢ ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) f ^ n * x [PROOFSTEP] have : X.presheaf.map (homOfLE <| inf_le_left).op (X.presheaf.map (homOfLE le_sup_left).op f ^ (Finset.univ.sup n + n₂) * y₁) = X.presheaf.map (homOfLE <| inf_le_right).op (X.presheaf.map (homOfLE le_sup_right).op f ^ (Finset.univ.sup n + n₁) * y₂) := by fapply X.sheaf.eq_of_locally_eq' fun i : s => i.1.1 · refine' fun i => homOfLE _; erw [hs]; -- Porting note: have to add argument explicitlyexact @le_iSup (Opens X) s _ (fun (i : s) => (i : Opens X)) i · exact le_of_eq hs · intro i replace hn := congr_arg (fun x => X.presheaf.map (homOfLE (le_trans (hs₁ i) le_sup_left)).op f ^ (Finset.univ.sup n - n i) * x) (hn i) dsimp only at hn delta Scheme.sheaf SheafedSpace.sheaf simp only [← map_pow, map_mul, ← comp_apply, ← Functor.map_comp, ← op_comp, ← mul_assoc] at hn ⊢ erw [← map_mul, ← map_mul] at hn rw [← pow_add, ← pow_add, ← add_assoc, ← add_assoc, tsub_add_cancel_of_le] at hn convert hn exact Finset.le_sup (Finset.mem_univ _) [GOAL] X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i hs₁ : ∀ (i : ↑s), ↑↑i ≤ S hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U n : ↑s → ℕ hn : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂) ⊢ ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂) [PROOFSTEP] fapply X.sheaf.eq_of_locally_eq' fun i : s => i.1.1 [GOAL] case iUV X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i hs₁ : ∀ (i : ↑s), ↑↑i ≤ S hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U n : ↑s → ℕ hn : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂) ⊢ (i : ↑s) → ↑↑i ⟶ S ⊓ ↑U [PROOFSTEP] refine' fun i => homOfLE _ [GOAL] case iUV X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i hs₁ : ∀ (i : ↑s), ↑↑i ≤ S hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U n : ↑s → ℕ hn : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂) i : ↑s ⊢ ↑↑i ≤ S ⊓ ↑U [PROOFSTEP] erw [hs] [GOAL] case iUV X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i hs₁ : ∀ (i : ↑s), ↑↑i ≤ S hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U n : ↑s → ℕ hn : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂) i : ↑s ⊢ ↑↑i ≤ ⨆ (i : ↑s), ↑↑i [PROOFSTEP] exact @le_iSup (Opens X) s _ (fun (i : s) => (i : Opens X)) i [GOAL] case hcover X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i hs₁ : ∀ (i : ↑s), ↑↑i ≤ S hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U n : ↑s → ℕ hn : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂) ⊢ S ⊓ ↑U ≤ ⨆ (i : ↑s), ↑↑i [PROOFSTEP] exact le_of_eq hs [GOAL] case h X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i hs₁ : ∀ (i : ↑s), ↑↑i ≤ S hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U n : ↑s → ℕ hn : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂) ⊢ ∀ (i : ↑s), ↑((Scheme.sheaf X).val.map (homOfLE (_ : ↑↑i ≤ S ⊓ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁)) = ↑((Scheme.sheaf X).val.map (homOfLE (_ : ↑↑i ≤ S ⊓ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂)) [PROOFSTEP] intro i [GOAL] case h X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i hs₁ : ∀ (i : ↑s), ↑↑i ≤ S hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U n : ↑s → ℕ hn : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂) i : ↑s ⊢ ↑((Scheme.sheaf X).val.map (homOfLE (_ : ↑↑i ≤ S ⊓ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁)) = ↑((Scheme.sheaf X).val.map (homOfLE (_ : ↑↑i ≤ S ⊓ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂)) [PROOFSTEP] replace hn := congr_arg (fun x => X.presheaf.map (homOfLE (le_trans (hs₁ i) le_sup_left)).op f ^ (Finset.univ.sup n - n i) * x) (hn i) [GOAL] case h X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i hs₁ : ∀ (i : ↑s), ↑↑i ≤ S hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U n : ↑s → ℕ i : ↑s hn : (fun x => ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n - n i) * x) (↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁)) = (fun x => ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n - n i) * x) (↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂)) ⊢ ↑((Scheme.sheaf X).val.map (homOfLE (_ : ↑↑i ≤ S ⊓ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁)) = ↑((Scheme.sheaf X).val.map (homOfLE (_ : ↑↑i ≤ S ⊓ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂)) [PROOFSTEP] dsimp only at hn [GOAL] case h X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i hs₁ : ∀ (i : ↑s), ↑↑i ≤ S hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U n : ↑s → ℕ i : ↑s hn : ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n - n i) * ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n - n i) * ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂) ⊢ ↑((Scheme.sheaf X).val.map (homOfLE (_ : ↑↑i ≤ S ⊓ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁)) = ↑((Scheme.sheaf X).val.map (homOfLE (_ : ↑↑i ≤ S ⊓ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂)) [PROOFSTEP] delta Scheme.sheaf SheafedSpace.sheaf [GOAL] case h X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i hs₁ : ∀ (i : ↑s), ↑↑i ≤ S hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U n : ↑s → ℕ i : ↑s hn : ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n - n i) * ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n - n i) * ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂) ⊢ ↑({ val := X.presheaf, cond := (_ : TopCat.Presheaf.IsSheaf X.presheaf) }.val.map (homOfLE (_ : ↑↑i ≤ S ⊓ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁)) = ↑({ val := X.presheaf, cond := (_ : TopCat.Presheaf.IsSheaf X.presheaf) }.val.map (homOfLE (_ : ↑↑i ≤ S ⊓ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂)) [PROOFSTEP] simp only [← map_pow, map_mul, ← comp_apply, ← Functor.map_comp, ← op_comp, ← mul_assoc] at hn ⊢ [GOAL] case h X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i hs₁ : ∀ (i : ↑s), ↑↑i ≤ S hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U n : ↑s → ℕ i : ↑s hn : ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S ⊔ ↑U)).op) (f ^ (Finset.sup Finset.univ n - n i)) * ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S) ≫ homOfLE (_ : S ≤ S ⊔ ↑U)).op) (f ^ (n i + n₂)) * ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S ⊔ ↑U)).op) (f ^ (Finset.sup Finset.univ n - n i)) * ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U) ≫ homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) (f ^ (n i + n₁)) * ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op) y₂ ⊢ ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S ⊓ ↑U) ≫ homOfLE (_ : S ⊓ ↑U ≤ S) ≫ homOfLE (_ : S ≤ S ⊔ ↑U)).op) (f ^ (Finset.sup Finset.univ n + n₂)) * ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S ⊓ ↑U) ≫ homOfLE (_ : S ⊓ ↑U ≤ S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S ⊓ ↑U) ≫ homOfLE (_ : S ⊓ ↑U ≤ ↑U) ≫ homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) (f ^ (Finset.sup Finset.univ n + n₁)) * ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S ⊓ ↑U) ≫ homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op) y₂ [PROOFSTEP] erw [← map_mul, ← map_mul] at hn [GOAL] case h X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i hs₁ : ∀ (i : ↑s), ↑↑i ≤ S hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U n : ↑s → ℕ i : ↑s hn : ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S ⊔ ↑U)).op) (f ^ (Finset.sup Finset.univ n - n i) * f ^ (n i + n₂)) * ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S ⊔ ↑U)).op) (f ^ (Finset.sup Finset.univ n - n i) * f ^ (n i + n₁)) * ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op) y₂ ⊢ ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S ⊓ ↑U) ≫ homOfLE (_ : S ⊓ ↑U ≤ S) ≫ homOfLE (_ : S ≤ S ⊔ ↑U)).op) (f ^ (Finset.sup Finset.univ n + n₂)) * ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S ⊓ ↑U) ≫ homOfLE (_ : S ⊓ ↑U ≤ S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S ⊓ ↑U) ≫ homOfLE (_ : S ⊓ ↑U ≤ ↑U) ≫ homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) (f ^ (Finset.sup Finset.univ n + n₁)) * ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S ⊓ ↑U) ≫ homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op) y₂ [PROOFSTEP] rw [← pow_add, ← pow_add, ← add_assoc, ← add_assoc, tsub_add_cancel_of_le] at hn [GOAL] case h X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i hs₁ : ∀ (i : ↑s), ↑↑i ≤ S hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U n : ↑s → ℕ i : ↑s hn : ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S ⊔ ↑U)).op) (f ^ (Finset.sup Finset.univ n + n₂)) * ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S ⊔ ↑U)).op) (f ^ (Finset.sup Finset.univ n + n₁)) * ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op) y₂ ⊢ ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S ⊓ ↑U) ≫ homOfLE (_ : S ⊓ ↑U ≤ S) ≫ homOfLE (_ : S ≤ S ⊔ ↑U)).op) (f ^ (Finset.sup Finset.univ n + n₂)) * ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S ⊓ ↑U) ≫ homOfLE (_ : S ⊓ ↑U ≤ S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S ⊓ ↑U) ≫ homOfLE (_ : S ⊓ ↑U ≤ ↑U) ≫ homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) (f ^ (Finset.sup Finset.univ n + n₁)) * ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S ⊓ ↑U) ≫ homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op) y₂ case h X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i hs₁ : ∀ (i : ↑s), ↑↑i ≤ S hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U n : ↑s → ℕ i : ↑s hn : ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S ⊔ ↑U)).op) (f ^ (Finset.sup Finset.univ n - n i + n i + n₂)) * ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S ⊔ ↑U)).op) (f ^ (Finset.sup Finset.univ n - n i + n i + n₁)) * ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op) y₂ ⊢ n i ≤ Finset.sup Finset.univ n [PROOFSTEP] convert hn [GOAL] case h X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i hs₁ : ∀ (i : ↑s), ↑↑i ≤ S hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U n : ↑s → ℕ i : ↑s hn : ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S ⊔ ↑U)).op) (f ^ (Finset.sup Finset.univ n - n i + n i + n₂)) * ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S ⊔ ↑U)).op) (f ^ (Finset.sup Finset.univ n - n i + n i + n₁)) * ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op) y₂ ⊢ n i ≤ Finset.sup Finset.univ n [PROOFSTEP] exact Finset.le_sup (Finset.mem_univ _) [GOAL] case h₂.intro.intro.intro.intro.intro.intro.intro X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this✝ : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i hs₁ : ∀ (i : ↑s), ↑↑i ≤ S hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U n : ↑s → ℕ hn : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂) this : ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂) ⊢ ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) f ^ n * x [PROOFSTEP] use Finset.univ.sup n + n₁ + n₂ [GOAL] case h X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this✝ : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i hs₁ : ∀ (i : ↑s), ↑↑i ≤ S hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U n : ↑s → ℕ hn : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂) this : ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂) ⊢ ∃ y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) f ^ (Finset.sup Finset.univ n + n₁ + n₂) * x [PROOFSTEP] use(X.sheaf.objSupIsoProdEqLocus S U.1).inv ⟨⟨_ * _, _ * _⟩, this⟩ [GOAL] case h X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this✝ : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i hs₁ : ∀ (i : ↑s), ↑↑i ≤ S hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U n : ↑s → ℕ hn : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂) this : ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂) ⊢ ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) (↑(TopCat.Sheaf.objSupIsoProdEqLocus (Scheme.sheaf X) S ↑U).inv { val := (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁, ↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂), property := this }) = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) f ^ (Finset.sup Finset.univ n + n₁ + n₂) * x [PROOFSTEP] refine' X.sheaf.eq_of_locally_eq₂ (homOfLE (_ : X.basicOpen (X.presheaf.map (homOfLE le_sup_left).op f) ≤ _)) (homOfLE (_ : X.basicOpen (X.presheaf.map (homOfLE le_sup_right).op f) ≤ _)) _ _ _ _ _ [GOAL] case h.refine'_1 X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this✝ : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i hs₁ : ∀ (i : ↑s), ↑↑i ≤ S hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U n : ↑s → ℕ hn : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂) this : ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂) ⊢ Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f [PROOFSTEP] rw [X.basicOpen_res] [GOAL] case h.refine'_1 X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this✝ : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i hs₁ : ∀ (i : ↑s), ↑↑i ≤ S hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U n : ↑s → ℕ hn : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂) this : ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂) ⊢ S ⊓ Scheme.basicOpen X f ≤ Scheme.basicOpen X f [PROOFSTEP] exact inf_le_right [GOAL] case h.refine'_2 X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this✝ : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i hs₁ : ∀ (i : ↑s), ↑↑i ≤ S hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U n : ↑s → ℕ hn : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂) this : ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂) ⊢ Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f [PROOFSTEP] rw [X.basicOpen_res] [GOAL] case h.refine'_2 X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this✝ : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i hs₁ : ∀ (i : ↑s), ↑↑i ≤ S hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U n : ↑s → ℕ hn : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂) this : ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂) ⊢ ↑U ⊓ Scheme.basicOpen X f ≤ Scheme.basicOpen X f [PROOFSTEP] exact inf_le_right [GOAL] case h.refine'_3 X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this✝ : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i hs₁ : ∀ (i : ↑s), ↑↑i ≤ S hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U n : ↑s → ℕ hn : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂) this : ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂) ⊢ Scheme.basicOpen X f ≤ Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ⊔ Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) [PROOFSTEP] rw [X.basicOpen_res, X.basicOpen_res] [GOAL] case h.refine'_3 X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this✝ : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i hs₁ : ∀ (i : ↑s), ↑↑i ≤ S hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U n : ↑s → ℕ hn : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂) this : ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂) ⊢ Scheme.basicOpen X f ≤ S ⊓ Scheme.basicOpen X f ⊔ ↑U ⊓ Scheme.basicOpen X f [PROOFSTEP] erw [← inf_sup_right] [GOAL] case h.refine'_3 X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this✝ : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i hs₁ : ∀ (i : ↑s), ↑↑i ≤ S hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U n : ↑s → ℕ hn : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂) this : ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂) ⊢ Scheme.basicOpen X f ≤ (S ⊔ ↑U) ⊓ Scheme.basicOpen X f [PROOFSTEP] refine' le_inf_iff.mpr ⟨X.basicOpen_le f, le_of_eq rfl⟩ [GOAL] case h.refine'_4 X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this✝ : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i hs₁ : ∀ (i : ↑s), ↑↑i ≤ S hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U n : ↑s → ℕ hn : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂) this : ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂) ⊢ ↑((Scheme.sheaf X).val.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) (↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) (↑(TopCat.Sheaf.objSupIsoProdEqLocus (Scheme.sheaf X) S ↑U).inv { val := (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁, ↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂), property := this })) = ↑((Scheme.sheaf X).val.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) (↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) f ^ (Finset.sup Finset.univ n + n₁ + n₂) * x) [PROOFSTEP] convert congr_arg (X.presheaf.map (homOfLE (by restrict_tac : X.basicOpen (X.presheaf.map (homOfLE (le_sup_left : S ≤ S ⊔ U.1)).op f) ≤ S)).op) (X.sheaf.objSupIsoProdEqLocus_inv_fst S U.1 ⟨⟨_ * _, _ * _⟩, this⟩) using 1 [GOAL] X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this✝ : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i hs₁ : ∀ (i : ↑s), ↑↑i ≤ S hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U n : ↑s → ℕ hn : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂) this : ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂) ⊢ Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ S [PROOFSTEP] restrict_tac [GOAL] case h.e'_2.h X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this✝ : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i hs₁ : ∀ (i : ↑s), ↑↑i ≤ S hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U n : ↑s → ℕ hn : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂) this : ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂) e_1✝ : (fun x => (forget CommRingCat).obj ((Scheme.sheaf X).val.obj (op (Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f))))) (↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) (↑(TopCat.Sheaf.objSupIsoProdEqLocus (Scheme.sheaf X) S ↑U).inv { val := (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁, ↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂), property := this })) = (forget CommRingCat).obj (X.presheaf.obj (op (Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)))) ⊢ ↑((Scheme.sheaf X).val.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) (↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) (↑(TopCat.Sheaf.objSupIsoProdEqLocus (Scheme.sheaf X) S ↑U).inv { val := (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁, ↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂), property := this })) = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑((Scheme.sheaf X).val.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) (↑(TopCat.Sheaf.objSupIsoProdEqLocus (Scheme.sheaf X) S ↑U).inv { val := (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁, ↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂), property := this })) [PROOFSTEP] delta Scheme.sheaf SheafedSpace.sheaf [GOAL] case h.e'_2.h X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this✝ : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i hs₁ : ∀ (i : ↑s), ↑↑i ≤ S hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U n : ↑s → ℕ hn : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂) this : ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂) e_1✝ : (fun x => (forget CommRingCat).obj ((Scheme.sheaf X).val.obj (op (Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f))))) (↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) (↑(TopCat.Sheaf.objSupIsoProdEqLocus (Scheme.sheaf X) S ↑U).inv { val := (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁, ↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂), property := this })) = (forget CommRingCat).obj (X.presheaf.obj (op (Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)))) ⊢ ↑({ val := X.presheaf, cond := (_ : TopCat.Presheaf.IsSheaf X.presheaf) }.val.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) (↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) (↑(TopCat.Sheaf.objSupIsoProdEqLocus { val := X.presheaf, cond := (_ : TopCat.Presheaf.IsSheaf X.presheaf) } S ↑U).inv { val := (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁, ↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂), property := this })) = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑({ val := X.presheaf, cond := (_ : TopCat.Presheaf.IsSheaf X.presheaf) }.val.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) (↑(TopCat.Sheaf.objSupIsoProdEqLocus { val := X.presheaf, cond := (_ : TopCat.Presheaf.IsSheaf X.presheaf) } S ↑U).inv { val := (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁, ↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂), property := this })) [PROOFSTEP] simp only [GOAL] case h.e'_2.h X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this✝ : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i hs₁ : ∀ (i : ↑s), ↑↑i ≤ S hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U n : ↑s → ℕ hn : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂) this : ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂) e_1✝ : (fun x => (forget CommRingCat).obj ((Scheme.sheaf X).val.obj (op (Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f))))) (↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) (↑(TopCat.Sheaf.objSupIsoProdEqLocus (Scheme.sheaf X) S ↑U).inv { val := (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁, ↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂), property := this })) = (forget CommRingCat).obj (X.presheaf.obj (op (Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)))) ⊢ ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) (↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) (↑(TopCat.Sheaf.objSupIsoProdEqLocus { val := X.presheaf, cond := (_ : TopCat.Presheaf.IsSheaf X.presheaf) } S ↑U).inv { val := (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁, ↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂), property := this })) = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) (↑(TopCat.Sheaf.objSupIsoProdEqLocus { val := X.presheaf, cond := (_ : TopCat.Presheaf.IsSheaf X.presheaf) } S ↑U).inv { val := (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁, ↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂), property := this })) [PROOFSTEP] erw [← comp_apply, ← comp_apply, ← comp_apply, ← comp_apply] [GOAL] case h.e'_2.h X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this✝ : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i hs₁ : ∀ (i : ↑s), ↑↑i ≤ S hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U n : ↑s → ℕ hn : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂) this : ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂) e_1✝ : (fun x => (forget CommRingCat).obj ((Scheme.sheaf X).val.obj (op (Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f))))) (↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) (↑(TopCat.Sheaf.objSupIsoProdEqLocus (Scheme.sheaf X) S ↑U).inv { val := (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁, ↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂), property := this })) = (forget CommRingCat).obj (X.presheaf.obj (op (Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)))) ⊢ ↑((TopCat.Sheaf.objSupIsoProdEqLocus { val := X.presheaf, cond := (_ : TopCat.Presheaf.IsSheaf X.presheaf) } S ↑U).inv ≫ X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op ≫ X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) { val := (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁, ↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂), property := this } = ↑((TopCat.Sheaf.objSupIsoProdEqLocus { val := X.presheaf, cond := (_ : TopCat.Presheaf.IsSheaf X.presheaf) } S ↑U).inv ≫ X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op ≫ X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) { val := (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁, ↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂), property := this } [PROOFSTEP] simp only [← Functor.map_comp, ← op_comp] [GOAL] case h.e'_2.h X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this✝ : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i hs₁ : ∀ (i : ↑s), ↑↑i ≤ S hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U n : ↑s → ℕ hn : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂) this : ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂) e_1✝ : (fun x => (forget CommRingCat).obj ((Scheme.sheaf X).val.obj (op (Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f))))) (↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) (↑(TopCat.Sheaf.objSupIsoProdEqLocus (Scheme.sheaf X) S ↑U).inv { val := (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁, ↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂), property := this })) = (forget CommRingCat).obj (X.presheaf.obj (op (Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)))) ⊢ ↑((TopCat.Sheaf.objSupIsoProdEqLocus { val := X.presheaf, cond := (_ : TopCat.Presheaf.IsSheaf X.presheaf) } S ↑U).inv ≫ X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f) ≫ homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) { val := (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁, ↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂), property := this } = ↑((TopCat.Sheaf.objSupIsoProdEqLocus { val := X.presheaf, cond := (_ : TopCat.Presheaf.IsSheaf X.presheaf) } S ↑U).inv ≫ X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S) ≫ homOfLE (_ : S ≤ S ⊔ ↑U)).op) { val := (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁, ↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂), property := this } [PROOFSTEP] congr 1 [GOAL] case h.e'_3.h X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this✝ : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i hs₁ : ∀ (i : ↑s), ↑↑i ≤ S hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U n : ↑s → ℕ hn : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂) this : ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂) e_1✝ : (fun x => (forget CommRingCat).obj ((Scheme.sheaf X).val.obj (op (Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f))))) (↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) (↑(TopCat.Sheaf.objSupIsoProdEqLocus (Scheme.sheaf X) S ↑U).inv { val := (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁, ↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂), property := this })) = (forget CommRingCat).obj (X.presheaf.obj (op (Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)))) ⊢ ↑((Scheme.sheaf X).val.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) (↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) f ^ (Finset.sup Finset.univ n + n₁ + n₂) * x) = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑{ val := (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁, ↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂), property := this }).fst [PROOFSTEP] delta Scheme.sheaf SheafedSpace.sheaf [GOAL] case h.e'_3.h X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this✝ : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i hs₁ : ∀ (i : ↑s), ↑↑i ≤ S hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U n : ↑s → ℕ hn : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂) this : ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂) e_1✝ : (fun x => (forget CommRingCat).obj ((Scheme.sheaf X).val.obj (op (Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f))))) (↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) (↑(TopCat.Sheaf.objSupIsoProdEqLocus (Scheme.sheaf X) S ↑U).inv { val := (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁, ↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂), property := this })) = (forget CommRingCat).obj (X.presheaf.obj (op (Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)))) ⊢ ↑({ val := X.presheaf, cond := (_ : TopCat.Presheaf.IsSheaf X.presheaf) }.val.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) (↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) f ^ (Finset.sup Finset.univ n + n₁ + n₂) * x) = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑{ val := (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁, ↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂), property := this }).fst [PROOFSTEP] simp only [map_pow, map_mul] [GOAL] case h.e'_3.h X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this✝ : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i hs₁ : ∀ (i : ↑s), ↑↑i ≤ S hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U n : ↑s → ℕ hn : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂) this : ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂) e_1✝ : (fun x => (forget CommRingCat).obj ((Scheme.sheaf X).val.obj (op (Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f))))) (↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) (↑(TopCat.Sheaf.objSupIsoProdEqLocus (Scheme.sheaf X) S ↑U).inv { val := (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁, ↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂), property := this })) = (forget CommRingCat).obj (X.presheaf.obj (op (Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)))) ⊢ ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) (↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) f) ^ (Finset.sup Finset.univ n + n₁ + n₂) * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ (Finset.sup Finset.univ n + n₂) * ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ [PROOFSTEP] erw [← comp_apply, ← comp_apply] [GOAL] case h.e'_3.h X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this✝ : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i hs₁ : ∀ (i : ↑s), ↑↑i ≤ S hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U n : ↑s → ℕ hn : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂) this : ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂) e_1✝ : (fun x => (forget CommRingCat).obj ((Scheme.sheaf X).val.obj (op (Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f))))) (↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) (↑(TopCat.Sheaf.objSupIsoProdEqLocus (Scheme.sheaf X) S ↑U).inv { val := (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁, ↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂), property := this })) = (forget CommRingCat).obj (X.presheaf.obj (op (Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)))) ⊢ ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op ≫ X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) f ^ (Finset.sup Finset.univ n + n₁ + n₂) * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x = ↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op ≫ X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) f ^ (Finset.sup Finset.univ n + n₂) * ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ [PROOFSTEP] simp only [← Functor.map_comp, ← op_comp, mul_assoc, pow_add] [GOAL] case h.e'_3.h X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this✝ : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i hs₁ : ∀ (i : ↑s), ↑↑i ≤ S hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U n : ↑s → ℕ hn : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂) this : ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂) e_1✝ : (fun x => (forget CommRingCat).obj ((Scheme.sheaf X).val.obj (op (Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f))))) (↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) (↑(TopCat.Sheaf.objSupIsoProdEqLocus (Scheme.sheaf X) S ↑U).inv { val := (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁, ↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂), property := this })) = (forget CommRingCat).obj (X.presheaf.obj (op (Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)))) ⊢ ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f) ≫ homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) f ^ Finset.sup Finset.univ n * (↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f) ≫ homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) f ^ n₁ * (↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f) ≫ homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) f ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x)) = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S) ≫ homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ Finset.sup Finset.univ n * (↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S) ≫ homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁) [PROOFSTEP] erw [hy₁] [GOAL] case h.e'_3.h X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this✝ : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i hs₁ : ∀ (i : ↑s), ↑↑i ≤ S hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U n : ↑s → ℕ hn : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂) this : ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂) e_1✝ : (fun x => (forget CommRingCat).obj ((Scheme.sheaf X).val.obj (op (Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f))))) (↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) (↑(TopCat.Sheaf.objSupIsoProdEqLocus (Scheme.sheaf X) S ↑U).inv { val := (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁, ↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂), property := this })) = (forget CommRingCat).obj (X.presheaf.obj (op (Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)))) ⊢ ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f) ≫ homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) f ^ Finset.sup Finset.univ n * (↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f) ≫ homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) f ^ n₁ * (↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f) ≫ homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) f ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x)) = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S) ≫ homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ Finset.sup Finset.univ n * (↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S) ≫ homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ n₂ * (↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x)) [PROOFSTEP] congr 1 [GOAL] case h.e'_3.h.e_a X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this✝ : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i hs₁ : ∀ (i : ↑s), ↑↑i ≤ S hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U n : ↑s → ℕ hn : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂) this : ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂) e_1✝ : (fun x => (forget CommRingCat).obj ((Scheme.sheaf X).val.obj (op (Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f))))) (↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) (↑(TopCat.Sheaf.objSupIsoProdEqLocus (Scheme.sheaf X) S ↑U).inv { val := (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁, ↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂), property := this })) = (forget CommRingCat).obj (X.presheaf.obj (op (Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)))) ⊢ ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f) ≫ homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) f ^ n₁ * (↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f) ≫ homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) f ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x) = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S) ≫ homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ n₂ * (↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x) [PROOFSTEP] rw [← mul_assoc, ← mul_assoc] [GOAL] case h.e'_3.h.e_a X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this✝ : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i hs₁ : ∀ (i : ↑s), ↑↑i ≤ S hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U n : ↑s → ℕ hn : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂) this : ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂) e_1✝ : (fun x => (forget CommRingCat).obj ((Scheme.sheaf X).val.obj (op (Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f))))) (↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) (↑(TopCat.Sheaf.objSupIsoProdEqLocus (Scheme.sheaf X) S ↑U).inv { val := (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁, ↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂), property := this })) = (forget CommRingCat).obj (X.presheaf.obj (op (Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)))) ⊢ ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f) ≫ homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) f ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f) ≫ homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) f ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S) ≫ homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x [PROOFSTEP] congr 1 [GOAL] case h.e'_3.h.e_a.e_a X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this✝ : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i hs₁ : ∀ (i : ↑s), ↑↑i ≤ S hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U n : ↑s → ℕ hn : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂) this : ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂) e_1✝ : (fun x => (forget CommRingCat).obj ((Scheme.sheaf X).val.obj (op (Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f))))) (↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) (↑(TopCat.Sheaf.objSupIsoProdEqLocus (Scheme.sheaf X) S ↑U).inv { val := (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁, ↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂), property := this })) = (forget CommRingCat).obj (X.presheaf.obj (op (Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)))) ⊢ ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f) ≫ homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) f ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f) ≫ homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) f ^ n₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S) ≫ homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ [PROOFSTEP] rw [mul_comm, ← comp_apply, ← Functor.map_comp] [GOAL] case h.e'_3.h.e_a.e_a X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this✝ : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i hs₁ : ∀ (i : ↑s), ↑↑i ≤ S hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U n : ↑s → ℕ hn : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂) this : ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂) e_1✝ : (fun x => (forget CommRingCat).obj ((Scheme.sheaf X).val.obj (op (Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f))))) (↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) (↑(TopCat.Sheaf.objSupIsoProdEqLocus (Scheme.sheaf X) S ↑U).inv { val := (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁, ↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂), property := this })) = (forget CommRingCat).obj (X.presheaf.obj (op (Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)))) ⊢ ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f) ≫ homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) f ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f) ≫ homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) f ^ n₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S) ≫ homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ n₂ * ↑(X.presheaf.map ((homOfLE (_ : S ≤ S ⊔ ↑U)).op ≫ (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op)) f ^ n₁ [PROOFSTEP] congr 1 [GOAL] case h.refine'_5 X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this✝ : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i hs₁ : ∀ (i : ↑s), ↑↑i ≤ S hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U n : ↑s → ℕ hn : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂) this : ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂) ⊢ ↑((Scheme.sheaf X).val.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) (↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) (↑(TopCat.Sheaf.objSupIsoProdEqLocus (Scheme.sheaf X) S ↑U).inv { val := (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁, ↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂), property := this })) = ↑((Scheme.sheaf X).val.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) (↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) f ^ (Finset.sup Finset.univ n + n₁ + n₂) * x) [PROOFSTEP] convert congr_arg (X.presheaf.map (homOfLE _).op) (X.sheaf.objSupIsoProdEqLocus_inv_snd S U.1 ⟨⟨_ * _, _ * _⟩, this⟩) using 1 [GOAL] case h.e'_2 X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this✝ : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i hs₁ : ∀ (i : ↑s), ↑↑i ≤ S hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U n : ↑s → ℕ hn : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂) this : ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂) ⊢ ↑((Scheme.sheaf X).val.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) (↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) (↑(TopCat.Sheaf.objSupIsoProdEqLocus (Scheme.sheaf X) S ↑U).inv { val := (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁, ↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂), property := this })) = ↑(X.presheaf.map (homOfLE ?h.refine'_5.convert_1).op) (↑((Scheme.sheaf X).val.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) (↑(TopCat.Sheaf.objSupIsoProdEqLocus (Scheme.sheaf X) S ↑U).inv { val := (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁, ↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂), property := this })) case h.e'_3 X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this✝ : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i hs₁ : ∀ (i : ↑s), ↑↑i ≤ S hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U n : ↑s → ℕ hn : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂) this : ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂) ⊢ ↑((Scheme.sheaf X).val.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) (↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) f ^ (Finset.sup Finset.univ n + n₁ + n₂) * x) = ↑(X.presheaf.map (homOfLE ?h.refine'_5.convert_1).op) (↑{ val := (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁, ↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂), property := this }).snd case h.refine'_5.convert_1 X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this✝ : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i hs₁ : ∀ (i : ↑s), ↑↑i ≤ S hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U n : ↑s → ℕ hn : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂) this : ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂) ⊢ Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ ↑U [PROOFSTEP] pick_goal 3 [GOAL] case h.refine'_5.convert_1 X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this✝ : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i hs₁ : ∀ (i : ↑s), ↑↑i ≤ S hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U n : ↑s → ℕ hn : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂) this : ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂) ⊢ Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ ↑U [PROOFSTEP] rw [X.basicOpen_res] [GOAL] case h.refine'_5.convert_1 X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this✝ : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i hs₁ : ∀ (i : ↑s), ↑↑i ≤ S hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U n : ↑s → ℕ hn : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂) this : ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂) ⊢ ↑U ⊓ Scheme.basicOpen X f ≤ ↑U [PROOFSTEP] restrict_tac [GOAL] case h.e'_2 X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this✝ : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i hs₁ : ∀ (i : ↑s), ↑↑i ≤ S hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U n : ↑s → ℕ hn : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂) this : ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂) ⊢ ↑((Scheme.sheaf X).val.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) (↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) (↑(TopCat.Sheaf.objSupIsoProdEqLocus (Scheme.sheaf X) S ↑U).inv { val := (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁, ↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂), property := this })) = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ ↑U)).op) (↑((Scheme.sheaf X).val.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) (↑(TopCat.Sheaf.objSupIsoProdEqLocus (Scheme.sheaf X) S ↑U).inv { val := (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁, ↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂), property := this })) [PROOFSTEP] delta Scheme.sheaf SheafedSpace.sheaf [GOAL] case h.e'_2 X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this✝ : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i hs₁ : ∀ (i : ↑s), ↑↑i ≤ S hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U n : ↑s → ℕ hn : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂) this : ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂) ⊢ ↑({ val := X.presheaf, cond := (_ : TopCat.Presheaf.IsSheaf X.presheaf) }.val.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) (↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) (↑(TopCat.Sheaf.objSupIsoProdEqLocus { val := X.presheaf, cond := (_ : TopCat.Presheaf.IsSheaf X.presheaf) } S ↑U).inv { val := (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁, ↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂), property := this })) = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ ↑U)).op) (↑({ val := X.presheaf, cond := (_ : TopCat.Presheaf.IsSheaf X.presheaf) }.val.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) (↑(TopCat.Sheaf.objSupIsoProdEqLocus { val := X.presheaf, cond := (_ : TopCat.Presheaf.IsSheaf X.presheaf) } S ↑U).inv { val := (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁, ↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂), property := this })) [PROOFSTEP] simp only [GOAL] case h.e'_2 X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this✝ : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i hs₁ : ∀ (i : ↑s), ↑↑i ≤ S hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U n : ↑s → ℕ hn : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂) this : ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂) ⊢ ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) (↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) (↑(TopCat.Sheaf.objSupIsoProdEqLocus { val := X.presheaf, cond := (_ : TopCat.Presheaf.IsSheaf X.presheaf) } S ↑U).inv { val := (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁, ↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂), property := this })) = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) (↑(TopCat.Sheaf.objSupIsoProdEqLocus { val := X.presheaf, cond := (_ : TopCat.Presheaf.IsSheaf X.presheaf) } S ↑U).inv { val := (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁, ↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂), property := this })) [PROOFSTEP] erw [← comp_apply, ← comp_apply, ← comp_apply, ← comp_apply] [GOAL] case h.e'_2 X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this✝ : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i hs₁ : ∀ (i : ↑s), ↑↑i ≤ S hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U n : ↑s → ℕ hn : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂) this : ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂) ⊢ ↑((TopCat.Sheaf.objSupIsoProdEqLocus { val := X.presheaf, cond := (_ : TopCat.Presheaf.IsSheaf X.presheaf) } S ↑U).inv ≫ X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op ≫ X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) { val := (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁, ↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂), property := this } = ↑((TopCat.Sheaf.objSupIsoProdEqLocus { val := X.presheaf, cond := (_ : TopCat.Presheaf.IsSheaf X.presheaf) } S ↑U).inv ≫ X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op ≫ X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ ↑U)).op) { val := (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁, ↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂), property := this } [PROOFSTEP] simp only [← Functor.map_comp, ← op_comp] [GOAL] case h.e'_2 X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this✝ : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i hs₁ : ∀ (i : ↑s), ↑↑i ≤ S hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U n : ↑s → ℕ hn : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂) this : ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂) ⊢ ↑((TopCat.Sheaf.objSupIsoProdEqLocus { val := X.presheaf, cond := (_ : TopCat.Presheaf.IsSheaf X.presheaf) } S ↑U).inv ≫ X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f) ≫ homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) { val := (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁, ↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂), property := this } = ↑((TopCat.Sheaf.objSupIsoProdEqLocus { val := X.presheaf, cond := (_ : TopCat.Presheaf.IsSheaf X.presheaf) } S ↑U).inv ≫ X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ ↑U) ≫ homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) { val := (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁, ↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂), property := this } [PROOFSTEP] congr 1 [GOAL] case h.e'_3 X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this✝ : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i hs₁ : ∀ (i : ↑s), ↑↑i ≤ S hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U n : ↑s → ℕ hn : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂) this : ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂) ⊢ ↑((Scheme.sheaf X).val.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) (↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) f ^ (Finset.sup Finset.univ n + n₁ + n₂) * x) = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ ↑U)).op) (↑{ val := (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁, ↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂), property := this }).snd [PROOFSTEP] delta Scheme.sheaf SheafedSpace.sheaf [GOAL] case h.e'_3 X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this✝ : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i hs₁ : ∀ (i : ↑s), ↑↑i ≤ S hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U n : ↑s → ℕ hn : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂) this : ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂) ⊢ ↑({ val := X.presheaf, cond := (_ : TopCat.Presheaf.IsSheaf X.presheaf) }.val.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) (↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) f ^ (Finset.sup Finset.univ n + n₁ + n₂) * x) = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ ↑U)).op) (↑{ val := (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁, ↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂), property := this }).snd [PROOFSTEP] simp only [map_pow, map_mul] [GOAL] case h.e'_3 X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this✝ : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i hs₁ : ∀ (i : ↑s), ↑↑i ≤ S hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U n : ↑s → ℕ hn : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂) this : ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂) ⊢ ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) (↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) f) ^ (Finset.sup Finset.univ n + n₁ + n₂) * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ (Finset.sup Finset.univ n + n₁) * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ ↑U)).op) y₂ [PROOFSTEP] erw [← comp_apply, ← comp_apply] [GOAL] case h.e'_3 X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this✝ : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i hs₁ : ∀ (i : ↑s), ↑↑i ≤ S hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U n : ↑s → ℕ hn : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂) this : ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂) ⊢ ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op ≫ X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) f ^ (Finset.sup Finset.univ n + n₁ + n₂) * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x = ↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op ≫ X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ ↑U)).op) y₂ [PROOFSTEP] simp only [← Functor.map_comp, ← op_comp, mul_assoc, pow_add] [GOAL] case h.e'_3 X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this✝ : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i hs₁ : ∀ (i : ↑s), ↑↑i ≤ S hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U n : ↑s → ℕ hn : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂) this : ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂) ⊢ ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f) ≫ homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) f ^ Finset.sup Finset.univ n * (↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f) ≫ homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) f ^ n₁ * (↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f) ≫ homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) f ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x)) = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ ↑U) ≫ homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ Finset.sup Finset.univ n * (↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ ↑U) ≫ homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ ↑U)).op) y₂) [PROOFSTEP] erw [hy₂] [GOAL] case h.e'_3 X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this✝ : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i hs₁ : ∀ (i : ↑s), ↑↑i ≤ S hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U n : ↑s → ℕ hn : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂) this : ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂) ⊢ ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f) ≫ homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) f ^ Finset.sup Finset.univ n * (↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f) ≫ homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) f ^ n₁ * (↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f) ≫ homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) f ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x)) = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ ↑U) ≫ homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ Finset.sup Finset.univ n * (↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ ↑U) ≫ homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ n₁ * (↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x)) [PROOFSTEP] rw [← comp_apply, ← Functor.map_comp] [GOAL] case h.e'_3 X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U✝ : Opens ↑↑X.toPresheafedSpace hU✝ : IsCompact U✝.carrier S : Opens ↑↑X.toPresheafedSpace hS : IsCompact S.carrier U : ↑(Scheme.affineOpens X) hU : IsQuasiSeparated S.carrier → ∀ (f : ↑(X.presheaf.obj (op S))) (x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ n y, ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) y = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑S)).op) f ^ n * x hSU : IsQuasiSeparated (S ⊔ ↑U).carrier f : ↑(X.presheaf.obj (op (S ⊔ ↑U))) x : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n₁ : ℕ y₁ : ↑(X.presheaf.obj (op S)) hy₁ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) y₁ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ^ n₁ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x n₂ : ℕ y₂ : ↑(X.presheaf.obj (op ↑U)) hy₂ : ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) y₂ = ↑(X.presheaf.map (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x s : Set ↑(Scheme.affineOpens X) hs' : Set.Finite s this✝ : Finite ↑s val✝ : Fintype ↑s hs : S ⊓ ↑U = ⨆ (i : ↑s), ↑↑i hs₁ : ∀ (i : ↑s), ↑↑i ≤ S hs₂ : ∀ (i : ↑s), ↑↑i ≤ ↑U n : ↑s → ℕ hn : ∀ (i : ↑s), ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (n i + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : ↑↑i ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (n i + n₁) * y₂) this : ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ S)).op) (↑(X.presheaf.map (homOfLE (_ : S ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₂) * y₁) = ↑(X.presheaf.map (homOfLE (_ : S ⊓ ↑U ≤ ↑U)).op) (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ (Finset.sup Finset.univ n + n₁) * y₂) ⊢ ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f) ≫ homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) f ^ Finset.sup Finset.univ n * (↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f) ≫ homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) f ^ n₁ * (↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f) ≫ homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X f) → a ∈ ↑(S ⊔ ↑U))).op) f ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x)) = ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ ↑U) ≫ homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ Finset.sup Finset.univ n * (↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ ↑U) ≫ homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f ^ n₁ * (↑(X.presheaf.map ((homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op ≫ (homOfLE (_ : ∀ ⦃a : ↑↑X.toPresheafedSpace⦄, a ∈ ↑(Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f)) → a ∈ ↑↑U)).op)) f ^ n₂ * ↑(X.presheaf.map (homOfLE (_ : Scheme.basicOpen X (↑(X.presheaf.map (homOfLE (_ : ↑U ≤ S ⊔ ↑U)).op) f) ≤ Scheme.basicOpen X f)).op) x)) [PROOFSTEP] congr 1 [GOAL] X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier hU' : IsQuasiSeparated U.carrier f : ↑(X.presheaf.obj (op U)) ⊢ IsLocalization.Away f ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) [PROOFSTEP] constructor [GOAL] case map_units' X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier hU' : IsQuasiSeparated U.carrier f : ↑(X.presheaf.obj (op U)) ⊢ ∀ (y : { x // x ∈ Submonoid.powers f }), IsUnit (↑(algebraMap ↑(X.presheaf.obj (op U)) ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))) ↑y) [PROOFSTEP] rintro ⟨_, n, rfl⟩ [GOAL] case map_units'.mk.intro X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier hU' : IsQuasiSeparated U.carrier f : ↑(X.presheaf.obj (op U)) n : ℕ ⊢ IsUnit (↑(algebraMap ↑(X.presheaf.obj (op U)) ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))) ↑{ val := (fun x x_1 => x ^ x_1) f n, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n) }) [PROOFSTEP] simp only [map_pow, Subtype.coe_mk, RingHom.algebraMap_toAlgebra] [GOAL] case map_units'.mk.intro X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier hU' : IsQuasiSeparated U.carrier f : ↑(X.presheaf.obj (op U)) n : ℕ ⊢ IsUnit (↑(X.presheaf.map (homOfLE (_ : RingedSpace.basicOpen X.toSheafedSpace f ≤ U)).op) f ^ n) [PROOFSTEP] exact IsUnit.pow _ (RingedSpace.isUnit_res_basicOpen _ f) [GOAL] case surj' X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier hU' : IsQuasiSeparated U.carrier f : ↑(X.presheaf.obj (op U)) ⊢ ∀ (z : ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))), ∃ x, z * ↑(algebraMap ↑(X.presheaf.obj (op U)) ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))) ↑x.snd = ↑(algebraMap ↑(X.presheaf.obj (op U)) ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))) x.fst [PROOFSTEP] intro z [GOAL] case surj' X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier hU' : IsQuasiSeparated U.carrier f : ↑(X.presheaf.obj (op U)) z : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) ⊢ ∃ x, z * ↑(algebraMap ↑(X.presheaf.obj (op U)) ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))) ↑x.snd = ↑(algebraMap ↑(X.presheaf.obj (op U)) ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))) x.fst [PROOFSTEP] obtain ⟨n, y, e⟩ := exists_eq_pow_mul_of_isCompact_of_isQuasiSeparated X U hU hU' f z [GOAL] case surj'.intro.intro X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier hU' : IsQuasiSeparated U.carrier f : ↑(X.presheaf.obj (op U)) z : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n : ℕ y : ↑(X.presheaf.obj (op U)) e : y |_ Scheme.basicOpen X f = (f |_ Scheme.basicOpen X f) ^ n * z ⊢ ∃ x, z * ↑(algebraMap ↑(X.presheaf.obj (op U)) ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))) ↑x.snd = ↑(algebraMap ↑(X.presheaf.obj (op U)) ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))) x.fst [PROOFSTEP] refine' ⟨⟨y, _, n, rfl⟩, _⟩ [GOAL] case surj'.intro.intro X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier hU' : IsQuasiSeparated U.carrier f : ↑(X.presheaf.obj (op U)) z : ↑(X.presheaf.obj (op (Scheme.basicOpen X f))) n : ℕ y : ↑(X.presheaf.obj (op U)) e : y |_ Scheme.basicOpen X f = (f |_ Scheme.basicOpen X f) ^ n * z ⊢ z * ↑(algebraMap ↑(X.presheaf.obj (op U)) ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))) ↑(y, { val := (fun x x_1 => x ^ x_1) f n, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n) }).snd = ↑(algebraMap ↑(X.presheaf.obj (op U)) ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))) (y, { val := (fun x x_1 => x ^ x_1) f n, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n) }).fst [PROOFSTEP] simpa only [map_pow, Subtype.coe_mk, RingHom.algebraMap_toAlgebra, mul_comm z] using e.symm [GOAL] case eq_iff_exists' X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier hU' : IsQuasiSeparated U.carrier f : ↑(X.presheaf.obj (op U)) ⊢ ∀ {x y : ↑(X.presheaf.obj (op U))}, ↑(algebraMap ↑(X.presheaf.obj (op U)) ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))) x = ↑(algebraMap ↑(X.presheaf.obj (op U)) ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))) y ↔ ∃ c, ↑c * x = ↑c * y [PROOFSTEP] intro x y [GOAL] case eq_iff_exists' X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier hU' : IsQuasiSeparated U.carrier f x y : ↑(X.presheaf.obj (op U)) ⊢ ↑(algebraMap ↑(X.presheaf.obj (op U)) ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))) x = ↑(algebraMap ↑(X.presheaf.obj (op U)) ↑(X.presheaf.obj (op (Scheme.basicOpen X f)))) y ↔ ∃ c, ↑c * x = ↑c * y [PROOFSTEP] rw [← sub_eq_zero, ← map_sub, RingHom.algebraMap_toAlgebra] [GOAL] case eq_iff_exists' X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier hU' : IsQuasiSeparated U.carrier f x y : ↑(X.presheaf.obj (op U)) ⊢ ↑(X.presheaf.map (homOfLE (_ : RingedSpace.basicOpen X.toSheafedSpace f ≤ U)).op) (x - y) = 0 ↔ ∃ c, ↑c * x = ↑c * y [PROOFSTEP] simp_rw [← @sub_eq_zero _ _ (_ * x) (_ * y), ← mul_sub] [GOAL] case eq_iff_exists' X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier hU' : IsQuasiSeparated U.carrier f x y : ↑(X.presheaf.obj (op U)) ⊢ ↑(X.presheaf.map (homOfLE (_ : RingedSpace.basicOpen X.toSheafedSpace f ≤ U)).op) (x - y) = 0 ↔ ∃ c, ↑c * (x - y) = 0 [PROOFSTEP] generalize x - y = z [GOAL] case eq_iff_exists' X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier hU' : IsQuasiSeparated U.carrier f x y z : ↑(X.presheaf.obj (op U)) ⊢ ↑(X.presheaf.map (homOfLE (_ : RingedSpace.basicOpen X.toSheafedSpace f ≤ U)).op) z = 0 ↔ ∃ c, ↑c * z = 0 [PROOFSTEP] constructor [GOAL] case eq_iff_exists'.mp X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier hU' : IsQuasiSeparated U.carrier f x y z : ↑(X.presheaf.obj (op U)) ⊢ ↑(X.presheaf.map (homOfLE (_ : RingedSpace.basicOpen X.toSheafedSpace f ≤ U)).op) z = 0 → ∃ c, ↑c * z = 0 [PROOFSTEP] intro H [GOAL] case eq_iff_exists'.mp X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier hU' : IsQuasiSeparated U.carrier f x y z : ↑(X.presheaf.obj (op U)) H : ↑(X.presheaf.map (homOfLE (_ : RingedSpace.basicOpen X.toSheafedSpace f ≤ U)).op) z = 0 ⊢ ∃ c, ↑c * z = 0 [PROOFSTEP] obtain ⟨n, e⟩ := exists_pow_mul_eq_zero_of_res_basicOpen_eq_zero_of_isCompact X hU _ _ H [GOAL] case eq_iff_exists'.mp.intro X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier hU' : IsQuasiSeparated U.carrier f x y z : ↑(X.presheaf.obj (op U)) H : ↑(X.presheaf.map (homOfLE (_ : RingedSpace.basicOpen X.toSheafedSpace f ≤ U)).op) z = 0 n : ℕ e : f ^ n * z = 0 ⊢ ∃ c, ↑c * z = 0 [PROOFSTEP] refine' ⟨⟨_, n, rfl⟩, _⟩ [GOAL] case eq_iff_exists'.mp.intro X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier hU' : IsQuasiSeparated U.carrier f x y z : ↑(X.presheaf.obj (op U)) H : ↑(X.presheaf.map (homOfLE (_ : RingedSpace.basicOpen X.toSheafedSpace f ≤ U)).op) z = 0 n : ℕ e : f ^ n * z = 0 ⊢ ↑{ val := (fun x x_1 => x ^ x_1) f n, property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = (fun x x_1 => x ^ x_1) f n) } * z = 0 [PROOFSTEP] simpa [mul_comm z] using e [GOAL] case eq_iff_exists'.mpr X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier hU' : IsQuasiSeparated U.carrier f x y z : ↑(X.presheaf.obj (op U)) ⊢ (∃ c, ↑c * z = 0) → ↑(X.presheaf.map (homOfLE (_ : RingedSpace.basicOpen X.toSheafedSpace f ≤ U)).op) z = 0 [PROOFSTEP] rintro ⟨⟨_, n, rfl⟩, e : f ^ n * z = 0⟩ [GOAL] case eq_iff_exists'.mpr.intro.mk.intro X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier hU' : IsQuasiSeparated U.carrier f x y z : ↑(X.presheaf.obj (op U)) n : ℕ e : f ^ n * z = 0 ⊢ ↑(X.presheaf.map (homOfLE (_ : RingedSpace.basicOpen X.toSheafedSpace f ≤ U)).op) z = 0 [PROOFSTEP] rw [← ((RingedSpace.isUnit_res_basicOpen _ f).pow n).mul_right_inj, mul_zero, ← map_pow] -- Porting note: this one lemma needs `erw` [GOAL] case eq_iff_exists'.mpr.intro.mk.intro X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier hU' : IsQuasiSeparated U.carrier f x y z : ↑(X.presheaf.obj (op U)) n : ℕ e : f ^ n * z = 0 ⊢ ↑(X.presheaf.map (homOfLE (_ : RingedSpace.basicOpen X.toSheafedSpace f ≤ U)).op) (f ^ n) * ↑(X.presheaf.map (homOfLE (_ : RingedSpace.basicOpen X.toSheafedSpace f ≤ U)).op) z = 0 [PROOFSTEP] erw [← map_mul] [GOAL] case eq_iff_exists'.mpr.intro.mk.intro X✝ Y : Scheme f✝ : X✝ ⟶ Y X : Scheme U : Opens ↑↑X.toPresheafedSpace hU : IsCompact U.carrier hU' : IsQuasiSeparated U.carrier f x y z : ↑(X.presheaf.obj (op U)) n : ℕ e : f ^ n * z = 0 ⊢ ↑(X.presheaf.map (homOfLE (_ : RingedSpace.basicOpen X.toSheafedSpace f ≤ U)).op) (f ^ n * z) = 0 [PROOFSTEP] rw [e, map_zero]
{"mathlib_filename": "Mathlib.AlgebraicGeometry.Morphisms.QuasiSeparated", "llama_tokens": 239101}
[GOAL] R : Type u_1 M : Type u_2 N : Type u_3 ι : Type u_4 κ : Type u_5 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : AddCommGroup N inst✝ : Module R N b : Basis ι R M c : Basis κ R N i : ι j : κ ⊢ ↑(tensorProduct b c) (i, j) = ↑b i ⊗ₜ[R] ↑c j [PROOFSTEP] simp [Basis.tensorProduct] [GOAL] R : Type u_1 M : Type u_2 N : Type u_3 ι : Type u_4 κ : Type u_5 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : AddCommGroup N inst✝ : Module R N b : Basis ι R M c : Basis κ R N i : ι × κ ⊢ ↑(tensorProduct b c) i = ↑b i.fst ⊗ₜ[R] ↑c i.snd [PROOFSTEP] simp [Basis.tensorProduct] [GOAL] R : Type u_1 M : Type u_2 N : Type u_3 ι : Type u_4 κ : Type u_5 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : AddCommGroup N inst✝ : Module R N b : Basis ι R M c : Basis κ R N m : M n : N i : ι j : κ ⊢ ↑(↑(tensorProduct b c).repr (m ⊗ₜ[R] n)) (i, j) = ↑(↑b.repr m) i * ↑(↑c.repr n) j [PROOFSTEP] simp [Basis.tensorProduct]
{"mathlib_filename": "Mathlib.LinearAlgebra.TensorProductBasis", "llama_tokens": 535}
[GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : AddCommMonoid M' inst✝¹ : Module R M' inst✝ : Subsingleton R x✝ : Basis ι R M b : M ≃ₗ[R] ι →₀ R ⊢ { repr := b } = default [PROOFSTEP] rw [Subsingleton.elim b] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b b₁ : Basis ι R M i : ι c : R x : M f g : Basis ι R M h : f.repr = g.repr ⊢ f = g [PROOFSTEP] cases f [GOAL] case ofRepr ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b b₁ : Basis ι R M i : ι c : R x : M g : Basis ι R M repr✝ : M ≃ₗ[R] ι →₀ R h : { repr := repr✝ }.repr = g.repr ⊢ { repr := repr✝ } = g [PROOFSTEP] cases g [GOAL] case ofRepr.ofRepr ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b b₁ : Basis ι R M i : ι c : R x : M repr✝¹ repr✝ : M ≃ₗ[R] ι →₀ R h : { repr := repr✝¹ }.repr = { repr := repr✝ }.repr ⊢ { repr := repr✝¹ } = { repr := repr✝ } [PROOFSTEP] congr [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b b₁ : Basis ι R M i : ι c : R x : M f g : Basis ι R M h : (fun b i => ↑(LinearEquiv.symm b.repr) (Finsupp.single i 1)) f = (fun b i => ↑(LinearEquiv.symm b.repr) (Finsupp.single i 1)) g ⊢ ↑(LinearEquiv.symm f.repr) = ↑(LinearEquiv.symm g.repr) [PROOFSTEP] ext [GOAL] case h.h ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b b₁ : Basis ι R M i : ι c : R x : M f g : Basis ι R M h : (fun b i => ↑(LinearEquiv.symm b.repr) (Finsupp.single i 1)) f = (fun b i => ↑(LinearEquiv.symm b.repr) (Finsupp.single i 1)) g a✝ : ι ⊢ ↑(LinearMap.comp (↑(LinearEquiv.symm f.repr)) (Finsupp.lsingle a✝)) 1 = ↑(LinearMap.comp (↑(LinearEquiv.symm g.repr)) (Finsupp.lsingle a✝)) 1 [PROOFSTEP] exact congr_fun h _ [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b b₁ : Basis ι R M i : ι c : R x : M ⊢ ↑(LinearEquiv.symm b.repr) (Finsupp.single i c) = ↑(LinearEquiv.symm b.repr) (c • Finsupp.single i 1) [PROOFSTEP] {rw [Finsupp.smul_single', mul_one] } [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b b₁ : Basis ι R M i : ι c : R x : M ⊢ ↑(LinearEquiv.symm b.repr) (Finsupp.single i c) = ↑(LinearEquiv.symm b.repr) (c • Finsupp.single i 1) [PROOFSTEP] rw [Finsupp.smul_single', mul_one] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b b₁ : Basis ι R M i : ι c : R x : M ⊢ ↑(LinearEquiv.symm b.repr) (c • Finsupp.single i 1) = c • ↑b i [PROOFSTEP] rw [LinearEquiv.map_smul, repr_symm_single_one] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : AddCommMonoid M' inst✝¹ : Module R M' b b₁ : Basis ι R M i : ι c : R x : M j : ι inst✝ : Decidable (i = j) ⊢ ↑(↑b.repr (↑b i)) j = if i = j then 1 else 0 [PROOFSTEP] rw [repr_self, Finsupp.single_apply] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b b₁ : Basis ι R M i : ι c : R x : M v : ι →₀ R ⊢ ↑(LinearEquiv.symm b.repr) v = ↑(LinearEquiv.symm b.repr) (Finsupp.sum v Finsupp.single) [PROOFSTEP] simp [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b b₁ : Basis ι R M i : ι c : R x : M v : ι →₀ R ⊢ ↑(LinearEquiv.symm b.repr) (Finsupp.sum v Finsupp.single) = ∑ i in v.support, ↑(LinearEquiv.symm b.repr) (Finsupp.single i (↑v i)) [PROOFSTEP] rw [Finsupp.sum, LinearEquiv.map_sum] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b b₁ : Basis ι R M i : ι c : R x : M v : ι →₀ R ⊢ ∑ i in v.support, ↑(LinearEquiv.symm b.repr) (Finsupp.single i (↑v i)) = ↑(Finsupp.total ι M R ↑b) v [PROOFSTEP] simp [repr_symm_single, Finsupp.total_apply, Finsupp.sum] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b b₁ : Basis ι R M i : ι c : R x : M v : ι →₀ R ⊢ ↑b.repr (↑(Finsupp.total ι M R ↑b) v) = v [PROOFSTEP] rw [← b.coe_repr_symm] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b b₁ : Basis ι R M i : ι c : R x : M v : ι →₀ R ⊢ ↑b.repr (↑↑(LinearEquiv.symm b.repr) v) = v [PROOFSTEP] exact b.repr.apply_symm_apply v [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b b₁ : Basis ι R M i : ι c : R x : M ⊢ ↑(Finsupp.total ι M R ↑b) (↑b.repr x) = x [PROOFSTEP] rw [← b.coe_repr_symm] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b b₁ : Basis ι R M i : ι c : R x : M ⊢ ↑↑(LinearEquiv.symm b.repr) (↑b.repr x) = x [PROOFSTEP] exact b.repr.symm_apply_apply x [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b b₁ : Basis ι R M i : ι c : R x : M ⊢ LinearMap.range ↑b.repr = Finsupp.supported R R univ [PROOFSTEP] rw [LinearEquiv.range, Finsupp.supported_univ] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b b₁ : Basis ι R M i : ι c : R x m : M ⊢ ↑b.repr m ∈ Finsupp.supported R R ↑(↑b.repr m).support ∧ ↑(Finsupp.total ι M R ↑b) (↑b.repr m) = m [PROOFSTEP] simp [Finsupp.mem_supported_support] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b b₁ : Basis ι R M i : ι c : R x : M s : Set ι m : M hm : m ∈ span R (↑b '' s) ⊢ ↑(↑b.repr m).support ⊆ s [PROOFSTEP] rcases(Finsupp.mem_span_image_iff_total _).1 hm with ⟨l, hl, rfl⟩ [GOAL] case intro.intro ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b b₁ : Basis ι R M i : ι c : R x : M s : Set ι l : ι →₀ R hl : l ∈ Finsupp.supported R R s hm : ↑(Finsupp.total ι M R ↑b) l ∈ span R (↑b '' s) ⊢ ↑(↑b.repr (↑(Finsupp.total ι M R ↑b) l)).support ⊆ s [PROOFSTEP] rwa [repr_total, ← Finsupp.mem_supported R l] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : AddCommMonoid M' inst✝¹ : Module R M' b b₁ : Basis ι R M i✝ : ι c : R x : M inst✝ : Nontrivial R i : ι s : Set ι ⊢ ↑b i ∈ span R (↑b '' s) ↔ i ∈ s [PROOFSTEP] simp [mem_span_image, Finsupp.support_single_ne_zero] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b b₁ : Basis ι R M i : ι c : R x✝ x : M ⊢ (∀ (i : ι), ↑(coord b i) x = 0) ↔ ↑b.repr x = 0 [PROOFSTEP] simp only [b.coord_apply, FunLike.ext_iff, Finsupp.zero_apply] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b b₁ : Basis ι R M i : ι c : R x : M ⊢ ↑(sumCoords b) = fun m => ∑ᶠ (i : ι), ↑(coord b i) m [PROOFSTEP] ext m [GOAL] case h ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b b₁ : Basis ι R M i : ι c : R x m : M ⊢ ↑(sumCoords b) m = ∑ᶠ (i : ι), ↑(coord b i) m [PROOFSTEP] simp only [Basis.sumCoords, Basis.coord, Finsupp.lapply_apply, LinearMap.id_coe, LinearEquiv.coe_coe, Function.comp_apply, Finsupp.coe_lsum, LinearMap.coe_comp, finsum_eq_sum _ (b.repr m).finite_support, Finsupp.sum, Finset.finite_toSet_toFinset, id.def, Finsupp.fun_support_eq] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : AddCommMonoid M' inst✝¹ : Module R M' b b₁ : Basis ι R M i : ι c : R x : M inst✝ : Fintype ι ⊢ ↑(sumCoords b) = ↑(∑ i : ι, coord b i) [PROOFSTEP] ext m [GOAL] case h ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : AddCommMonoid M' inst✝¹ : Module R M' b b₁ : Basis ι R M i : ι c : R x : M inst✝ : Fintype ι m : M ⊢ ↑(sumCoords b) m = ↑(∑ i : ι, coord b i) m [PROOFSTEP] simp only [sumCoords, Finsupp.sum_fintype, LinearMap.id_coe, LinearEquiv.coe_coe, coord_apply, id.def, Fintype.sum_apply, imp_true_iff, Finsupp.coe_lsum, LinearMap.coe_comp, comp_apply, LinearMap.coeFn_sum] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b b₁ : Basis ι R M i : ι c : R x : M ⊢ ↑(sumCoords b) (↑b i) = 1 [PROOFSTEP] simp only [Basis.sumCoords, LinearMap.id_coe, LinearEquiv.coe_coe, id.def, Basis.repr_self, Function.comp_apply, Finsupp.coe_lsum, LinearMap.coe_comp, Finsupp.sum_single_index] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b b₁ : Basis ι R M i✝ : ι c : R x : M i : ι m : M r : R ⊢ ↑(coord b i) (r • m) = r * ↑(coord b i) m [PROOFSTEP] simp [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b✝ b₁ : Basis ι R M i✝ : ι c : R x : M b : Basis ι R M i : ι f : ι →₀ R ⊢ ↑(coord b i) (↑(LinearEquiv.symm b.repr) f) = ↑f i [PROOFSTEP] simp only [repr_symm_apply, coord_apply, repr_total] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁹ : Semiring R inst✝⁸ : AddCommMonoid M inst✝⁷ : Module R M inst✝⁶ : AddCommMonoid M' inst✝⁵ : Module R M' b b₁ : Basis ι R M i : ι c : R x : M R₁ : Type u_10 inst✝⁴ : Semiring R₁ σ : R →+* R₁ σ' : R₁ →+* R inst✝³ : RingHomInvPair σ σ' inst✝² : RingHomInvPair σ' σ M₁ : Type u_11 inst✝¹ : AddCommMonoid M₁ inst✝ : Module R₁ M₁ f₁ f₂ : M →ₛₗ[σ] M₁ h : ∀ (i : ι), ↑f₁ (↑b i) = ↑f₂ (↑b i) ⊢ f₁ = f₂ [PROOFSTEP] ext x [GOAL] case h ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁹ : Semiring R inst✝⁸ : AddCommMonoid M inst✝⁷ : Module R M inst✝⁶ : AddCommMonoid M' inst✝⁵ : Module R M' b b₁ : Basis ι R M i : ι c : R x✝ : M R₁ : Type u_10 inst✝⁴ : Semiring R₁ σ : R →+* R₁ σ' : R₁ →+* R inst✝³ : RingHomInvPair σ σ' inst✝² : RingHomInvPair σ' σ M₁ : Type u_11 inst✝¹ : AddCommMonoid M₁ inst✝ : Module R₁ M₁ f₁ f₂ : M →ₛₗ[σ] M₁ h : ∀ (i : ι), ↑f₁ (↑b i) = ↑f₂ (↑b i) x : M ⊢ ↑f₁ x = ↑f₂ x [PROOFSTEP] rw [← b.total_repr x, Finsupp.total_apply, Finsupp.sum] [GOAL] case h ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁹ : Semiring R inst✝⁸ : AddCommMonoid M inst✝⁷ : Module R M inst✝⁶ : AddCommMonoid M' inst✝⁵ : Module R M' b b₁ : Basis ι R M i : ι c : R x✝ : M R₁ : Type u_10 inst✝⁴ : Semiring R₁ σ : R →+* R₁ σ' : R₁ →+* R inst✝³ : RingHomInvPair σ σ' inst✝² : RingHomInvPair σ' σ M₁ : Type u_11 inst✝¹ : AddCommMonoid M₁ inst✝ : Module R₁ M₁ f₁ f₂ : M →ₛₗ[σ] M₁ h : ∀ (i : ι), ↑f₁ (↑b i) = ↑f₂ (↑b i) x : M ⊢ ↑f₁ (∑ a in (↑b.repr x).support, ↑(↑b.repr x) a • ↑b a) = ↑f₂ (∑ a in (↑b.repr x).support, ↑(↑b.repr x) a • ↑b a) [PROOFSTEP] simp only [LinearMap.map_sum, LinearMap.map_smulₛₗ, h] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁹ : Semiring R inst✝⁸ : AddCommMonoid M inst✝⁷ : Module R M inst✝⁶ : AddCommMonoid M' inst✝⁵ : Module R M' b b₁ : Basis ι R M i : ι c : R x : M R₁ : Type u_10 inst✝⁴ : Semiring R₁ σ : R →+* R₁ σ' : R₁ →+* R inst✝³ : RingHomInvPair σ σ' inst✝² : RingHomInvPair σ' σ M₁ : Type u_11 inst✝¹ : AddCommMonoid M₁ inst✝ : Module R₁ M₁ f₁ f₂ : M ≃ₛₗ[σ] M₁ h : ∀ (i : ι), ↑f₁ (↑b i) = ↑f₂ (↑b i) ⊢ f₁ = f₂ [PROOFSTEP] ext x [GOAL] case h ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁹ : Semiring R inst✝⁸ : AddCommMonoid M inst✝⁷ : Module R M inst✝⁶ : AddCommMonoid M' inst✝⁵ : Module R M' b b₁ : Basis ι R M i : ι c : R x✝ : M R₁ : Type u_10 inst✝⁴ : Semiring R₁ σ : R →+* R₁ σ' : R₁ →+* R inst✝³ : RingHomInvPair σ σ' inst✝² : RingHomInvPair σ' σ M₁ : Type u_11 inst✝¹ : AddCommMonoid M₁ inst✝ : Module R₁ M₁ f₁ f₂ : M ≃ₛₗ[σ] M₁ h : ∀ (i : ι), ↑f₁ (↑b i) = ↑f₂ (↑b i) x : M ⊢ ↑f₁ x = ↑f₂ x [PROOFSTEP] rw [← b.total_repr x, Finsupp.total_apply, Finsupp.sum] [GOAL] case h ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁹ : Semiring R inst✝⁸ : AddCommMonoid M inst✝⁷ : Module R M inst✝⁶ : AddCommMonoid M' inst✝⁵ : Module R M' b b₁ : Basis ι R M i : ι c : R x✝ : M R₁ : Type u_10 inst✝⁴ : Semiring R₁ σ : R →+* R₁ σ' : R₁ →+* R inst✝³ : RingHomInvPair σ σ' inst✝² : RingHomInvPair σ' σ M₁ : Type u_11 inst✝¹ : AddCommMonoid M₁ inst✝ : Module R₁ M₁ f₁ f₂ : M ≃ₛₗ[σ] M₁ h : ∀ (i : ι), ↑f₁ (↑b i) = ↑f₂ (↑b i) x : M ⊢ ↑f₁ (∑ a in (↑b.repr x).support, ↑(↑b.repr x) a • ↑b a) = ↑f₂ (∑ a in (↑b.repr x).support, ↑(↑b.repr x) a • ↑b a) [PROOFSTEP] simp only [LinearEquiv.map_sum, LinearEquiv.map_smulₛₗ, h] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁹ : Semiring R inst✝⁸ : AddCommMonoid M inst✝⁷ : Module R M inst✝⁶ : AddCommMonoid M' inst✝⁵ : Module R M' b b₁ : Basis ι R M i : ι c : R x✝ : M R₁ : Type u_10 inst✝⁴ : Semiring R₁ σ : R →+* R₁ σ' : R₁ →+* R inst✝³ : RingHomInvPair σ σ' inst✝² : RingHomInvPair σ' σ M₁ : Type u_11 inst✝¹ : AddCommMonoid M₁ inst✝ : Module R₁ M₁ x y : M ⊢ x = y ↔ ∀ (i : ι), ↑(↑b.repr x) i = ↑(↑b.repr y) i [PROOFSTEP] simp only [← FunLike.ext_iff, EmbeddingLike.apply_eq_iff_eq] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁹ : Semiring R inst✝⁸ : AddCommMonoid M inst✝⁷ : Module R M inst✝⁶ : AddCommMonoid M' inst✝⁵ : Module R M' b b₁ : Basis ι R M i✝ : ι c : R x✝ : M R₁ : Type u_10 inst✝⁴ : Semiring R₁ σ : R →+* R₁ σ' : R₁ →+* R inst✝³ : RingHomInvPair σ σ' inst✝² : RingHomInvPair σ' σ M₁ : Type u_11 inst✝¹ : AddCommMonoid M₁ inst✝ : Module R₁ M₁ f : M → ι → R hadd : ∀ (x y : M), f (x + y) = f x + f y hsmul : ∀ (c : R) (x : M), f (c • x) = c • f x f_eq : ∀ (i : ι), f (↑b i) = ↑(Finsupp.single i 1) x : M i : ι ⊢ ↑(↑b.repr x) i = f x i [PROOFSTEP] let f_i : M →ₗ[R] R := { toFun := fun x => f x i map_add' := fun _ _ => by dsimp only []; rw [hadd, Pi.add_apply] map_smul' := fun _ _ => by simp [hsmul, Pi.smul_apply] } [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁹ : Semiring R inst✝⁸ : AddCommMonoid M inst✝⁷ : Module R M inst✝⁶ : AddCommMonoid M' inst✝⁵ : Module R M' b b₁ : Basis ι R M i✝ : ι c : R x✝² : M R₁ : Type u_10 inst✝⁴ : Semiring R₁ σ : R →+* R₁ σ' : R₁ →+* R inst✝³ : RingHomInvPair σ σ' inst✝² : RingHomInvPair σ' σ M₁ : Type u_11 inst✝¹ : AddCommMonoid M₁ inst✝ : Module R₁ M₁ f : M → ι → R hadd : ∀ (x y : M), f (x + y) = f x + f y hsmul : ∀ (c : R) (x : M), f (c • x) = c • f x f_eq : ∀ (i : ι), f (↑b i) = ↑(Finsupp.single i 1) x : M i : ι x✝¹ x✝ : M ⊢ (fun x => f x i) (x✝¹ + x✝) = (fun x => f x i) x✝¹ + (fun x => f x i) x✝ [PROOFSTEP] dsimp only [] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁹ : Semiring R inst✝⁸ : AddCommMonoid M inst✝⁷ : Module R M inst✝⁶ : AddCommMonoid M' inst✝⁵ : Module R M' b b₁ : Basis ι R M i✝ : ι c : R x✝² : M R₁ : Type u_10 inst✝⁴ : Semiring R₁ σ : R →+* R₁ σ' : R₁ →+* R inst✝³ : RingHomInvPair σ σ' inst✝² : RingHomInvPair σ' σ M₁ : Type u_11 inst✝¹ : AddCommMonoid M₁ inst✝ : Module R₁ M₁ f : M → ι → R hadd : ∀ (x y : M), f (x + y) = f x + f y hsmul : ∀ (c : R) (x : M), f (c • x) = c • f x f_eq : ∀ (i : ι), f (↑b i) = ↑(Finsupp.single i 1) x : M i : ι x✝¹ x✝ : M ⊢ f (x✝¹ + x✝) i = f x✝¹ i + f x✝ i [PROOFSTEP] rw [hadd, Pi.add_apply] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁹ : Semiring R inst✝⁸ : AddCommMonoid M inst✝⁷ : Module R M inst✝⁶ : AddCommMonoid M' inst✝⁵ : Module R M' b b₁ : Basis ι R M i✝ : ι c : R x✝² : M R₁ : Type u_10 inst✝⁴ : Semiring R₁ σ : R →+* R₁ σ' : R₁ →+* R inst✝³ : RingHomInvPair σ σ' inst✝² : RingHomInvPair σ' σ M₁ : Type u_11 inst✝¹ : AddCommMonoid M₁ inst✝ : Module R₁ M₁ f : M → ι → R hadd : ∀ (x y : M), f (x + y) = f x + f y hsmul : ∀ (c : R) (x : M), f (c • x) = c • f x f_eq : ∀ (i : ι), f (↑b i) = ↑(Finsupp.single i 1) x : M i : ι x✝¹ : R x✝ : M ⊢ AddHom.toFun { toFun := fun x => f x i, map_add' := (_ : ∀ (x x_1 : M), (fun x => f x i) (x + x_1) = (fun x => f x i) x + (fun x => f x i) x_1) } (x✝¹ • x✝) = ↑(RingHom.id R) x✝¹ • AddHom.toFun { toFun := fun x => f x i, map_add' := (_ : ∀ (x x_1 : M), (fun x => f x i) (x + x_1) = (fun x => f x i) x + (fun x => f x i) x_1) } x✝ [PROOFSTEP] simp [hsmul, Pi.smul_apply] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁹ : Semiring R inst✝⁸ : AddCommMonoid M inst✝⁷ : Module R M inst✝⁶ : AddCommMonoid M' inst✝⁵ : Module R M' b b₁ : Basis ι R M i✝ : ι c : R x✝ : M R₁ : Type u_10 inst✝⁴ : Semiring R₁ σ : R →+* R₁ σ' : R₁ →+* R inst✝³ : RingHomInvPair σ σ' inst✝² : RingHomInvPair σ' σ M₁ : Type u_11 inst✝¹ : AddCommMonoid M₁ inst✝ : Module R₁ M₁ f : M → ι → R hadd : ∀ (x y : M), f (x + y) = f x + f y hsmul : ∀ (c : R) (x : M), f (c • x) = c • f x f_eq : ∀ (i : ι), f (↑b i) = ↑(Finsupp.single i 1) x : M i : ι f_i : M →ₗ[R] R := { toAddHom := { toFun := fun x => f x i, map_add' := (_ : ∀ (x x_1 : M), (fun x => f x i) (x + x_1) = (fun x => f x i) x + (fun x => f x i) x_1) }, map_smul' := (_ : ∀ (x : R) (x_1 : M), f (x • x_1) i = x * f x_1 i) } ⊢ ↑(↑b.repr x) i = f x i [PROOFSTEP] have : Finsupp.lapply i ∘ₗ ↑b.repr = f_i := by refine' b.ext fun j => _ show b.repr (b j) i = f (b j) i rw [b.repr_self, f_eq] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁹ : Semiring R inst✝⁸ : AddCommMonoid M inst✝⁷ : Module R M inst✝⁶ : AddCommMonoid M' inst✝⁵ : Module R M' b b₁ : Basis ι R M i✝ : ι c : R x✝ : M R₁ : Type u_10 inst✝⁴ : Semiring R₁ σ : R →+* R₁ σ' : R₁ →+* R inst✝³ : RingHomInvPair σ σ' inst✝² : RingHomInvPair σ' σ M₁ : Type u_11 inst✝¹ : AddCommMonoid M₁ inst✝ : Module R₁ M₁ f : M → ι → R hadd : ∀ (x y : M), f (x + y) = f x + f y hsmul : ∀ (c : R) (x : M), f (c • x) = c • f x f_eq : ∀ (i : ι), f (↑b i) = ↑(Finsupp.single i 1) x : M i : ι f_i : M →ₗ[R] R := { toAddHom := { toFun := fun x => f x i, map_add' := (_ : ∀ (x x_1 : M), (fun x => f x i) (x + x_1) = (fun x => f x i) x + (fun x => f x i) x_1) }, map_smul' := (_ : ∀ (x : R) (x_1 : M), f (x • x_1) i = x * f x_1 i) } ⊢ LinearMap.comp (Finsupp.lapply i) ↑b.repr = f_i [PROOFSTEP] refine' b.ext fun j => _ [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁹ : Semiring R inst✝⁸ : AddCommMonoid M inst✝⁷ : Module R M inst✝⁶ : AddCommMonoid M' inst✝⁵ : Module R M' b b₁ : Basis ι R M i✝ : ι c : R x✝ : M R₁ : Type u_10 inst✝⁴ : Semiring R₁ σ : R →+* R₁ σ' : R₁ →+* R inst✝³ : RingHomInvPair σ σ' inst✝² : RingHomInvPair σ' σ M₁ : Type u_11 inst✝¹ : AddCommMonoid M₁ inst✝ : Module R₁ M₁ f : M → ι → R hadd : ∀ (x y : M), f (x + y) = f x + f y hsmul : ∀ (c : R) (x : M), f (c • x) = c • f x f_eq : ∀ (i : ι), f (↑b i) = ↑(Finsupp.single i 1) x : M i : ι f_i : M →ₗ[R] R := { toAddHom := { toFun := fun x => f x i, map_add' := (_ : ∀ (x x_1 : M), (fun x => f x i) (x + x_1) = (fun x => f x i) x + (fun x => f x i) x_1) }, map_smul' := (_ : ∀ (x : R) (x_1 : M), f (x • x_1) i = x * f x_1 i) } j : ι ⊢ ↑(LinearMap.comp (Finsupp.lapply i) ↑b.repr) (↑b j) = ↑f_i (↑b j) [PROOFSTEP] show b.repr (b j) i = f (b j) i [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁹ : Semiring R inst✝⁸ : AddCommMonoid M inst✝⁷ : Module R M inst✝⁶ : AddCommMonoid M' inst✝⁵ : Module R M' b b₁ : Basis ι R M i✝ : ι c : R x✝ : M R₁ : Type u_10 inst✝⁴ : Semiring R₁ σ : R →+* R₁ σ' : R₁ →+* R inst✝³ : RingHomInvPair σ σ' inst✝² : RingHomInvPair σ' σ M₁ : Type u_11 inst✝¹ : AddCommMonoid M₁ inst✝ : Module R₁ M₁ f : M → ι → R hadd : ∀ (x y : M), f (x + y) = f x + f y hsmul : ∀ (c : R) (x : M), f (c • x) = c • f x f_eq : ∀ (i : ι), f (↑b i) = ↑(Finsupp.single i 1) x : M i : ι f_i : M →ₗ[R] R := { toAddHom := { toFun := fun x => f x i, map_add' := (_ : ∀ (x x_1 : M), (fun x => f x i) (x + x_1) = (fun x => f x i) x + (fun x => f x i) x_1) }, map_smul' := (_ : ∀ (x : R) (x_1 : M), f (x • x_1) i = x * f x_1 i) } j : ι ⊢ ↑(↑b.repr (↑b j)) i = f (↑b j) i [PROOFSTEP] rw [b.repr_self, f_eq] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁹ : Semiring R inst✝⁸ : AddCommMonoid M inst✝⁷ : Module R M inst✝⁶ : AddCommMonoid M' inst✝⁵ : Module R M' b b₁ : Basis ι R M i✝ : ι c : R x✝ : M R₁ : Type u_10 inst✝⁴ : Semiring R₁ σ : R →+* R₁ σ' : R₁ →+* R inst✝³ : RingHomInvPair σ σ' inst✝² : RingHomInvPair σ' σ M₁ : Type u_11 inst✝¹ : AddCommMonoid M₁ inst✝ : Module R₁ M₁ f : M → ι → R hadd : ∀ (x y : M), f (x + y) = f x + f y hsmul : ∀ (c : R) (x : M), f (c • x) = c • f x f_eq : ∀ (i : ι), f (↑b i) = ↑(Finsupp.single i 1) x : M i : ι f_i : M →ₗ[R] R := { toAddHom := { toFun := fun x => f x i, map_add' := (_ : ∀ (x x_1 : M), (fun x => f x i) (x + x_1) = (fun x => f x i) x + (fun x => f x i) x_1) }, map_smul' := (_ : ∀ (x : R) (x_1 : M), f (x • x_1) i = x * f x_1 i) } this : LinearMap.comp (Finsupp.lapply i) ↑b.repr = f_i ⊢ ↑(↑b.repr x) i = f x i [PROOFSTEP] calc b.repr x i = f_i x := by { rw [← this] rfl } _ = f x i := rfl [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁹ : Semiring R inst✝⁸ : AddCommMonoid M inst✝⁷ : Module R M inst✝⁶ : AddCommMonoid M' inst✝⁵ : Module R M' b b₁ : Basis ι R M i✝ : ι c : R x✝ : M R₁ : Type u_10 inst✝⁴ : Semiring R₁ σ : R →+* R₁ σ' : R₁ →+* R inst✝³ : RingHomInvPair σ σ' inst✝² : RingHomInvPair σ' σ M₁ : Type u_11 inst✝¹ : AddCommMonoid M₁ inst✝ : Module R₁ M₁ f : M → ι → R hadd : ∀ (x y : M), f (x + y) = f x + f y hsmul : ∀ (c : R) (x : M), f (c • x) = c • f x f_eq : ∀ (i : ι), f (↑b i) = ↑(Finsupp.single i 1) x : M i : ι f_i : M →ₗ[R] R := { toAddHom := { toFun := fun x => f x i, map_add' := (_ : ∀ (x x_1 : M), (fun x => f x i) (x + x_1) = (fun x => f x i) x + (fun x => f x i) x_1) }, map_smul' := (_ : ∀ (x : R) (x_1 : M), f (x • x_1) i = x * f x_1 i) } this : LinearMap.comp (Finsupp.lapply i) ↑b.repr = f_i ⊢ ↑(↑b.repr x) i = ↑f_i x [PROOFSTEP] { rw [← this] rfl } [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁹ : Semiring R inst✝⁸ : AddCommMonoid M inst✝⁷ : Module R M inst✝⁶ : AddCommMonoid M' inst✝⁵ : Module R M' b b₁ : Basis ι R M i✝ : ι c : R x✝ : M R₁ : Type u_10 inst✝⁴ : Semiring R₁ σ : R →+* R₁ σ' : R₁ →+* R inst✝³ : RingHomInvPair σ σ' inst✝² : RingHomInvPair σ' σ M₁ : Type u_11 inst✝¹ : AddCommMonoid M₁ inst✝ : Module R₁ M₁ f : M → ι → R hadd : ∀ (x y : M), f (x + y) = f x + f y hsmul : ∀ (c : R) (x : M), f (c • x) = c • f x f_eq : ∀ (i : ι), f (↑b i) = ↑(Finsupp.single i 1) x : M i : ι f_i : M →ₗ[R] R := { toAddHom := { toFun := fun x => f x i, map_add' := (_ : ∀ (x x_1 : M), (fun x => f x i) (x + x_1) = (fun x => f x i) x + (fun x => f x i) x_1) }, map_smul' := (_ : ∀ (x : R) (x_1 : M), f (x • x_1) i = x * f x_1 i) } this : LinearMap.comp (Finsupp.lapply i) ↑b.repr = f_i ⊢ ↑(↑b.repr x) i = ↑f_i x [PROOFSTEP] rw [← this] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁹ : Semiring R inst✝⁸ : AddCommMonoid M inst✝⁷ : Module R M inst✝⁶ : AddCommMonoid M' inst✝⁵ : Module R M' b b₁ : Basis ι R M i✝ : ι c : R x✝ : M R₁ : Type u_10 inst✝⁴ : Semiring R₁ σ : R →+* R₁ σ' : R₁ →+* R inst✝³ : RingHomInvPair σ σ' inst✝² : RingHomInvPair σ' σ M₁ : Type u_11 inst✝¹ : AddCommMonoid M₁ inst✝ : Module R₁ M₁ f : M → ι → R hadd : ∀ (x y : M), f (x + y) = f x + f y hsmul : ∀ (c : R) (x : M), f (c • x) = c • f x f_eq : ∀ (i : ι), f (↑b i) = ↑(Finsupp.single i 1) x : M i : ι f_i : M →ₗ[R] R := { toAddHom := { toFun := fun x => f x i, map_add' := (_ : ∀ (x x_1 : M), (fun x => f x i) (x + x_1) = (fun x => f x i) x + (fun x => f x i) x_1) }, map_smul' := (_ : ∀ (x : R) (x_1 : M), f (x • x_1) i = x * f x_1 i) } this : LinearMap.comp (Finsupp.lapply i) ↑b.repr = f_i ⊢ ↑(↑b.repr x) i = ↑(LinearMap.comp (Finsupp.lapply i) ↑b.repr) x [PROOFSTEP] rfl [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁹ : Semiring R inst✝⁸ : AddCommMonoid M inst✝⁷ : Module R M inst✝⁶ : AddCommMonoid M' inst✝⁵ : Module R M' b b₁✝ : Basis ι R M i : ι c : R x : M R₁ : Type u_10 inst✝⁴ : Semiring R₁ σ : R →+* R₁ σ' : R₁ →+* R inst✝³ : RingHomInvPair σ σ' inst✝² : RingHomInvPair σ' σ M₁ : Type u_11 inst✝¹ : AddCommMonoid M₁ inst✝ : Module R₁ M₁ b₁ b₂ : Basis ι R M h : ∀ (x : M) (i : ι), ↑(↑b₁.repr x) i = ↑(↑b₂.repr x) i ⊢ b₁.repr = b₂.repr [PROOFSTEP] ext [GOAL] case h.h ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁹ : Semiring R inst✝⁸ : AddCommMonoid M inst✝⁷ : Module R M inst✝⁶ : AddCommMonoid M' inst✝⁵ : Module R M' b b₁✝ : Basis ι R M i : ι c : R x : M R₁ : Type u_10 inst✝⁴ : Semiring R₁ σ : R →+* R₁ σ' : R₁ →+* R inst✝³ : RingHomInvPair σ σ' inst✝² : RingHomInvPair σ' σ M₁ : Type u_11 inst✝¹ : AddCommMonoid M₁ inst✝ : Module R₁ M₁ b₁ b₂ : Basis ι R M h : ∀ (x : M) (i : ι), ↑(↑b₁.repr x) i = ↑(↑b₂.repr x) i x✝ : M a✝ : ι ⊢ ↑(↑b₁.repr x✝) a✝ = ↑(↑b₂.repr x✝) a✝ [PROOFSTEP] apply h [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid M' inst✝² : Module R M' b b₁ : Basis ι R M i : ι c : R x : M R' : Type u_10 inst✝¹ : Semiring R' inst✝ : Module R' M f : R ≃+* R' h : ∀ (c : R) (x : M), ↑f c • x = c • x ⊢ Basis ι R' M [PROOFSTEP] letI : Module R' R := Module.compHom R (↑f.symm : R' →+* R) [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid M' inst✝² : Module R M' b b₁ : Basis ι R M i : ι c : R x : M R' : Type u_10 inst✝¹ : Semiring R' inst✝ : Module R' M f : R ≃+* R' h : ∀ (c : R) (x : M), ↑f c • x = c • x this : Module R' R := Module.compHom R ↑(RingEquiv.symm f) ⊢ Basis ι R' M [PROOFSTEP] haveI : IsScalarTower R' R M := { smul_assoc := fun x y z => by -- Porting note: `dsimp [(· • ·)]` is unavailable because -- `HSMul.hsmul` becomes `SMul.smul`. change (f.symm x * y) • z = x • (y • z) rw [mul_smul, ← h, f.apply_symm_apply] } [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid M' inst✝² : Module R M' b b₁ : Basis ι R M i : ι c : R x✝ : M R' : Type u_10 inst✝¹ : Semiring R' inst✝ : Module R' M f : R ≃+* R' h : ∀ (c : R) (x : M), ↑f c • x = c • x this : Module R' R := Module.compHom R ↑(RingEquiv.symm f) x : R' y : R z : M ⊢ (x • y) • z = x • y • z [PROOFSTEP] change (f.symm x * y) • z = x • (y • z) [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid M' inst✝² : Module R M' b b₁ : Basis ι R M i : ι c : R x✝ : M R' : Type u_10 inst✝¹ : Semiring R' inst✝ : Module R' M f : R ≃+* R' h : ∀ (c : R) (x : M), ↑f c • x = c • x this : Module R' R := Module.compHom R ↑(RingEquiv.symm f) x : R' y : R z : M ⊢ (↑(RingEquiv.symm f) x * y) • z = x • y • z [PROOFSTEP] rw [mul_smul, ← h, f.apply_symm_apply] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid M' inst✝² : Module R M' b b₁ : Basis ι R M i : ι c : R x : M R' : Type u_10 inst✝¹ : Semiring R' inst✝ : Module R' M f : R ≃+* R' h : ∀ (c : R) (x : M), ↑f c • x = c • x this✝ : Module R' R := Module.compHom R ↑(RingEquiv.symm f) this : IsScalarTower R' R M ⊢ Basis ι R' M [PROOFSTEP] exact ofRepr <| (b.repr.restrictScalars R').trans <| Finsupp.mapRange.linearEquiv (Module.compHom.toLinearEquiv f.symm).symm [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid M' inst✝² : Module R M' b b₁ : Basis ι R M i✝ : ι c : R x : M R' : Type u_10 inst✝¹ : Semiring R' inst✝ : Module R' M f : R ≃+* R' h : ∀ (c : R) (x : M), ↑f c • x = c • x i : ι ⊢ ↑(mapCoeffs b f h).repr (↑b i) = Finsupp.single i 1 [PROOFSTEP] letI : Module R' R := Module.compHom R (↑f.symm : R' →+* R) [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid M' inst✝² : Module R M' b b₁ : Basis ι R M i✝ : ι c : R x : M R' : Type u_10 inst✝¹ : Semiring R' inst✝ : Module R' M f : R ≃+* R' h : ∀ (c : R) (x : M), ↑f c • x = c • x i : ι this : Module R' R := Module.compHom R ↑(RingEquiv.symm f) ⊢ ↑(mapCoeffs b f h).repr (↑b i) = Finsupp.single i 1 [PROOFSTEP] haveI : IsScalarTower R' R M := { smul_assoc := fun x y z => by -- Porting note: `dsimp [(· • ·)]` is unavailable because -- `HSMul.hsmul` becomes `SMul.smul`. change (f.symm x * y) • z = x • (y • z) rw [mul_smul, ← h, f.apply_symm_apply] } [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid M' inst✝² : Module R M' b b₁ : Basis ι R M i✝ : ι c : R x✝ : M R' : Type u_10 inst✝¹ : Semiring R' inst✝ : Module R' M f : R ≃+* R' h : ∀ (c : R) (x : M), ↑f c • x = c • x i : ι this : Module R' R := Module.compHom R ↑(RingEquiv.symm f) x : R' y : R z : M ⊢ (x • y) • z = x • y • z [PROOFSTEP] change (f.symm x * y) • z = x • (y • z) [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid M' inst✝² : Module R M' b b₁ : Basis ι R M i✝ : ι c : R x✝ : M R' : Type u_10 inst✝¹ : Semiring R' inst✝ : Module R' M f : R ≃+* R' h : ∀ (c : R) (x : M), ↑f c • x = c • x i : ι this : Module R' R := Module.compHom R ↑(RingEquiv.symm f) x : R' y : R z : M ⊢ (↑(RingEquiv.symm f) x * y) • z = x • y • z [PROOFSTEP] rw [mul_smul, ← h, f.apply_symm_apply] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid M' inst✝² : Module R M' b b₁ : Basis ι R M i✝ : ι c : R x : M R' : Type u_10 inst✝¹ : Semiring R' inst✝ : Module R' M f : R ≃+* R' h : ∀ (c : R) (x : M), ↑f c • x = c • x i : ι this✝ : Module R' R := Module.compHom R ↑(RingEquiv.symm f) this : IsScalarTower R' R M ⊢ ↑(mapCoeffs b f h).repr (↑b i) = Finsupp.single i 1 [PROOFSTEP] simp [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b b₁ : Basis ι R M i : ι c : R x : M b' : Basis ι' R M' e : ι ≃ ι' i' : ι' ⊢ ↑(LinearEquiv.symm (LinearEquiv.trans b.repr (Finsupp.domLCongr e))) (Finsupp.single i' 1) = ↑(LinearEquiv.symm b.repr) (Finsupp.single (↑e.symm i') 1) [PROOFSTEP] rw [LinearEquiv.symm_trans_apply, Finsupp.domLCongr_symm, Finsupp.domLCongr_single] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b b₁ : Basis ι R M i : ι c : R x : M b' : Basis ι' R M' e : ι ≃ ι' i' : ι' ⊢ ↑(↑(Finsupp.domLCongr e) (↑b.repr x)) i' = ↑(↑b.repr x) (↑e.symm i') [PROOFSTEP] simp [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b b₁ : Basis ι R M i : ι c : R x : M b' : Basis ι' R M' e : ι ≃ ι' ⊢ ∀ (x_1 : ι'), ↑(↑(reindex b e).repr x) x_1 = ↑(Finsupp.mapDomain (↑e) (↑b.repr x)) x_1 [PROOFSTEP] simp [repr_reindex_apply] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b b₁ : Basis ι R M i✝ : ι c : R x : M b' : Basis ι' R M' e : ι ≃ ι' i : ι ⊢ ↑(reindex b (Equiv.refl ι)) i = ↑b i [PROOFSTEP] simp [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b b₁ : Basis ι R M i : ι c : R x : M b' : Basis ι' R M' e : ι ≃ ι' ⊢ range ↑(reindex b e) = range ↑b [PROOFSTEP] simp [coe_reindex, range_comp] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b b₁ : Basis ι R M i : ι c : R x : M b' : Basis ι' R M' e : ι ≃ ι' ⊢ sumCoords (reindex b e) = sumCoords b [PROOFSTEP] ext x [GOAL] case h ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b b₁ : Basis ι R M i : ι c : R x✝ : M b' : Basis ι' R M' e : ι ≃ ι' x : M ⊢ ↑(sumCoords (reindex b e)) x = ↑(sumCoords b) x [PROOFSTEP] simp only [coe_sumCoords, repr_reindex] [GOAL] case h ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b b₁ : Basis ι R M i : ι c : R x✝ : M b' : Basis ι' R M' e : ι ≃ ι' x : M ⊢ (Finsupp.sum (Finsupp.mapDomain (↑e) (↑b.repr x)) fun x => id) = Finsupp.sum (↑b.repr x) fun x => id [PROOFSTEP] exact Finsupp.sum_mapDomain_index (fun _ => rfl) fun _ _ _ => rfl [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b b₁ : Basis ι R M i✝ : ι c : R x : M b' : Basis ι' R M' e : ι ≃ ι' i : ι h : optParam (↑b i ∈ range ↑b) (_ : ↑b i ∈ range ↑b) ⊢ ↑(reindexRange b) { val := ↑b i, property := h } = ↑b i [PROOFSTEP] by_cases htr : Nontrivial R [GOAL] case pos ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b b₁ : Basis ι R M i✝ : ι c : R x : M b' : Basis ι' R M' e : ι ≃ ι' i : ι h : optParam (↑b i ∈ range ↑b) (_ : ↑b i ∈ range ↑b) htr : Nontrivial R ⊢ ↑(reindexRange b) { val := ↑b i, property := h } = ↑b i [PROOFSTEP] letI := htr [GOAL] case pos ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b b₁ : Basis ι R M i✝ : ι c : R x : M b' : Basis ι' R M' e : ι ≃ ι' i : ι h : optParam (↑b i ∈ range ↑b) (_ : ↑b i ∈ range ↑b) htr : Nontrivial R this : Nontrivial R := htr ⊢ ↑(reindexRange b) { val := ↑b i, property := h } = ↑b i [PROOFSTEP] simp [htr, reindexRange, reindex_apply, Equiv.apply_ofInjective_symm b.injective, Subtype.coe_mk] [GOAL] case neg ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b b₁ : Basis ι R M i✝ : ι c : R x : M b' : Basis ι' R M' e : ι ≃ ι' i : ι h : optParam (↑b i ∈ range ↑b) (_ : ↑b i ∈ range ↑b) htr : ¬Nontrivial R ⊢ ↑(reindexRange b) { val := ↑b i, property := h } = ↑b i [PROOFSTEP] letI : Subsingleton R := not_nontrivial_iff_subsingleton.mp htr [GOAL] case neg ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b b₁ : Basis ι R M i✝ : ι c : R x : M b' : Basis ι' R M' e : ι ≃ ι' i : ι h : optParam (↑b i ∈ range ↑b) (_ : ↑b i ∈ range ↑b) htr : ¬Nontrivial R this : Subsingleton R := Iff.mp not_nontrivial_iff_subsingleton htr ⊢ ↑(reindexRange b) { val := ↑b i, property := h } = ↑b i [PROOFSTEP] letI := Module.subsingleton R M [GOAL] case neg ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b b₁ : Basis ι R M i✝ : ι c : R x : M b' : Basis ι' R M' e : ι ≃ ι' i : ι h : optParam (↑b i ∈ range ↑b) (_ : ↑b i ∈ range ↑b) htr : ¬Nontrivial R this✝ : Subsingleton R := Iff.mp not_nontrivial_iff_subsingleton htr this : Subsingleton M := Module.subsingleton R M ⊢ ↑(reindexRange b) { val := ↑b i, property := h } = ↑b i [PROOFSTEP] simp [reindexRange] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b b₁ : Basis ι R M i : ι c : R x✝ : M b' : Basis ι' R M' e : ι ≃ ι' x : ↑(range ↑b) ⊢ ↑(reindexRange b) x = ↑x [PROOFSTEP] rcases x with ⟨bi, ⟨i, rfl⟩⟩ [GOAL] case mk.intro ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b b₁ : Basis ι R M i✝ : ι c : R x : M b' : Basis ι' R M' e : ι ≃ ι' i : ι ⊢ ↑(reindexRange b) { val := ↑b i, property := (_ : ∃ y, ↑b y = ↑b i) } = ↑{ val := ↑b i, property := (_ : ∃ y, ↑b y = ↑b i) } [PROOFSTEP] exact b.reindexRange_self i [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b b₁ : Basis ι R M i✝ : ι c : R x✝ : M b' : Basis ι' R M' e : ι ≃ ι' x bi : M i : ι h : ↑b i = bi ⊢ ↑(↑(reindexRange b).repr x) { val := bi, property := (_ : ∃ y, ↑b y = bi) } = ↑(↑b.repr x) i [PROOFSTEP] nontriviality [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b b₁ : Basis ι R M i✝ : ι c : R x✝ : M b' : Basis ι' R M' e : ι ≃ ι' x bi : M i : ι h : ↑b i = bi ✝ : Nontrivial ((fun x => R) { val := bi, property := (_ : ∃ y, ↑b y = bi) }) ⊢ ↑(↑(reindexRange b).repr x) { val := bi, property := (_ : ∃ y, ↑b y = bi) } = ↑(↑b.repr x) i [PROOFSTEP] subst h [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b b₁ : Basis ι R M i✝ : ι c : R x✝ : M b' : Basis ι' R M' e : ι ≃ ι' x : M i : ι ✝ : Nontrivial ((fun x => R) { val := ↑b i, property := (_ : ∃ y, ↑b y = ↑b i) }) ⊢ ↑(↑(reindexRange b).repr x) { val := ↑b i, property := (_ : ∃ y, ↑b y = ↑b i) } = ↑(↑b.repr x) i [PROOFSTEP] apply (b.repr_apply_eq (fun x i => b.reindexRange.repr x ⟨b i, _⟩) _ _ _ x i).symm [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b b₁ : Basis ι R M i✝ : ι c : R x✝ : M b' : Basis ι' R M' e : ι ≃ ι' x : M i : ι ✝ : Nontrivial ((fun x => R) { val := ↑b i, property := (_ : ∃ y, ↑b y = ↑b i) }) ⊢ ∀ (x y : M), (fun x i => ↑(↑(reindexRange b).repr x) { val := ↑b i, property := (_ : ∃ y, ↑b y = ↑b i) }) (x + y) = (fun x i => ↑(↑(reindexRange b).repr x) { val := ↑b i, property := (_ : ∃ y, ↑b y = ↑b i) }) x + (fun x i => ↑(↑(reindexRange b).repr x) { val := ↑b i, property := (_ : ∃ y, ↑b y = ↑b i) }) y [PROOFSTEP] intro x y [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b b₁ : Basis ι R M i✝ : ι c : R x✝¹ : M b' : Basis ι' R M' e : ι ≃ ι' x✝ : M i : ι ✝ : Nontrivial ((fun x => R) { val := ↑b i, property := (_ : ∃ y, ↑b y = ↑b i) }) x y : M ⊢ (fun x i => ↑(↑(reindexRange b).repr x) { val := ↑b i, property := (_ : ∃ y, ↑b y = ↑b i) }) (x + y) = (fun x i => ↑(↑(reindexRange b).repr x) { val := ↑b i, property := (_ : ∃ y, ↑b y = ↑b i) }) x + (fun x i => ↑(↑(reindexRange b).repr x) { val := ↑b i, property := (_ : ∃ y, ↑b y = ↑b i) }) y [PROOFSTEP] ext i [GOAL] case h ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b b₁ : Basis ι R M i✝¹ : ι c : R x✝¹ : M b' : Basis ι' R M' e : ι ≃ ι' x✝ : M i✝ : ι ✝ : Nontrivial ((fun x => R) { val := ↑b i✝, property := (_ : ∃ y, ↑b y = ↑b i✝) }) x y : M i : ι ⊢ (fun x i => ↑(↑(reindexRange b).repr x) { val := ↑b i, property := (_ : ∃ y, ↑b y = ↑b i) }) (x + y) i = ((fun x i => ↑(↑(reindexRange b).repr x) { val := ↑b i, property := (_ : ∃ y, ↑b y = ↑b i) }) x + (fun x i => ↑(↑(reindexRange b).repr x) { val := ↑b i, property := (_ : ∃ y, ↑b y = ↑b i) }) y) i [PROOFSTEP] simp only [Pi.add_apply, LinearEquiv.map_add, Finsupp.coe_add] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b b₁ : Basis ι R M i✝ : ι c : R x✝ : M b' : Basis ι' R M' e : ι ≃ ι' x : M i : ι ✝ : Nontrivial ((fun x => R) { val := ↑b i, property := (_ : ∃ y, ↑b y = ↑b i) }) ⊢ ∀ (c : R) (x : M), (fun x i => ↑(↑(reindexRange b).repr x) { val := ↑b i, property := (_ : ∃ y, ↑b y = ↑b i) }) (c • x) = c • (fun x i => ↑(↑(reindexRange b).repr x) { val := ↑b i, property := (_ : ∃ y, ↑b y = ↑b i) }) x [PROOFSTEP] intro c x [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b b₁ : Basis ι R M i✝ : ι c✝ : R x✝¹ : M b' : Basis ι' R M' e : ι ≃ ι' x✝ : M i : ι ✝ : Nontrivial ((fun x => R) { val := ↑b i, property := (_ : ∃ y, ↑b y = ↑b i) }) c : R x : M ⊢ (fun x i => ↑(↑(reindexRange b).repr x) { val := ↑b i, property := (_ : ∃ y, ↑b y = ↑b i) }) (c • x) = c • (fun x i => ↑(↑(reindexRange b).repr x) { val := ↑b i, property := (_ : ∃ y, ↑b y = ↑b i) }) x [PROOFSTEP] ext i [GOAL] case h ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b b₁ : Basis ι R M i✝¹ : ι c✝ : R x✝¹ : M b' : Basis ι' R M' e : ι ≃ ι' x✝ : M i✝ : ι ✝ : Nontrivial ((fun x => R) { val := ↑b i✝, property := (_ : ∃ y, ↑b y = ↑b i✝) }) c : R x : M i : ι ⊢ (fun x i => ↑(↑(reindexRange b).repr x) { val := ↑b i, property := (_ : ∃ y, ↑b y = ↑b i) }) (c • x) i = (c • (fun x i => ↑(↑(reindexRange b).repr x) { val := ↑b i, property := (_ : ∃ y, ↑b y = ↑b i) }) x) i [PROOFSTEP] simp only [Pi.smul_apply, LinearEquiv.map_smul, Finsupp.coe_smul] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b b₁ : Basis ι R M i✝ : ι c : R x✝ : M b' : Basis ι' R M' e : ι ≃ ι' x : M i : ι ✝ : Nontrivial ((fun x => R) { val := ↑b i, property := (_ : ∃ y, ↑b y = ↑b i) }) ⊢ ∀ (i : ι), (fun x i => ↑(↑(reindexRange b).repr x) { val := ↑b i, property := (_ : ∃ y, ↑b y = ↑b i) }) (↑b i) = ↑(Finsupp.single i 1) [PROOFSTEP] intro i [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b b₁ : Basis ι R M i✝¹ : ι c : R x✝ : M b' : Basis ι' R M' e : ι ≃ ι' x : M i✝ : ι ✝ : Nontrivial ((fun x => R) { val := ↑b i✝, property := (_ : ∃ y, ↑b y = ↑b i✝) }) i : ι ⊢ (fun x i => ↑(↑(reindexRange b).repr x) { val := ↑b i, property := (_ : ∃ y, ↑b y = ↑b i) }) (↑b i) = ↑(Finsupp.single i 1) [PROOFSTEP] ext j [GOAL] case h ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b b₁ : Basis ι R M i✝¹ : ι c : R x✝ : M b' : Basis ι' R M' e : ι ≃ ι' x : M i✝ : ι ✝ : Nontrivial ((fun x => R) { val := ↑b i✝, property := (_ : ∃ y, ↑b y = ↑b i✝) }) i j : ι ⊢ (fun x i => ↑(↑(reindexRange b).repr x) { val := ↑b i, property := (_ : ∃ y, ↑b y = ↑b i) }) (↑b i) j = ↑(Finsupp.single i 1) j [PROOFSTEP] simp only [reindexRange_repr_self] [GOAL] case h ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b b₁ : Basis ι R M i✝¹ : ι c : R x✝ : M b' : Basis ι' R M' e : ι ≃ ι' x : M i✝ : ι ✝ : Nontrivial ((fun x => R) { val := ↑b i✝, property := (_ : ∃ y, ↑b y = ↑b i✝) }) i j : ι ⊢ ↑(Finsupp.single { val := ↑b i, property := (_ : ↑b i ∈ range ↑b) } 1) { val := ↑b j, property := (_ : ∃ y, ↑b y = ↑b j) } = ↑(Finsupp.single i 1) j [PROOFSTEP] apply Finsupp.single_apply_left (f := fun i => (⟨b i, _⟩ : Set.range b)) [GOAL] case h.hf ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b b₁ : Basis ι R M i✝¹ : ι c : R x✝ : M b' : Basis ι' R M' e : ι ≃ ι' x : M i✝ : ι ✝ : Nontrivial ((fun x => R) { val := ↑b i✝, property := (_ : ∃ y, ↑b y = ↑b i✝) }) i j : ι ⊢ Injective fun i => { val := ↑b i, property := (_ : ↑b i ∈ range ↑b) } [PROOFSTEP] exact fun i j h => b.injective (Subtype.mk.inj h) [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid M' inst✝² : Module R M' b b₁ : Basis ι R M i : ι c : R x : M b' : Basis ι' R M' e : ι ≃ ι' inst✝¹ : Fintype ι inst✝ : DecidableEq M ⊢ ∀ (a : M), a ∈ range ↑b ↔ ↑(Equiv.refl M) a ∈ Finset.image (↑b) Finset.univ [PROOFSTEP] simp [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid M' inst✝² : Module R M' b b₁ : Basis ι R M i✝ : ι c : R x : M b' : Basis ι' R M' e : ι ≃ ι' inst✝¹ : Fintype ι inst✝ : DecidableEq M i : ι h : optParam (↑b i ∈ Finset.image (↑b) Finset.univ) (_ : ↑b i ∈ Finset.image (↑b) Finset.univ) ⊢ ↑(reindexFinsetRange b) { val := ↑b i, property := h } = ↑b i [PROOFSTEP] rw [reindexFinsetRange, reindex_apply, reindexRange_apply] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid M' inst✝² : Module R M' b b₁ : Basis ι R M i✝ : ι c : R x : M b' : Basis ι' R M' e : ι ≃ ι' inst✝¹ : Fintype ι inst✝ : DecidableEq M i : ι h : optParam (↑b i ∈ Finset.image (↑b) Finset.univ) (_ : ↑b i ∈ Finset.image (↑b) Finset.univ) ⊢ ↑(↑(Equiv.subtypeEquiv (Equiv.refl M) (_ : ∀ (a : M), a ∈ range ↑b ↔ a ∈ Finset.image (↑b) Finset.univ)).symm { val := ↑b i, property := h }) = ↑b i [PROOFSTEP] rfl [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid M' inst✝² : Module R M' b b₁ : Basis ι R M i : ι c : R x✝ : M b' : Basis ι' R M' e : ι ≃ ι' inst✝¹ : Fintype ι inst✝ : DecidableEq M x : { x // x ∈ Finset.image (↑b) Finset.univ } ⊢ ↑(reindexFinsetRange b) x = ↑x [PROOFSTEP] rcases x with ⟨bi, hbi⟩ [GOAL] case mk ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid M' inst✝² : Module R M' b b₁ : Basis ι R M i : ι c : R x : M b' : Basis ι' R M' e : ι ≃ ι' inst✝¹ : Fintype ι inst✝ : DecidableEq M bi : M hbi : bi ∈ Finset.image (↑b) Finset.univ ⊢ ↑(reindexFinsetRange b) { val := bi, property := hbi } = ↑{ val := bi, property := hbi } [PROOFSTEP] rcases Finset.mem_image.mp hbi with ⟨i, -, rfl⟩ [GOAL] case mk.intro.intro ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid M' inst✝² : Module R M' b b₁ : Basis ι R M i✝ : ι c : R x : M b' : Basis ι' R M' e : ι ≃ ι' inst✝¹ : Fintype ι inst✝ : DecidableEq M i : ι hbi : ↑b i ∈ Finset.image (↑b) Finset.univ ⊢ ↑(reindexFinsetRange b) { val := ↑b i, property := hbi } = ↑{ val := ↑b i, property := hbi } [PROOFSTEP] exact b.reindexFinsetRange_self i [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid M' inst✝² : Module R M' b b₁ : Basis ι R M i✝ : ι c : R x : M b' : Basis ι' R M' e : ι ≃ ι' inst✝¹ : Fintype ι inst✝ : DecidableEq M i : ι ⊢ ↑(reindexFinsetRange b).repr (↑b i) = Finsupp.single { val := ↑b i, property := (_ : ↑b i ∈ Finset.image (↑b) Finset.univ) } 1 [PROOFSTEP] ext ⟨bi, hbi⟩ [GOAL] case h.mk ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid M' inst✝² : Module R M' b b₁ : Basis ι R M i✝ : ι c : R x : M b' : Basis ι' R M' e : ι ≃ ι' inst✝¹ : Fintype ι inst✝ : DecidableEq M i : ι bi : M hbi : bi ∈ Finset.image (↑b) Finset.univ ⊢ ↑(↑(reindexFinsetRange b).repr (↑b i)) { val := bi, property := hbi } = ↑(Finsupp.single { val := ↑b i, property := (_ : ↑b i ∈ Finset.image (↑b) Finset.univ) } 1) { val := bi, property := hbi } [PROOFSTEP] rw [reindexFinsetRange, repr_reindex, Finsupp.mapDomain_equiv_apply, reindexRange_repr_self] -- Porting note: replaced a `convert; refl` with `simp` [GOAL] case h.mk ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid M' inst✝² : Module R M' b b₁ : Basis ι R M i✝ : ι c : R x : M b' : Basis ι' R M' e : ι ≃ ι' inst✝¹ : Fintype ι inst✝ : DecidableEq M i : ι bi : M hbi : bi ∈ Finset.image (↑b) Finset.univ ⊢ ↑(Finsupp.single { val := ↑b i, property := (_ : ↑b i ∈ range ↑b) } 1) (↑(Equiv.subtypeEquiv (Equiv.refl M) (_ : ∀ (a : M), a ∈ range ↑b ↔ a ∈ Finset.image (↑b) Finset.univ)).symm { val := bi, property := hbi }) = ↑(Finsupp.single { val := ↑b i, property := (_ : ↑b i ∈ Finset.image (↑b) Finset.univ) } 1) { val := bi, property := hbi } [PROOFSTEP] simp [Finsupp.single_apply] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid M' inst✝² : Module R M' b b₁ : Basis ι R M i✝ : ι c : R x✝ : M b' : Basis ι' R M' e : ι ≃ ι' inst✝¹ : Fintype ι inst✝ : DecidableEq M x : M i : ι h : optParam (↑b i ∈ Finset.image (↑b) Finset.univ) (_ : ↑b i ∈ Finset.image (↑b) Finset.univ) ⊢ ↑(↑(reindexFinsetRange b).repr x) { val := ↑b i, property := h } = ↑(↑b.repr x) i [PROOFSTEP] simp [reindexFinsetRange] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b b₁ : Basis ι R M i : ι c : R x : M l : ι →₀ R hl : ↑(Finsupp.total ι M R ↑b) l = 0 ⊢ ↑b.repr (↑(Finsupp.total ι M R ↑b) l) = 0 [PROOFSTEP] rw [hl, LinearEquiv.map_zero] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : AddCommMonoid M' inst✝¹ : Module R M' b✝ b₁ : Basis ι R M i : ι c : R x : M b : Basis ι R M inst✝ : Nontrivial M ⊢ Nonempty ι [PROOFSTEP] obtain ⟨x, y, ne⟩ : ∃ x y : M, x ≠ y := Nontrivial.exists_pair_ne [GOAL] case intro.intro ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : AddCommMonoid M' inst✝¹ : Module R M' b✝ b₁ : Basis ι R M i : ι c : R x✝ : M b : Basis ι R M inst✝ : Nontrivial M x y : M ne : x ≠ y ⊢ Nonempty ι [PROOFSTEP] obtain ⟨i, _⟩ := not_forall.mp (mt b.ext_elem_iff.2 ne) [GOAL] case intro.intro.intro ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : AddCommMonoid M' inst✝¹ : Module R M' b✝ b₁ : Basis ι R M i✝ : ι c : R x✝ : M b : Basis ι R M inst✝ : Nontrivial M x y : M ne : x ≠ y i : ι h✝ : ¬↑(↑b.repr x) i = ↑(↑b.repr y) i ⊢ Nonempty ι [PROOFSTEP] exact ⟨i⟩ [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b✝ b₁ : Basis ι R M i : ι c : R x✝ : M P : Submodule R M b : Basis ι R { x // x ∈ P } x : M ⊢ x ∈ P ↔ ∃ c, x = Finsupp.sum c fun i x => x • ↑(↑b i) [PROOFSTEP] conv_lhs => rw [← P.range_subtype, ← Submodule.map_top, ← b.span_eq, Submodule.map_span, ← Set.range_comp, ← Finsupp.range_total] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b✝ b₁ : Basis ι R M i : ι c : R x✝ : M P : Submodule R M b : Basis ι R { x // x ∈ P } x : M | x ∈ P [PROOFSTEP] rw [← P.range_subtype, ← Submodule.map_top, ← b.span_eq, Submodule.map_span, ← Set.range_comp, ← Finsupp.range_total] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b✝ b₁ : Basis ι R M i : ι c : R x✝ : M P : Submodule R M b : Basis ι R { x // x ∈ P } x : M | x ∈ P [PROOFSTEP] rw [← P.range_subtype, ← Submodule.map_top, ← b.span_eq, Submodule.map_span, ← Set.range_comp, ← Finsupp.range_total] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b✝ b₁ : Basis ι R M i : ι c : R x✝ : M P : Submodule R M b : Basis ι R { x // x ∈ P } x : M | x ∈ P [PROOFSTEP] rw [← P.range_subtype, ← Submodule.map_top, ← b.span_eq, Submodule.map_span, ← Set.range_comp, ← Finsupp.range_total] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b✝ b₁ : Basis ι R M i : ι c : R x✝ : M P : Submodule R M b : Basis ι R { x // x ∈ P } x : M ⊢ x ∈ LinearMap.range (Finsupp.total ι M R (↑(Submodule.subtype P) ∘ ↑b)) ↔ ∃ c, x = Finsupp.sum c fun i x => x • ↑(↑b i) [PROOFSTEP] simp [@eq_comm _ x, Function.comp, Finsupp.total_apply] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁷ : Semiring R inst✝⁶ : AddCommMonoid M inst✝⁵ : Module R M inst✝⁴ : AddCommMonoid M' inst✝³ : Module R M' b b₁ : Basis ι R M i : ι c : R x : M S : Type u_10 inst✝² : Semiring S inst✝¹ : Module S M' inst✝ : SMulCommClass R S M' f g : ι → M' ⊢ (fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr)) (f + g) = (fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr)) f + (fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr)) g [PROOFSTEP] refine' b.ext fun i => _ [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁷ : Semiring R inst✝⁶ : AddCommMonoid M inst✝⁵ : Module R M inst✝⁴ : AddCommMonoid M' inst✝³ : Module R M' b b₁ : Basis ι R M i✝ : ι c : R x : M S : Type u_10 inst✝² : Semiring S inst✝¹ : Module S M' inst✝ : SMulCommClass R S M' f g : ι → M' i : ι ⊢ ↑((fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr)) (f + g)) (↑b i) = ↑((fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr)) f + (fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr)) g) (↑b i) [PROOFSTEP] simp [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁷ : Semiring R inst✝⁶ : AddCommMonoid M inst✝⁵ : Module R M inst✝⁴ : AddCommMonoid M' inst✝³ : Module R M' b b₁ : Basis ι R M i : ι c✝ : R x : M S : Type u_10 inst✝² : Semiring S inst✝¹ : Module S M' inst✝ : SMulCommClass R S M' c : S f : ι → M' ⊢ AddHom.toFun { toFun := fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr), map_add' := (_ : ∀ (f g : ι → M'), (fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr)) (f + g) = (fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr)) f + (fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr)) g) } (c • f) = ↑(RingHom.id S) c • AddHom.toFun { toFun := fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr), map_add' := (_ : ∀ (f g : ι → M'), (fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr)) (f + g) = (fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr)) f + (fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr)) g) } f [PROOFSTEP] refine' b.ext fun i => _ [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁷ : Semiring R inst✝⁶ : AddCommMonoid M inst✝⁵ : Module R M inst✝⁴ : AddCommMonoid M' inst✝³ : Module R M' b b₁ : Basis ι R M i✝ : ι c✝ : R x : M S : Type u_10 inst✝² : Semiring S inst✝¹ : Module S M' inst✝ : SMulCommClass R S M' c : S f : ι → M' i : ι ⊢ ↑(AddHom.toFun { toFun := fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr), map_add' := (_ : ∀ (f g : ι → M'), (fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr)) (f + g) = (fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr)) f + (fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr)) g) } (c • f)) (↑b i) = ↑(↑(RingHom.id S) c • AddHom.toFun { toFun := fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr), map_add' := (_ : ∀ (f g : ι → M'), (fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr)) (f + g) = (fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr)) f + (fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr)) g) } f) (↑b i) [PROOFSTEP] simp [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁷ : Semiring R inst✝⁶ : AddCommMonoid M inst✝⁵ : Module R M inst✝⁴ : AddCommMonoid M' inst✝³ : Module R M' b b₁ : Basis ι R M i : ι c : R x : M S : Type u_10 inst✝² : Semiring S inst✝¹ : Module S M' inst✝ : SMulCommClass R S M' f : ι → M' ⊢ (fun f i => ↑f (↑b i)) (AddHom.toFun { toAddHom := { toFun := fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr), map_add' := (_ : ∀ (f g : ι → M'), (fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr)) (f + g) = (fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr)) f + (fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr)) g) }, map_smul' := (_ : ∀ (c : S) (f : ι → M'), AddHom.toFun { toFun := fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr), map_add' := (_ : ∀ (f g : ι → M'), (fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr)) (f + g) = (fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr)) f + (fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr)) g) } (c • f) = ↑(RingHom.id S) c • AddHom.toFun { toFun := fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr), map_add' := (_ : ∀ (f g : ι → M'), (fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr)) (f + g) = (fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr)) f + (fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr)) g) } f) }.toAddHom f) = f [PROOFSTEP] ext [GOAL] case h ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁷ : Semiring R inst✝⁶ : AddCommMonoid M inst✝⁵ : Module R M inst✝⁴ : AddCommMonoid M' inst✝³ : Module R M' b b₁ : Basis ι R M i : ι c : R x : M S : Type u_10 inst✝² : Semiring S inst✝¹ : Module S M' inst✝ : SMulCommClass R S M' f : ι → M' x✝ : ι ⊢ (fun f i => ↑f (↑b i)) (AddHom.toFun { toAddHom := { toFun := fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr), map_add' := (_ : ∀ (f g : ι → M'), (fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr)) (f + g) = (fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr)) f + (fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr)) g) }, map_smul' := (_ : ∀ (c : S) (f : ι → M'), AddHom.toFun { toFun := fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr), map_add' := (_ : ∀ (f g : ι → M'), (fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr)) (f + g) = (fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr)) f + (fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr)) g) } (c • f) = ↑(RingHom.id S) c • AddHom.toFun { toFun := fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr), map_add' := (_ : ∀ (f g : ι → M'), (fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr)) (f + g) = (fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr)) f + (fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr)) g) } f) }.toAddHom f) x✝ = f x✝ [PROOFSTEP] simp [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁷ : Semiring R inst✝⁶ : AddCommMonoid M inst✝⁵ : Module R M inst✝⁴ : AddCommMonoid M' inst✝³ : Module R M' b b₁ : Basis ι R M i : ι c : R x : M S : Type u_10 inst✝² : Semiring S inst✝¹ : Module S M' inst✝ : SMulCommClass R S M' f : M →ₗ[R] M' ⊢ AddHom.toFun { toAddHom := { toFun := fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr), map_add' := (_ : ∀ (f g : ι → M'), (fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr)) (f + g) = (fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr)) f + (fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr)) g) }, map_smul' := (_ : ∀ (c : S) (f : ι → M'), AddHom.toFun { toFun := fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr), map_add' := (_ : ∀ (f g : ι → M'), (fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr)) (f + g) = (fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr)) f + (fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr)) g) } (c • f) = ↑(RingHom.id S) c • AddHom.toFun { toFun := fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr), map_add' := (_ : ∀ (f g : ι → M'), (fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr)) (f + g) = (fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr)) f + (fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr)) g) } f) }.toAddHom ((fun f i => ↑f (↑b i)) f) = f [PROOFSTEP] refine' b.ext fun i => _ [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁷ : Semiring R inst✝⁶ : AddCommMonoid M inst✝⁵ : Module R M inst✝⁴ : AddCommMonoid M' inst✝³ : Module R M' b b₁ : Basis ι R M i✝ : ι c : R x : M S : Type u_10 inst✝² : Semiring S inst✝¹ : Module S M' inst✝ : SMulCommClass R S M' f : M →ₗ[R] M' i : ι ⊢ ↑(AddHom.toFun { toAddHom := { toFun := fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr), map_add' := (_ : ∀ (f g : ι → M'), (fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr)) (f + g) = (fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr)) f + (fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr)) g) }, map_smul' := (_ : ∀ (c : S) (f : ι → M'), AddHom.toFun { toFun := fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr), map_add' := (_ : ∀ (f g : ι → M'), (fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr)) (f + g) = (fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr)) f + (fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr)) g) } (c • f) = ↑(RingHom.id S) c • AddHom.toFun { toFun := fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr), map_add' := (_ : ∀ (f g : ι → M'), (fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr)) (f + g) = (fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr)) f + (fun f => LinearMap.comp (Finsupp.total M' M' R id) (LinearMap.comp (Finsupp.lmapDomain R R f) ↑b.repr)) g) } f) }.toAddHom ((fun f i => ↑f (↑b i)) f)) (↑b i) = ↑f (↑b i) [PROOFSTEP] simp [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁷ : Semiring R inst✝⁶ : AddCommMonoid M inst✝⁵ : Module R M inst✝⁴ : AddCommMonoid M' inst✝³ : Module R M' b b₁ : Basis ι R M i : ι c : R x✝ : M S : Type u_10 inst✝² : Semiring S inst✝¹ : Module S M' inst✝ : SMulCommClass R S M' f : ι → M' x : M ⊢ ↑(↑(constr b S) f) x = Finsupp.sum (↑b.repr x) fun b a => a • f b [PROOFSTEP] simp only [constr_def, LinearMap.comp_apply, Finsupp.lmapDomain_apply, Finsupp.total_apply] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁷ : Semiring R inst✝⁶ : AddCommMonoid M inst✝⁵ : Module R M inst✝⁴ : AddCommMonoid M' inst✝³ : Module R M' b b₁ : Basis ι R M i : ι c : R x✝ : M S : Type u_10 inst✝² : Semiring S inst✝¹ : Module S M' inst✝ : SMulCommClass R S M' f : ι → M' x : M ⊢ (Finsupp.sum (Finsupp.mapDomain f (↑↑b.repr x)) fun i a => a • id i) = Finsupp.sum (↑b.repr x) fun b a => a • f b [PROOFSTEP] rw [Finsupp.sum_mapDomain_index] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁷ : Semiring R inst✝⁶ : AddCommMonoid M inst✝⁵ : Module R M inst✝⁴ : AddCommMonoid M' inst✝³ : Module R M' b b₁ : Basis ι R M i : ι c : R x✝ : M S : Type u_10 inst✝² : Semiring S inst✝¹ : Module S M' inst✝ : SMulCommClass R S M' f : ι → M' x : M ⊢ (Finsupp.sum (↑↑b.repr x) fun a m => m • id (f a)) = Finsupp.sum (↑b.repr x) fun b a => a • f b [PROOFSTEP] simp [add_smul] [GOAL] case h_zero ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁷ : Semiring R inst✝⁶ : AddCommMonoid M inst✝⁵ : Module R M inst✝⁴ : AddCommMonoid M' inst✝³ : Module R M' b b₁ : Basis ι R M i : ι c : R x✝ : M S : Type u_10 inst✝² : Semiring S inst✝¹ : Module S M' inst✝ : SMulCommClass R S M' f : ι → M' x : M ⊢ ∀ (b : M'), 0 • id b = 0 [PROOFSTEP] simp [add_smul] [GOAL] case h_add ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁷ : Semiring R inst✝⁶ : AddCommMonoid M inst✝⁵ : Module R M inst✝⁴ : AddCommMonoid M' inst✝³ : Module R M' b b₁ : Basis ι R M i : ι c : R x✝ : M S : Type u_10 inst✝² : Semiring S inst✝¹ : Module S M' inst✝ : SMulCommClass R S M' f : ι → M' x : M ⊢ ∀ (b : M') (m₁ m₂ : R), (m₁ + m₂) • id b = m₁ • id b + m₂ • id b [PROOFSTEP] simp [add_smul] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁷ : Semiring R inst✝⁶ : AddCommMonoid M inst✝⁵ : Module R M inst✝⁴ : AddCommMonoid M' inst✝³ : Module R M' b b₁ : Basis ι R M i✝ : ι c : R x : M S : Type u_10 inst✝² : Semiring S inst✝¹ : Module S M' inst✝ : SMulCommClass R S M' f : ι → M' i : ι ⊢ ↑(↑(constr b S) f) (↑b i) = f i [PROOFSTEP] simp [Basis.constr_apply, b.repr_self] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁸ : Semiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid M' inst✝⁴ : Module R M' b b₁ : Basis ι R M i : ι c : R x : M S : Type u_10 inst✝³ : Semiring S inst✝² : Module S M' inst✝¹ : SMulCommClass R S M' inst✝ : Nonempty ι f : ι → M' ⊢ LinearMap.range (↑(constr b S) f) = span R (range f) [PROOFSTEP] rw [b.constr_def S f, LinearMap.range_comp, LinearMap.range_comp, LinearEquiv.range, ← Finsupp.supported_univ, Finsupp.lmapDomain_supported, ← Set.image_univ, ← Finsupp.span_image_eq_map_total, Set.image_id] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁷ : Semiring R inst✝⁶ : AddCommMonoid M inst✝⁵ : Module R M inst✝⁴ : AddCommMonoid M' inst✝³ : Module R M' b b₁ : Basis ι R M i✝ : ι c : R x : M S : Type u_10 inst✝² : Semiring S inst✝¹ : Module S M' inst✝ : SMulCommClass R S M' f : M' →ₗ[R] M' v : ι → M' i : ι ⊢ ↑(↑(constr b S) (↑f ∘ v)) (↑b i) = ↑(LinearMap.comp f (↑(constr b S) v)) (↑b i) [PROOFSTEP] simp only [Basis.constr_basis, LinearMap.comp_apply, Function.comp] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid M' inst✝² : Module R M' b b₁ : Basis ι R M i : ι c : R x : M b' : Basis ι' R M' e : ι ≃ ι' inst✝¹ : AddCommMonoid M'' inst✝ : Module R M'' ⊢ ↑(Basis.equiv b b' e) (↑b i) = ↑b' (↑e i) [PROOFSTEP] simp [Basis.equiv] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid M' inst✝² : Module R M' b b₁ : Basis ι R M i✝ : ι c : R x : M b' : Basis ι' R M' e : ι ≃ ι' inst✝¹ : AddCommMonoid M'' inst✝ : Module R M'' i : ι ⊢ ↑(Basis.equiv b b (Equiv.refl ι)) (↑b i) = ↑(LinearEquiv.refl R M) (↑b i) [PROOFSTEP] simp [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid M' inst✝² : Module R M' b b₁ : Basis ι R M i✝ : ι c : R x : M b' : Basis ι' R M' e : ι ≃ ι' inst✝¹ : AddCommMonoid M'' inst✝ : Module R M'' i : ι' ⊢ ↑(Basis.equiv b b' e) (↑(LinearEquiv.symm (Basis.equiv b b' e)) (↑b' i)) = ↑(Basis.equiv b b' e) (↑(Basis.equiv b' b e.symm) (↑b' i)) [PROOFSTEP] simp [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid M' inst✝² : Module R M' b b₁ : Basis ι R M i✝ : ι c : R x : M b' : Basis ι' R M' e✝ : ι ≃ ι' inst✝¹ : AddCommMonoid M'' inst✝ : Module R M'' ι'' : Type u_10 b'' : Basis ι'' R M'' e : ι ≃ ι' e' : ι' ≃ ι'' i : ι ⊢ ↑(LinearEquiv.trans (Basis.equiv b b' e) (Basis.equiv b' b'' e')) (↑b i) = ↑(Basis.equiv b b'' (e.trans e')) (↑b i) [PROOFSTEP] simp [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid M' inst✝² : Module R M' b✝ b₁ : Basis ι R M i : ι c : R x : M b'✝ : Basis ι' R M' e✝ : ι ≃ ι' inst✝¹ : AddCommMonoid M'' inst✝ : Module R M'' b : Basis ι R M b' : Basis ι' R M' e : ι ≃ ι' ⊢ Basis.map b (Basis.equiv b b' e) = reindex b' e.symm [PROOFSTEP] ext i [GOAL] case a ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid M' inst✝² : Module R M' b✝ b₁ : Basis ι R M i✝ : ι c : R x : M b'✝ : Basis ι' R M' e✝ : ι ≃ ι' inst✝¹ : AddCommMonoid M'' inst✝ : Module R M'' b : Basis ι R M b' : Basis ι' R M' e : ι ≃ ι' i : ι ⊢ ↑(Basis.map b (Basis.equiv b b' e)) i = ↑(reindex b' e.symm) i [PROOFSTEP] simp [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b b₁ : Basis ι R M i✝ : ι c : R x : M b' : Basis ι' R M' i : ι ⊢ ↑b.repr (↑(Basis.prod b b') (Sum.inl i)).fst = ↑b.repr (↑b i) [PROOFSTEP] ext j [GOAL] case h ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b b₁ : Basis ι R M i✝ : ι c : R x : M b' : Basis ι' R M' i j : ι ⊢ ↑(↑b.repr (↑(Basis.prod b b') (Sum.inl i)).fst) j = ↑(↑b.repr (↑b i)) j [PROOFSTEP] simp only [Basis.prod, Basis.coe_ofRepr, LinearEquiv.symm_trans_apply, LinearEquiv.prod_symm, LinearEquiv.prod_apply, b.repr.apply_symm_apply, LinearEquiv.symm_symm, repr_self, Equiv.toFun_as_coe, Finsupp.fst_sumFinsuppLEquivProdFinsupp] [GOAL] case h ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b b₁ : Basis ι R M i✝ : ι c : R x : M b' : Basis ι' R M' i j : ι ⊢ ↑(Finsupp.single (Sum.inl i) 1) (Sum.inl j) = ↑(Finsupp.single i 1) j [PROOFSTEP] apply Finsupp.single_apply_left Sum.inl_injective [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b b₁ : Basis ι R M i✝ : ι c : R x : M b' : Basis ι' R M' i : ι' ⊢ ↑b.repr (↑(Basis.prod b b') (Sum.inr i)).fst = ↑b.repr 0 [PROOFSTEP] ext i [GOAL] case h ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b b₁ : Basis ι R M i✝¹ : ι c : R x : M b' : Basis ι' R M' i✝ : ι' i : ι ⊢ ↑(↑b.repr (↑(Basis.prod b b') (Sum.inr i✝)).fst) i = ↑(↑b.repr 0) i [PROOFSTEP] simp only [Basis.prod, Basis.coe_ofRepr, LinearEquiv.symm_trans_apply, LinearEquiv.prod_symm, LinearEquiv.prod_apply, b.repr.apply_symm_apply, LinearEquiv.symm_symm, repr_self, Equiv.toFun_as_coe, Finsupp.fst_sumFinsuppLEquivProdFinsupp, LinearEquiv.map_zero, Finsupp.zero_apply] [GOAL] case h ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b b₁ : Basis ι R M i✝¹ : ι c : R x : M b' : Basis ι' R M' i✝ : ι' i : ι ⊢ ↑(Finsupp.single (Sum.inr i✝) 1) (Sum.inl i) = 0 [PROOFSTEP] apply Finsupp.single_eq_of_ne Sum.inr_ne_inl [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b b₁ : Basis ι R M i✝ : ι c : R x : M b' : Basis ι' R M' i : ι ⊢ ↑b'.repr (↑(Basis.prod b b') (Sum.inl i)).snd = ↑b'.repr 0 [PROOFSTEP] ext j [GOAL] case h ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b b₁ : Basis ι R M i✝ : ι c : R x : M b' : Basis ι' R M' i : ι j : ι' ⊢ ↑(↑b'.repr (↑(Basis.prod b b') (Sum.inl i)).snd) j = ↑(↑b'.repr 0) j [PROOFSTEP] simp only [Basis.prod, Basis.coe_ofRepr, LinearEquiv.symm_trans_apply, LinearEquiv.prod_symm, LinearEquiv.prod_apply, b'.repr.apply_symm_apply, LinearEquiv.symm_symm, repr_self, Equiv.toFun_as_coe, Finsupp.snd_sumFinsuppLEquivProdFinsupp, LinearEquiv.map_zero, Finsupp.zero_apply] [GOAL] case h ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b b₁ : Basis ι R M i✝ : ι c : R x : M b' : Basis ι' R M' i : ι j : ι' ⊢ ↑(Finsupp.single (Sum.inl i) 1) (Sum.inr j) = 0 [PROOFSTEP] apply Finsupp.single_eq_of_ne Sum.inl_ne_inr [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b b₁ : Basis ι R M i✝ : ι c : R x : M b' : Basis ι' R M' i : ι' ⊢ ↑b'.repr (↑(Basis.prod b b') (Sum.inr i)).snd = ↑b'.repr (↑b' i) [PROOFSTEP] ext i [GOAL] case h ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b b₁ : Basis ι R M i✝¹ : ι c : R x : M b' : Basis ι' R M' i✝ i : ι' ⊢ ↑(↑b'.repr (↑(Basis.prod b b') (Sum.inr i✝)).snd) i = ↑(↑b'.repr (↑b' i✝)) i [PROOFSTEP] simp only [Basis.prod, Basis.coe_ofRepr, LinearEquiv.symm_trans_apply, LinearEquiv.prod_symm, LinearEquiv.prod_apply, b'.repr.apply_symm_apply, LinearEquiv.symm_symm, repr_self, Equiv.toFun_as_coe, Finsupp.snd_sumFinsuppLEquivProdFinsupp] [GOAL] case h ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b b₁ : Basis ι R M i✝¹ : ι c : R x : M b' : Basis ι' R M' i✝ i : ι' ⊢ ↑(Finsupp.single (Sum.inr i✝) 1) (Sum.inr i) = ↑(Finsupp.single i✝ 1) i [PROOFSTEP] apply Finsupp.single_apply_left Sum.inr_injective [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b b₁ : Basis ι R M i✝ : ι c : R x : M b' : Basis ι' R M' i : ι ⊕ ι' ⊢ ↑(Basis.prod b b') i = Sum.elim (↑(LinearMap.inl R M M') ∘ ↑b) (↑(LinearMap.inr R M M') ∘ ↑b') i [PROOFSTEP] ext [GOAL] case h₁ ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b b₁ : Basis ι R M i✝ : ι c : R x : M b' : Basis ι' R M' i : ι ⊕ ι' ⊢ (↑(Basis.prod b b') i).fst = (Sum.elim (↑(LinearMap.inl R M M') ∘ ↑b) (↑(LinearMap.inr R M M') ∘ ↑b') i).fst [PROOFSTEP] cases i [GOAL] case h₂ ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b b₁ : Basis ι R M i✝ : ι c : R x : M b' : Basis ι' R M' i : ι ⊕ ι' ⊢ (↑(Basis.prod b b') i).snd = (Sum.elim (↑(LinearMap.inl R M M') ∘ ↑b) (↑(LinearMap.inr R M M') ∘ ↑b') i).snd [PROOFSTEP] cases i [GOAL] case h₁.inl ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b b₁ : Basis ι R M i : ι c : R x : M b' : Basis ι' R M' val✝ : ι ⊢ (↑(Basis.prod b b') (Sum.inl val✝)).fst = (Sum.elim (↑(LinearMap.inl R M M') ∘ ↑b) (↑(LinearMap.inr R M M') ∘ ↑b') (Sum.inl val✝)).fst [PROOFSTEP] simp only [prod_apply_inl_fst, Sum.elim_inl, LinearMap.inl_apply, prod_apply_inr_fst, Sum.elim_inr, LinearMap.inr_apply, prod_apply_inl_snd, prod_apply_inr_snd, Function.comp] [GOAL] case h₁.inr ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b b₁ : Basis ι R M i : ι c : R x : M b' : Basis ι' R M' val✝ : ι' ⊢ (↑(Basis.prod b b') (Sum.inr val✝)).fst = (Sum.elim (↑(LinearMap.inl R M M') ∘ ↑b) (↑(LinearMap.inr R M M') ∘ ↑b') (Sum.inr val✝)).fst [PROOFSTEP] simp only [prod_apply_inl_fst, Sum.elim_inl, LinearMap.inl_apply, prod_apply_inr_fst, Sum.elim_inr, LinearMap.inr_apply, prod_apply_inl_snd, prod_apply_inr_snd, Function.comp] [GOAL] case h₂.inl ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b b₁ : Basis ι R M i : ι c : R x : M b' : Basis ι' R M' val✝ : ι ⊢ (↑(Basis.prod b b') (Sum.inl val✝)).snd = (Sum.elim (↑(LinearMap.inl R M M') ∘ ↑b) (↑(LinearMap.inr R M M') ∘ ↑b') (Sum.inl val✝)).snd [PROOFSTEP] simp only [prod_apply_inl_fst, Sum.elim_inl, LinearMap.inl_apply, prod_apply_inr_fst, Sum.elim_inr, LinearMap.inr_apply, prod_apply_inl_snd, prod_apply_inr_snd, Function.comp] [GOAL] case h₂.inr ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b b₁ : Basis ι R M i : ι c : R x : M b' : Basis ι' R M' val✝ : ι' ⊢ (↑(Basis.prod b b') (Sum.inr val✝)).snd = (Sum.elim (↑(LinearMap.inl R M M') ∘ ↑b) (↑(LinearMap.inr R M M') ∘ ↑b') (Sum.inr val✝)).snd [PROOFSTEP] simp only [prod_apply_inl_fst, Sum.elim_inl, LinearMap.inl_apply, prod_apply_inr_fst, Sum.elim_inr, LinearMap.inr_apply, prod_apply_inl_snd, prod_apply_inr_snd, Function.comp] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : AddCommMonoid M' inst✝¹ : Module R M' b✝ b₁ : Basis ι R M i : ι c✝ : R x✝ : M inst✝ : NoZeroDivisors R b : Basis ι R M c : R x : M hcx : c • x = 0 ⊢ c = 0 ∨ x = 0 [PROOFSTEP] exact or_iff_not_imp_right.mpr fun hx => by rw [← b.total_repr x, ← LinearMap.map_smul] at hcx have := linearIndependent_iff.mp b.linearIndependent (c • b.repr x) hcx rw [smul_eq_zero] at this exact this.resolve_right fun hr => hx (b.repr.map_eq_zero_iff.mp hr) [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : AddCommMonoid M' inst✝¹ : Module R M' b✝ b₁ : Basis ι R M i : ι c✝ : R x✝ : M inst✝ : NoZeroDivisors R b : Basis ι R M c : R x : M hcx : c • x = 0 hx : ¬x = 0 ⊢ c = 0 [PROOFSTEP] rw [← b.total_repr x, ← LinearMap.map_smul] at hcx [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : AddCommMonoid M' inst✝¹ : Module R M' b✝ b₁ : Basis ι R M i : ι c✝ : R x✝ : M inst✝ : NoZeroDivisors R b : Basis ι R M c : R x : M hcx : ↑(Finsupp.total ι M R ↑b) (c • ↑b.repr x) = 0 hx : ¬x = 0 ⊢ c = 0 [PROOFSTEP] have := linearIndependent_iff.mp b.linearIndependent (c • b.repr x) hcx [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : AddCommMonoid M' inst✝¹ : Module R M' b✝ b₁ : Basis ι R M i : ι c✝ : R x✝ : M inst✝ : NoZeroDivisors R b : Basis ι R M c : R x : M hcx : ↑(Finsupp.total ι M R ↑b) (c • ↑b.repr x) = 0 hx : ¬x = 0 this : c • ↑b.repr x = 0 ⊢ c = 0 [PROOFSTEP] rw [smul_eq_zero] at this [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : AddCommMonoid M' inst✝¹ : Module R M' b✝ b₁ : Basis ι R M i : ι c✝ : R x✝ : M inst✝ : NoZeroDivisors R b : Basis ι R M c : R x : M hcx : ↑(Finsupp.total ι M R ↑b) (c • ↑b.repr x) = 0 hx : ¬x = 0 this : c = 0 ∨ ↑b.repr x = 0 ⊢ c = 0 [PROOFSTEP] exact this.resolve_right fun hr => hx (b.repr.map_eq_zero_iff.mp hr) [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : AddCommMonoid M' inst✝¹ : Module R M' b✝ b₁ : Basis ι R M i : ι c : R x : M inst✝ : NoZeroDivisors R b : Basis ι R M N : Submodule R M rank_eq : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m = 0 ⊢ N = ⊥ [PROOFSTEP] rw [Submodule.eq_bot_iff] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : AddCommMonoid M' inst✝¹ : Module R M' b✝ b₁ : Basis ι R M i : ι c : R x : M inst✝ : NoZeroDivisors R b : Basis ι R M N : Submodule R M rank_eq : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m = 0 ⊢ ∀ (x : M), x ∈ N → x = 0 [PROOFSTEP] intro x hx [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : AddCommMonoid M' inst✝¹ : Module R M' b✝ b₁ : Basis ι R M i : ι c : R x✝ : M inst✝ : NoZeroDivisors R b : Basis ι R M N : Submodule R M rank_eq : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m = 0 x : M hx : x ∈ N ⊢ x = 0 [PROOFSTEP] contrapose! rank_eq with x_ne [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : AddCommMonoid M' inst✝¹ : Module R M' b✝ b₁ : Basis ι R M i : ι c : R x✝ : M inst✝ : NoZeroDivisors R b : Basis ι R M N : Submodule R M x : M hx : x ∈ N x_ne : x ≠ 0 ⊢ Exists fun {m} => ∃ v, LinearIndependent R (Subtype.val ∘ v) ∧ m ≠ 0 [PROOFSTEP] refine' ⟨1, fun _ => ⟨x, hx⟩, _, one_ne_zero⟩ [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : AddCommMonoid M' inst✝¹ : Module R M' b✝ b₁ : Basis ι R M i : ι c : R x✝ : M inst✝ : NoZeroDivisors R b : Basis ι R M N : Submodule R M x : M hx : x ∈ N x_ne : x ≠ 0 ⊢ LinearIndependent R (Subtype.val ∘ fun x_1 => { val := x, property := hx }) [PROOFSTEP] rw [Fintype.linearIndependent_iff] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : AddCommMonoid M' inst✝¹ : Module R M' b✝ b₁ : Basis ι R M i : ι c : R x✝ : M inst✝ : NoZeroDivisors R b : Basis ι R M N : Submodule R M x : M hx : x ∈ N x_ne : x ≠ 0 ⊢ ∀ (g : Fin 1 → R), ∑ i : Fin 1, g i • (Subtype.val ∘ fun x_1 => { val := x, property := hx }) i = 0 → ∀ (i : Fin 1), g i = 0 [PROOFSTEP] rintro g sum_eq i [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : AddCommMonoid M' inst✝¹ : Module R M' b✝ b₁ : Basis ι R M i✝ : ι c : R x✝ : M inst✝ : NoZeroDivisors R b : Basis ι R M N : Submodule R M x : M hx : x ∈ N x_ne : x ≠ 0 g : Fin 1 → R sum_eq : ∑ i : Fin 1, g i • (Subtype.val ∘ fun x_1 => { val := x, property := hx }) i = 0 i : Fin 1 ⊢ g i = 0 [PROOFSTEP] cases' i with _ hi [GOAL] case mk ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : AddCommMonoid M' inst✝¹ : Module R M' b✝ b₁ : Basis ι R M i : ι c : R x✝ : M inst✝ : NoZeroDivisors R b : Basis ι R M N : Submodule R M x : M hx : x ∈ N x_ne : x ≠ 0 g : Fin 1 → R sum_eq : ∑ i : Fin 1, g i • (Subtype.val ∘ fun x_1 => { val := x, property := hx }) i = 0 val✝ : ℕ hi : val✝ < 1 ⊢ g { val := val✝, isLt := hi } = 0 [PROOFSTEP] simp only [Function.const_apply, Fin.default_eq_zero, Submodule.coe_mk, Finset.univ_unique, Function.comp_const, Finset.sum_singleton] at sum_eq [GOAL] case mk ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : AddCommMonoid M' inst✝¹ : Module R M' b✝ b₁ : Basis ι R M i : ι c : R x✝ : M inst✝ : NoZeroDivisors R b : Basis ι R M N : Submodule R M x : M hx : x ∈ N x_ne : x ≠ 0 g : Fin 1 → R val✝ : ℕ hi : val✝ < 1 sum_eq : g 0 • (Subtype.val ∘ fun x_1 => { val := x, property := hx }) 0 = 0 ⊢ g { val := val✝, isLt := hi } = 0 [PROOFSTEP] convert (b.smul_eq_zero.mp sum_eq).resolve_right x_ne [GOAL] ι✝ : Type u_1 ι' : Type u_2 R✝ : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁶ : Semiring R✝ inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R✝ M inst✝³ : AddCommMonoid M' inst✝² : Module R✝ M' b b₁ : Basis ι✝ R✝ M i : ι✝ c : R✝ x✝ : M ι : Type u_10 R : Type u_11 inst✝¹ : Unique ι inst✝ : Semiring R x y : R ⊢ (fun x => Finsupp.single default x) (x + y) = (fun x => Finsupp.single default x) x + (fun x => Finsupp.single default x) y [PROOFSTEP] simp [GOAL] ι✝ : Type u_1 ι' : Type u_2 R✝ : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁶ : Semiring R✝ inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R✝ M inst✝³ : AddCommMonoid M' inst✝² : Module R✝ M' b b₁ : Basis ι✝ R✝ M i : ι✝ c✝ : R✝ x✝ : M ι : Type u_10 R : Type u_11 inst✝¹ : Unique ι inst✝ : Semiring R c x : R ⊢ AddHom.toFun { toFun := fun x => Finsupp.single default x, map_add' := (_ : ∀ (x y : R), Finsupp.single default (x + y) = Finsupp.single default x + Finsupp.single default y) } (c • x) = ↑(RingHom.id R) c • AddHom.toFun { toFun := fun x => Finsupp.single default x, map_add' := (_ : ∀ (x y : R), Finsupp.single default (x + y) = Finsupp.single default x + Finsupp.single default y) } x [PROOFSTEP] simp [GOAL] ι✝ : Type u_1 ι' : Type u_2 R✝ : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁶ : Semiring R✝ inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R✝ M inst✝³ : AddCommMonoid M' inst✝² : Module R✝ M' b b₁ : Basis ι✝ R✝ M i : ι✝ c : R✝ x✝ : M ι : Type u_10 R : Type u_11 inst✝¹ : Unique ι inst✝ : Semiring R x : R ⊢ (fun f => ↑f default) (AddHom.toFun { toAddHom := { toFun := fun x => Finsupp.single default x, map_add' := (_ : ∀ (x y : R), Finsupp.single default (x + y) = Finsupp.single default x + Finsupp.single default y) }, map_smul' := (_ : ∀ (c x : R), Finsupp.single default (c * x) = c • Finsupp.single default x) }.toAddHom x) = x [PROOFSTEP] simp [GOAL] ι✝ : Type u_1 ι' : Type u_2 R✝ : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁶ : Semiring R✝ inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R✝ M inst✝³ : AddCommMonoid M' inst✝² : Module R✝ M' b b₁ : Basis ι✝ R✝ M i : ι✝ c : R✝ x : M ι : Type u_10 R : Type u_11 inst✝¹ : Unique ι inst✝ : Semiring R f : ι →₀ R ⊢ ↑(AddHom.toFun { toAddHom := { toFun := fun x => Finsupp.single default x, map_add' := (_ : ∀ (x y : R), Finsupp.single default (x + y) = Finsupp.single default x + Finsupp.single default y) }, map_smul' := (_ : ∀ (c x : R), Finsupp.single default (c * x) = c • Finsupp.single default x) }.toAddHom ((fun f => ↑f default) f)) default = ↑f default [PROOFSTEP] simp [GOAL] ι✝ : Type u_1 ι' : Type u_2 R✝ : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁶ : Semiring R✝ inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R✝ M inst✝³ : AddCommMonoid M' inst✝² : Module R✝ M' b b₁ : Basis ι✝ R✝ M i✝ : ι✝ c : R✝ x : M ι : Type u_10 R : Type u_11 inst✝¹ : Unique ι inst✝ : Semiring R i : ι ⊢ ↑(Basis.singleton ι R).repr 1 = Finsupp.single i 1 [PROOFSTEP] simp [Basis.singleton] [GOAL] ι✝ : Type u_1 ι' : Type u_2 R✝ : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁶ : Semiring R✝ inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R✝ M inst✝³ : AddCommMonoid M' inst✝² : Module R✝ M' b b₁ : Basis ι✝ R✝ M i✝ : ι✝ c : R✝ x✝ : M ι : Type u_10 R : Type u_11 inst✝¹ : Unique ι inst✝ : Semiring R x : R i : ι ⊢ ↑(↑(Basis.singleton ι R).repr x) i = x [PROOFSTEP] simp [Basis.singleton, Unique.eq_default i] [GOAL] ι✝ : Type u_1 ι' : Type u_2 R✝ : Type u_3 R₂ : Type u_4 K : Type u_5 M✝ : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝¹⁰ : Semiring R✝ inst✝⁹ : AddCommMonoid M✝ inst✝⁸ : Module R✝ M✝ inst✝⁷ : AddCommMonoid M' inst✝⁶ : Module R✝ M' b b₁ : Basis ι✝ R✝ M✝ i : ι✝ c : R✝ x : M✝ R : Type u_10 M : Type u_11 inst✝⁵ : Ring R inst✝⁴ : Nontrivial R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : NoZeroSMulDivisors R M ι : Type u_12 inst✝ : Unique ι ⊢ Nonempty (Basis ι R M) ↔ ∃ x x_1, ∀ (y : M), ∃ r, r • x = y [PROOFSTEP] constructor [GOAL] case mp ι✝ : Type u_1 ι' : Type u_2 R✝ : Type u_3 R₂ : Type u_4 K : Type u_5 M✝ : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝¹⁰ : Semiring R✝ inst✝⁹ : AddCommMonoid M✝ inst✝⁸ : Module R✝ M✝ inst✝⁷ : AddCommMonoid M' inst✝⁶ : Module R✝ M' b b₁ : Basis ι✝ R✝ M✝ i : ι✝ c : R✝ x : M✝ R : Type u_10 M : Type u_11 inst✝⁵ : Ring R inst✝⁴ : Nontrivial R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : NoZeroSMulDivisors R M ι : Type u_12 inst✝ : Unique ι ⊢ Nonempty (Basis ι R M) → ∃ x x_1, ∀ (y : M), ∃ r, r • x = y [PROOFSTEP] rintro ⟨b⟩ [GOAL] case mp.intro ι✝ : Type u_1 ι' : Type u_2 R✝ : Type u_3 R₂ : Type u_4 K : Type u_5 M✝ : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝¹⁰ : Semiring R✝ inst✝⁹ : AddCommMonoid M✝ inst✝⁸ : Module R✝ M✝ inst✝⁷ : AddCommMonoid M' inst✝⁶ : Module R✝ M' b✝ b₁ : Basis ι✝ R✝ M✝ i : ι✝ c : R✝ x : M✝ R : Type u_10 M : Type u_11 inst✝⁵ : Ring R inst✝⁴ : Nontrivial R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : NoZeroSMulDivisors R M ι : Type u_12 inst✝ : Unique ι b : Basis ι R M ⊢ ∃ x x_1, ∀ (y : M), ∃ r, r • x = y [PROOFSTEP] refine' ⟨b default, b.linearIndependent.ne_zero _, _⟩ [GOAL] case mp.intro ι✝ : Type u_1 ι' : Type u_2 R✝ : Type u_3 R₂ : Type u_4 K : Type u_5 M✝ : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝¹⁰ : Semiring R✝ inst✝⁹ : AddCommMonoid M✝ inst✝⁸ : Module R✝ M✝ inst✝⁷ : AddCommMonoid M' inst✝⁶ : Module R✝ M' b✝ b₁ : Basis ι✝ R✝ M✝ i : ι✝ c : R✝ x : M✝ R : Type u_10 M : Type u_11 inst✝⁵ : Ring R inst✝⁴ : Nontrivial R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : NoZeroSMulDivisors R M ι : Type u_12 inst✝ : Unique ι b : Basis ι R M ⊢ ∀ (y : M), ∃ r, r • ↑b default = y [PROOFSTEP] simpa [span_singleton_eq_top_iff, Set.range_unique] using b.span_eq [GOAL] case mpr ι✝ : Type u_1 ι' : Type u_2 R✝ : Type u_3 R₂ : Type u_4 K : Type u_5 M✝ : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝¹⁰ : Semiring R✝ inst✝⁹ : AddCommMonoid M✝ inst✝⁸ : Module R✝ M✝ inst✝⁷ : AddCommMonoid M' inst✝⁶ : Module R✝ M' b b₁ : Basis ι✝ R✝ M✝ i : ι✝ c : R✝ x : M✝ R : Type u_10 M : Type u_11 inst✝⁵ : Ring R inst✝⁴ : Nontrivial R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : NoZeroSMulDivisors R M ι : Type u_12 inst✝ : Unique ι ⊢ (∃ x x_1, ∀ (y : M), ∃ r, r • x = y) → Nonempty (Basis ι R M) [PROOFSTEP] rintro ⟨x, nz, w⟩ [GOAL] case mpr.intro.intro ι✝ : Type u_1 ι' : Type u_2 R✝ : Type u_3 R₂ : Type u_4 K : Type u_5 M✝ : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝¹⁰ : Semiring R✝ inst✝⁹ : AddCommMonoid M✝ inst✝⁸ : Module R✝ M✝ inst✝⁷ : AddCommMonoid M' inst✝⁶ : Module R✝ M' b b₁ : Basis ι✝ R✝ M✝ i : ι✝ c : R✝ x✝ : M✝ R : Type u_10 M : Type u_11 inst✝⁵ : Ring R inst✝⁴ : Nontrivial R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : NoZeroSMulDivisors R M ι : Type u_12 inst✝ : Unique ι x : M nz : x ≠ 0 w : ∀ (y : M), ∃ r, r • x = y ⊢ Nonempty (Basis ι R M) [PROOFSTEP] refine ⟨ofRepr <| LinearEquiv.symm { toFun := fun f => f default • x invFun := fun y => Finsupp.single default (w y).choose left_inv := fun f => Finsupp.unique_ext ?_ right_inv := fun y => ?_ map_add' := fun y z => ?_ map_smul' := fun c y => ?_ }⟩ [GOAL] case mpr.intro.intro.refine_1 ι✝ : Type u_1 ι' : Type u_2 R✝ : Type u_3 R₂ : Type u_4 K : Type u_5 M✝ : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝¹⁰ : Semiring R✝ inst✝⁹ : AddCommMonoid M✝ inst✝⁸ : Module R✝ M✝ inst✝⁷ : AddCommMonoid M' inst✝⁶ : Module R✝ M' b b₁ : Basis ι✝ R✝ M✝ i : ι✝ c : R✝ x✝ : M✝ R : Type u_10 M : Type u_11 inst✝⁵ : Ring R inst✝⁴ : Nontrivial R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : NoZeroSMulDivisors R M ι : Type u_12 inst✝ : Unique ι x : M nz : x ≠ 0 w : ∀ (y : M), ∃ r, r • x = y y z : ι →₀ R ⊢ (fun f => ↑f default • x) (y + z) = (fun f => ↑f default • x) y + (fun f => ↑f default • x) z [PROOFSTEP] simp [Finsupp.add_apply, add_smul] [GOAL] case mpr.intro.intro.refine_2 ι✝ : Type u_1 ι' : Type u_2 R✝ : Type u_3 R₂ : Type u_4 K : Type u_5 M✝ : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝¹⁰ : Semiring R✝ inst✝⁹ : AddCommMonoid M✝ inst✝⁸ : Module R✝ M✝ inst✝⁷ : AddCommMonoid M' inst✝⁶ : Module R✝ M' b b₁ : Basis ι✝ R✝ M✝ i : ι✝ c✝ : R✝ x✝ : M✝ R : Type u_10 M : Type u_11 inst✝⁵ : Ring R inst✝⁴ : Nontrivial R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : NoZeroSMulDivisors R M ι : Type u_12 inst✝ : Unique ι x : M nz : x ≠ 0 w : ∀ (y : M), ∃ r, r • x = y c : R y : ι →₀ R ⊢ AddHom.toFun { toFun := fun f => ↑f default • x, map_add' := (_ : ∀ (y z : ι →₀ R), (↑y default + ↑z default) • x = ↑y default • x + ↑z default • x) } (c • y) = ↑(RingHom.id R) c • AddHom.toFun { toFun := fun f => ↑f default • x, map_add' := (_ : ∀ (y z : ι →₀ R), (↑y default + ↑z default) • x = ↑y default • x + ↑z default • x) } y [PROOFSTEP] simp only [Finsupp.coe_smul, Pi.smul_apply, RingHom.id_apply] [GOAL] case mpr.intro.intro.refine_2 ι✝ : Type u_1 ι' : Type u_2 R✝ : Type u_3 R₂ : Type u_4 K : Type u_5 M✝ : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝¹⁰ : Semiring R✝ inst✝⁹ : AddCommMonoid M✝ inst✝⁸ : Module R✝ M✝ inst✝⁷ : AddCommMonoid M' inst✝⁶ : Module R✝ M' b b₁ : Basis ι✝ R✝ M✝ i : ι✝ c✝ : R✝ x✝ : M✝ R : Type u_10 M : Type u_11 inst✝⁵ : Ring R inst✝⁴ : Nontrivial R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : NoZeroSMulDivisors R M ι : Type u_12 inst✝ : Unique ι x : M nz : x ≠ 0 w : ∀ (y : M), ∃ r, r • x = y c : R y : ι →₀ R ⊢ (c • ↑y default) • x = c • ↑y default • x [PROOFSTEP] rw [← smul_assoc, smul_eq_mul] [GOAL] case mpr.intro.intro.refine_3 ι✝ : Type u_1 ι' : Type u_2 R✝ : Type u_3 R₂ : Type u_4 K : Type u_5 M✝ : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝¹⁰ : Semiring R✝ inst✝⁹ : AddCommMonoid M✝ inst✝⁸ : Module R✝ M✝ inst✝⁷ : AddCommMonoid M' inst✝⁶ : Module R✝ M' b b₁ : Basis ι✝ R✝ M✝ i : ι✝ c : R✝ x✝ : M✝ R : Type u_10 M : Type u_11 inst✝⁵ : Ring R inst✝⁴ : Nontrivial R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : NoZeroSMulDivisors R M ι : Type u_12 inst✝ : Unique ι x : M nz : x ≠ 0 w : ∀ (y : M), ∃ r, r • x = y f : ι →₀ R ⊢ ↑((fun y => Finsupp.single default (Exists.choose (_ : ∃ r, r • x = y))) (AddHom.toFun { toAddHom := { toFun := fun f => ↑f default • x, map_add' := (_ : ∀ (y z : ι →₀ R), (↑y default + ↑z default) • x = ↑y default • x + ↑z default • x) }, map_smul' := (_ : ∀ (c : R) (y : ι →₀ R), AddHom.toFun { toFun := fun f => ↑f default • x, map_add' := (_ : ∀ (y z : ι →₀ R), (↑y default + ↑z default) • x = ↑y default • x + ↑z default • x) } (c • y) = ↑(RingHom.id R) c • AddHom.toFun { toFun := fun f => ↑f default • x, map_add' := (_ : ∀ (y z : ι →₀ R), (↑y default + ↑z default) • x = ↑y default • x + ↑z default • x) } y) }.toAddHom f)) default = ↑f default [PROOFSTEP] refine' smul_left_injective _ nz _ [GOAL] case mpr.intro.intro.refine_3 ι✝ : Type u_1 ι' : Type u_2 R✝ : Type u_3 R₂ : Type u_4 K : Type u_5 M✝ : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝¹⁰ : Semiring R✝ inst✝⁹ : AddCommMonoid M✝ inst✝⁸ : Module R✝ M✝ inst✝⁷ : AddCommMonoid M' inst✝⁶ : Module R✝ M' b b₁ : Basis ι✝ R✝ M✝ i : ι✝ c : R✝ x✝ : M✝ R : Type u_10 M : Type u_11 inst✝⁵ : Ring R inst✝⁴ : Nontrivial R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : NoZeroSMulDivisors R M ι : Type u_12 inst✝ : Unique ι x : M nz : x ≠ 0 w : ∀ (y : M), ∃ r, r • x = y f : ι →₀ R ⊢ (fun c => c • x) (↑((fun y => Finsupp.single default (Exists.choose (_ : ∃ r, r • x = y))) (AddHom.toFun { toAddHom := { toFun := fun f => ↑f default • x, map_add' := (_ : ∀ (y z : ι →₀ R), (↑y default + ↑z default) • x = ↑y default • x + ↑z default • x) }, map_smul' := (_ : ∀ (c : R) (y : ι →₀ R), AddHom.toFun { toFun := fun f => ↑f default • x, map_add' := (_ : ∀ (y z : ι →₀ R), (↑y default + ↑z default) • x = ↑y default • x + ↑z default • x) } (c • y) = ↑(RingHom.id R) c • AddHom.toFun { toFun := fun f => ↑f default • x, map_add' := (_ : ∀ (y z : ι →₀ R), (↑y default + ↑z default) • x = ↑y default • x + ↑z default • x) } y) }.toAddHom f)) default) = (fun c => c • x) (↑f default) [PROOFSTEP] simp only [Finsupp.single_eq_same] [GOAL] case mpr.intro.intro.refine_3 ι✝ : Type u_1 ι' : Type u_2 R✝ : Type u_3 R₂ : Type u_4 K : Type u_5 M✝ : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝¹⁰ : Semiring R✝ inst✝⁹ : AddCommMonoid M✝ inst✝⁸ : Module R✝ M✝ inst✝⁷ : AddCommMonoid M' inst✝⁶ : Module R✝ M' b b₁ : Basis ι✝ R✝ M✝ i : ι✝ c : R✝ x✝ : M✝ R : Type u_10 M : Type u_11 inst✝⁵ : Ring R inst✝⁴ : Nontrivial R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : NoZeroSMulDivisors R M ι : Type u_12 inst✝ : Unique ι x : M nz : x ≠ 0 w : ∀ (y : M), ∃ r, r • x = y f : ι →₀ R ⊢ Exists.choose (_ : ∃ r, r • x = AddHom.toFun { toAddHom := { toFun := fun f => ↑f default • x, map_add' := (_ : ∀ (y z : ι →₀ R), (↑y default + ↑z default) • x = ↑y default • x + ↑z default • x) }, map_smul' := (_ : ∀ (c : R) (y : ι →₀ R), AddHom.toFun { toFun := fun f => ↑f default • x, map_add' := (_ : ∀ (y z : ι →₀ R), (↑y default + ↑z default) • x = ↑y default • x + ↑z default • x) } (c • y) = ↑(RingHom.id R) c • AddHom.toFun { toFun := fun f => ↑f default • x, map_add' := (_ : ∀ (y z : ι →₀ R), (↑y default + ↑z default) • x = ↑y default • x + ↑z default • x) } y) }.toAddHom f) • x = ↑f default • x [PROOFSTEP] exact (w (f default • x)).choose_spec [GOAL] case mpr.intro.intro.refine_4 ι✝ : Type u_1 ι' : Type u_2 R✝ : Type u_3 R₂ : Type u_4 K : Type u_5 M✝ : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝¹⁰ : Semiring R✝ inst✝⁹ : AddCommMonoid M✝ inst✝⁸ : Module R✝ M✝ inst✝⁷ : AddCommMonoid M' inst✝⁶ : Module R✝ M' b b₁ : Basis ι✝ R✝ M✝ i : ι✝ c : R✝ x✝ : M✝ R : Type u_10 M : Type u_11 inst✝⁵ : Ring R inst✝⁴ : Nontrivial R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : NoZeroSMulDivisors R M ι : Type u_12 inst✝ : Unique ι x : M nz : x ≠ 0 w : ∀ (y : M), ∃ r, r • x = y y : M ⊢ AddHom.toFun { toAddHom := { toFun := fun f => ↑f default • x, map_add' := (_ : ∀ (y z : ι →₀ R), (↑y default + ↑z default) • x = ↑y default • x + ↑z default • x) }, map_smul' := (_ : ∀ (c : R) (y : ι →₀ R), AddHom.toFun { toFun := fun f => ↑f default • x, map_add' := (_ : ∀ (y z : ι →₀ R), (↑y default + ↑z default) • x = ↑y default • x + ↑z default • x) } (c • y) = ↑(RingHom.id R) c • AddHom.toFun { toFun := fun f => ↑f default • x, map_add' := (_ : ∀ (y z : ι →₀ R), (↑y default + ↑z default) • x = ↑y default • x + ↑z default • x) } y) }.toAddHom ((fun y => Finsupp.single default (Exists.choose (_ : ∃ r, r • x = y))) y) = y [PROOFSTEP] simp only [Finsupp.single_eq_same] [GOAL] case mpr.intro.intro.refine_4 ι✝ : Type u_1 ι' : Type u_2 R✝ : Type u_3 R₂ : Type u_4 K : Type u_5 M✝ : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝¹⁰ : Semiring R✝ inst✝⁹ : AddCommMonoid M✝ inst✝⁸ : Module R✝ M✝ inst✝⁷ : AddCommMonoid M' inst✝⁶ : Module R✝ M' b b₁ : Basis ι✝ R✝ M✝ i : ι✝ c : R✝ x✝ : M✝ R : Type u_10 M : Type u_11 inst✝⁵ : Ring R inst✝⁴ : Nontrivial R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : NoZeroSMulDivisors R M ι : Type u_12 inst✝ : Unique ι x : M nz : x ≠ 0 w : ∀ (y : M), ∃ r, r • x = y y : M ⊢ Exists.choose (_ : ∃ r, r • x = y) • x = y [PROOFSTEP] exact (w y).choose_spec [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁷ : Semiring R inst✝⁶ : AddCommMonoid M inst✝⁵ : Module R M inst✝⁴ : AddCommMonoid M' inst✝³ : Module R M' inst✝² : Fintype ι b✝ b : Basis ι R M inst✝¹ : Fintype R inst✝ : Fintype M ⊢ card M = card R ^ card ι [PROOFSTEP] classical calc card M = card (ι → R) := card_congr b.equivFun.toEquiv _ = card R ^ card ι := card_fun [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁷ : Semiring R inst✝⁶ : AddCommMonoid M inst✝⁵ : Module R M inst✝⁴ : AddCommMonoid M' inst✝³ : Module R M' inst✝² : Fintype ι b✝ b : Basis ι R M inst✝¹ : Fintype R inst✝ : Fintype M ⊢ card M = card R ^ card ι [PROOFSTEP] calc card M = card (ι → R) := card_congr b.equivFun.toEquiv _ = card R ^ card ι := card_fun [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : AddCommMonoid M' inst✝¹ : Module R M' inst✝ : Fintype ι b : Basis ι R M x : ι → R ⊢ ↑(LinearEquiv.symm (equivFun b)) x = ∑ i : ι, x i • ↑b i [PROOFSTEP] simp [Basis.equivFun, Finsupp.total_apply, Finsupp.sum_fintype, Finsupp.equivFunOnFinite] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : AddCommMonoid M' inst✝¹ : Module R M' inst✝ : Fintype ι b : Basis ι R M u : M ⊢ ∑ i : ι, ↑(equivFun b) u i • ↑b i = u [PROOFSTEP] conv_rhs => rw [← b.total_repr u] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : AddCommMonoid M' inst✝¹ : Module R M' inst✝ : Fintype ι b : Basis ι R M u : M | u [PROOFSTEP] rw [← b.total_repr u] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : AddCommMonoid M' inst✝¹ : Module R M' inst✝ : Fintype ι b : Basis ι R M u : M | u [PROOFSTEP] rw [← b.total_repr u] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : AddCommMonoid M' inst✝¹ : Module R M' inst✝ : Fintype ι b : Basis ι R M u : M | u [PROOFSTEP] rw [← b.total_repr u] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : AddCommMonoid M' inst✝¹ : Module R M' inst✝ : Fintype ι b : Basis ι R M u : M ⊢ ∑ i : ι, ↑(equivFun b) u i • ↑b i = ↑(Finsupp.total ι M R ↑b) (↑b.repr u) [PROOFSTEP] simp [Finsupp.total_apply, Finsupp.sum_fintype, b.equivFun_apply] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid M' inst✝² : Module R M' inst✝¹ : Fintype ι b : Basis ι R M inst✝ : DecidableEq ι i j : ι ⊢ ↑(equivFun b) (↑b i) j = if i = j then 1 else 0 [PROOFSTEP] rw [b.equivFun_apply, b.repr_self_apply] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : AddCommMonoid M' inst✝¹ : Module R M' inst✝ : Fintype ι b : Basis ι R M c : ι → R ⊢ ↑(↑b.repr (∑ i : ι, c i • ↑b i)) = c [PROOFSTEP] ext j [GOAL] case h ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : AddCommMonoid M' inst✝¹ : Module R M' inst✝ : Fintype ι b : Basis ι R M c : ι → R j : ι ⊢ ↑(↑b.repr (∑ i : ι, c i • ↑b i)) j = c j [PROOFSTEP] simp only [map_sum, LinearEquiv.map_smul, repr_self, Finsupp.smul_single, smul_eq_mul, mul_one, Finset.sum_apply'] [GOAL] case h ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : AddCommMonoid M' inst✝¹ : Module R M' inst✝ : Fintype ι b : Basis ι R M c : ι → R j : ι ⊢ ∑ x : ι, ↑(Finsupp.single x (c x)) j = c j [PROOFSTEP] rw [Finset.sum_eq_single j, Finsupp.single_eq_same] [GOAL] case h.h₀ ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : AddCommMonoid M' inst✝¹ : Module R M' inst✝ : Fintype ι b : Basis ι R M c : ι → R j : ι ⊢ ∀ (b : ι), b ∈ Finset.univ → b ≠ j → ↑(Finsupp.single b (c b)) j = 0 [PROOFSTEP] rintro i - hi [GOAL] case h.h₀ ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : AddCommMonoid M' inst✝¹ : Module R M' inst✝ : Fintype ι b : Basis ι R M c : ι → R j i : ι hi : i ≠ j ⊢ ↑(Finsupp.single i (c i)) j = 0 [PROOFSTEP] exact Finsupp.single_eq_of_ne hi [GOAL] case h.h₁ ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : AddCommMonoid M' inst✝¹ : Module R M' inst✝ : Fintype ι b : Basis ι R M c : ι → R j : ι ⊢ ¬j ∈ Finset.univ → ↑(Finsupp.single j (c j)) j = 0 [PROOFSTEP] intros [GOAL] case h.h₁ ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : AddCommMonoid M' inst✝¹ : Module R M' inst✝ : Fintype ι b : Basis ι R M c : ι → R j : ι a✝ : ¬j ∈ Finset.univ ⊢ ↑(Finsupp.single j (c j)) j = 0 [PROOFSTEP] have := Finset.mem_univ j [GOAL] case h.h₁ ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : AddCommMonoid M' inst✝¹ : Module R M' inst✝ : Fintype ι b : Basis ι R M c : ι → R j : ι a✝ : ¬j ∈ Finset.univ this : j ∈ Finset.univ ⊢ ↑(Finsupp.single j (c j)) j = 0 [PROOFSTEP] contradiction [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : AddCommMonoid M' inst✝² : Module R M' inst✝¹ : Fintype ι b : Basis ι R M inst✝ : DecidableEq ι e : M ≃ₗ[R] ι → R i j : ι ⊢ ↑e (↑(ofEquivFun e) i) j = ↑e (↑(LinearEquiv.symm e) (update 0 i 1)) j [PROOFSTEP] simp [Basis.ofEquivFun, ← Finsupp.single_eq_pi_single, Finsupp.single_eq_update] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : AddCommMonoid M' inst✝¹ : Module R M' inst✝ : Fintype ι b v : Basis ι R M ⊢ ofEquivFun (equivFun v) = v [PROOFSTEP] classical ext j simp only [Basis.equivFun_symm_apply, Basis.coe_ofEquivFun] simp_rw [Function.update_apply, ite_smul] simp only [Finset.mem_univ, if_true, Pi.zero_apply, one_smul, Finset.sum_ite_eq', zero_smul] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : AddCommMonoid M' inst✝¹ : Module R M' inst✝ : Fintype ι b v : Basis ι R M ⊢ ofEquivFun (equivFun v) = v [PROOFSTEP] ext j [GOAL] case a ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : AddCommMonoid M' inst✝¹ : Module R M' inst✝ : Fintype ι b v : Basis ι R M j : ι ⊢ ↑(ofEquivFun (equivFun v)) j = ↑v j [PROOFSTEP] simp only [Basis.equivFun_symm_apply, Basis.coe_ofEquivFun] [GOAL] case a ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : AddCommMonoid M' inst✝¹ : Module R M' inst✝ : Fintype ι b v : Basis ι R M j : ι ⊢ ∑ x : ι, update 0 j 1 x • ↑v x = ↑v j [PROOFSTEP] simp_rw [Function.update_apply, ite_smul] [GOAL] case a ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : AddCommMonoid M' inst✝¹ : Module R M' inst✝ : Fintype ι b v : Basis ι R M j : ι ⊢ (∑ x : ι, if x = j then 1 • ↑v x else OfNat.ofNat 0 x • ↑v x) = ↑v j [PROOFSTEP] simp only [Finset.mem_univ, if_true, Pi.zero_apply, one_smul, Finset.sum_ite_eq', zero_smul] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : AddCommMonoid M' inst✝¹ : Module R M' inst✝ : Fintype ι b : Basis ι R M e : M ≃ₗ[R] ι → R ⊢ equivFun (ofEquivFun e) = e [PROOFSTEP] ext j [GOAL] case h.h ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : AddCommMonoid M' inst✝¹ : Module R M' inst✝ : Fintype ι b : Basis ι R M e : M ≃ₗ[R] ι → R j : M x✝ : ι ⊢ ↑(equivFun (ofEquivFun e)) j x✝ = ↑e j x✝ [PROOFSTEP] simp_rw [Basis.equivFun_apply, Basis.ofEquivFun_repr_apply] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁸ : Semiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid M' inst✝⁴ : Module R M' inst✝³ : Fintype ι b : Basis ι R M S : Type u_10 inst✝² : Semiring S inst✝¹ : Module S M' inst✝ : SMulCommClass R S M' f : ι → M' x : M ⊢ ↑(↑(constr b S) f) x = ∑ i : ι, ↑(equivFun b) x i • f i [PROOFSTEP] simp [b.constr_apply, b.equivFun_apply, Finsupp.sum_fintype] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁸ : Semiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid M' inst✝⁴ : Module R M' inst✝³ : Fintype ι b✝ : Basis ι R M S : Type u_10 inst✝² : Semiring S inst✝¹ : Module S M' inst✝ : SMulCommClass R S M' P : Submodule R M b : Basis ι R { x // x ∈ P } x : M c : ι → R ⊢ (x = Finsupp.sum (↑Finsupp.equivFunOnFinite.symm c) fun i x => x • ↑(↑b i)) ↔ x = ∑ i : ι, c i • ↑(↑b i) [PROOFSTEP] simp [Finsupp.sum_fintype, Finsupp.equivFunOnFinite] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : CommSemiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b : Basis ι R M b' : Basis ι' R M' f : M → M' g : M' → M hf : ∀ (i : ι), f (↑b i) ∈ range ↑b' hg : ∀ (i : ι'), g (↑b' i) ∈ range ↑b hgf : ∀ (i : ι), g (f (↑b i)) = ↑b i hfg : ∀ (i : ι'), f (g (↑b' i)) = ↑b' i src✝ : (fun x => M →ₗ[R] M') (f ∘ ↑b) := ↑(constr b R) (f ∘ ↑b) i : ι i' : ι' hi' : ↑b' i' = f (↑b i) ⊢ ↑(LinearMap.comp (↑(constr b' R) (g ∘ ↑b')) (↑(constr b R) (f ∘ ↑b))) (↑b i) = ↑LinearMap.id (↑b i) [PROOFSTEP] rw [LinearMap.comp_apply, b.constr_basis, Function.comp_apply, ← hi', b'.constr_basis, Function.comp_apply, hi', hgf, LinearMap.id_apply] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁴ : CommSemiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M' inst✝ : Module R M' b : Basis ι R M b' : Basis ι' R M' f : M → M' g : M' → M hf : ∀ (i : ι), f (↑b i) ∈ range ↑b' hg : ∀ (i : ι'), g (↑b' i) ∈ range ↑b hgf : ∀ (i : ι), g (f (↑b i)) = ↑b i hfg : ∀ (i : ι'), f (g (↑b' i)) = ↑b' i src✝ : (fun x => M →ₗ[R] M') (f ∘ ↑b) := ↑(constr b R) (f ∘ ↑b) i : ι' i' : ι hi' : ↑b i' = g (↑b' i) ⊢ ↑(LinearMap.comp (↑(constr b R) (f ∘ ↑b)) (↑(constr b' R) (g ∘ ↑b'))) (↑b' i) = ↑LinearMap.id (↑b' i) [PROOFSTEP] rw [LinearMap.comp_apply, b'.constr_basis, Function.comp_apply, ← hi', b.constr_basis, Function.comp_apply, hi', hfg, LinearMap.id_apply] [GOAL] ι : Type u_1 ι'✝ : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁵ : CommSemiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : AddCommMonoid M' inst✝¹ : Module R M' b : Basis ι R M b'✝ : Basis ι'✝ R M' ι' : Type u_10 inst✝ : Fintype ι' b' : Basis ι' R M x : M i : ι ⊢ ∑ j : ι', ↑(↑b.repr (↑b' j)) i * ↑(↑b'.repr x) j = ↑(↑b.repr x) i [PROOFSTEP] conv_rhs => rw [← b'.sum_repr x] [GOAL] ι : Type u_1 ι'✝ : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁵ : CommSemiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : AddCommMonoid M' inst✝¹ : Module R M' b : Basis ι R M b'✝ : Basis ι'✝ R M' ι' : Type u_10 inst✝ : Fintype ι' b' : Basis ι' R M x : M i : ι | ↑(↑b.repr x) i [PROOFSTEP] rw [← b'.sum_repr x] [GOAL] ι : Type u_1 ι'✝ : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁵ : CommSemiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : AddCommMonoid M' inst✝¹ : Module R M' b : Basis ι R M b'✝ : Basis ι'✝ R M' ι' : Type u_10 inst✝ : Fintype ι' b' : Basis ι' R M x : M i : ι | ↑(↑b.repr x) i [PROOFSTEP] rw [← b'.sum_repr x] [GOAL] ι : Type u_1 ι'✝ : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁵ : CommSemiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : AddCommMonoid M' inst✝¹ : Module R M' b : Basis ι R M b'✝ : Basis ι'✝ R M' ι' : Type u_10 inst✝ : Fintype ι' b' : Basis ι' R M x : M i : ι | ↑(↑b.repr x) i [PROOFSTEP] rw [← b'.sum_repr x] [GOAL] ι : Type u_1 ι'✝ : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁵ : CommSemiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : AddCommMonoid M' inst✝¹ : Module R M' b : Basis ι R M b'✝ : Basis ι'✝ R M' ι' : Type u_10 inst✝ : Fintype ι' b' : Basis ι' R M x : M i : ι ⊢ ∑ j : ι', ↑(↑b.repr (↑b' j)) i * ↑(↑b'.repr x) j = ↑(↑b.repr (∑ i : ι', ↑(↑b'.repr x) i • ↑b' i)) i [PROOFSTEP] simp_rw [LinearEquiv.map_sum, LinearEquiv.map_smul, Finset.sum_apply'] [GOAL] ι : Type u_1 ι'✝ : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁵ : CommSemiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : AddCommMonoid M' inst✝¹ : Module R M' b : Basis ι R M b'✝ : Basis ι'✝ R M' ι' : Type u_10 inst✝ : Fintype ι' b' : Basis ι' R M x : M i : ι ⊢ ∑ x_1 : ι', ↑(↑b.repr (↑b' x_1)) i * ↑(↑b'.repr x) x_1 = ∑ x_1 : ι', ↑(↑(↑b'.repr x) x_1 • ↑b.repr (↑b' x_1)) i [PROOFSTEP] refine' Finset.sum_congr rfl fun j _ => _ [GOAL] ι : Type u_1 ι'✝ : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝⁵ : CommSemiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : AddCommMonoid M' inst✝¹ : Module R M' b : Basis ι R M b'✝ : Basis ι'✝ R M' ι' : Type u_10 inst✝ : Fintype ι' b' : Basis ι' R M x : M i : ι j : ι' x✝ : j ∈ Finset.univ ⊢ ↑(↑b.repr (↑b' j)) i * ↑(↑b'.repr x) j = ↑(↑(↑b'.repr x) j • ↑b.repr (↑b' j)) i [PROOFSTEP] rw [Finsupp.smul_apply, smul_eq_mul, mul_comm] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 v : ι → M inst✝⁹ : Ring R inst✝⁸ : CommRing R₂ inst✝⁷ : AddCommGroup M inst✝⁶ : AddCommGroup M' inst✝⁵ : AddCommGroup M'' inst✝⁴ : Module R M inst✝³ : Module R₂ M inst✝² : Module R M' inst✝¹ : Module R M'' c d : R x y : M b✝ : Basis ι R M inst✝ : Nontrivial R b : Basis ι R M w : Set M hi : LinearIndependent R Subtype.val h : Set.range ↑b ≤ w ⊢ Set.range ↑b = w [PROOFSTEP] apply le_antisymm h [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 v : ι → M inst✝⁹ : Ring R inst✝⁸ : CommRing R₂ inst✝⁷ : AddCommGroup M inst✝⁶ : AddCommGroup M' inst✝⁵ : AddCommGroup M'' inst✝⁴ : Module R M inst✝³ : Module R₂ M inst✝² : Module R M' inst✝¹ : Module R M'' c d : R x y : M b✝ : Basis ι R M inst✝ : Nontrivial R b : Basis ι R M w : Set M hi : LinearIndependent R Subtype.val h : Set.range ↑b ≤ w ⊢ w ≤ Set.range ↑b [PROOFSTEP] intro x p [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 v : ι → M inst✝⁹ : Ring R inst✝⁸ : CommRing R₂ inst✝⁷ : AddCommGroup M inst✝⁶ : AddCommGroup M' inst✝⁵ : AddCommGroup M'' inst✝⁴ : Module R M inst✝³ : Module R₂ M inst✝² : Module R M' inst✝¹ : Module R M'' c d : R x✝ y : M b✝ : Basis ι R M inst✝ : Nontrivial R b : Basis ι R M w : Set M hi : LinearIndependent R Subtype.val h : Set.range ↑b ≤ w x : M p : x ∈ w ⊢ x ∈ Set.range ↑b [PROOFSTEP] by_contra q [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 v : ι → M inst✝⁹ : Ring R inst✝⁸ : CommRing R₂ inst✝⁷ : AddCommGroup M inst✝⁶ : AddCommGroup M' inst✝⁵ : AddCommGroup M'' inst✝⁴ : Module R M inst✝³ : Module R₂ M inst✝² : Module R M' inst✝¹ : Module R M'' c d : R x✝ y : M b✝ : Basis ι R M inst✝ : Nontrivial R b : Basis ι R M w : Set M hi : LinearIndependent R Subtype.val h : Set.range ↑b ≤ w x : M p : x ∈ w q : ¬x ∈ Set.range ↑b ⊢ False [PROOFSTEP] have e := b.total_repr x [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 v : ι → M inst✝⁹ : Ring R inst✝⁸ : CommRing R₂ inst✝⁷ : AddCommGroup M inst✝⁶ : AddCommGroup M' inst✝⁵ : AddCommGroup M'' inst✝⁴ : Module R M inst✝³ : Module R₂ M inst✝² : Module R M' inst✝¹ : Module R M'' c d : R x✝ y : M b✝ : Basis ι R M inst✝ : Nontrivial R b : Basis ι R M w : Set M hi : LinearIndependent R Subtype.val h : Set.range ↑b ≤ w x : M p : x ∈ w q : ¬x ∈ Set.range ↑b e : ↑(Finsupp.total ι M R ↑b) (↑b.repr x) = x ⊢ False [PROOFSTEP] let u : ι ↪ w := ⟨fun i => ⟨b i, h ⟨i, rfl⟩⟩, fun i i' r => b.injective (by simpa only [Subtype.mk_eq_mk] using r)⟩ [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 v : ι → M inst✝⁹ : Ring R inst✝⁸ : CommRing R₂ inst✝⁷ : AddCommGroup M inst✝⁶ : AddCommGroup M' inst✝⁵ : AddCommGroup M'' inst✝⁴ : Module R M inst✝³ : Module R₂ M inst✝² : Module R M' inst✝¹ : Module R M'' c d : R x✝ y : M b✝ : Basis ι R M inst✝ : Nontrivial R b : Basis ι R M w : Set M hi : LinearIndependent R Subtype.val h : Set.range ↑b ≤ w x : M p : x ∈ w q : ¬x ∈ Set.range ↑b e : ↑(Finsupp.total ι M R ↑b) (↑b.repr x) = x i i' : ι r : (fun i => { val := ↑b i, property := (_ : ↑b i ∈ w) }) i = (fun i => { val := ↑b i, property := (_ : ↑b i ∈ w) }) i' ⊢ ↑b i = ↑b i' [PROOFSTEP] simpa only [Subtype.mk_eq_mk] using r [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 v : ι → M inst✝⁹ : Ring R inst✝⁸ : CommRing R₂ inst✝⁷ : AddCommGroup M inst✝⁶ : AddCommGroup M' inst✝⁵ : AddCommGroup M'' inst✝⁴ : Module R M inst✝³ : Module R₂ M inst✝² : Module R M' inst✝¹ : Module R M'' c d : R x✝ y : M b✝ : Basis ι R M inst✝ : Nontrivial R b : Basis ι R M w : Set M hi : LinearIndependent R Subtype.val h : Set.range ↑b ≤ w x : M p : x ∈ w q : ¬x ∈ Set.range ↑b e : ↑(Finsupp.total ι M R ↑b) (↑b.repr x) = x u : ι ↪ ↑w := { toFun := fun i => { val := ↑b i, property := (_ : ↑b i ∈ w) }, inj' := (_ : ∀ (i i' : ι), (fun i => { val := ↑b i, property := (_ : ↑b i ∈ w) }) i = (fun i => { val := ↑b i, property := (_ : ↑b i ∈ w) }) i' → i = i') } ⊢ False [PROOFSTEP] simp_rw [Finsupp.total_apply] at e [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 v : ι → M inst✝⁹ : Ring R inst✝⁸ : CommRing R₂ inst✝⁷ : AddCommGroup M inst✝⁶ : AddCommGroup M' inst✝⁵ : AddCommGroup M'' inst✝⁴ : Module R M inst✝³ : Module R₂ M inst✝² : Module R M' inst✝¹ : Module R M'' c d : R x✝ y : M b✝ : Basis ι R M inst✝ : Nontrivial R b : Basis ι R M w : Set M hi : LinearIndependent R Subtype.val h : Set.range ↑b ≤ w x : M p : x ∈ w q : ¬x ∈ Set.range ↑b e : (Finsupp.sum (↑b.repr x) fun i a => a • ↑b i) = x u : ι ↪ ↑w := { toFun := fun i => { val := ↑b i, property := (_ : ↑b i ∈ w) }, inj' := (_ : ∀ (i i' : ι), (fun i => { val := ↑b i, property := (_ : ↑b i ∈ w) }) i = (fun i => { val := ↑b i, property := (_ : ↑b i ∈ w) }) i' → i = i') } ⊢ False [PROOFSTEP] change ((b.repr x).sum fun (i : ι) (a : R) ↦ a • (u i : M)) = ((⟨x, p⟩ : w) : M) at e [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 v : ι → M inst✝⁹ : Ring R inst✝⁸ : CommRing R₂ inst✝⁷ : AddCommGroup M inst✝⁶ : AddCommGroup M' inst✝⁵ : AddCommGroup M'' inst✝⁴ : Module R M inst✝³ : Module R₂ M inst✝² : Module R M' inst✝¹ : Module R M'' c d : R x✝ y : M b✝ : Basis ι R M inst✝ : Nontrivial R b : Basis ι R M w : Set M hi : LinearIndependent R Subtype.val h : Set.range ↑b ≤ w x : M p : x ∈ w q : ¬x ∈ Set.range ↑b u : ι ↪ ↑w := { toFun := fun i => { val := ↑b i, property := (_ : ↑b i ∈ w) }, inj' := (_ : ∀ (i i' : ι), (fun i => { val := ↑b i, property := (_ : ↑b i ∈ w) }) i = (fun i => { val := ↑b i, property := (_ : ↑b i ∈ w) }) i' → i = i') } e : (Finsupp.sum (↑b.repr x) fun i a => a • ↑(↑u i)) = ↑{ val := x, property := p } ⊢ False [PROOFSTEP] rw [← Finsupp.sum_embDomain (f := u) (g := fun x r ↦ r • (x : M)), ← Finsupp.total_apply] at e [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 v : ι → M inst✝⁹ : Ring R inst✝⁸ : CommRing R₂ inst✝⁷ : AddCommGroup M inst✝⁶ : AddCommGroup M' inst✝⁵ : AddCommGroup M'' inst✝⁴ : Module R M inst✝³ : Module R₂ M inst✝² : Module R M' inst✝¹ : Module R M'' c d : R x✝ y : M b✝ : Basis ι R M inst✝ : Nontrivial R b : Basis ι R M w : Set M hi : LinearIndependent R Subtype.val h : Set.range ↑b ≤ w x : M p : x ∈ w q : ¬x ∈ Set.range ↑b u : ι ↪ ↑w := { toFun := fun i => { val := ↑b i, property := (_ : ↑b i ∈ w) }, inj' := (_ : ∀ (i i' : ι), (fun i => { val := ↑b i, property := (_ : ↑b i ∈ w) }) i = (fun i => { val := ↑b i, property := (_ : ↑b i ∈ w) }) i' → i = i') } e : ↑(Finsupp.total (↑w) M R fun x => ↑x) (Finsupp.embDomain u (↑b.repr x)) = ↑{ val := x, property := p } ⊢ False [PROOFSTEP] refine' hi.total_ne_of_not_mem_support _ _ e [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 v : ι → M inst✝⁹ : Ring R inst✝⁸ : CommRing R₂ inst✝⁷ : AddCommGroup M inst✝⁶ : AddCommGroup M' inst✝⁵ : AddCommGroup M'' inst✝⁴ : Module R M inst✝³ : Module R₂ M inst✝² : Module R M' inst✝¹ : Module R M'' c d : R x✝ y : M b✝ : Basis ι R M inst✝ : Nontrivial R b : Basis ι R M w : Set M hi : LinearIndependent R Subtype.val h : Set.range ↑b ≤ w x : M p : x ∈ w q : ¬x ∈ Set.range ↑b u : ι ↪ ↑w := { toFun := fun i => { val := ↑b i, property := (_ : ↑b i ∈ w) }, inj' := (_ : ∀ (i i' : ι), (fun i => { val := ↑b i, property := (_ : ↑b i ∈ w) }) i = (fun i => { val := ↑b i, property := (_ : ↑b i ∈ w) }) i' → i = i') } e : ↑(Finsupp.total (↑w) M R fun x => ↑x) (Finsupp.embDomain u (↑b.repr x)) = ↑{ val := x, property := p } ⊢ ¬{ val := x, property := p } ∈ (Finsupp.embDomain u (↑b.repr x)).support [PROOFSTEP] simp only [Finset.mem_map, Finsupp.support_embDomain] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 v : ι → M inst✝⁹ : Ring R inst✝⁸ : CommRing R₂ inst✝⁷ : AddCommGroup M inst✝⁶ : AddCommGroup M' inst✝⁵ : AddCommGroup M'' inst✝⁴ : Module R M inst✝³ : Module R₂ M inst✝² : Module R M' inst✝¹ : Module R M'' c d : R x✝ y : M b✝ : Basis ι R M inst✝ : Nontrivial R b : Basis ι R M w : Set M hi : LinearIndependent R Subtype.val h : Set.range ↑b ≤ w x : M p : x ∈ w q : ¬x ∈ Set.range ↑b u : ι ↪ ↑w := { toFun := fun i => { val := ↑b i, property := (_ : ↑b i ∈ w) }, inj' := (_ : ∀ (i i' : ι), (fun i => { val := ↑b i, property := (_ : ↑b i ∈ w) }) i = (fun i => { val := ↑b i, property := (_ : ↑b i ∈ w) }) i' → i = i') } e : ↑(Finsupp.total (↑w) M R fun x => ↑x) (Finsupp.embDomain u (↑b.repr x)) = ↑{ val := x, property := p } ⊢ ¬∃ a, a ∈ (↑b.repr x).support ∧ ↑{ toFun := fun i => { val := ↑b i, property := (_ : ↑b i ∈ w) }, inj' := (_ : ∀ (i i' : ι), (fun i => { val := ↑b i, property := (_ : ↑b i ∈ w) }) i = (fun i => { val := ↑b i, property := (_ : ↑b i ∈ w) }) i' → i = i') } a = { val := x, property := p } [PROOFSTEP] rintro ⟨j, -, W⟩ [GOAL] case intro.intro ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 v : ι → M inst✝⁹ : Ring R inst✝⁸ : CommRing R₂ inst✝⁷ : AddCommGroup M inst✝⁶ : AddCommGroup M' inst✝⁵ : AddCommGroup M'' inst✝⁴ : Module R M inst✝³ : Module R₂ M inst✝² : Module R M' inst✝¹ : Module R M'' c d : R x✝ y : M b✝ : Basis ι R M inst✝ : Nontrivial R b : Basis ι R M w : Set M hi : LinearIndependent R Subtype.val h : Set.range ↑b ≤ w x : M p : x ∈ w q : ¬x ∈ Set.range ↑b u : ι ↪ ↑w := { toFun := fun i => { val := ↑b i, property := (_ : ↑b i ∈ w) }, inj' := (_ : ∀ (i i' : ι), (fun i => { val := ↑b i, property := (_ : ↑b i ∈ w) }) i = (fun i => { val := ↑b i, property := (_ : ↑b i ∈ w) }) i' → i = i') } e : ↑(Finsupp.total (↑w) M R fun x => ↑x) (Finsupp.embDomain u (↑b.repr x)) = ↑{ val := x, property := p } j : ι W : ↑{ toFun := fun i => { val := ↑b i, property := (_ : ↑b i ∈ w) }, inj' := (_ : ∀ (i i' : ι), (fun i => { val := ↑b i, property := (_ : ↑b i ∈ w) }) i = (fun i => { val := ↑b i, property := (_ : ↑b i ∈ w) }) i' → i = i') } j = { val := x, property := p } ⊢ False [PROOFSTEP] simp only [Embedding.coeFn_mk, Subtype.mk_eq_mk] at W [GOAL] case intro.intro ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 v : ι → M inst✝⁹ : Ring R inst✝⁸ : CommRing R₂ inst✝⁷ : AddCommGroup M inst✝⁶ : AddCommGroup M' inst✝⁵ : AddCommGroup M'' inst✝⁴ : Module R M inst✝³ : Module R₂ M inst✝² : Module R M' inst✝¹ : Module R M'' c d : R x✝ y : M b✝ : Basis ι R M inst✝ : Nontrivial R b : Basis ι R M w : Set M hi : LinearIndependent R Subtype.val h : Set.range ↑b ≤ w x : M p : x ∈ w q : ¬x ∈ Set.range ↑b u : ι ↪ ↑w := { toFun := fun i => { val := ↑b i, property := (_ : ↑b i ∈ w) }, inj' := (_ : ∀ (i i' : ι), (fun i => { val := ↑b i, property := (_ : ↑b i ∈ w) }) i = (fun i => { val := ↑b i, property := (_ : ↑b i ∈ w) }) i' → i = i') } e : ↑(Finsupp.total (↑w) M R fun x => ↑x) (Finsupp.embDomain u (↑b.repr x)) = ↑{ val := x, property := p } j : ι W : ↑b j = x ⊢ False [PROOFSTEP] apply q ⟨j, W⟩ [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 v : ι → M inst✝⁸ : Ring R inst✝⁷ : CommRing R₂ inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R₂ M inst✝¹ : Module R M' inst✝ : Module R M'' c d : R x y : M b : Basis ι R M hli : LinearIndependent R v hsp : ⊤ ≤ span R (Set.range v) i : ι ⊢ ↑(Finsupp.total ι M R v) (Finsupp.single i 1) = v i [PROOFSTEP] simp [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 v : ι → M inst✝⁸ : Ring R inst✝⁷ : CommRing R₂ inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R₂ M inst✝¹ : Module R M' inst✝ : Module R M'' c d : R x y : M b : Basis ι R M hli : LinearIndependent R v hsp : ⊤ ≤ span R (Set.range v) i : ι ⊢ ↑(↑(LinearIndependent.repr hli) { val := v i, property := (_ : v i ∈ ↑(span R (Set.range v))) }) i = 1 [PROOFSTEP] simp [hli.repr_eq_single i] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 v : ι → M inst✝⁸ : Ring R inst✝⁷ : CommRing R₂ inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R₂ M inst✝¹ : Module R M' inst✝ : Module R M'' c d : R x y : M b : Basis ι R M hli : LinearIndependent R v hsp : ⊤ ≤ span R (Set.range v) i j : ι h : j ≠ i ⊢ ↑(↑(LinearIndependent.repr hli) { val := v j, property := (_ : v j ∈ ↑(span R (Set.range v))) }) i = 0 [PROOFSTEP] simp [hli.repr_eq_single j, h] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 v : ι → M inst✝⁹ : Ring R inst✝⁸ : CommRing R₂ inst✝⁷ : AddCommGroup M inst✝⁶ : AddCommGroup M' inst✝⁵ : AddCommGroup M'' inst✝⁴ : Module R M inst✝³ : Module R₂ M inst✝² : Module R M' inst✝¹ : Module R M'' c d : R x y : M b : Basis ι R M hli : LinearIndependent R v hsp : ⊤ ≤ span R (Set.range v) inst✝ : DecidableEq ι i j : ι ⊢ ↑(coord (Basis.mk hli hsp) i) (v j) = if j = i then 1 else 0 [PROOFSTEP] cases' eq_or_ne j i with h h [GOAL] case inl ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 v : ι → M inst✝⁹ : Ring R inst✝⁸ : CommRing R₂ inst✝⁷ : AddCommGroup M inst✝⁶ : AddCommGroup M' inst✝⁵ : AddCommGroup M'' inst✝⁴ : Module R M inst✝³ : Module R₂ M inst✝² : Module R M' inst✝¹ : Module R M'' c d : R x y : M b : Basis ι R M hli : LinearIndependent R v hsp : ⊤ ≤ span R (Set.range v) inst✝ : DecidableEq ι i j : ι h : j = i ⊢ ↑(coord (Basis.mk hli hsp) i) (v j) = if j = i then 1 else 0 [PROOFSTEP] simp only [h, if_true, eq_self_iff_true, mk_coord_apply_eq i] [GOAL] case inr ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 v : ι → M inst✝⁹ : Ring R inst✝⁸ : CommRing R₂ inst✝⁷ : AddCommGroup M inst✝⁶ : AddCommGroup M' inst✝⁵ : AddCommGroup M'' inst✝⁴ : Module R M inst✝³ : Module R₂ M inst✝² : Module R M' inst✝¹ : Module R M'' c d : R x y : M b : Basis ι R M hli : LinearIndependent R v hsp : ⊤ ≤ span R (Set.range v) inst✝ : DecidableEq ι i j : ι h : j ≠ i ⊢ ↑(coord (Basis.mk hli hsp) i) (v j) = if j = i then 1 else 0 [PROOFSTEP] simp only [h, if_false, mk_coord_apply_ne h] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 v : ι → M inst✝⁸ : Ring R inst✝⁷ : CommRing R₂ inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R₂ M inst✝¹ : Module R M' inst✝ : Module R M'' c d : R x y : M b : Basis ι R M hli : LinearIndependent R v ⊢ ⊤ ≤ span R (Set.range fun i => { val := v i, property := (_ : v i ∈ ↑(span R (Set.range v))) }) [PROOFSTEP] intro x _ [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 v : ι → M inst✝⁸ : Ring R inst✝⁷ : CommRing R₂ inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R₂ M inst✝¹ : Module R M' inst✝ : Module R M'' c d : R x✝ y : M b : Basis ι R M hli : LinearIndependent R v x : { x // x ∈ span R (Set.range v) } a✝ : x ∈ ⊤ ⊢ x ∈ span R (Set.range fun i => { val := v i, property := (_ : v i ∈ ↑(span R (Set.range v))) }) [PROOFSTEP] have : ∀ i, v i ∈ span R (range v) := fun i ↦ subset_span (Set.mem_range_self _) [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 v : ι → M inst✝⁸ : Ring R inst✝⁷ : CommRing R₂ inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R₂ M inst✝¹ : Module R M' inst✝ : Module R M'' c d : R x✝ y : M b : Basis ι R M hli : LinearIndependent R v x : { x // x ∈ span R (Set.range v) } a✝ : x ∈ ⊤ this : ∀ (i : ι), v i ∈ span R (Set.range v) ⊢ x ∈ span R (Set.range fun i => { val := v i, property := (_ : v i ∈ ↑(span R (Set.range v))) }) [PROOFSTEP] have h₁ : (((↑) : span R (range v) → M) '' range fun i => ⟨v i, this i⟩) = range v := by simp only [SetLike.coe_sort_coe, ← Set.range_comp] rfl [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 v : ι → M inst✝⁸ : Ring R inst✝⁷ : CommRing R₂ inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R₂ M inst✝¹ : Module R M' inst✝ : Module R M'' c d : R x✝ y : M b : Basis ι R M hli : LinearIndependent R v x : { x // x ∈ span R (Set.range v) } a✝ : x ∈ ⊤ this : ∀ (i : ι), v i ∈ span R (Set.range v) ⊢ (Subtype.val '' Set.range fun i => { val := v i, property := (_ : v i ∈ span R (Set.range v)) }) = Set.range v [PROOFSTEP] simp only [SetLike.coe_sort_coe, ← Set.range_comp] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 v : ι → M inst✝⁸ : Ring R inst✝⁷ : CommRing R₂ inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R₂ M inst✝¹ : Module R M' inst✝ : Module R M'' c d : R x✝ y : M b : Basis ι R M hli : LinearIndependent R v x : { x // x ∈ span R (Set.range v) } a✝ : x ∈ ⊤ this : ∀ (i : ι), v i ∈ span R (Set.range v) ⊢ Set.range (Subtype.val ∘ fun i => { val := v i, property := (_ : v i ∈ span R (Set.range v)) }) = Set.range v [PROOFSTEP] rfl [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 v : ι → M inst✝⁸ : Ring R inst✝⁷ : CommRing R₂ inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R₂ M inst✝¹ : Module R M' inst✝ : Module R M'' c d : R x✝ y : M b : Basis ι R M hli : LinearIndependent R v x : { x // x ∈ span R (Set.range v) } a✝ : x ∈ ⊤ this : ∀ (i : ι), v i ∈ span R (Set.range v) h₁ : (Subtype.val '' Set.range fun i => { val := v i, property := (_ : v i ∈ span R (Set.range v)) }) = Set.range v ⊢ x ∈ span R (Set.range fun i => { val := v i, property := (_ : v i ∈ ↑(span R (Set.range v))) }) [PROOFSTEP] have h₂ : map (Submodule.subtype (span R (range v))) (span R (range fun i => ⟨v i, this i⟩)) = span R (range v) := by rw [← span_image, Submodule.coeSubtype] -- Porting note: why doesn't `rw [h₁]` work here? exact congr_arg _ h₁ [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 v : ι → M inst✝⁸ : Ring R inst✝⁷ : CommRing R₂ inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R₂ M inst✝¹ : Module R M' inst✝ : Module R M'' c d : R x✝ y : M b : Basis ι R M hli : LinearIndependent R v x : { x // x ∈ span R (Set.range v) } a✝ : x ∈ ⊤ this : ∀ (i : ι), v i ∈ span R (Set.range v) h₁ : (Subtype.val '' Set.range fun i => { val := v i, property := (_ : v i ∈ span R (Set.range v)) }) = Set.range v ⊢ map (Submodule.subtype (span R (Set.range v))) (span R (Set.range fun i => { val := v i, property := (_ : v i ∈ span R (Set.range v)) })) = span R (Set.range v) [PROOFSTEP] rw [← span_image, Submodule.coeSubtype] -- Porting note: why doesn't `rw [h₁]` work here? [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 v : ι → M inst✝⁸ : Ring R inst✝⁷ : CommRing R₂ inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R₂ M inst✝¹ : Module R M' inst✝ : Module R M'' c d : R x✝ y : M b : Basis ι R M hli : LinearIndependent R v x : { x // x ∈ span R (Set.range v) } a✝ : x ∈ ⊤ this : ∀ (i : ι), v i ∈ span R (Set.range v) h₁ : (Subtype.val '' Set.range fun i => { val := v i, property := (_ : v i ∈ span R (Set.range v)) }) = Set.range v ⊢ span R (Subtype.val '' Set.range fun i => { val := v i, property := (_ : v i ∈ span R (Set.range v)) }) = span R (Set.range v) [PROOFSTEP] exact congr_arg _ h₁ [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 v : ι → M inst✝⁸ : Ring R inst✝⁷ : CommRing R₂ inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R₂ M inst✝¹ : Module R M' inst✝ : Module R M'' c d : R x✝ y : M b : Basis ι R M hli : LinearIndependent R v x : { x // x ∈ span R (Set.range v) } a✝ : x ∈ ⊤ this : ∀ (i : ι), v i ∈ span R (Set.range v) h₁ : (Subtype.val '' Set.range fun i => { val := v i, property := (_ : v i ∈ span R (Set.range v)) }) = Set.range v h₂ : map (Submodule.subtype (span R (Set.range v))) (span R (Set.range fun i => { val := v i, property := (_ : v i ∈ span R (Set.range v)) })) = span R (Set.range v) ⊢ x ∈ span R (Set.range fun i => { val := v i, property := (_ : v i ∈ ↑(span R (Set.range v))) }) [PROOFSTEP] have h₃ : (x : M) ∈ map (Submodule.subtype (span R (range v))) (span R (Set.range fun i => Subtype.mk (v i) _)) := by rw [h₂] apply Subtype.mem x [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 v : ι → M inst✝⁸ : Ring R inst✝⁷ : CommRing R₂ inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R₂ M inst✝¹ : Module R M' inst✝ : Module R M'' c d : R x✝ y : M b : Basis ι R M hli : LinearIndependent R v x : { x // x ∈ span R (Set.range v) } a✝ : x ∈ ⊤ this : ∀ (i : ι), v i ∈ span R (Set.range v) h₁ : (Subtype.val '' Set.range fun i => { val := v i, property := (_ : v i ∈ span R (Set.range v)) }) = Set.range v h₂ : map (Submodule.subtype (span R (Set.range v))) (span R (Set.range fun i => { val := v i, property := (_ : v i ∈ span R (Set.range v)) })) = span R (Set.range v) ⊢ ↑x ∈ map (Submodule.subtype (span R (Set.range v))) (span R (Set.range fun i => { val := v i, property := (_ : ?m.886970 (v i)) })) [PROOFSTEP] rw [h₂] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 v : ι → M inst✝⁸ : Ring R inst✝⁷ : CommRing R₂ inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R₂ M inst✝¹ : Module R M' inst✝ : Module R M'' c d : R x✝ y : M b : Basis ι R M hli : LinearIndependent R v x : { x // x ∈ span R (Set.range v) } a✝ : x ∈ ⊤ this : ∀ (i : ι), v i ∈ span R (Set.range v) h₁ : (Subtype.val '' Set.range fun i => { val := v i, property := (_ : v i ∈ span R (Set.range v)) }) = Set.range v h₂ : map (Submodule.subtype (span R (Set.range v))) (span R (Set.range fun i => { val := v i, property := (_ : v i ∈ span R (Set.range v)) })) = span R (Set.range v) ⊢ ↑x ∈ span R (Set.range v) [PROOFSTEP] apply Subtype.mem x [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 v : ι → M inst✝⁸ : Ring R inst✝⁷ : CommRing R₂ inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R₂ M inst✝¹ : Module R M' inst✝ : Module R M'' c d : R x✝ y : M b : Basis ι R M hli : LinearIndependent R v x : { x // x ∈ span R (Set.range v) } a✝ : x ∈ ⊤ this : ∀ (i : ι), v i ∈ span R (Set.range v) h₁ : (Subtype.val '' Set.range fun i => { val := v i, property := (_ : v i ∈ span R (Set.range v)) }) = Set.range v h₂ : map (Submodule.subtype (span R (Set.range v))) (span R (Set.range fun i => { val := v i, property := (_ : v i ∈ span R (Set.range v)) })) = span R (Set.range v) h₃ : ↑x ∈ map (Submodule.subtype (span R (Set.range v))) (span R (Set.range fun i => { val := v i, property := (_ : v i ∈ span R (Set.range v)) })) ⊢ x ∈ span R (Set.range fun i => { val := v i, property := (_ : v i ∈ ↑(span R (Set.range v))) }) [PROOFSTEP] rcases mem_map.1 h₃ with ⟨y, hy₁, hy₂⟩ [GOAL] case intro.intro ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 v : ι → M inst✝⁸ : Ring R inst✝⁷ : CommRing R₂ inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R₂ M inst✝¹ : Module R M' inst✝ : Module R M'' c d : R x✝ y✝ : M b : Basis ι R M hli : LinearIndependent R v x : { x // x ∈ span R (Set.range v) } a✝ : x ∈ ⊤ this : ∀ (i : ι), v i ∈ span R (Set.range v) h₁ : (Subtype.val '' Set.range fun i => { val := v i, property := (_ : v i ∈ span R (Set.range v)) }) = Set.range v h₂ : map (Submodule.subtype (span R (Set.range v))) (span R (Set.range fun i => { val := v i, property := (_ : v i ∈ span R (Set.range v)) })) = span R (Set.range v) h₃ : ↑x ∈ map (Submodule.subtype (span R (Set.range v))) (span R (Set.range fun i => { val := v i, property := (_ : v i ∈ span R (Set.range v)) })) y : { x // x ∈ span R (Set.range v) } hy₁ : y ∈ span R (Set.range fun i => { val := v i, property := (_ : v i ∈ span R (Set.range v)) }) hy₂ : ↑(Submodule.subtype (span R (Set.range v))) y = ↑x ⊢ x ∈ span R (Set.range fun i => { val := v i, property := (_ : v i ∈ ↑(span R (Set.range v))) }) [PROOFSTEP] have h_x_eq_y : x = y := by rw [Subtype.ext_iff, ← hy₂] simp [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 v : ι → M inst✝⁸ : Ring R inst✝⁷ : CommRing R₂ inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R₂ M inst✝¹ : Module R M' inst✝ : Module R M'' c d : R x✝ y✝ : M b : Basis ι R M hli : LinearIndependent R v x : { x // x ∈ span R (Set.range v) } a✝ : x ∈ ⊤ this : ∀ (i : ι), v i ∈ span R (Set.range v) h₁ : (Subtype.val '' Set.range fun i => { val := v i, property := (_ : v i ∈ span R (Set.range v)) }) = Set.range v h₂ : map (Submodule.subtype (span R (Set.range v))) (span R (Set.range fun i => { val := v i, property := (_ : v i ∈ span R (Set.range v)) })) = span R (Set.range v) h₃ : ↑x ∈ map (Submodule.subtype (span R (Set.range v))) (span R (Set.range fun i => { val := v i, property := (_ : v i ∈ span R (Set.range v)) })) y : { x // x ∈ span R (Set.range v) } hy₁ : y ∈ span R (Set.range fun i => { val := v i, property := (_ : v i ∈ span R (Set.range v)) }) hy₂ : ↑(Submodule.subtype (span R (Set.range v))) y = ↑x ⊢ x = y [PROOFSTEP] rw [Subtype.ext_iff, ← hy₂] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 v : ι → M inst✝⁸ : Ring R inst✝⁷ : CommRing R₂ inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R₂ M inst✝¹ : Module R M' inst✝ : Module R M'' c d : R x✝ y✝ : M b : Basis ι R M hli : LinearIndependent R v x : { x // x ∈ span R (Set.range v) } a✝ : x ∈ ⊤ this : ∀ (i : ι), v i ∈ span R (Set.range v) h₁ : (Subtype.val '' Set.range fun i => { val := v i, property := (_ : v i ∈ span R (Set.range v)) }) = Set.range v h₂ : map (Submodule.subtype (span R (Set.range v))) (span R (Set.range fun i => { val := v i, property := (_ : v i ∈ span R (Set.range v)) })) = span R (Set.range v) h₃ : ↑x ∈ map (Submodule.subtype (span R (Set.range v))) (span R (Set.range fun i => { val := v i, property := (_ : v i ∈ span R (Set.range v)) })) y : { x // x ∈ span R (Set.range v) } hy₁ : y ∈ span R (Set.range fun i => { val := v i, property := (_ : v i ∈ span R (Set.range v)) }) hy₂ : ↑(Submodule.subtype (span R (Set.range v))) y = ↑x ⊢ ↑(Submodule.subtype (span R (Set.range v))) y = ↑y [PROOFSTEP] simp [GOAL] case intro.intro ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 v : ι → M inst✝⁸ : Ring R inst✝⁷ : CommRing R₂ inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R₂ M inst✝¹ : Module R M' inst✝ : Module R M'' c d : R x✝ y✝ : M b : Basis ι R M hli : LinearIndependent R v x : { x // x ∈ span R (Set.range v) } a✝ : x ∈ ⊤ this : ∀ (i : ι), v i ∈ span R (Set.range v) h₁ : (Subtype.val '' Set.range fun i => { val := v i, property := (_ : v i ∈ span R (Set.range v)) }) = Set.range v h₂ : map (Submodule.subtype (span R (Set.range v))) (span R (Set.range fun i => { val := v i, property := (_ : v i ∈ span R (Set.range v)) })) = span R (Set.range v) h₃ : ↑x ∈ map (Submodule.subtype (span R (Set.range v))) (span R (Set.range fun i => { val := v i, property := (_ : v i ∈ span R (Set.range v)) })) y : { x // x ∈ span R (Set.range v) } hy₁ : y ∈ span R (Set.range fun i => { val := v i, property := (_ : v i ∈ span R (Set.range v)) }) hy₂ : ↑(Submodule.subtype (span R (Set.range v))) y = ↑x h_x_eq_y : x = y ⊢ x ∈ span R (Set.range fun i => { val := v i, property := (_ : v i ∈ ↑(span R (Set.range v))) }) [PROOFSTEP] rwa [h_x_eq_y] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 v✝ : ι → M inst✝¹² : Ring R inst✝¹¹ : CommRing R₂ inst✝¹⁰ : AddCommGroup M inst✝⁹ : AddCommGroup M' inst✝⁸ : AddCommGroup M'' inst✝⁷ : Module R M inst✝⁶ : Module R₂ M inst✝⁵ : Module R M' inst✝⁴ : Module R M'' c d : R x y : M b : Basis ι R M G : Type u_10 inst✝³ : Group G inst✝² : DistribMulAction G R inst✝¹ : DistribMulAction G M inst✝ : IsScalarTower G R M v : ι → M hv : span R (Set.range v) = ⊤ w : ι → G ⊢ span R (Set.range (w • v)) = ⊤ [PROOFSTEP] rw [eq_top_iff] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 v✝ : ι → M inst✝¹² : Ring R inst✝¹¹ : CommRing R₂ inst✝¹⁰ : AddCommGroup M inst✝⁹ : AddCommGroup M' inst✝⁸ : AddCommGroup M'' inst✝⁷ : Module R M inst✝⁶ : Module R₂ M inst✝⁵ : Module R M' inst✝⁴ : Module R M'' c d : R x y : M b : Basis ι R M G : Type u_10 inst✝³ : Group G inst✝² : DistribMulAction G R inst✝¹ : DistribMulAction G M inst✝ : IsScalarTower G R M v : ι → M hv : span R (Set.range v) = ⊤ w : ι → G ⊢ ⊤ ≤ span R (Set.range (w • v)) [PROOFSTEP] intro j hj [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 v✝ : ι → M inst✝¹² : Ring R inst✝¹¹ : CommRing R₂ inst✝¹⁰ : AddCommGroup M inst✝⁹ : AddCommGroup M' inst✝⁸ : AddCommGroup M'' inst✝⁷ : Module R M inst✝⁶ : Module R₂ M inst✝⁵ : Module R M' inst✝⁴ : Module R M'' c d : R x y : M b : Basis ι R M G : Type u_10 inst✝³ : Group G inst✝² : DistribMulAction G R inst✝¹ : DistribMulAction G M inst✝ : IsScalarTower G R M v : ι → M hv : span R (Set.range v) = ⊤ w : ι → G j : M hj : j ∈ ⊤ ⊢ j ∈ span R (Set.range (w • v)) [PROOFSTEP] rw [← hv] at hj [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 v✝ : ι → M inst✝¹² : Ring R inst✝¹¹ : CommRing R₂ inst✝¹⁰ : AddCommGroup M inst✝⁹ : AddCommGroup M' inst✝⁸ : AddCommGroup M'' inst✝⁷ : Module R M inst✝⁶ : Module R₂ M inst✝⁵ : Module R M' inst✝⁴ : Module R M'' c d : R x y : M b : Basis ι R M G : Type u_10 inst✝³ : Group G inst✝² : DistribMulAction G R inst✝¹ : DistribMulAction G M inst✝ : IsScalarTower G R M v : ι → M hv : span R (Set.range v) = ⊤ w : ι → G j : M hj : j ∈ span R (Set.range v) ⊢ j ∈ span R (Set.range (w • v)) [PROOFSTEP] rw [Submodule.mem_span] at hj ⊢ [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 v✝ : ι → M inst✝¹² : Ring R inst✝¹¹ : CommRing R₂ inst✝¹⁰ : AddCommGroup M inst✝⁹ : AddCommGroup M' inst✝⁸ : AddCommGroup M'' inst✝⁷ : Module R M inst✝⁶ : Module R₂ M inst✝⁵ : Module R M' inst✝⁴ : Module R M'' c d : R x y : M b : Basis ι R M G : Type u_10 inst✝³ : Group G inst✝² : DistribMulAction G R inst✝¹ : DistribMulAction G M inst✝ : IsScalarTower G R M v : ι → M hv : span R (Set.range v) = ⊤ w : ι → G j : M hj : ∀ (p : Submodule R M), Set.range v ⊆ ↑p → j ∈ p ⊢ ∀ (p : Submodule R M), Set.range (w • v) ⊆ ↑p → j ∈ p [PROOFSTEP] refine' fun p hp => hj p fun u hu => _ [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 v✝ : ι → M inst✝¹² : Ring R inst✝¹¹ : CommRing R₂ inst✝¹⁰ : AddCommGroup M inst✝⁹ : AddCommGroup M' inst✝⁸ : AddCommGroup M'' inst✝⁷ : Module R M inst✝⁶ : Module R₂ M inst✝⁵ : Module R M' inst✝⁴ : Module R M'' c d : R x y : M b : Basis ι R M G : Type u_10 inst✝³ : Group G inst✝² : DistribMulAction G R inst✝¹ : DistribMulAction G M inst✝ : IsScalarTower G R M v : ι → M hv : span R (Set.range v) = ⊤ w : ι → G j : M hj : ∀ (p : Submodule R M), Set.range v ⊆ ↑p → j ∈ p p : Submodule R M hp : Set.range (w • v) ⊆ ↑p u : M hu : u ∈ Set.range v ⊢ u ∈ ↑p [PROOFSTEP] obtain ⟨i, rfl⟩ := hu [GOAL] case intro ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 v✝ : ι → M inst✝¹² : Ring R inst✝¹¹ : CommRing R₂ inst✝¹⁰ : AddCommGroup M inst✝⁹ : AddCommGroup M' inst✝⁸ : AddCommGroup M'' inst✝⁷ : Module R M inst✝⁶ : Module R₂ M inst✝⁵ : Module R M' inst✝⁴ : Module R M'' c d : R x y : M b : Basis ι R M G : Type u_10 inst✝³ : Group G inst✝² : DistribMulAction G R inst✝¹ : DistribMulAction G M inst✝ : IsScalarTower G R M v : ι → M hv : span R (Set.range v) = ⊤ w : ι → G j : M hj : ∀ (p : Submodule R M), Set.range v ⊆ ↑p → j ∈ p p : Submodule R M hp : Set.range (w • v) ⊆ ↑p i : ι ⊢ v i ∈ ↑p [PROOFSTEP] have : ((w i)⁻¹ • (1 : R)) • w i • v i ∈ p := p.smul_mem ((w i)⁻¹ • (1 : R)) (hp ⟨i, rfl⟩) [GOAL] case intro ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 v✝ : ι → M inst✝¹² : Ring R inst✝¹¹ : CommRing R₂ inst✝¹⁰ : AddCommGroup M inst✝⁹ : AddCommGroup M' inst✝⁸ : AddCommGroup M'' inst✝⁷ : Module R M inst✝⁶ : Module R₂ M inst✝⁵ : Module R M' inst✝⁴ : Module R M'' c d : R x y : M b : Basis ι R M G : Type u_10 inst✝³ : Group G inst✝² : DistribMulAction G R inst✝¹ : DistribMulAction G M inst✝ : IsScalarTower G R M v : ι → M hv : span R (Set.range v) = ⊤ w : ι → G j : M hj : ∀ (p : Submodule R M), Set.range v ⊆ ↑p → j ∈ p p : Submodule R M hp : Set.range (w • v) ⊆ ↑p i : ι this : ((w i)⁻¹ • 1) • w i • v i ∈ p ⊢ v i ∈ ↑p [PROOFSTEP] rwa [smul_one_smul, inv_smul_smul] at this [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 v : ι → M inst✝⁸ : Ring R inst✝⁷ : CommRing R₂ inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R₂ M inst✝¹ : Module R M' inst✝ : Module R M'' c d : R x y : M b : Basis ι R M e : Basis ι R₂ M w : ι → R₂ˣ i : ι ⊢ coord (unitsSMul e w) i = (w i)⁻¹ • coord e i [PROOFSTEP] classical apply e.ext intro j trans ((unitsSMul e w).coord i) ((w j)⁻¹ • (unitsSMul e w) j) · congr simp [Basis.unitsSMul, ← mul_smul] simp only [Basis.coord_apply, LinearMap.smul_apply, Basis.repr_self, Units.smul_def, SMulHomClass.map_smul, Finsupp.single_apply] split_ifs with h <;> simp [h] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 v : ι → M inst✝⁸ : Ring R inst✝⁷ : CommRing R₂ inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R₂ M inst✝¹ : Module R M' inst✝ : Module R M'' c d : R x y : M b : Basis ι R M e : Basis ι R₂ M w : ι → R₂ˣ i : ι ⊢ coord (unitsSMul e w) i = (w i)⁻¹ • coord e i [PROOFSTEP] apply e.ext [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 v : ι → M inst✝⁸ : Ring R inst✝⁷ : CommRing R₂ inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R₂ M inst✝¹ : Module R M' inst✝ : Module R M'' c d : R x y : M b : Basis ι R M e : Basis ι R₂ M w : ι → R₂ˣ i : ι ⊢ ∀ (i_1 : ι), ↑(coord (unitsSMul e w) i) (↑e i_1) = ↑((w i)⁻¹ • coord e i) (↑e i_1) [PROOFSTEP] intro j [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 v : ι → M inst✝⁸ : Ring R inst✝⁷ : CommRing R₂ inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R₂ M inst✝¹ : Module R M' inst✝ : Module R M'' c d : R x y : M b : Basis ι R M e : Basis ι R₂ M w : ι → R₂ˣ i j : ι ⊢ ↑(coord (unitsSMul e w) i) (↑e j) = ↑((w i)⁻¹ • coord e i) (↑e j) [PROOFSTEP] trans ((unitsSMul e w).coord i) ((w j)⁻¹ • (unitsSMul e w) j) [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 v : ι → M inst✝⁸ : Ring R inst✝⁷ : CommRing R₂ inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R₂ M inst✝¹ : Module R M' inst✝ : Module R M'' c d : R x y : M b : Basis ι R M e : Basis ι R₂ M w : ι → R₂ˣ i j : ι ⊢ ↑(coord (unitsSMul e w) i) (↑e j) = ↑(coord (unitsSMul e w) i) ((w j)⁻¹ • ↑(unitsSMul e w) j) [PROOFSTEP] congr [GOAL] case h.e_6.h ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 v : ι → M inst✝⁸ : Ring R inst✝⁷ : CommRing R₂ inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R₂ M inst✝¹ : Module R M' inst✝ : Module R M'' c d : R x y : M b : Basis ι R M e : Basis ι R₂ M w : ι → R₂ˣ i j : ι ⊢ ↑e j = (w j)⁻¹ • ↑(unitsSMul e w) j [PROOFSTEP] simp [Basis.unitsSMul, ← mul_smul] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 v : ι → M inst✝⁸ : Ring R inst✝⁷ : CommRing R₂ inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R₂ M inst✝¹ : Module R M' inst✝ : Module R M'' c d : R x y : M b : Basis ι R M e : Basis ι R₂ M w : ι → R₂ˣ i j : ι ⊢ ↑(coord (unitsSMul e w) i) ((w j)⁻¹ • ↑(unitsSMul e w) j) = ↑((w i)⁻¹ • coord e i) (↑e j) [PROOFSTEP] simp only [Basis.coord_apply, LinearMap.smul_apply, Basis.repr_self, Units.smul_def, SMulHomClass.map_smul, Finsupp.single_apply] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 v : ι → M inst✝⁸ : Ring R inst✝⁷ : CommRing R₂ inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R₂ M inst✝¹ : Module R M' inst✝ : Module R M'' c d : R x y : M b : Basis ι R M e : Basis ι R₂ M w : ι → R₂ˣ i j : ι ⊢ ↑(↑(w j)⁻¹ • Finsupp.single j 1) i = ↑(w i)⁻¹ • if j = i then 1 else 0 [PROOFSTEP] split_ifs with h [GOAL] case pos ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 v : ι → M inst✝⁸ : Ring R inst✝⁷ : CommRing R₂ inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R₂ M inst✝¹ : Module R M' inst✝ : Module R M'' c d : R x y : M b : Basis ι R M e : Basis ι R₂ M w : ι → R₂ˣ i j : ι h : j = i ⊢ ↑(↑(w j)⁻¹ • Finsupp.single j 1) i = ↑(w i)⁻¹ • 1 [PROOFSTEP] simp [h] [GOAL] case neg ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 v : ι → M inst✝⁸ : Ring R inst✝⁷ : CommRing R₂ inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R₂ M inst✝¹ : Module R M' inst✝ : Module R M'' c d : R x y : M b : Basis ι R M e : Basis ι R₂ M w : ι → R₂ˣ i j : ι h : ¬j = i ⊢ ↑(↑(w j)⁻¹ • Finsupp.single j 1) i = ↑(w i)⁻¹ • 0 [PROOFSTEP] simp [h] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 v : ι → M inst✝⁸ : Ring R inst✝⁷ : CommRing R₂ inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R₂ M inst✝¹ : Module R M' inst✝ : Module R M'' c d : R x y✝ : M b✝ : Basis ι R M n : ℕ N : Submodule R M y : M b : Basis (Fin n) R { x // x ∈ N } hli : ∀ (c : R) (x : M), x ∈ N → c • y + x = 0 → c = 0 hsp : ∀ (z : M), ∃ c, z + c • y ∈ N ⊢ span R (Set.range (↑(Submodule.subtype N) ∘ ↑b)) = N [PROOFSTEP] rw [Set.range_comp, Submodule.span_image, b.span_eq, Submodule.map_subtype_top] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 v : ι → M inst✝⁸ : Ring R inst✝⁷ : CommRing R₂ inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R₂ M inst✝¹ : Module R M' inst✝ : Module R M'' c d : R x y✝ : M b✝ : Basis ι R M n : ℕ N : Submodule R M y : M b : Basis (Fin n) R { x // x ∈ N } hli : ∀ (c : R) (x : M), x ∈ N → c • y + x = 0 → c = 0 hsp : ∀ (z : M), ∃ c, z + c • y ∈ N span_b : span R (Set.range (↑(Submodule.subtype N) ∘ ↑b)) = N ⊢ ∀ (c : R) (y_1 : { x // x ∈ span R (Set.range (↑(Submodule.subtype N) ∘ ↑b)) }), c • y + ↑y_1 = 0 → c = 0 [PROOFSTEP] rintro c ⟨x, hx⟩ hc [GOAL] case mk ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 v : ι → M inst✝⁸ : Ring R inst✝⁷ : CommRing R₂ inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R₂ M inst✝¹ : Module R M' inst✝ : Module R M'' c✝ d : R x✝ y✝ : M b✝ : Basis ι R M n : ℕ N : Submodule R M y : M b : Basis (Fin n) R { x // x ∈ N } hli : ∀ (c : R) (x : M), x ∈ N → c • y + x = 0 → c = 0 hsp : ∀ (z : M), ∃ c, z + c • y ∈ N span_b : span R (Set.range (↑(Submodule.subtype N) ∘ ↑b)) = N c : R x : M hx : x ∈ span R (Set.range (↑(Submodule.subtype N) ∘ ↑b)) hc : c • y + ↑{ val := x, property := hx } = 0 ⊢ c = 0 [PROOFSTEP] rw [span_b] at hx [GOAL] case mk ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 v : ι → M inst✝⁸ : Ring R inst✝⁷ : CommRing R₂ inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R₂ M inst✝¹ : Module R M' inst✝ : Module R M'' c✝ d : R x✝ y✝ : M b✝ : Basis ι R M n : ℕ N : Submodule R M y : M b : Basis (Fin n) R { x // x ∈ N } hli : ∀ (c : R) (x : M), x ∈ N → c • y + x = 0 → c = 0 hsp : ∀ (z : M), ∃ c, z + c • y ∈ N span_b : span R (Set.range (↑(Submodule.subtype N) ∘ ↑b)) = N c : R x : M hx✝ : x ∈ span R (Set.range (↑(Submodule.subtype N) ∘ ↑b)) hx : x ∈ N hc : c • y + ↑{ val := x, property := hx✝ } = 0 ⊢ c = 0 [PROOFSTEP] exact hli c x hx hc [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 v : ι → M inst✝⁸ : Ring R inst✝⁷ : CommRing R₂ inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R₂ M inst✝¹ : Module R M' inst✝ : Module R M'' c d : R x✝¹ y✝ : M b✝ : Basis ι R M n : ℕ N : Submodule R M y : M b : Basis (Fin n) R { x // x ∈ N } hli : ∀ (c : R) (x : M), x ∈ N → c • y + x = 0 → c = 0 hsp : ∀ (z : M), ∃ c, z + c • y ∈ N span_b : span R (Set.range (↑(Submodule.subtype N) ∘ ↑b)) = N x : M x✝ : x ∈ ⊤ ⊢ x ∈ span R (Set.range (Fin.cons y (↑(Submodule.subtype N) ∘ ↑b))) [PROOFSTEP] rw [Fin.range_cons, Submodule.mem_span_insert', span_b] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 v : ι → M inst✝⁸ : Ring R inst✝⁷ : CommRing R₂ inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R₂ M inst✝¹ : Module R M' inst✝ : Module R M'' c d : R x✝¹ y✝ : M b✝ : Basis ι R M n : ℕ N : Submodule R M y : M b : Basis (Fin n) R { x // x ∈ N } hli : ∀ (c : R) (x : M), x ∈ N → c • y + x = 0 → c = 0 hsp : ∀ (z : M), ∃ c, z + c • y ∈ N span_b : span R (Set.range (↑(Submodule.subtype N) ∘ ↑b)) = N x : M x✝ : x ∈ ⊤ ⊢ ∃ a, x + a • y ∈ N [PROOFSTEP] exact hsp x [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 v : ι → M inst✝⁸ : Ring R inst✝⁷ : CommRing R₂ inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R₂ M inst✝¹ : Module R M' inst✝ : Module R M'' c d : R x y✝ : M b✝ : Basis ι R M n : ℕ N : Submodule R M y : M b : Basis (Fin n) R { x // x ∈ N } hli : ∀ (c : R) (x : M), x ∈ N → c • y + x = 0 → c = 0 hsp : ∀ (z : M), ∃ c, z + c • y ∈ N ⊢ ↑(mkFinCons y b hli hsp) = Fin.cons y (Subtype.val ∘ ↑b) [PROOFSTEP] unfold mkFinCons [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 v : ι → M inst✝⁸ : Ring R inst✝⁷ : CommRing R₂ inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R₂ M inst✝¹ : Module R M' inst✝ : Module R M'' c d : R x y✝ : M b✝ : Basis ι R M n : ℕ N : Submodule R M y : M b : Basis (Fin n) R { x // x ∈ N } hli : ∀ (c : R) (x : M), x ∈ N → c • y + x = 0 → c = 0 hsp : ∀ (z : M), ∃ c, z + c • y ∈ N ⊢ ↑(let_fun span_b := (_ : span R (Set.range (↑(Submodule.subtype N) ∘ ↑b)) = N); Basis.mk (_ : LinearIndependent R (Fin.cons y (↑(Submodule.subtype N) ∘ ↑b))) (_ : ∀ (x : M), x ∈ ⊤ → x ∈ span R (Set.range (Fin.cons y (↑(Submodule.subtype N) ∘ ↑b))))) = Fin.cons y (Subtype.val ∘ ↑b) [PROOFSTEP] exact coe_mk (v := Fin.cons y (N.subtype ∘ b)) _ _ [GOAL] ι : Type u_1 ι' : Type u_2 R✝ : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 v : ι → M inst✝⁹ : Ring R✝ inst✝⁸ : CommRing R₂ inst✝⁷ : AddCommGroup M inst✝⁶ : AddCommGroup M' inst✝⁵ : AddCommGroup M'' inst✝⁴ : Module R✝ M inst✝³ : Module R₂ M inst✝² : Module R✝ M' inst✝¹ : Module R✝ M'' c d : R✝ x y : M b : Basis ι R✝ M R : Type u_10 inst✝ : Semiring R ⊢ ↑(Basis.finTwoProd R) 0 = (1, 0) [PROOFSTEP] simp [Basis.finTwoProd, LinearEquiv.finTwoArrow] [GOAL] ι : Type u_1 ι' : Type u_2 R✝ : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 v : ι → M inst✝⁹ : Ring R✝ inst✝⁸ : CommRing R₂ inst✝⁷ : AddCommGroup M inst✝⁶ : AddCommGroup M' inst✝⁵ : AddCommGroup M'' inst✝⁴ : Module R✝ M inst✝³ : Module R₂ M inst✝² : Module R✝ M' inst✝¹ : Module R✝ M'' c d : R✝ x y : M b : Basis ι R✝ M R : Type u_10 inst✝ : Semiring R ⊢ ↑(Basis.finTwoProd R) 1 = (0, 1) [PROOFSTEP] simp [Basis.finTwoProd, LinearEquiv.finTwoArrow] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝³ : Ring R inst✝² : IsDomain R inst✝¹ : AddCommGroup M inst✝ : Module R M b✝ : ι → M b : Basis ι R M P : Submodule R M → Sort u_10 ih : (N : Submodule R M) → ((N' : Submodule R M) → N' ≤ N → (x : M) → x ∈ N → (∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0) → P N') → P N n : ℕ N : Submodule R M rank_le : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n ⊢ P N [PROOFSTEP] haveI : DecidableEq M := Classical.decEq M [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝³ : Ring R inst✝² : IsDomain R inst✝¹ : AddCommGroup M inst✝ : Module R M b✝ : ι → M b : Basis ι R M P : Submodule R M → Sort u_10 ih : (N : Submodule R M) → ((N' : Submodule R M) → N' ≤ N → (x : M) → x ∈ N → (∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0) → P N') → P N n : ℕ N : Submodule R M rank_le : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n this : DecidableEq M ⊢ P N [PROOFSTEP] have Pbot : P ⊥ := by apply ih intro N _ x x_mem x_ortho exfalso rw [mem_bot] at x_mem simpa [x_mem] using x_ortho 1 0 N.zero_mem [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝³ : Ring R inst✝² : IsDomain R inst✝¹ : AddCommGroup M inst✝ : Module R M b✝ : ι → M b : Basis ι R M P : Submodule R M → Sort u_10 ih : (N : Submodule R M) → ((N' : Submodule R M) → N' ≤ N → (x : M) → x ∈ N → (∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0) → P N') → P N n : ℕ N : Submodule R M rank_le : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n this : DecidableEq M ⊢ P ⊥ [PROOFSTEP] apply ih [GOAL] case a ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝³ : Ring R inst✝² : IsDomain R inst✝¹ : AddCommGroup M inst✝ : Module R M b✝ : ι → M b : Basis ι R M P : Submodule R M → Sort u_10 ih : (N : Submodule R M) → ((N' : Submodule R M) → N' ≤ N → (x : M) → x ∈ N → (∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0) → P N') → P N n : ℕ N : Submodule R M rank_le : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n this : DecidableEq M ⊢ (N' : Submodule R M) → N' ≤ ⊥ → (x : M) → x ∈ ⊥ → (∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0) → P N' [PROOFSTEP] intro N _ x x_mem x_ortho [GOAL] case a ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝³ : Ring R inst✝² : IsDomain R inst✝¹ : AddCommGroup M inst✝ : Module R M b✝ : ι → M b : Basis ι R M P : Submodule R M → Sort u_10 ih : (N : Submodule R M) → ((N' : Submodule R M) → N' ≤ N → (x : M) → x ∈ N → (∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0) → P N') → P N n : ℕ N✝ : Submodule R M rank_le : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N✝ }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n this : DecidableEq M N : Submodule R M a✝ : N ≤ ⊥ x : M x_mem : x ∈ ⊥ x_ortho : ∀ (c : R) (y : M), y ∈ N → c • x + y = 0 → c = 0 ⊢ P N [PROOFSTEP] exfalso [GOAL] case a.h ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝³ : Ring R inst✝² : IsDomain R inst✝¹ : AddCommGroup M inst✝ : Module R M b✝ : ι → M b : Basis ι R M P : Submodule R M → Sort u_10 ih : (N : Submodule R M) → ((N' : Submodule R M) → N' ≤ N → (x : M) → x ∈ N → (∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0) → P N') → P N n : ℕ N✝ : Submodule R M rank_le : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N✝ }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n this : DecidableEq M N : Submodule R M a✝ : N ≤ ⊥ x : M x_mem : x ∈ ⊥ x_ortho : ∀ (c : R) (y : M), y ∈ N → c • x + y = 0 → c = 0 ⊢ False [PROOFSTEP] rw [mem_bot] at x_mem [GOAL] case a.h ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝³ : Ring R inst✝² : IsDomain R inst✝¹ : AddCommGroup M inst✝ : Module R M b✝ : ι → M b : Basis ι R M P : Submodule R M → Sort u_10 ih : (N : Submodule R M) → ((N' : Submodule R M) → N' ≤ N → (x : M) → x ∈ N → (∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0) → P N') → P N n : ℕ N✝ : Submodule R M rank_le : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N✝ }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n this : DecidableEq M N : Submodule R M a✝ : N ≤ ⊥ x : M x_mem : x = 0 x_ortho : ∀ (c : R) (y : M), y ∈ N → c • x + y = 0 → c = 0 ⊢ False [PROOFSTEP] simpa [x_mem] using x_ortho 1 0 N.zero_mem [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝³ : Ring R inst✝² : IsDomain R inst✝¹ : AddCommGroup M inst✝ : Module R M b✝ : ι → M b : Basis ι R M P : Submodule R M → Sort u_10 ih : (N : Submodule R M) → ((N' : Submodule R M) → N' ≤ N → (x : M) → x ∈ N → (∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0) → P N') → P N n : ℕ N : Submodule R M rank_le : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n this : DecidableEq M Pbot : P ⊥ ⊢ P N [PROOFSTEP] induction' n with n rank_ih generalizing N [GOAL] case zero ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝³ : Ring R inst✝² : IsDomain R inst✝¹ : AddCommGroup M inst✝ : Module R M b✝ : ι → M b : Basis ι R M P : Submodule R M → Sort u_10 ih : (N : Submodule R M) → ((N' : Submodule R M) → N' ≤ N → (x : M) → x ∈ N → (∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0) → P N') → P N n : ℕ N✝ : Submodule R M rank_le✝ : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N✝ }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n this : DecidableEq M Pbot : P ⊥ N : Submodule R M rank_le : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m ≤ Nat.zero ⊢ P N [PROOFSTEP] suffices N = ⊥ by rwa [this] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝³ : Ring R inst✝² : IsDomain R inst✝¹ : AddCommGroup M inst✝ : Module R M b✝ : ι → M b : Basis ι R M P : Submodule R M → Sort u_10 ih : (N : Submodule R M) → ((N' : Submodule R M) → N' ≤ N → (x : M) → x ∈ N → (∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0) → P N') → P N n : ℕ N✝ : Submodule R M rank_le✝ : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N✝ }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n this✝ : DecidableEq M Pbot : P ⊥ N : Submodule R M rank_le : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m ≤ Nat.zero this : N = ⊥ ⊢ P N [PROOFSTEP] rwa [this] [GOAL] case zero ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝³ : Ring R inst✝² : IsDomain R inst✝¹ : AddCommGroup M inst✝ : Module R M b✝ : ι → M b : Basis ι R M P : Submodule R M → Sort u_10 ih : (N : Submodule R M) → ((N' : Submodule R M) → N' ≤ N → (x : M) → x ∈ N → (∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0) → P N') → P N n : ℕ N✝ : Submodule R M rank_le✝ : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N✝ }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n this : DecidableEq M Pbot : P ⊥ N : Submodule R M rank_le : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m ≤ Nat.zero ⊢ N = ⊥ [PROOFSTEP] apply Basis.eq_bot_of_rank_eq_zero b _ fun m hv => le_zero_iff.mp (rank_le _ hv) [GOAL] case succ ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝³ : Ring R inst✝² : IsDomain R inst✝¹ : AddCommGroup M inst✝ : Module R M b✝ : ι → M b : Basis ι R M P : Submodule R M → Sort u_10 ih : (N : Submodule R M) → ((N' : Submodule R M) → N' ≤ N → (x : M) → x ∈ N → (∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0) → P N') → P N n✝ : ℕ N✝ : Submodule R M rank_le✝ : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N✝ }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n✝ this : DecidableEq M Pbot : P ⊥ n : ℕ rank_ih : (N : Submodule R M) → (∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n) → P N N : Submodule R M rank_le : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m ≤ Nat.succ n ⊢ P N [PROOFSTEP] apply ih [GOAL] case succ.a ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝³ : Ring R inst✝² : IsDomain R inst✝¹ : AddCommGroup M inst✝ : Module R M b✝ : ι → M b : Basis ι R M P : Submodule R M → Sort u_10 ih : (N : Submodule R M) → ((N' : Submodule R M) → N' ≤ N → (x : M) → x ∈ N → (∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0) → P N') → P N n✝ : ℕ N✝ : Submodule R M rank_le✝ : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N✝ }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n✝ this : DecidableEq M Pbot : P ⊥ n : ℕ rank_ih : (N : Submodule R M) → (∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n) → P N N : Submodule R M rank_le : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m ≤ Nat.succ n ⊢ (N' : Submodule R M) → N' ≤ N → (x : M) → x ∈ N → (∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0) → P N' [PROOFSTEP] intro N' N'_le x x_mem x_ortho [GOAL] case succ.a ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝³ : Ring R inst✝² : IsDomain R inst✝¹ : AddCommGroup M inst✝ : Module R M b✝ : ι → M b : Basis ι R M P : Submodule R M → Sort u_10 ih : (N : Submodule R M) → ((N' : Submodule R M) → N' ≤ N → (x : M) → x ∈ N → (∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0) → P N') → P N n✝ : ℕ N✝ : Submodule R M rank_le✝ : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N✝ }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n✝ this : DecidableEq M Pbot : P ⊥ n : ℕ rank_ih : (N : Submodule R M) → (∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n) → P N N : Submodule R M rank_le : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m ≤ Nat.succ n N' : Submodule R M N'_le : N' ≤ N x : M x_mem : x ∈ N x_ortho : ∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0 ⊢ P N' [PROOFSTEP] apply rank_ih [GOAL] case succ.a.rank_le ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝³ : Ring R inst✝² : IsDomain R inst✝¹ : AddCommGroup M inst✝ : Module R M b✝ : ι → M b : Basis ι R M P : Submodule R M → Sort u_10 ih : (N : Submodule R M) → ((N' : Submodule R M) → N' ≤ N → (x : M) → x ∈ N → (∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0) → P N') → P N n✝ : ℕ N✝ : Submodule R M rank_le✝ : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N✝ }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n✝ this : DecidableEq M Pbot : P ⊥ n : ℕ rank_ih : (N : Submodule R M) → (∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n) → P N N : Submodule R M rank_le : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m ≤ Nat.succ n N' : Submodule R M N'_le : N' ≤ N x : M x_mem : x ∈ N x_ortho : ∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0 ⊢ ∀ {m : ℕ} (v : Fin m → { x // x ∈ N' }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n [PROOFSTEP] intro m v hli [GOAL] case succ.a.rank_le ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝³ : Ring R inst✝² : IsDomain R inst✝¹ : AddCommGroup M inst✝ : Module R M b✝ : ι → M b : Basis ι R M P : Submodule R M → Sort u_10 ih : (N : Submodule R M) → ((N' : Submodule R M) → N' ≤ N → (x : M) → x ∈ N → (∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0) → P N') → P N n✝ : ℕ N✝ : Submodule R M rank_le✝ : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N✝ }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n✝ this : DecidableEq M Pbot : P ⊥ n : ℕ rank_ih : (N : Submodule R M) → (∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n) → P N N : Submodule R M rank_le : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m ≤ Nat.succ n N' : Submodule R M N'_le : N' ≤ N x : M x_mem : x ∈ N x_ortho : ∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0 m : ℕ v : Fin m → { x // x ∈ N' } hli : LinearIndependent R (Subtype.val ∘ v) ⊢ m ≤ n [PROOFSTEP] refine' Nat.succ_le_succ_iff.mp (rank_le (Fin.cons ⟨x, x_mem⟩ fun i => ⟨v i, N'_le (v i).2⟩) _) [GOAL] case succ.a.rank_le ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝³ : Ring R inst✝² : IsDomain R inst✝¹ : AddCommGroup M inst✝ : Module R M b✝ : ι → M b : Basis ι R M P : Submodule R M → Sort u_10 ih : (N : Submodule R M) → ((N' : Submodule R M) → N' ≤ N → (x : M) → x ∈ N → (∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0) → P N') → P N n✝ : ℕ N✝ : Submodule R M rank_le✝ : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N✝ }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n✝ this : DecidableEq M Pbot : P ⊥ n : ℕ rank_ih : (N : Submodule R M) → (∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n) → P N N : Submodule R M rank_le : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m ≤ Nat.succ n N' : Submodule R M N'_le : N' ≤ N x : M x_mem : x ∈ N x_ortho : ∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0 m : ℕ v : Fin m → { x // x ∈ N' } hli : LinearIndependent R (Subtype.val ∘ v) ⊢ LinearIndependent R (Subtype.val ∘ Fin.cons { val := x, property := x_mem } fun i => { val := ↑(v i), property := (_ : ↑(v i) ∈ ?N) }) [PROOFSTEP] convert hli.fin_cons' x _ ?_ [GOAL] case h.e'_4 ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝³ : Ring R inst✝² : IsDomain R inst✝¹ : AddCommGroup M inst✝ : Module R M b✝ : ι → M b : Basis ι R M P : Submodule R M → Sort u_10 ih : (N : Submodule R M) → ((N' : Submodule R M) → N' ≤ N → (x : M) → x ∈ N → (∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0) → P N') → P N n✝ : ℕ N✝ : Submodule R M rank_le✝ : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N✝ }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n✝ this : DecidableEq M Pbot : P ⊥ n : ℕ rank_ih : (N : Submodule R M) → (∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n) → P N N : Submodule R M rank_le : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m ≤ Nat.succ n N' : Submodule R M N'_le : N' ≤ N x : M x_mem : x ∈ N x_ortho : ∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0 m : ℕ v : Fin m → { x // x ∈ N' } hli : LinearIndependent R (Subtype.val ∘ v) ⊢ (Subtype.val ∘ Fin.cons { val := x, property := x_mem } fun i => { val := ↑(v i), property := (_ : ↑(v i) ∈ ?N) }) = Fin.cons x (Subtype.val ∘ v) [PROOFSTEP] ext i [GOAL] case h.e'_4.h ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝³ : Ring R inst✝² : IsDomain R inst✝¹ : AddCommGroup M inst✝ : Module R M b✝ : ι → M b : Basis ι R M P : Submodule R M → Sort u_10 ih : (N : Submodule R M) → ((N' : Submodule R M) → N' ≤ N → (x : M) → x ∈ N → (∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0) → P N') → P N n✝ : ℕ N✝ : Submodule R M rank_le✝ : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N✝ }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n✝ this : DecidableEq M Pbot : P ⊥ n : ℕ rank_ih : (N : Submodule R M) → (∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n) → P N N : Submodule R M rank_le : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m ≤ Nat.succ n N' : Submodule R M N'_le : N' ≤ N x : M x_mem : x ∈ N x_ortho : ∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0 m : ℕ v : Fin m → { x // x ∈ N' } hli : LinearIndependent R (Subtype.val ∘ v) i : Fin (Nat.succ m) ⊢ (Subtype.val ∘ Fin.cons { val := x, property := x_mem } fun i => { val := ↑(v i), property := (_ : ↑(v i) ∈ ?N) }) i = Fin.cons x (Subtype.val ∘ v) i [PROOFSTEP] refine' Fin.cases _ _ i [GOAL] case h.e'_4.h.refine'_1 ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝³ : Ring R inst✝² : IsDomain R inst✝¹ : AddCommGroup M inst✝ : Module R M b✝ : ι → M b : Basis ι R M P : Submodule R M → Sort u_10 ih : (N : Submodule R M) → ((N' : Submodule R M) → N' ≤ N → (x : M) → x ∈ N → (∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0) → P N') → P N n✝ : ℕ N✝ : Submodule R M rank_le✝ : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N✝ }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n✝ this : DecidableEq M Pbot : P ⊥ n : ℕ rank_ih : (N : Submodule R M) → (∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n) → P N N : Submodule R M rank_le : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m ≤ Nat.succ n N' : Submodule R M N'_le : N' ≤ N x : M x_mem : x ∈ N x_ortho : ∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0 m : ℕ v : Fin m → { x // x ∈ N' } hli : LinearIndependent R (Subtype.val ∘ v) i : Fin (Nat.succ m) ⊢ (Subtype.val ∘ Fin.cons { val := x, property := x_mem } fun i => { val := ↑(v i), property := (_ : ↑(v i) ∈ ?N) }) 0 = Fin.cons x (Subtype.val ∘ v) 0 [PROOFSTEP] simp [GOAL] case h.e'_4.h.refine'_2 ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝³ : Ring R inst✝² : IsDomain R inst✝¹ : AddCommGroup M inst✝ : Module R M b✝ : ι → M b : Basis ι R M P : Submodule R M → Sort u_10 ih : (N : Submodule R M) → ((N' : Submodule R M) → N' ≤ N → (x : M) → x ∈ N → (∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0) → P N') → P N n✝ : ℕ N✝ : Submodule R M rank_le✝ : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N✝ }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n✝ this : DecidableEq M Pbot : P ⊥ n : ℕ rank_ih : (N : Submodule R M) → (∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n) → P N N : Submodule R M rank_le : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m ≤ Nat.succ n N' : Submodule R M N'_le : N' ≤ N x : M x_mem : x ∈ N x_ortho : ∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0 m : ℕ v : Fin m → { x // x ∈ N' } hli : LinearIndependent R (Subtype.val ∘ v) i : Fin (Nat.succ m) ⊢ ∀ (i : Fin m), (Subtype.val ∘ Fin.cons { val := x, property := x_mem } fun i => { val := ↑(v i), property := (_ : ↑(v i) ∈ ?N) }) (Fin.succ i) = Fin.cons x (Subtype.val ∘ v) (Fin.succ i) [PROOFSTEP] simp [GOAL] case succ.a.rank_le ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝³ : Ring R inst✝² : IsDomain R inst✝¹ : AddCommGroup M inst✝ : Module R M b✝ : ι → M b : Basis ι R M P : Submodule R M → Sort u_10 ih : (N : Submodule R M) → ((N' : Submodule R M) → N' ≤ N → (x : M) → x ∈ N → (∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0) → P N') → P N n✝ : ℕ N✝ : Submodule R M rank_le✝ : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N✝ }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n✝ this : DecidableEq M Pbot : P ⊥ n : ℕ rank_ih : (N : Submodule R M) → (∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n) → P N N : Submodule R M rank_le : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m ≤ Nat.succ n N' : Submodule R M N'_le : N' ≤ N x : M x_mem : x ∈ N x_ortho : ∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0 m : ℕ v : Fin m → { x // x ∈ N' } hli : LinearIndependent R (Subtype.val ∘ v) ⊢ ∀ (c : R) (y : { x // x ∈ span R (range (Subtype.val ∘ v)) }), c • x + ↑y = 0 → c = 0 [PROOFSTEP] intro c y hcy [GOAL] case succ.a.rank_le ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝³ : Ring R inst✝² : IsDomain R inst✝¹ : AddCommGroup M inst✝ : Module R M b✝ : ι → M b : Basis ι R M P : Submodule R M → Sort u_10 ih : (N : Submodule R M) → ((N' : Submodule R M) → N' ≤ N → (x : M) → x ∈ N → (∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0) → P N') → P N n✝ : ℕ N✝ : Submodule R M rank_le✝ : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N✝ }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n✝ this : DecidableEq M Pbot : P ⊥ n : ℕ rank_ih : (N : Submodule R M) → (∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n) → P N N : Submodule R M rank_le : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m ≤ Nat.succ n N' : Submodule R M N'_le : N' ≤ N x : M x_mem : x ∈ N x_ortho : ∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0 m : ℕ v : Fin m → { x // x ∈ N' } hli : LinearIndependent R (Subtype.val ∘ v) c : R y : { x // x ∈ span R (range (Subtype.val ∘ v)) } hcy : c • x + ↑y = 0 ⊢ c = 0 [PROOFSTEP] refine' x_ortho c y (Submodule.span_le.mpr _ y.2) hcy [GOAL] case succ.a.rank_le ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝³ : Ring R inst✝² : IsDomain R inst✝¹ : AddCommGroup M inst✝ : Module R M b✝ : ι → M b : Basis ι R M P : Submodule R M → Sort u_10 ih : (N : Submodule R M) → ((N' : Submodule R M) → N' ≤ N → (x : M) → x ∈ N → (∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0) → P N') → P N n✝ : ℕ N✝ : Submodule R M rank_le✝ : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N✝ }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n✝ this : DecidableEq M Pbot : P ⊥ n : ℕ rank_ih : (N : Submodule R M) → (∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n) → P N N : Submodule R M rank_le : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m ≤ Nat.succ n N' : Submodule R M N'_le : N' ≤ N x : M x_mem : x ∈ N x_ortho : ∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0 m : ℕ v : Fin m → { x // x ∈ N' } hli : LinearIndependent R (Subtype.val ∘ v) c : R y : { x // x ∈ span R (range (Subtype.val ∘ v)) } hcy : c • x + ↑y = 0 ⊢ range (Subtype.val ∘ v) ⊆ ↑N' [PROOFSTEP] rintro _ ⟨z, rfl⟩ [GOAL] case succ.a.rank_le.intro ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 inst✝³ : Ring R inst✝² : IsDomain R inst✝¹ : AddCommGroup M inst✝ : Module R M b✝ : ι → M b : Basis ι R M P : Submodule R M → Sort u_10 ih : (N : Submodule R M) → ((N' : Submodule R M) → N' ≤ N → (x : M) → x ∈ N → (∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0) → P N') → P N n✝ : ℕ N✝ : Submodule R M rank_le✝ : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N✝ }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n✝ this : DecidableEq M Pbot : P ⊥ n : ℕ rank_ih : (N : Submodule R M) → (∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m ≤ n) → P N N : Submodule R M rank_le : ∀ {m : ℕ} (v : Fin m → { x // x ∈ N }), LinearIndependent R (Subtype.val ∘ v) → m ≤ Nat.succ n N' : Submodule R M N'_le : N' ≤ N x : M x_mem : x ∈ N x_ortho : ∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0 m : ℕ v : Fin m → { x // x ∈ N' } hli : LinearIndependent R (Subtype.val ∘ v) c : R y : { x // x ∈ span R (range (Subtype.val ∘ v)) } hcy : c • x + ↑y = 0 z : Fin m ⊢ (Subtype.val ∘ v) z ∈ ↑N' [PROOFSTEP] exact (v z).2 [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 S : Type u_10 inst✝⁸ : CommRing R inst✝⁷ : Ring S inst✝⁶ : Nontrivial S inst✝⁵ : AddCommGroup M inst✝⁴ : Algebra R S inst✝³ : Module S M inst✝² : Module R M inst✝¹ : IsScalarTower R S M inst✝ : NoZeroSMulDivisors R S b : Basis ι S M i : ι ⊢ ↑(↑(restrictScalars R b) i) = ↑b i [PROOFSTEP] simp only [Basis.restrictScalars, Basis.span_apply] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 S : Type u_10 inst✝⁸ : CommRing R inst✝⁷ : Ring S inst✝⁶ : Nontrivial S inst✝⁵ : AddCommGroup M inst✝⁴ : Algebra R S inst✝³ : Module S M inst✝² : Module R M inst✝¹ : IsScalarTower R S M inst✝ : NoZeroSMulDivisors R S b : Basis ι S M m : { x // x ∈ span R (range ↑b) } i : ι ⊢ ↑(algebraMap R S) (↑(↑(restrictScalars R b).repr m) i) = ↑(↑b.repr ↑m) i [PROOFSTEP] suffices Finsupp.mapRange.linearMap (Algebra.linearMap R S) ∘ₗ (b.restrictScalars R).repr.toLinearMap = ((b.repr : M →ₗ[S] ι →₀ S).restrictScalars R).domRestrict _ by exact FunLike.congr_fun (LinearMap.congr_fun this m) i [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 S : Type u_10 inst✝⁸ : CommRing R inst✝⁷ : Ring S inst✝⁶ : Nontrivial S inst✝⁵ : AddCommGroup M inst✝⁴ : Algebra R S inst✝³ : Module S M inst✝² : Module R M inst✝¹ : IsScalarTower R S M inst✝ : NoZeroSMulDivisors R S b : Basis ι S M m : { x // x ∈ span R (range ↑b) } i : ι this : LinearMap.comp (Finsupp.mapRange.linearMap (Algebra.linearMap R S)) ↑(restrictScalars R b).repr = LinearMap.domRestrict (↑R ↑b.repr) (span R (range ↑b)) ⊢ ↑(algebraMap R S) (↑(↑(restrictScalars R b).repr m) i) = ↑(↑b.repr ↑m) i [PROOFSTEP] exact FunLike.congr_fun (LinearMap.congr_fun this m) i [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 S : Type u_10 inst✝⁸ : CommRing R inst✝⁷ : Ring S inst✝⁶ : Nontrivial S inst✝⁵ : AddCommGroup M inst✝⁴ : Algebra R S inst✝³ : Module S M inst✝² : Module R M inst✝¹ : IsScalarTower R S M inst✝ : NoZeroSMulDivisors R S b : Basis ι S M m : { x // x ∈ span R (range ↑b) } i : ι ⊢ LinearMap.comp (Finsupp.mapRange.linearMap (Algebra.linearMap R S)) ↑(restrictScalars R b).repr = LinearMap.domRestrict (↑R ↑b.repr) (span R (range ↑b)) [PROOFSTEP] refine Basis.ext (b.restrictScalars R) fun _ => ?_ [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 S : Type u_10 inst✝⁸ : CommRing R inst✝⁷ : Ring S inst✝⁶ : Nontrivial S inst✝⁵ : AddCommGroup M inst✝⁴ : Algebra R S inst✝³ : Module S M inst✝² : Module R M inst✝¹ : IsScalarTower R S M inst✝ : NoZeroSMulDivisors R S b : Basis ι S M m : { x // x ∈ span R (range ↑b) } i x✝ : ι ⊢ ↑(LinearMap.comp (Finsupp.mapRange.linearMap (Algebra.linearMap R S)) ↑(restrictScalars R b).repr) (↑(restrictScalars R b) x✝) = ↑(LinearMap.domRestrict (↑R ↑b.repr) (span R (range ↑b))) (↑(restrictScalars R b) x✝) [PROOFSTEP] simp only [LinearMap.coe_comp, LinearEquiv.coe_toLinearMap, Function.comp_apply, map_one, Basis.repr_self, Finsupp.mapRange.linearMap_apply, Finsupp.mapRange_single, Algebra.linearMap_apply, LinearMap.domRestrict_apply, LinearEquiv.coe_coe, Basis.restrictScalars_apply, LinearMap.coe_restrictScalars] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 S : Type u_10 inst✝⁸ : CommRing R inst✝⁷ : Ring S inst✝⁶ : Nontrivial S inst✝⁵ : AddCommGroup M inst✝⁴ : Algebra R S inst✝³ : Module S M inst✝² : Module R M inst✝¹ : IsScalarTower R S M inst✝ : NoZeroSMulDivisors R S b : Basis ι S M m : M ⊢ m ∈ span R (range ↑b) ↔ ∀ (i : ι), ↑(↑b.repr m) i ∈ range ↑(algebraMap R S) [PROOFSTEP] refine ⟨fun hm i => ⟨(b.restrictScalars R).repr ⟨m, hm⟩ i, b.restrictScalars_repr_apply R ⟨m, hm⟩ i⟩, fun h => ?_⟩ [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 S : Type u_10 inst✝⁸ : CommRing R inst✝⁷ : Ring S inst✝⁶ : Nontrivial S inst✝⁵ : AddCommGroup M inst✝⁴ : Algebra R S inst✝³ : Module S M inst✝² : Module R M inst✝¹ : IsScalarTower R S M inst✝ : NoZeroSMulDivisors R S b : Basis ι S M m : M h : ∀ (i : ι), ↑(↑b.repr m) i ∈ range ↑(algebraMap R S) ⊢ m ∈ span R (range ↑b) [PROOFSTEP] rw [← b.total_repr m, Finsupp.total_apply S _] [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 S : Type u_10 inst✝⁸ : CommRing R inst✝⁷ : Ring S inst✝⁶ : Nontrivial S inst✝⁵ : AddCommGroup M inst✝⁴ : Algebra R S inst✝³ : Module S M inst✝² : Module R M inst✝¹ : IsScalarTower R S M inst✝ : NoZeroSMulDivisors R S b : Basis ι S M m : M h : ∀ (i : ι), ↑(↑b.repr m) i ∈ range ↑(algebraMap R S) ⊢ (Finsupp.sum (↑b.repr m) fun i a => a • ↑b i) ∈ span R (range ↑b) [PROOFSTEP] refine sum_mem fun i _ => ?_ [GOAL] ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 S : Type u_10 inst✝⁸ : CommRing R inst✝⁷ : Ring S inst✝⁶ : Nontrivial S inst✝⁵ : AddCommGroup M inst✝⁴ : Algebra R S inst✝³ : Module S M inst✝² : Module R M inst✝¹ : IsScalarTower R S M inst✝ : NoZeroSMulDivisors R S b : Basis ι S M m : M h : ∀ (i : ι), ↑(↑b.repr m) i ∈ range ↑(algebraMap R S) i : ι x✝ : i ∈ (↑b.repr m).support ⊢ (fun i a => a • ↑b i) i (↑(↑b.repr m) i) ∈ span R (range ↑b) [PROOFSTEP] obtain ⟨_, h⟩ := h i [GOAL] case intro ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 S : Type u_10 inst✝⁸ : CommRing R inst✝⁷ : Ring S inst✝⁶ : Nontrivial S inst✝⁵ : AddCommGroup M inst✝⁴ : Algebra R S inst✝³ : Module S M inst✝² : Module R M inst✝¹ : IsScalarTower R S M inst✝ : NoZeroSMulDivisors R S b : Basis ι S M m : M h✝ : ∀ (i : ι), ↑(↑b.repr m) i ∈ range ↑(algebraMap R S) i : ι x✝ : i ∈ (↑b.repr m).support w✝ : R h : ↑(algebraMap R S) w✝ = ↑(↑b.repr m) i ⊢ (fun i a => a • ↑b i) i (↑(↑b.repr m) i) ∈ span R (range ↑b) [PROOFSTEP] simp_rw [← h, algebraMap_smul] [GOAL] case intro ι : Type u_1 ι' : Type u_2 R : Type u_3 R₂ : Type u_4 K : Type u_5 M : Type u_6 M' : Type u_7 M'' : Type u_8 V : Type u V' : Type u_9 S : Type u_10 inst✝⁸ : CommRing R inst✝⁷ : Ring S inst✝⁶ : Nontrivial S inst✝⁵ : AddCommGroup M inst✝⁴ : Algebra R S inst✝³ : Module S M inst✝² : Module R M inst✝¹ : IsScalarTower R S M inst✝ : NoZeroSMulDivisors R S b : Basis ι S M m : M h✝ : ∀ (i : ι), ↑(↑b.repr m) i ∈ range ↑(algebraMap R S) i : ι x✝ : i ∈ (↑b.repr m).support w✝ : R h : ↑(algebraMap R S) w✝ = ↑(↑b.repr m) i ⊢ w✝ • ↑b i ∈ span R (range ↑b) [PROOFSTEP] exact smul_mem _ _ (subset_span (Set.mem_range_self i))
{"mathlib_filename": "Mathlib.LinearAlgebra.Basis", "llama_tokens": 115225}
[GOAL] R : Type u_1 inst✝⁴ : Ring R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M U U₁ U₂ : Submodule R M x x₁ x₂ y y₁ y₂ z z₁ z₂ : M N : Type u_3 inst✝¹ : AddCommGroup N inst✝ : Module R N V V₁ V₂ : Submodule R N ⊢ x ≡ y [SMOD U] ↔ x - y ∈ U [PROOFSTEP] rw [SModEq.def, Submodule.Quotient.eq] [GOAL] R : Type u_1 inst✝⁴ : Ring R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M U U₁ U₂ : Submodule R M x x₁ x₂ y y₁ y₂ z z₁ z₂ : M N : Type u_3 inst✝¹ : AddCommGroup N inst✝ : Module R N V V₁ V₂ : Submodule R N ⊢ x ≡ y [SMOD ⊥] ↔ x = y [PROOFSTEP] rw [SModEq.def, Submodule.Quotient.eq, mem_bot, sub_eq_zero] [GOAL] R : Type u_1 inst✝⁴ : Ring R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M U U₁ U₂ : Submodule R M x x₁ x₂ y y₁ y₂ z z₁ z₂ : M N : Type u_3 inst✝¹ : AddCommGroup N inst✝ : Module R N V V₁ V₂ : Submodule R N hxy₁ : x₁ ≡ y₁ [SMOD U] hxy₂ : x₂ ≡ y₂ [SMOD U] ⊢ x₁ + x₂ ≡ y₁ + y₂ [SMOD U] [PROOFSTEP] rw [SModEq.def] at hxy₁ hxy₂ ⊢ [GOAL] R : Type u_1 inst✝⁴ : Ring R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M U U₁ U₂ : Submodule R M x x₁ x₂ y y₁ y₂ z z₁ z₂ : M N : Type u_3 inst✝¹ : AddCommGroup N inst✝ : Module R N V V₁ V₂ : Submodule R N hxy₁ : Submodule.Quotient.mk x₁ = Submodule.Quotient.mk y₁ hxy₂ : Submodule.Quotient.mk x₂ = Submodule.Quotient.mk y₂ ⊢ Submodule.Quotient.mk (x₁ + x₂) = Submodule.Quotient.mk (y₁ + y₂) [PROOFSTEP] simp_rw [Quotient.mk_add, hxy₁, hxy₂] [GOAL] R : Type u_1 inst✝⁴ : Ring R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M U U₁ U₂ : Submodule R M x x₁ x₂ y y₁ y₂ z z₁ z₂ : M N : Type u_3 inst✝¹ : AddCommGroup N inst✝ : Module R N V V₁ V₂ : Submodule R N hxy : x ≡ y [SMOD U] c : R ⊢ c • x ≡ c • y [SMOD U] [PROOFSTEP] rw [SModEq.def] at hxy ⊢ [GOAL] R : Type u_1 inst✝⁴ : Ring R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M U U₁ U₂ : Submodule R M x x₁ x₂ y y₁ y₂ z z₁ z₂ : M N : Type u_3 inst✝¹ : AddCommGroup N inst✝ : Module R N V V₁ V₂ : Submodule R N hxy : Submodule.Quotient.mk x = Submodule.Quotient.mk y c : R ⊢ Submodule.Quotient.mk (c • x) = Submodule.Quotient.mk (c • y) [PROOFSTEP] simp_rw [Quotient.mk_smul, hxy] [GOAL] R : Type u_1 inst✝⁴ : Ring R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M U U₁ U₂ : Submodule R M x x₁ x₂ y y₁ y₂ z z₁ z₂ : M N : Type u_3 inst✝¹ : AddCommGroup N inst✝ : Module R N V V₁ V₂ : Submodule R N ⊢ x ≡ 0 [SMOD U] ↔ x ∈ U [PROOFSTEP] rw [SModEq.def, Submodule.Quotient.eq, sub_zero] [GOAL] R✝ : Type u_1 inst✝⁵ : Ring R✝ M : Type u_2 inst✝⁴ : AddCommGroup M inst✝³ : Module R✝ M U U₁ U₂ : Submodule R✝ M x✝ x₁ x₂ y✝ y₁ y₂ z z₁ z₂ : M N : Type u_3 inst✝² : AddCommGroup N inst✝¹ : Module R✝ N V V₁ V₂ : Submodule R✝ N R : Type u_4 inst✝ : CommRing R I : Ideal R x y : R h : x ≡ y [SMOD I] f : R[X] ⊢ Polynomial.eval x f ≡ Polynomial.eval y f [SMOD I] [PROOFSTEP] rw [SModEq.def] at h ⊢ [GOAL] R✝ : Type u_1 inst✝⁵ : Ring R✝ M : Type u_2 inst✝⁴ : AddCommGroup M inst✝³ : Module R✝ M U U₁ U₂ : Submodule R✝ M x✝ x₁ x₂ y✝ y₁ y₂ z z₁ z₂ : M N : Type u_3 inst✝² : AddCommGroup N inst✝¹ : Module R✝ N V V₁ V₂ : Submodule R✝ N R : Type u_4 inst✝ : CommRing R I : Ideal R x y : R h : Submodule.Quotient.mk x = Submodule.Quotient.mk y f : R[X] ⊢ Submodule.Quotient.mk (Polynomial.eval x f) = Submodule.Quotient.mk (Polynomial.eval y f) [PROOFSTEP] show Ideal.Quotient.mk I (f.eval x) = Ideal.Quotient.mk I (f.eval y) [GOAL] R✝ : Type u_1 inst✝⁵ : Ring R✝ M : Type u_2 inst✝⁴ : AddCommGroup M inst✝³ : Module R✝ M U U₁ U₂ : Submodule R✝ M x✝ x₁ x₂ y✝ y₁ y₂ z z₁ z₂ : M N : Type u_3 inst✝² : AddCommGroup N inst✝¹ : Module R✝ N V V₁ V₂ : Submodule R✝ N R : Type u_4 inst✝ : CommRing R I : Ideal R x y : R h : Submodule.Quotient.mk x = Submodule.Quotient.mk y f : R[X] ⊢ ↑(Ideal.Quotient.mk I) (Polynomial.eval x f) = ↑(Ideal.Quotient.mk I) (Polynomial.eval y f) [PROOFSTEP] replace h : Ideal.Quotient.mk I x = Ideal.Quotient.mk I y := h [GOAL] R✝ : Type u_1 inst✝⁵ : Ring R✝ M : Type u_2 inst✝⁴ : AddCommGroup M inst✝³ : Module R✝ M U U₁ U₂ : Submodule R✝ M x✝ x₁ x₂ y✝ y₁ y₂ z z₁ z₂ : M N : Type u_3 inst✝² : AddCommGroup N inst✝¹ : Module R✝ N V V₁ V₂ : Submodule R✝ N R : Type u_4 inst✝ : CommRing R I : Ideal R x y : R f : R[X] h : ↑(Ideal.Quotient.mk I) x = ↑(Ideal.Quotient.mk I) y ⊢ ↑(Ideal.Quotient.mk I) (Polynomial.eval x f) = ↑(Ideal.Quotient.mk I) (Polynomial.eval y f) [PROOFSTEP] rw [← Polynomial.eval₂_at_apply, ← Polynomial.eval₂_at_apply, h]
{"mathlib_filename": "Mathlib.LinearAlgebra.SModEq", "llama_tokens": 2360}
[GOAL] R : Type u M : Type v inst✝⁵ : CommRing R inst✝⁴ : Nontrivial R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : Module.Free R M inst✝ : Module.Finite R M f : M →ₗ[R] M ⊢ ↑(aeval f) (charpoly f) = 0 [PROOFSTEP] apply (LinearEquiv.map_eq_zero_iff (algEquivMatrix (chooseBasis R M)).toLinearEquiv).1 [GOAL] R : Type u M : Type v inst✝⁵ : CommRing R inst✝⁴ : Nontrivial R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : Module.Free R M inst✝ : Module.Finite R M f : M →ₗ[R] M ⊢ ↑(AlgEquiv.toLinearEquiv (algEquivMatrix (chooseBasis R M))) (↑(aeval f) (charpoly f)) = 0 [PROOFSTEP] rw [AlgEquiv.toLinearEquiv_apply, ← AlgEquiv.coe_algHom, ← Polynomial.aeval_algHom_apply _ _ _, charpoly_def] [GOAL] R : Type u M : Type v inst✝⁵ : CommRing R inst✝⁴ : Nontrivial R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : Module.Free R M inst✝ : Module.Finite R M f : M →ₗ[R] M ⊢ ↑(aeval (↑↑(algEquivMatrix (chooseBasis R M)) f)) (Matrix.charpoly (↑(toMatrix (chooseBasis R M) (chooseBasis R M)) f)) = 0 [PROOFSTEP] exact Matrix.aeval_self_charpoly _ [GOAL] R : Type u M : Type v inst✝⁵ : CommRing R inst✝⁴ : Nontrivial R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : Module.Free R M inst✝ : Module.Finite R M f : M →ₗ[R] M k : ℕ ⊢ f ^ k = ↑(aeval f) (X ^ k %ₘ charpoly f) [PROOFSTEP] rw [← aeval_eq_aeval_mod_charpoly, map_pow, aeval_X] [GOAL] R : Type u M : Type v inst✝⁵ : CommRing R inst✝⁴ : Nontrivial R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : Module.Free R M inst✝ : Module.Finite R M f : M →ₗ[R] M hf : Function.Injective ↑f ⊢ coeff (minpoly R f) 0 ≠ 0 [PROOFSTEP] intro h [GOAL] R : Type u M : Type v inst✝⁵ : CommRing R inst✝⁴ : Nontrivial R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : Module.Free R M inst✝ : Module.Finite R M f : M →ₗ[R] M hf : Function.Injective ↑f h : coeff (minpoly R f) 0 = 0 ⊢ False [PROOFSTEP] obtain ⟨P, hP⟩ := X_dvd_iff.2 h [GOAL] case intro R : Type u M : Type v inst✝⁵ : CommRing R inst✝⁴ : Nontrivial R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : Module.Free R M inst✝ : Module.Finite R M f : M →ₗ[R] M hf : Function.Injective ↑f h : coeff (minpoly R f) 0 = 0 P : R[X] hP : minpoly R f = X * P ⊢ False [PROOFSTEP] have hdegP : P.degree < (minpoly R f).degree := by rw [hP, mul_comm] refine' degree_lt_degree_mul_X fun h => _ rw [h, mul_zero] at hP exact minpoly.ne_zero (isIntegral f) hP [GOAL] R : Type u M : Type v inst✝⁵ : CommRing R inst✝⁴ : Nontrivial R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : Module.Free R M inst✝ : Module.Finite R M f : M →ₗ[R] M hf : Function.Injective ↑f h : coeff (minpoly R f) 0 = 0 P : R[X] hP : minpoly R f = X * P ⊢ degree P < degree (minpoly R f) [PROOFSTEP] rw [hP, mul_comm] [GOAL] R : Type u M : Type v inst✝⁵ : CommRing R inst✝⁴ : Nontrivial R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : Module.Free R M inst✝ : Module.Finite R M f : M →ₗ[R] M hf : Function.Injective ↑f h : coeff (minpoly R f) 0 = 0 P : R[X] hP : minpoly R f = X * P ⊢ degree P < degree (P * X) [PROOFSTEP] refine' degree_lt_degree_mul_X fun h => _ [GOAL] R : Type u M : Type v inst✝⁵ : CommRing R inst✝⁴ : Nontrivial R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : Module.Free R M inst✝ : Module.Finite R M f : M →ₗ[R] M hf : Function.Injective ↑f h✝ : coeff (minpoly R f) 0 = 0 P : R[X] hP : minpoly R f = X * P h : P = 0 ⊢ False [PROOFSTEP] rw [h, mul_zero] at hP [GOAL] R : Type u M : Type v inst✝⁵ : CommRing R inst✝⁴ : Nontrivial R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : Module.Free R M inst✝ : Module.Finite R M f : M →ₗ[R] M hf : Function.Injective ↑f h✝ : coeff (minpoly R f) 0 = 0 P : R[X] hP : minpoly R f = 0 h : P = 0 ⊢ False [PROOFSTEP] exact minpoly.ne_zero (isIntegral f) hP [GOAL] case intro R : Type u M : Type v inst✝⁵ : CommRing R inst✝⁴ : Nontrivial R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : Module.Free R M inst✝ : Module.Finite R M f : M →ₗ[R] M hf : Function.Injective ↑f h : coeff (minpoly R f) 0 = 0 P : R[X] hP : minpoly R f = X * P hdegP : degree P < degree (minpoly R f) ⊢ False [PROOFSTEP] have hPmonic : P.Monic := by suffices (minpoly R f).Monic by rwa [Monic.def, hP, mul_comm, leadingCoeff_mul_X, ← Monic.def] at this exact minpoly.monic (isIntegral f) [GOAL] R : Type u M : Type v inst✝⁵ : CommRing R inst✝⁴ : Nontrivial R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : Module.Free R M inst✝ : Module.Finite R M f : M →ₗ[R] M hf : Function.Injective ↑f h : coeff (minpoly R f) 0 = 0 P : R[X] hP : minpoly R f = X * P hdegP : degree P < degree (minpoly R f) ⊢ Monic P [PROOFSTEP] suffices (minpoly R f).Monic by rwa [Monic.def, hP, mul_comm, leadingCoeff_mul_X, ← Monic.def] at this [GOAL] R : Type u M : Type v inst✝⁵ : CommRing R inst✝⁴ : Nontrivial R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : Module.Free R M inst✝ : Module.Finite R M f : M →ₗ[R] M hf : Function.Injective ↑f h : coeff (minpoly R f) 0 = 0 P : R[X] hP : minpoly R f = X * P hdegP : degree P < degree (minpoly R f) this : Monic (minpoly R f) ⊢ Monic P [PROOFSTEP] rwa [Monic.def, hP, mul_comm, leadingCoeff_mul_X, ← Monic.def] at this [GOAL] R : Type u M : Type v inst✝⁵ : CommRing R inst✝⁴ : Nontrivial R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : Module.Free R M inst✝ : Module.Finite R M f : M →ₗ[R] M hf : Function.Injective ↑f h : coeff (minpoly R f) 0 = 0 P : R[X] hP : minpoly R f = X * P hdegP : degree P < degree (minpoly R f) ⊢ Monic (minpoly R f) [PROOFSTEP] exact minpoly.monic (isIntegral f) [GOAL] case intro R : Type u M : Type v inst✝⁵ : CommRing R inst✝⁴ : Nontrivial R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : Module.Free R M inst✝ : Module.Finite R M f : M →ₗ[R] M hf : Function.Injective ↑f h : coeff (minpoly R f) 0 = 0 P : R[X] hP : minpoly R f = X * P hdegP : degree P < degree (minpoly R f) hPmonic : Monic P ⊢ False [PROOFSTEP] have hzero : aeval f (minpoly R f) = 0 := minpoly.aeval _ _ [GOAL] case intro R : Type u M : Type v inst✝⁵ : CommRing R inst✝⁴ : Nontrivial R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : Module.Free R M inst✝ : Module.Finite R M f : M →ₗ[R] M hf : Function.Injective ↑f h : coeff (minpoly R f) 0 = 0 P : R[X] hP : minpoly R f = X * P hdegP : degree P < degree (minpoly R f) hPmonic : Monic P hzero : ↑(aeval f) (minpoly R f) = 0 ⊢ False [PROOFSTEP] simp only [hP, mul_eq_comp, ext_iff, hf, aeval_X, map_eq_zero_iff, coe_comp, AlgHom.map_mul, zero_apply, Function.comp_apply] at hzero [GOAL] case intro R : Type u M : Type v inst✝⁵ : CommRing R inst✝⁴ : Nontrivial R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : Module.Free R M inst✝ : Module.Finite R M f : M →ₗ[R] M hf : Function.Injective ↑f h : coeff (minpoly R f) 0 = 0 P : R[X] hP : minpoly R f = X * P hdegP : degree P < degree (minpoly R f) hPmonic : Monic P hzero : ∀ (x : M), ↑(↑(aeval f) P) x = 0 ⊢ False [PROOFSTEP] exact not_le.2 hdegP (minpoly.min _ _ hPmonic (ext hzero))
{"mathlib_filename": "Mathlib.LinearAlgebra.Charpoly.Basic", "llama_tokens": 3388}
[GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : AddCommMonoid M₃ inst✝² : Module R M₃ φ : ι → Type i inst✝¹ : (i : ι) → AddCommMonoid (φ i) inst✝ : (i : ι) → Module R (φ i) f : (i : ι) → M₂ →ₗ[R] φ i ⊢ ker (pi f) = ⨅ (i : ι), ker (f i) [PROOFSTEP] ext c [GOAL] case h R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : AddCommMonoid M₃ inst✝² : Module R M₃ φ : ι → Type i inst✝¹ : (i : ι) → AddCommMonoid (φ i) inst✝ : (i : ι) → Module R (φ i) f : (i : ι) → M₂ →ₗ[R] φ i c : M₂ ⊢ c ∈ ker (pi f) ↔ c ∈ ⨅ (i : ι), ker (f i) [PROOFSTEP] simp [funext_iff] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : AddCommMonoid M₃ inst✝² : Module R M₃ φ : ι → Type i inst✝¹ : (i : ι) → AddCommMonoid (φ i) inst✝ : (i : ι) → Module R (φ i) f : (i : ι) → M₂ →ₗ[R] φ i ⊢ pi f = 0 ↔ ∀ (i : ι), f i = 0 [PROOFSTEP] simp only [LinearMap.ext_iff, pi_apply, funext_iff] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : AddCommMonoid M₃ inst✝² : Module R M₃ φ : ι → Type i inst✝¹ : (i : ι) → AddCommMonoid (φ i) inst✝ : (i : ι) → Module R (φ i) f : (i : ι) → M₂ →ₗ[R] φ i ⊢ (∀ (x : M₂) (a : ι), ↑(f a) x = ↑0 x a) ↔ ∀ (i : ι) (x : M₂), ↑(f i) x = ↑0 x [PROOFSTEP] exact ⟨fun h a b => h b a, fun h a b => h b a⟩ [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : AddCommMonoid M₃ inst✝² : Module R M₃ φ : ι → Type i inst✝¹ : (i : ι) → AddCommMonoid (φ i) inst✝ : (i : ι) → Module R (φ i) ⊢ (pi fun i => 0) = 0 [PROOFSTEP] ext [GOAL] case h.h R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : AddCommMonoid M₃ inst✝² : Module R M₃ φ : ι → Type i inst✝¹ : (i : ι) → AddCommMonoid (φ i) inst✝ : (i : ι) → Module R (φ i) x✝¹ : M₂ x✝ : ι ⊢ ↑(pi fun i => 0) x✝¹ x✝ = ↑0 x✝¹ x✝ [PROOFSTEP] rfl [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : AddCommMonoid M₃ inst✝² : Module R M₃ φ : ι → Type i inst✝¹ : (i : ι) → AddCommMonoid (φ i) inst✝ : (i : ι) → Module R (φ i) a : (i : ι) → φ i h : a ∈ ⨅ (i : ι), ker (proj i) ⊢ a ∈ ⊥ [PROOFSTEP] simp only [mem_iInf, mem_ker, proj_apply] at h [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : AddCommMonoid M₃ inst✝² : Module R M₃ φ : ι → Type i inst✝¹ : (i : ι) → AddCommMonoid (φ i) inst✝ : (i : ι) → Module R (φ i) a : (i : ι) → φ i h : ∀ (i : ι), a i = 0 ⊢ a ∈ ⊥ [PROOFSTEP] exact (mem_bot _).2 (funext fun i => h i) [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : AddCommMonoid M₃ inst✝² : Module R M₃ φ : ι → Type i inst✝¹ : (i : ι) → AddCommMonoid (φ i) inst✝ : (i : ι) → Module R (φ i) f : M₂ →ₗ[R] M₃ I : Type u_1 src✝ : (I → M₂) →+ I → M₃ := AddMonoidHom.compLeft (toAddMonoidHom f) I c : R h : I → M₂ ⊢ AddHom.toFun { toFun := fun h => ↑f ∘ h, map_add' := (_ : ∀ (x y : I → M₂), ZeroHom.toFun (↑src✝) (x + y) = ZeroHom.toFun (↑src✝) x + ZeroHom.toFun (↑src✝) y) } (c • h) = ↑(RingHom.id R) c • AddHom.toFun { toFun := fun h => ↑f ∘ h, map_add' := (_ : ∀ (x y : I → M₂), ZeroHom.toFun (↑src✝) (x + y) = ZeroHom.toFun (↑src✝) x + ZeroHom.toFun (↑src✝) y) } h [PROOFSTEP] ext x [GOAL] case h R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : AddCommMonoid M₃ inst✝² : Module R M₃ φ : ι → Type i inst✝¹ : (i : ι) → AddCommMonoid (φ i) inst✝ : (i : ι) → Module R (φ i) f : M₂ →ₗ[R] M₃ I : Type u_1 src✝ : (I → M₂) →+ I → M₃ := AddMonoidHom.compLeft (toAddMonoidHom f) I c : R h : I → M₂ x : I ⊢ AddHom.toFun { toFun := fun h => ↑f ∘ h, map_add' := (_ : ∀ (x y : I → M₂), ZeroHom.toFun (↑src✝) (x + y) = ZeroHom.toFun (↑src✝) x + ZeroHom.toFun (↑src✝) y) } (c • h) x = (↑(RingHom.id R) c • AddHom.toFun { toFun := fun h => ↑f ∘ h, map_add' := (_ : ∀ (x y : I → M₂), ZeroHom.toFun (↑src✝) (x + y) = ZeroHom.toFun (↑src✝) x + ZeroHom.toFun (↑src✝) y) } h) x [PROOFSTEP] exact f.map_smul' c (h x) [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝¹³ : Semiring R inst✝¹² : AddCommMonoid M₂ inst✝¹¹ : Module R M₂ inst✝¹⁰ : AddCommMonoid M₃ inst✝⁹ : Module R M₃ φ : ι → Type i inst✝⁸ : (i : ι) → AddCommMonoid (φ i) inst✝⁷ : (i : ι) → Module R (φ i) S : Type ?u.45562 inst✝⁶ : AddCommMonoid M inst✝⁵ : Module R M inst✝⁴ : Fintype ι inst✝³ : DecidableEq ι inst✝² : Semiring S inst✝¹ : Module S M inst✝ : SMulCommClass R S M f g : (i : ι) → φ i →ₗ[R] M ⊢ (fun f => ∑ i : ι, comp (f i) (proj i)) (f + g) = (fun f => ∑ i : ι, comp (f i) (proj i)) f + (fun f => ∑ i : ι, comp (f i) (proj i)) g [PROOFSTEP] simp only [Pi.add_apply, add_comp, Finset.sum_add_distrib] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝¹³ : Semiring R inst✝¹² : AddCommMonoid M₂ inst✝¹¹ : Module R M₂ inst✝¹⁰ : AddCommMonoid M₃ inst✝⁹ : Module R M₃ φ : ι → Type i inst✝⁸ : (i : ι) → AddCommMonoid (φ i) inst✝⁷ : (i : ι) → Module R (φ i) S : Type ?u.45562 inst✝⁶ : AddCommMonoid M inst✝⁵ : Module R M inst✝⁴ : Fintype ι inst✝³ : DecidableEq ι inst✝² : Semiring S inst✝¹ : Module S M inst✝ : SMulCommClass R S M c : S f : (i : ι) → φ i →ₗ[R] M ⊢ AddHom.toFun { toFun := fun f => ∑ i : ι, comp (f i) (proj i), map_add' := (_ : ∀ (f g : (i : ι) → φ i →ₗ[R] M), ∑ i : ι, comp ((f + g) i) (proj i) = ∑ x : ι, comp (f x) (proj x) + ∑ x : ι, comp (g x) (proj x)) } (c • f) = ↑(RingHom.id S) c • AddHom.toFun { toFun := fun f => ∑ i : ι, comp (f i) (proj i), map_add' := (_ : ∀ (f g : (i : ι) → φ i →ₗ[R] M), ∑ i : ι, comp ((f + g) i) (proj i) = ∑ x : ι, comp (f x) (proj x) + ∑ x : ι, comp (g x) (proj x)) } f [PROOFSTEP] simp only [Pi.smul_apply, smul_comp, Finset.smul_sum, RingHom.id_apply] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝¹³ : Semiring R inst✝¹² : AddCommMonoid M₂ inst✝¹¹ : Module R M₂ inst✝¹⁰ : AddCommMonoid M₃ inst✝⁹ : Module R M₃ φ : ι → Type i inst✝⁸ : (i : ι) → AddCommMonoid (φ i) inst✝⁷ : (i : ι) → Module R (φ i) S : Type ?u.45562 inst✝⁶ : AddCommMonoid M inst✝⁵ : Module R M inst✝⁴ : Fintype ι inst✝³ : DecidableEq ι inst✝² : Semiring S inst✝¹ : Module S M inst✝ : SMulCommClass R S M f : (i : ι) → φ i →ₗ[R] M ⊢ (fun f i => comp f (single i)) (AddHom.toFun { toAddHom := { toFun := fun f => ∑ i : ι, comp (f i) (proj i), map_add' := (_ : ∀ (f g : (i : ι) → φ i →ₗ[R] M), ∑ i : ι, comp ((f + g) i) (proj i) = ∑ x : ι, comp (f x) (proj x) + ∑ x : ι, comp (g x) (proj x)) }, map_smul' := (_ : ∀ (c : S) (f : (i : ι) → φ i →ₗ[R] M), ∑ i : ι, comp ((c • f) i) (proj i) = c • ∑ x : ι, comp (f x) (proj x)) }.toAddHom f) = f [PROOFSTEP] ext i x [GOAL] case h.h R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝¹³ : Semiring R inst✝¹² : AddCommMonoid M₂ inst✝¹¹ : Module R M₂ inst✝¹⁰ : AddCommMonoid M₃ inst✝⁹ : Module R M₃ φ : ι → Type i inst✝⁸ : (i : ι) → AddCommMonoid (φ i) inst✝⁷ : (i : ι) → Module R (φ i) S : Type ?u.45562 inst✝⁶ : AddCommMonoid M inst✝⁵ : Module R M inst✝⁴ : Fintype ι inst✝³ : DecidableEq ι inst✝² : Semiring S inst✝¹ : Module S M inst✝ : SMulCommClass R S M f : (i : ι) → φ i →ₗ[R] M i : ι x : φ i ⊢ ↑((fun f i => comp f (single i)) (AddHom.toFun { toAddHom := { toFun := fun f => ∑ i : ι, comp (f i) (proj i), map_add' := (_ : ∀ (f g : (i : ι) → φ i →ₗ[R] M), ∑ i : ι, comp ((f + g) i) (proj i) = ∑ x : ι, comp (f x) (proj x) + ∑ x : ι, comp (g x) (proj x)) }, map_smul' := (_ : ∀ (c : S) (f : (i : ι) → φ i →ₗ[R] M), ∑ i : ι, comp ((c • f) i) (proj i) = c • ∑ x : ι, comp (f x) (proj x)) }.toAddHom f) i) x = ↑(f i) x [PROOFSTEP] simp [apply_single] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝¹³ : Semiring R inst✝¹² : AddCommMonoid M₂ inst✝¹¹ : Module R M₂ inst✝¹⁰ : AddCommMonoid M₃ inst✝⁹ : Module R M₃ φ : ι → Type i inst✝⁸ : (i : ι) → AddCommMonoid (φ i) inst✝⁷ : (i : ι) → Module R (φ i) S : Type ?u.45562 inst✝⁶ : AddCommMonoid M inst✝⁵ : Module R M inst✝⁴ : Fintype ι inst✝³ : DecidableEq ι inst✝² : Semiring S inst✝¹ : Module S M inst✝ : SMulCommClass R S M f : ((i : ι) → φ i) →ₗ[R] M ⊢ AddHom.toFun { toAddHom := { toFun := fun f => ∑ i : ι, comp (f i) (proj i), map_add' := (_ : ∀ (f g : (i : ι) → φ i →ₗ[R] M), ∑ i : ι, comp ((f + g) i) (proj i) = ∑ x : ι, comp (f x) (proj x) + ∑ x : ι, comp (g x) (proj x)) }, map_smul' := (_ : ∀ (c : S) (f : (i : ι) → φ i →ₗ[R] M), ∑ i : ι, comp ((c • f) i) (proj i) = c • ∑ x : ι, comp (f x) (proj x)) }.toAddHom ((fun f i => comp f (single i)) f) = f [PROOFSTEP] ext x [GOAL] case h R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝¹³ : Semiring R inst✝¹² : AddCommMonoid M₂ inst✝¹¹ : Module R M₂ inst✝¹⁰ : AddCommMonoid M₃ inst✝⁹ : Module R M₃ φ : ι → Type i inst✝⁸ : (i : ι) → AddCommMonoid (φ i) inst✝⁷ : (i : ι) → Module R (φ i) S : Type ?u.45562 inst✝⁶ : AddCommMonoid M inst✝⁵ : Module R M inst✝⁴ : Fintype ι inst✝³ : DecidableEq ι inst✝² : Semiring S inst✝¹ : Module S M inst✝ : SMulCommClass R S M f : ((i : ι) → φ i) →ₗ[R] M x : (i : ι) → φ i ⊢ ↑(AddHom.toFun { toAddHom := { toFun := fun f => ∑ i : ι, comp (f i) (proj i), map_add' := (_ : ∀ (f g : (i : ι) → φ i →ₗ[R] M), ∑ i : ι, comp ((f + g) i) (proj i) = ∑ x : ι, comp (f x) (proj x) + ∑ x : ι, comp (g x) (proj x)) }, map_smul' := (_ : ∀ (c : S) (f : (i : ι) → φ i →ₗ[R] M), ∑ i : ι, comp ((c • f) i) (proj i) = c • ∑ x : ι, comp (f x) (proj x)) }.toAddHom ((fun f i => comp f (single i)) f)) x = ↑f x [PROOFSTEP] suffices f (∑ j, Pi.single j (x j)) = f x by simpa [apply_single] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝¹³ : Semiring R inst✝¹² : AddCommMonoid M₂ inst✝¹¹ : Module R M₂ inst✝¹⁰ : AddCommMonoid M₃ inst✝⁹ : Module R M₃ φ : ι → Type i inst✝⁸ : (i : ι) → AddCommMonoid (φ i) inst✝⁷ : (i : ι) → Module R (φ i) S : Type ?u.45562 inst✝⁶ : AddCommMonoid M inst✝⁵ : Module R M inst✝⁴ : Fintype ι inst✝³ : DecidableEq ι inst✝² : Semiring S inst✝¹ : Module S M inst✝ : SMulCommClass R S M f : ((i : ι) → φ i) →ₗ[R] M x : (i : ι) → φ i this : ↑f (∑ j : ι, Pi.single j (x j)) = ↑f x ⊢ ↑(AddHom.toFun { toAddHom := { toFun := fun f => ∑ i : ι, comp (f i) (proj i), map_add' := (_ : ∀ (f g : (i : ι) → φ i →ₗ[R] M), ∑ i : ι, comp ((f + g) i) (proj i) = ∑ x : ι, comp (f x) (proj x) + ∑ x : ι, comp (g x) (proj x)) }, map_smul' := (_ : ∀ (c : S) (f : (i : ι) → φ i →ₗ[R] M), ∑ i : ι, comp ((c • f) i) (proj i) = c • ∑ x : ι, comp (f x) (proj x)) }.toAddHom ((fun f i => comp f (single i)) f)) x = ↑f x [PROOFSTEP] simpa [apply_single] [GOAL] case h R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝¹³ : Semiring R inst✝¹² : AddCommMonoid M₂ inst✝¹¹ : Module R M₂ inst✝¹⁰ : AddCommMonoid M₃ inst✝⁹ : Module R M₃ φ : ι → Type i inst✝⁸ : (i : ι) → AddCommMonoid (φ i) inst✝⁷ : (i : ι) → Module R (φ i) S : Type ?u.45562 inst✝⁶ : AddCommMonoid M inst✝⁵ : Module R M inst✝⁴ : Fintype ι inst✝³ : DecidableEq ι inst✝² : Semiring S inst✝¹ : Module S M inst✝ : SMulCommClass R S M f : ((i : ι) → φ i) →ₗ[R] M x : (i : ι) → φ i ⊢ ↑f (∑ j : ι, Pi.single j (x j)) = ↑f x [PROOFSTEP] rw [Finset.univ_sum_single] [GOAL] R✝ : Type u K : Type u' M✝ : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι✝ : Type x ι' : Type x' inst✝¹¹ : Semiring R✝ inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : Module R✝ M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : Module R✝ M₃ φ : ι✝ → Type i inst✝⁶ : (i : ι✝) → AddCommMonoid (φ i) inst✝⁵ : (i : ι✝) → Module R✝ (φ i) ι : Type u_1 R : Type u_2 inst✝⁴ : Fintype ι inst✝³ : DecidableEq ι inst✝² : CommRing R M : ι → Type u_3 inst✝¹ : (i : ι) → AddCommGroup (M i) inst✝ : (i : ι) → Module R (M i) x : (i : ι) → M i ⊢ ↑(↑(lsum R M R) single) x = ↑id x [PROOFSTEP] simp [Finset.univ_sum_single] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝¹⁰ : Semiring R inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R M₂ inst✝⁷ : AddCommMonoid M₃ inst✝⁶ : Module R M₃ φ : ι → Type i inst✝⁵ : (i : ι) → AddCommMonoid (φ i) inst✝⁴ : (i : ι) → Module R (φ i) inst✝³ : Finite ι inst✝² : DecidableEq ι inst✝¹ : AddCommMonoid M inst✝ : Module R M f g : ((i : ι) → φ i) →ₗ[R] M h : ∀ (i : ι), comp f (single i) = comp g (single i) ⊢ f = g [PROOFSTEP] refine' pi_ext fun i x => _ [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝¹⁰ : Semiring R inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R M₂ inst✝⁷ : AddCommMonoid M₃ inst✝⁶ : Module R M₃ φ : ι → Type i inst✝⁵ : (i : ι) → AddCommMonoid (φ i) inst✝⁴ : (i : ι) → Module R (φ i) inst✝³ : Finite ι inst✝² : DecidableEq ι inst✝¹ : AddCommMonoid M inst✝ : Module R M f g : ((i : ι) → φ i) →ₗ[R] M h : ∀ (i : ι), comp f (single i) = comp g (single i) i : ι x : φ i ⊢ ↑f (Pi.single i x) = ↑g (Pi.single i x) [PROOFSTEP] convert LinearMap.congr_fun (h i) x [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝⁷ : Semiring R inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : Module R M₂ inst✝⁴ : AddCommMonoid M₃ inst✝³ : Module R M₃ φ : ι → Type i inst✝² : (i : ι) → AddCommMonoid (φ i) inst✝¹ : (i : ι) → Module R (φ i) I J : Set ι inst✝ : DecidablePred fun i => i ∈ I hd : Disjoint I J hu : Set.univ ⊆ I ∪ J ⊢ { x // x ∈ ⨅ (i : ι) (_ : i ∈ J), ker (proj i) } ≃ₗ[R] (i : ↑I) → φ ↑i [PROOFSTEP] refine' LinearEquiv.ofLinear (pi fun i => (proj (i : ι)).comp (Submodule.subtype _)) (codRestrict _ (pi fun i => if h : i ∈ I then proj (⟨i, h⟩ : I) else 0) _) _ _ [GOAL] case refine'_1 R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝⁷ : Semiring R inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : Module R M₂ inst✝⁴ : AddCommMonoid M₃ inst✝³ : Module R M₃ φ : ι → Type i inst✝² : (i : ι) → AddCommMonoid (φ i) inst✝¹ : (i : ι) → Module R (φ i) I J : Set ι inst✝ : DecidablePred fun i => i ∈ I hd : Disjoint I J hu : Set.univ ⊆ I ∪ J ⊢ ∀ (c : (i : ↑I) → φ ↑i), ↑(pi fun i => if h : i ∈ I then proj { val := i, property := h } else 0) c ∈ ⨅ (i : ι) (_ : i ∈ J), ker (proj i) [PROOFSTEP] intro b [GOAL] case refine'_1 R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝⁷ : Semiring R inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : Module R M₂ inst✝⁴ : AddCommMonoid M₃ inst✝³ : Module R M₃ φ : ι → Type i inst✝² : (i : ι) → AddCommMonoid (φ i) inst✝¹ : (i : ι) → Module R (φ i) I J : Set ι inst✝ : DecidablePred fun i => i ∈ I hd : Disjoint I J hu : Set.univ ⊆ I ∪ J b : (i : ↑I) → φ ↑i ⊢ ↑(pi fun i => if h : i ∈ I then proj { val := i, property := h } else 0) b ∈ ⨅ (i : ι) (_ : i ∈ J), ker (proj i) [PROOFSTEP] simp only [mem_iInf, mem_ker, funext_iff, proj_apply, pi_apply] [GOAL] case refine'_1 R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝⁷ : Semiring R inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : Module R M₂ inst✝⁴ : AddCommMonoid M₃ inst✝³ : Module R M₃ φ : ι → Type i inst✝² : (i : ι) → AddCommMonoid (φ i) inst✝¹ : (i : ι) → Module R (φ i) I J : Set ι inst✝ : DecidablePred fun i => i ∈ I hd : Disjoint I J hu : Set.univ ⊆ I ∪ J b : (i : ↑I) → φ ↑i ⊢ ∀ (i : ι), i ∈ J → ↑(if h : i ∈ I then proj { val := i, property := h } else 0) b = 0 [PROOFSTEP] intro j hjJ [GOAL] case refine'_1 R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝⁷ : Semiring R inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : Module R M₂ inst✝⁴ : AddCommMonoid M₃ inst✝³ : Module R M₃ φ : ι → Type i inst✝² : (i : ι) → AddCommMonoid (φ i) inst✝¹ : (i : ι) → Module R (φ i) I J : Set ι inst✝ : DecidablePred fun i => i ∈ I hd : Disjoint I J hu : Set.univ ⊆ I ∪ J b : (i : ↑I) → φ ↑i j : ι hjJ : j ∈ J ⊢ ↑(if h : j ∈ I then proj { val := j, property := h } else 0) b = 0 [PROOFSTEP] have : j ∉ I := fun hjI => hd.le_bot ⟨hjI, hjJ⟩ [GOAL] case refine'_1 R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝⁷ : Semiring R inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : Module R M₂ inst✝⁴ : AddCommMonoid M₃ inst✝³ : Module R M₃ φ : ι → Type i inst✝² : (i : ι) → AddCommMonoid (φ i) inst✝¹ : (i : ι) → Module R (φ i) I J : Set ι inst✝ : DecidablePred fun i => i ∈ I hd : Disjoint I J hu : Set.univ ⊆ I ∪ J b : (i : ↑I) → φ ↑i j : ι hjJ : j ∈ J this : ¬j ∈ I ⊢ ↑(if h : j ∈ I then proj { val := j, property := h } else 0) b = 0 [PROOFSTEP] rw [dif_neg this, zero_apply] [GOAL] case refine'_2 R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝⁷ : Semiring R inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : Module R M₂ inst✝⁴ : AddCommMonoid M₃ inst✝³ : Module R M₃ φ : ι → Type i inst✝² : (i : ι) → AddCommMonoid (φ i) inst✝¹ : (i : ι) → Module R (φ i) I J : Set ι inst✝ : DecidablePred fun i => i ∈ I hd : Disjoint I J hu : Set.univ ⊆ I ∪ J ⊢ comp (pi fun i => comp (proj ↑i) (Submodule.subtype (⨅ (i : ι) (_ : i ∈ J), ker (proj i)))) (codRestrict (⨅ (i : ι) (_ : i ∈ J), ker (proj i)) (pi fun i => if h : i ∈ I then proj { val := i, property := h } else 0) (_ : ∀ (b : (i : ↑I) → φ ↑i), ↑(pi fun i => if h : i ∈ I then proj { val := i, property := h } else 0) b ∈ ⨅ (i : ι) (_ : i ∈ J), ker (proj i))) = id [PROOFSTEP] simp only [pi_comp, comp_assoc, subtype_comp_codRestrict, proj_pi, Subtype.coe_prop] [GOAL] case refine'_2 R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝⁷ : Semiring R inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : Module R M₂ inst✝⁴ : AddCommMonoid M₃ inst✝³ : Module R M₃ φ : ι → Type i inst✝² : (i : ι) → AddCommMonoid (φ i) inst✝¹ : (i : ι) → Module R (φ i) I J : Set ι inst✝ : DecidablePred fun i => i ∈ I hd : Disjoint I J hu : Set.univ ⊆ I ∪ J ⊢ (pi fun i => if h : True then proj { val := ↑i, property := (_ : ↑i ∈ I) } else 0) = id [PROOFSTEP] ext b ⟨j, hj⟩ [GOAL] case refine'_2.h.h.mk R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝⁷ : Semiring R inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : Module R M₂ inst✝⁴ : AddCommMonoid M₃ inst✝³ : Module R M₃ φ : ι → Type i inst✝² : (i : ι) → AddCommMonoid (φ i) inst✝¹ : (i : ι) → Module R (φ i) I J : Set ι inst✝ : DecidablePred fun i => i ∈ I hd : Disjoint I J hu : Set.univ ⊆ I ∪ J b : (i : ↑I) → φ ↑i j : ι hj : j ∈ I ⊢ ↑(pi fun i => if h : True then proj { val := ↑i, property := (_ : ↑i ∈ I) } else 0) b { val := j, property := hj } = ↑id b { val := j, property := hj } [PROOFSTEP] simp only [dif_pos, Function.comp_apply, Function.eval_apply, LinearMap.codRestrict_apply, LinearMap.coe_comp, LinearMap.coe_proj, LinearMap.pi_apply, Submodule.subtype_apply, Subtype.coe_prop] [GOAL] case refine'_2.h.h.mk R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝⁷ : Semiring R inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : Module R M₂ inst✝⁴ : AddCommMonoid M₃ inst✝³ : Module R M₃ φ : ι → Type i inst✝² : (i : ι) → AddCommMonoid (φ i) inst✝¹ : (i : ι) → Module R (φ i) I J : Set ι inst✝ : DecidablePred fun i => i ∈ I hd : Disjoint I J hu : Set.univ ⊆ I ∪ J b : (i : ↑I) → φ ↑i j : ι hj : j ∈ I ⊢ eval { val := j, property := (_ : j ∈ I) } b = ↑id b { val := j, property := hj } [PROOFSTEP] rfl [GOAL] case refine'_3 R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝⁷ : Semiring R inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : Module R M₂ inst✝⁴ : AddCommMonoid M₃ inst✝³ : Module R M₃ φ : ι → Type i inst✝² : (i : ι) → AddCommMonoid (φ i) inst✝¹ : (i : ι) → Module R (φ i) I J : Set ι inst✝ : DecidablePred fun i => i ∈ I hd : Disjoint I J hu : Set.univ ⊆ I ∪ J ⊢ comp (codRestrict (⨅ (i : ι) (_ : i ∈ J), ker (proj i)) (pi fun i => if h : i ∈ I then proj { val := i, property := h } else 0) (_ : ∀ (b : (i : ↑I) → φ ↑i), ↑(pi fun i => if h : i ∈ I then proj { val := i, property := h } else 0) b ∈ ⨅ (i : ι) (_ : i ∈ J), ker (proj i))) (pi fun i => comp (proj ↑i) (Submodule.subtype (⨅ (i : ι) (_ : i ∈ J), ker (proj i)))) = id [PROOFSTEP] ext1 ⟨b, hb⟩ [GOAL] case refine'_3.h.mk R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝⁷ : Semiring R inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : Module R M₂ inst✝⁴ : AddCommMonoid M₃ inst✝³ : Module R M₃ φ : ι → Type i inst✝² : (i : ι) → AddCommMonoid (φ i) inst✝¹ : (i : ι) → Module R (φ i) I J : Set ι inst✝ : DecidablePred fun i => i ∈ I hd : Disjoint I J hu : Set.univ ⊆ I ∪ J b : (i : ι) → φ i hb : b ∈ ⨅ (i : ι) (_ : i ∈ J), ker (proj i) ⊢ ↑(comp (codRestrict (⨅ (i : ι) (_ : i ∈ J), ker (proj i)) (pi fun i => if h : i ∈ I then proj { val := i, property := h } else 0) (_ : ∀ (b : (i : ↑I) → φ ↑i), ↑(pi fun i => if h : i ∈ I then proj { val := i, property := h } else 0) b ∈ ⨅ (i : ι) (_ : i ∈ J), ker (proj i))) (pi fun i => comp (proj ↑i) (Submodule.subtype (⨅ (i : ι) (_ : i ∈ J), ker (proj i))))) { val := b, property := hb } = ↑id { val := b, property := hb } [PROOFSTEP] apply Subtype.ext [GOAL] case refine'_3.h.mk.a R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝⁷ : Semiring R inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : Module R M₂ inst✝⁴ : AddCommMonoid M₃ inst✝³ : Module R M₃ φ : ι → Type i inst✝² : (i : ι) → AddCommMonoid (φ i) inst✝¹ : (i : ι) → Module R (φ i) I J : Set ι inst✝ : DecidablePred fun i => i ∈ I hd : Disjoint I J hu : Set.univ ⊆ I ∪ J b : (i : ι) → φ i hb : b ∈ ⨅ (i : ι) (_ : i ∈ J), ker (proj i) ⊢ ↑(↑(comp (codRestrict (⨅ (i : ι) (_ : i ∈ J), ker (proj i)) (pi fun i => if h : i ∈ I then proj { val := i, property := h } else 0) (_ : ∀ (b : (i : ↑I) → φ ↑i), ↑(pi fun i => if h : i ∈ I then proj { val := i, property := h } else 0) b ∈ ⨅ (i : ι) (_ : i ∈ J), ker (proj i))) (pi fun i => comp (proj ↑i) (Submodule.subtype (⨅ (i : ι) (_ : i ∈ J), ker (proj i))))) { val := b, property := hb }) = ↑(↑id { val := b, property := hb }) [PROOFSTEP] ext j [GOAL] case refine'_3.h.mk.a.h R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝⁷ : Semiring R inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : Module R M₂ inst✝⁴ : AddCommMonoid M₃ inst✝³ : Module R M₃ φ : ι → Type i inst✝² : (i : ι) → AddCommMonoid (φ i) inst✝¹ : (i : ι) → Module R (φ i) I J : Set ι inst✝ : DecidablePred fun i => i ∈ I hd : Disjoint I J hu : Set.univ ⊆ I ∪ J b : (i : ι) → φ i hb : b ∈ ⨅ (i : ι) (_ : i ∈ J), ker (proj i) j : ι ⊢ ↑(↑(comp (codRestrict (⨅ (i : ι) (_ : i ∈ J), ker (proj i)) (pi fun i => if h : i ∈ I then proj { val := i, property := h } else 0) (_ : ∀ (b : (i : ↑I) → φ ↑i), ↑(pi fun i => if h : i ∈ I then proj { val := i, property := h } else 0) b ∈ ⨅ (i : ι) (_ : i ∈ J), ker (proj i))) (pi fun i => comp (proj ↑i) (Submodule.subtype (⨅ (i : ι) (_ : i ∈ J), ker (proj i))))) { val := b, property := hb }) j = ↑(↑id { val := b, property := hb }) j [PROOFSTEP] have hb : ∀ i ∈ J, b i = 0 := by simpa only [mem_iInf, mem_ker, proj_apply] using (mem_iInf _).1 hb [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝⁷ : Semiring R inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : Module R M₂ inst✝⁴ : AddCommMonoid M₃ inst✝³ : Module R M₃ φ : ι → Type i inst✝² : (i : ι) → AddCommMonoid (φ i) inst✝¹ : (i : ι) → Module R (φ i) I J : Set ι inst✝ : DecidablePred fun i => i ∈ I hd : Disjoint I J hu : Set.univ ⊆ I ∪ J b : (i : ι) → φ i hb : b ∈ ⨅ (i : ι) (_ : i ∈ J), ker (proj i) j : ι ⊢ ∀ (i : ι), i ∈ J → b i = 0 [PROOFSTEP] simpa only [mem_iInf, mem_ker, proj_apply] using (mem_iInf _).1 hb [GOAL] case refine'_3.h.mk.a.h R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝⁷ : Semiring R inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : Module R M₂ inst✝⁴ : AddCommMonoid M₃ inst✝³ : Module R M₃ φ : ι → Type i inst✝² : (i : ι) → AddCommMonoid (φ i) inst✝¹ : (i : ι) → Module R (φ i) I J : Set ι inst✝ : DecidablePred fun i => i ∈ I hd : Disjoint I J hu : Set.univ ⊆ I ∪ J b : (i : ι) → φ i hb✝ : b ∈ ⨅ (i : ι) (_ : i ∈ J), ker (proj i) j : ι hb : ∀ (i : ι), i ∈ J → b i = 0 ⊢ ↑(↑(comp (codRestrict (⨅ (i : ι) (_ : i ∈ J), ker (proj i)) (pi fun i => if h : i ∈ I then proj { val := i, property := h } else 0) (_ : ∀ (b : (i : ↑I) → φ ↑i), ↑(pi fun i => if h : i ∈ I then proj { val := i, property := h } else 0) b ∈ ⨅ (i : ι) (_ : i ∈ J), ker (proj i))) (pi fun i => comp (proj ↑i) (Submodule.subtype (⨅ (i : ι) (_ : i ∈ J), ker (proj i))))) { val := b, property := hb✝ }) j = ↑(↑id { val := b, property := hb✝ }) j [PROOFSTEP] simp only [comp_apply, pi_apply, id_apply, proj_apply, subtype_apply, codRestrict_apply] [GOAL] case refine'_3.h.mk.a.h R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝⁷ : Semiring R inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : Module R M₂ inst✝⁴ : AddCommMonoid M₃ inst✝³ : Module R M₃ φ : ι → Type i inst✝² : (i : ι) → AddCommMonoid (φ i) inst✝¹ : (i : ι) → Module R (φ i) I J : Set ι inst✝ : DecidablePred fun i => i ∈ I hd : Disjoint I J hu : Set.univ ⊆ I ∪ J b : (i : ι) → φ i hb✝ : b ∈ ⨅ (i : ι) (_ : i ∈ J), ker (proj i) j : ι hb : ∀ (i : ι), i ∈ J → b i = 0 ⊢ ↑(if h : j ∈ I then proj { val := j, property := h } else 0) (↑(pi fun i => comp (proj ↑i) (Submodule.subtype (⨅ (i : ι) (_ : i ∈ J), ker (proj i)))) { val := b, property := hb✝ }) = b j [PROOFSTEP] split_ifs with h [GOAL] case pos R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝⁷ : Semiring R inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : Module R M₂ inst✝⁴ : AddCommMonoid M₃ inst✝³ : Module R M₃ φ : ι → Type i inst✝² : (i : ι) → AddCommMonoid (φ i) inst✝¹ : (i : ι) → Module R (φ i) I J : Set ι inst✝ : DecidablePred fun i => i ∈ I hd : Disjoint I J hu : Set.univ ⊆ I ∪ J b : (i : ι) → φ i hb✝ : b ∈ ⨅ (i : ι) (_ : i ∈ J), ker (proj i) j : ι hb : ∀ (i : ι), i ∈ J → b i = 0 h : j ∈ I ⊢ ↑(proj { val := j, property := h }) (↑(pi fun i => comp (proj ↑i) (Submodule.subtype (⨅ (i : ι) (_ : i ∈ J), ker (proj i)))) { val := b, property := hb✝ }) = b j [PROOFSTEP] rfl [GOAL] case neg R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝⁷ : Semiring R inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : Module R M₂ inst✝⁴ : AddCommMonoid M₃ inst✝³ : Module R M₃ φ : ι → Type i inst✝² : (i : ι) → AddCommMonoid (φ i) inst✝¹ : (i : ι) → Module R (φ i) I J : Set ι inst✝ : DecidablePred fun i => i ∈ I hd : Disjoint I J hu : Set.univ ⊆ I ∪ J b : (i : ι) → φ i hb✝ : b ∈ ⨅ (i : ι) (_ : i ∈ J), ker (proj i) j : ι hb : ∀ (i : ι), i ∈ J → b i = 0 h : ¬j ∈ I ⊢ ↑0 (↑(pi fun i => comp (proj ↑i) (Submodule.subtype (⨅ (i : ι) (_ : i ∈ J), ker (proj i)))) { val := b, property := hb✝ }) = b j [PROOFSTEP] exact (hb _ <| (hu trivial).resolve_left h).symm [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝⁷ : Semiring R inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : Module R M₂ inst✝⁴ : AddCommMonoid M₃ inst✝³ : Module R M₃ φ : ι → Type i inst✝² : (i : ι) → AddCommMonoid (φ i) inst✝¹ : (i : ι) → Module R (φ i) inst✝ : DecidableEq ι f : (i : ι) → M₂ →ₗ[R] φ i c : M₂ i j : ι b : M₂ →ₗ[R] φ i ⊢ ↑(update f i b j) c = update (fun i => ↑(f i) c) i (↑b c) j [PROOFSTEP] by_cases h : j = i [GOAL] case pos R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝⁷ : Semiring R inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : Module R M₂ inst✝⁴ : AddCommMonoid M₃ inst✝³ : Module R M₃ φ : ι → Type i inst✝² : (i : ι) → AddCommMonoid (φ i) inst✝¹ : (i : ι) → Module R (φ i) inst✝ : DecidableEq ι f : (i : ι) → M₂ →ₗ[R] φ i c : M₂ i j : ι b : M₂ →ₗ[R] φ i h : j = i ⊢ ↑(update f i b j) c = update (fun i => ↑(f i) c) i (↑b c) j [PROOFSTEP] rw [h, update_same, update_same] [GOAL] case neg R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝⁷ : Semiring R inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : Module R M₂ inst✝⁴ : AddCommMonoid M₃ inst✝³ : Module R M₃ φ : ι → Type i inst✝² : (i : ι) → AddCommMonoid (φ i) inst✝¹ : (i : ι) → Module R (φ i) inst✝ : DecidableEq ι f : (i : ι) → M₂ →ₗ[R] φ i c : M₂ i j : ι b : M₂ →ₗ[R] φ i h : ¬j = i ⊢ ↑(update f i b j) c = update (fun i => ↑(f i) c) i (↑b c) j [PROOFSTEP] rw [update_noteq h, update_noteq h] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝² : Semiring R φ : ι → Type u_1 inst✝¹ : (i : ι) → AddCommMonoid (φ i) inst✝ : (i : ι) → Module R (φ i) I : Set ι p q : (i : ι) → Submodule R (φ i) x : (i : ι) → φ i ⊢ ⨅ (i : ι) (_ : i ∈ I), comap (proj i) (p i) = pi I p [PROOFSTEP] ext x [GOAL] case h R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝² : Semiring R φ : ι → Type u_1 inst✝¹ : (i : ι) → AddCommMonoid (φ i) inst✝ : (i : ι) → Module R (φ i) I : Set ι p q : (i : ι) → Submodule R (φ i) x✝ x : (i : ι) → φ i ⊢ x ∈ ⨅ (i : ι) (_ : i ∈ I), comap (proj i) (p i) ↔ x ∈ pi I p [PROOFSTEP] simp [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝² : Semiring R φ : ι → Type u_1 inst✝¹ : (i : ι) → AddCommMonoid (φ i) inst✝ : (i : ι) → Module R (φ i) I : Set ι p q : (i : ι) → Submodule R (φ i) x : (i : ι) → φ i ⊢ ⨅ (i : ι), comap (proj i) (p i) = pi Set.univ p [PROOFSTEP] ext x [GOAL] case h R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝² : Semiring R φ : ι → Type u_1 inst✝¹ : (i : ι) → AddCommMonoid (φ i) inst✝ : (i : ι) → Module R (φ i) I : Set ι p q : (i : ι) → Submodule R (φ i) x✝ x : (i : ι) → φ i ⊢ x ∈ ⨅ (i : ι), comap (proj i) (p i) ↔ x ∈ pi Set.univ p [PROOFSTEP] simp [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝⁴ : Semiring R φ : ι → Type u_1 inst✝³ : (i : ι) → AddCommMonoid (φ i) inst✝² : (i : ι) → Module R (φ i) I : Set ι p q : (i : ι) → Submodule R (φ i) x : (i : ι) → φ i inst✝¹ : DecidableEq ι inst✝ : Finite ι ⊢ ⨆ (i : ι), map (single i) (p i) = pi Set.univ p [PROOFSTEP] cases nonempty_fintype ι [GOAL] case intro R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝⁴ : Semiring R φ : ι → Type u_1 inst✝³ : (i : ι) → AddCommMonoid (φ i) inst✝² : (i : ι) → Module R (φ i) I : Set ι p q : (i : ι) → Submodule R (φ i) x : (i : ι) → φ i inst✝¹ : DecidableEq ι inst✝ : Finite ι val✝ : Fintype ι ⊢ ⨆ (i : ι), map (single i) (p i) = pi Set.univ p [PROOFSTEP] refine' (iSup_le fun i => _).antisymm _ [GOAL] case intro.refine'_1 R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝⁴ : Semiring R φ : ι → Type u_1 inst✝³ : (i : ι) → AddCommMonoid (φ i) inst✝² : (i : ι) → Module R (φ i) I : Set ι p q : (i : ι) → Submodule R (φ i) x : (i : ι) → φ i inst✝¹ : DecidableEq ι inst✝ : Finite ι val✝ : Fintype ι i : ι ⊢ map (single i) (p i) ≤ pi Set.univ p [PROOFSTEP] rintro _ ⟨x, hx : x ∈ p i, rfl⟩ j - [GOAL] case intro.refine'_1.intro.intro R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝⁴ : Semiring R φ : ι → Type u_1 inst✝³ : (i : ι) → AddCommMonoid (φ i) inst✝² : (i : ι) → Module R (φ i) I : Set ι p q : (i : ι) → Submodule R (φ i) x✝ : (i : ι) → φ i inst✝¹ : DecidableEq ι inst✝ : Finite ι val✝ : Fintype ι i : ι x : φ i hx : x ∈ p i j : ι ⊢ ↑(single i) x j ∈ (fun i => ↑(p i)) j [PROOFSTEP] rcases em (j = i) with (rfl | hj) [GOAL] case intro.refine'_1.intro.intro.inl R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝⁴ : Semiring R φ : ι → Type u_1 inst✝³ : (i : ι) → AddCommMonoid (φ i) inst✝² : (i : ι) → Module R (φ i) I : Set ι p q : (i : ι) → Submodule R (φ i) x✝ : (i : ι) → φ i inst✝¹ : DecidableEq ι inst✝ : Finite ι val✝ : Fintype ι j : ι x : φ j hx : x ∈ p j ⊢ ↑(single j) x j ∈ (fun i => ↑(p i)) j [PROOFSTEP] simp [*] [GOAL] case intro.refine'_1.intro.intro.inr R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝⁴ : Semiring R φ : ι → Type u_1 inst✝³ : (i : ι) → AddCommMonoid (φ i) inst✝² : (i : ι) → Module R (φ i) I : Set ι p q : (i : ι) → Submodule R (φ i) x✝ : (i : ι) → φ i inst✝¹ : DecidableEq ι inst✝ : Finite ι val✝ : Fintype ι i : ι x : φ i hx : x ∈ p i j : ι hj : ¬j = i ⊢ ↑(single i) x j ∈ (fun i => ↑(p i)) j [PROOFSTEP] simp [*] [GOAL] case intro.refine'_2 R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝⁴ : Semiring R φ : ι → Type u_1 inst✝³ : (i : ι) → AddCommMonoid (φ i) inst✝² : (i : ι) → Module R (φ i) I : Set ι p q : (i : ι) → Submodule R (φ i) x : (i : ι) → φ i inst✝¹ : DecidableEq ι inst✝ : Finite ι val✝ : Fintype ι ⊢ pi Set.univ p ≤ ⨆ (i : ι), map (single i) (p i) [PROOFSTEP] intro x hx [GOAL] case intro.refine'_2 R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝⁴ : Semiring R φ : ι → Type u_1 inst✝³ : (i : ι) → AddCommMonoid (φ i) inst✝² : (i : ι) → Module R (φ i) I : Set ι p q : (i : ι) → Submodule R (φ i) x✝ : (i : ι) → φ i inst✝¹ : DecidableEq ι inst✝ : Finite ι val✝ : Fintype ι x : (i : ι) → φ i hx : x ∈ pi Set.univ p ⊢ x ∈ ⨆ (i : ι), map (single i) (p i) [PROOFSTEP] rw [← Finset.univ_sum_single x] [GOAL] case intro.refine'_2 R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝⁴ : Semiring R φ : ι → Type u_1 inst✝³ : (i : ι) → AddCommMonoid (φ i) inst✝² : (i : ι) → Module R (φ i) I : Set ι p q : (i : ι) → Submodule R (φ i) x✝ : (i : ι) → φ i inst✝¹ : DecidableEq ι inst✝ : Finite ι val✝ : Fintype ι x : (i : ι) → φ i hx : x ∈ pi Set.univ p ⊢ ∑ i : ι, Pi.single i (x i) ∈ ⨆ (i : ι), map (single i) (p i) [PROOFSTEP] exact sum_mem_iSup fun i => mem_map_of_mem (hx i trivial) [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝³ : Semiring R φ : ι → Type u_1 inst✝² : (i : ι) → AddCommMonoid (φ i) inst✝¹ : (i : ι) → Module R (φ i) I : Set ι p✝ q : (i : ι) → Submodule R (φ i) x : (i : ι) → φ i inst✝ : DecidableEq ι p : (i : ι) → Submodule R (φ i) i : ι ⊢ p i ≤ comap (single i) (pi Set.univ p) [PROOFSTEP] intro x hx [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝³ : Semiring R φ : ι → Type u_1 inst✝² : (i : ι) → AddCommMonoid (φ i) inst✝¹ : (i : ι) → Module R (φ i) I : Set ι p✝ q : (i : ι) → Submodule R (φ i) x✝ : (i : ι) → φ i inst✝ : DecidableEq ι p : (i : ι) → Submodule R (φ i) i : ι x : φ i hx : x ∈ p i ⊢ x ∈ comap (single i) (pi Set.univ p) [PROOFSTEP] rw [Submodule.mem_comap, Submodule.mem_pi] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝³ : Semiring R φ : ι → Type u_1 inst✝² : (i : ι) → AddCommMonoid (φ i) inst✝¹ : (i : ι) → Module R (φ i) I : Set ι p✝ q : (i : ι) → Submodule R (φ i) x✝ : (i : ι) → φ i inst✝ : DecidableEq ι p : (i : ι) → Submodule R (φ i) i : ι x : φ i hx : x ∈ p i ⊢ ∀ (i_1 : ι), i_1 ∈ Set.univ → ↑(single i) x i_1 ∈ p i_1 [PROOFSTEP] rintro j - [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝³ : Semiring R φ : ι → Type u_1 inst✝² : (i : ι) → AddCommMonoid (φ i) inst✝¹ : (i : ι) → Module R (φ i) I : Set ι p✝ q : (i : ι) → Submodule R (φ i) x✝ : (i : ι) → φ i inst✝ : DecidableEq ι p : (i : ι) → Submodule R (φ i) i : ι x : φ i hx : x ∈ p i j : ι ⊢ ↑(single i) x j ∈ p j [PROOFSTEP] by_cases h : j = i [GOAL] case pos R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝³ : Semiring R φ : ι → Type u_1 inst✝² : (i : ι) → AddCommMonoid (φ i) inst✝¹ : (i : ι) → Module R (φ i) I : Set ι p✝ q : (i : ι) → Submodule R (φ i) x✝ : (i : ι) → φ i inst✝ : DecidableEq ι p : (i : ι) → Submodule R (φ i) i : ι x : φ i hx : x ∈ p i j : ι h : j = i ⊢ ↑(single i) x j ∈ p j [PROOFSTEP] rwa [h, LinearMap.coe_single, Pi.single_eq_same] [GOAL] case neg R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝³ : Semiring R φ : ι → Type u_1 inst✝² : (i : ι) → AddCommMonoid (φ i) inst✝¹ : (i : ι) → Module R (φ i) I : Set ι p✝ q : (i : ι) → Submodule R (φ i) x✝ : (i : ι) → φ i inst✝ : DecidableEq ι p : (i : ι) → Submodule R (φ i) i : ι x : φ i hx : x ∈ p i j : ι h : ¬j = i ⊢ ↑(single i) x j ∈ p j [PROOFSTEP] rw [LinearMap.coe_single, Pi.single_eq_of_ne h] [GOAL] case neg R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝³ : Semiring R φ : ι → Type u_1 inst✝² : (i : ι) → AddCommMonoid (φ i) inst✝¹ : (i : ι) → Module R (φ i) I : Set ι p✝ q : (i : ι) → Submodule R (φ i) x✝ : (i : ι) → φ i inst✝ : DecidableEq ι p : (i : ι) → Submodule R (φ i) i : ι x : φ i hx : x ∈ p i j : ι h : ¬j = i ⊢ 0 ∈ p j [PROOFSTEP] exact (p j).zero_mem [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝⁶ : Semiring R φ : ι → Type u_1 ψ : ι → Type u_2 χ : ι → Type u_3 inst✝⁵ : (i : ι) → AddCommMonoid (φ i) inst✝⁴ : (i : ι) → Module R (φ i) inst✝³ : (i : ι) → AddCommMonoid (ψ i) inst✝² : (i : ι) → Module R (ψ i) inst✝¹ : (i : ι) → AddCommMonoid (χ i) inst✝ : (i : ι) → Module R (χ i) e : (i : ι) → φ i ≃ₗ[R] ψ i src✝ : ((j : ι) → φ j) ≃+ ((j : ι) → ψ j) := AddEquiv.piCongrRight fun j => toAddEquiv (e j) c : R f : (i : ι) → φ i ⊢ AddHom.toFun { toFun := fun f i => ↑(e i) (f i), map_add' := (_ : ∀ (x y : (j : ι) → φ j), Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := fun f i => ↑(e i) (f i), map_add' := (_ : ∀ (x y : (j : ι) → φ j), Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) } f [PROOFSTEP] ext [GOAL] case h R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝⁶ : Semiring R φ : ι → Type u_1 ψ : ι → Type u_2 χ : ι → Type u_3 inst✝⁵ : (i : ι) → AddCommMonoid (φ i) inst✝⁴ : (i : ι) → Module R (φ i) inst✝³ : (i : ι) → AddCommMonoid (ψ i) inst✝² : (i : ι) → Module R (ψ i) inst✝¹ : (i : ι) → AddCommMonoid (χ i) inst✝ : (i : ι) → Module R (χ i) e : (i : ι) → φ i ≃ₗ[R] ψ i src✝ : ((j : ι) → φ j) ≃+ ((j : ι) → ψ j) := AddEquiv.piCongrRight fun j => toAddEquiv (e j) c : R f : (i : ι) → φ i x✝ : ι ⊢ AddHom.toFun { toFun := fun f i => ↑(e i) (f i), map_add' := (_ : ∀ (x y : (j : ι) → φ j), Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) } (c • f) x✝ = (↑(RingHom.id R) c • AddHom.toFun { toFun := fun f i => ↑(e i) (f i), map_add' := (_ : ∀ (x y : (j : ι) → φ j), Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) } f) x✝ [PROOFSTEP] simp [GOAL] R : Type u K : Type u' M✝ : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι✝ : Type x ι' : Type x' inst✝⁸ : Semiring R φ : ι✝ → Type u_1 ψ : ι✝ → Type u_2 χ : ι✝ → Type u_3 inst✝⁷ : (i : ι✝) → AddCommMonoid (φ i) inst✝⁶ : (i : ι✝) → Module R (φ i) inst✝⁵ : (i : ι✝) → AddCommMonoid (ψ i) inst✝⁴ : (i : ι✝) → Module R (ψ i) inst✝³ : (i : ι✝) → AddCommMonoid (χ i) inst✝² : (i : ι✝) → Module R (χ i) ι : Type u_4 M : Option ι → Type u_5 inst✝¹ : (i : Option ι) → AddCommGroup (M i) inst✝ : (i : Option ι) → Module R (M i) src✝ : ((a : Option ι) → M a) ≃ M none × ((a : ι) → M (some a)) := Equiv.piOptionEquivProd ⊢ ∀ (x y : (i : Option ι) → M i), Equiv.toFun src✝ (x + y) = Equiv.toFun src✝ x + Equiv.toFun src✝ y [PROOFSTEP] simp [Function.funext_iff] [GOAL] R : Type u K : Type u' M✝ : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι✝ : Type x ι' : Type x' inst✝⁸ : Semiring R φ : ι✝ → Type u_1 ψ : ι✝ → Type u_2 χ : ι✝ → Type u_3 inst✝⁷ : (i : ι✝) → AddCommMonoid (φ i) inst✝⁶ : (i : ι✝) → Module R (φ i) inst✝⁵ : (i : ι✝) → AddCommMonoid (ψ i) inst✝⁴ : (i : ι✝) → Module R (ψ i) inst✝³ : (i : ι✝) → AddCommMonoid (χ i) inst✝² : (i : ι✝) → Module R (χ i) ι : Type u_4 M : Option ι → Type u_5 inst✝¹ : (i : Option ι) → AddCommGroup (M i) inst✝ : (i : Option ι) → Module R (M i) src✝ : ((a : Option ι) → M a) ≃ M none × ((a : ι) → M (some a)) := Equiv.piOptionEquivProd ⊢ ∀ (r : R) (x : (i : Option ι) → M i), AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (a a_1 : (i : Option ι) → M i), (a none + a_1 none, fun a_2 => a (some a_2) + a_1 (some a_2)) = (a none + a_1 none, (fun a_2 => a (some a_2)) + fun a => a_1 (some a))) } (r • x) = ↑(RingHom.id R) r • AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (a a_1 : (i : Option ι) → M i), (a none + a_1 none, fun a_2 => a (some a_2) + a_1 (some a_2)) = (a none + a_1 none, (fun a_2 => a (some a_2)) + fun a => a_1 (some a))) } x [PROOFSTEP] simp [Function.funext_iff] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝¹³ : Semiring R φ : ι → Type u_1 ψ : ι → Type u_2 χ : ι → Type u_3 inst✝¹² : (i : ι) → AddCommMonoid (φ i) inst✝¹¹ : (i : ι) → Module R (φ i) inst✝¹⁰ : (i : ι) → AddCommMonoid (ψ i) inst✝⁹ : (i : ι) → Module R (ψ i) inst✝⁸ : (i : ι) → AddCommMonoid (χ i) inst✝⁷ : (i : ι) → Module R (χ i) S : Type u_4 inst✝⁶ : Fintype ι inst✝⁵ : DecidableEq ι inst✝⁴ : Semiring S inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : Module S M inst✝ : SMulCommClass R S M f : ι → M g : ι → R ⊢ ↑(↑(symm (piRing R M ι S)) f) g = ∑ i : ι, g i • f i [PROOFSTEP] simp [piRing, LinearMap.lsum_apply] [GOAL] R✝ : Type u K : Type u' M✝ : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝¹⁶ : Semiring R✝ φ : ι → Type u_1 ψ : ι → Type u_2 χ : ι → Type u_3 inst✝¹⁵ : (i : ι) → AddCommMonoid (φ i) inst✝¹⁴ : (i : ι) → Module R✝ (φ i) inst✝¹³ : (i : ι) → AddCommMonoid (ψ i) inst✝¹² : (i : ι) → Module R✝ (ψ i) inst✝¹¹ : (i : ι) → AddCommMonoid (χ i) inst✝¹⁰ : (i : ι) → Module R✝ (χ i) S : Type u_4 inst✝⁹ : Fintype ι inst✝⁸ : DecidableEq ι inst✝⁷ : Semiring S inst✝⁶ : AddCommMonoid M✝ inst✝⁵ : Module R✝ M✝ inst✝⁴ : Module S M✝ inst✝³ : SMulCommClass R✝ S M✝ α : Type u_5 β : Type u_6 R : Type u_7 M : Type u_8 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M src✝ : (α ⊕ β → M) ≃ (α → M) × (β → M) := Equiv.sumArrowEquivProdArrow α β M ⊢ ∀ (x y : α ⊕ β → M), Equiv.toFun src✝ (x + y) = Equiv.toFun src✝ x + Equiv.toFun src✝ y [PROOFSTEP] intro f g [GOAL] R✝ : Type u K : Type u' M✝ : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝¹⁶ : Semiring R✝ φ : ι → Type u_1 ψ : ι → Type u_2 χ : ι → Type u_3 inst✝¹⁵ : (i : ι) → AddCommMonoid (φ i) inst✝¹⁴ : (i : ι) → Module R✝ (φ i) inst✝¹³ : (i : ι) → AddCommMonoid (ψ i) inst✝¹² : (i : ι) → Module R✝ (ψ i) inst✝¹¹ : (i : ι) → AddCommMonoid (χ i) inst✝¹⁰ : (i : ι) → Module R✝ (χ i) S : Type u_4 inst✝⁹ : Fintype ι inst✝⁸ : DecidableEq ι inst✝⁷ : Semiring S inst✝⁶ : AddCommMonoid M✝ inst✝⁵ : Module R✝ M✝ inst✝⁴ : Module S M✝ inst✝³ : SMulCommClass R✝ S M✝ α : Type u_5 β : Type u_6 R : Type u_7 M : Type u_8 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M src✝ : (α ⊕ β → M) ≃ (α → M) × (β → M) := Equiv.sumArrowEquivProdArrow α β M f g : α ⊕ β → M ⊢ Equiv.toFun src✝ (f + g) = Equiv.toFun src✝ f + Equiv.toFun src✝ g [PROOFSTEP] ext [GOAL] case h₁.h R✝ : Type u K : Type u' M✝ : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝¹⁶ : Semiring R✝ φ : ι → Type u_1 ψ : ι → Type u_2 χ : ι → Type u_3 inst✝¹⁵ : (i : ι) → AddCommMonoid (φ i) inst✝¹⁴ : (i : ι) → Module R✝ (φ i) inst✝¹³ : (i : ι) → AddCommMonoid (ψ i) inst✝¹² : (i : ι) → Module R✝ (ψ i) inst✝¹¹ : (i : ι) → AddCommMonoid (χ i) inst✝¹⁰ : (i : ι) → Module R✝ (χ i) S : Type u_4 inst✝⁹ : Fintype ι inst✝⁸ : DecidableEq ι inst✝⁷ : Semiring S inst✝⁶ : AddCommMonoid M✝ inst✝⁵ : Module R✝ M✝ inst✝⁴ : Module S M✝ inst✝³ : SMulCommClass R✝ S M✝ α : Type u_5 β : Type u_6 R : Type u_7 M : Type u_8 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M src✝ : (α ⊕ β → M) ≃ (α → M) × (β → M) := Equiv.sumArrowEquivProdArrow α β M f g : α ⊕ β → M x✝ : α ⊢ Prod.fst (Equiv.toFun src✝ (f + g)) x✝ = Prod.fst (Equiv.toFun src✝ f + Equiv.toFun src✝ g) x✝ [PROOFSTEP] rfl [GOAL] case h₂.h R✝ : Type u K : Type u' M✝ : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝¹⁶ : Semiring R✝ φ : ι → Type u_1 ψ : ι → Type u_2 χ : ι → Type u_3 inst✝¹⁵ : (i : ι) → AddCommMonoid (φ i) inst✝¹⁴ : (i : ι) → Module R✝ (φ i) inst✝¹³ : (i : ι) → AddCommMonoid (ψ i) inst✝¹² : (i : ι) → Module R✝ (ψ i) inst✝¹¹ : (i : ι) → AddCommMonoid (χ i) inst✝¹⁰ : (i : ι) → Module R✝ (χ i) S : Type u_4 inst✝⁹ : Fintype ι inst✝⁸ : DecidableEq ι inst✝⁷ : Semiring S inst✝⁶ : AddCommMonoid M✝ inst✝⁵ : Module R✝ M✝ inst✝⁴ : Module S M✝ inst✝³ : SMulCommClass R✝ S M✝ α : Type u_5 β : Type u_6 R : Type u_7 M : Type u_8 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M src✝ : (α ⊕ β → M) ≃ (α → M) × (β → M) := Equiv.sumArrowEquivProdArrow α β M f g : α ⊕ β → M x✝ : β ⊢ Prod.snd (Equiv.toFun src✝ (f + g)) x✝ = Prod.snd (Equiv.toFun src✝ f + Equiv.toFun src✝ g) x✝ [PROOFSTEP] rfl [GOAL] R✝ : Type u K : Type u' M✝ : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝¹⁶ : Semiring R✝ φ : ι → Type u_1 ψ : ι → Type u_2 χ : ι → Type u_3 inst✝¹⁵ : (i : ι) → AddCommMonoid (φ i) inst✝¹⁴ : (i : ι) → Module R✝ (φ i) inst✝¹³ : (i : ι) → AddCommMonoid (ψ i) inst✝¹² : (i : ι) → Module R✝ (ψ i) inst✝¹¹ : (i : ι) → AddCommMonoid (χ i) inst✝¹⁰ : (i : ι) → Module R✝ (χ i) S : Type u_4 inst✝⁹ : Fintype ι inst✝⁸ : DecidableEq ι inst✝⁷ : Semiring S inst✝⁶ : AddCommMonoid M✝ inst✝⁵ : Module R✝ M✝ inst✝⁴ : Module S M✝ inst✝³ : SMulCommClass R✝ S M✝ α : Type u_5 β : Type u_6 R : Type u_7 M : Type u_8 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M src✝ : (α ⊕ β → M) ≃ (α → M) × (β → M) := Equiv.sumArrowEquivProdArrow α β M ⊢ ∀ (r : R) (x : α ⊕ β → M), AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (f g : α ⊕ β → M), Equiv.toFun src✝ (f + g) = Equiv.toFun src✝ f + Equiv.toFun src✝ g) } (r • x) = ↑(RingHom.id R) r • AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (f g : α ⊕ β → M), Equiv.toFun src✝ (f + g) = Equiv.toFun src✝ f + Equiv.toFun src✝ g) } x [PROOFSTEP] intro r f [GOAL] R✝ : Type u K : Type u' M✝ : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝¹⁶ : Semiring R✝ φ : ι → Type u_1 ψ : ι → Type u_2 χ : ι → Type u_3 inst✝¹⁵ : (i : ι) → AddCommMonoid (φ i) inst✝¹⁴ : (i : ι) → Module R✝ (φ i) inst✝¹³ : (i : ι) → AddCommMonoid (ψ i) inst✝¹² : (i : ι) → Module R✝ (ψ i) inst✝¹¹ : (i : ι) → AddCommMonoid (χ i) inst✝¹⁰ : (i : ι) → Module R✝ (χ i) S : Type u_4 inst✝⁹ : Fintype ι inst✝⁸ : DecidableEq ι inst✝⁷ : Semiring S inst✝⁶ : AddCommMonoid M✝ inst✝⁵ : Module R✝ M✝ inst✝⁴ : Module S M✝ inst✝³ : SMulCommClass R✝ S M✝ α : Type u_5 β : Type u_6 R : Type u_7 M : Type u_8 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M src✝ : (α ⊕ β → M) ≃ (α → M) × (β → M) := Equiv.sumArrowEquivProdArrow α β M r : R f : α ⊕ β → M ⊢ AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (f g : α ⊕ β → M), Equiv.toFun src✝ (f + g) = Equiv.toFun src✝ f + Equiv.toFun src✝ g) } (r • f) = ↑(RingHom.id R) r • AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (f g : α ⊕ β → M), Equiv.toFun src✝ (f + g) = Equiv.toFun src✝ f + Equiv.toFun src✝ g) } f [PROOFSTEP] ext [GOAL] case h₁.h R✝ : Type u K : Type u' M✝ : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝¹⁶ : Semiring R✝ φ : ι → Type u_1 ψ : ι → Type u_2 χ : ι → Type u_3 inst✝¹⁵ : (i : ι) → AddCommMonoid (φ i) inst✝¹⁴ : (i : ι) → Module R✝ (φ i) inst✝¹³ : (i : ι) → AddCommMonoid (ψ i) inst✝¹² : (i : ι) → Module R✝ (ψ i) inst✝¹¹ : (i : ι) → AddCommMonoid (χ i) inst✝¹⁰ : (i : ι) → Module R✝ (χ i) S : Type u_4 inst✝⁹ : Fintype ι inst✝⁸ : DecidableEq ι inst✝⁷ : Semiring S inst✝⁶ : AddCommMonoid M✝ inst✝⁵ : Module R✝ M✝ inst✝⁴ : Module S M✝ inst✝³ : SMulCommClass R✝ S M✝ α : Type u_5 β : Type u_6 R : Type u_7 M : Type u_8 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M src✝ : (α ⊕ β → M) ≃ (α → M) × (β → M) := Equiv.sumArrowEquivProdArrow α β M r : R f : α ⊕ β → M x✝ : α ⊢ Prod.fst (AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (f g : α ⊕ β → M), Equiv.toFun src✝ (f + g) = Equiv.toFun src✝ f + Equiv.toFun src✝ g) } (r • f)) x✝ = Prod.fst (↑(RingHom.id R) r • AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (f g : α ⊕ β → M), Equiv.toFun src✝ (f + g) = Equiv.toFun src✝ f + Equiv.toFun src✝ g) } f) x✝ [PROOFSTEP] rfl [GOAL] case h₂.h R✝ : Type u K : Type u' M✝ : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝¹⁶ : Semiring R✝ φ : ι → Type u_1 ψ : ι → Type u_2 χ : ι → Type u_3 inst✝¹⁵ : (i : ι) → AddCommMonoid (φ i) inst✝¹⁴ : (i : ι) → Module R✝ (φ i) inst✝¹³ : (i : ι) → AddCommMonoid (ψ i) inst✝¹² : (i : ι) → Module R✝ (ψ i) inst✝¹¹ : (i : ι) → AddCommMonoid (χ i) inst✝¹⁰ : (i : ι) → Module R✝ (χ i) S : Type u_4 inst✝⁹ : Fintype ι inst✝⁸ : DecidableEq ι inst✝⁷ : Semiring S inst✝⁶ : AddCommMonoid M✝ inst✝⁵ : Module R✝ M✝ inst✝⁴ : Module S M✝ inst✝³ : SMulCommClass R✝ S M✝ α : Type u_5 β : Type u_6 R : Type u_7 M : Type u_8 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M src✝ : (α ⊕ β → M) ≃ (α → M) × (β → M) := Equiv.sumArrowEquivProdArrow α β M r : R f : α ⊕ β → M x✝ : β ⊢ Prod.snd (AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (f g : α ⊕ β → M), Equiv.toFun src✝ (f + g) = Equiv.toFun src✝ f + Equiv.toFun src✝ g) } (r • f)) x✝ = Prod.snd (↑(RingHom.id R) r • AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (f g : α ⊕ β → M), Equiv.toFun src✝ (f + g) = Equiv.toFun src✝ f + Equiv.toFun src✝ g) } f) x✝ [PROOFSTEP] rfl [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' η : Type x inst✝ : Semiring R s : ι → η src✝ : (ι → R) →+ η → R := hom R s r : R f : ι → R ⊢ AddHom.toFun { toFun := fun f => extend s f 0, map_add' := (_ : ∀ (x y : ι → R), ZeroHom.toFun (↑src✝) (x + y) = ZeroHom.toFun (↑src✝) x + ZeroHom.toFun (↑src✝) y) } (r • f) = ↑(RingHom.id R) r • AddHom.toFun { toFun := fun f => extend s f 0, map_add' := (_ : ∀ (x y : ι → R), ZeroHom.toFun (↑src✝) (x + y) = ZeroHom.toFun (↑src✝) x + ZeroHom.toFun (↑src✝) y) } f [PROOFSTEP] simpa using Function.extend_smul r s f 0 [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M₂ inst✝³ : AddCommMonoid M₃ inst✝² : Module R M inst✝¹ : Module R M₂ inst✝ : Module R M₃ n : ℕ f : M →ₗ[R] M₂ g : M →ₗ[R] Fin n → M₂ x y : M ⊢ (fun m => Matrix.vecCons (↑f m) (↑g m)) (x + y) = (fun m => Matrix.vecCons (↑f m) (↑g m)) x + (fun m => Matrix.vecCons (↑f m) (↑g m)) y [PROOFSTEP] simp only [] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M₂ inst✝³ : AddCommMonoid M₃ inst✝² : Module R M inst✝¹ : Module R M₂ inst✝ : Module R M₃ n : ℕ f : M →ₗ[R] M₂ g : M →ₗ[R] Fin n → M₂ x y : M ⊢ Matrix.vecCons (↑f (x + y)) (↑g (x + y)) = Matrix.vecCons (↑f x) (↑g x) + Matrix.vecCons (↑f y) (↑g y) [PROOFSTEP] rw [f.map_add, g.map_add, Matrix.cons_add_cons (f x)] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M₂ inst✝³ : AddCommMonoid M₃ inst✝² : Module R M inst✝¹ : Module R M₂ inst✝ : Module R M₃ n : ℕ f : M →ₗ[R] M₂ g : M →ₗ[R] Fin n → M₂ c : R x : M ⊢ AddHom.toFun { toFun := fun m => Matrix.vecCons (↑f m) (↑g m), map_add' := (_ : ∀ (x y : M), (fun m => Matrix.vecCons (↑f m) (↑g m)) (x + y) = (fun m => Matrix.vecCons (↑f m) (↑g m)) x + (fun m => Matrix.vecCons (↑f m) (↑g m)) y) } (c • x) = ↑(RingHom.id R) c • AddHom.toFun { toFun := fun m => Matrix.vecCons (↑f m) (↑g m), map_add' := (_ : ∀ (x y : M), (fun m => Matrix.vecCons (↑f m) (↑g m)) (x + y) = (fun m => Matrix.vecCons (↑f m) (↑g m)) x + (fun m => Matrix.vecCons (↑f m) (↑g m)) y) } x [PROOFSTEP] simp only [] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M₂ inst✝³ : AddCommMonoid M₃ inst✝² : Module R M inst✝¹ : Module R M₂ inst✝ : Module R M₃ n : ℕ f : M →ₗ[R] M₂ g : M →ₗ[R] Fin n → M₂ c : R x : M ⊢ Matrix.vecCons (↑f (c • x)) (↑g (c • x)) = ↑(RingHom.id R) c • Matrix.vecCons (↑f x) (↑g x) [PROOFSTEP] rw [f.map_smul, g.map_smul, RingHom.id_apply, Matrix.smul_cons c (f x)] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝⁶ : CommSemiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M₂ inst✝³ : AddCommMonoid M₃ inst✝² : Module R M inst✝¹ : Module R M₂ inst✝ : Module R M₃ n : ℕ f : M →ₗ[R] M₂ →ₗ[R] M₃ g : M →ₗ[R] M₂ →ₗ[R] Fin n → M₃ x y : M z : M₂ ⊢ ↑((fun m => vecCons (↑f m) (↑g m)) (x + y)) z = ↑((fun m => vecCons (↑f m) (↑g m)) x + (fun m => vecCons (↑f m) (↑g m)) y) z [PROOFSTEP] simp only [f.map_add, g.map_add, LinearMap.add_apply, LinearMap.vecCons_apply, Matrix.cons_add_cons (f x z)] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x ι' : Type x' inst✝⁶ : CommSemiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M₂ inst✝³ : AddCommMonoid M₃ inst✝² : Module R M inst✝¹ : Module R M₂ inst✝ : Module R M₃ n : ℕ f : M →ₗ[R] M₂ →ₗ[R] M₃ g : M →ₗ[R] M₂ →ₗ[R] Fin n → M₃ r : R x : M z : M₂ ⊢ ↑(AddHom.toFun { toFun := fun m => vecCons (↑f m) (↑g m), map_add' := (_ : ∀ (x y : M), (fun m => vecCons (↑f m) (↑g m)) (x + y) = (fun m => vecCons (↑f m) (↑g m)) x + (fun m => vecCons (↑f m) (↑g m)) y) } (r • x)) z = ↑(↑(RingHom.id R) r • AddHom.toFun { toFun := fun m => vecCons (↑f m) (↑g m), map_add' := (_ : ∀ (x y : M), (fun m => vecCons (↑f m) (↑g m)) (x + y) = (fun m => vecCons (↑f m) (↑g m)) x + (fun m => vecCons (↑f m) (↑g m)) y) } x) z [PROOFSTEP] simp [Matrix.smul_cons r (f x z)]
{"mathlib_filename": "Mathlib.LinearAlgebra.Pi", "llama_tokens": 32152}
[GOAL] R : Type u_1 ι₁ : Type u_2 ι₂ : Type u_3 ι₃ : Type u_4 ι₄ : Type u_5 inst✝⁷ : CommSemiring R N₁ : Type u_6 inst✝⁶ : AddCommMonoid N₁ inst✝⁵ : Module R N₁ N₂ : Type u_7 inst✝⁴ : AddCommMonoid N₂ inst✝³ : Module R N₂ N : Type u_8 inst✝² : AddCommMonoid N inst✝¹ : Module R N a : MultilinearMap R (fun x => N) N₁ b : MultilinearMap R (fun x => N) N₂ inst✝ : DecidableEq (ι₁ ⊕ ι₂) x✝ : ι₁ ⊕ ι₂ → N i : ι₁ ⊕ ι₂ p q : N ⊢ (fun v => (↑a fun i => v (Sum.inl i)) ⊗ₜ[R] ↑b fun i => v (Sum.inr i)) (Function.update x✝ i (p + q)) = (fun v => (↑a fun i => v (Sum.inl i)) ⊗ₜ[R] ↑b fun i => v (Sum.inr i)) (Function.update x✝ i p) + (fun v => (↑a fun i => v (Sum.inl i)) ⊗ₜ[R] ↑b fun i => v (Sum.inr i)) (Function.update x✝ i q) [PROOFSTEP] letI := (@Sum.inl_injective ι₁ ι₂).decidableEq [GOAL] R : Type u_1 ι₁ : Type u_2 ι₂ : Type u_3 ι₃ : Type u_4 ι₄ : Type u_5 inst✝⁷ : CommSemiring R N₁ : Type u_6 inst✝⁶ : AddCommMonoid N₁ inst✝⁵ : Module R N₁ N₂ : Type u_7 inst✝⁴ : AddCommMonoid N₂ inst✝³ : Module R N₂ N : Type u_8 inst✝² : AddCommMonoid N inst✝¹ : Module R N a : MultilinearMap R (fun x => N) N₁ b : MultilinearMap R (fun x => N) N₂ inst✝ : DecidableEq (ι₁ ⊕ ι₂) x✝ : ι₁ ⊕ ι₂ → N i : ι₁ ⊕ ι₂ p q : N this : DecidableEq ι₁ := Function.Injective.decidableEq (_ : Function.Injective Sum.inl) ⊢ (fun v => (↑a fun i => v (Sum.inl i)) ⊗ₜ[R] ↑b fun i => v (Sum.inr i)) (Function.update x✝ i (p + q)) = (fun v => (↑a fun i => v (Sum.inl i)) ⊗ₜ[R] ↑b fun i => v (Sum.inr i)) (Function.update x✝ i p) + (fun v => (↑a fun i => v (Sum.inl i)) ⊗ₜ[R] ↑b fun i => v (Sum.inr i)) (Function.update x✝ i q) [PROOFSTEP] letI := (@Sum.inr_injective ι₁ ι₂).decidableEq [GOAL] R : Type u_1 ι₁ : Type u_2 ι₂ : Type u_3 ι₃ : Type u_4 ι₄ : Type u_5 inst✝⁷ : CommSemiring R N₁ : Type u_6 inst✝⁶ : AddCommMonoid N₁ inst✝⁵ : Module R N₁ N₂ : Type u_7 inst✝⁴ : AddCommMonoid N₂ inst✝³ : Module R N₂ N : Type u_8 inst✝² : AddCommMonoid N inst✝¹ : Module R N a : MultilinearMap R (fun x => N) N₁ b : MultilinearMap R (fun x => N) N₂ inst✝ : DecidableEq (ι₁ ⊕ ι₂) x✝ : ι₁ ⊕ ι₂ → N i : ι₁ ⊕ ι₂ p q : N this✝ : DecidableEq ι₁ := Function.Injective.decidableEq (_ : Function.Injective Sum.inl) this : DecidableEq ι₂ := Function.Injective.decidableEq (_ : Function.Injective Sum.inr) ⊢ (fun v => (↑a fun i => v (Sum.inl i)) ⊗ₜ[R] ↑b fun i => v (Sum.inr i)) (Function.update x✝ i (p + q)) = (fun v => (↑a fun i => v (Sum.inl i)) ⊗ₜ[R] ↑b fun i => v (Sum.inr i)) (Function.update x✝ i p) + (fun v => (↑a fun i => v (Sum.inl i)) ⊗ₜ[R] ↑b fun i => v (Sum.inr i)) (Function.update x✝ i q) [PROOFSTEP] cases i [GOAL] case inl R : Type u_1 ι₁ : Type u_2 ι₂ : Type u_3 ι₃ : Type u_4 ι₄ : Type u_5 inst✝⁷ : CommSemiring R N₁ : Type u_6 inst✝⁶ : AddCommMonoid N₁ inst✝⁵ : Module R N₁ N₂ : Type u_7 inst✝⁴ : AddCommMonoid N₂ inst✝³ : Module R N₂ N : Type u_8 inst✝² : AddCommMonoid N inst✝¹ : Module R N a : MultilinearMap R (fun x => N) N₁ b : MultilinearMap R (fun x => N) N₂ inst✝ : DecidableEq (ι₁ ⊕ ι₂) x✝ : ι₁ ⊕ ι₂ → N p q : N this✝ : DecidableEq ι₁ := Function.Injective.decidableEq (_ : Function.Injective Sum.inl) this : DecidableEq ι₂ := Function.Injective.decidableEq (_ : Function.Injective Sum.inr) val✝ : ι₁ ⊢ (fun v => (↑a fun i => v (Sum.inl i)) ⊗ₜ[R] ↑b fun i => v (Sum.inr i)) (Function.update x✝ (Sum.inl val✝) (p + q)) = (fun v => (↑a fun i => v (Sum.inl i)) ⊗ₜ[R] ↑b fun i => v (Sum.inr i)) (Function.update x✝ (Sum.inl val✝) p) + (fun v => (↑a fun i => v (Sum.inl i)) ⊗ₜ[R] ↑b fun i => v (Sum.inr i)) (Function.update x✝ (Sum.inl val✝) q) [PROOFSTEP] simp [TensorProduct.add_tmul, TensorProduct.tmul_add] [GOAL] case inr R : Type u_1 ι₁ : Type u_2 ι₂ : Type u_3 ι₃ : Type u_4 ι₄ : Type u_5 inst✝⁷ : CommSemiring R N₁ : Type u_6 inst✝⁶ : AddCommMonoid N₁ inst✝⁵ : Module R N₁ N₂ : Type u_7 inst✝⁴ : AddCommMonoid N₂ inst✝³ : Module R N₂ N : Type u_8 inst✝² : AddCommMonoid N inst✝¹ : Module R N a : MultilinearMap R (fun x => N) N₁ b : MultilinearMap R (fun x => N) N₂ inst✝ : DecidableEq (ι₁ ⊕ ι₂) x✝ : ι₁ ⊕ ι₂ → N p q : N this✝ : DecidableEq ι₁ := Function.Injective.decidableEq (_ : Function.Injective Sum.inl) this : DecidableEq ι₂ := Function.Injective.decidableEq (_ : Function.Injective Sum.inr) val✝ : ι₂ ⊢ (fun v => (↑a fun i => v (Sum.inl i)) ⊗ₜ[R] ↑b fun i => v (Sum.inr i)) (Function.update x✝ (Sum.inr val✝) (p + q)) = (fun v => (↑a fun i => v (Sum.inl i)) ⊗ₜ[R] ↑b fun i => v (Sum.inr i)) (Function.update x✝ (Sum.inr val✝) p) + (fun v => (↑a fun i => v (Sum.inl i)) ⊗ₜ[R] ↑b fun i => v (Sum.inr i)) (Function.update x✝ (Sum.inr val✝) q) [PROOFSTEP] simp [TensorProduct.add_tmul, TensorProduct.tmul_add] [GOAL] R : Type u_1 ι₁ : Type u_2 ι₂ : Type u_3 ι₃ : Type u_4 ι₄ : Type u_5 inst✝⁷ : CommSemiring R N₁ : Type u_6 inst✝⁶ : AddCommMonoid N₁ inst✝⁵ : Module R N₁ N₂ : Type u_7 inst✝⁴ : AddCommMonoid N₂ inst✝³ : Module R N₂ N : Type u_8 inst✝² : AddCommMonoid N inst✝¹ : Module R N a : MultilinearMap R (fun x => N) N₁ b : MultilinearMap R (fun x => N) N₂ inst✝ : DecidableEq (ι₁ ⊕ ι₂) x✝ : ι₁ ⊕ ι₂ → N i : ι₁ ⊕ ι₂ c : R p : N ⊢ (fun v => (↑a fun i => v (Sum.inl i)) ⊗ₜ[R] ↑b fun i => v (Sum.inr i)) (Function.update x✝ i (c • p)) = c • (fun v => (↑a fun i => v (Sum.inl i)) ⊗ₜ[R] ↑b fun i => v (Sum.inr i)) (Function.update x✝ i p) [PROOFSTEP] letI := (@Sum.inl_injective ι₁ ι₂).decidableEq [GOAL] R : Type u_1 ι₁ : Type u_2 ι₂ : Type u_3 ι₃ : Type u_4 ι₄ : Type u_5 inst✝⁷ : CommSemiring R N₁ : Type u_6 inst✝⁶ : AddCommMonoid N₁ inst✝⁵ : Module R N₁ N₂ : Type u_7 inst✝⁴ : AddCommMonoid N₂ inst✝³ : Module R N₂ N : Type u_8 inst✝² : AddCommMonoid N inst✝¹ : Module R N a : MultilinearMap R (fun x => N) N₁ b : MultilinearMap R (fun x => N) N₂ inst✝ : DecidableEq (ι₁ ⊕ ι₂) x✝ : ι₁ ⊕ ι₂ → N i : ι₁ ⊕ ι₂ c : R p : N this : DecidableEq ι₁ := Function.Injective.decidableEq (_ : Function.Injective Sum.inl) ⊢ (fun v => (↑a fun i => v (Sum.inl i)) ⊗ₜ[R] ↑b fun i => v (Sum.inr i)) (Function.update x✝ i (c • p)) = c • (fun v => (↑a fun i => v (Sum.inl i)) ⊗ₜ[R] ↑b fun i => v (Sum.inr i)) (Function.update x✝ i p) [PROOFSTEP] letI := (@Sum.inr_injective ι₁ ι₂).decidableEq [GOAL] R : Type u_1 ι₁ : Type u_2 ι₂ : Type u_3 ι₃ : Type u_4 ι₄ : Type u_5 inst✝⁷ : CommSemiring R N₁ : Type u_6 inst✝⁶ : AddCommMonoid N₁ inst✝⁵ : Module R N₁ N₂ : Type u_7 inst✝⁴ : AddCommMonoid N₂ inst✝³ : Module R N₂ N : Type u_8 inst✝² : AddCommMonoid N inst✝¹ : Module R N a : MultilinearMap R (fun x => N) N₁ b : MultilinearMap R (fun x => N) N₂ inst✝ : DecidableEq (ι₁ ⊕ ι₂) x✝ : ι₁ ⊕ ι₂ → N i : ι₁ ⊕ ι₂ c : R p : N this✝ : DecidableEq ι₁ := Function.Injective.decidableEq (_ : Function.Injective Sum.inl) this : DecidableEq ι₂ := Function.Injective.decidableEq (_ : Function.Injective Sum.inr) ⊢ (fun v => (↑a fun i => v (Sum.inl i)) ⊗ₜ[R] ↑b fun i => v (Sum.inr i)) (Function.update x✝ i (c • p)) = c • (fun v => (↑a fun i => v (Sum.inl i)) ⊗ₜ[R] ↑b fun i => v (Sum.inr i)) (Function.update x✝ i p) [PROOFSTEP] cases i [GOAL] case inl R : Type u_1 ι₁ : Type u_2 ι₂ : Type u_3 ι₃ : Type u_4 ι₄ : Type u_5 inst✝⁷ : CommSemiring R N₁ : Type u_6 inst✝⁶ : AddCommMonoid N₁ inst✝⁵ : Module R N₁ N₂ : Type u_7 inst✝⁴ : AddCommMonoid N₂ inst✝³ : Module R N₂ N : Type u_8 inst✝² : AddCommMonoid N inst✝¹ : Module R N a : MultilinearMap R (fun x => N) N₁ b : MultilinearMap R (fun x => N) N₂ inst✝ : DecidableEq (ι₁ ⊕ ι₂) x✝ : ι₁ ⊕ ι₂ → N c : R p : N this✝ : DecidableEq ι₁ := Function.Injective.decidableEq (_ : Function.Injective Sum.inl) this : DecidableEq ι₂ := Function.Injective.decidableEq (_ : Function.Injective Sum.inr) val✝ : ι₁ ⊢ (fun v => (↑a fun i => v (Sum.inl i)) ⊗ₜ[R] ↑b fun i => v (Sum.inr i)) (Function.update x✝ (Sum.inl val✝) (c • p)) = c • (fun v => (↑a fun i => v (Sum.inl i)) ⊗ₜ[R] ↑b fun i => v (Sum.inr i)) (Function.update x✝ (Sum.inl val✝) p) [PROOFSTEP] simp [TensorProduct.smul_tmul', TensorProduct.tmul_smul] [GOAL] case inr R : Type u_1 ι₁ : Type u_2 ι₂ : Type u_3 ι₃ : Type u_4 ι₄ : Type u_5 inst✝⁷ : CommSemiring R N₁ : Type u_6 inst✝⁶ : AddCommMonoid N₁ inst✝⁵ : Module R N₁ N₂ : Type u_7 inst✝⁴ : AddCommMonoid N₂ inst✝³ : Module R N₂ N : Type u_8 inst✝² : AddCommMonoid N inst✝¹ : Module R N a : MultilinearMap R (fun x => N) N₁ b : MultilinearMap R (fun x => N) N₂ inst✝ : DecidableEq (ι₁ ⊕ ι₂) x✝ : ι₁ ⊕ ι₂ → N c : R p : N this✝ : DecidableEq ι₁ := Function.Injective.decidableEq (_ : Function.Injective Sum.inl) this : DecidableEq ι₂ := Function.Injective.decidableEq (_ : Function.Injective Sum.inr) val✝ : ι₂ ⊢ (fun v => (↑a fun i => v (Sum.inl i)) ⊗ₜ[R] ↑b fun i => v (Sum.inr i)) (Function.update x✝ (Sum.inr val✝) (c • p)) = c • (fun v => (↑a fun i => v (Sum.inl i)) ⊗ₜ[R] ↑b fun i => v (Sum.inr i)) (Function.update x✝ (Sum.inr val✝) p) [PROOFSTEP] simp [TensorProduct.smul_tmul', TensorProduct.tmul_smul] [GOAL] R : Type u_1 ι₁ : Type u_2 ι₂ : Type u_3 ι₃ : Type u_4 ι₄ : Type u_5 inst✝⁶ : CommSemiring R N₁ : Type u_6 inst✝⁵ : AddCommMonoid N₁ inst✝⁴ : Module R N₁ N₂ : Type u_7 inst✝³ : AddCommMonoid N₂ inst✝² : Module R N₂ N : Type u_8 inst✝¹ : AddCommMonoid N inst✝ : Module R N m₁ m₂ : MultilinearMap R (fun x => N) N₁ n : MultilinearMap R (fun x => N) N₂ ⊢ domCoprod (m₁ + m₂) n = domCoprod m₁ n + domCoprod m₂ n [PROOFSTEP] ext [GOAL] case H R : Type u_1 ι₁ : Type u_2 ι₂ : Type u_3 ι₃ : Type u_4 ι₄ : Type u_5 inst✝⁶ : CommSemiring R N₁ : Type u_6 inst✝⁵ : AddCommMonoid N₁ inst✝⁴ : Module R N₁ N₂ : Type u_7 inst✝³ : AddCommMonoid N₂ inst✝² : Module R N₂ N : Type u_8 inst✝¹ : AddCommMonoid N inst✝ : Module R N m₁ m₂ : MultilinearMap R (fun x => N) N₁ n : MultilinearMap R (fun x => N) N₂ x✝ : ι₁ ⊕ ι₂ → N ⊢ ↑(domCoprod (m₁ + m₂) n) x✝ = ↑(domCoprod m₁ n + domCoprod m₂ n) x✝ [PROOFSTEP] simp only [domCoprod_apply, TensorProduct.add_tmul, add_apply] [GOAL] R : Type u_1 ι₁ : Type u_2 ι₂ : Type u_3 ι₃ : Type u_4 ι₄ : Type u_5 inst✝⁶ : CommSemiring R N₁ : Type u_6 inst✝⁵ : AddCommMonoid N₁ inst✝⁴ : Module R N₁ N₂ : Type u_7 inst✝³ : AddCommMonoid N₂ inst✝² : Module R N₂ N : Type u_8 inst✝¹ : AddCommMonoid N inst✝ : Module R N c : R m : MultilinearMap R (fun x => N) N₁ n : MultilinearMap R (fun x => N) N₂ ⊢ domCoprod (c • m) n = c • domCoprod m n [PROOFSTEP] ext [GOAL] case H R : Type u_1 ι₁ : Type u_2 ι₂ : Type u_3 ι₃ : Type u_4 ι₄ : Type u_5 inst✝⁶ : CommSemiring R N₁ : Type u_6 inst✝⁵ : AddCommMonoid N₁ inst✝⁴ : Module R N₁ N₂ : Type u_7 inst✝³ : AddCommMonoid N₂ inst✝² : Module R N₂ N : Type u_8 inst✝¹ : AddCommMonoid N inst✝ : Module R N c : R m : MultilinearMap R (fun x => N) N₁ n : MultilinearMap R (fun x => N) N₂ x✝ : ι₁ ⊕ ι₂ → N ⊢ ↑(domCoprod (c • m) n) x✝ = ↑(c • domCoprod m n) x✝ [PROOFSTEP] simp only [domCoprod_apply, TensorProduct.smul_tmul', smul_apply] [GOAL] R : Type u_1 ι₁ : Type u_2 ι₂ : Type u_3 ι₃ : Type u_4 ι₄ : Type u_5 inst✝⁶ : CommSemiring R N₁ : Type u_6 inst✝⁵ : AddCommMonoid N₁ inst✝⁴ : Module R N₁ N₂ : Type u_7 inst✝³ : AddCommMonoid N₂ inst✝² : Module R N₂ N : Type u_8 inst✝¹ : AddCommMonoid N inst✝ : Module R N m : MultilinearMap R (fun x => N) N₁ n₁ n₂ : MultilinearMap R (fun x => N) N₂ ⊢ domCoprod m (n₁ + n₂) = domCoprod m n₁ + domCoprod m n₂ [PROOFSTEP] ext [GOAL] case H R : Type u_1 ι₁ : Type u_2 ι₂ : Type u_3 ι₃ : Type u_4 ι₄ : Type u_5 inst✝⁶ : CommSemiring R N₁ : Type u_6 inst✝⁵ : AddCommMonoid N₁ inst✝⁴ : Module R N₁ N₂ : Type u_7 inst✝³ : AddCommMonoid N₂ inst✝² : Module R N₂ N : Type u_8 inst✝¹ : AddCommMonoid N inst✝ : Module R N m : MultilinearMap R (fun x => N) N₁ n₁ n₂ : MultilinearMap R (fun x => N) N₂ x✝ : ι₁ ⊕ ι₂ → N ⊢ ↑(domCoprod m (n₁ + n₂)) x✝ = ↑(domCoprod m n₁ + domCoprod m n₂) x✝ [PROOFSTEP] simp only [domCoprod_apply, TensorProduct.tmul_add, add_apply] [GOAL] R : Type u_1 ι₁ : Type u_2 ι₂ : Type u_3 ι₃ : Type u_4 ι₄ : Type u_5 inst✝⁶ : CommSemiring R N₁ : Type u_6 inst✝⁵ : AddCommMonoid N₁ inst✝⁴ : Module R N₁ N₂ : Type u_7 inst✝³ : AddCommMonoid N₂ inst✝² : Module R N₂ N : Type u_8 inst✝¹ : AddCommMonoid N inst✝ : Module R N c : R m : MultilinearMap R (fun x => N) N₁ n : MultilinearMap R (fun x => N) N₂ ⊢ domCoprod m (c • n) = c • domCoprod m n [PROOFSTEP] ext [GOAL] case H R : Type u_1 ι₁ : Type u_2 ι₂ : Type u_3 ι₃ : Type u_4 ι₄ : Type u_5 inst✝⁶ : CommSemiring R N₁ : Type u_6 inst✝⁵ : AddCommMonoid N₁ inst✝⁴ : Module R N₁ N₂ : Type u_7 inst✝³ : AddCommMonoid N₂ inst✝² : Module R N₂ N : Type u_8 inst✝¹ : AddCommMonoid N inst✝ : Module R N c : R m : MultilinearMap R (fun x => N) N₁ n : MultilinearMap R (fun x => N) N₂ x✝ : ι₁ ⊕ ι₂ → N ⊢ ↑(domCoprod m (c • n)) x✝ = ↑(c • domCoprod m n) x✝ [PROOFSTEP] simp only [domCoprod_apply, TensorProduct.tmul_smul, smul_apply]
{"mathlib_filename": "Mathlib.LinearAlgebra.Multilinear.TensorProduct", "llama_tokens": 6567}
[GOAL] R : Type u_1 ι : Type u_2 n : ℕ M : Fin n → Type u_3 M₂ : Type u_4 M₃ : Type u_5 inst✝⁶ : CommSemiring R inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : AddCommMonoid M₃ inst✝³ : (i : Fin n) → AddCommMonoid (M i) inst✝² : (i : Fin n) → Module R (M i) inst✝¹ : Module R M₂ inst✝ : Module R M₃ f g : MultilinearMap R M M₂ ι₁ : Fin n → Type u_6 e : (i : Fin n) → Basis (ι₁ i) R (M i) h : ∀ (v : (i : Fin n) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i) ⊢ f = g [PROOFSTEP] induction' n with m hm [GOAL] case zero R : Type u_1 ι : Type u_2 n : ℕ M✝ : Fin n → Type u_3 M₂ : Type u_4 M₃ : Type u_5 inst✝⁸ : CommSemiring R inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ inst✝⁵ : (i : Fin n) → AddCommMonoid (M✝ i) inst✝⁴ : (i : Fin n) → Module R (M✝ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ f✝ g✝ : MultilinearMap R M✝ M₂ ι₁✝ : Fin n → Type u_6 e✝ : (i : Fin n) → Basis (ι₁✝ i) R (M✝ i) h✝ : ∀ (v : (i : Fin n) → ι₁✝ i), (↑f✝ fun i => ↑(e✝ i) (v i)) = ↑g✝ fun i => ↑(e✝ i) (v i) M : Fin Nat.zero → Type u_3 inst✝¹ : (i : Fin Nat.zero) → AddCommMonoid (M i) inst✝ : (i : Fin Nat.zero) → Module R (M i) f g : MultilinearMap R M M₂ ι₁ : Fin Nat.zero → Type u_6 e : (i : Fin Nat.zero) → Basis (ι₁ i) R (M i) h : ∀ (v : (i : Fin Nat.zero) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i) ⊢ f = g [PROOFSTEP] ext x [GOAL] case zero.H R : Type u_1 ι : Type u_2 n : ℕ M✝ : Fin n → Type u_3 M₂ : Type u_4 M₃ : Type u_5 inst✝⁸ : CommSemiring R inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ inst✝⁵ : (i : Fin n) → AddCommMonoid (M✝ i) inst✝⁴ : (i : Fin n) → Module R (M✝ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ f✝ g✝ : MultilinearMap R M✝ M₂ ι₁✝ : Fin n → Type u_6 e✝ : (i : Fin n) → Basis (ι₁✝ i) R (M✝ i) h✝ : ∀ (v : (i : Fin n) → ι₁✝ i), (↑f✝ fun i => ↑(e✝ i) (v i)) = ↑g✝ fun i => ↑(e✝ i) (v i) M : Fin Nat.zero → Type u_3 inst✝¹ : (i : Fin Nat.zero) → AddCommMonoid (M i) inst✝ : (i : Fin Nat.zero) → Module R (M i) f g : MultilinearMap R M M₂ ι₁ : Fin Nat.zero → Type u_6 e : (i : Fin Nat.zero) → Basis (ι₁ i) R (M i) h : ∀ (v : (i : Fin Nat.zero) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i) x : (i : Fin Nat.zero) → M i ⊢ ↑f x = ↑g x [PROOFSTEP] convert h finZeroElim [GOAL] case succ R : Type u_1 ι : Type u_2 n : ℕ M✝ : Fin n → Type u_3 M₂ : Type u_4 M₃ : Type u_5 inst✝⁸ : CommSemiring R inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ inst✝⁵ : (i : Fin n) → AddCommMonoid (M✝ i) inst✝⁴ : (i : Fin n) → Module R (M✝ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ f✝ g✝ : MultilinearMap R M✝ M₂ ι₁✝ : Fin n → Type u_6 e✝ : (i : Fin n) → Basis (ι₁✝ i) R (M✝ i) h✝ : ∀ (v : (i : Fin n) → ι₁✝ i), (↑f✝ fun i => ↑(e✝ i) (v i)) = ↑g✝ fun i => ↑(e✝ i) (v i) m : ℕ hm : ∀ {M : Fin m → Type u_3} [inst : (i : Fin m) → AddCommMonoid (M i)] [inst_1 : (i : Fin m) → Module R (M i)] {f g : MultilinearMap R M M₂} {ι₁ : Fin m → Type u_6} (e : (i : Fin m) → Basis (ι₁ i) R (M i)), (∀ (v : (i : Fin m) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i)) → f = g M : Fin (Nat.succ m) → Type u_3 inst✝¹ : (i : Fin (Nat.succ m)) → AddCommMonoid (M i) inst✝ : (i : Fin (Nat.succ m)) → Module R (M i) f g : MultilinearMap R M M₂ ι₁ : Fin (Nat.succ m) → Type u_6 e : (i : Fin (Nat.succ m)) → Basis (ι₁ i) R (M i) h : ∀ (v : (i : Fin (Nat.succ m)) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i) ⊢ f = g [PROOFSTEP] apply Function.LeftInverse.injective uncurry_curryLeft [GOAL] case succ.a R : Type u_1 ι : Type u_2 n : ℕ M✝ : Fin n → Type u_3 M₂ : Type u_4 M₃ : Type u_5 inst✝⁸ : CommSemiring R inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ inst✝⁵ : (i : Fin n) → AddCommMonoid (M✝ i) inst✝⁴ : (i : Fin n) → Module R (M✝ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ f✝ g✝ : MultilinearMap R M✝ M₂ ι₁✝ : Fin n → Type u_6 e✝ : (i : Fin n) → Basis (ι₁✝ i) R (M✝ i) h✝ : ∀ (v : (i : Fin n) → ι₁✝ i), (↑f✝ fun i => ↑(e✝ i) (v i)) = ↑g✝ fun i => ↑(e✝ i) (v i) m : ℕ hm : ∀ {M : Fin m → Type u_3} [inst : (i : Fin m) → AddCommMonoid (M i)] [inst_1 : (i : Fin m) → Module R (M i)] {f g : MultilinearMap R M M₂} {ι₁ : Fin m → Type u_6} (e : (i : Fin m) → Basis (ι₁ i) R (M i)), (∀ (v : (i : Fin m) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i)) → f = g M : Fin (Nat.succ m) → Type u_3 inst✝¹ : (i : Fin (Nat.succ m)) → AddCommMonoid (M i) inst✝ : (i : Fin (Nat.succ m)) → Module R (M i) f g : MultilinearMap R M M₂ ι₁ : Fin (Nat.succ m) → Type u_6 e : (i : Fin (Nat.succ m)) → Basis (ι₁ i) R (M i) h : ∀ (v : (i : Fin (Nat.succ m)) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i) ⊢ (fun x => curryLeft x) f = (fun x => curryLeft x) g [PROOFSTEP] refine' Basis.ext (e 0) _ [GOAL] case succ.a R : Type u_1 ι : Type u_2 n : ℕ M✝ : Fin n → Type u_3 M₂ : Type u_4 M₃ : Type u_5 inst✝⁸ : CommSemiring R inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ inst✝⁵ : (i : Fin n) → AddCommMonoid (M✝ i) inst✝⁴ : (i : Fin n) → Module R (M✝ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ f✝ g✝ : MultilinearMap R M✝ M₂ ι₁✝ : Fin n → Type u_6 e✝ : (i : Fin n) → Basis (ι₁✝ i) R (M✝ i) h✝ : ∀ (v : (i : Fin n) → ι₁✝ i), (↑f✝ fun i => ↑(e✝ i) (v i)) = ↑g✝ fun i => ↑(e✝ i) (v i) m : ℕ hm : ∀ {M : Fin m → Type u_3} [inst : (i : Fin m) → AddCommMonoid (M i)] [inst_1 : (i : Fin m) → Module R (M i)] {f g : MultilinearMap R M M₂} {ι₁ : Fin m → Type u_6} (e : (i : Fin m) → Basis (ι₁ i) R (M i)), (∀ (v : (i : Fin m) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i)) → f = g M : Fin (Nat.succ m) → Type u_3 inst✝¹ : (i : Fin (Nat.succ m)) → AddCommMonoid (M i) inst✝ : (i : Fin (Nat.succ m)) → Module R (M i) f g : MultilinearMap R M M₂ ι₁ : Fin (Nat.succ m) → Type u_6 e : (i : Fin (Nat.succ m)) → Basis (ι₁ i) R (M i) h : ∀ (v : (i : Fin (Nat.succ m)) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i) ⊢ ∀ (i : ι₁ 0), ↑((fun x => curryLeft x) f) (↑(e 0) i) = ↑((fun x => curryLeft x) g) (↑(e 0) i) [PROOFSTEP] intro i [GOAL] case succ.a R : Type u_1 ι : Type u_2 n : ℕ M✝ : Fin n → Type u_3 M₂ : Type u_4 M₃ : Type u_5 inst✝⁸ : CommSemiring R inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ inst✝⁵ : (i : Fin n) → AddCommMonoid (M✝ i) inst✝⁴ : (i : Fin n) → Module R (M✝ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ f✝ g✝ : MultilinearMap R M✝ M₂ ι₁✝ : Fin n → Type u_6 e✝ : (i : Fin n) → Basis (ι₁✝ i) R (M✝ i) h✝ : ∀ (v : (i : Fin n) → ι₁✝ i), (↑f✝ fun i => ↑(e✝ i) (v i)) = ↑g✝ fun i => ↑(e✝ i) (v i) m : ℕ hm : ∀ {M : Fin m → Type u_3} [inst : (i : Fin m) → AddCommMonoid (M i)] [inst_1 : (i : Fin m) → Module R (M i)] {f g : MultilinearMap R M M₂} {ι₁ : Fin m → Type u_6} (e : (i : Fin m) → Basis (ι₁ i) R (M i)), (∀ (v : (i : Fin m) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i)) → f = g M : Fin (Nat.succ m) → Type u_3 inst✝¹ : (i : Fin (Nat.succ m)) → AddCommMonoid (M i) inst✝ : (i : Fin (Nat.succ m)) → Module R (M i) f g : MultilinearMap R M M₂ ι₁ : Fin (Nat.succ m) → Type u_6 e : (i : Fin (Nat.succ m)) → Basis (ι₁ i) R (M i) h : ∀ (v : (i : Fin (Nat.succ m)) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i) i : ι₁ 0 ⊢ ↑((fun x => curryLeft x) f) (↑(e 0) i) = ↑((fun x => curryLeft x) g) (↑(e 0) i) [PROOFSTEP] apply hm (Fin.tail e) [GOAL] case succ.a R : Type u_1 ι : Type u_2 n : ℕ M✝ : Fin n → Type u_3 M₂ : Type u_4 M₃ : Type u_5 inst✝⁸ : CommSemiring R inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ inst✝⁵ : (i : Fin n) → AddCommMonoid (M✝ i) inst✝⁴ : (i : Fin n) → Module R (M✝ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ f✝ g✝ : MultilinearMap R M✝ M₂ ι₁✝ : Fin n → Type u_6 e✝ : (i : Fin n) → Basis (ι₁✝ i) R (M✝ i) h✝ : ∀ (v : (i : Fin n) → ι₁✝ i), (↑f✝ fun i => ↑(e✝ i) (v i)) = ↑g✝ fun i => ↑(e✝ i) (v i) m : ℕ hm : ∀ {M : Fin m → Type u_3} [inst : (i : Fin m) → AddCommMonoid (M i)] [inst_1 : (i : Fin m) → Module R (M i)] {f g : MultilinearMap R M M₂} {ι₁ : Fin m → Type u_6} (e : (i : Fin m) → Basis (ι₁ i) R (M i)), (∀ (v : (i : Fin m) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i)) → f = g M : Fin (Nat.succ m) → Type u_3 inst✝¹ : (i : Fin (Nat.succ m)) → AddCommMonoid (M i) inst✝ : (i : Fin (Nat.succ m)) → Module R (M i) f g : MultilinearMap R M M₂ ι₁ : Fin (Nat.succ m) → Type u_6 e : (i : Fin (Nat.succ m)) → Basis (ι₁ i) R (M i) h : ∀ (v : (i : Fin (Nat.succ m)) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i) i : ι₁ 0 ⊢ ∀ (v : (i : Fin m) → ι₁ (Fin.succ i)), (↑(↑((fun x => curryLeft x) f) (↑(e 0) i)) fun i => ↑(Fin.tail e i) (v i)) = ↑(↑((fun x => curryLeft x) g) (↑(e 0) i)) fun i => ↑(Fin.tail e i) (v i) [PROOFSTEP] intro j [GOAL] case succ.a R : Type u_1 ι : Type u_2 n : ℕ M✝ : Fin n → Type u_3 M₂ : Type u_4 M₃ : Type u_5 inst✝⁸ : CommSemiring R inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ inst✝⁵ : (i : Fin n) → AddCommMonoid (M✝ i) inst✝⁴ : (i : Fin n) → Module R (M✝ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ f✝ g✝ : MultilinearMap R M✝ M₂ ι₁✝ : Fin n → Type u_6 e✝ : (i : Fin n) → Basis (ι₁✝ i) R (M✝ i) h✝ : ∀ (v : (i : Fin n) → ι₁✝ i), (↑f✝ fun i => ↑(e✝ i) (v i)) = ↑g✝ fun i => ↑(e✝ i) (v i) m : ℕ hm : ∀ {M : Fin m → Type u_3} [inst : (i : Fin m) → AddCommMonoid (M i)] [inst_1 : (i : Fin m) → Module R (M i)] {f g : MultilinearMap R M M₂} {ι₁ : Fin m → Type u_6} (e : (i : Fin m) → Basis (ι₁ i) R (M i)), (∀ (v : (i : Fin m) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i)) → f = g M : Fin (Nat.succ m) → Type u_3 inst✝¹ : (i : Fin (Nat.succ m)) → AddCommMonoid (M i) inst✝ : (i : Fin (Nat.succ m)) → Module R (M i) f g : MultilinearMap R M M₂ ι₁ : Fin (Nat.succ m) → Type u_6 e : (i : Fin (Nat.succ m)) → Basis (ι₁ i) R (M i) h : ∀ (v : (i : Fin (Nat.succ m)) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i) i : ι₁ 0 j : (i : Fin m) → ι₁ (Fin.succ i) ⊢ (↑(↑((fun x => curryLeft x) f) (↑(e 0) i)) fun i => ↑(Fin.tail e i) (j i)) = ↑(↑((fun x => curryLeft x) g) (↑(e 0) i)) fun i => ↑(Fin.tail e i) (j i) [PROOFSTEP] convert h (Fin.cons i j) [GOAL] case h.e'_2 R : Type u_1 ι : Type u_2 n : ℕ M✝ : Fin n → Type u_3 M₂ : Type u_4 M₃ : Type u_5 inst✝⁸ : CommSemiring R inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ inst✝⁵ : (i : Fin n) → AddCommMonoid (M✝ i) inst✝⁴ : (i : Fin n) → Module R (M✝ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ f✝ g✝ : MultilinearMap R M✝ M₂ ι₁✝ : Fin n → Type u_6 e✝ : (i : Fin n) → Basis (ι₁✝ i) R (M✝ i) h✝ : ∀ (v : (i : Fin n) → ι₁✝ i), (↑f✝ fun i => ↑(e✝ i) (v i)) = ↑g✝ fun i => ↑(e✝ i) (v i) m : ℕ hm : ∀ {M : Fin m → Type u_3} [inst : (i : Fin m) → AddCommMonoid (M i)] [inst_1 : (i : Fin m) → Module R (M i)] {f g : MultilinearMap R M M₂} {ι₁ : Fin m → Type u_6} (e : (i : Fin m) → Basis (ι₁ i) R (M i)), (∀ (v : (i : Fin m) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i)) → f = g M : Fin (Nat.succ m) → Type u_3 inst✝¹ : (i : Fin (Nat.succ m)) → AddCommMonoid (M i) inst✝ : (i : Fin (Nat.succ m)) → Module R (M i) f g : MultilinearMap R M M₂ ι₁ : Fin (Nat.succ m) → Type u_6 e : (i : Fin (Nat.succ m)) → Basis (ι₁ i) R (M i) h : ∀ (v : (i : Fin (Nat.succ m)) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i) i : ι₁ 0 j : (i : Fin m) → ι₁ (Fin.succ i) ⊢ (↑(↑((fun x => curryLeft x) f) (↑(e 0) i)) fun i => ↑(Fin.tail e i) (j i)) = ↑f fun i_1 => ↑(e i_1) (Fin.cons i j i_1) case h.e'_3 R : Type u_1 ι : Type u_2 n : ℕ M✝ : Fin n → Type u_3 M₂ : Type u_4 M₃ : Type u_5 inst✝⁸ : CommSemiring R inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ inst✝⁵ : (i : Fin n) → AddCommMonoid (M✝ i) inst✝⁴ : (i : Fin n) → Module R (M✝ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ f✝ g✝ : MultilinearMap R M✝ M₂ ι₁✝ : Fin n → Type u_6 e✝ : (i : Fin n) → Basis (ι₁✝ i) R (M✝ i) h✝ : ∀ (v : (i : Fin n) → ι₁✝ i), (↑f✝ fun i => ↑(e✝ i) (v i)) = ↑g✝ fun i => ↑(e✝ i) (v i) m : ℕ hm : ∀ {M : Fin m → Type u_3} [inst : (i : Fin m) → AddCommMonoid (M i)] [inst_1 : (i : Fin m) → Module R (M i)] {f g : MultilinearMap R M M₂} {ι₁ : Fin m → Type u_6} (e : (i : Fin m) → Basis (ι₁ i) R (M i)), (∀ (v : (i : Fin m) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i)) → f = g M : Fin (Nat.succ m) → Type u_3 inst✝¹ : (i : Fin (Nat.succ m)) → AddCommMonoid (M i) inst✝ : (i : Fin (Nat.succ m)) → Module R (M i) f g : MultilinearMap R M M₂ ι₁ : Fin (Nat.succ m) → Type u_6 e : (i : Fin (Nat.succ m)) → Basis (ι₁ i) R (M i) h : ∀ (v : (i : Fin (Nat.succ m)) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i) i : ι₁ 0 j : (i : Fin m) → ι₁ (Fin.succ i) ⊢ (↑(↑((fun x => curryLeft x) g) (↑(e 0) i)) fun i => ↑(Fin.tail e i) (j i)) = ↑g fun i_1 => ↑(e i_1) (Fin.cons i j i_1) [PROOFSTEP] iterate 2 rw [curryLeft_apply] congr 1 with x refine' Fin.cases rfl (fun x => _) x dsimp [Fin.tail] rw [Fin.cons_succ, Fin.cons_succ] [GOAL] case h.e'_2 R : Type u_1 ι : Type u_2 n : ℕ M✝ : Fin n → Type u_3 M₂ : Type u_4 M₃ : Type u_5 inst✝⁸ : CommSemiring R inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ inst✝⁵ : (i : Fin n) → AddCommMonoid (M✝ i) inst✝⁴ : (i : Fin n) → Module R (M✝ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ f✝ g✝ : MultilinearMap R M✝ M₂ ι₁✝ : Fin n → Type u_6 e✝ : (i : Fin n) → Basis (ι₁✝ i) R (M✝ i) h✝ : ∀ (v : (i : Fin n) → ι₁✝ i), (↑f✝ fun i => ↑(e✝ i) (v i)) = ↑g✝ fun i => ↑(e✝ i) (v i) m : ℕ hm : ∀ {M : Fin m → Type u_3} [inst : (i : Fin m) → AddCommMonoid (M i)] [inst_1 : (i : Fin m) → Module R (M i)] {f g : MultilinearMap R M M₂} {ι₁ : Fin m → Type u_6} (e : (i : Fin m) → Basis (ι₁ i) R (M i)), (∀ (v : (i : Fin m) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i)) → f = g M : Fin (Nat.succ m) → Type u_3 inst✝¹ : (i : Fin (Nat.succ m)) → AddCommMonoid (M i) inst✝ : (i : Fin (Nat.succ m)) → Module R (M i) f g : MultilinearMap R M M₂ ι₁ : Fin (Nat.succ m) → Type u_6 e : (i : Fin (Nat.succ m)) → Basis (ι₁ i) R (M i) h : ∀ (v : (i : Fin (Nat.succ m)) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i) i : ι₁ 0 j : (i : Fin m) → ι₁ (Fin.succ i) ⊢ (↑(↑((fun x => curryLeft x) f) (↑(e 0) i)) fun i => ↑(Fin.tail e i) (j i)) = ↑f fun i_1 => ↑(e i_1) (Fin.cons i j i_1) case h.e'_3 R : Type u_1 ι : Type u_2 n : ℕ M✝ : Fin n → Type u_3 M₂ : Type u_4 M₃ : Type u_5 inst✝⁸ : CommSemiring R inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ inst✝⁵ : (i : Fin n) → AddCommMonoid (M✝ i) inst✝⁴ : (i : Fin n) → Module R (M✝ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ f✝ g✝ : MultilinearMap R M✝ M₂ ι₁✝ : Fin n → Type u_6 e✝ : (i : Fin n) → Basis (ι₁✝ i) R (M✝ i) h✝ : ∀ (v : (i : Fin n) → ι₁✝ i), (↑f✝ fun i => ↑(e✝ i) (v i)) = ↑g✝ fun i => ↑(e✝ i) (v i) m : ℕ hm : ∀ {M : Fin m → Type u_3} [inst : (i : Fin m) → AddCommMonoid (M i)] [inst_1 : (i : Fin m) → Module R (M i)] {f g : MultilinearMap R M M₂} {ι₁ : Fin m → Type u_6} (e : (i : Fin m) → Basis (ι₁ i) R (M i)), (∀ (v : (i : Fin m) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i)) → f = g M : Fin (Nat.succ m) → Type u_3 inst✝¹ : (i : Fin (Nat.succ m)) → AddCommMonoid (M i) inst✝ : (i : Fin (Nat.succ m)) → Module R (M i) f g : MultilinearMap R M M₂ ι₁ : Fin (Nat.succ m) → Type u_6 e : (i : Fin (Nat.succ m)) → Basis (ι₁ i) R (M i) h : ∀ (v : (i : Fin (Nat.succ m)) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i) i : ι₁ 0 j : (i : Fin m) → ι₁ (Fin.succ i) ⊢ (↑(↑((fun x => curryLeft x) g) (↑(e 0) i)) fun i => ↑(Fin.tail e i) (j i)) = ↑g fun i_1 => ↑(e i_1) (Fin.cons i j i_1) [PROOFSTEP] rw [curryLeft_apply] [GOAL] case h.e'_2 R : Type u_1 ι : Type u_2 n : ℕ M✝ : Fin n → Type u_3 M₂ : Type u_4 M₃ : Type u_5 inst✝⁸ : CommSemiring R inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ inst✝⁵ : (i : Fin n) → AddCommMonoid (M✝ i) inst✝⁴ : (i : Fin n) → Module R (M✝ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ f✝ g✝ : MultilinearMap R M✝ M₂ ι₁✝ : Fin n → Type u_6 e✝ : (i : Fin n) → Basis (ι₁✝ i) R (M✝ i) h✝ : ∀ (v : (i : Fin n) → ι₁✝ i), (↑f✝ fun i => ↑(e✝ i) (v i)) = ↑g✝ fun i => ↑(e✝ i) (v i) m : ℕ hm : ∀ {M : Fin m → Type u_3} [inst : (i : Fin m) → AddCommMonoid (M i)] [inst_1 : (i : Fin m) → Module R (M i)] {f g : MultilinearMap R M M₂} {ι₁ : Fin m → Type u_6} (e : (i : Fin m) → Basis (ι₁ i) R (M i)), (∀ (v : (i : Fin m) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i)) → f = g M : Fin (Nat.succ m) → Type u_3 inst✝¹ : (i : Fin (Nat.succ m)) → AddCommMonoid (M i) inst✝ : (i : Fin (Nat.succ m)) → Module R (M i) f g : MultilinearMap R M M₂ ι₁ : Fin (Nat.succ m) → Type u_6 e : (i : Fin (Nat.succ m)) → Basis (ι₁ i) R (M i) h : ∀ (v : (i : Fin (Nat.succ m)) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i) i : ι₁ 0 j : (i : Fin m) → ι₁ (Fin.succ i) ⊢ ↑f (Fin.cons (↑(e 0) i) fun i => ↑(Fin.tail e i) (j i)) = ↑f fun i_1 => ↑(e i_1) (Fin.cons i j i_1) case h.e'_3 R : Type u_1 ι : Type u_2 n : ℕ M✝ : Fin n → Type u_3 M₂ : Type u_4 M₃ : Type u_5 inst✝⁸ : CommSemiring R inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ inst✝⁵ : (i : Fin n) → AddCommMonoid (M✝ i) inst✝⁴ : (i : Fin n) → Module R (M✝ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ f✝ g✝ : MultilinearMap R M✝ M₂ ι₁✝ : Fin n → Type u_6 e✝ : (i : Fin n) → Basis (ι₁✝ i) R (M✝ i) h✝ : ∀ (v : (i : Fin n) → ι₁✝ i), (↑f✝ fun i => ↑(e✝ i) (v i)) = ↑g✝ fun i => ↑(e✝ i) (v i) m : ℕ hm : ∀ {M : Fin m → Type u_3} [inst : (i : Fin m) → AddCommMonoid (M i)] [inst_1 : (i : Fin m) → Module R (M i)] {f g : MultilinearMap R M M₂} {ι₁ : Fin m → Type u_6} (e : (i : Fin m) → Basis (ι₁ i) R (M i)), (∀ (v : (i : Fin m) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i)) → f = g M : Fin (Nat.succ m) → Type u_3 inst✝¹ : (i : Fin (Nat.succ m)) → AddCommMonoid (M i) inst✝ : (i : Fin (Nat.succ m)) → Module R (M i) f g : MultilinearMap R M M₂ ι₁ : Fin (Nat.succ m) → Type u_6 e : (i : Fin (Nat.succ m)) → Basis (ι₁ i) R (M i) h : ∀ (v : (i : Fin (Nat.succ m)) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i) i : ι₁ 0 j : (i : Fin m) → ι₁ (Fin.succ i) ⊢ (↑(↑((fun x => curryLeft x) g) (↑(e 0) i)) fun i => ↑(Fin.tail e i) (j i)) = ↑g fun i_1 => ↑(e i_1) (Fin.cons i j i_1) [PROOFSTEP] congr 1 with x [GOAL] case h.e'_2.h.e_6.h.h R : Type u_1 ι : Type u_2 n : ℕ M✝ : Fin n → Type u_3 M₂ : Type u_4 M₃ : Type u_5 inst✝⁸ : CommSemiring R inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ inst✝⁵ : (i : Fin n) → AddCommMonoid (M✝ i) inst✝⁴ : (i : Fin n) → Module R (M✝ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ f✝ g✝ : MultilinearMap R M✝ M₂ ι₁✝ : Fin n → Type u_6 e✝ : (i : Fin n) → Basis (ι₁✝ i) R (M✝ i) h✝ : ∀ (v : (i : Fin n) → ι₁✝ i), (↑f✝ fun i => ↑(e✝ i) (v i)) = ↑g✝ fun i => ↑(e✝ i) (v i) m : ℕ hm : ∀ {M : Fin m → Type u_3} [inst : (i : Fin m) → AddCommMonoid (M i)] [inst_1 : (i : Fin m) → Module R (M i)] {f g : MultilinearMap R M M₂} {ι₁ : Fin m → Type u_6} (e : (i : Fin m) → Basis (ι₁ i) R (M i)), (∀ (v : (i : Fin m) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i)) → f = g M : Fin (Nat.succ m) → Type u_3 inst✝¹ : (i : Fin (Nat.succ m)) → AddCommMonoid (M i) inst✝ : (i : Fin (Nat.succ m)) → Module R (M i) f g : MultilinearMap R M M₂ ι₁ : Fin (Nat.succ m) → Type u_6 e : (i : Fin (Nat.succ m)) → Basis (ι₁ i) R (M i) h : ∀ (v : (i : Fin (Nat.succ m)) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i) i : ι₁ 0 j : (i : Fin m) → ι₁ (Fin.succ i) x : Fin (m + 1) ⊢ Fin.cons (↑(e 0) i) (fun i => ↑(Fin.tail e i) (j i)) x = ↑(e x) (Fin.cons i j x) case h.e'_3 R : Type u_1 ι : Type u_2 n : ℕ M✝ : Fin n → Type u_3 M₂ : Type u_4 M₃ : Type u_5 inst✝⁸ : CommSemiring R inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ inst✝⁵ : (i : Fin n) → AddCommMonoid (M✝ i) inst✝⁴ : (i : Fin n) → Module R (M✝ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ f✝ g✝ : MultilinearMap R M✝ M₂ ι₁✝ : Fin n → Type u_6 e✝ : (i : Fin n) → Basis (ι₁✝ i) R (M✝ i) h✝ : ∀ (v : (i : Fin n) → ι₁✝ i), (↑f✝ fun i => ↑(e✝ i) (v i)) = ↑g✝ fun i => ↑(e✝ i) (v i) m : ℕ hm : ∀ {M : Fin m → Type u_3} [inst : (i : Fin m) → AddCommMonoid (M i)] [inst_1 : (i : Fin m) → Module R (M i)] {f g : MultilinearMap R M M₂} {ι₁ : Fin m → Type u_6} (e : (i : Fin m) → Basis (ι₁ i) R (M i)), (∀ (v : (i : Fin m) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i)) → f = g M : Fin (Nat.succ m) → Type u_3 inst✝¹ : (i : Fin (Nat.succ m)) → AddCommMonoid (M i) inst✝ : (i : Fin (Nat.succ m)) → Module R (M i) f g : MultilinearMap R M M₂ ι₁ : Fin (Nat.succ m) → Type u_6 e : (i : Fin (Nat.succ m)) → Basis (ι₁ i) R (M i) h : ∀ (v : (i : Fin (Nat.succ m)) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i) i : ι₁ 0 j : (i : Fin m) → ι₁ (Fin.succ i) ⊢ (↑(↑((fun x => curryLeft x) g) (↑(e 0) i)) fun i => ↑(Fin.tail e i) (j i)) = ↑g fun i_1 => ↑(e i_1) (Fin.cons i j i_1) [PROOFSTEP] refine' Fin.cases rfl (fun x => _) x [GOAL] case h.e'_2.h.e_6.h.h R : Type u_1 ι : Type u_2 n : ℕ M✝ : Fin n → Type u_3 M₂ : Type u_4 M₃ : Type u_5 inst✝⁸ : CommSemiring R inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ inst✝⁵ : (i : Fin n) → AddCommMonoid (M✝ i) inst✝⁴ : (i : Fin n) → Module R (M✝ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ f✝ g✝ : MultilinearMap R M✝ M₂ ι₁✝ : Fin n → Type u_6 e✝ : (i : Fin n) → Basis (ι₁✝ i) R (M✝ i) h✝ : ∀ (v : (i : Fin n) → ι₁✝ i), (↑f✝ fun i => ↑(e✝ i) (v i)) = ↑g✝ fun i => ↑(e✝ i) (v i) m : ℕ hm : ∀ {M : Fin m → Type u_3} [inst : (i : Fin m) → AddCommMonoid (M i)] [inst_1 : (i : Fin m) → Module R (M i)] {f g : MultilinearMap R M M₂} {ι₁ : Fin m → Type u_6} (e : (i : Fin m) → Basis (ι₁ i) R (M i)), (∀ (v : (i : Fin m) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i)) → f = g M : Fin (Nat.succ m) → Type u_3 inst✝¹ : (i : Fin (Nat.succ m)) → AddCommMonoid (M i) inst✝ : (i : Fin (Nat.succ m)) → Module R (M i) f g : MultilinearMap R M M₂ ι₁ : Fin (Nat.succ m) → Type u_6 e : (i : Fin (Nat.succ m)) → Basis (ι₁ i) R (M i) h : ∀ (v : (i : Fin (Nat.succ m)) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i) i : ι₁ 0 j : (i : Fin m) → ι₁ (Fin.succ i) x✝ : Fin (m + 1) x : Fin m ⊢ Fin.cons (↑(e 0) i) (fun i => ↑(Fin.tail e i) (j i)) (Fin.succ x) = ↑(e (Fin.succ x)) (Fin.cons i j (Fin.succ x)) case h.e'_3 R : Type u_1 ι : Type u_2 n : ℕ M✝ : Fin n → Type u_3 M₂ : Type u_4 M₃ : Type u_5 inst✝⁸ : CommSemiring R inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ inst✝⁵ : (i : Fin n) → AddCommMonoid (M✝ i) inst✝⁴ : (i : Fin n) → Module R (M✝ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ f✝ g✝ : MultilinearMap R M✝ M₂ ι₁✝ : Fin n → Type u_6 e✝ : (i : Fin n) → Basis (ι₁✝ i) R (M✝ i) h✝ : ∀ (v : (i : Fin n) → ι₁✝ i), (↑f✝ fun i => ↑(e✝ i) (v i)) = ↑g✝ fun i => ↑(e✝ i) (v i) m : ℕ hm : ∀ {M : Fin m → Type u_3} [inst : (i : Fin m) → AddCommMonoid (M i)] [inst_1 : (i : Fin m) → Module R (M i)] {f g : MultilinearMap R M M₂} {ι₁ : Fin m → Type u_6} (e : (i : Fin m) → Basis (ι₁ i) R (M i)), (∀ (v : (i : Fin m) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i)) → f = g M : Fin (Nat.succ m) → Type u_3 inst✝¹ : (i : Fin (Nat.succ m)) → AddCommMonoid (M i) inst✝ : (i : Fin (Nat.succ m)) → Module R (M i) f g : MultilinearMap R M M₂ ι₁ : Fin (Nat.succ m) → Type u_6 e : (i : Fin (Nat.succ m)) → Basis (ι₁ i) R (M i) h : ∀ (v : (i : Fin (Nat.succ m)) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i) i : ι₁ 0 j : (i : Fin m) → ι₁ (Fin.succ i) ⊢ (↑(↑((fun x => curryLeft x) g) (↑(e 0) i)) fun i => ↑(Fin.tail e i) (j i)) = ↑g fun i_1 => ↑(e i_1) (Fin.cons i j i_1) [PROOFSTEP] dsimp [Fin.tail] [GOAL] case h.e'_2.h.e_6.h.h R : Type u_1 ι : Type u_2 n : ℕ M✝ : Fin n → Type u_3 M₂ : Type u_4 M₃ : Type u_5 inst✝⁸ : CommSemiring R inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ inst✝⁵ : (i : Fin n) → AddCommMonoid (M✝ i) inst✝⁴ : (i : Fin n) → Module R (M✝ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ f✝ g✝ : MultilinearMap R M✝ M₂ ι₁✝ : Fin n → Type u_6 e✝ : (i : Fin n) → Basis (ι₁✝ i) R (M✝ i) h✝ : ∀ (v : (i : Fin n) → ι₁✝ i), (↑f✝ fun i => ↑(e✝ i) (v i)) = ↑g✝ fun i => ↑(e✝ i) (v i) m : ℕ hm : ∀ {M : Fin m → Type u_3} [inst : (i : Fin m) → AddCommMonoid (M i)] [inst_1 : (i : Fin m) → Module R (M i)] {f g : MultilinearMap R M M₂} {ι₁ : Fin m → Type u_6} (e : (i : Fin m) → Basis (ι₁ i) R (M i)), (∀ (v : (i : Fin m) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i)) → f = g M : Fin (Nat.succ m) → Type u_3 inst✝¹ : (i : Fin (Nat.succ m)) → AddCommMonoid (M i) inst✝ : (i : Fin (Nat.succ m)) → Module R (M i) f g : MultilinearMap R M M₂ ι₁ : Fin (Nat.succ m) → Type u_6 e : (i : Fin (Nat.succ m)) → Basis (ι₁ i) R (M i) h : ∀ (v : (i : Fin (Nat.succ m)) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i) i : ι₁ 0 j : (i : Fin m) → ι₁ (Fin.succ i) x✝ : Fin (m + 1) x : Fin m ⊢ Fin.cons (↑(e 0) i) (fun i => ↑(e (Fin.succ i)) (j i)) (Fin.succ x) = ↑(e (Fin.succ x)) (Fin.cons i j (Fin.succ x)) case h.e'_3 R : Type u_1 ι : Type u_2 n : ℕ M✝ : Fin n → Type u_3 M₂ : Type u_4 M₃ : Type u_5 inst✝⁸ : CommSemiring R inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ inst✝⁵ : (i : Fin n) → AddCommMonoid (M✝ i) inst✝⁴ : (i : Fin n) → Module R (M✝ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ f✝ g✝ : MultilinearMap R M✝ M₂ ι₁✝ : Fin n → Type u_6 e✝ : (i : Fin n) → Basis (ι₁✝ i) R (M✝ i) h✝ : ∀ (v : (i : Fin n) → ι₁✝ i), (↑f✝ fun i => ↑(e✝ i) (v i)) = ↑g✝ fun i => ↑(e✝ i) (v i) m : ℕ hm : ∀ {M : Fin m → Type u_3} [inst : (i : Fin m) → AddCommMonoid (M i)] [inst_1 : (i : Fin m) → Module R (M i)] {f g : MultilinearMap R M M₂} {ι₁ : Fin m → Type u_6} (e : (i : Fin m) → Basis (ι₁ i) R (M i)), (∀ (v : (i : Fin m) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i)) → f = g M : Fin (Nat.succ m) → Type u_3 inst✝¹ : (i : Fin (Nat.succ m)) → AddCommMonoid (M i) inst✝ : (i : Fin (Nat.succ m)) → Module R (M i) f g : MultilinearMap R M M₂ ι₁ : Fin (Nat.succ m) → Type u_6 e : (i : Fin (Nat.succ m)) → Basis (ι₁ i) R (M i) h : ∀ (v : (i : Fin (Nat.succ m)) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i) i : ι₁ 0 j : (i : Fin m) → ι₁ (Fin.succ i) ⊢ (↑(↑((fun x => curryLeft x) g) (↑(e 0) i)) fun i => ↑(Fin.tail e i) (j i)) = ↑g fun i_1 => ↑(e i_1) (Fin.cons i j i_1) [PROOFSTEP] rw [Fin.cons_succ, Fin.cons_succ] [GOAL] case h.e'_3 R : Type u_1 ι : Type u_2 n : ℕ M✝ : Fin n → Type u_3 M₂ : Type u_4 M₃ : Type u_5 inst✝⁸ : CommSemiring R inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ inst✝⁵ : (i : Fin n) → AddCommMonoid (M✝ i) inst✝⁴ : (i : Fin n) → Module R (M✝ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ f✝ g✝ : MultilinearMap R M✝ M₂ ι₁✝ : Fin n → Type u_6 e✝ : (i : Fin n) → Basis (ι₁✝ i) R (M✝ i) h✝ : ∀ (v : (i : Fin n) → ι₁✝ i), (↑f✝ fun i => ↑(e✝ i) (v i)) = ↑g✝ fun i => ↑(e✝ i) (v i) m : ℕ hm : ∀ {M : Fin m → Type u_3} [inst : (i : Fin m) → AddCommMonoid (M i)] [inst_1 : (i : Fin m) → Module R (M i)] {f g : MultilinearMap R M M₂} {ι₁ : Fin m → Type u_6} (e : (i : Fin m) → Basis (ι₁ i) R (M i)), (∀ (v : (i : Fin m) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i)) → f = g M : Fin (Nat.succ m) → Type u_3 inst✝¹ : (i : Fin (Nat.succ m)) → AddCommMonoid (M i) inst✝ : (i : Fin (Nat.succ m)) → Module R (M i) f g : MultilinearMap R M M₂ ι₁ : Fin (Nat.succ m) → Type u_6 e : (i : Fin (Nat.succ m)) → Basis (ι₁ i) R (M i) h : ∀ (v : (i : Fin (Nat.succ m)) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i) i : ι₁ 0 j : (i : Fin m) → ι₁ (Fin.succ i) ⊢ (↑(↑((fun x => curryLeft x) g) (↑(e 0) i)) fun i => ↑(Fin.tail e i) (j i)) = ↑g fun i_1 => ↑(e i_1) (Fin.cons i j i_1) [PROOFSTEP] rw [curryLeft_apply] [GOAL] case h.e'_3 R : Type u_1 ι : Type u_2 n : ℕ M✝ : Fin n → Type u_3 M₂ : Type u_4 M₃ : Type u_5 inst✝⁸ : CommSemiring R inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ inst✝⁵ : (i : Fin n) → AddCommMonoid (M✝ i) inst✝⁴ : (i : Fin n) → Module R (M✝ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ f✝ g✝ : MultilinearMap R M✝ M₂ ι₁✝ : Fin n → Type u_6 e✝ : (i : Fin n) → Basis (ι₁✝ i) R (M✝ i) h✝ : ∀ (v : (i : Fin n) → ι₁✝ i), (↑f✝ fun i => ↑(e✝ i) (v i)) = ↑g✝ fun i => ↑(e✝ i) (v i) m : ℕ hm : ∀ {M : Fin m → Type u_3} [inst : (i : Fin m) → AddCommMonoid (M i)] [inst_1 : (i : Fin m) → Module R (M i)] {f g : MultilinearMap R M M₂} {ι₁ : Fin m → Type u_6} (e : (i : Fin m) → Basis (ι₁ i) R (M i)), (∀ (v : (i : Fin m) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i)) → f = g M : Fin (Nat.succ m) → Type u_3 inst✝¹ : (i : Fin (Nat.succ m)) → AddCommMonoid (M i) inst✝ : (i : Fin (Nat.succ m)) → Module R (M i) f g : MultilinearMap R M M₂ ι₁ : Fin (Nat.succ m) → Type u_6 e : (i : Fin (Nat.succ m)) → Basis (ι₁ i) R (M i) h : ∀ (v : (i : Fin (Nat.succ m)) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i) i : ι₁ 0 j : (i : Fin m) → ι₁ (Fin.succ i) ⊢ ↑g (Fin.cons (↑(e 0) i) fun i => ↑(Fin.tail e i) (j i)) = ↑g fun i_1 => ↑(e i_1) (Fin.cons i j i_1) [PROOFSTEP] congr 1 with x [GOAL] case h.e'_3.h.e_6.h.h R : Type u_1 ι : Type u_2 n : ℕ M✝ : Fin n → Type u_3 M₂ : Type u_4 M₃ : Type u_5 inst✝⁸ : CommSemiring R inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ inst✝⁵ : (i : Fin n) → AddCommMonoid (M✝ i) inst✝⁴ : (i : Fin n) → Module R (M✝ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ f✝ g✝ : MultilinearMap R M✝ M₂ ι₁✝ : Fin n → Type u_6 e✝ : (i : Fin n) → Basis (ι₁✝ i) R (M✝ i) h✝ : ∀ (v : (i : Fin n) → ι₁✝ i), (↑f✝ fun i => ↑(e✝ i) (v i)) = ↑g✝ fun i => ↑(e✝ i) (v i) m : ℕ hm : ∀ {M : Fin m → Type u_3} [inst : (i : Fin m) → AddCommMonoid (M i)] [inst_1 : (i : Fin m) → Module R (M i)] {f g : MultilinearMap R M M₂} {ι₁ : Fin m → Type u_6} (e : (i : Fin m) → Basis (ι₁ i) R (M i)), (∀ (v : (i : Fin m) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i)) → f = g M : Fin (Nat.succ m) → Type u_3 inst✝¹ : (i : Fin (Nat.succ m)) → AddCommMonoid (M i) inst✝ : (i : Fin (Nat.succ m)) → Module R (M i) f g : MultilinearMap R M M₂ ι₁ : Fin (Nat.succ m) → Type u_6 e : (i : Fin (Nat.succ m)) → Basis (ι₁ i) R (M i) h : ∀ (v : (i : Fin (Nat.succ m)) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i) i : ι₁ 0 j : (i : Fin m) → ι₁ (Fin.succ i) x : Fin (m + 1) ⊢ Fin.cons (↑(e 0) i) (fun i => ↑(Fin.tail e i) (j i)) x = ↑(e x) (Fin.cons i j x) [PROOFSTEP] refine' Fin.cases rfl (fun x => _) x [GOAL] case h.e'_3.h.e_6.h.h R : Type u_1 ι : Type u_2 n : ℕ M✝ : Fin n → Type u_3 M₂ : Type u_4 M₃ : Type u_5 inst✝⁸ : CommSemiring R inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ inst✝⁵ : (i : Fin n) → AddCommMonoid (M✝ i) inst✝⁴ : (i : Fin n) → Module R (M✝ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ f✝ g✝ : MultilinearMap R M✝ M₂ ι₁✝ : Fin n → Type u_6 e✝ : (i : Fin n) → Basis (ι₁✝ i) R (M✝ i) h✝ : ∀ (v : (i : Fin n) → ι₁✝ i), (↑f✝ fun i => ↑(e✝ i) (v i)) = ↑g✝ fun i => ↑(e✝ i) (v i) m : ℕ hm : ∀ {M : Fin m → Type u_3} [inst : (i : Fin m) → AddCommMonoid (M i)] [inst_1 : (i : Fin m) → Module R (M i)] {f g : MultilinearMap R M M₂} {ι₁ : Fin m → Type u_6} (e : (i : Fin m) → Basis (ι₁ i) R (M i)), (∀ (v : (i : Fin m) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i)) → f = g M : Fin (Nat.succ m) → Type u_3 inst✝¹ : (i : Fin (Nat.succ m)) → AddCommMonoid (M i) inst✝ : (i : Fin (Nat.succ m)) → Module R (M i) f g : MultilinearMap R M M₂ ι₁ : Fin (Nat.succ m) → Type u_6 e : (i : Fin (Nat.succ m)) → Basis (ι₁ i) R (M i) h : ∀ (v : (i : Fin (Nat.succ m)) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i) i : ι₁ 0 j : (i : Fin m) → ι₁ (Fin.succ i) x✝ : Fin (m + 1) x : Fin m ⊢ Fin.cons (↑(e 0) i) (fun i => ↑(Fin.tail e i) (j i)) (Fin.succ x) = ↑(e (Fin.succ x)) (Fin.cons i j (Fin.succ x)) [PROOFSTEP] dsimp [Fin.tail] [GOAL] case h.e'_3.h.e_6.h.h R : Type u_1 ι : Type u_2 n : ℕ M✝ : Fin n → Type u_3 M₂ : Type u_4 M₃ : Type u_5 inst✝⁸ : CommSemiring R inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ inst✝⁵ : (i : Fin n) → AddCommMonoid (M✝ i) inst✝⁴ : (i : Fin n) → Module R (M✝ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ f✝ g✝ : MultilinearMap R M✝ M₂ ι₁✝ : Fin n → Type u_6 e✝ : (i : Fin n) → Basis (ι₁✝ i) R (M✝ i) h✝ : ∀ (v : (i : Fin n) → ι₁✝ i), (↑f✝ fun i => ↑(e✝ i) (v i)) = ↑g✝ fun i => ↑(e✝ i) (v i) m : ℕ hm : ∀ {M : Fin m → Type u_3} [inst : (i : Fin m) → AddCommMonoid (M i)] [inst_1 : (i : Fin m) → Module R (M i)] {f g : MultilinearMap R M M₂} {ι₁ : Fin m → Type u_6} (e : (i : Fin m) → Basis (ι₁ i) R (M i)), (∀ (v : (i : Fin m) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i)) → f = g M : Fin (Nat.succ m) → Type u_3 inst✝¹ : (i : Fin (Nat.succ m)) → AddCommMonoid (M i) inst✝ : (i : Fin (Nat.succ m)) → Module R (M i) f g : MultilinearMap R M M₂ ι₁ : Fin (Nat.succ m) → Type u_6 e : (i : Fin (Nat.succ m)) → Basis (ι₁ i) R (M i) h : ∀ (v : (i : Fin (Nat.succ m)) → ι₁ i), (↑f fun i => ↑(e i) (v i)) = ↑g fun i => ↑(e i) (v i) i : ι₁ 0 j : (i : Fin m) → ι₁ (Fin.succ i) x✝ : Fin (m + 1) x : Fin m ⊢ Fin.cons (↑(e 0) i) (fun i => ↑(e (Fin.succ i)) (j i)) (Fin.succ x) = ↑(e (Fin.succ x)) (Fin.cons i j (Fin.succ x)) [PROOFSTEP] rw [Fin.cons_succ, Fin.cons_succ] [GOAL] R : Type u_1 ι : Type u_2 n : ℕ M : Fin n → Type u_3 M₂ : Type u_4 M₃ : Type u_5 inst✝⁷ : CommSemiring R inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommMonoid M₃ inst✝⁴ : (i : Fin n) → AddCommMonoid (M i) inst✝³ : (i : Fin n) → Module R (M i) inst✝² : Module R M₂ inst✝¹ : Module R M₃ inst✝ : Finite ι f g : MultilinearMap R (fun x => M₂) M₃ ι₁ : Type u_6 e : Basis ι₁ R M₂ h : ∀ (v : ι → ι₁), (↑f fun i => ↑e (v i)) = ↑g fun i => ↑e (v i) ⊢ f = g [PROOFSTEP] cases nonempty_fintype ι [GOAL] case intro R : Type u_1 ι : Type u_2 n : ℕ M : Fin n → Type u_3 M₂ : Type u_4 M₃ : Type u_5 inst✝⁷ : CommSemiring R inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommMonoid M₃ inst✝⁴ : (i : Fin n) → AddCommMonoid (M i) inst✝³ : (i : Fin n) → Module R (M i) inst✝² : Module R M₂ inst✝¹ : Module R M₃ inst✝ : Finite ι f g : MultilinearMap R (fun x => M₂) M₃ ι₁ : Type u_6 e : Basis ι₁ R M₂ h : ∀ (v : ι → ι₁), (↑f fun i => ↑e (v i)) = ↑g fun i => ↑e (v i) val✝ : Fintype ι ⊢ f = g [PROOFSTEP] exact (domDomCongr_eq_iff (Fintype.equivFin ι) f g).mp (Basis.ext_multilinear_fin (fun _ => e) fun i => h (i ∘ _))
{"mathlib_filename": "Mathlib.LinearAlgebra.Multilinear.Basis", "llama_tokens": 19483}
[GOAL] R : Type u_1 M : Type u_2 M₂ : Type u_3 M₃ : Type u_4 inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M₂ inst✝³ : AddCommGroup M₃ inst✝² : Module R M inst✝¹ : Module R M₂ inst✝ : Module R M₃ f : M →ₗ[R] M₂ p p' : Submodule R M ⊢ comap (Submodule.subtype p) (p ⊓ p') ≤ ker (subToSupQuotient p p') [PROOFSTEP] rw [LinearMap.ker_comp, Submodule.ofLe, comap_codRestrict, ker_mkQ, map_comap_subtype] [GOAL] R : Type u_1 M : Type u_2 M₂ : Type u_3 M₃ : Type u_4 inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M₂ inst✝³ : AddCommGroup M₃ inst✝² : Module R M inst✝¹ : Module R M₂ inst✝ : Module R M₃ f : M →ₗ[R] M₂ p p' : Submodule R M ⊢ comap (Submodule.subtype p) (p ⊓ p') ≤ comap (Submodule.subtype p) ((p ⊔ p') ⊓ p') [PROOFSTEP] exact comap_mono (inf_le_inf_right _ le_sup_left) [GOAL] R : Type u_1 M : Type u_2 M₂ : Type u_3 M₃ : Type u_4 inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M₂ inst✝³ : AddCommGroup M₃ inst✝² : Module R M inst✝¹ : Module R M₂ inst✝ : Module R M₃ f : M →ₗ[R] M₂ p p' : Submodule R M ⊢ Function.Injective ↑(quotientInfToSupQuotient p p') [PROOFSTEP] rw [← ker_eq_bot, quotientInfToSupQuotient, ker_liftQ_eq_bot] [GOAL] case h' R : Type u_1 M : Type u_2 M₂ : Type u_3 M₃ : Type u_4 inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M₂ inst✝³ : AddCommGroup M₃ inst✝² : Module R M inst✝¹ : Module R M₂ inst✝ : Module R M₃ f : M →ₗ[R] M₂ p p' : Submodule R M ⊢ ker (subToSupQuotient p p') ≤ comap (Submodule.subtype p) (p ⊓ p') [PROOFSTEP] rw [ker_comp, ker_mkQ] [GOAL] case h' R : Type u_1 M : Type u_2 M₂ : Type u_3 M₃ : Type u_4 inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M₂ inst✝³ : AddCommGroup M₃ inst✝² : Module R M inst✝¹ : Module R M₂ inst✝ : Module R M₃ f : M →ₗ[R] M₂ p p' : Submodule R M ⊢ comap (ofLe (_ : p ≤ p ⊔ p')) (comap (Submodule.subtype (p ⊔ p')) p') ≤ comap (Submodule.subtype p) (p ⊓ p') [PROOFSTEP] exact fun ⟨x, hx1⟩ hx2 => ⟨hx1, hx2⟩ -- Porting note: breaking up original definition of quotientInfEquivSupQuotient to avoid timing out [GOAL] R : Type u_1 M : Type u_2 M₂ : Type u_3 M₃ : Type u_4 inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M₂ inst✝³ : AddCommGroup M₃ inst✝² : Module R M inst✝¹ : Module R M₂ inst✝ : Module R M₃ f : M →ₗ[R] M₂ p p' : Submodule R M ⊢ Function.Surjective ↑(quotientInfToSupQuotient p p') [PROOFSTEP] rw [← range_eq_top, quotientInfToSupQuotient, range_liftQ, eq_top_iff'] [GOAL] R : Type u_1 M : Type u_2 M₂ : Type u_3 M₃ : Type u_4 inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M₂ inst✝³ : AddCommGroup M₃ inst✝² : Module R M inst✝¹ : Module R M₂ inst✝ : Module R M₃ f : M →ₗ[R] M₂ p p' : Submodule R M ⊢ ∀ (x : { x // x ∈ p ⊔ p' } ⧸ comap (Submodule.subtype (p ⊔ p')) p'), x ∈ range (subToSupQuotient p p') [PROOFSTEP] rintro ⟨x, hx⟩ [GOAL] case mk.mk R : Type u_1 M : Type u_2 M₂ : Type u_3 M₃ : Type u_4 inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M₂ inst✝³ : AddCommGroup M₃ inst✝² : Module R M inst✝¹ : Module R M₂ inst✝ : Module R M₃ f : M →ₗ[R] M₂ p p' : Submodule R M x✝ : { x // x ∈ p ⊔ p' } ⧸ comap (Submodule.subtype (p ⊔ p')) p' x : M hx : x ∈ p ⊔ p' ⊢ Quot.mk Setoid.r { val := x, property := hx } ∈ range (subToSupQuotient p p') [PROOFSTEP] rcases mem_sup.1 hx with ⟨y, hy, z, hz, rfl⟩ [GOAL] case mk.mk.intro.intro.intro.intro R : Type u_1 M : Type u_2 M₂ : Type u_3 M₃ : Type u_4 inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M₂ inst✝³ : AddCommGroup M₃ inst✝² : Module R M inst✝¹ : Module R M₂ inst✝ : Module R M₃ f : M →ₗ[R] M₂ p p' : Submodule R M x✝ : { x // x ∈ p ⊔ p' } ⧸ comap (Submodule.subtype (p ⊔ p')) p' y : M hy : y ∈ p z : M hz : z ∈ p' hx : y + z ∈ p ⊔ p' ⊢ Quot.mk Setoid.r { val := y + z, property := hx } ∈ range (subToSupQuotient p p') [PROOFSTEP] use⟨y, hy⟩ [GOAL] case h R : Type u_1 M : Type u_2 M₂ : Type u_3 M₃ : Type u_4 inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M₂ inst✝³ : AddCommGroup M₃ inst✝² : Module R M inst✝¹ : Module R M₂ inst✝ : Module R M₃ f : M →ₗ[R] M₂ p p' : Submodule R M x✝ : { x // x ∈ p ⊔ p' } ⧸ comap (Submodule.subtype (p ⊔ p')) p' y : M hy : y ∈ p z : M hz : z ∈ p' hx : y + z ∈ p ⊔ p' ⊢ ↑(subToSupQuotient p p') { val := y, property := hy } = Quot.mk Setoid.r { val := y + z, property := hx } [PROOFSTEP] apply (Submodule.Quotient.eq _).2 [GOAL] case h R : Type u_1 M : Type u_2 M₂ : Type u_3 M₃ : Type u_4 inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M₂ inst✝³ : AddCommGroup M₃ inst✝² : Module R M inst✝¹ : Module R M₂ inst✝ : Module R M₃ f : M →ₗ[R] M₂ p p' : Submodule R M x✝ : { x // x ∈ p ⊔ p' } ⧸ comap (Submodule.subtype (p ⊔ p')) p' y : M hy : y ∈ p z : M hz : z ∈ p' hx : y + z ∈ p ⊔ p' ⊢ ↑(ofLe (_ : p ≤ p ⊔ p')) { val := y, property := hy } - { val := y + z, property := hx } ∈ comap (Submodule.subtype (p ⊔ p')) p' [PROOFSTEP] simp only [mem_comap, map_sub, coeSubtype, coe_ofLe, sub_add_cancel', neg_mem_iff, hz] [GOAL] R : Type u_1 M : Type u_2 M₂ : Type u_3 M₃ : Type u_4 inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M₂ inst✝³ : AddCommGroup M₃ inst✝² : Module R M inst✝¹ : Module R M₂ inst✝ : Module R M₃ f : M →ₗ[R] M₂ p p' : Submodule R M x : { x // x ∈ p ⊔ p' } hx : ↑x ∈ p ⊢ Submodule.Quotient.mk x = ↑(quotientInfEquivSupQuotient p p') (Submodule.Quotient.mk { val := ↑x, property := hx }) [PROOFSTEP] rw [quotientInfEquivSupQuotient_apply_mk, ofLe_apply] [GOAL] R : Type u_1 M : Type u_2 M₂ : Type u_3 M₃ : Type u_4 inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M₂ inst✝³ : AddCommGroup M₃ inst✝² : Module R M inst✝¹ : Module R M₂ inst✝ : Module R M₃ f : M →ₗ[R] M₂ p p' : Submodule R M x : { x // x ∈ p ⊔ p' } ⊢ Submodule.Quotient.mk x = ↑(quotientInfEquivSupQuotient p p') 0 ↔ ↑x ∈ p' [PROOFSTEP] rw [_root_.map_zero, Quotient.mk_eq_zero, mem_comap, Submodule.coeSubtype] [GOAL] R : Type u_1 M : Type u_2 M₂ : Type u_3 M₃ : Type u_4 inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M₂ inst✝³ : AddCommGroup M₃ inst✝² : Module R M inst✝¹ : Module R M₂ inst✝ : Module R M₃ f : M →ₗ[R] M₂ S T : Submodule R M h✝ h : S ≤ T ⊢ map (mkQ S) T ≤ LinearMap.ker (mapQ S T LinearMap.id h) [PROOFSTEP] rintro _ ⟨x, hx, rfl⟩ [GOAL] case intro.intro R : Type u_1 M : Type u_2 M₂ : Type u_3 M₃ : Type u_4 inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M₂ inst✝³ : AddCommGroup M₃ inst✝² : Module R M inst✝¹ : Module R M₂ inst✝ : Module R M₃ f : M →ₗ[R] M₂ S T : Submodule R M h✝ h : S ≤ T x : M hx : x ∈ ↑T ⊢ ↑(mkQ S) x ∈ LinearMap.ker (mapQ S T LinearMap.id h) [PROOFSTEP] rw [LinearMap.mem_ker, mkQ_apply, mapQ_apply] [GOAL] case intro.intro R : Type u_1 M : Type u_2 M₂ : Type u_3 M₃ : Type u_4 inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M₂ inst✝³ : AddCommGroup M₃ inst✝² : Module R M inst✝¹ : Module R M₂ inst✝ : Module R M₃ f : M →ₗ[R] M₂ S T : Submodule R M h✝ h : S ≤ T x : M hx : x ∈ ↑T ⊢ Quotient.mk (↑LinearMap.id x) = 0 [PROOFSTEP] exact (Quotient.mk_eq_zero _).mpr hx [GOAL] R : Type u_1 M : Type u_2 M₂ : Type u_3 M₃ : Type u_4 inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M₂ inst✝³ : AddCommGroup M₃ inst✝² : Module R M inst✝¹ : Module R M₂ inst✝ : Module R M₃ f : M →ₗ[R] M₂ S T : Submodule R M h : S ≤ T x : M ⊢ ↑(quotientQuotientEquivQuotientAux S T h) (Quotient.mk (Quotient.mk x)) = Quotient.mk x [PROOFSTEP] simp [GOAL] R : Type u_1 M : Type u_2 M₂ : Type u_3 M₃ : Type u_4 inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M₂ inst✝³ : AddCommGroup M₃ inst✝² : Module R M inst✝¹ : Module R M₂ inst✝ : Module R M₃ f : M →ₗ[R] M₂ S T : Submodule R M h : S ≤ T src✝ : (M ⧸ S) ⧸ map (mkQ S) T →ₗ[R] M ⧸ T := quotientQuotientEquivQuotientAux S T h x✝¹ : (M ⧸ S) ⧸ map (mkQ S) T x✝ : M ⧸ S x : M ⊢ ↑(mapQ T (map (mkQ S) T) (mkQ S) (_ : T ≤ comap (mkQ S) (map (mkQ S) T))) (AddHom.toFun { toAddHom := { toFun := ↑(quotientQuotientEquivQuotientAux S T h), map_add' := (_ : ∀ (x y : (M ⧸ S) ⧸ map (mkQ S) T), AddHom.toFun src✝.toAddHom (x + y) = AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) }, map_smul' := (_ : ∀ (r : R) (x : (M ⧸ S) ⧸ map (mkQ S) T), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom (Quotient.mk'' (Quotient.mk'' x))) = Quotient.mk'' (Quotient.mk'' x) [PROOFSTEP] simp [GOAL] R : Type u_1 M : Type u_2 M₂ : Type u_3 M₃ : Type u_4 inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M₂ inst✝³ : AddCommGroup M₃ inst✝² : Module R M inst✝¹ : Module R M₂ inst✝ : Module R M₃ f : M →ₗ[R] M₂ S T : Submodule R M h : S ≤ T src✝ : (M ⧸ S) ⧸ map (mkQ S) T →ₗ[R] M ⧸ T := quotientQuotientEquivQuotientAux S T h x✝ : M ⧸ T x : M ⊢ AddHom.toFun { toAddHom := { toFun := ↑(quotientQuotientEquivQuotientAux S T h), map_add' := (_ : ∀ (x y : (M ⧸ S) ⧸ map (mkQ S) T), AddHom.toFun src✝.toAddHom (x + y) = AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) }, map_smul' := (_ : ∀ (r : R) (x : (M ⧸ S) ⧸ map (mkQ S) T), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom (↑(mapQ T (map (mkQ S) T) (mkQ S) (_ : T ≤ comap (mkQ S) (map (mkQ S) T))) (Quotient.mk'' x)) = Quotient.mk'' x [PROOFSTEP] simp [GOAL] R : Type u_1 M : Type u_2 M₂ : Type u_3 M₃ : Type u_4 inst✝⁹ : Ring R inst✝⁸ : AddCommGroup M inst✝⁷ : AddCommGroup M₂ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R M inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ f : M →ₗ[R] M₂ S✝ T✝ : Submodule R M h : S✝ ≤ T✝ S T : Submodule R M hST : T ≤ S inst✝² : DecidablePred fun x => x ∈ map (mkQ T) S inst✝¹ : Fintype (M ⧸ S) inst✝ : Fintype (M ⧸ T) ⊢ Fintype.card { x // x ∈ map (mkQ T) S } * Fintype.card (M ⧸ S) = Fintype.card (M ⧸ T) [PROOFSTEP] rw [Submodule.card_eq_card_quotient_mul_card (map T.mkQ S), Fintype.card_eq.mpr ⟨(quotientQuotientEquivQuotient T S hST).toEquiv⟩]
{"mathlib_filename": "Mathlib.LinearAlgebra.Isomorphisms", "llama_tokens": 5229}
[GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 S : Type u_3 inst✝¹³ : Semiring R inst✝¹² : Semiring S inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : AddCommMonoid M₃ inst✝⁸ : AddCommMonoid M₄ inst✝⁷ : AddCommMonoid M₅ inst✝⁶ : AddCommMonoid M₆ inst✝⁵ : Module R M inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M₄ inst✝¹ : Module R M₅ inst✝ : Module R M₆ f✝ f : M →ₗ[R] M₂ g : M →ₗ[R] M₃ x y : M ⊢ Pi.prod (↑f) (↑g) (x + y) = Pi.prod (↑f) (↑g) x + Pi.prod (↑f) (↑g) y [PROOFSTEP] simp only [Pi.prod, Prod.mk_add_mk, map_add] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 S : Type u_3 inst✝¹³ : Semiring R inst✝¹² : Semiring S inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : AddCommMonoid M₃ inst✝⁸ : AddCommMonoid M₄ inst✝⁷ : AddCommMonoid M₅ inst✝⁶ : AddCommMonoid M₆ inst✝⁵ : Module R M inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M₄ inst✝¹ : Module R M₅ inst✝ : Module R M₆ f✝ f : M →ₗ[R] M₂ g : M →ₗ[R] M₃ c : R x : M ⊢ AddHom.toFun { toFun := Pi.prod ↑f ↑g, map_add' := (_ : ∀ (x y : M), (↑f (x + y), ↑g (x + y)) = (↑f x + ↑f y, ↑g x + ↑g y)) } (c • x) = ↑(RingHom.id R) c • AddHom.toFun { toFun := Pi.prod ↑f ↑g, map_add' := (_ : ∀ (x y : M), (↑f (x + y), ↑g (x + y)) = (↑f x + ↑f y, ↑g x + ↑g y)) } x [PROOFSTEP] simp only [Pi.prod, Prod.smul_mk, map_smul, RingHom.id_apply] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 S : Type u_3 inst✝¹⁷ : Semiring R inst✝¹⁶ : Semiring S inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : AddCommMonoid M₂ inst✝¹³ : AddCommMonoid M₃ inst✝¹² : AddCommMonoid M₄ inst✝¹¹ : AddCommMonoid M₅ inst✝¹⁰ : AddCommMonoid M₆ inst✝⁹ : Module R M inst✝⁸ : Module R M₂ inst✝⁷ : Module R M₃ inst✝⁶ : Module R M₄ inst✝⁵ : Module R M₅ inst✝⁴ : Module R M₆ f✝ : M →ₗ[R] M₂ inst✝³ : Module S M₂ inst✝² : Module S M₃ inst✝¹ : SMulCommClass R S M₂ inst✝ : SMulCommClass R S M₃ f : (M →ₗ[R] M₂) × (M →ₗ[R] M₃) ⊢ (fun f => (comp (fst R M₂ M₃) f, comp (snd R M₂ M₃) f)) (AddHom.toFun { toAddHom := { toFun := fun f => prod f.fst f.snd, map_add' := (_ : ∀ (a b : (M →ₗ[R] M₂) × (M →ₗ[R] M₃)), (fun f => prod f.fst f.snd) (a + b) = (fun f => prod f.fst f.snd) (a + b)) }, map_smul' := (_ : ∀ (r : S) (a : (M →ₗ[R] M₂) × (M →ₗ[R] M₃)), AddHom.toFun { toFun := fun f => prod f.fst f.snd, map_add' := (_ : ∀ (a b : (M →ₗ[R] M₂) × (M →ₗ[R] M₃)), (fun f => prod f.fst f.snd) (a + b) = (fun f => prod f.fst f.snd) (a + b)) } (r • a) = AddHom.toFun { toFun := fun f => prod f.fst f.snd, map_add' := (_ : ∀ (a b : (M →ₗ[R] M₂) × (M →ₗ[R] M₃)), (fun f => prod f.fst f.snd) (a + b) = (fun f => prod f.fst f.snd) (a + b)) } (r • a)) }.toAddHom f) = f [PROOFSTEP] ext [GOAL] case h₁.h R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 S : Type u_3 inst✝¹⁷ : Semiring R inst✝¹⁶ : Semiring S inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : AddCommMonoid M₂ inst✝¹³ : AddCommMonoid M₃ inst✝¹² : AddCommMonoid M₄ inst✝¹¹ : AddCommMonoid M₅ inst✝¹⁰ : AddCommMonoid M₆ inst✝⁹ : Module R M inst✝⁸ : Module R M₂ inst✝⁷ : Module R M₃ inst✝⁶ : Module R M₄ inst✝⁵ : Module R M₅ inst✝⁴ : Module R M₆ f✝ : M →ₗ[R] M₂ inst✝³ : Module S M₂ inst✝² : Module S M₃ inst✝¹ : SMulCommClass R S M₂ inst✝ : SMulCommClass R S M₃ f : (M →ₗ[R] M₂) × (M →ₗ[R] M₃) x✝ : M ⊢ ↑((fun f => (comp (fst R M₂ M₃) f, comp (snd R M₂ M₃) f)) (AddHom.toFun { toAddHom := { toFun := fun f => prod f.fst f.snd, map_add' := (_ : ∀ (a b : (M →ₗ[R] M₂) × (M →ₗ[R] M₃)), (fun f => prod f.fst f.snd) (a + b) = (fun f => prod f.fst f.snd) (a + b)) }, map_smul' := (_ : ∀ (r : S) (a : (M →ₗ[R] M₂) × (M →ₗ[R] M₃)), AddHom.toFun { toFun := fun f => prod f.fst f.snd, map_add' := (_ : ∀ (a b : (M →ₗ[R] M₂) × (M →ₗ[R] M₃)), (fun f => prod f.fst f.snd) (a + b) = (fun f => prod f.fst f.snd) (a + b)) } (r • a) = AddHom.toFun { toFun := fun f => prod f.fst f.snd, map_add' := (_ : ∀ (a b : (M →ₗ[R] M₂) × (M →ₗ[R] M₃)), (fun f => prod f.fst f.snd) (a + b) = (fun f => prod f.fst f.snd) (a + b)) } (r • a)) }.toAddHom f)).fst x✝ = ↑f.fst x✝ [PROOFSTEP] rfl [GOAL] case h₂.h R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 S : Type u_3 inst✝¹⁷ : Semiring R inst✝¹⁶ : Semiring S inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : AddCommMonoid M₂ inst✝¹³ : AddCommMonoid M₃ inst✝¹² : AddCommMonoid M₄ inst✝¹¹ : AddCommMonoid M₅ inst✝¹⁰ : AddCommMonoid M₆ inst✝⁹ : Module R M inst✝⁸ : Module R M₂ inst✝⁷ : Module R M₃ inst✝⁶ : Module R M₄ inst✝⁵ : Module R M₅ inst✝⁴ : Module R M₆ f✝ : M →ₗ[R] M₂ inst✝³ : Module S M₂ inst✝² : Module S M₃ inst✝¹ : SMulCommClass R S M₂ inst✝ : SMulCommClass R S M₃ f : (M →ₗ[R] M₂) × (M →ₗ[R] M₃) x✝ : M ⊢ ↑((fun f => (comp (fst R M₂ M₃) f, comp (snd R M₂ M₃) f)) (AddHom.toFun { toAddHom := { toFun := fun f => prod f.fst f.snd, map_add' := (_ : ∀ (a b : (M →ₗ[R] M₂) × (M →ₗ[R] M₃)), (fun f => prod f.fst f.snd) (a + b) = (fun f => prod f.fst f.snd) (a + b)) }, map_smul' := (_ : ∀ (r : S) (a : (M →ₗ[R] M₂) × (M →ₗ[R] M₃)), AddHom.toFun { toFun := fun f => prod f.fst f.snd, map_add' := (_ : ∀ (a b : (M →ₗ[R] M₂) × (M →ₗ[R] M₃)), (fun f => prod f.fst f.snd) (a + b) = (fun f => prod f.fst f.snd) (a + b)) } (r • a) = AddHom.toFun { toFun := fun f => prod f.fst f.snd, map_add' := (_ : ∀ (a b : (M →ₗ[R] M₂) × (M →ₗ[R] M₃)), (fun f => prod f.fst f.snd) (a + b) = (fun f => prod f.fst f.snd) (a + b)) } (r • a)) }.toAddHom f)).snd x✝ = ↑f.snd x✝ [PROOFSTEP] rfl [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 S : Type u_3 inst✝¹⁷ : Semiring R inst✝¹⁶ : Semiring S inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : AddCommMonoid M₂ inst✝¹³ : AddCommMonoid M₃ inst✝¹² : AddCommMonoid M₄ inst✝¹¹ : AddCommMonoid M₅ inst✝¹⁰ : AddCommMonoid M₆ inst✝⁹ : Module R M inst✝⁸ : Module R M₂ inst✝⁷ : Module R M₃ inst✝⁶ : Module R M₄ inst✝⁵ : Module R M₅ inst✝⁴ : Module R M₆ f✝ : M →ₗ[R] M₂ inst✝³ : Module S M₂ inst✝² : Module S M₃ inst✝¹ : SMulCommClass R S M₂ inst✝ : SMulCommClass R S M₃ f : M →ₗ[R] M₂ × M₃ ⊢ AddHom.toFun { toAddHom := { toFun := fun f => prod f.fst f.snd, map_add' := (_ : ∀ (a b : (M →ₗ[R] M₂) × (M →ₗ[R] M₃)), (fun f => prod f.fst f.snd) (a + b) = (fun f => prod f.fst f.snd) (a + b)) }, map_smul' := (_ : ∀ (r : S) (a : (M →ₗ[R] M₂) × (M →ₗ[R] M₃)), AddHom.toFun { toFun := fun f => prod f.fst f.snd, map_add' := (_ : ∀ (a b : (M →ₗ[R] M₂) × (M →ₗ[R] M₃)), (fun f => prod f.fst f.snd) (a + b) = (fun f => prod f.fst f.snd) (a + b)) } (r • a) = AddHom.toFun { toFun := fun f => prod f.fst f.snd, map_add' := (_ : ∀ (a b : (M →ₗ[R] M₂) × (M →ₗ[R] M₃)), (fun f => prod f.fst f.snd) (a + b) = (fun f => prod f.fst f.snd) (a + b)) } (r • a)) }.toAddHom ((fun f => (comp (fst R M₂ M₃) f, comp (snd R M₂ M₃) f)) f) = f [PROOFSTEP] ext [GOAL] case h.h₁ R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 S : Type u_3 inst✝¹⁷ : Semiring R inst✝¹⁶ : Semiring S inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : AddCommMonoid M₂ inst✝¹³ : AddCommMonoid M₃ inst✝¹² : AddCommMonoid M₄ inst✝¹¹ : AddCommMonoid M₅ inst✝¹⁰ : AddCommMonoid M₆ inst✝⁹ : Module R M inst✝⁸ : Module R M₂ inst✝⁷ : Module R M₃ inst✝⁶ : Module R M₄ inst✝⁵ : Module R M₅ inst✝⁴ : Module R M₆ f✝ : M →ₗ[R] M₂ inst✝³ : Module S M₂ inst✝² : Module S M₃ inst✝¹ : SMulCommClass R S M₂ inst✝ : SMulCommClass R S M₃ f : M →ₗ[R] M₂ × M₃ x✝ : M ⊢ (↑(AddHom.toFun { toAddHom := { toFun := fun f => prod f.fst f.snd, map_add' := (_ : ∀ (a b : (M →ₗ[R] M₂) × (M →ₗ[R] M₃)), (fun f => prod f.fst f.snd) (a + b) = (fun f => prod f.fst f.snd) (a + b)) }, map_smul' := (_ : ∀ (r : S) (a : (M →ₗ[R] M₂) × (M →ₗ[R] M₃)), AddHom.toFun { toFun := fun f => prod f.fst f.snd, map_add' := (_ : ∀ (a b : (M →ₗ[R] M₂) × (M →ₗ[R] M₃)), (fun f => prod f.fst f.snd) (a + b) = (fun f => prod f.fst f.snd) (a + b)) } (r • a) = AddHom.toFun { toFun := fun f => prod f.fst f.snd, map_add' := (_ : ∀ (a b : (M →ₗ[R] M₂) × (M →ₗ[R] M₃)), (fun f => prod f.fst f.snd) (a + b) = (fun f => prod f.fst f.snd) (a + b)) } (r • a)) }.toAddHom ((fun f => (comp (fst R M₂ M₃) f, comp (snd R M₂ M₃) f)) f)) x✝).fst = (↑f x✝).fst [PROOFSTEP] rfl [GOAL] case h.h₂ R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 S : Type u_3 inst✝¹⁷ : Semiring R inst✝¹⁶ : Semiring S inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : AddCommMonoid M₂ inst✝¹³ : AddCommMonoid M₃ inst✝¹² : AddCommMonoid M₄ inst✝¹¹ : AddCommMonoid M₅ inst✝¹⁰ : AddCommMonoid M₆ inst✝⁹ : Module R M inst✝⁸ : Module R M₂ inst✝⁷ : Module R M₃ inst✝⁶ : Module R M₄ inst✝⁵ : Module R M₅ inst✝⁴ : Module R M₆ f✝ : M →ₗ[R] M₂ inst✝³ : Module S M₂ inst✝² : Module S M₃ inst✝¹ : SMulCommClass R S M₂ inst✝ : SMulCommClass R S M₃ f : M →ₗ[R] M₂ × M₃ x✝ : M ⊢ (↑(AddHom.toFun { toAddHom := { toFun := fun f => prod f.fst f.snd, map_add' := (_ : ∀ (a b : (M →ₗ[R] M₂) × (M →ₗ[R] M₃)), (fun f => prod f.fst f.snd) (a + b) = (fun f => prod f.fst f.snd) (a + b)) }, map_smul' := (_ : ∀ (r : S) (a : (M →ₗ[R] M₂) × (M →ₗ[R] M₃)), AddHom.toFun { toFun := fun f => prod f.fst f.snd, map_add' := (_ : ∀ (a b : (M →ₗ[R] M₂) × (M →ₗ[R] M₃)), (fun f => prod f.fst f.snd) (a + b) = (fun f => prod f.fst f.snd) (a + b)) } (r • a) = AddHom.toFun { toFun := fun f => prod f.fst f.snd, map_add' := (_ : ∀ (a b : (M →ₗ[R] M₂) × (M →ₗ[R] M₃)), (fun f => prod f.fst f.snd) (a + b) = (fun f => prod f.fst f.snd) (a + b)) } (r • a)) }.toAddHom ((fun f => (comp (fst R M₂ M₃) f, comp (snd R M₂ M₃) f)) f)) x✝).snd = (↑f x✝).snd [PROOFSTEP] rfl [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 S : Type u_3 inst✝¹³ : Semiring R inst✝¹² : Semiring S inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : AddCommMonoid M₃ inst✝⁸ : AddCommMonoid M₄ inst✝⁷ : AddCommMonoid M₅ inst✝⁶ : AddCommMonoid M₆ inst✝⁵ : Module R M inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M₄ inst✝¹ : Module R M₅ inst✝ : Module R M₆ f : M →ₗ[R] M₂ ⊢ range (inl R M M₂) = ker (snd R M M₂) [PROOFSTEP] ext x [GOAL] case h R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 S : Type u_3 inst✝¹³ : Semiring R inst✝¹² : Semiring S inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : AddCommMonoid M₃ inst✝⁸ : AddCommMonoid M₄ inst✝⁷ : AddCommMonoid M₅ inst✝⁶ : AddCommMonoid M₆ inst✝⁵ : Module R M inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M₄ inst✝¹ : Module R M₅ inst✝ : Module R M₆ f : M →ₗ[R] M₂ x : M × M₂ ⊢ x ∈ range (inl R M M₂) ↔ x ∈ ker (snd R M M₂) [PROOFSTEP] simp only [mem_ker, mem_range] [GOAL] case h R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 S : Type u_3 inst✝¹³ : Semiring R inst✝¹² : Semiring S inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : AddCommMonoid M₃ inst✝⁸ : AddCommMonoid M₄ inst✝⁷ : AddCommMonoid M₅ inst✝⁶ : AddCommMonoid M₆ inst✝⁵ : Module R M inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M₄ inst✝¹ : Module R M₅ inst✝ : Module R M₆ f : M →ₗ[R] M₂ x : M × M₂ ⊢ (∃ y, ↑(inl R M M₂) y = x) ↔ ↑(snd R M M₂) x = 0 [PROOFSTEP] constructor [GOAL] case h.mp R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 S : Type u_3 inst✝¹³ : Semiring R inst✝¹² : Semiring S inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : AddCommMonoid M₃ inst✝⁸ : AddCommMonoid M₄ inst✝⁷ : AddCommMonoid M₅ inst✝⁶ : AddCommMonoid M₆ inst✝⁵ : Module R M inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M₄ inst✝¹ : Module R M₅ inst✝ : Module R M₆ f : M →ₗ[R] M₂ x : M × M₂ ⊢ (∃ y, ↑(inl R M M₂) y = x) → ↑(snd R M M₂) x = 0 [PROOFSTEP] rintro ⟨y, rfl⟩ [GOAL] case h.mp.intro R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 S : Type u_3 inst✝¹³ : Semiring R inst✝¹² : Semiring S inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : AddCommMonoid M₃ inst✝⁸ : AddCommMonoid M₄ inst✝⁷ : AddCommMonoid M₅ inst✝⁶ : AddCommMonoid M₆ inst✝⁵ : Module R M inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M₄ inst✝¹ : Module R M₅ inst✝ : Module R M₆ f : M →ₗ[R] M₂ y : M ⊢ ↑(snd R M M₂) (↑(inl R M M₂) y) = 0 [PROOFSTEP] rfl [GOAL] case h.mpr R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 S : Type u_3 inst✝¹³ : Semiring R inst✝¹² : Semiring S inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : AddCommMonoid M₃ inst✝⁸ : AddCommMonoid M₄ inst✝⁷ : AddCommMonoid M₅ inst✝⁶ : AddCommMonoid M₆ inst✝⁵ : Module R M inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M₄ inst✝¹ : Module R M₅ inst✝ : Module R M₆ f : M →ₗ[R] M₂ x : M × M₂ ⊢ ↑(snd R M M₂) x = 0 → ∃ y, ↑(inl R M M₂) y = x [PROOFSTEP] intro h [GOAL] case h.mpr R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 S : Type u_3 inst✝¹³ : Semiring R inst✝¹² : Semiring S inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : AddCommMonoid M₃ inst✝⁸ : AddCommMonoid M₄ inst✝⁷ : AddCommMonoid M₅ inst✝⁶ : AddCommMonoid M₆ inst✝⁵ : Module R M inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M₄ inst✝¹ : Module R M₅ inst✝ : Module R M₆ f : M →ₗ[R] M₂ x : M × M₂ h : ↑(snd R M M₂) x = 0 ⊢ ∃ y, ↑(inl R M M₂) y = x [PROOFSTEP] exact ⟨x.fst, Prod.ext rfl h.symm⟩ [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 S : Type u_3 inst✝¹³ : Semiring R inst✝¹² : Semiring S inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : AddCommMonoid M₃ inst✝⁸ : AddCommMonoid M₄ inst✝⁷ : AddCommMonoid M₅ inst✝⁶ : AddCommMonoid M₆ inst✝⁵ : Module R M inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M₄ inst✝¹ : Module R M₅ inst✝ : Module R M₆ f : M →ₗ[R] M₂ ⊢ range (inr R M M₂) = ker (fst R M M₂) [PROOFSTEP] ext x [GOAL] case h R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 S : Type u_3 inst✝¹³ : Semiring R inst✝¹² : Semiring S inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : AddCommMonoid M₃ inst✝⁸ : AddCommMonoid M₄ inst✝⁷ : AddCommMonoid M₅ inst✝⁶ : AddCommMonoid M₆ inst✝⁵ : Module R M inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M₄ inst✝¹ : Module R M₅ inst✝ : Module R M₆ f : M →ₗ[R] M₂ x : M × M₂ ⊢ x ∈ range (inr R M M₂) ↔ x ∈ ker (fst R M M₂) [PROOFSTEP] simp only [mem_ker, mem_range] [GOAL] case h R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 S : Type u_3 inst✝¹³ : Semiring R inst✝¹² : Semiring S inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : AddCommMonoid M₃ inst✝⁸ : AddCommMonoid M₄ inst✝⁷ : AddCommMonoid M₅ inst✝⁶ : AddCommMonoid M₆ inst✝⁵ : Module R M inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M₄ inst✝¹ : Module R M₅ inst✝ : Module R M₆ f : M →ₗ[R] M₂ x : M × M₂ ⊢ (∃ y, ↑(inr R M M₂) y = x) ↔ ↑(fst R M M₂) x = 0 [PROOFSTEP] constructor [GOAL] case h.mp R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 S : Type u_3 inst✝¹³ : Semiring R inst✝¹² : Semiring S inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : AddCommMonoid M₃ inst✝⁸ : AddCommMonoid M₄ inst✝⁷ : AddCommMonoid M₅ inst✝⁶ : AddCommMonoid M₆ inst✝⁵ : Module R M inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M₄ inst✝¹ : Module R M₅ inst✝ : Module R M₆ f : M →ₗ[R] M₂ x : M × M₂ ⊢ (∃ y, ↑(inr R M M₂) y = x) → ↑(fst R M M₂) x = 0 [PROOFSTEP] rintro ⟨y, rfl⟩ [GOAL] case h.mp.intro R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 S : Type u_3 inst✝¹³ : Semiring R inst✝¹² : Semiring S inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : AddCommMonoid M₃ inst✝⁸ : AddCommMonoid M₄ inst✝⁷ : AddCommMonoid M₅ inst✝⁶ : AddCommMonoid M₆ inst✝⁵ : Module R M inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M₄ inst✝¹ : Module R M₅ inst✝ : Module R M₆ f : M →ₗ[R] M₂ y : M₂ ⊢ ↑(fst R M M₂) (↑(inr R M M₂) y) = 0 [PROOFSTEP] rfl [GOAL] case h.mpr R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 S : Type u_3 inst✝¹³ : Semiring R inst✝¹² : Semiring S inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : AddCommMonoid M₃ inst✝⁸ : AddCommMonoid M₄ inst✝⁷ : AddCommMonoid M₅ inst✝⁶ : AddCommMonoid M₆ inst✝⁵ : Module R M inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M₄ inst✝¹ : Module R M₅ inst✝ : Module R M₆ f : M →ₗ[R] M₂ x : M × M₂ ⊢ ↑(fst R M M₂) x = 0 → ∃ y, ↑(inr R M M₂) y = x [PROOFSTEP] intro h [GOAL] case h.mpr R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 S : Type u_3 inst✝¹³ : Semiring R inst✝¹² : Semiring S inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : AddCommMonoid M₃ inst✝⁸ : AddCommMonoid M₄ inst✝⁷ : AddCommMonoid M₅ inst✝⁶ : AddCommMonoid M₆ inst✝⁵ : Module R M inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M₄ inst✝¹ : Module R M₅ inst✝ : Module R M₆ f : M →ₗ[R] M₂ x : M × M₂ h : ↑(fst R M M₂) x = 0 ⊢ ∃ y, ↑(inr R M M₂) y = x [PROOFSTEP] exact ⟨x.snd, Prod.ext h.symm rfl⟩ [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 S : Type u_3 inst✝¹³ : Semiring R inst✝¹² : Semiring S inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : AddCommMonoid M₃ inst✝⁸ : AddCommMonoid M₄ inst✝⁷ : AddCommMonoid M₅ inst✝⁶ : AddCommMonoid M₆ inst✝⁵ : Module R M inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M₄ inst✝¹ : Module R M₅ inst✝ : Module R M₆ f : M →ₗ[R] M₂ x✝ : M ⊢ ∀ ⦃a₂ : M⦄, ↑(inl R M M₂) x✝ = ↑(inl R M M₂) a₂ → x✝ = a₂ [PROOFSTEP] simp [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 S : Type u_3 inst✝¹³ : Semiring R inst✝¹² : Semiring S inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : AddCommMonoid M₃ inst✝⁸ : AddCommMonoid M₄ inst✝⁷ : AddCommMonoid M₅ inst✝⁶ : AddCommMonoid M₆ inst✝⁵ : Module R M inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M₄ inst✝¹ : Module R M₅ inst✝ : Module R M₆ f : M →ₗ[R] M₂ x✝ : M₂ ⊢ ∀ ⦃a₂ : M₂⦄, ↑(inr R M M₂) x✝ = ↑(inr R M M₂) a₂ → x✝ = a₂ [PROOFSTEP] simp [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 S : Type u_3 inst✝¹³ : Semiring R inst✝¹² : Semiring S inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : AddCommMonoid M₃ inst✝⁸ : AddCommMonoid M₄ inst✝⁷ : AddCommMonoid M₅ inst✝⁶ : AddCommMonoid M₆ inst✝⁵ : Module R M inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M₄ inst✝¹ : Module R M₅ inst✝ : Module R M₆ f✝ : M →ₗ[R] M₂ f : M →ₗ[R] M₃ g : M₂ →ₗ[R] M₃ ⊢ comp (coprod f g) (inl R M M₂) = f [PROOFSTEP] ext [GOAL] case h R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 S : Type u_3 inst✝¹³ : Semiring R inst✝¹² : Semiring S inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : AddCommMonoid M₃ inst✝⁸ : AddCommMonoid M₄ inst✝⁷ : AddCommMonoid M₅ inst✝⁶ : AddCommMonoid M₆ inst✝⁵ : Module R M inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M₄ inst✝¹ : Module R M₅ inst✝ : Module R M₆ f✝ : M →ₗ[R] M₂ f : M →ₗ[R] M₃ g : M₂ →ₗ[R] M₃ x✝ : M ⊢ ↑(comp (coprod f g) (inl R M M₂)) x✝ = ↑f x✝ [PROOFSTEP] simp only [map_zero, add_zero, coprod_apply, inl_apply, comp_apply] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 S : Type u_3 inst✝¹³ : Semiring R inst✝¹² : Semiring S inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : AddCommMonoid M₃ inst✝⁸ : AddCommMonoid M₄ inst✝⁷ : AddCommMonoid M₅ inst✝⁶ : AddCommMonoid M₆ inst✝⁵ : Module R M inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M₄ inst✝¹ : Module R M₅ inst✝ : Module R M₆ f✝ : M →ₗ[R] M₂ f : M →ₗ[R] M₃ g : M₂ →ₗ[R] M₃ ⊢ comp (coprod f g) (inr R M M₂) = g [PROOFSTEP] ext [GOAL] case h R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 S : Type u_3 inst✝¹³ : Semiring R inst✝¹² : Semiring S inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : AddCommMonoid M₃ inst✝⁸ : AddCommMonoid M₄ inst✝⁷ : AddCommMonoid M₅ inst✝⁶ : AddCommMonoid M₆ inst✝⁵ : Module R M inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M₄ inst✝¹ : Module R M₅ inst✝ : Module R M₆ f✝ : M →ₗ[R] M₂ f : M →ₗ[R] M₃ g : M₂ →ₗ[R] M₃ x✝ : M₂ ⊢ ↑(comp (coprod f g) (inr R M M₂)) x✝ = ↑g x✝ [PROOFSTEP] simp only [map_zero, coprod_apply, inr_apply, zero_add, comp_apply] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 S : Type u_3 inst✝¹³ : Semiring R inst✝¹² : Semiring S inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : AddCommMonoid M₃ inst✝⁸ : AddCommMonoid M₄ inst✝⁷ : AddCommMonoid M₅ inst✝⁶ : AddCommMonoid M₆ inst✝⁵ : Module R M inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M₄ inst✝¹ : Module R M₅ inst✝ : Module R M₆ f : M →ₗ[R] M₂ ⊢ coprod (inl R M M₂) (inr R M M₂) = id [PROOFSTEP] ext [GOAL] case h.h₁ R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 S : Type u_3 inst✝¹³ : Semiring R inst✝¹² : Semiring S inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : AddCommMonoid M₃ inst✝⁸ : AddCommMonoid M₄ inst✝⁷ : AddCommMonoid M₅ inst✝⁶ : AddCommMonoid M₆ inst✝⁵ : Module R M inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M₄ inst✝¹ : Module R M₅ inst✝ : Module R M₆ f : M →ₗ[R] M₂ x✝ : M × M₂ ⊢ (↑(coprod (inl R M M₂) (inr R M M₂)) x✝).fst = (↑id x✝).fst [PROOFSTEP] simp only [Prod.mk_add_mk, add_zero, id_apply, coprod_apply, inl_apply, inr_apply, zero_add] [GOAL] case h.h₂ R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 S : Type u_3 inst✝¹³ : Semiring R inst✝¹² : Semiring S inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : AddCommMonoid M₃ inst✝⁸ : AddCommMonoid M₄ inst✝⁷ : AddCommMonoid M₅ inst✝⁶ : AddCommMonoid M₆ inst✝⁵ : Module R M inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M₄ inst✝¹ : Module R M₅ inst✝ : Module R M₆ f : M →ₗ[R] M₂ x✝ : M × M₂ ⊢ (↑(coprod (inl R M M₂) (inr R M M₂)) x✝).snd = (↑id x✝).snd [PROOFSTEP] simp only [Prod.mk_add_mk, add_zero, id_apply, coprod_apply, inl_apply, inr_apply, zero_add] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 S : Type u_3 inst✝¹³ : Semiring R inst✝¹² : Semiring S inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : AddCommMonoid M₃ inst✝⁸ : AddCommMonoid M₄ inst✝⁷ : AddCommMonoid M₅ inst✝⁶ : AddCommMonoid M₆ inst✝⁵ : Module R M inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M₄ inst✝¹ : Module R M₅ inst✝ : Module R M₆ f : M →ₗ[R] M₂ ⊢ fst R M M₂ = coprod id 0 [PROOFSTEP] ext [GOAL] case h R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 S : Type u_3 inst✝¹³ : Semiring R inst✝¹² : Semiring S inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : AddCommMonoid M₃ inst✝⁸ : AddCommMonoid M₄ inst✝⁷ : AddCommMonoid M₅ inst✝⁶ : AddCommMonoid M₆ inst✝⁵ : Module R M inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M₄ inst✝¹ : Module R M₅ inst✝ : Module R M₆ f : M →ₗ[R] M₂ x✝ : M × M₂ ⊢ ↑(fst R M M₂) x✝ = ↑(coprod id 0) x✝ [PROOFSTEP] simp [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 S : Type u_3 inst✝¹³ : Semiring R inst✝¹² : Semiring S inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : AddCommMonoid M₃ inst✝⁸ : AddCommMonoid M₄ inst✝⁷ : AddCommMonoid M₅ inst✝⁶ : AddCommMonoid M₆ inst✝⁵ : Module R M inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M₄ inst✝¹ : Module R M₅ inst✝ : Module R M₆ f : M →ₗ[R] M₂ ⊢ snd R M M₂ = coprod 0 id [PROOFSTEP] ext [GOAL] case h R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 S : Type u_3 inst✝¹³ : Semiring R inst✝¹² : Semiring S inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : AddCommMonoid M₃ inst✝⁸ : AddCommMonoid M₄ inst✝⁷ : AddCommMonoid M₅ inst✝⁶ : AddCommMonoid M₆ inst✝⁵ : Module R M inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M₄ inst✝¹ : Module R M₅ inst✝ : Module R M₆ f : M →ₗ[R] M₂ x✝ : M × M₂ ⊢ ↑(snd R M M₂) x✝ = ↑(coprod 0 id) x✝ [PROOFSTEP] simp [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 S✝ : Type u_3 inst✝¹³ : Semiring R inst✝¹² : Semiring S✝ inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : AddCommMonoid M₃ inst✝⁸ : AddCommMonoid M₄ inst✝⁷ : AddCommMonoid M₅ inst✝⁶ : AddCommMonoid M₆ inst✝⁵ : Module R M inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M₄ inst✝¹ : Module R M₅ inst✝ : Module R M₆ f✝ : M →ₗ[R] M₂ f : M →ₗ[R] M₃ g : M₂ →ₗ[R] M₃ S : Submodule R M S' : Submodule R M₂ ⊢ ↑(Submodule.map (coprod f g) (Submodule.prod S S')) = ↑(Submodule.map f S ⊔ Submodule.map g S') [PROOFSTEP] simp only [LinearMap.coprod_apply, Submodule.coe_sup, Submodule.map_coe] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 S✝ : Type u_3 inst✝¹³ : Semiring R inst✝¹² : Semiring S✝ inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : AddCommMonoid M₃ inst✝⁸ : AddCommMonoid M₄ inst✝⁷ : AddCommMonoid M₅ inst✝⁶ : AddCommMonoid M₆ inst✝⁵ : Module R M inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M₄ inst✝¹ : Module R M₅ inst✝ : Module R M₆ f✝ : M →ₗ[R] M₂ f : M →ₗ[R] M₃ g : M₂ →ₗ[R] M₃ S : Submodule R M S' : Submodule R M₂ ⊢ (fun a => ↑f a.fst + ↑g a.snd) '' ↑(Submodule.prod S S') = (fun a => ↑f a) '' ↑S + (fun a => ↑g a) '' ↑S' [PROOFSTEP] rw [← Set.image2_add, Set.image2_image_left, Set.image2_image_right] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 S✝ : Type u_3 inst✝¹³ : Semiring R inst✝¹² : Semiring S✝ inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : AddCommMonoid M₃ inst✝⁸ : AddCommMonoid M₄ inst✝⁷ : AddCommMonoid M₅ inst✝⁶ : AddCommMonoid M₆ inst✝⁵ : Module R M inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M₄ inst✝¹ : Module R M₅ inst✝ : Module R M₆ f✝ : M →ₗ[R] M₂ f : M →ₗ[R] M₃ g : M₂ →ₗ[R] M₃ S : Submodule R M S' : Submodule R M₂ ⊢ (fun a => ↑f a.fst + ↑g a.snd) '' ↑(Submodule.prod S S') = Set.image2 (fun a b => ↑f a + ↑g b) ↑S ↑S' [PROOFSTEP] exact Set.image_prod fun m m₂ => f m + g m₂ [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 S : Type u_3 inst✝¹⁵ : Semiring R inst✝¹⁴ : Semiring S inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid M₂ inst✝¹¹ : AddCommMonoid M₃ inst✝¹⁰ : AddCommMonoid M₄ inst✝⁹ : AddCommMonoid M₅ inst✝⁸ : AddCommMonoid M₆ inst✝⁷ : Module R M inst✝⁶ : Module R M₂ inst✝⁵ : Module R M₃ inst✝⁴ : Module R M₄ inst✝³ : Module R M₅ inst✝² : Module R M₆ f : M →ₗ[R] M₂ inst✝¹ : Module S M₃ inst✝ : SMulCommClass R S M₃ a b : (M →ₗ[R] M₃) × (M₂ →ₗ[R] M₃) ⊢ (fun f => coprod f.fst f.snd) (a + b) = (fun f => coprod f.fst f.snd) a + (fun f => coprod f.fst f.snd) b [PROOFSTEP] ext [GOAL] case h R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 S : Type u_3 inst✝¹⁵ : Semiring R inst✝¹⁴ : Semiring S inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid M₂ inst✝¹¹ : AddCommMonoid M₃ inst✝¹⁰ : AddCommMonoid M₄ inst✝⁹ : AddCommMonoid M₅ inst✝⁸ : AddCommMonoid M₆ inst✝⁷ : Module R M inst✝⁶ : Module R M₂ inst✝⁵ : Module R M₃ inst✝⁴ : Module R M₄ inst✝³ : Module R M₅ inst✝² : Module R M₆ f : M →ₗ[R] M₂ inst✝¹ : Module S M₃ inst✝ : SMulCommClass R S M₃ a b : (M →ₗ[R] M₃) × (M₂ →ₗ[R] M₃) x✝ : M × M₂ ⊢ ↑((fun f => coprod f.fst f.snd) (a + b)) x✝ = ↑((fun f => coprod f.fst f.snd) a + (fun f => coprod f.fst f.snd) b) x✝ [PROOFSTEP] simp only [Prod.snd_add, add_apply, coprod_apply, Prod.fst_add, add_add_add_comm] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 S : Type u_3 inst✝¹⁵ : Semiring R inst✝¹⁴ : Semiring S inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid M₂ inst✝¹¹ : AddCommMonoid M₃ inst✝¹⁰ : AddCommMonoid M₄ inst✝⁹ : AddCommMonoid M₅ inst✝⁸ : AddCommMonoid M₆ inst✝⁷ : Module R M inst✝⁶ : Module R M₂ inst✝⁵ : Module R M₃ inst✝⁴ : Module R M₄ inst✝³ : Module R M₅ inst✝² : Module R M₆ f : M →ₗ[R] M₂ inst✝¹ : Module S M₃ inst✝ : SMulCommClass R S M₃ r : S a : (M →ₗ[R] M₃) × (M₂ →ₗ[R] M₃) ⊢ AddHom.toFun { toFun := fun f => coprod f.fst f.snd, map_add' := (_ : ∀ (a b : (M →ₗ[R] M₃) × (M₂ →ₗ[R] M₃)), (fun f => coprod f.fst f.snd) (a + b) = (fun f => coprod f.fst f.snd) a + (fun f => coprod f.fst f.snd) b) } (r • a) = ↑(RingHom.id S) r • AddHom.toFun { toFun := fun f => coprod f.fst f.snd, map_add' := (_ : ∀ (a b : (M →ₗ[R] M₃) × (M₂ →ₗ[R] M₃)), (fun f => coprod f.fst f.snd) (a + b) = (fun f => coprod f.fst f.snd) a + (fun f => coprod f.fst f.snd) b) } a [PROOFSTEP] dsimp [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 S : Type u_3 inst✝¹⁵ : Semiring R inst✝¹⁴ : Semiring S inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid M₂ inst✝¹¹ : AddCommMonoid M₃ inst✝¹⁰ : AddCommMonoid M₄ inst✝⁹ : AddCommMonoid M₅ inst✝⁸ : AddCommMonoid M₆ inst✝⁷ : Module R M inst✝⁶ : Module R M₂ inst✝⁵ : Module R M₃ inst✝⁴ : Module R M₄ inst✝³ : Module R M₅ inst✝² : Module R M₆ f : M →ₗ[R] M₂ inst✝¹ : Module S M₃ inst✝ : SMulCommClass R S M₃ r : S a : (M →ₗ[R] M₃) × (M₂ →ₗ[R] M₃) ⊢ coprod (r • a.fst) (r • a.snd) = r • coprod a.fst a.snd [PROOFSTEP] ext [GOAL] case h R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 S : Type u_3 inst✝¹⁵ : Semiring R inst✝¹⁴ : Semiring S inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid M₂ inst✝¹¹ : AddCommMonoid M₃ inst✝¹⁰ : AddCommMonoid M₄ inst✝⁹ : AddCommMonoid M₅ inst✝⁸ : AddCommMonoid M₆ inst✝⁷ : Module R M inst✝⁶ : Module R M₂ inst✝⁵ : Module R M₃ inst✝⁴ : Module R M₄ inst✝³ : Module R M₅ inst✝² : Module R M₆ f : M →ₗ[R] M₂ inst✝¹ : Module S M₃ inst✝ : SMulCommClass R S M₃ r : S a : (M →ₗ[R] M₃) × (M₂ →ₗ[R] M₃) x✝ : M × M₂ ⊢ ↑(coprod (r • a.fst) (r • a.snd)) x✝ = ↑(r • coprod a.fst a.snd) x✝ [PROOFSTEP] simp only [smul_add, smul_apply, Prod.smul_snd, Prod.smul_fst, coprod_apply] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 S : Type u_3 inst✝¹⁵ : Semiring R inst✝¹⁴ : Semiring S inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid M₂ inst✝¹¹ : AddCommMonoid M₃ inst✝¹⁰ : AddCommMonoid M₄ inst✝⁹ : AddCommMonoid M₅ inst✝⁸ : AddCommMonoid M₆ inst✝⁷ : Module R M inst✝⁶ : Module R M₂ inst✝⁵ : Module R M₃ inst✝⁴ : Module R M₄ inst✝³ : Module R M₅ inst✝² : Module R M₆ f✝ : M →ₗ[R] M₂ inst✝¹ : Module S M₃ inst✝ : SMulCommClass R S M₃ f : (M →ₗ[R] M₃) × (M₂ →ₗ[R] M₃) ⊢ (fun f => (comp f (inl R M M₂), comp f (inr R M M₂))) (AddHom.toFun { toAddHom := { toFun := fun f => coprod f.fst f.snd, map_add' := (_ : ∀ (a b : (M →ₗ[R] M₃) × (M₂ →ₗ[R] M₃)), (fun f => coprod f.fst f.snd) (a + b) = (fun f => coprod f.fst f.snd) a + (fun f => coprod f.fst f.snd) b) }, map_smul' := (_ : ∀ (r : S) (a : (M →ₗ[R] M₃) × (M₂ →ₗ[R] M₃)), AddHom.toFun { toFun := fun f => coprod f.fst f.snd, map_add' := (_ : ∀ (a b : (M →ₗ[R] M₃) × (M₂ →ₗ[R] M₃)), (fun f => coprod f.fst f.snd) (a + b) = (fun f => coprod f.fst f.snd) a + (fun f => coprod f.fst f.snd) b) } (r • a) = ↑(RingHom.id S) r • AddHom.toFun { toFun := fun f => coprod f.fst f.snd, map_add' := (_ : ∀ (a b : (M →ₗ[R] M₃) × (M₂ →ₗ[R] M₃)), (fun f => coprod f.fst f.snd) (a + b) = (fun f => coprod f.fst f.snd) a + (fun f => coprod f.fst f.snd) b) } a) }.toAddHom f) = f [PROOFSTEP] simp only [Prod.mk.eta, coprod_inl, coprod_inr] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 S : Type u_3 inst✝¹⁵ : Semiring R inst✝¹⁴ : Semiring S inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid M₂ inst✝¹¹ : AddCommMonoid M₃ inst✝¹⁰ : AddCommMonoid M₄ inst✝⁹ : AddCommMonoid M₅ inst✝⁸ : AddCommMonoid M₆ inst✝⁷ : Module R M inst✝⁶ : Module R M₂ inst✝⁵ : Module R M₃ inst✝⁴ : Module R M₄ inst✝³ : Module R M₅ inst✝² : Module R M₆ f✝ : M →ₗ[R] M₂ inst✝¹ : Module S M₃ inst✝ : SMulCommClass R S M₃ f : M × M₂ →ₗ[R] M₃ ⊢ AddHom.toFun { toAddHom := { toFun := fun f => coprod f.fst f.snd, map_add' := (_ : ∀ (a b : (M →ₗ[R] M₃) × (M₂ →ₗ[R] M₃)), (fun f => coprod f.fst f.snd) (a + b) = (fun f => coprod f.fst f.snd) a + (fun f => coprod f.fst f.snd) b) }, map_smul' := (_ : ∀ (r : S) (a : (M →ₗ[R] M₃) × (M₂ →ₗ[R] M₃)), AddHom.toFun { toFun := fun f => coprod f.fst f.snd, map_add' := (_ : ∀ (a b : (M →ₗ[R] M₃) × (M₂ →ₗ[R] M₃)), (fun f => coprod f.fst f.snd) (a + b) = (fun f => coprod f.fst f.snd) a + (fun f => coprod f.fst f.snd) b) } (r • a) = ↑(RingHom.id S) r • AddHom.toFun { toFun := fun f => coprod f.fst f.snd, map_add' := (_ : ∀ (a b : (M →ₗ[R] M₃) × (M₂ →ₗ[R] M₃)), (fun f => coprod f.fst f.snd) (a + b) = (fun f => coprod f.fst f.snd) a + (fun f => coprod f.fst f.snd) b) } a) }.toAddHom ((fun f => (comp f (inl R M M₂), comp f (inr R M M₂))) f) = f [PROOFSTEP] simp only [← comp_coprod, comp_id, coprod_inl_inr] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 S : Type u_3 inst✝¹³ : Semiring R inst✝¹² : Semiring S inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : AddCommMonoid M₃ inst✝⁸ : AddCommMonoid M₄ inst✝⁷ : AddCommMonoid M₅ inst✝⁶ : AddCommMonoid M₆ inst✝⁵ : Module R M inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M₄ inst✝¹ : Module R M₅ inst✝ : Module R M₆ f✝ f : M →ₗ[R] M₂ g : M₃ →ₗ[R] M₄ ⊢ ker (prodMap f g) = Submodule.prod (ker f) (ker g) [PROOFSTEP] dsimp only [ker] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 S : Type u_3 inst✝¹³ : Semiring R inst✝¹² : Semiring S inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : AddCommMonoid M₃ inst✝⁸ : AddCommMonoid M₄ inst✝⁷ : AddCommMonoid M₅ inst✝⁶ : AddCommMonoid M₆ inst✝⁵ : Module R M inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M₄ inst✝¹ : Module R M₅ inst✝ : Module R M₆ f✝ f : M →ₗ[R] M₂ g : M₃ →ₗ[R] M₄ ⊢ Submodule.comap (prodMap f g) ⊥ = Submodule.prod (Submodule.comap f ⊥) (Submodule.comap g ⊥) [PROOFSTEP] rw [← prodMap_comap_prod, Submodule.prod_bot] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 S : Type u_3 inst✝¹⁷ : Semiring R inst✝¹⁶ : Semiring S inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : AddCommMonoid M₂ inst✝¹³ : AddCommMonoid M₃ inst✝¹² : AddCommMonoid M₄ inst✝¹¹ : AddCommMonoid M₅ inst✝¹⁰ : AddCommMonoid M₆ inst✝⁹ : Module R M inst✝⁸ : Module R M₂ inst✝⁷ : Module R M₃ inst✝⁶ : Module R M₄ inst✝⁵ : Module R M₅ inst✝⁴ : Module R M₆ f : M →ₗ[R] M₂ A : Type u_4 inst✝³ : NonUnitalNonAssocSemiring A inst✝² : Module R A B : Type u_5 inst✝¹ : NonUnitalNonAssocSemiring B inst✝ : Module R B a₁ a₂ : A ⊢ (↑(inl R A B) (a₁ * a₂)).snd = (↑(inl R A B) a₁ * ↑(inl R A B) a₂).snd [PROOFSTEP] simp [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 S : Type u_3 inst✝¹⁷ : Semiring R inst✝¹⁶ : Semiring S inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : AddCommMonoid M₂ inst✝¹³ : AddCommMonoid M₃ inst✝¹² : AddCommMonoid M₄ inst✝¹¹ : AddCommMonoid M₅ inst✝¹⁰ : AddCommMonoid M₆ inst✝⁹ : Module R M inst✝⁸ : Module R M₂ inst✝⁷ : Module R M₃ inst✝⁶ : Module R M₄ inst✝⁵ : Module R M₅ inst✝⁴ : Module R M₆ f : M →ₗ[R] M₂ A : Type u_4 inst✝³ : NonUnitalNonAssocSemiring A inst✝² : Module R A B : Type u_5 inst✝¹ : NonUnitalNonAssocSemiring B inst✝ : Module R B b₁ b₂ : B ⊢ (↑(inr R A B) (b₁ * b₂)).fst = (↑(inr R A B) b₁ * ↑(inr R A B) b₂).fst [PROOFSTEP] simp [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁸ : Semiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommMonoid M₃ inst✝⁴ : AddCommMonoid M₄ inst✝³ : Module R M inst✝² : Module R M₂ inst✝¹ : Module R M₃ inst✝ : Module R M₄ f : M →ₗ[R] M₃ g : M₂ →ₗ[R] M₃ x : M₃ ⊢ x ∈ range (coprod f g) ↔ x ∈ range f ⊔ range g [PROOFSTEP] simp [mem_sup] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁸ : Semiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommMonoid M₃ inst✝⁴ : AddCommMonoid M₄ inst✝³ : Module R M inst✝² : Module R M₂ inst✝¹ : Module R M₃ inst✝ : Module R M₄ ⊢ IsCompl (range (inl R M M₂)) (range (inr R M M₂)) [PROOFSTEP] constructor [GOAL] case disjoint R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁸ : Semiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommMonoid M₃ inst✝⁴ : AddCommMonoid M₄ inst✝³ : Module R M inst✝² : Module R M₂ inst✝¹ : Module R M₃ inst✝ : Module R M₄ ⊢ Disjoint (range (inl R M M₂)) (range (inr R M M₂)) [PROOFSTEP] rw [disjoint_def] [GOAL] case disjoint R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁸ : Semiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommMonoid M₃ inst✝⁴ : AddCommMonoid M₄ inst✝³ : Module R M inst✝² : Module R M₂ inst✝¹ : Module R M₃ inst✝ : Module R M₄ ⊢ ∀ (x : M × M₂), x ∈ range (inl R M M₂) → x ∈ range (inr R M M₂) → x = 0 [PROOFSTEP] rintro ⟨_, _⟩ ⟨x, hx⟩ ⟨y, hy⟩ [GOAL] case disjoint.mk.intro.intro R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁸ : Semiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommMonoid M₃ inst✝⁴ : AddCommMonoid M₄ inst✝³ : Module R M inst✝² : Module R M₂ inst✝¹ : Module R M₃ inst✝ : Module R M₄ fst✝ : M snd✝ : M₂ x : M hx : ↑(inl R M M₂) x = (fst✝, snd✝) y : M₂ hy : ↑(inr R M M₂) y = (fst✝, snd✝) ⊢ (fst✝, snd✝) = 0 [PROOFSTEP] simp only [Prod.ext_iff, inl_apply, inr_apply, mem_bot] at hx hy ⊢ [GOAL] case disjoint.mk.intro.intro R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁸ : Semiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommMonoid M₃ inst✝⁴ : AddCommMonoid M₄ inst✝³ : Module R M inst✝² : Module R M₂ inst✝¹ : Module R M₃ inst✝ : Module R M₄ fst✝ : M snd✝ : M₂ x : M y : M₂ hx : x = fst✝ ∧ 0 = snd✝ hy : 0 = fst✝ ∧ y = snd✝ ⊢ fst✝ = 0.fst ∧ snd✝ = 0.snd [PROOFSTEP] exact ⟨hy.1.symm, hx.2.symm⟩ [GOAL] case codisjoint R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁸ : Semiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommMonoid M₃ inst✝⁴ : AddCommMonoid M₄ inst✝³ : Module R M inst✝² : Module R M₂ inst✝¹ : Module R M₃ inst✝ : Module R M₄ ⊢ Codisjoint (range (inl R M M₂)) (range (inr R M M₂)) [PROOFSTEP] rw [codisjoint_iff_le_sup] [GOAL] case codisjoint R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁸ : Semiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommMonoid M₃ inst✝⁴ : AddCommMonoid M₄ inst✝³ : Module R M inst✝² : Module R M₂ inst✝¹ : Module R M₃ inst✝ : Module R M₄ ⊢ ⊤ ≤ range (inl R M M₂) ⊔ range (inr R M M₂) [PROOFSTEP] rintro ⟨x, y⟩ - [GOAL] case codisjoint.mk R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁸ : Semiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommMonoid M₃ inst✝⁴ : AddCommMonoid M₄ inst✝³ : Module R M inst✝² : Module R M₂ inst✝¹ : Module R M₃ inst✝ : Module R M₄ x : M y : M₂ ⊢ (x, y) ∈ range (inl R M M₂) ⊔ range (inr R M M₂) [PROOFSTEP] simp only [mem_sup, mem_range, exists_prop] [GOAL] case codisjoint.mk R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁸ : Semiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommMonoid M₃ inst✝⁴ : AddCommMonoid M₄ inst✝³ : Module R M inst✝² : Module R M₂ inst✝¹ : Module R M₃ inst✝ : Module R M₄ x : M y : M₂ ⊢ ∃ y_1, (∃ y, ↑(inl R M M₂) y = y_1) ∧ ∃ z, (∃ y, ↑(inr R M M₂) y = z) ∧ y_1 + z = (x, y) [PROOFSTEP] refine' ⟨(x, 0), ⟨x, rfl⟩, (0, y), ⟨y, rfl⟩, _⟩ [GOAL] case codisjoint.mk R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁸ : Semiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommMonoid M₃ inst✝⁴ : AddCommMonoid M₄ inst✝³ : Module R M inst✝² : Module R M₂ inst✝¹ : Module R M₃ inst✝ : Module R M₄ x : M y : M₂ ⊢ (x, 0) + (0, y) = (x, y) [PROOFSTEP] simp [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁸ : Semiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommMonoid M₃ inst✝⁴ : AddCommMonoid M₄ inst✝³ : Module R M inst✝² : Module R M₂ inst✝¹ : Module R M₃ inst✝ : Module R M₄ ⊢ Disjoint (range (inl R M M₂)) (range (inr R M M₂)) [PROOFSTEP] simp (config := { contextual := true }) [disjoint_def, @eq_comm M 0, @eq_comm M₂ 0] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁸ : Semiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommMonoid M₃ inst✝⁴ : AddCommMonoid M₄ inst✝³ : Module R M inst✝² : Module R M₂ inst✝¹ : Module R M₃ inst✝ : Module R M₄ f : M →ₗ[R] M₃ g : M₂ →ₗ[R] M₃ p : Submodule R M q : Submodule R M₂ ⊢ map (coprod f g) (Submodule.prod p q) = map f p ⊔ map g q [PROOFSTEP] refine' le_antisymm _ (sup_le (map_le_iff_le_comap.2 _) (map_le_iff_le_comap.2 _)) [GOAL] case refine'_1 R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁸ : Semiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommMonoid M₃ inst✝⁴ : AddCommMonoid M₄ inst✝³ : Module R M inst✝² : Module R M₂ inst✝¹ : Module R M₃ inst✝ : Module R M₄ f : M →ₗ[R] M₃ g : M₂ →ₗ[R] M₃ p : Submodule R M q : Submodule R M₂ ⊢ map (coprod f g) (Submodule.prod p q) ≤ map f p ⊔ map g q [PROOFSTEP] rw [SetLike.le_def] [GOAL] case refine'_1 R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁸ : Semiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommMonoid M₃ inst✝⁴ : AddCommMonoid M₄ inst✝³ : Module R M inst✝² : Module R M₂ inst✝¹ : Module R M₃ inst✝ : Module R M₄ f : M →ₗ[R] M₃ g : M₂ →ₗ[R] M₃ p : Submodule R M q : Submodule R M₂ ⊢ ∀ ⦃x : M₃⦄, x ∈ map (coprod f g) (Submodule.prod p q) → x ∈ map f p ⊔ map g q [PROOFSTEP] rintro _ ⟨x, ⟨h₁, h₂⟩, rfl⟩ [GOAL] case refine'_1.intro.intro.intro R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁸ : Semiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommMonoid M₃ inst✝⁴ : AddCommMonoid M₄ inst✝³ : Module R M inst✝² : Module R M₂ inst✝¹ : Module R M₃ inst✝ : Module R M₄ f : M →ₗ[R] M₃ g : M₂ →ₗ[R] M₃ p : Submodule R M q : Submodule R M₂ x : M × M₂ h₁ : x.fst ∈ ↑p h₂ : x.snd ∈ ↑q ⊢ ↑(coprod f g) x ∈ map f p ⊔ map g q [PROOFSTEP] exact mem_sup.2 ⟨_, ⟨_, h₁, rfl⟩, _, ⟨_, h₂, rfl⟩, rfl⟩ [GOAL] case refine'_2 R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁸ : Semiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommMonoid M₃ inst✝⁴ : AddCommMonoid M₄ inst✝³ : Module R M inst✝² : Module R M₂ inst✝¹ : Module R M₃ inst✝ : Module R M₄ f : M →ₗ[R] M₃ g : M₂ →ₗ[R] M₃ p : Submodule R M q : Submodule R M₂ ⊢ p ≤ comap f (map (coprod f g) (Submodule.prod p q)) [PROOFSTEP] exact fun x hx => ⟨(x, 0), by simp [hx]⟩ [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁸ : Semiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommMonoid M₃ inst✝⁴ : AddCommMonoid M₄ inst✝³ : Module R M inst✝² : Module R M₂ inst✝¹ : Module R M₃ inst✝ : Module R M₄ f : M →ₗ[R] M₃ g : M₂ →ₗ[R] M₃ p : Submodule R M q : Submodule R M₂ x : M hx : x ∈ p ⊢ (x, 0) ∈ ↑(Submodule.prod p q) ∧ ↑(coprod f g) (x, 0) = ↑f x [PROOFSTEP] simp [hx] [GOAL] case refine'_3 R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁸ : Semiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommMonoid M₃ inst✝⁴ : AddCommMonoid M₄ inst✝³ : Module R M inst✝² : Module R M₂ inst✝¹ : Module R M₃ inst✝ : Module R M₄ f : M →ₗ[R] M₃ g : M₂ →ₗ[R] M₃ p : Submodule R M q : Submodule R M₂ ⊢ q ≤ comap g (map (coprod f g) (Submodule.prod p q)) [PROOFSTEP] exact fun x hx => ⟨(0, x), by simp [hx]⟩ [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁸ : Semiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommMonoid M₃ inst✝⁴ : AddCommMonoid M₄ inst✝³ : Module R M inst✝² : Module R M₂ inst✝¹ : Module R M₃ inst✝ : Module R M₄ f : M →ₗ[R] M₃ g : M₂ →ₗ[R] M₃ p : Submodule R M q : Submodule R M₂ x : M₂ hx : x ∈ q ⊢ (0, x) ∈ ↑(Submodule.prod p q) ∧ ↑(coprod f g) (0, x) = ↑g x [PROOFSTEP] simp [hx] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁸ : Semiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommMonoid M₃ inst✝⁴ : AddCommMonoid M₄ inst✝³ : Module R M inst✝² : Module R M₂ inst✝¹ : Module R M₃ inst✝ : Module R M₄ p : Submodule R M q : Submodule R M₂ ⊢ Submodule.prod p q = map (inl R M M₂) p ⊔ map (inr R M M₂) q [PROOFSTEP] rw [← map_coprod_prod, coprod_inl_inr, map_id] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁸ : Semiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommMonoid M₃ inst✝⁴ : AddCommMonoid M₄ inst✝³ : Module R M inst✝² : Module R M₂ inst✝¹ : Module R M₃ inst✝ : Module R M₄ s : Set M t : Set M₂ ⊢ span R (↑(inl R M M₂) '' s ∪ ↑(inr R M M₂) '' t) = Submodule.prod (span R s) (span R t) [PROOFSTEP] rw [span_union, prod_eq_sup_map, ← span_image, ← span_image] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁸ : Semiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommMonoid M₃ inst✝⁴ : AddCommMonoid M₄ inst✝³ : Module R M inst✝² : Module R M₂ inst✝¹ : Module R M₃ inst✝ : Module R M₄ f : M →ₗ[R] M₂ g : M →ₗ[R] M₃ ⊢ ker (prod f g) = ker f ⊓ ker g [PROOFSTEP] rw [ker, ← prod_bot, comap_prod_prod] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁸ : Semiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommMonoid M₃ inst✝⁴ : AddCommMonoid M₄ inst✝³ : Module R M inst✝² : Module R M₂ inst✝¹ : Module R M₃ inst✝ : Module R M₄ f : M →ₗ[R] M₂ g : M →ₗ[R] M₃ ⊢ comap f ⊥ ⊓ comap g ⊥ = ker f ⊓ ker g [PROOFSTEP] rfl [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁸ : Semiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommMonoid M₃ inst✝⁴ : AddCommMonoid M₄ inst✝³ : Module R M inst✝² : Module R M₂ inst✝¹ : Module R M₃ inst✝ : Module R M₄ f : M →ₗ[R] M₂ g : M →ₗ[R] M₃ ⊢ range (prod f g) ≤ Submodule.prod (range f) (range g) [PROOFSTEP] simp only [SetLike.le_def, prod_apply, mem_range, SetLike.mem_coe, mem_prod, exists_imp] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁸ : Semiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommMonoid M₃ inst✝⁴ : AddCommMonoid M₄ inst✝³ : Module R M inst✝² : Module R M₂ inst✝¹ : Module R M₃ inst✝ : Module R M₄ f : M →ₗ[R] M₂ g : M →ₗ[R] M₃ ⊢ ∀ ⦃x : M₂ × M₃⦄ (x_1 : M), Pi.prod (↑f) (↑g) x_1 = x → (∃ y, ↑f y = x.fst) ∧ ∃ y, ↑g y = x.snd [PROOFSTEP] rintro _ x rfl [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁸ : Semiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommMonoid M₃ inst✝⁴ : AddCommMonoid M₄ inst✝³ : Module R M inst✝² : Module R M₂ inst✝¹ : Module R M₃ inst✝ : Module R M₄ f : M →ₗ[R] M₂ g : M →ₗ[R] M₃ x : M ⊢ (∃ y, ↑f y = (Pi.prod (↑f) (↑g) x).fst) ∧ ∃ y, ↑g y = (Pi.prod (↑f) (↑g) x).snd [PROOFSTEP] exact ⟨⟨x, rfl⟩, ⟨x, rfl⟩⟩ [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂✝ : Type w V₂ : Type w' M₃✝ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝¹² : Semiring R inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid M₂✝ inst✝⁹ : AddCommMonoid M₃✝ inst✝⁸ : AddCommMonoid M₄ inst✝⁷ : Module R M inst✝⁶ : Module R M₂✝ inst✝⁵ : Module R M₃✝ inst✝⁴ : Module R M₄ M₂ : Type u_3 inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ M₃ : Type u_4 inst✝¹ : AddCommGroup M₃ inst✝ : Module R M₃ f : M →ₗ[R] M₃ g : M₂ →ₗ[R] M₃ ⊢ Submodule.prod (ker f) (ker g) ≤ ker (coprod f g) [PROOFSTEP] rintro ⟨y, z⟩ [GOAL] case mk R : Type u K : Type u' M : Type v V : Type v' M₂✝ : Type w V₂ : Type w' M₃✝ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝¹² : Semiring R inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid M₂✝ inst✝⁹ : AddCommMonoid M₃✝ inst✝⁸ : AddCommMonoid M₄ inst✝⁷ : Module R M inst✝⁶ : Module R M₂✝ inst✝⁵ : Module R M₃✝ inst✝⁴ : Module R M₄ M₂ : Type u_3 inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ M₃ : Type u_4 inst✝¹ : AddCommGroup M₃ inst✝ : Module R M₃ f : M →ₗ[R] M₃ g : M₂ →ₗ[R] M₃ y : M z : M₂ ⊢ (y, z) ∈ Submodule.prod (ker f) (ker g) → (y, z) ∈ ker (coprod f g) [PROOFSTEP] simp (config := { contextual := true }) [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂✝ : Type w V₂ : Type w' M₃✝ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝¹² : Semiring R inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid M₂✝ inst✝⁹ : AddCommMonoid M₃✝ inst✝⁸ : AddCommMonoid M₄ inst✝⁷ : Module R M inst✝⁶ : Module R M₂✝ inst✝⁵ : Module R M₃✝ inst✝⁴ : Module R M₄ M₂ : Type u_3 inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ M₃ : Type u_4 inst✝¹ : AddCommGroup M₃ inst✝ : Module R M₃ f : M →ₗ[R] M₃ g : M₂ →ₗ[R] M₃ hd : Disjoint (range f) (range g) ⊢ ker (coprod f g) = Submodule.prod (ker f) (ker g) [PROOFSTEP] apply le_antisymm _ (ker_prod_ker_le_ker_coprod f g) [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂✝ : Type w V₂ : Type w' M₃✝ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝¹² : Semiring R inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid M₂✝ inst✝⁹ : AddCommMonoid M₃✝ inst✝⁸ : AddCommMonoid M₄ inst✝⁷ : Module R M inst✝⁶ : Module R M₂✝ inst✝⁵ : Module R M₃✝ inst✝⁴ : Module R M₄ M₂ : Type u_3 inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ M₃ : Type u_4 inst✝¹ : AddCommGroup M₃ inst✝ : Module R M₃ f : M →ₗ[R] M₃ g : M₂ →ₗ[R] M₃ hd : Disjoint (range f) (range g) ⊢ ker (coprod f g) ≤ Submodule.prod (ker f) (ker g) [PROOFSTEP] rintro ⟨y, z⟩ h [GOAL] case mk R : Type u K : Type u' M : Type v V : Type v' M₂✝ : Type w V₂ : Type w' M₃✝ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝¹² : Semiring R inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid M₂✝ inst✝⁹ : AddCommMonoid M₃✝ inst✝⁸ : AddCommMonoid M₄ inst✝⁷ : Module R M inst✝⁶ : Module R M₂✝ inst✝⁵ : Module R M₃✝ inst✝⁴ : Module R M₄ M₂ : Type u_3 inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ M₃ : Type u_4 inst✝¹ : AddCommGroup M₃ inst✝ : Module R M₃ f : M →ₗ[R] M₃ g : M₂ →ₗ[R] M₃ hd : Disjoint (range f) (range g) y : M z : M₂ h : (y, z) ∈ ker (coprod f g) ⊢ (y, z) ∈ Submodule.prod (ker f) (ker g) [PROOFSTEP] simp only [mem_ker, mem_prod, coprod_apply] at h ⊢ [GOAL] case mk R : Type u K : Type u' M : Type v V : Type v' M₂✝ : Type w V₂ : Type w' M₃✝ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝¹² : Semiring R inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid M₂✝ inst✝⁹ : AddCommMonoid M₃✝ inst✝⁸ : AddCommMonoid M₄ inst✝⁷ : Module R M inst✝⁶ : Module R M₂✝ inst✝⁵ : Module R M₃✝ inst✝⁴ : Module R M₄ M₂ : Type u_3 inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ M₃ : Type u_4 inst✝¹ : AddCommGroup M₃ inst✝ : Module R M₃ f : M →ₗ[R] M₃ g : M₂ →ₗ[R] M₃ hd : Disjoint (range f) (range g) y : M z : M₂ h : ↑f y + ↑g z = 0 ⊢ ↑f y = 0 ∧ ↑g z = 0 [PROOFSTEP] have : f y ∈ (range f) ⊓ (range g) := by simp only [true_and_iff, mem_range, mem_inf, exists_apply_eq_apply] use-z rwa [eq_comm, map_neg, ← sub_eq_zero, sub_neg_eq_add] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂✝ : Type w V₂ : Type w' M₃✝ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝¹² : Semiring R inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid M₂✝ inst✝⁹ : AddCommMonoid M₃✝ inst✝⁸ : AddCommMonoid M₄ inst✝⁷ : Module R M inst✝⁶ : Module R M₂✝ inst✝⁵ : Module R M₃✝ inst✝⁴ : Module R M₄ M₂ : Type u_3 inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ M₃ : Type u_4 inst✝¹ : AddCommGroup M₃ inst✝ : Module R M₃ f : M →ₗ[R] M₃ g : M₂ →ₗ[R] M₃ hd : Disjoint (range f) (range g) y : M z : M₂ h : ↑f y + ↑g z = 0 ⊢ ↑f y ∈ range f ⊓ range g [PROOFSTEP] simp only [true_and_iff, mem_range, mem_inf, exists_apply_eq_apply] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂✝ : Type w V₂ : Type w' M₃✝ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝¹² : Semiring R inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid M₂✝ inst✝⁹ : AddCommMonoid M₃✝ inst✝⁸ : AddCommMonoid M₄ inst✝⁷ : Module R M inst✝⁶ : Module R M₂✝ inst✝⁵ : Module R M₃✝ inst✝⁴ : Module R M₄ M₂ : Type u_3 inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ M₃ : Type u_4 inst✝¹ : AddCommGroup M₃ inst✝ : Module R M₃ f : M →ₗ[R] M₃ g : M₂ →ₗ[R] M₃ hd : Disjoint (range f) (range g) y : M z : M₂ h : ↑f y + ↑g z = 0 ⊢ ∃ y_1, ↑g y_1 = ↑f y [PROOFSTEP] use-z [GOAL] case h R : Type u K : Type u' M : Type v V : Type v' M₂✝ : Type w V₂ : Type w' M₃✝ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝¹² : Semiring R inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid M₂✝ inst✝⁹ : AddCommMonoid M₃✝ inst✝⁸ : AddCommMonoid M₄ inst✝⁷ : Module R M inst✝⁶ : Module R M₂✝ inst✝⁵ : Module R M₃✝ inst✝⁴ : Module R M₄ M₂ : Type u_3 inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ M₃ : Type u_4 inst✝¹ : AddCommGroup M₃ inst✝ : Module R M₃ f : M →ₗ[R] M₃ g : M₂ →ₗ[R] M₃ hd : Disjoint (range f) (range g) y : M z : M₂ h : ↑f y + ↑g z = 0 ⊢ ↑g (-z) = ↑f y [PROOFSTEP] rwa [eq_comm, map_neg, ← sub_eq_zero, sub_neg_eq_add] [GOAL] case mk R : Type u K : Type u' M : Type v V : Type v' M₂✝ : Type w V₂ : Type w' M₃✝ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝¹² : Semiring R inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid M₂✝ inst✝⁹ : AddCommMonoid M₃✝ inst✝⁸ : AddCommMonoid M₄ inst✝⁷ : Module R M inst✝⁶ : Module R M₂✝ inst✝⁵ : Module R M₃✝ inst✝⁴ : Module R M₄ M₂ : Type u_3 inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ M₃ : Type u_4 inst✝¹ : AddCommGroup M₃ inst✝ : Module R M₃ f : M →ₗ[R] M₃ g : M₂ →ₗ[R] M₃ hd : Disjoint (range f) (range g) y : M z : M₂ h : ↑f y + ↑g z = 0 this : ↑f y ∈ range f ⊓ range g ⊢ ↑f y = 0 ∧ ↑g z = 0 [PROOFSTEP] rw [hd.eq_bot, mem_bot] at this [GOAL] case mk R : Type u K : Type u' M : Type v V : Type v' M₂✝ : Type w V₂ : Type w' M₃✝ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝¹² : Semiring R inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid M₂✝ inst✝⁹ : AddCommMonoid M₃✝ inst✝⁸ : AddCommMonoid M₄ inst✝⁷ : Module R M inst✝⁶ : Module R M₂✝ inst✝⁵ : Module R M₃✝ inst✝⁴ : Module R M₄ M₂ : Type u_3 inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ M₃ : Type u_4 inst✝¹ : AddCommGroup M₃ inst✝ : Module R M₃ f : M →ₗ[R] M₃ g : M₂ →ₗ[R] M₃ hd : Disjoint (range f) (range g) y : M z : M₂ h : ↑f y + ↑g z = 0 this : ↑f y = 0 ⊢ ↑f y = 0 ∧ ↑g z = 0 [PROOFSTEP] rw [this] at h [GOAL] case mk R : Type u K : Type u' M : Type v V : Type v' M₂✝ : Type w V₂ : Type w' M₃✝ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝¹² : Semiring R inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid M₂✝ inst✝⁹ : AddCommMonoid M₃✝ inst✝⁸ : AddCommMonoid M₄ inst✝⁷ : Module R M inst✝⁶ : Module R M₂✝ inst✝⁵ : Module R M₃✝ inst✝⁴ : Module R M₄ M₂ : Type u_3 inst✝³ : AddCommGroup M₂ inst✝² : Module R M₂ M₃ : Type u_4 inst✝¹ : AddCommGroup M₃ inst✝ : Module R M₃ f : M →ₗ[R] M₃ g : M₂ →ₗ[R] M₃ hd : Disjoint (range f) (range g) y : M z : M₂ h : 0 + ↑g z = 0 this : ↑f y = 0 ⊢ ↑f y = 0 ∧ ↑g z = 0 [PROOFSTEP] simpa [this] using h [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p q : Submodule R M x : M ⊢ x ∈ p ⊔ q ↔ x ∈ range (coprod (Submodule.subtype p) (Submodule.subtype q)) [PROOFSTEP] simp [Submodule.mem_sup, SetLike.exists] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q : Submodule R M₂ ⊢ map (inl R M M₂) p = prod p ⊥ [PROOFSTEP] ext ⟨x, y⟩ [GOAL] case h.mk R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q : Submodule R M₂ x : M y : M₂ ⊢ (x, y) ∈ map (inl R M M₂) p ↔ (x, y) ∈ prod p ⊥ [PROOFSTEP] simp only [and_left_comm, eq_comm, mem_map, Prod.mk.inj_iff, inl_apply, mem_bot, exists_eq_left', mem_prod] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q : Submodule R M₂ ⊢ map (inr R M M₂) q = prod ⊥ q [PROOFSTEP] ext ⟨x, y⟩ [GOAL] case h.mk R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q : Submodule R M₂ x : M y : M₂ ⊢ (x, y) ∈ map (inr R M M₂) q ↔ (x, y) ∈ prod ⊥ q [PROOFSTEP] simp [and_left_comm, eq_comm, and_comm] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q : Submodule R M₂ ⊢ comap (fst R M M₂) p = prod p ⊤ [PROOFSTEP] ext ⟨x, y⟩ [GOAL] case h.mk R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q : Submodule R M₂ x : M y : M₂ ⊢ (x, y) ∈ comap (fst R M M₂) p ↔ (x, y) ∈ prod p ⊤ [PROOFSTEP] simp [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q : Submodule R M₂ ⊢ comap (snd R M M₂) q = prod ⊤ q [PROOFSTEP] ext ⟨x, y⟩ [GOAL] case h.mk R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q : Submodule R M₂ x : M y : M₂ ⊢ (x, y) ∈ comap (snd R M M₂) q ↔ (x, y) ∈ prod ⊤ q [PROOFSTEP] simp [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q : Submodule R M₂ ⊢ comap (inl R M M₂) (prod p q) = p [PROOFSTEP] ext [GOAL] case h R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q : Submodule R M₂ x✝ : M ⊢ x✝ ∈ comap (inl R M M₂) (prod p q) ↔ x✝ ∈ p [PROOFSTEP] simp [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q : Submodule R M₂ ⊢ comap (inr R M M₂) (prod p q) = q [PROOFSTEP] ext [GOAL] case h R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q : Submodule R M₂ x✝ : M₂ ⊢ x✝ ∈ comap (inr R M M₂) (prod p q) ↔ x✝ ∈ q [PROOFSTEP] simp [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q : Submodule R M₂ ⊢ map (fst R M M₂) (prod p q) = p [PROOFSTEP] ext x [GOAL] case h R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q : Submodule R M₂ x : M ⊢ x ∈ map (fst R M M₂) (prod p q) ↔ x ∈ p [PROOFSTEP] simp [(⟨0, zero_mem _⟩ : ∃ x, x ∈ q)] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q : Submodule R M₂ ⊢ map (snd R M M₂) (prod p q) = q [PROOFSTEP] ext x [GOAL] case h R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q : Submodule R M₂ x : M₂ ⊢ x ∈ map (snd R M M₂) (prod p q) ↔ x ∈ q [PROOFSTEP] simp [(⟨0, zero_mem _⟩ : ∃ x, x ∈ p)] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q : Submodule R M₂ ⊢ ker (inl R M M₂) = ⊥ [PROOFSTEP] rw [ker, ← prod_bot, prod_comap_inl] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q : Submodule R M₂ ⊢ ker (inr R M M₂) = ⊥ [PROOFSTEP] rw [ker, ← prod_bot, prod_comap_inr] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q : Submodule R M₂ ⊢ range (fst R M M₂) = ⊤ [PROOFSTEP] rw [range_eq_map, ← prod_top, prod_map_fst] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q : Submodule R M₂ ⊢ range (snd R M M₂) = ⊤ [PROOFSTEP] rw [range_eq_map, ← prod_top, prod_map_snd] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q : Submodule R M₂ ⊢ ∀ (x y : { x // x ∈ fst R M M₂ }), (fun x => (↑x).fst) (x + y) = (fun x => (↑x).fst) x + (fun x => (↑x).fst) y [PROOFSTEP] simp only [AddSubmonoid.coe_add, coe_toAddSubmonoid, Prod.fst_add, Subtype.forall, implies_true, Prod.forall, forall_const] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q : Submodule R M₂ ⊢ ∀ (r : R) (x : { x // x ∈ fst R M M₂ }), AddHom.toFun { toFun := fun x => (↑x).fst, map_add' := (_ : ∀ (a a_1 : { x // x ∈ fst R M M₂ }), (↑a).fst + (↑a_1).fst = (↑a).fst + (↑a_1).fst) } (r • x) = ↑(RingHom.id R) r • AddHom.toFun { toFun := fun x => (↑x).fst, map_add' := (_ : ∀ (a a_1 : { x // x ∈ fst R M M₂ }), (↑a).fst + (↑a_1).fst = (↑a).fst + (↑a_1).fst) } x [PROOFSTEP] simp only [SetLike.val_smul, Prod.smul_fst, RingHom.id_apply, Subtype.forall, implies_true, Prod.forall, forall_const] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q : Submodule R M₂ m : M ⊢ (m, 0) ∈ fst R M M₂ [PROOFSTEP] simp only [fst, comap_bot, mem_ker, snd_apply] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q : Submodule R M₂ ⊢ Function.LeftInverse (fun m => { val := (m, 0), property := (_ : (m, 0) ∈ ker (snd R M M₂)) }) { toAddHom := { toFun := fun x => (↑x).fst, map_add' := (_ : ∀ (a a_1 : { x // x ∈ fst R M M₂ }), (↑a).fst + (↑a_1).fst = (↑a).fst + (↑a_1).fst) }, map_smul' := (_ : ∀ (a : R) (a_1 : { x // x ∈ fst R M M₂ }), a • (↑a_1).fst = a • (↑a_1).fst) }.toAddHom.toFun [PROOFSTEP] rintro ⟨⟨x, y⟩, hy⟩ [GOAL] case mk.mk R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q : Submodule R M₂ x : M y : M₂ hy : (x, y) ∈ fst R M M₂ ⊢ (fun m => { val := (m, 0), property := (_ : (m, 0) ∈ ker (snd R M M₂)) }) (AddHom.toFun { toAddHom := { toFun := fun x => (↑x).fst, map_add' := (_ : ∀ (a a_1 : { x // x ∈ fst R M M₂ }), (↑a).fst + (↑a_1).fst = (↑a).fst + (↑a_1).fst) }, map_smul' := (_ : ∀ (a : R) (a_1 : { x // x ∈ fst R M M₂ }), a • (↑a_1).fst = a • (↑a_1).fst) }.toAddHom { val := (x, y), property := hy }) = { val := (x, y), property := hy } [PROOFSTEP] simp only [fst, comap_bot, mem_ker, snd_apply] at hy [GOAL] case mk.mk R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q : Submodule R M₂ x : M y : M₂ hy✝ : (x, y) ∈ fst R M M₂ hy : y = 0 ⊢ (fun m => { val := (m, 0), property := (_ : (m, 0) ∈ ker (snd R M M₂)) }) (AddHom.toFun { toAddHom := { toFun := fun x => (↑x).fst, map_add' := (_ : ∀ (a a_1 : { x // x ∈ fst R M M₂ }), (↑a).fst + (↑a_1).fst = (↑a).fst + (↑a_1).fst) }, map_smul' := (_ : ∀ (a : R) (a_1 : { x // x ∈ fst R M M₂ }), a • (↑a_1).fst = a • (↑a_1).fst) }.toAddHom { val := (x, y), property := hy✝ }) = { val := (x, y), property := hy✝ } [PROOFSTEP] simpa only [Subtype.mk.injEq, Prod.mk.injEq, true_and] using hy.symm [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q : Submodule R M₂ ⊢ Function.RightInverse (fun m => { val := (m, 0), property := (_ : (m, 0) ∈ ker (snd R M M₂)) }) { toAddHom := { toFun := fun x => (↑x).fst, map_add' := (_ : ∀ (a a_1 : { x // x ∈ fst R M M₂ }), (↑a).fst + (↑a_1).fst = (↑a).fst + (↑a_1).fst) }, map_smul' := (_ : ∀ (a : R) (a_1 : { x // x ∈ fst R M M₂ }), a • (↑a_1).fst = a • (↑a_1).fst) }.toAddHom.toFun [PROOFSTEP] rintro x [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q : Submodule R M₂ x : M ⊢ AddHom.toFun { toAddHom := { toFun := fun x => (↑x).fst, map_add' := (_ : ∀ (a a_1 : { x // x ∈ fst R M M₂ }), (↑a).fst + (↑a_1).fst = (↑a).fst + (↑a_1).fst) }, map_smul' := (_ : ∀ (a : R) (a_1 : { x // x ∈ fst R M M₂ }), a • (↑a_1).fst = a • (↑a_1).fst) }.toAddHom ((fun m => { val := (m, 0), property := (_ : (m, 0) ∈ ker (snd R M M₂)) }) x) = x [PROOFSTEP] rfl [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q : Submodule R M₂ ⊢ map (LinearMap.fst R M M₂) (fst R M M₂) = ⊤ [PROOFSTEP] rw [eq_top_iff] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q : Submodule R M₂ ⊢ ⊤ ≤ map (LinearMap.fst R M M₂) (fst R M M₂) [PROOFSTEP] rintro x - [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q : Submodule R M₂ x : M ⊢ x ∈ map (LinearMap.fst R M M₂) (fst R M M₂) [PROOFSTEP] simp only [fst, comap_bot, mem_map, mem_ker, snd_apply, fst_apply, Prod.exists, exists_eq_left, exists_eq] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q : Submodule R M₂ ⊢ map (snd R M M₂) (fst R M M₂) = ⊥ [PROOFSTEP] rw [eq_bot_iff] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q : Submodule R M₂ ⊢ map (snd R M M₂) (fst R M M₂) ≤ ⊥ [PROOFSTEP] intro x [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q : Submodule R M₂ x : M₂ ⊢ x ∈ map (snd R M M₂) (fst R M M₂) → x ∈ ⊥ [PROOFSTEP] simp only [fst, comap_bot, mem_map, mem_ker, snd_apply, eq_comm, Prod.exists, exists_eq_left, exists_const, mem_bot, imp_self] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q : Submodule R M₂ ⊢ ∀ (x y : { x // x ∈ snd R M M₂ }), (fun x => (↑x).snd) (x + y) = (fun x => (↑x).snd) x + (fun x => (↑x).snd) y [PROOFSTEP] simp only [AddSubmonoid.coe_add, coe_toAddSubmonoid, Prod.snd_add, Subtype.forall, implies_true, Prod.forall, forall_const] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q : Submodule R M₂ ⊢ ∀ (r : R) (x : { x // x ∈ snd R M M₂ }), AddHom.toFun { toFun := fun x => (↑x).snd, map_add' := (_ : ∀ (a a_1 : { x // x ∈ snd R M M₂ }), (↑a).snd + (↑a_1).snd = (↑a).snd + (↑a_1).snd) } (r • x) = ↑(RingHom.id R) r • AddHom.toFun { toFun := fun x => (↑x).snd, map_add' := (_ : ∀ (a a_1 : { x // x ∈ snd R M M₂ }), (↑a).snd + (↑a_1).snd = (↑a).snd + (↑a_1).snd) } x [PROOFSTEP] simp only [SetLike.val_smul, Prod.smul_snd, RingHom.id_apply, Subtype.forall, implies_true, Prod.forall, forall_const] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q : Submodule R M₂ n : M₂ ⊢ (0, n) ∈ snd R M M₂ [PROOFSTEP] simp only [snd, comap_bot, mem_ker, fst_apply] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q : Submodule R M₂ ⊢ Function.LeftInverse (fun n => { val := (0, n), property := (_ : (0, n) ∈ ker (LinearMap.fst R M M₂)) }) { toAddHom := { toFun := fun x => (↑x).snd, map_add' := (_ : ∀ (a a_1 : { x // x ∈ snd R M M₂ }), (↑a).snd + (↑a_1).snd = (↑a).snd + (↑a_1).snd) }, map_smul' := (_ : ∀ (a : R) (a_1 : { x // x ∈ snd R M M₂ }), a • (↑a_1).snd = a • (↑a_1).snd) }.toAddHom.toFun [PROOFSTEP] rintro ⟨⟨x, y⟩, hx⟩ [GOAL] case mk.mk R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q : Submodule R M₂ x : M y : M₂ hx : (x, y) ∈ snd R M M₂ ⊢ (fun n => { val := (0, n), property := (_ : (0, n) ∈ ker (LinearMap.fst R M M₂)) }) (AddHom.toFun { toAddHom := { toFun := fun x => (↑x).snd, map_add' := (_ : ∀ (a a_1 : { x // x ∈ snd R M M₂ }), (↑a).snd + (↑a_1).snd = (↑a).snd + (↑a_1).snd) }, map_smul' := (_ : ∀ (a : R) (a_1 : { x // x ∈ snd R M M₂ }), a • (↑a_1).snd = a • (↑a_1).snd) }.toAddHom { val := (x, y), property := hx }) = { val := (x, y), property := hx } [PROOFSTEP] simp only [snd, comap_bot, mem_ker, fst_apply] at hx [GOAL] case mk.mk R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q : Submodule R M₂ x : M y : M₂ hx✝ : (x, y) ∈ snd R M M₂ hx : x = 0 ⊢ (fun n => { val := (0, n), property := (_ : (0, n) ∈ ker (LinearMap.fst R M M₂)) }) (AddHom.toFun { toAddHom := { toFun := fun x => (↑x).snd, map_add' := (_ : ∀ (a a_1 : { x // x ∈ snd R M M₂ }), (↑a).snd + (↑a_1).snd = (↑a).snd + (↑a_1).snd) }, map_smul' := (_ : ∀ (a : R) (a_1 : { x // x ∈ snd R M M₂ }), a • (↑a_1).snd = a • (↑a_1).snd) }.toAddHom { val := (x, y), property := hx✝ }) = { val := (x, y), property := hx✝ } [PROOFSTEP] simpa only [Subtype.mk.injEq, Prod.mk.injEq, and_true] using hx.symm [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q : Submodule R M₂ ⊢ Function.RightInverse (fun n => { val := (0, n), property := (_ : (0, n) ∈ ker (LinearMap.fst R M M₂)) }) { toAddHom := { toFun := fun x => (↑x).snd, map_add' := (_ : ∀ (a a_1 : { x // x ∈ snd R M M₂ }), (↑a).snd + (↑a_1).snd = (↑a).snd + (↑a_1).snd) }, map_smul' := (_ : ∀ (a : R) (a_1 : { x // x ∈ snd R M M₂ }), a • (↑a_1).snd = a • (↑a_1).snd) }.toAddHom.toFun [PROOFSTEP] rintro x [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q : Submodule R M₂ x : M₂ ⊢ AddHom.toFun { toAddHom := { toFun := fun x => (↑x).snd, map_add' := (_ : ∀ (a a_1 : { x // x ∈ snd R M M₂ }), (↑a).snd + (↑a_1).snd = (↑a).snd + (↑a_1).snd) }, map_smul' := (_ : ∀ (a : R) (a_1 : { x // x ∈ snd R M M₂ }), a • (↑a_1).snd = a • (↑a_1).snd) }.toAddHom ((fun n => { val := (0, n), property := (_ : (0, n) ∈ ker (LinearMap.fst R M M₂)) }) x) = x [PROOFSTEP] rfl [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q : Submodule R M₂ ⊢ map (LinearMap.fst R M M₂) (snd R M M₂) = ⊥ [PROOFSTEP] rw [eq_bot_iff] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q : Submodule R M₂ ⊢ map (LinearMap.fst R M M₂) (snd R M M₂) ≤ ⊥ [PROOFSTEP] intro x [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q : Submodule R M₂ x : M ⊢ x ∈ map (LinearMap.fst R M M₂) (snd R M M₂) → x ∈ ⊥ [PROOFSTEP] simp only [snd, comap_bot, mem_map, mem_ker, fst_apply, eq_comm, Prod.exists, exists_eq_left, exists_const, mem_bot, imp_self] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q : Submodule R M₂ ⊢ map (LinearMap.snd R M M₂) (snd R M M₂) = ⊤ [PROOFSTEP] rw [eq_top_iff] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q : Submodule R M₂ ⊢ ⊤ ≤ map (LinearMap.snd R M M₂) (snd R M M₂) [PROOFSTEP] rintro x - [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q : Submodule R M₂ x : M₂ ⊢ x ∈ map (LinearMap.snd R M M₂) (snd R M M₂) [PROOFSTEP] simp only [snd, comap_bot, mem_map, mem_ker, snd_apply, fst_apply, Prod.exists, exists_eq_right, exists_eq] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q : Submodule R M₂ ⊢ fst R M M₂ ⊔ snd R M M₂ = ⊤ [PROOFSTEP] rw [eq_top_iff] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q : Submodule R M₂ ⊢ ⊤ ≤ fst R M M₂ ⊔ snd R M M₂ [PROOFSTEP] rintro ⟨m, n⟩ - [GOAL] case mk R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q : Submodule R M₂ m : M n : M₂ ⊢ (m, n) ∈ fst R M M₂ ⊔ snd R M M₂ [PROOFSTEP] rw [show (m, n) = (m, 0) + (0, n) by simp] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q : Submodule R M₂ m : M n : M₂ ⊢ (m, n) = (m, 0) + (0, n) [PROOFSTEP] simp [GOAL] case mk R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q : Submodule R M₂ m : M n : M₂ ⊢ (m, 0) + (0, n) ∈ fst R M M₂ ⊔ snd R M M₂ [PROOFSTEP] apply Submodule.add_mem (Submodule.fst R M M₂ ⊔ Submodule.snd R M M₂) [GOAL] case mk.h₁ R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q : Submodule R M₂ m : M n : M₂ ⊢ (m, 0) ∈ fst R M M₂ ⊔ snd R M M₂ [PROOFSTEP] exact Submodule.mem_sup_left (Submodule.mem_comap.mpr (by simp)) [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q : Submodule R M₂ m : M n : M₂ ⊢ ↑(LinearMap.snd R M M₂) (m, 0) ∈ ⊥ [PROOFSTEP] simp [GOAL] case mk.h₂ R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q : Submodule R M₂ m : M n : M₂ ⊢ (0, n) ∈ fst R M M₂ ⊔ snd R M M₂ [PROOFSTEP] exact Submodule.mem_sup_right (Submodule.mem_comap.mpr (by simp)) [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q : Submodule R M₂ m : M n : M₂ ⊢ ↑(LinearMap.fst R M M₂) (0, n) ∈ ⊥ [PROOFSTEP] simp [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q : Submodule R M₂ ⊢ fst R M M₂ ⊓ snd R M M₂ = ⊥ [PROOFSTEP] rw [eq_bot_iff] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q : Submodule R M₂ ⊢ fst R M M₂ ⊓ snd R M M₂ ≤ ⊥ [PROOFSTEP] rintro ⟨x, y⟩ [GOAL] case mk R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q : Submodule R M₂ x : M y : M₂ ⊢ (x, y) ∈ fst R M M₂ ⊓ snd R M M₂ → (x, y) ∈ ⊥ [PROOFSTEP] simp only [fst, comap_bot, snd, ge_iff_le, mem_inf, mem_ker, snd_apply, fst_apply, mem_bot, Prod.mk_eq_zero, and_comm, imp_self] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q✝ : Submodule R M₂ p₁ : Submodule R M p₂ : Submodule R M₂ q : Submodule R (M × M₂) ⊢ q ≤ prod p₁ p₂ ↔ map (LinearMap.fst R M M₂) q ≤ p₁ ∧ map (LinearMap.snd R M M₂) q ≤ p₂ [PROOFSTEP] constructor [GOAL] case mp R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q✝ : Submodule R M₂ p₁ : Submodule R M p₂ : Submodule R M₂ q : Submodule R (M × M₂) ⊢ q ≤ prod p₁ p₂ → map (LinearMap.fst R M M₂) q ≤ p₁ ∧ map (LinearMap.snd R M M₂) q ≤ p₂ [PROOFSTEP] intro h [GOAL] case mp R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q✝ : Submodule R M₂ p₁ : Submodule R M p₂ : Submodule R M₂ q : Submodule R (M × M₂) h : q ≤ prod p₁ p₂ ⊢ map (LinearMap.fst R M M₂) q ≤ p₁ ∧ map (LinearMap.snd R M M₂) q ≤ p₂ [PROOFSTEP] constructor [GOAL] case mp.left R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q✝ : Submodule R M₂ p₁ : Submodule R M p₂ : Submodule R M₂ q : Submodule R (M × M₂) h : q ≤ prod p₁ p₂ ⊢ map (LinearMap.fst R M M₂) q ≤ p₁ [PROOFSTEP] rintro x ⟨⟨y1, y2⟩, ⟨hy1, rfl⟩⟩ [GOAL] case mp.left.intro.mk.intro R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q✝ : Submodule R M₂ p₁ : Submodule R M p₂ : Submodule R M₂ q : Submodule R (M × M₂) h : q ≤ prod p₁ p₂ y1 : M y2 : M₂ hy1 : (y1, y2) ∈ ↑q ⊢ ↑(LinearMap.fst R M M₂) (y1, y2) ∈ p₁ [PROOFSTEP] exact (h hy1).1 [GOAL] case mp.right R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q✝ : Submodule R M₂ p₁ : Submodule R M p₂ : Submodule R M₂ q : Submodule R (M × M₂) h : q ≤ prod p₁ p₂ ⊢ map (LinearMap.snd R M M₂) q ≤ p₂ [PROOFSTEP] rintro x ⟨⟨y1, y2⟩, ⟨hy1, rfl⟩⟩ [GOAL] case mp.right.intro.mk.intro R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q✝ : Submodule R M₂ p₁ : Submodule R M p₂ : Submodule R M₂ q : Submodule R (M × M₂) h : q ≤ prod p₁ p₂ y1 : M y2 : M₂ hy1 : (y1, y2) ∈ ↑q ⊢ ↑(LinearMap.snd R M M₂) (y1, y2) ∈ p₂ [PROOFSTEP] exact (h hy1).2 [GOAL] case mpr R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q✝ : Submodule R M₂ p₁ : Submodule R M p₂ : Submodule R M₂ q : Submodule R (M × M₂) ⊢ map (LinearMap.fst R M M₂) q ≤ p₁ ∧ map (LinearMap.snd R M M₂) q ≤ p₂ → q ≤ prod p₁ p₂ [PROOFSTEP] rintro ⟨hH, hK⟩ ⟨x1, x2⟩ h [GOAL] case mpr.intro.mk R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q✝ : Submodule R M₂ p₁ : Submodule R M p₂ : Submodule R M₂ q : Submodule R (M × M₂) hH : map (LinearMap.fst R M M₂) q ≤ p₁ hK : map (LinearMap.snd R M M₂) q ≤ p₂ x1 : M x2 : M₂ h : (x1, x2) ∈ q ⊢ (x1, x2) ∈ prod p₁ p₂ [PROOFSTEP] exact ⟨hH ⟨_, h, rfl⟩, hK ⟨_, h, rfl⟩⟩ [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q✝ : Submodule R M₂ p₁ : Submodule R M p₂ : Submodule R M₂ q : Submodule R (M × M₂) ⊢ prod p₁ p₂ ≤ q ↔ map (inl R M M₂) p₁ ≤ q ∧ map (inr R M M₂) p₂ ≤ q [PROOFSTEP] constructor [GOAL] case mp R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q✝ : Submodule R M₂ p₁ : Submodule R M p₂ : Submodule R M₂ q : Submodule R (M × M₂) ⊢ prod p₁ p₂ ≤ q → map (inl R M M₂) p₁ ≤ q ∧ map (inr R M M₂) p₂ ≤ q [PROOFSTEP] intro h [GOAL] case mp R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q✝ : Submodule R M₂ p₁ : Submodule R M p₂ : Submodule R M₂ q : Submodule R (M × M₂) h : prod p₁ p₂ ≤ q ⊢ map (inl R M M₂) p₁ ≤ q ∧ map (inr R M M₂) p₂ ≤ q [PROOFSTEP] constructor [GOAL] case mp.left R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q✝ : Submodule R M₂ p₁ : Submodule R M p₂ : Submodule R M₂ q : Submodule R (M × M₂) h : prod p₁ p₂ ≤ q ⊢ map (inl R M M₂) p₁ ≤ q [PROOFSTEP] rintro _ ⟨x, hx, rfl⟩ [GOAL] case mp.left.intro.intro R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q✝ : Submodule R M₂ p₁ : Submodule R M p₂ : Submodule R M₂ q : Submodule R (M × M₂) h : prod p₁ p₂ ≤ q x : M hx : x ∈ ↑p₁ ⊢ ↑(inl R M M₂) x ∈ q [PROOFSTEP] apply h [GOAL] case mp.left.intro.intro.a R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q✝ : Submodule R M₂ p₁ : Submodule R M p₂ : Submodule R M₂ q : Submodule R (M × M₂) h : prod p₁ p₂ ≤ q x : M hx : x ∈ ↑p₁ ⊢ ↑(inl R M M₂) x ∈ prod p₁ p₂ [PROOFSTEP] exact ⟨hx, zero_mem p₂⟩ [GOAL] case mp.right R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q✝ : Submodule R M₂ p₁ : Submodule R M p₂ : Submodule R M₂ q : Submodule R (M × M₂) h : prod p₁ p₂ ≤ q ⊢ map (inr R M M₂) p₂ ≤ q [PROOFSTEP] rintro _ ⟨x, hx, rfl⟩ [GOAL] case mp.right.intro.intro R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q✝ : Submodule R M₂ p₁ : Submodule R M p₂ : Submodule R M₂ q : Submodule R (M × M₂) h : prod p₁ p₂ ≤ q x : M₂ hx : x ∈ ↑p₂ ⊢ ↑(inr R M M₂) x ∈ q [PROOFSTEP] apply h [GOAL] case mp.right.intro.intro.a R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q✝ : Submodule R M₂ p₁ : Submodule R M p₂ : Submodule R M₂ q : Submodule R (M × M₂) h : prod p₁ p₂ ≤ q x : M₂ hx : x ∈ ↑p₂ ⊢ ↑(inr R M M₂) x ∈ prod p₁ p₂ [PROOFSTEP] exact ⟨zero_mem p₁, hx⟩ [GOAL] case mpr R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q✝ : Submodule R M₂ p₁ : Submodule R M p₂ : Submodule R M₂ q : Submodule R (M × M₂) ⊢ map (inl R M M₂) p₁ ≤ q ∧ map (inr R M M₂) p₂ ≤ q → prod p₁ p₂ ≤ q [PROOFSTEP] rintro ⟨hH, hK⟩ ⟨x1, x2⟩ ⟨h1, h2⟩ [GOAL] case mpr.intro.mk.intro R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q✝ : Submodule R M₂ p₁ : Submodule R M p₂ : Submodule R M₂ q : Submodule R (M × M₂) hH : map (inl R M M₂) p₁ ≤ q hK : map (inr R M M₂) p₂ ≤ q x1 : M x2 : M₂ h1 : (x1, x2).fst ∈ ↑p₁ h2 : (x1, x2).snd ∈ ↑p₂ ⊢ (x1, x2) ∈ q [PROOFSTEP] have h1' : (LinearMap.inl R _ _) x1 ∈ q := by apply hH simpa using h1 [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q✝ : Submodule R M₂ p₁ : Submodule R M p₂ : Submodule R M₂ q : Submodule R (M × M₂) hH : map (inl R M M₂) p₁ ≤ q hK : map (inr R M M₂) p₂ ≤ q x1 : M x2 : M₂ h1 : (x1, x2).fst ∈ ↑p₁ h2 : (x1, x2).snd ∈ ↑p₂ ⊢ ↑(inl R M M₂) x1 ∈ q [PROOFSTEP] apply hH [GOAL] case a R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q✝ : Submodule R M₂ p₁ : Submodule R M p₂ : Submodule R M₂ q : Submodule R (M × M₂) hH : map (inl R M M₂) p₁ ≤ q hK : map (inr R M M₂) p₂ ≤ q x1 : M x2 : M₂ h1 : (x1, x2).fst ∈ ↑p₁ h2 : (x1, x2).snd ∈ ↑p₂ ⊢ ↑(inl R M M₂) x1 ∈ map (inl R M M₂) p₁ [PROOFSTEP] simpa using h1 [GOAL] case mpr.intro.mk.intro R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q✝ : Submodule R M₂ p₁ : Submodule R M p₂ : Submodule R M₂ q : Submodule R (M × M₂) hH : map (inl R M M₂) p₁ ≤ q hK : map (inr R M M₂) p₂ ≤ q x1 : M x2 : M₂ h1 : (x1, x2).fst ∈ ↑p₁ h2 : (x1, x2).snd ∈ ↑p₂ h1' : ↑(inl R M M₂) x1 ∈ q ⊢ (x1, x2) ∈ q [PROOFSTEP] have h2' : (LinearMap.inr R _ _) x2 ∈ q := by apply hK simpa using h2 [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q✝ : Submodule R M₂ p₁ : Submodule R M p₂ : Submodule R M₂ q : Submodule R (M × M₂) hH : map (inl R M M₂) p₁ ≤ q hK : map (inr R M M₂) p₂ ≤ q x1 : M x2 : M₂ h1 : (x1, x2).fst ∈ ↑p₁ h2 : (x1, x2).snd ∈ ↑p₂ h1' : ↑(inl R M M₂) x1 ∈ q ⊢ ↑(inr R M M₂) x2 ∈ q [PROOFSTEP] apply hK [GOAL] case a R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q✝ : Submodule R M₂ p₁ : Submodule R M p₂ : Submodule R M₂ q : Submodule R (M × M₂) hH : map (inl R M M₂) p₁ ≤ q hK : map (inr R M M₂) p₂ ≤ q x1 : M x2 : M₂ h1 : (x1, x2).fst ∈ ↑p₁ h2 : (x1, x2).snd ∈ ↑p₂ h1' : ↑(inl R M M₂) x1 ∈ q ⊢ ↑(inr R M M₂) x2 ∈ map (inr R M M₂) p₂ [PROOFSTEP] simpa using h2 [GOAL] case mpr.intro.mk.intro R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q✝ : Submodule R M₂ p₁ : Submodule R M p₂ : Submodule R M₂ q : Submodule R (M × M₂) hH : map (inl R M M₂) p₁ ≤ q hK : map (inr R M M₂) p₂ ≤ q x1 : M x2 : M₂ h1 : (x1, x2).fst ∈ ↑p₁ h2 : (x1, x2).snd ∈ ↑p₂ h1' : ↑(inl R M M₂) x1 ∈ q h2' : ↑(inr R M M₂) x2 ∈ q ⊢ (x1, x2) ∈ q [PROOFSTEP] simpa using add_mem h1' h2' [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q : Submodule R M₂ p₁ : Submodule R M p₂ : Submodule R M₂ ⊢ prod p₁ p₂ = ⊥ ↔ p₁ = ⊥ ∧ p₂ = ⊥ [PROOFSTEP] simp only [eq_bot_iff, prod_le_iff, (gc_map_comap _).le_iff_le, comap_bot, ker_inl, ker_inr] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ p : Submodule R M q : Submodule R M₂ p₁ : Submodule R M p₂ : Submodule R M₂ ⊢ prod p₁ p₂ = ⊤ ↔ p₁ = ⊤ ∧ p₂ = ⊤ [PROOFSTEP] simp only [eq_top_iff, le_prod_iff, ← (gc_map_comap _).le_iff_le, map_top, range_fst, range_snd] [GOAL] N : Type u_3 R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid N inst✝¹ : Module R M inst✝ : Module R N ⊢ LinearMap.comp (LinearMap.fst R N M) ↑(prodComm R M N) = LinearMap.snd R M N [PROOFSTEP] ext [GOAL] case hl.h N : Type u_3 R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid N inst✝¹ : Module R M inst✝ : Module R N x✝ : M ⊢ ↑(LinearMap.comp (LinearMap.comp (LinearMap.fst R N M) ↑(prodComm R M N)) (LinearMap.inl R M N)) x✝ = ↑(LinearMap.comp (LinearMap.snd R M N) (LinearMap.inl R M N)) x✝ [PROOFSTEP] simp [GOAL] case hr.h N : Type u_3 R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid N inst✝¹ : Module R M inst✝ : Module R N x✝ : N ⊢ ↑(LinearMap.comp (LinearMap.comp (LinearMap.fst R N M) ↑(prodComm R M N)) (LinearMap.inr R M N)) x✝ = ↑(LinearMap.comp (LinearMap.snd R M N) (LinearMap.inr R M N)) x✝ [PROOFSTEP] simp [GOAL] N : Type u_3 R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid N inst✝¹ : Module R M inst✝ : Module R N ⊢ LinearMap.comp (LinearMap.snd R N M) ↑(prodComm R M N) = LinearMap.fst R M N [PROOFSTEP] ext [GOAL] case hl.h N : Type u_3 R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid N inst✝¹ : Module R M inst✝ : Module R N x✝ : M ⊢ ↑(LinearMap.comp (LinearMap.comp (LinearMap.snd R N M) ↑(prodComm R M N)) (LinearMap.inl R M N)) x✝ = ↑(LinearMap.comp (LinearMap.fst R M N) (LinearMap.inl R M N)) x✝ [PROOFSTEP] simp [GOAL] case hr.h N : Type u_3 R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid N inst✝¹ : Module R M inst✝ : Module R N x✝ : N ⊢ ↑(LinearMap.comp (LinearMap.comp (LinearMap.snd R N M) ↑(prodComm R M N)) (LinearMap.inr R M N)) x✝ = ↑(LinearMap.comp (LinearMap.fst R M N) (LinearMap.inr R M N)) x✝ [PROOFSTEP] simp [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : AddCommMonoid M₃ inst✝ : AddCommGroup M₄ module_M : Module R M module_M₂ : Module R M₂ module_M₃ : Module R M₃ module_M₄ : Module R M₄ e₁ : M ≃ₗ[R] M₂ e₂ : M₃ ≃ₗ[R] M₄ f : M →ₗ[R] M₄ src✝ : M × M₃ →ₗ[R] M₂ × M₄ := LinearMap.prod (LinearMap.comp (↑e₁) (LinearMap.fst R M M₃)) (LinearMap.comp (↑e₂) (LinearMap.snd R M M₃) + LinearMap.comp f (LinearMap.fst R M M₃)) p : M × M₃ ⊢ (fun p => (↑(symm e₁) p.fst, ↑(symm e₂) (p.snd - ↑f (↑(symm e₁) p.fst)))) (AddHom.toFun { toAddHom := src✝.toAddHom, map_smul' := (_ : ∀ (r : R) (x : M × M₃), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom p) = p [PROOFSTEP] simp [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : AddCommMonoid M₃ inst✝ : AddCommGroup M₄ module_M : Module R M module_M₂ : Module R M₂ module_M₃ : Module R M₃ module_M₄ : Module R M₄ e₁ : M ≃ₗ[R] M₂ e₂ : M₃ ≃ₗ[R] M₄ f : M →ₗ[R] M₄ src✝ : M × M₃ →ₗ[R] M₂ × M₄ := LinearMap.prod (LinearMap.comp (↑e₁) (LinearMap.fst R M M₃)) (LinearMap.comp (↑e₂) (LinearMap.snd R M M₃) + LinearMap.comp f (LinearMap.fst R M M₃)) p : M₂ × M₄ ⊢ AddHom.toFun { toAddHom := src✝.toAddHom, map_smul' := (_ : ∀ (r : R) (x : M × M₃), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom ((fun p => (↑(symm e₁) p.fst, ↑(symm e₂) (p.snd - ↑f (↑(symm e₁) p.fst)))) p) = p [PROOFSTEP] simp [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M₂ inst✝³ : AddCommGroup M₃ inst✝² : Module R M inst✝¹ : Module R M₂ inst✝ : Module R M₃ f : M →ₗ[R] M₂ g : M →ₗ[R] M₃ h : ker f ⊔ ker g = ⊤ ⊢ range (prod f g) = Submodule.prod (range f) (range g) [PROOFSTEP] refine' le_antisymm (f.range_prod_le g) _ [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M₂ inst✝³ : AddCommGroup M₃ inst✝² : Module R M inst✝¹ : Module R M₂ inst✝ : Module R M₃ f : M →ₗ[R] M₂ g : M →ₗ[R] M₃ h : ker f ⊔ ker g = ⊤ ⊢ Submodule.prod (range f) (range g) ≤ range (prod f g) [PROOFSTEP] simp only [SetLike.le_def, prod_apply, mem_range, SetLike.mem_coe, mem_prod, exists_imp, and_imp, Prod.forall, Pi.prod] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M₂ inst✝³ : AddCommGroup M₃ inst✝² : Module R M inst✝¹ : Module R M₂ inst✝ : Module R M₃ f : M →ₗ[R] M₂ g : M →ₗ[R] M₃ h : ker f ⊔ ker g = ⊤ ⊢ ∀ (a : M₂) (b : M₃) (x : M), ↑f x = a → ∀ (x : M), ↑g x = b → ∃ y, (↑f y, ↑g y) = (a, b) [PROOFSTEP] rintro _ _ x rfl y rfl [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M₂ inst✝³ : AddCommGroup M₃ inst✝² : Module R M inst✝¹ : Module R M₂ inst✝ : Module R M₃ f : M →ₗ[R] M₂ g : M →ₗ[R] M₃ h : ker f ⊔ ker g = ⊤ x y : M ⊢ ∃ y_1, (↑f y_1, ↑g y_1) = (↑f x, ↑g y) [PROOFSTEP] simp only [Prod.mk.inj_iff, ← sub_mem_ker_iff] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M₂ inst✝³ : AddCommGroup M₃ inst✝² : Module R M inst✝¹ : Module R M₂ inst✝ : Module R M₃ f : M →ₗ[R] M₂ g : M →ₗ[R] M₃ h : ker f ⊔ ker g = ⊤ x y : M ⊢ ∃ y_1, y_1 - x ∈ ker f ∧ y_1 - y ∈ ker g [PROOFSTEP] have : y - x ∈ ker f ⊔ ker g := by simp only [h, mem_top] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M₂ inst✝³ : AddCommGroup M₃ inst✝² : Module R M inst✝¹ : Module R M₂ inst✝ : Module R M₃ f : M →ₗ[R] M₂ g : M →ₗ[R] M₃ h : ker f ⊔ ker g = ⊤ x y : M ⊢ y - x ∈ ker f ⊔ ker g [PROOFSTEP] simp only [h, mem_top] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M₂ inst✝³ : AddCommGroup M₃ inst✝² : Module R M inst✝¹ : Module R M₂ inst✝ : Module R M₃ f : M →ₗ[R] M₂ g : M →ₗ[R] M₃ h : ker f ⊔ ker g = ⊤ x y : M this : y - x ∈ ker f ⊔ ker g ⊢ ∃ y_1, y_1 - x ∈ ker f ∧ y_1 - y ∈ ker g [PROOFSTEP] rcases mem_sup.1 this with ⟨x', hx', y', hy', H⟩ [GOAL] case intro.intro.intro.intro R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M₂ inst✝³ : AddCommGroup M₃ inst✝² : Module R M inst✝¹ : Module R M₂ inst✝ : Module R M₃ f : M →ₗ[R] M₂ g : M →ₗ[R] M₃ h : ker f ⊔ ker g = ⊤ x y : M this : y - x ∈ ker f ⊔ ker g x' : M hx' : x' ∈ ker f y' : M hy' : y' ∈ ker g H : x' + y' = y - x ⊢ ∃ y_1, y_1 - x ∈ ker f ∧ y_1 - y ∈ ker g [PROOFSTEP] refine' ⟨x' + x, _, _⟩ [GOAL] case intro.intro.intro.intro.refine'_1 R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M₂ inst✝³ : AddCommGroup M₃ inst✝² : Module R M inst✝¹ : Module R M₂ inst✝ : Module R M₃ f : M →ₗ[R] M₂ g : M →ₗ[R] M₃ h : ker f ⊔ ker g = ⊤ x y : M this : y - x ∈ ker f ⊔ ker g x' : M hx' : x' ∈ ker f y' : M hy' : y' ∈ ker g H : x' + y' = y - x ⊢ x' + x - x ∈ ker f [PROOFSTEP] rwa [add_sub_cancel] [GOAL] case intro.intro.intro.intro.refine'_2 R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M₂ inst✝³ : AddCommGroup M₃ inst✝² : Module R M inst✝¹ : Module R M₂ inst✝ : Module R M₃ f : M →ₗ[R] M₂ g : M →ₗ[R] M₃ h : ker f ⊔ ker g = ⊤ x y : M this : y - x ∈ ker f ⊔ ker g x' : M hx' : x' ∈ ker f y' : M hy' : y' ∈ ker g H : x' + y' = y - x ⊢ x' + x - y ∈ ker g [PROOFSTEP] simp [← eq_sub_iff_add_eq.1 H, map_add, add_left_inj, self_eq_add_right, mem_ker.mp hy'] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Ring R N : Type u_3 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : AddCommGroup N inst✝ : Module R N f : M × N →ₗ[R] M i : Injective ↑f n : ℕ ⊢ ↑OrderDual.toDual (tunnel' f i n).fst ≤ ↑OrderDual.toDual (tunnel' f i (n + 1)).fst [PROOFSTEP] dsimp [tunnel', tunnelAux] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Ring R N : Type u_3 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : AddCommGroup N inst✝ : Module R N f : M × N →ₗ[R] M i : Injective ↑f n : ℕ ⊢ ↑OrderDual.toDual (tunnel' f i n).fst ≤ ↑OrderDual.toDual (Submodule.map (comp (comp (Submodule.subtype (tunnel' f i n).fst) ↑(LinearEquiv.symm (tunnel' f i n).snd)) f) (Submodule.fst R M N)) [PROOFSTEP] rw [Submodule.map_comp, Submodule.map_comp] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Ring R N : Type u_3 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : AddCommGroup N inst✝ : Module R N f : M × N →ₗ[R] M i : Injective ↑f n : ℕ ⊢ ↑OrderDual.toDual (tunnel' f i n).fst ≤ ↑OrderDual.toDual (Submodule.map (Submodule.subtype (tunnel' f i n).fst) (Submodule.map (↑(LinearEquiv.symm (tunnel' f i n).snd)) (Submodule.map f (Submodule.fst R M N)))) [PROOFSTEP] apply Submodule.map_subtype_le [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Ring R N : Type u_3 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : AddCommGroup N inst✝ : Module R N f : M × N →ₗ[R] M i : Injective ↑f n : ℕ ⊢ tailing f i n ≤ ↑OrderDual.ofDual (↑(tunnel f i) n) [PROOFSTEP] dsimp [tailing, tunnelAux] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Ring R N : Type u_3 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : AddCommGroup N inst✝ : Module R N f : M × N →ₗ[R] M i : Injective ↑f n : ℕ ⊢ Submodule.map (comp (comp (Submodule.subtype (tunnel' f i n).fst) ↑(LinearEquiv.symm (tunnel' f i n).snd)) f) (Submodule.snd R M N) ≤ ↑OrderDual.ofDual (↑(tunnel f i) n) [PROOFSTEP] rw [Submodule.map_comp, Submodule.map_comp] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Ring R N : Type u_3 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : AddCommGroup N inst✝ : Module R N f : M × N →ₗ[R] M i : Injective ↑f n : ℕ ⊢ Submodule.map (Submodule.subtype (tunnel' f i n).fst) (Submodule.map (↑(LinearEquiv.symm (tunnel' f i n).snd)) (Submodule.map f (Submodule.snd R M N))) ≤ ↑OrderDual.ofDual (↑(tunnel f i) n) [PROOFSTEP] apply Submodule.map_subtype_le [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Ring R N : Type u_3 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : AddCommGroup N inst✝ : Module R N f : M × N →ₗ[R] M i : Injective ↑f n : ℕ ⊢ Disjoint (tailing f i n) (↑OrderDual.ofDual (↑(tunnel f i) (n + 1))) [PROOFSTEP] rw [disjoint_iff] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Ring R N : Type u_3 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : AddCommGroup N inst✝ : Module R N f : M × N →ₗ[R] M i : Injective ↑f n : ℕ ⊢ tailing f i n ⊓ ↑OrderDual.ofDual (↑(tunnel f i) (n + 1)) = ⊥ [PROOFSTEP] dsimp [tailing, tunnel, tunnel'] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Ring R N : Type u_3 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : AddCommGroup N inst✝ : Module R N f : M × N →ₗ[R] M i : Injective ↑f n : ℕ ⊢ Submodule.map (tunnelAux f (tunnel' f i n)) (Submodule.snd R M N) ⊓ Submodule.map (tunnelAux f (tunnel' f i n)) (Submodule.fst R M N) = ⊥ [PROOFSTEP] erw [Submodule.map_inf_eq_map_inf_comap, Submodule.comap_map_eq_of_injective (tunnelAux_injective _ i _), inf_comm, Submodule.fst_inf_snd, Submodule.map_bot] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Ring R N : Type u_3 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : AddCommGroup N inst✝ : Module R N f : M × N →ₗ[R] M i : Injective ↑f n : ℕ ⊢ tailing f i n ⊔ ↑OrderDual.ofDual (↑(tunnel f i) (n + 1)) ≤ ↑OrderDual.ofDual (↑(tunnel f i) n) [PROOFSTEP] dsimp [tailing, tunnel, tunnel', tunnelAux] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Ring R N : Type u_3 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : AddCommGroup N inst✝ : Module R N f : M × N →ₗ[R] M i : Injective ↑f n : ℕ ⊢ Submodule.map (comp (comp (Submodule.subtype (tunnel' f i n).fst) ↑(LinearEquiv.symm (tunnel' f i n).snd)) f) (Submodule.snd R M N) ⊔ Submodule.map (comp (comp (Submodule.subtype (tunnel' f i n).fst) ↑(LinearEquiv.symm (tunnel' f i n).snd)) f) (Submodule.fst R M N) ≤ (tunnel' f i n).fst [PROOFSTEP] erw [← Submodule.map_sup, sup_comm, Submodule.fst_sup_snd, Submodule.map_comp, Submodule.map_comp] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Ring R N : Type u_3 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : AddCommGroup N inst✝ : Module R N f : M × N →ₗ[R] M i : Injective ↑f n : ℕ ⊢ Submodule.map (Submodule.subtype (tunnel' f i n).fst) (Submodule.map (↑(LinearEquiv.symm (tunnel' f i n).snd)) (Submodule.map f ⊤)) ≤ (tunnel' f i n).fst [PROOFSTEP] apply Submodule.map_subtype_le [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Ring R N : Type u_3 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : AddCommGroup N inst✝ : Module R N f : M × N →ₗ[R] M i : Injective ↑f ⊢ tailings f i 0 = tailing f i 0 [PROOFSTEP] simp [tailings] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Ring R N : Type u_3 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : AddCommGroup N inst✝ : Module R N f : M × N →ₗ[R] M i : Injective ↑f n : ℕ ⊢ tailings f i (n + 1) = tailings f i n ⊔ tailing f i (n + 1) [PROOFSTEP] simp [tailings] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Ring R N : Type u_3 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : AddCommGroup N inst✝ : Module R N f : M × N →ₗ[R] M i : Injective ↑f n : ℕ ⊢ Disjoint (tailings f i n) (↑OrderDual.ofDual (↑(tunnel f i) (n + 1))) [PROOFSTEP] induction' n with n ih [GOAL] case zero R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Ring R N : Type u_3 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : AddCommGroup N inst✝ : Module R N f : M × N →ₗ[R] M i : Injective ↑f ⊢ Disjoint (tailings f i Nat.zero) (↑OrderDual.ofDual (↑(tunnel f i) (Nat.zero + 1))) [PROOFSTEP] simp only [tailings_zero] [GOAL] case zero R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Ring R N : Type u_3 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : AddCommGroup N inst✝ : Module R N f : M × N →ₗ[R] M i : Injective ↑f ⊢ Disjoint (tailing f i 0) (↑OrderDual.ofDual (↑(tunnel f i) (Nat.zero + 1))) [PROOFSTEP] apply tailing_disjoint_tunnel_succ [GOAL] case succ R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Ring R N : Type u_3 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : AddCommGroup N inst✝ : Module R N f : M × N →ₗ[R] M i : Injective ↑f n : ℕ ih : Disjoint (tailings f i n) (↑OrderDual.ofDual (↑(tunnel f i) (n + 1))) ⊢ Disjoint (tailings f i (Nat.succ n)) (↑OrderDual.ofDual (↑(tunnel f i) (Nat.succ n + 1))) [PROOFSTEP] simp only [tailings_succ] [GOAL] case succ R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Ring R N : Type u_3 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : AddCommGroup N inst✝ : Module R N f : M × N →ₗ[R] M i : Injective ↑f n : ℕ ih : Disjoint (tailings f i n) (↑OrderDual.ofDual (↑(tunnel f i) (n + 1))) ⊢ Disjoint (tailings f i n ⊔ tailing f i (n + 1)) (↑OrderDual.ofDual (↑(tunnel f i) (Nat.succ n + 1))) [PROOFSTEP] refine' Disjoint.disjoint_sup_left_of_disjoint_sup_right _ _ [GOAL] case succ.refine'_1 R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Ring R N : Type u_3 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : AddCommGroup N inst✝ : Module R N f : M × N →ₗ[R] M i : Injective ↑f n : ℕ ih : Disjoint (tailings f i n) (↑OrderDual.ofDual (↑(tunnel f i) (n + 1))) ⊢ Disjoint (tailing f i (n + 1)) (↑OrderDual.ofDual (↑(tunnel f i) (Nat.succ n + 1))) case succ.refine'_2 R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Ring R N : Type u_3 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : AddCommGroup N inst✝ : Module R N f : M × N →ₗ[R] M i : Injective ↑f n : ℕ ih : Disjoint (tailings f i n) (↑OrderDual.ofDual (↑(tunnel f i) (n + 1))) ⊢ Disjoint (tailings f i n) (tailing f i (n + 1) ⊔ ↑OrderDual.ofDual (↑(tunnel f i) (Nat.succ n + 1))) [PROOFSTEP] apply tailing_disjoint_tunnel_succ [GOAL] case succ.refine'_2 R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Ring R N : Type u_3 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : AddCommGroup N inst✝ : Module R N f : M × N →ₗ[R] M i : Injective ↑f n : ℕ ih : Disjoint (tailings f i n) (↑OrderDual.ofDual (↑(tunnel f i) (n + 1))) ⊢ Disjoint (tailings f i n) (tailing f i (n + 1) ⊔ ↑OrderDual.ofDual (↑(tunnel f i) (Nat.succ n + 1))) [PROOFSTEP] apply Disjoint.mono_right _ ih [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁴ : Ring R N : Type u_3 inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : AddCommGroup N inst✝ : Module R N f : M × N →ₗ[R] M i : Injective ↑f n : ℕ ih : Disjoint (tailings f i n) (↑OrderDual.ofDual (↑(tunnel f i) (n + 1))) ⊢ tailing f i (n + 1) ⊔ ↑OrderDual.ofDual (↑(tunnel f i) (Nat.succ n + 1)) ≤ ↑OrderDual.ofDual (↑(tunnel f i) (n + 1)) [PROOFSTEP] apply tailing_sup_tunnel_succ_le_tunnel [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁸ : Semiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommGroup M₃ inst✝⁴ : AddCommGroup M₄ inst✝³ : Module R M inst✝² : Module R M₂ inst✝¹ : Module R M₃ inst✝ : Module R M₄ f : M →ₗ[R] M₂ g : M₃ →ₗ[R] M₄ a✝ b✝ : M × M₂ ha : a✝.snd = ↑f a✝.fst hb : b✝.snd = ↑f b✝.fst ⊢ a✝ + b✝ ∈ {p | p.snd = ↑f p.fst} [PROOFSTEP] change _ + _ = f (_ + _) [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁸ : Semiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommGroup M₃ inst✝⁴ : AddCommGroup M₄ inst✝³ : Module R M inst✝² : Module R M₂ inst✝¹ : Module R M₃ inst✝ : Module R M₄ f : M →ₗ[R] M₂ g : M₃ →ₗ[R] M₄ a✝ b✝ : M × M₂ ha : a✝.snd = ↑f a✝.fst hb : b✝.snd = ↑f b✝.fst ⊢ a✝.snd + b✝.snd = ↑f (a✝.fst + b✝.fst) [PROOFSTEP] rw [map_add, ha, hb] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁸ : Semiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommGroup M₃ inst✝⁴ : AddCommGroup M₄ inst✝³ : Module R M inst✝² : Module R M₂ inst✝¹ : Module R M₃ inst✝ : Module R M₄ f : M →ₗ[R] M₂ g : M₃ →ₗ[R] M₄ c : R x : M × M₂ hx : x.snd = ↑f x.fst ⊢ c • x ∈ { toAddSubsemigroup := { carrier := {p | p.snd = ↑f p.fst}, add_mem' := (_ : ∀ {a b : M × M₂}, a.snd = ↑f a.fst → b.snd = ↑f b.fst → a.snd + b.snd = ↑f (a.fst + b.fst)) }, zero_mem' := (_ : 0.snd = ↑f 0.fst) }.toAddSubsemigroup.carrier [PROOFSTEP] change _ • _ = f (_ • _) [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁸ : Semiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommGroup M₃ inst✝⁴ : AddCommGroup M₄ inst✝³ : Module R M inst✝² : Module R M₂ inst✝¹ : Module R M₃ inst✝ : Module R M₄ f : M →ₗ[R] M₂ g : M₃ →ₗ[R] M₄ c : R x : M × M₂ hx : x.snd = ↑f x.fst ⊢ c • x.snd = ↑f (c • x.fst) [PROOFSTEP] rw [map_smul, hx] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁸ : Semiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommGroup M₃ inst✝⁴ : AddCommGroup M₄ inst✝³ : Module R M inst✝² : Module R M₂ inst✝¹ : Module R M₃ inst✝ : Module R M₄ f : M →ₗ[R] M₂ g : M₃ →ₗ[R] M₄ ⊢ graph g = ker (coprod (-g) id) [PROOFSTEP] ext x [GOAL] case h R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁸ : Semiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommGroup M₃ inst✝⁴ : AddCommGroup M₄ inst✝³ : Module R M inst✝² : Module R M₂ inst✝¹ : Module R M₃ inst✝ : Module R M₄ f : M →ₗ[R] M₂ g : M₃ →ₗ[R] M₄ x : M₃ × M₄ ⊢ x ∈ graph g ↔ x ∈ ker (coprod (-g) id) [PROOFSTEP] change _ = _ ↔ -g x.1 + x.2 = _ [GOAL] case h R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁸ : Semiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommGroup M₃ inst✝⁴ : AddCommGroup M₄ inst✝³ : Module R M inst✝² : Module R M₂ inst✝¹ : Module R M₃ inst✝ : Module R M₄ f : M →ₗ[R] M₂ g : M₃ →ₗ[R] M₄ x : M₃ × M₄ ⊢ x.snd = ↑g x.fst ↔ -↑g x.fst + x.snd = 0 [PROOFSTEP] rw [add_comm, add_neg_eq_zero] [GOAL] R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁸ : Semiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommGroup M₃ inst✝⁴ : AddCommGroup M₄ inst✝³ : Module R M inst✝² : Module R M₂ inst✝¹ : Module R M₃ inst✝ : Module R M₄ f : M →ₗ[R] M₂ g : M₃ →ₗ[R] M₄ ⊢ graph f = range (prod id f) [PROOFSTEP] ext x [GOAL] case h R : Type u K : Type u' M : Type v V : Type v' M₂ : Type w V₂ : Type w' M₃ : Type y V₃ : Type y' M₄ : Type z ι : Type x M₅ : Type u_1 M₆ : Type u_2 inst✝⁸ : Semiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommGroup M₃ inst✝⁴ : AddCommGroup M₄ inst✝³ : Module R M inst✝² : Module R M₂ inst✝¹ : Module R M₃ inst✝ : Module R M₄ f : M →ₗ[R] M₂ g : M₃ →ₗ[R] M₄ x : M × M₂ ⊢ x ∈ graph f ↔ x ∈ range (prod id f) [PROOFSTEP] exact ⟨fun hx => ⟨x.1, Prod.ext rfl hx.symm⟩, fun ⟨u, hu⟩ => hu ▸ rfl⟩
{"mathlib_filename": "Mathlib.LinearAlgebra.Prod", "llama_tokens": 69300}
[GOAL] ι : Type u_1 R : Type u_2 M₂ : Type u_3 M₁ : ι → Type u_4 inst✝⁹ : Finite ι inst✝⁸ : CommRing R inst✝⁷ : AddCommGroup M₂ inst✝⁶ : Module R M₂ inst✝⁵ : Module.Finite R M₂ inst✝⁴ : Module.Free R M₂ n : ℕ N : Fin n → Type u_5 inst✝³ : (i : Fin n) → AddCommGroup (N i) inst✝² : (i : Fin n) → Module R (N i) inst✝¹ : ∀ (i : Fin n), Module.Finite R (N i) inst✝ : ∀ (i : Fin n), Module.Free R (N i) ⊢ Module.Free R (MultilinearMap R N M₂) ∧ Module.Finite R (MultilinearMap R N M₂) [PROOFSTEP] induction' n with n ih [GOAL] case zero ι : Type u_1 R : Type u_2 M₂ : Type u_3 M₁ : ι → Type u_4 inst✝¹³ : Finite ι inst✝¹² : CommRing R inst✝¹¹ : AddCommGroup M₂ inst✝¹⁰ : Module R M₂ inst✝⁹ : Module.Finite R M₂ inst✝⁸ : Module.Free R M₂ n : ℕ N✝ : Fin n → Type u_5 inst✝⁷ : (i : Fin n) → AddCommGroup (N✝ i) inst✝⁶ : (i : Fin n) → Module R (N✝ i) inst✝⁵ : ∀ (i : Fin n), Module.Finite R (N✝ i) inst✝⁴ : ∀ (i : Fin n), Module.Free R (N✝ i) N : Fin Nat.zero → Type u_5 inst✝³ : (i : Fin Nat.zero) → AddCommGroup (N i) inst✝² : (i : Fin Nat.zero) → Module R (N i) inst✝¹ : ∀ (i : Fin Nat.zero), Module.Finite R (N i) inst✝ : ∀ (i : Fin Nat.zero), Module.Free R (N i) ⊢ Module.Free R (MultilinearMap R N M₂) ∧ Module.Finite R (MultilinearMap R N M₂) [PROOFSTEP] haveI : IsEmpty (Fin Nat.zero) := inferInstanceAs (IsEmpty (Fin 0)) [GOAL] case zero ι : Type u_1 R : Type u_2 M₂ : Type u_3 M₁ : ι → Type u_4 inst✝¹³ : Finite ι inst✝¹² : CommRing R inst✝¹¹ : AddCommGroup M₂ inst✝¹⁰ : Module R M₂ inst✝⁹ : Module.Finite R M₂ inst✝⁸ : Module.Free R M₂ n : ℕ N✝ : Fin n → Type u_5 inst✝⁷ : (i : Fin n) → AddCommGroup (N✝ i) inst✝⁶ : (i : Fin n) → Module R (N✝ i) inst✝⁵ : ∀ (i : Fin n), Module.Finite R (N✝ i) inst✝⁴ : ∀ (i : Fin n), Module.Free R (N✝ i) N : Fin Nat.zero → Type u_5 inst✝³ : (i : Fin Nat.zero) → AddCommGroup (N i) inst✝² : (i : Fin Nat.zero) → Module R (N i) inst✝¹ : ∀ (i : Fin Nat.zero), Module.Finite R (N i) inst✝ : ∀ (i : Fin Nat.zero), Module.Free R (N i) this : IsEmpty (Fin Nat.zero) ⊢ Module.Free R (MultilinearMap R N M₂) ∧ Module.Finite R (MultilinearMap R N M₂) [PROOFSTEP] exact ⟨Module.Free.of_equiv (constLinearEquivOfIsEmpty R N M₂), Module.Finite.equiv (constLinearEquivOfIsEmpty R N M₂)⟩ [GOAL] case succ ι : Type u_1 R : Type u_2 M₂ : Type u_3 M₁ : ι → Type u_4 inst✝¹³ : Finite ι inst✝¹² : CommRing R inst✝¹¹ : AddCommGroup M₂ inst✝¹⁰ : Module R M₂ inst✝⁹ : Module.Finite R M₂ inst✝⁸ : Module.Free R M₂ n✝ : ℕ N✝ : Fin n✝ → Type u_5 inst✝⁷ : (i : Fin n✝) → AddCommGroup (N✝ i) inst✝⁶ : (i : Fin n✝) → Module R (N✝ i) inst✝⁵ : ∀ (i : Fin n✝), Module.Finite R (N✝ i) inst✝⁴ : ∀ (i : Fin n✝), Module.Free R (N✝ i) n : ℕ ih : ∀ (N : Fin n → Type u_5) [inst : (i : Fin n) → AddCommGroup (N i)] [inst_1 : (i : Fin n) → Module R (N i)] [inst_2 : ∀ (i : Fin n), Module.Finite R (N i)] [inst_3 : ∀ (i : Fin n), Module.Free R (N i)], Module.Free R (MultilinearMap R N M₂) ∧ Module.Finite R (MultilinearMap R N M₂) N : Fin (Nat.succ n) → Type u_5 inst✝³ : (i : Fin (Nat.succ n)) → AddCommGroup (N i) inst✝² : (i : Fin (Nat.succ n)) → Module R (N i) inst✝¹ : ∀ (i : Fin (Nat.succ n)), Module.Finite R (N i) inst✝ : ∀ (i : Fin (Nat.succ n)), Module.Free R (N i) ⊢ Module.Free R (MultilinearMap R N M₂) ∧ Module.Finite R (MultilinearMap R N M₂) [PROOFSTEP] suffices Module.Free R (N 0 →ₗ[R] MultilinearMap R (fun i : Fin n => N i.succ) M₂) ∧ Module.Finite R (N 0 →ₗ[R] MultilinearMap R (fun i : Fin n => N i.succ) M₂) by cases this exact ⟨Module.Free.of_equiv (multilinearCurryLeftEquiv R N M₂), Module.Finite.equiv (multilinearCurryLeftEquiv R N M₂)⟩ [GOAL] ι : Type u_1 R : Type u_2 M₂ : Type u_3 M₁ : ι → Type u_4 inst✝¹³ : Finite ι inst✝¹² : CommRing R inst✝¹¹ : AddCommGroup M₂ inst✝¹⁰ : Module R M₂ inst✝⁹ : Module.Finite R M₂ inst✝⁸ : Module.Free R M₂ n✝ : ℕ N✝ : Fin n✝ → Type u_5 inst✝⁷ : (i : Fin n✝) → AddCommGroup (N✝ i) inst✝⁶ : (i : Fin n✝) → Module R (N✝ i) inst✝⁵ : ∀ (i : Fin n✝), Module.Finite R (N✝ i) inst✝⁴ : ∀ (i : Fin n✝), Module.Free R (N✝ i) n : ℕ ih : ∀ (N : Fin n → Type u_5) [inst : (i : Fin n) → AddCommGroup (N i)] [inst_1 : (i : Fin n) → Module R (N i)] [inst_2 : ∀ (i : Fin n), Module.Finite R (N i)] [inst_3 : ∀ (i : Fin n), Module.Free R (N i)], Module.Free R (MultilinearMap R N M₂) ∧ Module.Finite R (MultilinearMap R N M₂) N : Fin (Nat.succ n) → Type u_5 inst✝³ : (i : Fin (Nat.succ n)) → AddCommGroup (N i) inst✝² : (i : Fin (Nat.succ n)) → Module R (N i) inst✝¹ : ∀ (i : Fin (Nat.succ n)), Module.Finite R (N i) inst✝ : ∀ (i : Fin (Nat.succ n)), Module.Free R (N i) this : Module.Free R (N 0 →ₗ[R] MultilinearMap R (fun i => N (Fin.succ i)) M₂) ∧ Module.Finite R (N 0 →ₗ[R] MultilinearMap R (fun i => N (Fin.succ i)) M₂) ⊢ Module.Free R (MultilinearMap R N M₂) ∧ Module.Finite R (MultilinearMap R N M₂) [PROOFSTEP] cases this [GOAL] case intro ι : Type u_1 R : Type u_2 M₂ : Type u_3 M₁ : ι → Type u_4 inst✝¹³ : Finite ι inst✝¹² : CommRing R inst✝¹¹ : AddCommGroup M₂ inst✝¹⁰ : Module R M₂ inst✝⁹ : Module.Finite R M₂ inst✝⁸ : Module.Free R M₂ n✝ : ℕ N✝ : Fin n✝ → Type u_5 inst✝⁷ : (i : Fin n✝) → AddCommGroup (N✝ i) inst✝⁶ : (i : Fin n✝) → Module R (N✝ i) inst✝⁵ : ∀ (i : Fin n✝), Module.Finite R (N✝ i) inst✝⁴ : ∀ (i : Fin n✝), Module.Free R (N✝ i) n : ℕ ih : ∀ (N : Fin n → Type u_5) [inst : (i : Fin n) → AddCommGroup (N i)] [inst_1 : (i : Fin n) → Module R (N i)] [inst_2 : ∀ (i : Fin n), Module.Finite R (N i)] [inst_3 : ∀ (i : Fin n), Module.Free R (N i)], Module.Free R (MultilinearMap R N M₂) ∧ Module.Finite R (MultilinearMap R N M₂) N : Fin (Nat.succ n) → Type u_5 inst✝³ : (i : Fin (Nat.succ n)) → AddCommGroup (N i) inst✝² : (i : Fin (Nat.succ n)) → Module R (N i) inst✝¹ : ∀ (i : Fin (Nat.succ n)), Module.Finite R (N i) inst✝ : ∀ (i : Fin (Nat.succ n)), Module.Free R (N i) left✝ : Module.Free R (N 0 →ₗ[R] MultilinearMap R (fun i => N (Fin.succ i)) M₂) right✝ : Module.Finite R (N 0 →ₗ[R] MultilinearMap R (fun i => N (Fin.succ i)) M₂) ⊢ Module.Free R (MultilinearMap R N M₂) ∧ Module.Finite R (MultilinearMap R N M₂) [PROOFSTEP] exact ⟨Module.Free.of_equiv (multilinearCurryLeftEquiv R N M₂), Module.Finite.equiv (multilinearCurryLeftEquiv R N M₂)⟩ [GOAL] case succ ι : Type u_1 R : Type u_2 M₂ : Type u_3 M₁ : ι → Type u_4 inst✝¹³ : Finite ι inst✝¹² : CommRing R inst✝¹¹ : AddCommGroup M₂ inst✝¹⁰ : Module R M₂ inst✝⁹ : Module.Finite R M₂ inst✝⁸ : Module.Free R M₂ n✝ : ℕ N✝ : Fin n✝ → Type u_5 inst✝⁷ : (i : Fin n✝) → AddCommGroup (N✝ i) inst✝⁶ : (i : Fin n✝) → Module R (N✝ i) inst✝⁵ : ∀ (i : Fin n✝), Module.Finite R (N✝ i) inst✝⁴ : ∀ (i : Fin n✝), Module.Free R (N✝ i) n : ℕ ih : ∀ (N : Fin n → Type u_5) [inst : (i : Fin n) → AddCommGroup (N i)] [inst_1 : (i : Fin n) → Module R (N i)] [inst_2 : ∀ (i : Fin n), Module.Finite R (N i)] [inst_3 : ∀ (i : Fin n), Module.Free R (N i)], Module.Free R (MultilinearMap R N M₂) ∧ Module.Finite R (MultilinearMap R N M₂) N : Fin (Nat.succ n) → Type u_5 inst✝³ : (i : Fin (Nat.succ n)) → AddCommGroup (N i) inst✝² : (i : Fin (Nat.succ n)) → Module R (N i) inst✝¹ : ∀ (i : Fin (Nat.succ n)), Module.Finite R (N i) inst✝ : ∀ (i : Fin (Nat.succ n)), Module.Free R (N i) ⊢ Module.Free R (N 0 →ₗ[R] MultilinearMap R (fun i => N (Fin.succ i)) M₂) ∧ Module.Finite R (N 0 →ₗ[R] MultilinearMap R (fun i => N (Fin.succ i)) M₂) [PROOFSTEP] cases ih fun i => N i.succ [GOAL] case succ.intro ι : Type u_1 R : Type u_2 M₂ : Type u_3 M₁ : ι → Type u_4 inst✝¹³ : Finite ι inst✝¹² : CommRing R inst✝¹¹ : AddCommGroup M₂ inst✝¹⁰ : Module R M₂ inst✝⁹ : Module.Finite R M₂ inst✝⁸ : Module.Free R M₂ n✝ : ℕ N✝ : Fin n✝ → Type u_5 inst✝⁷ : (i : Fin n✝) → AddCommGroup (N✝ i) inst✝⁶ : (i : Fin n✝) → Module R (N✝ i) inst✝⁵ : ∀ (i : Fin n✝), Module.Finite R (N✝ i) inst✝⁴ : ∀ (i : Fin n✝), Module.Free R (N✝ i) n : ℕ ih : ∀ (N : Fin n → Type u_5) [inst : (i : Fin n) → AddCommGroup (N i)] [inst_1 : (i : Fin n) → Module R (N i)] [inst_2 : ∀ (i : Fin n), Module.Finite R (N i)] [inst_3 : ∀ (i : Fin n), Module.Free R (N i)], Module.Free R (MultilinearMap R N M₂) ∧ Module.Finite R (MultilinearMap R N M₂) N : Fin (Nat.succ n) → Type u_5 inst✝³ : (i : Fin (Nat.succ n)) → AddCommGroup (N i) inst✝² : (i : Fin (Nat.succ n)) → Module R (N i) inst✝¹ : ∀ (i : Fin (Nat.succ n)), Module.Finite R (N i) inst✝ : ∀ (i : Fin (Nat.succ n)), Module.Free R (N i) left✝ : Module.Free R (MultilinearMap R (fun i => N (Fin.succ i)) M₂) right✝ : Module.Finite R (MultilinearMap R (fun i => N (Fin.succ i)) M₂) ⊢ Module.Free R (N 0 →ₗ[R] MultilinearMap R (fun i => N (Fin.succ i)) M₂) ∧ Module.Finite R (N 0 →ₗ[R] MultilinearMap R (fun i => N (Fin.succ i)) M₂) [PROOFSTEP] exact ⟨Module.Free.linearMap _ _ _, Module.Finite.linearMap _ _⟩ [GOAL] ι : Type u_1 R : Type u_2 M₂ : Type u_3 M₁ : ι → Type u_4 inst✝⁹ : Finite ι inst✝⁸ : CommRing R inst✝⁷ : AddCommGroup M₂ inst✝⁶ : Module R M₂ inst✝⁵ : Module.Finite R M₂ inst✝⁴ : Module.Free R M₂ inst✝³ : (i : ι) → AddCommGroup (M₁ i) inst✝² : (i : ι) → Module R (M₁ i) inst✝¹ : ∀ (i : ι), Module.Finite R (M₁ i) inst✝ : ∀ (i : ι), Module.Free R (M₁ i) ⊢ Module.Free R (MultilinearMap R M₁ M₂) ∧ Module.Finite R (MultilinearMap R M₁ M₂) [PROOFSTEP] cases nonempty_fintype ι [GOAL] case intro ι : Type u_1 R : Type u_2 M₂ : Type u_3 M₁ : ι → Type u_4 inst✝⁹ : Finite ι inst✝⁸ : CommRing R inst✝⁷ : AddCommGroup M₂ inst✝⁶ : Module R M₂ inst✝⁵ : Module.Finite R M₂ inst✝⁴ : Module.Free R M₂ inst✝³ : (i : ι) → AddCommGroup (M₁ i) inst✝² : (i : ι) → Module R (M₁ i) inst✝¹ : ∀ (i : ι), Module.Finite R (M₁ i) inst✝ : ∀ (i : ι), Module.Free R (M₁ i) val✝ : Fintype ι ⊢ Module.Free R (MultilinearMap R M₁ M₂) ∧ Module.Finite R (MultilinearMap R M₁ M₂) [PROOFSTEP] have := @free_and_finite_fin R M₂ _ _ _ _ _ (Fintype.card ι) (fun x => M₁ ((Fintype.equivFin ι).symm x)) [GOAL] case intro ι : Type u_1 R : Type u_2 M₂ : Type u_3 M₁ : ι → Type u_4 inst✝⁹ : Finite ι inst✝⁸ : CommRing R inst✝⁷ : AddCommGroup M₂ inst✝⁶ : Module R M₂ inst✝⁵ : Module.Finite R M₂ inst✝⁴ : Module.Free R M₂ inst✝³ : (i : ι) → AddCommGroup (M₁ i) inst✝² : (i : ι) → Module R (M₁ i) inst✝¹ : ∀ (i : ι), Module.Finite R (M₁ i) inst✝ : ∀ (i : ι), Module.Free R (M₁ i) val✝ : Fintype ι this : ∀ [inst : (i : Fin (Fintype.card ι)) → AddCommGroup (M₁ (↑(Fintype.equivFin ι).symm i))] [inst_1 : (i : Fin (Fintype.card ι)) → Module R (M₁ (↑(Fintype.equivFin ι).symm i))] [inst_2 : ∀ (i : Fin (Fintype.card ι)), Module.Finite R (M₁ (↑(Fintype.equivFin ι).symm i))] [inst_3 : ∀ (i : Fin (Fintype.card ι)), Module.Free R (M₁ (↑(Fintype.equivFin ι).symm i))], Module.Free R (MultilinearMap R (fun x => M₁ (↑(Fintype.equivFin ι).symm x)) M₂) ∧ Module.Finite R (MultilinearMap R (fun x => M₁ (↑(Fintype.equivFin ι).symm x)) M₂) ⊢ Module.Free R (MultilinearMap R M₁ M₂) ∧ Module.Finite R (MultilinearMap R M₁ M₂) [PROOFSTEP] cases' this with l r [GOAL] case intro.intro ι : Type u_1 R : Type u_2 M₂ : Type u_3 M₁ : ι → Type u_4 inst✝⁹ : Finite ι inst✝⁸ : CommRing R inst✝⁷ : AddCommGroup M₂ inst✝⁶ : Module R M₂ inst✝⁵ : Module.Finite R M₂ inst✝⁴ : Module.Free R M₂ inst✝³ : (i : ι) → AddCommGroup (M₁ i) inst✝² : (i : ι) → Module R (M₁ i) inst✝¹ : ∀ (i : ι), Module.Finite R (M₁ i) inst✝ : ∀ (i : ι), Module.Free R (M₁ i) val✝ : Fintype ι this : ∀ [inst : (i : Fin (Fintype.card ι)) → AddCommGroup (M₁ (↑(Fintype.equivFin ι).symm i))] [inst_1 : (i : Fin (Fintype.card ι)) → Module R (M₁ (↑(Fintype.equivFin ι).symm i))] [inst_2 : ∀ (i : Fin (Fintype.card ι)), Module.Finite R (M₁ (↑(Fintype.equivFin ι).symm i))] [inst_3 : ∀ (i : Fin (Fintype.card ι)), Module.Free R (M₁ (↑(Fintype.equivFin ι).symm i))], Module.Free R (MultilinearMap R (fun x => M₁ (↑(Fintype.equivFin ι).symm x)) M₂) ∧ Module.Finite R (MultilinearMap R (fun x => M₁ (↑(Fintype.equivFin ι).symm x)) M₂) l : Module.Free R (MultilinearMap R (fun x => M₁ (↑(Fintype.equivFin ι).symm x)) M₂) r : Module.Finite R (MultilinearMap R (fun x => M₁ (↑(Fintype.equivFin ι).symm x)) M₂) ⊢ Module.Free R (MultilinearMap R M₁ M₂) ∧ Module.Finite R (MultilinearMap R M₁ M₂) [PROOFSTEP] have e := domDomCongrLinearEquiv' R M₁ M₂ (Fintype.equivFin ι) [GOAL] case intro.intro ι : Type u_1 R : Type u_2 M₂ : Type u_3 M₁ : ι → Type u_4 inst✝⁹ : Finite ι inst✝⁸ : CommRing R inst✝⁷ : AddCommGroup M₂ inst✝⁶ : Module R M₂ inst✝⁵ : Module.Finite R M₂ inst✝⁴ : Module.Free R M₂ inst✝³ : (i : ι) → AddCommGroup (M₁ i) inst✝² : (i : ι) → Module R (M₁ i) inst✝¹ : ∀ (i : ι), Module.Finite R (M₁ i) inst✝ : ∀ (i : ι), Module.Free R (M₁ i) val✝ : Fintype ι this : ∀ [inst : (i : Fin (Fintype.card ι)) → AddCommGroup (M₁ (↑(Fintype.equivFin ι).symm i))] [inst_1 : (i : Fin (Fintype.card ι)) → Module R (M₁ (↑(Fintype.equivFin ι).symm i))] [inst_2 : ∀ (i : Fin (Fintype.card ι)), Module.Finite R (M₁ (↑(Fintype.equivFin ι).symm i))] [inst_3 : ∀ (i : Fin (Fintype.card ι)), Module.Free R (M₁ (↑(Fintype.equivFin ι).symm i))], Module.Free R (MultilinearMap R (fun x => M₁ (↑(Fintype.equivFin ι).symm x)) M₂) ∧ Module.Finite R (MultilinearMap R (fun x => M₁ (↑(Fintype.equivFin ι).symm x)) M₂) l : Module.Free R (MultilinearMap R (fun x => M₁ (↑(Fintype.equivFin ι).symm x)) M₂) r : Module.Finite R (MultilinearMap R (fun x => M₁ (↑(Fintype.equivFin ι).symm x)) M₂) e : MultilinearMap R M₁ M₂ ≃ₗ[R] MultilinearMap R (fun i => M₁ (↑(Fintype.equivFin ι).symm i)) M₂ ⊢ Module.Free R (MultilinearMap R M₁ M₂) ∧ Module.Finite R (MultilinearMap R M₁ M₂) [PROOFSTEP] exact ⟨Module.Free.of_equiv e.symm, Module.Finite.equiv e.symm⟩
{"mathlib_filename": "Mathlib.LinearAlgebra.Multilinear.FiniteDimensional", "llama_tokens": 6830}
[GOAL] R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M f : E →ₗ[R] { x // x ∈ p } hf : ∀ (x : { x // x ∈ p }), ↑f ↑x = x ⊢ ker (id - comp (Submodule.subtype p) f) = p [PROOFSTEP] ext x [GOAL] case h R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M f : E →ₗ[R] { x // x ∈ p } hf : ∀ (x : { x // x ∈ p }), ↑f ↑x = x x : E ⊢ x ∈ ker (id - comp (Submodule.subtype p) f) ↔ x ∈ p [PROOFSTEP] simp only [comp_apply, mem_ker, subtype_apply, sub_apply, id_apply, sub_eq_zero] [GOAL] case h R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M f : E →ₗ[R] { x // x ∈ p } hf : ∀ (x : { x // x ∈ p }), ↑f ↑x = x x : E ⊢ x = ↑(↑f x) ↔ x ∈ p [PROOFSTEP] exact ⟨fun h => h.symm ▸ Submodule.coe_mem _, fun hx => by erw [hf ⟨x, hx⟩, Subtype.coe_mk]⟩ [GOAL] R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M f : E →ₗ[R] { x // x ∈ p } hf : ∀ (x : { x // x ∈ p }), ↑f ↑x = x x : E hx : x ∈ p ⊢ x = ↑(↑f x) [PROOFSTEP] erw [hf ⟨x, hx⟩, Subtype.coe_mk] [GOAL] R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M f : E →ₗ[R] { x // x ∈ p } hf : ∀ (x : { x // x ∈ p }), ↑f ↑x = x ⊢ IsCompl p (ker f) [PROOFSTEP] constructor [GOAL] case disjoint R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M f : E →ₗ[R] { x // x ∈ p } hf : ∀ (x : { x // x ∈ p }), ↑f ↑x = x ⊢ Disjoint p (ker f) [PROOFSTEP] rw [disjoint_iff_inf_le] [GOAL] case disjoint R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M f : E →ₗ[R] { x // x ∈ p } hf : ∀ (x : { x // x ∈ p }), ↑f ↑x = x ⊢ p ⊓ ker f ≤ ⊥ [PROOFSTEP] rintro x ⟨hpx, hfx⟩ [GOAL] case disjoint.intro R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M f : E →ₗ[R] { x // x ∈ p } hf : ∀ (x : { x // x ∈ p }), ↑f ↑x = x x : E hpx : x ∈ ↑p hfx : x ∈ ↑(ker f) ⊢ x ∈ ⊥ [PROOFSTEP] erw [SetLike.mem_coe, mem_ker, hf ⟨x, hpx⟩, mk_eq_zero] at hfx [GOAL] case disjoint.intro R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M f : E →ₗ[R] { x // x ∈ p } hf : ∀ (x : { x // x ∈ p }), ↑f ↑x = x x : E hpx : x ∈ ↑p hfx : x = 0 ⊢ x ∈ ⊥ [PROOFSTEP] simp only [hfx, SetLike.mem_coe, zero_mem] [GOAL] case codisjoint R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M f : E →ₗ[R] { x // x ∈ p } hf : ∀ (x : { x // x ∈ p }), ↑f ↑x = x ⊢ Codisjoint p (ker f) [PROOFSTEP] rw [codisjoint_iff_le_sup] [GOAL] case codisjoint R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M f : E →ₗ[R] { x // x ∈ p } hf : ∀ (x : { x // x ∈ p }), ↑f ↑x = x ⊢ ⊤ ≤ p ⊔ ker f [PROOFSTEP] intro x _ [GOAL] case codisjoint R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M f : E →ₗ[R] { x // x ∈ p } hf : ∀ (x : { x // x ∈ p }), ↑f ↑x = x x : E a✝ : x ∈ ⊤ ⊢ x ∈ p ⊔ ker f [PROOFSTEP] rw [mem_sup'] [GOAL] case codisjoint R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M f : E →ₗ[R] { x // x ∈ p } hf : ∀ (x : { x // x ∈ p }), ↑f ↑x = x x : E a✝ : x ∈ ⊤ ⊢ ∃ y z, ↑y + ↑z = x [PROOFSTEP] refine' ⟨f x, ⟨x - f x, _⟩, add_sub_cancel'_right _ _⟩ [GOAL] case codisjoint R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M f : E →ₗ[R] { x // x ∈ p } hf : ∀ (x : { x // x ∈ p }), ↑f ↑x = x x : E a✝ : x ∈ ⊤ ⊢ x - ↑(↑f x) ∈ ker f [PROOFSTEP] rw [mem_ker, LinearMap.map_sub, hf, sub_self] [GOAL] R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M h : IsCompl p q ⊢ Function.Injective ↑(comp (mkQ p) (Submodule.subtype q)) [PROOFSTEP] rw [← ker_eq_bot, ker_comp, ker_mkQ, disjoint_iff_comap_eq_bot.1 h.symm.disjoint] [GOAL] R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M h : IsCompl p q ⊢ Function.Surjective ↑(comp (mkQ p) (Submodule.subtype q)) [PROOFSTEP] rw [← range_eq_top, range_comp, range_subtype, map_mkQ_eq_top, h.sup_eq_top] [GOAL] R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M h : IsCompl p q ⊢ ({ x // x ∈ p } × { x // x ∈ q }) ≃ₗ[R] E [PROOFSTEP] apply LinearEquiv.ofBijective (p.subtype.coprod q.subtype) [GOAL] R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M h : IsCompl p q ⊢ Function.Bijective ↑(coprod (Submodule.subtype p) (Submodule.subtype q)) [PROOFSTEP] constructor [GOAL] case left R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M h : IsCompl p q ⊢ Function.Injective ↑(coprod (Submodule.subtype p) (Submodule.subtype q)) [PROOFSTEP] rw [← ker_eq_bot, ker_coprod_of_disjoint_range, ker_subtype, ker_subtype, prod_bot] [GOAL] case left.hd R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M h : IsCompl p q ⊢ Disjoint (range (Submodule.subtype p)) (range (Submodule.subtype q)) [PROOFSTEP] rw [range_subtype, range_subtype] [GOAL] case left.hd R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M h : IsCompl p q ⊢ Disjoint p q [PROOFSTEP] exact h.1 [GOAL] case right R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M h : IsCompl p q ⊢ Function.Surjective ↑(coprod (Submodule.subtype p) (Submodule.subtype q)) [PROOFSTEP] rw [← range_eq_top, ← sup_eq_range, h.sup_eq_top] [GOAL] R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M h : IsCompl p q x : { x // x ∈ p } ⊢ ↑x = ↑(prodEquivOfIsCompl p q h) (x, 0) [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M h : IsCompl p q x : { x // x ∈ q } ⊢ ↑x = ↑(prodEquivOfIsCompl p q h) (0, x) [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M h : IsCompl p q x : E ⊢ (↑(LinearEquiv.symm (prodEquivOfIsCompl p q h)) x).fst = 0 ↔ x ∈ q [PROOFSTEP] conv_rhs => rw [← (prodEquivOfIsCompl p q h).apply_symm_apply x] [GOAL] R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M h : IsCompl p q x : E | x ∈ q [PROOFSTEP] rw [← (prodEquivOfIsCompl p q h).apply_symm_apply x] [GOAL] R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M h : IsCompl p q x : E | x ∈ q [PROOFSTEP] rw [← (prodEquivOfIsCompl p q h).apply_symm_apply x] [GOAL] R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M h : IsCompl p q x : E | x ∈ q [PROOFSTEP] rw [← (prodEquivOfIsCompl p q h).apply_symm_apply x] [GOAL] R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M h : IsCompl p q x : E ⊢ (↑(LinearEquiv.symm (prodEquivOfIsCompl p q h)) x).fst = 0 ↔ ↑(prodEquivOfIsCompl p q h) (↑(LinearEquiv.symm (prodEquivOfIsCompl p q h)) x) ∈ q [PROOFSTEP] rw [coe_prodEquivOfIsCompl', Submodule.add_mem_iff_left _ (Submodule.coe_mem _), mem_right_iff_eq_zero_of_disjoint h.disjoint] [GOAL] R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M h : IsCompl p q x : E ⊢ (↑(LinearEquiv.symm (prodEquivOfIsCompl p q h)) x).snd = 0 ↔ x ∈ p [PROOFSTEP] conv_rhs => rw [← (prodEquivOfIsCompl p q h).apply_symm_apply x] [GOAL] R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M h : IsCompl p q x : E | x ∈ p [PROOFSTEP] rw [← (prodEquivOfIsCompl p q h).apply_symm_apply x] [GOAL] R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M h : IsCompl p q x : E | x ∈ p [PROOFSTEP] rw [← (prodEquivOfIsCompl p q h).apply_symm_apply x] [GOAL] R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M h : IsCompl p q x : E | x ∈ p [PROOFSTEP] rw [← (prodEquivOfIsCompl p q h).apply_symm_apply x] [GOAL] R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M h : IsCompl p q x : E ⊢ (↑(LinearEquiv.symm (prodEquivOfIsCompl p q h)) x).snd = 0 ↔ ↑(prodEquivOfIsCompl p q h) (↑(LinearEquiv.symm (prodEquivOfIsCompl p q h)) x) ∈ p [PROOFSTEP] rw [coe_prodEquivOfIsCompl', Submodule.add_mem_iff_right _ (Submodule.coe_mem _), mem_left_iff_eq_zero_of_disjoint h.disjoint] [GOAL] R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M h : IsCompl p q x : { x // x ∈ p } ⊢ ↑(linearProjOfIsCompl p q h) ↑x = x [PROOFSTEP] simp [linearProjOfIsCompl] [GOAL] R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M h : IsCompl p q x : E ⊢ ↑(linearProjOfIsCompl p q h) x = 0 ↔ x ∈ q [PROOFSTEP] simp [linearProjOfIsCompl] [GOAL] R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M hpq : IsCompl p q x : E ⊢ ↑(↑(linearProjOfIsCompl p q hpq) x) + ↑(↑(linearProjOfIsCompl q p (_ : IsCompl q p)) x) = x [PROOFSTEP] dsimp only [linearProjOfIsCompl] [GOAL] R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M hpq : IsCompl p q x : E ⊢ ↑(↑(comp (LinearMap.fst R { x // x ∈ p } { x // x ∈ q }) ↑(LinearEquiv.symm (prodEquivOfIsCompl p q hpq))) x) + ↑(↑(comp (LinearMap.fst R { x // x ∈ q } { x // x ∈ p }) ↑(LinearEquiv.symm (prodEquivOfIsCompl q p (_ : IsCompl q p)))) x) = x [PROOFSTEP] rw [← prodComm_trans_prodEquivOfIsCompl _ _ hpq] [GOAL] R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M hpq : IsCompl p q x : E ⊢ ↑(↑(comp (LinearMap.fst R { x // x ∈ p } { x // x ∈ q }) ↑(LinearEquiv.symm (prodEquivOfIsCompl p q hpq))) x) + ↑(↑(comp (LinearMap.fst R { x // x ∈ q } { x // x ∈ p }) ↑(LinearEquiv.symm (LinearEquiv.trans (LinearEquiv.prodComm R { x // x ∈ q } { x // x ∈ p }) (prodEquivOfIsCompl p q hpq)))) x) = x [PROOFSTEP] exact (prodEquivOfIsCompl _ _ hpq).apply_symm_apply x [GOAL] R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M h : IsCompl p q φ : { x // x ∈ p } →ₗ[R] F ψ : { x // x ∈ q } →ₗ[R] F u : { x // x ∈ p } ⊢ ↑(ofIsCompl h φ ψ) ↑u = ↑φ u [PROOFSTEP] simp [ofIsCompl] [GOAL] R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M h : IsCompl p q φ : { x // x ∈ p } →ₗ[R] F ψ : { x // x ∈ q } →ₗ[R] F v : { x // x ∈ q } ⊢ ↑(ofIsCompl h φ ψ) ↑v = ↑ψ v [PROOFSTEP] simp [ofIsCompl] [GOAL] R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M h : IsCompl p q φ : { x // x ∈ p } →ₗ[R] F ψ : { x // x ∈ q } →ₗ[R] F χ : E →ₗ[R] F hφ : ∀ (u : { x // x ∈ p }), ↑φ u = ↑χ ↑u hψ : ∀ (u : { x // x ∈ q }), ↑ψ u = ↑χ ↑u ⊢ ofIsCompl h φ ψ = χ [PROOFSTEP] ext x [GOAL] case h R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M h : IsCompl p q φ : { x // x ∈ p } →ₗ[R] F ψ : { x // x ∈ q } →ₗ[R] F χ : E →ₗ[R] F hφ : ∀ (u : { x // x ∈ p }), ↑φ u = ↑χ ↑u hψ : ∀ (u : { x // x ∈ q }), ↑ψ u = ↑χ ↑u x : E ⊢ ↑(ofIsCompl h φ ψ) x = ↑χ x [PROOFSTEP] obtain ⟨_, _, rfl, _⟩ := existsUnique_add_of_isCompl h x [GOAL] case h.intro.intro.intro R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M h : IsCompl p q φ : { x // x ∈ p } →ₗ[R] F ψ : { x // x ∈ q } →ₗ[R] F χ : E →ₗ[R] F hφ : ∀ (u : { x // x ∈ p }), ↑φ u = ↑χ ↑u hψ : ∀ (u : { x // x ∈ q }), ↑ψ u = ↑χ ↑u w✝¹ : { x // x ∈ p } w✝ : { x // x ∈ q } right✝ : ∀ (r : { x // x ∈ p }) (s : { x // x ∈ q }), ↑r + ↑s = ↑w✝¹ + ↑w✝ → r = w✝¹ ∧ s = w✝ ⊢ ↑(ofIsCompl h φ ψ) (↑w✝¹ + ↑w✝) = ↑χ (↑w✝¹ + ↑w✝) [PROOFSTEP] simp [ofIsCompl, hφ, hψ] [GOAL] R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M h : IsCompl p q φ₁ φ₂ : { x // x ∈ p } →ₗ[R] F ψ₁ ψ₂ : { x // x ∈ q } →ₗ[R] F ⊢ ∀ (u : { x // x ∈ p }), ↑(φ₁ + φ₂) u = ↑(ofIsCompl h φ₁ ψ₁ + ofIsCompl h φ₂ ψ₂) ↑u [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M h : IsCompl p q φ₁ φ₂ : { x // x ∈ p } →ₗ[R] F ψ₁ ψ₂ : { x // x ∈ q } →ₗ[R] F ⊢ ∀ (u : { x // x ∈ q }), ↑(ψ₁ + ψ₂) u = ↑(ofIsCompl h φ₁ ψ₁ + ofIsCompl h φ₂ ψ₂) ↑u [PROOFSTEP] simp [GOAL] R✝ : Type u_1 inst✝¹⁴ : Ring R✝ E✝ : Type u_2 inst✝¹³ : AddCommGroup E✝ inst✝¹² : Module R✝ E✝ F✝ : Type u_3 inst✝¹¹ : AddCommGroup F✝ inst✝¹⁰ : Module R✝ F✝ G : Type u_4 inst✝⁹ : AddCommGroup G inst✝⁸ : Module R✝ G p✝ q✝ : Submodule R✝ E✝ S : Type u_5 inst✝⁷ : Semiring S M : Type u_6 inst✝⁶ : AddCommMonoid M inst✝⁵ : Module S M m : Submodule S M R : Type u_7 inst✝⁴ : CommRing R E : Type u_8 inst✝³ : AddCommGroup E inst✝² : Module R E F : Type u_9 inst✝¹ : AddCommGroup F inst✝ : Module R F p q : Submodule R E h : IsCompl p q φ : { x // x ∈ p } →ₗ[R] F ψ : { x // x ∈ q } →ₗ[R] F c : R ⊢ ∀ (u : { x // x ∈ p }), ↑(c • φ) u = ↑(c • ofIsCompl h φ ψ) ↑u [PROOFSTEP] simp [GOAL] R✝ : Type u_1 inst✝¹⁴ : Ring R✝ E✝ : Type u_2 inst✝¹³ : AddCommGroup E✝ inst✝¹² : Module R✝ E✝ F✝ : Type u_3 inst✝¹¹ : AddCommGroup F✝ inst✝¹⁰ : Module R✝ F✝ G : Type u_4 inst✝⁹ : AddCommGroup G inst✝⁸ : Module R✝ G p✝ q✝ : Submodule R✝ E✝ S : Type u_5 inst✝⁷ : Semiring S M : Type u_6 inst✝⁶ : AddCommMonoid M inst✝⁵ : Module S M m : Submodule S M R : Type u_7 inst✝⁴ : CommRing R E : Type u_8 inst✝³ : AddCommGroup E inst✝² : Module R E F : Type u_9 inst✝¹ : AddCommGroup F inst✝ : Module R F p q : Submodule R E h : IsCompl p q φ : { x // x ∈ p } →ₗ[R] F ψ : { x // x ∈ q } →ₗ[R] F c : R ⊢ ∀ (u : { x // x ∈ q }), ↑(c • ψ) u = ↑(c • ofIsCompl h φ ψ) ↑u [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝¹² : Ring R E : Type u_2 inst✝¹¹ : AddCommGroup E inst✝¹⁰ : Module R E F : Type u_3 inst✝⁹ : AddCommGroup F inst✝⁸ : Module R F G : Type u_4 inst✝⁷ : AddCommGroup G inst✝⁶ : Module R G p✝ q✝ : Submodule R E S : Type u_5 inst✝⁵ : Semiring S M : Type u_6 inst✝⁴ : AddCommMonoid M inst✝³ : Module S M m : Submodule S M R₁ : Type u_7 inst✝² : CommRing R₁ inst✝¹ : Module R₁ E inst✝ : Module R₁ F p q : Submodule R₁ E h : IsCompl p q ⊢ ∀ (x y : ({ x // x ∈ p } →ₗ[R₁] F) × ({ x // x ∈ q } →ₗ[R₁] F)), (fun φ => ofIsCompl h φ.fst φ.snd) (x + y) = (fun φ => ofIsCompl h φ.fst φ.snd) x + (fun φ => ofIsCompl h φ.fst φ.snd) y [PROOFSTEP] intro φ ψ [GOAL] R : Type u_1 inst✝¹² : Ring R E : Type u_2 inst✝¹¹ : AddCommGroup E inst✝¹⁰ : Module R E F : Type u_3 inst✝⁹ : AddCommGroup F inst✝⁸ : Module R F G : Type u_4 inst✝⁷ : AddCommGroup G inst✝⁶ : Module R G p✝ q✝ : Submodule R E S : Type u_5 inst✝⁵ : Semiring S M : Type u_6 inst✝⁴ : AddCommMonoid M inst✝³ : Module S M m : Submodule S M R₁ : Type u_7 inst✝² : CommRing R₁ inst✝¹ : Module R₁ E inst✝ : Module R₁ F p q : Submodule R₁ E h : IsCompl p q φ ψ : ({ x // x ∈ p } →ₗ[R₁] F) × ({ x // x ∈ q } →ₗ[R₁] F) ⊢ (fun φ => ofIsCompl h φ.fst φ.snd) (φ + ψ) = (fun φ => ofIsCompl h φ.fst φ.snd) φ + (fun φ => ofIsCompl h φ.fst φ.snd) ψ [PROOFSTEP] dsimp only [GOAL] R : Type u_1 inst✝¹² : Ring R E : Type u_2 inst✝¹¹ : AddCommGroup E inst✝¹⁰ : Module R E F : Type u_3 inst✝⁹ : AddCommGroup F inst✝⁸ : Module R F G : Type u_4 inst✝⁷ : AddCommGroup G inst✝⁶ : Module R G p✝ q✝ : Submodule R E S : Type u_5 inst✝⁵ : Semiring S M : Type u_6 inst✝⁴ : AddCommMonoid M inst✝³ : Module S M m : Submodule S M R₁ : Type u_7 inst✝² : CommRing R₁ inst✝¹ : Module R₁ E inst✝ : Module R₁ F p q : Submodule R₁ E h : IsCompl p q φ ψ : ({ x // x ∈ p } →ₗ[R₁] F) × ({ x // x ∈ q } →ₗ[R₁] F) ⊢ ofIsCompl h (φ + ψ).fst (φ + ψ).snd = ofIsCompl h φ.fst φ.snd + ofIsCompl h ψ.fst ψ.snd [PROOFSTEP] rw [Prod.snd_add, Prod.fst_add, ofIsCompl_add] [GOAL] R : Type u_1 inst✝¹² : Ring R E : Type u_2 inst✝¹¹ : AddCommGroup E inst✝¹⁰ : Module R E F : Type u_3 inst✝⁹ : AddCommGroup F inst✝⁸ : Module R F G : Type u_4 inst✝⁷ : AddCommGroup G inst✝⁶ : Module R G p✝ q✝ : Submodule R E S : Type u_5 inst✝⁵ : Semiring S M : Type u_6 inst✝⁴ : AddCommMonoid M inst✝³ : Module S M m : Submodule S M R₁ : Type u_7 inst✝² : CommRing R₁ inst✝¹ : Module R₁ E inst✝ : Module R₁ F p q : Submodule R₁ E h : IsCompl p q ⊢ ∀ (r : R₁) (x : ({ x // x ∈ p } →ₗ[R₁] F) × ({ x // x ∈ q } →ₗ[R₁] F)), AddHom.toFun { toFun := fun φ => ofIsCompl h φ.fst φ.snd, map_add' := (_ : ∀ (φ ψ : ({ x // x ∈ p } →ₗ[R₁] F) × ({ x // x ∈ q } →ₗ[R₁] F)), (fun φ => ofIsCompl h φ.fst φ.snd) (φ + ψ) = (fun φ => ofIsCompl h φ.fst φ.snd) φ + (fun φ => ofIsCompl h φ.fst φ.snd) ψ) } (r • x) = ↑(RingHom.id R₁) r • AddHom.toFun { toFun := fun φ => ofIsCompl h φ.fst φ.snd, map_add' := (_ : ∀ (φ ψ : ({ x // x ∈ p } →ₗ[R₁] F) × ({ x // x ∈ q } →ₗ[R₁] F)), (fun φ => ofIsCompl h φ.fst φ.snd) (φ + ψ) = (fun φ => ofIsCompl h φ.fst φ.snd) φ + (fun φ => ofIsCompl h φ.fst φ.snd) ψ) } x [PROOFSTEP] intro c φ [GOAL] R : Type u_1 inst✝¹² : Ring R E : Type u_2 inst✝¹¹ : AddCommGroup E inst✝¹⁰ : Module R E F : Type u_3 inst✝⁹ : AddCommGroup F inst✝⁸ : Module R F G : Type u_4 inst✝⁷ : AddCommGroup G inst✝⁶ : Module R G p✝ q✝ : Submodule R E S : Type u_5 inst✝⁵ : Semiring S M : Type u_6 inst✝⁴ : AddCommMonoid M inst✝³ : Module S M m : Submodule S M R₁ : Type u_7 inst✝² : CommRing R₁ inst✝¹ : Module R₁ E inst✝ : Module R₁ F p q : Submodule R₁ E h : IsCompl p q c : R₁ φ : ({ x // x ∈ p } →ₗ[R₁] F) × ({ x // x ∈ q } →ₗ[R₁] F) ⊢ AddHom.toFun { toFun := fun φ => ofIsCompl h φ.fst φ.snd, map_add' := (_ : ∀ (φ ψ : ({ x // x ∈ p } →ₗ[R₁] F) × ({ x // x ∈ q } →ₗ[R₁] F)), (fun φ => ofIsCompl h φ.fst φ.snd) (φ + ψ) = (fun φ => ofIsCompl h φ.fst φ.snd) φ + (fun φ => ofIsCompl h φ.fst φ.snd) ψ) } (c • φ) = ↑(RingHom.id R₁) c • AddHom.toFun { toFun := fun φ => ofIsCompl h φ.fst φ.snd, map_add' := (_ : ∀ (φ ψ : ({ x // x ∈ p } →ₗ[R₁] F) × ({ x // x ∈ q } →ₗ[R₁] F)), (fun φ => ofIsCompl h φ.fst φ.snd) (φ + ψ) = (fun φ => ofIsCompl h φ.fst φ.snd) φ + (fun φ => ofIsCompl h φ.fst φ.snd) ψ) } φ [PROOFSTEP] simp [Prod.smul_snd, Prod.smul_fst, ofIsCompl_smul] [GOAL] R : Type u_1 inst✝¹² : Ring R E : Type u_2 inst✝¹¹ : AddCommGroup E inst✝¹⁰ : Module R E F : Type u_3 inst✝⁹ : AddCommGroup F inst✝⁸ : Module R F G : Type u_4 inst✝⁷ : AddCommGroup G inst✝⁶ : Module R G p✝ q✝ : Submodule R E S : Type u_5 inst✝⁵ : Semiring S M : Type u_6 inst✝⁴ : AddCommMonoid M inst✝³ : Module S M m : Submodule S M R₁ : Type u_7 inst✝² : CommRing R₁ inst✝¹ : Module R₁ E inst✝ : Module R₁ F p q : Submodule R₁ E h : IsCompl p q src✝ : ({ x // x ∈ p } →ₗ[R₁] F) × ({ x // x ∈ q } →ₗ[R₁] F) →ₗ[R₁] E →ₗ[R₁] F := ofIsComplProd h φ : ({ x // x ∈ p } →ₗ[R₁] F) × ({ x // x ∈ q } →ₗ[R₁] F) ⊢ (fun φ => (domRestrict φ p, domRestrict φ q)) (AddHom.toFun { toAddHom := src✝.toAddHom, map_smul' := (_ : ∀ (r : R₁) (x : ({ x // x ∈ p } →ₗ[R₁] F) × ({ x // x ∈ q } →ₗ[R₁] F)), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R₁) r • AddHom.toFun src✝.toAddHom x) }.toAddHom φ) = φ [PROOFSTEP] ext x [GOAL] case h₁.h R : Type u_1 inst✝¹² : Ring R E : Type u_2 inst✝¹¹ : AddCommGroup E inst✝¹⁰ : Module R E F : Type u_3 inst✝⁹ : AddCommGroup F inst✝⁸ : Module R F G : Type u_4 inst✝⁷ : AddCommGroup G inst✝⁶ : Module R G p✝ q✝ : Submodule R E S : Type u_5 inst✝⁵ : Semiring S M : Type u_6 inst✝⁴ : AddCommMonoid M inst✝³ : Module S M m : Submodule S M R₁ : Type u_7 inst✝² : CommRing R₁ inst✝¹ : Module R₁ E inst✝ : Module R₁ F p q : Submodule R₁ E h : IsCompl p q src✝ : ({ x // x ∈ p } →ₗ[R₁] F) × ({ x // x ∈ q } →ₗ[R₁] F) →ₗ[R₁] E →ₗ[R₁] F := ofIsComplProd h φ : ({ x // x ∈ p } →ₗ[R₁] F) × ({ x // x ∈ q } →ₗ[R₁] F) x : { x // x ∈ p } ⊢ ↑((fun φ => (domRestrict φ p, domRestrict φ q)) (AddHom.toFun { toAddHom := src✝.toAddHom, map_smul' := (_ : ∀ (r : R₁) (x : ({ x // x ∈ p } →ₗ[R₁] F) × ({ x // x ∈ q } →ₗ[R₁] F)), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R₁) r • AddHom.toFun src✝.toAddHom x) }.toAddHom φ)).fst x = ↑φ.fst x [PROOFSTEP] exact ofIsCompl_left_apply h x [GOAL] case h₂.h R : Type u_1 inst✝¹² : Ring R E : Type u_2 inst✝¹¹ : AddCommGroup E inst✝¹⁰ : Module R E F : Type u_3 inst✝⁹ : AddCommGroup F inst✝⁸ : Module R F G : Type u_4 inst✝⁷ : AddCommGroup G inst✝⁶ : Module R G p✝ q✝ : Submodule R E S : Type u_5 inst✝⁵ : Semiring S M : Type u_6 inst✝⁴ : AddCommMonoid M inst✝³ : Module S M m : Submodule S M R₁ : Type u_7 inst✝² : CommRing R₁ inst✝¹ : Module R₁ E inst✝ : Module R₁ F p q : Submodule R₁ E h : IsCompl p q src✝ : ({ x // x ∈ p } →ₗ[R₁] F) × ({ x // x ∈ q } →ₗ[R₁] F) →ₗ[R₁] E →ₗ[R₁] F := ofIsComplProd h φ : ({ x // x ∈ p } →ₗ[R₁] F) × ({ x // x ∈ q } →ₗ[R₁] F) x : { x // x ∈ q } ⊢ ↑((fun φ => (domRestrict φ p, domRestrict φ q)) (AddHom.toFun { toAddHom := src✝.toAddHom, map_smul' := (_ : ∀ (r : R₁) (x : ({ x // x ∈ p } →ₗ[R₁] F) × ({ x // x ∈ q } →ₗ[R₁] F)), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R₁) r • AddHom.toFun src✝.toAddHom x) }.toAddHom φ)).snd x = ↑φ.snd x [PROOFSTEP] exact ofIsCompl_right_apply h x [GOAL] R : Type u_1 inst✝¹² : Ring R E : Type u_2 inst✝¹¹ : AddCommGroup E inst✝¹⁰ : Module R E F : Type u_3 inst✝⁹ : AddCommGroup F inst✝⁸ : Module R F G : Type u_4 inst✝⁷ : AddCommGroup G inst✝⁶ : Module R G p✝ q✝ : Submodule R E S : Type u_5 inst✝⁵ : Semiring S M : Type u_6 inst✝⁴ : AddCommMonoid M inst✝³ : Module S M m : Submodule S M R₁ : Type u_7 inst✝² : CommRing R₁ inst✝¹ : Module R₁ E inst✝ : Module R₁ F p q : Submodule R₁ E h : IsCompl p q src✝ : ({ x // x ∈ p } →ₗ[R₁] F) × ({ x // x ∈ q } →ₗ[R₁] F) →ₗ[R₁] E →ₗ[R₁] F := ofIsComplProd h φ : E →ₗ[R₁] F ⊢ AddHom.toFun { toAddHom := src✝.toAddHom, map_smul' := (_ : ∀ (r : R₁) (x : ({ x // x ∈ p } →ₗ[R₁] F) × ({ x // x ∈ q } →ₗ[R₁] F)), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R₁) r • AddHom.toFun src✝.toAddHom x) }.toAddHom ((fun φ => (domRestrict φ p, domRestrict φ q)) φ) = φ [PROOFSTEP] ext x [GOAL] case h R : Type u_1 inst✝¹² : Ring R E : Type u_2 inst✝¹¹ : AddCommGroup E inst✝¹⁰ : Module R E F : Type u_3 inst✝⁹ : AddCommGroup F inst✝⁸ : Module R F G : Type u_4 inst✝⁷ : AddCommGroup G inst✝⁶ : Module R G p✝ q✝ : Submodule R E S : Type u_5 inst✝⁵ : Semiring S M : Type u_6 inst✝⁴ : AddCommMonoid M inst✝³ : Module S M m : Submodule S M R₁ : Type u_7 inst✝² : CommRing R₁ inst✝¹ : Module R₁ E inst✝ : Module R₁ F p q : Submodule R₁ E h : IsCompl p q src✝ : ({ x // x ∈ p } →ₗ[R₁] F) × ({ x // x ∈ q } →ₗ[R₁] F) →ₗ[R₁] E →ₗ[R₁] F := ofIsComplProd h φ : E →ₗ[R₁] F x : E ⊢ ↑(AddHom.toFun { toAddHom := src✝.toAddHom, map_smul' := (_ : ∀ (r : R₁) (x : ({ x // x ∈ p } →ₗ[R₁] F) × ({ x // x ∈ q } →ₗ[R₁] F)), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R₁) r • AddHom.toFun src✝.toAddHom x) }.toAddHom ((fun φ => (domRestrict φ p, domRestrict φ q)) φ)) x = ↑φ x [PROOFSTEP] obtain ⟨a, b, hab, _⟩ := existsUnique_add_of_isCompl h x [GOAL] case h.intro.intro.intro R : Type u_1 inst✝¹² : Ring R E : Type u_2 inst✝¹¹ : AddCommGroup E inst✝¹⁰ : Module R E F : Type u_3 inst✝⁹ : AddCommGroup F inst✝⁸ : Module R F G : Type u_4 inst✝⁷ : AddCommGroup G inst✝⁶ : Module R G p✝ q✝ : Submodule R E S : Type u_5 inst✝⁵ : Semiring S M : Type u_6 inst✝⁴ : AddCommMonoid M inst✝³ : Module S M m : Submodule S M R₁ : Type u_7 inst✝² : CommRing R₁ inst✝¹ : Module R₁ E inst✝ : Module R₁ F p q : Submodule R₁ E h : IsCompl p q src✝ : ({ x // x ∈ p } →ₗ[R₁] F) × ({ x // x ∈ q } →ₗ[R₁] F) →ₗ[R₁] E →ₗ[R₁] F := ofIsComplProd h φ : E →ₗ[R₁] F x : E a : { x // x ∈ p } b : { x // x ∈ q } hab : ↑a + ↑b = x right✝ : ∀ (r : { x // x ∈ p }) (s : { x // x ∈ q }), ↑r + ↑s = x → r = a ∧ s = b ⊢ ↑(AddHom.toFun { toAddHom := src✝.toAddHom, map_smul' := (_ : ∀ (r : R₁) (x : ({ x // x ∈ p } →ₗ[R₁] F) × ({ x // x ∈ q } →ₗ[R₁] F)), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R₁) r • AddHom.toFun src✝.toAddHom x) }.toAddHom ((fun φ => (domRestrict φ p, domRestrict φ q)) φ)) x = ↑φ x [PROOFSTEP] rw [← hab] [GOAL] case h.intro.intro.intro R : Type u_1 inst✝¹² : Ring R E : Type u_2 inst✝¹¹ : AddCommGroup E inst✝¹⁰ : Module R E F : Type u_3 inst✝⁹ : AddCommGroup F inst✝⁸ : Module R F G : Type u_4 inst✝⁷ : AddCommGroup G inst✝⁶ : Module R G p✝ q✝ : Submodule R E S : Type u_5 inst✝⁵ : Semiring S M : Type u_6 inst✝⁴ : AddCommMonoid M inst✝³ : Module S M m : Submodule S M R₁ : Type u_7 inst✝² : CommRing R₁ inst✝¹ : Module R₁ E inst✝ : Module R₁ F p q : Submodule R₁ E h : IsCompl p q src✝ : ({ x // x ∈ p } →ₗ[R₁] F) × ({ x // x ∈ q } →ₗ[R₁] F) →ₗ[R₁] E →ₗ[R₁] F := ofIsComplProd h φ : E →ₗ[R₁] F x : E a : { x // x ∈ p } b : { x // x ∈ q } hab : ↑a + ↑b = x right✝ : ∀ (r : { x // x ∈ p }) (s : { x // x ∈ q }), ↑r + ↑s = x → r = a ∧ s = b ⊢ ↑(AddHom.toFun { toAddHom := src✝.toAddHom, map_smul' := (_ : ∀ (r : R₁) (x : ({ x // x ∈ p } →ₗ[R₁] F) × ({ x // x ∈ q } →ₗ[R₁] F)), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R₁) r • AddHom.toFun src✝.toAddHom x) }.toAddHom ((fun φ => (domRestrict φ p, domRestrict φ q)) φ)) (↑a + ↑b) = ↑φ (↑a + ↑b) [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M f : E →ₗ[R] { x // x ∈ p } hf : ∀ (x : { x // x ∈ p }), ↑f ↑x = x ⊢ linearProjOfIsCompl p (ker f) (_ : IsCompl p (ker f)) = f [PROOFSTEP] ext x [GOAL] case h.a R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M f : E →ₗ[R] { x // x ∈ p } hf : ∀ (x : { x // x ∈ p }), ↑f ↑x = x x : E ⊢ ↑(↑(linearProjOfIsCompl p (ker f) (_ : IsCompl p (ker f))) x) = ↑(↑f x) [PROOFSTEP] have : x ∈ p ⊔ (ker f) := by simp only [(isCompl_of_proj hf).sup_eq_top, mem_top] [GOAL] R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M f : E →ₗ[R] { x // x ∈ p } hf : ∀ (x : { x // x ∈ p }), ↑f ↑x = x x : E ⊢ x ∈ p ⊔ ker f [PROOFSTEP] simp only [(isCompl_of_proj hf).sup_eq_top, mem_top] [GOAL] case h.a R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M f : E →ₗ[R] { x // x ∈ p } hf : ∀ (x : { x // x ∈ p }), ↑f ↑x = x x : E this : x ∈ p ⊔ ker f ⊢ ↑(↑(linearProjOfIsCompl p (ker f) (_ : IsCompl p (ker f))) x) = ↑(↑f x) [PROOFSTEP] rcases mem_sup'.1 this with ⟨x, y, rfl⟩ [GOAL] case h.a.intro.intro R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M f : E →ₗ[R] { x // x ∈ p } hf : ∀ (x : { x // x ∈ p }), ↑f ↑x = x x : { x // x ∈ p } y : { x // x ∈ ker f } this : ↑x + ↑y ∈ p ⊔ ker f ⊢ ↑(↑(linearProjOfIsCompl p (ker f) (_ : IsCompl p (ker f))) (↑x + ↑y)) = ↑(↑f (↑x + ↑y)) [PROOFSTEP] simp [hf] [GOAL] R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M f : E →ₗ[R] F g : E →ₗ[R] G hf : range f = ⊤ hg : range g = ⊤ hfg : IsCompl (ker f) (ker g) ⊢ Function.Injective ↑(prod f g) [PROOFSTEP] simp [← ker_eq_bot, hfg.inf_eq_bot] [GOAL] R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M f : E →ₗ[R] F g : E →ₗ[R] G hf : range f = ⊤ hg : range g = ⊤ hfg : IsCompl (ker f) (ker g) ⊢ Function.Surjective ↑(prod f g) [PROOFSTEP] rw [← range_eq_top] [GOAL] R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M f : E →ₗ[R] F g : E →ₗ[R] G hf : range f = ⊤ hg : range g = ⊤ hfg : IsCompl (ker f) (ker g) ⊢ range (prod f g) = ⊤ [PROOFSTEP] simp [range_prod_eq hfg.sup_eq_top, *] [GOAL] R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q✝ : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M x✝ : { q // IsCompl p q } q : Submodule R E hq : IsCompl p q ⊢ (fun f => { val := ker ↑f, property := (_ : IsCompl p (ker ↑f)) }) ((fun q => { val := linearProjOfIsCompl p ↑q (_ : IsCompl p ↑q), property := (_ : ∀ (x : { x // x ∈ p }), ↑(linearProjOfIsCompl p ↑q (_ : IsCompl p ↑q)) ↑x = x) }) { val := q, property := hq }) = { val := q, property := hq } [PROOFSTEP] simp only [linearProjOfIsCompl_ker, Subtype.coe_mk] [GOAL] R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M f : M →ₗ[S] M ⊢ (∃ p, IsProj p f) ↔ comp f f = f [PROOFSTEP] constructor [GOAL] case mp R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M f : M →ₗ[S] M ⊢ (∃ p, IsProj p f) → comp f f = f [PROOFSTEP] intro h [GOAL] case mp R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M f : M →ₗ[S] M h : ∃ p, IsProj p f ⊢ comp f f = f [PROOFSTEP] obtain ⟨p, hp⟩ := h [GOAL] case mp.intro R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p✝ q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M f : M →ₗ[S] M p : Submodule S M hp : IsProj p f ⊢ comp f f = f [PROOFSTEP] ext x [GOAL] case mp.intro.h R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p✝ q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M f : M →ₗ[S] M p : Submodule S M hp : IsProj p f x : M ⊢ ↑(comp f f) x = ↑f x [PROOFSTEP] rw [comp_apply] [GOAL] case mp.intro.h R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p✝ q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M f : M →ₗ[S] M p : Submodule S M hp : IsProj p f x : M ⊢ ↑f (↑f x) = ↑f x [PROOFSTEP] exact hp.map_id (f x) (hp.map_mem x) [GOAL] case mpr R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M f : M →ₗ[S] M ⊢ comp f f = f → ∃ p, IsProj p f [PROOFSTEP] intro h [GOAL] case mpr R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M f : M →ₗ[S] M h : comp f f = f ⊢ ∃ p, IsProj p f [PROOFSTEP] use range f [GOAL] case h R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M f : M →ₗ[S] M h : comp f f = f ⊢ IsProj (range f) f [PROOFSTEP] constructor [GOAL] case h.map_mem R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M f : M →ₗ[S] M h : comp f f = f ⊢ ∀ (x : M), ↑f x ∈ range f [PROOFSTEP] intro x [GOAL] case h.map_mem R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M f : M →ₗ[S] M h : comp f f = f x : M ⊢ ↑f x ∈ range f [PROOFSTEP] exact mem_range_self f x [GOAL] case h.map_id R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M f : M →ₗ[S] M h : comp f f = f ⊢ ∀ (x : M), x ∈ range f → ↑f x = x [PROOFSTEP] intro x hx [GOAL] case h.map_id R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M f : M →ₗ[S] M h : comp f f = f x : M hx : x ∈ range f ⊢ ↑f x = x [PROOFSTEP] obtain ⟨y, hy⟩ := mem_range.1 hx [GOAL] case h.map_id.intro R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M f : M →ₗ[S] M h : comp f f = f x : M hx : x ∈ range f y : M hy : ↑f y = x ⊢ ↑f x = x [PROOFSTEP] rw [← hy, ← comp_apply, h] [GOAL] R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M f : M →ₗ[S] M h : IsProj m f x : { x // x ∈ m } ⊢ ↑(codRestrict h) ↑x = x [PROOFSTEP] ext [GOAL] case a R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M f : M →ₗ[S] M h : IsProj m f x : { x // x ∈ m } ⊢ ↑(↑(codRestrict h) ↑x) = ↑x [PROOFSTEP] rw [codRestrict_apply] [GOAL] case a R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M f : M →ₗ[S] M h : IsProj m f x : { x // x ∈ m } ⊢ ↑f ↑x = ↑x [PROOFSTEP] exact h.map_id x x.2 [GOAL] R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M f : E →ₗ[R] E h : IsProj p f ⊢ IsCompl p (ker f) [PROOFSTEP] rw [← codRestrict_ker] [GOAL] R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M f : E →ₗ[R] E h : IsProj p f ⊢ IsCompl p (ker (codRestrict ?m.444391)) R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M f : E →ₗ[R] E h : IsProj p f ⊢ IsProj ?m.444132 f R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M f : E →ₗ[R] E h : IsProj p f ⊢ Submodule R E [PROOFSTEP] exact isCompl_of_proj h.codRestrict_apply_cod [GOAL] R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M f : E →ₗ[R] E h : IsProj p f ⊢ f = comp (↑(prodEquivOfIsCompl p (ker f) (_ : IsCompl p (ker f)))) (comp (prodMap id 0) ↑(LinearEquiv.symm (prodEquivOfIsCompl p (ker f) (_ : IsCompl p (ker f))))) [PROOFSTEP] rw [← LinearMap.comp_assoc, LinearEquiv.eq_comp_toLinearMap_symm] [GOAL] R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M f : E →ₗ[R] E h : IsProj p f ⊢ comp f ↑(prodEquivOfIsCompl p (ker f) (_ : IsCompl p (ker f))) = comp (↑(prodEquivOfIsCompl p (ker f) (_ : IsCompl p (ker f)))) (prodMap id 0) [PROOFSTEP] ext x [GOAL] case hl.h R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M f : E →ₗ[R] E h : IsProj p f x : { x // x ∈ p } ⊢ ↑(comp (comp f ↑(prodEquivOfIsCompl p (ker f) (_ : IsCompl p (ker f)))) (inl R { x // x ∈ p } { x // x ∈ ker f })) x = ↑(comp (comp (↑(prodEquivOfIsCompl p (ker f) (_ : IsCompl p (ker f)))) (prodMap id 0)) (inl R { x // x ∈ p } { x // x ∈ ker f })) x [PROOFSTEP] simp only [coe_prodEquivOfIsCompl, comp_apply, coe_inl, coprod_apply, coeSubtype, _root_.map_zero, add_zero, h.map_id x x.2, prodMap_apply, id_apply] [GOAL] case hr.h R : Type u_1 inst✝⁹ : Ring R E : Type u_2 inst✝⁸ : AddCommGroup E inst✝⁷ : Module R E F : Type u_3 inst✝⁶ : AddCommGroup F inst✝⁵ : Module R F G : Type u_4 inst✝⁴ : AddCommGroup G inst✝³ : Module R G p q : Submodule R E S : Type u_5 inst✝² : Semiring S M : Type u_6 inst✝¹ : AddCommMonoid M inst✝ : Module S M m : Submodule S M f : E →ₗ[R] E h : IsProj p f x : { x // x ∈ ker f } ⊢ ↑(comp (comp f ↑(prodEquivOfIsCompl p (ker f) (_ : IsCompl p (ker f)))) (inr R { x // x ∈ p } { x // x ∈ ker f })) x = ↑(comp (comp (↑(prodEquivOfIsCompl p (ker f) (_ : IsCompl p (ker f)))) (prodMap id 0)) (inr R { x // x ∈ p } { x // x ∈ ker f })) x [PROOFSTEP] simp only [coe_prodEquivOfIsCompl, comp_apply, coe_inr, coprod_apply, _root_.map_zero, coeSubtype, zero_add, map_coe_ker, prodMap_apply, zero_apply, add_zero] [GOAL] R : Type u_1 inst✝² : CommRing R E : Type u_2 inst✝¹ : AddCommGroup E inst✝ : Module R E p : Submodule R E f : E →ₗ[R] E h : IsProj p f ⊢ f = ↑(LinearEquiv.conj (Submodule.prodEquivOfIsCompl p (ker f) (_ : IsCompl p (ker f)))) (prodMap id 0) [PROOFSTEP] rw [LinearEquiv.conj_apply] [GOAL] R : Type u_1 inst✝² : CommRing R E : Type u_2 inst✝¹ : AddCommGroup E inst✝ : Module R E p : Submodule R E f : E →ₗ[R] E h : IsProj p f ⊢ f = comp (comp (↑(Submodule.prodEquivOfIsCompl p (ker f) (_ : IsCompl p (ker f)))) (prodMap id 0)) ↑(LinearEquiv.symm (Submodule.prodEquivOfIsCompl p (ker f) (_ : IsCompl p (ker f)))) [PROOFSTEP] exact h.eq_conj_prod_map'
{"mathlib_filename": "Mathlib.LinearAlgebra.Projection", "llama_tokens": 27699}
[GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁷ : Semiring R inst✝⁶ : AddCommMonoid M inst✝⁵ : Module R M x : M p p' : Submodule R M inst✝⁴ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝³ : AddCommMonoid M₂ inst✝² : Module R₂ M₂ F : Type u_8 inst✝¹ : SemilinearMapClass F σ₁₂ M M₂ s✝ t : Set M inst✝ : RingHomSurjective σ₁₂ f : F s : Set M N : Submodule R₂ M₂ ⊢ map f (span R s) ≤ N ↔ ∀ (m : M), m ∈ s → ↑f m ∈ N [PROOFSTEP] rw [map_span, span_le, Set.image_subset_iff] [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁷ : Semiring R inst✝⁶ : AddCommMonoid M inst✝⁵ : Module R M x : M p p' : Submodule R M inst✝⁴ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝³ : AddCommMonoid M₂ inst✝² : Module R₂ M₂ F : Type u_8 inst✝¹ : SemilinearMapClass F σ₁₂ M M₂ s✝ t : Set M inst✝ : RingHomSurjective σ₁₂ f : F s : Set M N : Submodule R₂ M₂ ⊢ s ⊆ ↑f ⁻¹' ↑N ↔ ∀ (m : M), m ∈ s → ↑f m ∈ N [PROOFSTEP] exact Iff.rfl [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M ⊢ span R (insert 0 s) = span R s [PROOFSTEP] refine' le_antisymm _ (Submodule.span_mono (Set.subset_insert 0 s)) [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M ⊢ span R (insert 0 s) ≤ span R s [PROOFSTEP] rw [span_le, Set.insert_subset_iff] [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M ⊢ 0 ∈ ↑(span R s) ∧ s ⊆ ↑(span R s) [PROOFSTEP] exact ⟨by simp only [SetLike.mem_coe, Submodule.zero_mem], Submodule.subset_span⟩ [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M ⊢ 0 ∈ ↑(span R s) [PROOFSTEP] simp only [SetLike.mem_coe, Submodule.zero_mem] [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s✝ t : Set M f : F s : Set M₂ ⊢ span R (↑f ⁻¹' s) ≤ comap f (span R₂ s) [PROOFSTEP] rw [span_le, comap_coe] [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s✝ t : Set M f : F s : Set M₂ ⊢ ↑f ⁻¹' s ⊆ ↑f ⁻¹' ↑(span R₂ s) [PROOFSTEP] exact preimage_mono subset_span [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p✝ p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s✝ t : Set M p : M → Prop h : x ∈ span R s✝ Hs : ∀ (x : M), x ∈ s✝ → p x H0 : p 0 H1 : ∀ (x y : M), p x → p y → p (x + y) H2 : ∀ (a : R) (x : M), p x → p (a • x) s : Set M ⊢ ∀ {a b : M}, a ∈ p → b ∈ p → a + b ∈ p [PROOFSTEP] intros x y [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝ : M p✝ p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s✝ t : Set M p : M → Prop h : x✝ ∈ span R s✝ Hs : ∀ (x : M), x ∈ s✝ → p x H0 : p 0 H1 : ∀ (x y : M), p x → p y → p (x + y) H2 : ∀ (a : R) (x : M), p x → p (a • x) s : Set M x y : M ⊢ x ∈ p → y ∈ p → x + y ∈ p [PROOFSTEP] exact H1 x y [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝ : M p✝ p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M p : (x : M) → x ∈ span R s → Prop Hs : ∀ (x : M) (h : x ∈ s), p x (_ : x ∈ ↑(span R s)) H0 : p 0 (_ : 0 ∈ span R s) H1 : ∀ (x : M) (hx : x ∈ span R s) (y : M) (hy : y ∈ span R s), p x hx → p y hy → p (x + y) (_ : x + y ∈ span R s) H2 : ∀ (a : R) (x : M) (hx : x ∈ span R s), p x hx → p (a • x) (_ : a • x ∈ span R s) x : M hx : x ∈ span R s ⊢ p x hx [PROOFSTEP] refine' Exists.elim _ fun (hx : x ∈ span R s) (hc : p x hx) => hc [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝ : M p✝ p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M p : (x : M) → x ∈ span R s → Prop Hs : ∀ (x : M) (h : x ∈ s), p x (_ : x ∈ ↑(span R s)) H0 : p 0 (_ : 0 ∈ span R s) H1 : ∀ (x : M) (hx : x ∈ span R s) (y : M) (hy : y ∈ span R s), p x hx → p y hy → p (x + y) (_ : x + y ∈ span R s) H2 : ∀ (a : R) (x : M) (hx : x ∈ span R s), p x hx → p (a • x) (_ : a • x ∈ span R s) x : M hx : x ∈ span R s ⊢ ∃ x_1, p x x_1 [PROOFSTEP] refine' span_induction hx (fun m hm => ⟨subset_span hm, Hs m hm⟩) ⟨zero_mem _, H0⟩ (fun x y hx hy => Exists.elim hx fun hx' hx => Exists.elim hy fun hy' hy => ⟨add_mem hx' hy', H1 _ _ _ _ hx hy⟩) fun r x hx => Exists.elim hx fun hx' hx => ⟨smul_mem _ _ hx', H2 r _ _ hx⟩ [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝² : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M x✝¹ : { x // x ∈ ↑(span R s) } x : M hx : x ∈ ↑(span R s) x✝ : { val := x, property := hx } ∈ ⊤ ⊢ { val := x, property := hx } ∈ span R (Subtype.val ⁻¹' s) [PROOFSTEP] refine' span_induction' (p := fun x hx ↦ (⟨x, hx⟩ : span R s) ∈ span R (Subtype.val ⁻¹' s)) (fun x' hx' ↦ subset_span hx') _ (fun x _ y _ ↦ _) (fun r x _ ↦ _) hx [GOAL] case refine'_1 R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝² : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M x✝¹ : { x // x ∈ ↑(span R s) } x : M hx : x ∈ ↑(span R s) x✝ : { val := x, property := hx } ∈ ⊤ ⊢ (fun x hx => { val := x, property := hx } ∈ span R (Subtype.val ⁻¹' s)) 0 (_ : 0 ∈ span R s) [PROOFSTEP] exact zero_mem _ [GOAL] case refine'_2 R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝⁵ : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M x✝⁴ : { x // x ∈ ↑(span R s) } x✝³ : M hx : x✝³ ∈ ↑(span R s) x✝² : { val := x✝³, property := hx } ∈ ⊤ x : M x✝¹ : x ∈ span R s y : M x✝ : y ∈ span R s ⊢ (fun x hx => { val := x, property := hx } ∈ span R (Subtype.val ⁻¹' s)) x x✝¹ → (fun x hx => { val := x, property := hx } ∈ span R (Subtype.val ⁻¹' s)) y x✝ → (fun x hx => { val := x, property := hx } ∈ span R (Subtype.val ⁻¹' s)) (x + y) (_ : x + y ∈ span R s) [PROOFSTEP] exact add_mem [GOAL] case refine'_3 R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝⁴ : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M x✝³ : { x // x ∈ ↑(span R s) } x✝² : M hx : x✝² ∈ ↑(span R s) x✝¹ : { val := x✝², property := hx } ∈ ⊤ r : R x : M x✝ : x ∈ span R s ⊢ (fun x hx => { val := x, property := hx } ∈ span R (Subtype.val ⁻¹' s)) x x✝ → (fun x hx => { val := x, property := hx } ∈ span R (Subtype.val ⁻¹' s)) (r • x) (_ : r • x ∈ span R s) [PROOFSTEP] exact smul_mem _ _ [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s✝ t s : Set M ⊢ (span ℕ s).toAddSubmonoid = AddSubmonoid.closure s [PROOFSTEP] refine' Eq.symm (AddSubmonoid.closure_eq_of_le subset_span _) [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s✝ t s : Set M ⊢ (span ℕ s).toAddSubmonoid ≤ AddSubmonoid.closure s [PROOFSTEP] apply (OrderIso.to_galoisConnection (AddSubmonoid.toNatSubmodule (M := M)).symm).l_le (a := span ℕ s) (b := AddSubmonoid.closure s) [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s✝ t s : Set M ⊢ span ℕ s ≤ ↑(OrderIso.symm (OrderIso.symm AddSubmonoid.toNatSubmodule)) (AddSubmonoid.closure s) [PROOFSTEP] rw [span_le] [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s✝ t s : Set M ⊢ s ⊆ ↑(↑(OrderIso.symm (OrderIso.symm AddSubmonoid.toNatSubmodule)) (AddSubmonoid.closure s)) [PROOFSTEP] exact AddSubmonoid.subset_closure [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s✝ t : Set M s : AddSubmonoid M ⊢ (span ℕ ↑s).toAddSubmonoid = s [PROOFSTEP] rw [span_nat_eq_addSubmonoid_closure, s.closure_eq] [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M✝ : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁷ : Semiring R inst✝⁶ : AddCommMonoid M✝ inst✝⁵ : Module R M✝ x : M✝ p p' : Submodule R M✝ inst✝⁴ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝³ : AddCommMonoid M₂ inst✝² : Module R₂ M₂ F : Type u_8 inst✝¹ : SemilinearMapClass F σ₁₂ M✝ M₂ s✝ t : Set M✝ M : Type u_9 inst✝ : AddCommGroup M s : AddSubgroup M ⊢ toAddSubgroup (span ℤ ↑s) = s [PROOFSTEP] rw [span_int_eq_addSubgroup_closure, s.closure_eq] [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁷ : Semiring R inst✝⁶ : AddCommMonoid M inst✝⁵ : Module R M x : M p p' : Submodule R M inst✝⁴ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝³ : AddCommMonoid M₂ inst✝² : Module R₂ M₂ F : Type u_8 inst✝¹ : SemilinearMapClass F σ₁₂ M M₂ s✝ t : Set M inst✝ : DecidableEq M α : Type u_9 s : Finset α f : { x // x ∈ s } → Finset M ⊢ span R ↑(Finset.biUnion (Finset.attach s) f) = ⨆ (x : { x // x ∈ s }), span R ↑(f x) [PROOFSTEP] simp [span_iUnion] [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M ⊢ p ⊔ span R s = span R (↑p ∪ s) [PROOFSTEP] rw [Submodule.span_union, p.span_eq] [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M ⊢ span R s ⊔ p = span R (s ∪ ↑p) [PROOFSTEP] rw [Submodule.span_union, p.span_eq] [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s✝ t s : Set M ⊢ span R s = ⨆ (x : M) (_ : x ∈ s), span R {x} [PROOFSTEP] simp only [← span_iUnion, Set.biUnion_of_singleton s] [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M ι : Type u_9 v : ι → M ⊢ span R (range v) = ⨆ (i : ι), span R {v i} [PROOFSTEP] rw [span_eq_iSup_of_singleton_spans, iSup_range] [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s✝ t s : Set M r : R ⊢ span R (r • s) ≤ span R s [PROOFSTEP] rw [span_le] [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s✝ t s : Set M r : R ⊢ r • s ⊆ ↑(span R s) [PROOFSTEP] rintro _ ⟨x, hx, rfl⟩ [GOAL] case intro.intro R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝ : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s✝ t s : Set M r : R x : M hx : x ∈ s ⊢ (fun x => r • x) x ∈ ↑(span R s) [PROOFSTEP] exact smul_mem (span R s) r (subset_span hx) [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s✝ t s : Set M r : R hr : IsUnit r ⊢ span R (r • s) = span R s [PROOFSTEP] apply le_antisymm [GOAL] case a R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s✝ t s : Set M r : R hr : IsUnit r ⊢ span R (r • s) ≤ span R s [PROOFSTEP] apply span_smul_le [GOAL] case a R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s✝ t s : Set M r : R hr : IsUnit r ⊢ span R s ≤ span R (r • s) [PROOFSTEP] convert span_smul_le (r • s) ((hr.unit⁻¹ : _) : R) [GOAL] case h.e'_3.h.e'_6 R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s✝ t s : Set M r : R hr : IsUnit r ⊢ s = ↑(IsUnit.unit hr)⁻¹ • r • s [PROOFSTEP] rw [smul_smul] [GOAL] case h.e'_3.h.e'_6 R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s✝ t s : Set M r : R hr : IsUnit r ⊢ s = (↑(IsUnit.unit hr)⁻¹ * r) • s [PROOFSTEP] erw [hr.unit.inv_val] [GOAL] case h.e'_3.h.e'_6 R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s✝ t s : Set M r : R hr : IsUnit r ⊢ s = 1 • s [PROOFSTEP] rw [one_smul] [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S✝ : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M ι : Sort u_9 hι : Nonempty ι S : ι → Submodule R M H : Directed (fun x x_1 => x ≤ x_1) S ⊢ ↑(iSup S) = ⋃ (i : ι), ↑(S i) [PROOFSTEP] refine' Subset.antisymm _ (iUnion_subset <| le_iSup S) [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S✝ : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M ι : Sort u_9 hι : Nonempty ι S : ι → Submodule R M H : Directed (fun x x_1 => x ≤ x_1) S ⊢ ↑(iSup S) ⊆ ⋃ (i : ι), ↑(S i) [PROOFSTEP] suffices (span R (⋃ i, (S i : Set M)) : Set M) ⊆ ⋃ i : ι, ↑(S i) by simpa only [span_iUnion, span_eq] using this [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S✝ : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M ι : Sort u_9 hι : Nonempty ι S : ι → Submodule R M H : Directed (fun x x_1 => x ≤ x_1) S this : ↑(span R (⋃ (i : ι), ↑(S i))) ⊆ ⋃ (i : ι), ↑(S i) ⊢ ↑(iSup S) ⊆ ⋃ (i : ι), ↑(S i) [PROOFSTEP] simpa only [span_iUnion, span_eq] using this [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S✝ : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M ι : Sort u_9 hι : Nonempty ι S : ι → Submodule R M H : Directed (fun x x_1 => x ≤ x_1) S ⊢ ↑(span R (⋃ (i : ι), ↑(S i))) ⊆ ⋃ (i : ι), ↑(S i) [PROOFSTEP] refine' fun x hx => span_induction hx (fun _ => id) _ _ _ [GOAL] case refine'_1 R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S✝ : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝ : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M ι : Sort u_9 hι : Nonempty ι S : ι → Submodule R M H : Directed (fun x x_1 => x ≤ x_1) S x : M hx : x ∈ ↑(span R (⋃ (i : ι), ↑(S i))) ⊢ 0 ∈ ⋃ (i : ι), ↑(S i) [PROOFSTEP] simp only [mem_iUnion, exists_imp] [GOAL] case refine'_2 R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S✝ : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝ : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M ι : Sort u_9 hι : Nonempty ι S : ι → Submodule R M H : Directed (fun x x_1 => x ≤ x_1) S x : M hx : x ∈ ↑(span R (⋃ (i : ι), ↑(S i))) ⊢ ∀ (x y : M), x ∈ ⋃ (i : ι), ↑(S i) → y ∈ ⋃ (i : ι), ↑(S i) → x + y ∈ ⋃ (i : ι), ↑(S i) [PROOFSTEP] simp only [mem_iUnion, exists_imp] [GOAL] case refine'_3 R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S✝ : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝ : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M ι : Sort u_9 hι : Nonempty ι S : ι → Submodule R M H : Directed (fun x x_1 => x ≤ x_1) S x : M hx : x ∈ ↑(span R (⋃ (i : ι), ↑(S i))) ⊢ ∀ (a : R) (x : M), x ∈ ⋃ (i : ι), ↑(S i) → a • x ∈ ⋃ (i : ι), ↑(S i) [PROOFSTEP] simp only [mem_iUnion, exists_imp] [GOAL] case refine'_1 R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S✝ : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝ : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M ι : Sort u_9 hι : Nonempty ι S : ι → Submodule R M H : Directed (fun x x_1 => x ≤ x_1) S x : M hx : x ∈ ↑(span R (⋃ (i : ι), ↑(S i))) ⊢ ∃ i, 0 ∈ ↑(S i) [PROOFSTEP] exact hι.elim fun i => ⟨i, (S i).zero_mem⟩ [GOAL] case refine'_2 R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S✝ : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝ : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M ι : Sort u_9 hι : Nonempty ι S : ι → Submodule R M H : Directed (fun x x_1 => x ≤ x_1) S x : M hx : x ∈ ↑(span R (⋃ (i : ι), ↑(S i))) ⊢ ∀ (x y : M) (x_1 : ι), x ∈ ↑(S x_1) → ∀ (x_2 : ι), y ∈ ↑(S x_2) → ∃ i, x + y ∈ ↑(S i) [PROOFSTEP] intro x y i hi j hj [GOAL] case refine'_2 R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S✝ : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝¹ : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M ι : Sort u_9 hι : Nonempty ι S : ι → Submodule R M H : Directed (fun x x_1 => x ≤ x_1) S x✝ : M hx : x✝ ∈ ↑(span R (⋃ (i : ι), ↑(S i))) x y : M i : ι hi : x ∈ ↑(S i) j : ι hj : y ∈ ↑(S j) ⊢ ∃ i, x + y ∈ ↑(S i) [PROOFSTEP] rcases H i j with ⟨k, ik, jk⟩ [GOAL] case refine'_2.intro.intro R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S✝ : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝¹ : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M ι : Sort u_9 hι : Nonempty ι S : ι → Submodule R M H : Directed (fun x x_1 => x ≤ x_1) S x✝ : M hx : x✝ ∈ ↑(span R (⋃ (i : ι), ↑(S i))) x y : M i : ι hi : x ∈ ↑(S i) j : ι hj : y ∈ ↑(S j) k : ι ik : S i ≤ S k jk : S j ≤ S k ⊢ ∃ i, x + y ∈ ↑(S i) [PROOFSTEP] exact ⟨k, add_mem (ik hi) (jk hj)⟩ [GOAL] case refine'_3 R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S✝ : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝ : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M ι : Sort u_9 hι : Nonempty ι S : ι → Submodule R M H : Directed (fun x x_1 => x ≤ x_1) S x : M hx : x ∈ ↑(span R (⋃ (i : ι), ↑(S i))) ⊢ ∀ (a : R) (x : M) (x_1 : ι), x ∈ ↑(S x_1) → ∃ i, a • x ∈ ↑(S i) [PROOFSTEP] exact fun a x i hi => ⟨i, smul_mem _ a hi⟩ [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S✝ : Type u_7 inst✝⁷ : Semiring R inst✝⁶ : AddCommMonoid M inst✝⁵ : Module R M x✝ : M p p' : Submodule R M inst✝⁴ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝³ : AddCommMonoid M₂ inst✝² : Module R₂ M₂ F : Type u_8 inst✝¹ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M ι : Sort u_9 inst✝ : Nonempty ι S : ι → Submodule R M H : Directed (fun x x_1 => x ≤ x_1) S x : M ⊢ x ∈ iSup S ↔ ∃ i, x ∈ S i [PROOFSTEP] rw [← SetLike.mem_coe, coe_iSup_of_directed S H, mem_iUnion] [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S✝ : Type u_7 inst✝⁷ : Semiring R inst✝⁶ : AddCommMonoid M inst✝⁵ : Module R M x✝ : M p p' : Submodule R M inst✝⁴ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝³ : AddCommMonoid M₂ inst✝² : Module R₂ M₂ F : Type u_8 inst✝¹ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M ι : Sort u_9 inst✝ : Nonempty ι S : ι → Submodule R M H : Directed (fun x x_1 => x ≤ x_1) S x : M ⊢ (∃ i, x ∈ ↑(S i)) ↔ ∃ i, x ∈ S i [PROOFSTEP] rfl [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s✝ t : Set M s : Set (Submodule R M) z : M hs : Set.Nonempty s hdir : DirectedOn (fun x x_1 => x ≤ x_1) s ⊢ z ∈ sSup s ↔ ∃ y, y ∈ s ∧ z ∈ y [PROOFSTEP] have : Nonempty s := hs.to_subtype [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s✝ t : Set M s : Set (Submodule R M) z : M hs : Set.Nonempty s hdir : DirectedOn (fun x x_1 => x ≤ x_1) s this : Nonempty ↑s ⊢ z ∈ sSup s ↔ ∃ y, y ∈ s ∧ z ∈ y [PROOFSTEP] simp only [sSup_eq_iSup', mem_iSup_of_directed _ hdir.directed_val, SetCoe.exists, Subtype.coe_mk, exists_prop] [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M h : x ∈ p ⊔ p' ⊢ ∃ y, y ∈ p ∧ ∃ z, z ∈ p' ∧ y + z = x [PROOFSTEP] rw [← span_eq p, ← span_eq p', ← span_union] at h [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M h : x ∈ span R (↑p ∪ ↑p') ⊢ ∃ y, y ∈ p ∧ ∃ z, z ∈ p' ∧ y + z = x [PROOFSTEP] refine span_induction h ?_ ?_ ?_ ?_ [GOAL] case refine_1 R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M h : x ∈ span R (↑p ∪ ↑p') ⊢ ∀ (x : M), x ∈ ↑p ∪ ↑p' → ∃ y, y ∈ p ∧ ∃ z, z ∈ p' ∧ y + z = x [PROOFSTEP] rintro y (h | h) [GOAL] case refine_1.inl R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M h✝ : x ∈ span R (↑p ∪ ↑p') y : M h : y ∈ ↑p ⊢ ∃ y_1, y_1 ∈ p ∧ ∃ z, z ∈ p' ∧ y_1 + z = y [PROOFSTEP] exact ⟨y, h, 0, by simp, by simp⟩ [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M h✝ : x ∈ span R (↑p ∪ ↑p') y : M h : y ∈ ↑p ⊢ 0 ∈ p' [PROOFSTEP] simp [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M h✝ : x ∈ span R (↑p ∪ ↑p') y : M h : y ∈ ↑p ⊢ y + 0 = y [PROOFSTEP] simp [GOAL] case refine_1.inr R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M h✝ : x ∈ span R (↑p ∪ ↑p') y : M h : y ∈ ↑p' ⊢ ∃ y_1, y_1 ∈ p ∧ ∃ z, z ∈ p' ∧ y_1 + z = y [PROOFSTEP] exact ⟨0, by simp, y, h, by simp⟩ [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M h✝ : x ∈ span R (↑p ∪ ↑p') y : M h : y ∈ ↑p' ⊢ 0 ∈ p [PROOFSTEP] simp [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M h✝ : x ∈ span R (↑p ∪ ↑p') y : M h : y ∈ ↑p' ⊢ 0 + y = y [PROOFSTEP] simp [GOAL] case refine_2 R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M h : x ∈ span R (↑p ∪ ↑p') ⊢ ∃ y, y ∈ p ∧ ∃ z, z ∈ p' ∧ y + z = 0 [PROOFSTEP] exact ⟨0, by simp, 0, by simp⟩ [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M h : x ∈ span R (↑p ∪ ↑p') ⊢ 0 ∈ p [PROOFSTEP] simp [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M h : x ∈ span R (↑p ∪ ↑p') ⊢ 0 ∈ p' ∧ 0 + 0 = 0 [PROOFSTEP] simp [GOAL] case refine_3 R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M h : x ∈ span R (↑p ∪ ↑p') ⊢ ∀ (x y : M), (∃ y, y ∈ p ∧ ∃ z, z ∈ p' ∧ y + z = x) → (∃ y_1, y_1 ∈ p ∧ ∃ z, z ∈ p' ∧ y_1 + z = y) → ∃ y_1, y_1 ∈ p ∧ ∃ z, z ∈ p' ∧ y_1 + z = x + y [PROOFSTEP] rintro _ _ ⟨y₁, hy₁, z₁, hz₁, rfl⟩ ⟨y₂, hy₂, z₂, hz₂, rfl⟩ [GOAL] case refine_3.intro.intro.intro.intro.intro.intro.intro.intro R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M h : x ∈ span R (↑p ∪ ↑p') y₁ : M hy₁ : y₁ ∈ p z₁ : M hz₁ : z₁ ∈ p' y₂ : M hy₂ : y₂ ∈ p z₂ : M hz₂ : z₂ ∈ p' ⊢ ∃ y, y ∈ p ∧ ∃ z, z ∈ p' ∧ y + z = y₁ + z₁ + (y₂ + z₂) [PROOFSTEP] exact ⟨_, add_mem hy₁ hy₂, _, add_mem hz₁ hz₂, by rw [add_assoc, add_assoc, ← add_assoc y₂, ← add_assoc z₁, add_comm y₂]⟩ [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M h : x ∈ span R (↑p ∪ ↑p') y₁ : M hy₁ : y₁ ∈ p z₁ : M hz₁ : z₁ ∈ p' y₂ : M hy₂ : y₂ ∈ p z₂ : M hz₂ : z₂ ∈ p' ⊢ y₁ + y₂ + (z₁ + z₂) = y₁ + z₁ + (y₂ + z₂) [PROOFSTEP] rw [add_assoc, add_assoc, ← add_assoc y₂, ← add_assoc z₁, add_comm y₂] [GOAL] case refine_4 R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M h : x ∈ span R (↑p ∪ ↑p') ⊢ ∀ (a : R) (x : M), (∃ y, y ∈ p ∧ ∃ z, z ∈ p' ∧ y + z = x) → ∃ y, y ∈ p ∧ ∃ z, z ∈ p' ∧ y + z = a • x [PROOFSTEP] rintro a _ ⟨y, hy, z, hz, rfl⟩ [GOAL] case refine_4.intro.intro.intro.intro R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M h : x ∈ span R (↑p ∪ ↑p') a : R y : M hy : y ∈ p z : M hz : z ∈ p' ⊢ ∃ y_1, y_1 ∈ p ∧ ∃ z_1, z_1 ∈ p' ∧ y_1 + z_1 = a • (y + z) [PROOFSTEP] exact ⟨_, smul_mem _ a hy, _, smul_mem _ a hz, by simp [smul_add]⟩ [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M h : x ∈ span R (↑p ∪ ↑p') a : R y : M hy : y ∈ p z : M hz : z ∈ p' ⊢ a • y + a • z = a • (y + z) [PROOFSTEP] simp [smul_add] [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M ⊢ (∃ y, y ∈ p ∧ ∃ z, z ∈ p' ∧ y + z = x) → x ∈ p ⊔ p' [PROOFSTEP] rintro ⟨y, hy, z, hz, rfl⟩ [GOAL] case intro.intro.intro.intro R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M y : M hy : y ∈ p z : M hz : z ∈ p' ⊢ y + z ∈ p ⊔ p' [PROOFSTEP] exact add_mem ((le_sup_left : p ≤ p ⊔ p') hy) ((le_sup_right : p' ≤ p ⊔ p') hz) [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M ⊢ (∃ y, y ∈ p ∧ ∃ z, z ∈ p' ∧ y + z = x) ↔ ∃ y z, ↑y + ↑z = x [PROOFSTEP] simp only [Subtype.exists, exists_prop] [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M ⊢ ↑(p ⊔ p') = ↑p + ↑p' [PROOFSTEP] ext [GOAL] case h R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M x✝ : M ⊢ x✝ ∈ ↑(p ⊔ p') ↔ x✝ ∈ ↑p + ↑p' [PROOFSTEP] rw [SetLike.mem_coe, mem_sup, Set.mem_add] [GOAL] case h R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M x✝ : M ⊢ (∃ y, y ∈ p ∧ ∃ z, z ∈ p' ∧ y + z = x✝) ↔ ∃ x y, x ∈ ↑p ∧ y ∈ ↑p' ∧ x + y = x✝ [PROOFSTEP] simp [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M ⊢ (p ⊔ p').toAddSubmonoid = p.toAddSubmonoid ⊔ p'.toAddSubmonoid [PROOFSTEP] ext x [GOAL] case h R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝ : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M x : M ⊢ x ∈ (p ⊔ p').toAddSubmonoid ↔ x ∈ p.toAddSubmonoid ⊔ p'.toAddSubmonoid [PROOFSTEP] rw [mem_toAddSubmonoid, mem_sup, AddSubmonoid.mem_sup] [GOAL] case h R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝ : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M x : M ⊢ (∃ y, y ∈ p ∧ ∃ z, z ∈ p' ∧ y + z = x) ↔ ∃ y, y ∈ p.toAddSubmonoid ∧ ∃ z, z ∈ p'.toAddSubmonoid ∧ y + z = x [PROOFSTEP] rfl [GOAL] R✝ : Type u_1 R₂ : Type u_2 K : Type u_3 M✝ : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁹ : Semiring R✝ inst✝⁸ : AddCommMonoid M✝ inst✝⁷ : Module R✝ M✝ x : M✝ p✝ p'✝ : Submodule R✝ M✝ inst✝⁶ : Semiring R₂ σ₁₂ : R✝ →+* R₂ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R₂ M₂ F : Type u_8 inst✝³ : SemilinearMapClass F σ₁₂ M✝ M₂ s t : Set M✝ R : Type u_9 M : Type u_10 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M p p' : Submodule R M ⊢ toAddSubgroup (p ⊔ p') = toAddSubgroup p ⊔ toAddSubgroup p' [PROOFSTEP] ext x [GOAL] case h R✝ : Type u_1 R₂ : Type u_2 K : Type u_3 M✝ : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁹ : Semiring R✝ inst✝⁸ : AddCommMonoid M✝ inst✝⁷ : Module R✝ M✝ x✝ : M✝ p✝ p'✝ : Submodule R✝ M✝ inst✝⁶ : Semiring R₂ σ₁₂ : R✝ →+* R₂ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R₂ M₂ F : Type u_8 inst✝³ : SemilinearMapClass F σ₁₂ M✝ M₂ s t : Set M✝ R : Type u_9 M : Type u_10 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M p p' : Submodule R M x : M ⊢ x ∈ toAddSubgroup (p ⊔ p') ↔ x ∈ toAddSubgroup p ⊔ toAddSubgroup p' [PROOFSTEP] rw [mem_toAddSubgroup, mem_sup, AddSubgroup.mem_sup] [GOAL] case h R✝ : Type u_1 R₂ : Type u_2 K : Type u_3 M✝ : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁹ : Semiring R✝ inst✝⁸ : AddCommMonoid M✝ inst✝⁷ : Module R✝ M✝ x✝ : M✝ p✝ p'✝ : Submodule R✝ M✝ inst✝⁶ : Semiring R₂ σ₁₂ : R✝ →+* R₂ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R₂ M₂ F : Type u_8 inst✝³ : SemilinearMapClass F σ₁₂ M✝ M₂ s t : Set M✝ R : Type u_9 M : Type u_10 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M p p' : Submodule R M x : M ⊢ (∃ y, y ∈ p ∧ ∃ z, z ∈ p' ∧ y + z = x) ↔ ∃ y, y ∈ toAddSubgroup p ∧ ∃ z, z ∈ toAddSubgroup p' ∧ y + z = x [PROOFSTEP] rfl [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝ : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M x : M h : x ≠ 0 ⊢ ∃ x_1 y, x_1 ≠ y [PROOFSTEP] use 0, ⟨x, Submodule.mem_span_singleton_self x⟩ [GOAL] case h R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝ : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M x : M h : x ≠ 0 ⊢ 0 ≠ { val := x, property := (_ : x ∈ span R {x}) } [PROOFSTEP] intro H [GOAL] case h R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝ : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M x : M h : x ≠ 0 H : 0 = { val := x, property := (_ : x ∈ span R {x}) } ⊢ False [PROOFSTEP] rw [eq_comm, Submodule.mk_eq_zero] at H [GOAL] case h R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝ : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M x : M h : x ≠ 0 H : x = 0 ⊢ False [PROOFSTEP] exact h H [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M y : M h : x ∈ span R {y} ⊢ ∃ a, a • y = x [PROOFSTEP] refine span_induction h ?_ ?_ ?_ ?_ [GOAL] case refine_1 R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M y : M h : x ∈ span R {y} ⊢ ∀ (x : M), x ∈ {y} → ∃ a, a • y = x [PROOFSTEP] rintro y (rfl | ⟨⟨_⟩⟩) [GOAL] case refine_1.refl R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M y : M h : x ∈ span R {y} ⊢ ∃ a, a • y = y [PROOFSTEP] exact ⟨1, by simp⟩ [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M y : M h : x ∈ span R {y} ⊢ 1 • y = y [PROOFSTEP] simp [GOAL] case refine_2 R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M y : M h : x ∈ span R {y} ⊢ ∃ a, a • y = 0 [PROOFSTEP] exact ⟨0, by simp⟩ [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M y : M h : x ∈ span R {y} ⊢ 0 • y = 0 [PROOFSTEP] simp [GOAL] case refine_3 R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M y : M h : x ∈ span R {y} ⊢ ∀ (x y_1 : M), (∃ a, a • y = x) → (∃ a, a • y = y_1) → ∃ a, a • y = x + y_1 [PROOFSTEP] rintro _ _ ⟨a, rfl⟩ ⟨b, rfl⟩ [GOAL] case refine_3.intro.intro R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M y : M h : x ∈ span R {y} a b : R ⊢ ∃ a_1, a_1 • y = a • y + b • y [PROOFSTEP] exact ⟨a + b, by simp [add_smul]⟩ [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M y : M h : x ∈ span R {y} a b : R ⊢ (a + b) • y = a • y + b • y [PROOFSTEP] simp [add_smul] [GOAL] case refine_4 R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M y : M h : x ∈ span R {y} ⊢ ∀ (a : R) (x : M), (∃ a, a • y = x) → ∃ a_2, a_2 • y = a • x [PROOFSTEP] rintro a _ ⟨b, rfl⟩ [GOAL] case refine_4.intro R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M y : M h : x ∈ span R {y} a b : R ⊢ ∃ a_1, a_1 • y = a • b • y [PROOFSTEP] exact ⟨a * b, by simp [smul_smul]⟩ [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M y : M h : x ∈ span R {y} a b : R ⊢ (a * b) • y = a • b • y [PROOFSTEP] simp [smul_smul] [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M y : M ⊢ (∃ a, a • y = x) → x ∈ span R {y} [PROOFSTEP] rintro ⟨a, y, rfl⟩ [GOAL] case intro.refl R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M y : M a : R ⊢ a • y ∈ span R {y} [PROOFSTEP] exact smul_mem _ _ (subset_span <| by simp) [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M y : M a : R ⊢ y ∈ {y} [PROOFSTEP] simp [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s✝ t : Set M s : Submodule R M v₀ : M ⊢ s ≤ span R {v₀} ↔ ∀ (v : M), v ∈ s → ∃ r, r • v₀ = v [PROOFSTEP] simp_rw [SetLike.le_def, mem_span_singleton] [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝ : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M x : M ⊢ span R {x} = ⊤ ↔ ∀ (v : M), ∃ r, r • x = v [PROOFSTEP] rw [eq_top_iff, le_span_singleton_iff] [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝ : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M x : M ⊢ (∀ (v : M), v ∈ ⊤ → ∃ r, r • x = v) ↔ ∀ (v : M), ∃ r, r • x = v [PROOFSTEP] tauto [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M ⊢ span R {0} = ⊥ [PROOFSTEP] ext [GOAL] case h R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M x✝ : M ⊢ x✝ ∈ span R {0} ↔ x✝ ∈ ⊥ [PROOFSTEP] simp [mem_span_singleton, eq_comm] [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S✝ : Type u_7 inst✝¹⁰ : Semiring R inst✝⁹ : AddCommMonoid M inst✝⁸ : Module R M x✝ : M p p' : Submodule R M inst✝⁷ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : Module R₂ M₂ F : Type u_8 inst✝⁴ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M S : Type u_9 inst✝³ : Monoid S inst✝² : SMul S R inst✝¹ : MulAction S M inst✝ : IsScalarTower S R M r : S x : M ⊢ span R {r • x} ≤ span R {x} [PROOFSTEP] rw [span_le, Set.singleton_subset_iff, SetLike.mem_coe] [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S✝ : Type u_7 inst✝¹⁰ : Semiring R inst✝⁹ : AddCommMonoid M inst✝⁸ : Module R M x✝ : M p p' : Submodule R M inst✝⁷ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : Module R₂ M₂ F : Type u_8 inst✝⁴ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M S : Type u_9 inst✝³ : Monoid S inst✝² : SMul S R inst✝¹ : MulAction S M inst✝ : IsScalarTower S R M r : S x : M ⊢ r • x ∈ span R {x} [PROOFSTEP] exact smul_of_tower_mem _ _ (mem_span_singleton_self _) [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝¹⁰ : Semiring R inst✝⁹ : AddCommMonoid M inst✝⁸ : Module R M x✝ : M p p' : Submodule R M inst✝⁷ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : Module R₂ M₂ F : Type u_8 inst✝⁴ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M G : Type u_9 inst✝³ : Group G inst✝² : SMul G R inst✝¹ : MulAction G M inst✝ : IsScalarTower G R M g : G x : M ⊢ span R {g • x} = span R {x} [PROOFSTEP] refine' le_antisymm (span_singleton_smul_le R g x) _ [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝¹⁰ : Semiring R inst✝⁹ : AddCommMonoid M inst✝⁸ : Module R M x✝ : M p p' : Submodule R M inst✝⁷ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : Module R₂ M₂ F : Type u_8 inst✝⁴ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M G : Type u_9 inst✝³ : Group G inst✝² : SMul G R inst✝¹ : MulAction G M inst✝ : IsScalarTower G R M g : G x : M ⊢ span R {x} ≤ span R {g • x} [PROOFSTEP] convert span_singleton_smul_le R g⁻¹ (g • x) [GOAL] case h.e'_3.h.e'_6.h.e'_4 R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝¹⁰ : Semiring R inst✝⁹ : AddCommMonoid M inst✝⁸ : Module R M x✝ : M p p' : Submodule R M inst✝⁷ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : Module R₂ M₂ F : Type u_8 inst✝⁴ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M G : Type u_9 inst✝³ : Group G inst✝² : SMul G R inst✝¹ : MulAction G M inst✝ : IsScalarTower G R M g : G x : M ⊢ x = g⁻¹ • g • x [PROOFSTEP] exact (inv_smul_smul g x).symm [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝ : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M r : R hr : IsUnit r x : M ⊢ span R {r • x} = span R {x} [PROOFSTEP] lift r to Rˣ using hr [GOAL] case intro R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝ : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M x : M r : Rˣ ⊢ span R {↑r • x} = span R {x} [PROOFSTEP] rw [← Units.smul_def] [GOAL] case intro R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝ : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M x : M r : Rˣ ⊢ span R {r • x} = span R {x} [PROOFSTEP] exact span_singleton_group_smul_eq R r x [GOAL] R : Type u_1 R₂ : Type u_2 K✝ : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁹ : Semiring R inst✝⁸ : AddCommMonoid M inst✝⁷ : Module R M x✝ : M p p' : Submodule R M inst✝⁶ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R₂ M₂ F : Type u_8 inst✝³ : SemilinearMapClass F σ₁₂ M M₂ s✝ t : Set M K : Type u_9 E : Type u_10 inst✝² : DivisionRing K inst✝¹ : AddCommGroup E inst✝ : Module K E s : Submodule K E x : E ⊢ Disjoint s (span K {x}) ↔ x ∈ s → x = 0 [PROOFSTEP] refine' disjoint_def.trans ⟨fun H hx => H x hx <| subset_span <| mem_singleton x, _⟩ [GOAL] R : Type u_1 R₂ : Type u_2 K✝ : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁹ : Semiring R inst✝⁸ : AddCommMonoid M inst✝⁷ : Module R M x✝ : M p p' : Submodule R M inst✝⁶ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R₂ M₂ F : Type u_8 inst✝³ : SemilinearMapClass F σ₁₂ M M₂ s✝ t : Set M K : Type u_9 E : Type u_10 inst✝² : DivisionRing K inst✝¹ : AddCommGroup E inst✝ : Module K E s : Submodule K E x : E ⊢ (x ∈ s → x = 0) → ∀ (x_1 : E), x_1 ∈ s → x_1 ∈ span K {x} → x_1 = 0 [PROOFSTEP] intro H y hy hyx [GOAL] R : Type u_1 R₂ : Type u_2 K✝ : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁹ : Semiring R inst✝⁸ : AddCommMonoid M inst✝⁷ : Module R M x✝ : M p p' : Submodule R M inst✝⁶ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R₂ M₂ F : Type u_8 inst✝³ : SemilinearMapClass F σ₁₂ M M₂ s✝ t : Set M K : Type u_9 E : Type u_10 inst✝² : DivisionRing K inst✝¹ : AddCommGroup E inst✝ : Module K E s : Submodule K E x : E H : x ∈ s → x = 0 y : E hy : y ∈ s hyx : y ∈ span K {x} ⊢ y = 0 [PROOFSTEP] obtain ⟨c, rfl⟩ := mem_span_singleton.1 hyx [GOAL] case intro R : Type u_1 R₂ : Type u_2 K✝ : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁹ : Semiring R inst✝⁸ : AddCommMonoid M inst✝⁷ : Module R M x✝ : M p p' : Submodule R M inst✝⁶ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R₂ M₂ F : Type u_8 inst✝³ : SemilinearMapClass F σ₁₂ M M₂ s✝ t : Set M K : Type u_9 E : Type u_10 inst✝² : DivisionRing K inst✝¹ : AddCommGroup E inst✝ : Module K E s : Submodule K E x : E H : x ∈ s → x = 0 c : K hy : c • x ∈ s hyx : c • x ∈ span K {x} ⊢ c • x = 0 [PROOFSTEP] by_cases hc : c = 0 [GOAL] case pos R : Type u_1 R₂ : Type u_2 K✝ : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁹ : Semiring R inst✝⁸ : AddCommMonoid M inst✝⁷ : Module R M x✝ : M p p' : Submodule R M inst✝⁶ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R₂ M₂ F : Type u_8 inst✝³ : SemilinearMapClass F σ₁₂ M M₂ s✝ t : Set M K : Type u_9 E : Type u_10 inst✝² : DivisionRing K inst✝¹ : AddCommGroup E inst✝ : Module K E s : Submodule K E x : E H : x ∈ s → x = 0 c : K hy : c • x ∈ s hyx : c • x ∈ span K {x} hc : c = 0 ⊢ c • x = 0 [PROOFSTEP] rw [hc, zero_smul] [GOAL] case neg R : Type u_1 R₂ : Type u_2 K✝ : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁹ : Semiring R inst✝⁸ : AddCommMonoid M inst✝⁷ : Module R M x✝ : M p p' : Submodule R M inst✝⁶ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R₂ M₂ F : Type u_8 inst✝³ : SemilinearMapClass F σ₁₂ M M₂ s✝ t : Set M K : Type u_9 E : Type u_10 inst✝² : DivisionRing K inst✝¹ : AddCommGroup E inst✝ : Module K E s : Submodule K E x : E H : x ∈ s → x = 0 c : K hy : c • x ∈ s hyx : c • x ∈ span K {x} hc : ¬c = 0 ⊢ c • x = 0 [PROOFSTEP] rw [s.smul_mem_iff hc] at hy [GOAL] case neg R : Type u_1 R₂ : Type u_2 K✝ : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁹ : Semiring R inst✝⁸ : AddCommMonoid M inst✝⁷ : Module R M x✝ : M p p' : Submodule R M inst✝⁶ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R₂ M₂ F : Type u_8 inst✝³ : SemilinearMapClass F σ₁₂ M M₂ s✝ t : Set M K : Type u_9 E : Type u_10 inst✝² : DivisionRing K inst✝¹ : AddCommGroup E inst✝ : Module K E s : Submodule K E x : E H : x ∈ s → x = 0 c : K hy : x ∈ s hyx : c • x ∈ span K {x} hc : ¬c = 0 ⊢ c • x = 0 [PROOFSTEP] rw [H hy, smul_zero] [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝ : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M x y z : M hxy : x ∈ span R {y} hyz : y ∈ span R {z} ⊢ x ∈ span R {z} [PROOFSTEP] rw [← SetLike.mem_coe, ← singleton_subset_iff] at * [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝ : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M x y z : M hxy : {x} ⊆ ↑(span R {y}) hyz : {y} ⊆ ↑(span R {z}) ⊢ {x} ⊆ ↑(span R {z}) [PROOFSTEP] exact Submodule.subset_span_trans hxy hyz [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M y : M ⊢ x ∈ span R (insert y s) ↔ ∃ a z, z ∈ span R s ∧ x = a • y + z [PROOFSTEP] simp only [← union_singleton, span_union, mem_sup, mem_span_singleton, exists_prop, exists_exists_eq_and] [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M y : M ⊢ (∃ y_1, y_1 ∈ span R s ∧ ∃ a, y_1 + a • y = x) ↔ ∃ a z, z ∈ span R s ∧ x = a • y + z [PROOFSTEP] rw [exists_comm] [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M y : M ⊢ (∃ y_1, y_1 ∈ span R s ∧ ∃ a, y_1 + a • y = x) ↔ ∃ b a, b ∈ span R s ∧ x = a • y + b [PROOFSTEP] simp only [eq_comm, add_comm, exists_and_left] [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝ : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M x y z : M ⊢ z ∈ span R {x, y} ↔ ∃ a b, a • x + b • y = z [PROOFSTEP] simp_rw [mem_span_insert, mem_span_singleton, exists_exists_eq_and, eq_comm] [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝ : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s✝ t : Set M x : M s : Set M ⊢ span R (insert x s) = span R {x} ⊔ span R s [PROOFSTEP] rw [insert_eq, span_union] [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M ⊢ (∀ (x_1 : M), x_1 ∈ {x} → x_1 = 0) ↔ x = 0 [PROOFSTEP] simp [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M ⊢ span R 0 = ⊥ [PROOFSTEP] rw [← singleton_zero, span_singleton_eq_bot] [GOAL] R✝ : Type u_1 R₂ : Type u_2 K : Type u_3 M✝ : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝¹⁰ : Semiring R✝ inst✝⁹ : AddCommMonoid M✝ inst✝⁸ : Module R✝ M✝ x✝ : M✝ p p' : Submodule R✝ M✝ inst✝⁷ : Semiring R₂ σ₁₂ : R✝ →+* R₂ inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : Module R₂ M₂ F : Type u_8 inst✝⁴ : SemilinearMapClass F σ₁₂ M✝ M₂ s t : Set M✝ R : Type u_9 M : Type u_10 inst✝³ : Ring R inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x y : M ⊢ span R {x} = span R {y} ↔ ∃ z, z • x = y [PROOFSTEP] by_cases hx : x = 0 [GOAL] case pos R✝ : Type u_1 R₂ : Type u_2 K : Type u_3 M✝ : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝¹⁰ : Semiring R✝ inst✝⁹ : AddCommMonoid M✝ inst✝⁸ : Module R✝ M✝ x✝ : M✝ p p' : Submodule R✝ M✝ inst✝⁷ : Semiring R₂ σ₁₂ : R✝ →+* R₂ inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : Module R₂ M₂ F : Type u_8 inst✝⁴ : SemilinearMapClass F σ₁₂ M✝ M₂ s t : Set M✝ R : Type u_9 M : Type u_10 inst✝³ : Ring R inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x y : M hx : x = 0 ⊢ span R {x} = span R {y} ↔ ∃ z, z • x = y [PROOFSTEP] rw [hx, span_zero_singleton, eq_comm, span_singleton_eq_bot] [GOAL] case pos R✝ : Type u_1 R₂ : Type u_2 K : Type u_3 M✝ : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝¹⁰ : Semiring R✝ inst✝⁹ : AddCommMonoid M✝ inst✝⁸ : Module R✝ M✝ x✝ : M✝ p p' : Submodule R✝ M✝ inst✝⁷ : Semiring R₂ σ₁₂ : R✝ →+* R₂ inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : Module R₂ M₂ F : Type u_8 inst✝⁴ : SemilinearMapClass F σ₁₂ M✝ M₂ s t : Set M✝ R : Type u_9 M : Type u_10 inst✝³ : Ring R inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x y : M hx : x = 0 ⊢ y = 0 ↔ ∃ z, z • 0 = y [PROOFSTEP] exact ⟨fun hy => ⟨1, by rw [hy, smul_zero]⟩, fun ⟨_, hz⟩ => by rw [← hz, smul_zero]⟩ [GOAL] R✝ : Type u_1 R₂ : Type u_2 K : Type u_3 M✝ : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝¹⁰ : Semiring R✝ inst✝⁹ : AddCommMonoid M✝ inst✝⁸ : Module R✝ M✝ x✝ : M✝ p p' : Submodule R✝ M✝ inst✝⁷ : Semiring R₂ σ₁₂ : R✝ →+* R₂ inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : Module R₂ M₂ F : Type u_8 inst✝⁴ : SemilinearMapClass F σ₁₂ M✝ M₂ s t : Set M✝ R : Type u_9 M : Type u_10 inst✝³ : Ring R inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x y : M hx : x = 0 hy : y = 0 ⊢ 1 • 0 = y [PROOFSTEP] rw [hy, smul_zero] [GOAL] R✝ : Type u_1 R₂ : Type u_2 K : Type u_3 M✝ : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝¹⁰ : Semiring R✝ inst✝⁹ : AddCommMonoid M✝ inst✝⁸ : Module R✝ M✝ x✝¹ : M✝ p p' : Submodule R✝ M✝ inst✝⁷ : Semiring R₂ σ₁₂ : R✝ →+* R₂ inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : Module R₂ M₂ F : Type u_8 inst✝⁴ : SemilinearMapClass F σ₁₂ M✝ M₂ s t : Set M✝ R : Type u_9 M : Type u_10 inst✝³ : Ring R inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x y : M hx : x = 0 x✝ : ∃ z, z • 0 = y w✝ : Rˣ hz : w✝ • 0 = y ⊢ y = 0 [PROOFSTEP] rw [← hz, smul_zero] [GOAL] case neg R✝ : Type u_1 R₂ : Type u_2 K : Type u_3 M✝ : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝¹⁰ : Semiring R✝ inst✝⁹ : AddCommMonoid M✝ inst✝⁸ : Module R✝ M✝ x✝ : M✝ p p' : Submodule R✝ M✝ inst✝⁷ : Semiring R₂ σ₁₂ : R✝ →+* R₂ inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : Module R₂ M₂ F : Type u_8 inst✝⁴ : SemilinearMapClass F σ₁₂ M✝ M₂ s t : Set M✝ R : Type u_9 M : Type u_10 inst✝³ : Ring R inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x y : M hx : ¬x = 0 ⊢ span R {x} = span R {y} ↔ ∃ z, z • x = y [PROOFSTEP] by_cases hy : y = 0 [GOAL] case pos R✝ : Type u_1 R₂ : Type u_2 K : Type u_3 M✝ : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝¹⁰ : Semiring R✝ inst✝⁹ : AddCommMonoid M✝ inst✝⁸ : Module R✝ M✝ x✝ : M✝ p p' : Submodule R✝ M✝ inst✝⁷ : Semiring R₂ σ₁₂ : R✝ →+* R₂ inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : Module R₂ M₂ F : Type u_8 inst✝⁴ : SemilinearMapClass F σ₁₂ M✝ M₂ s t : Set M✝ R : Type u_9 M : Type u_10 inst✝³ : Ring R inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x y : M hx : ¬x = 0 hy : y = 0 ⊢ span R {x} = span R {y} ↔ ∃ z, z • x = y [PROOFSTEP] rw [hy, span_zero_singleton, span_singleton_eq_bot] [GOAL] case pos R✝ : Type u_1 R₂ : Type u_2 K : Type u_3 M✝ : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝¹⁰ : Semiring R✝ inst✝⁹ : AddCommMonoid M✝ inst✝⁸ : Module R✝ M✝ x✝ : M✝ p p' : Submodule R✝ M✝ inst✝⁷ : Semiring R₂ σ₁₂ : R✝ →+* R₂ inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : Module R₂ M₂ F : Type u_8 inst✝⁴ : SemilinearMapClass F σ₁₂ M✝ M₂ s t : Set M✝ R : Type u_9 M : Type u_10 inst✝³ : Ring R inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x y : M hx : ¬x = 0 hy : y = 0 ⊢ x = 0 ↔ ∃ z, z • x = 0 [PROOFSTEP] exact ⟨fun hx => ⟨1, by rw [hx, smul_zero]⟩, fun ⟨z, hz⟩ => (smul_eq_zero_iff_eq z).mp hz⟩ [GOAL] R✝ : Type u_1 R₂ : Type u_2 K : Type u_3 M✝ : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝¹⁰ : Semiring R✝ inst✝⁹ : AddCommMonoid M✝ inst✝⁸ : Module R✝ M✝ x✝ : M✝ p p' : Submodule R✝ M✝ inst✝⁷ : Semiring R₂ σ₁₂ : R✝ →+* R₂ inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : Module R₂ M₂ F : Type u_8 inst✝⁴ : SemilinearMapClass F σ₁₂ M✝ M₂ s t : Set M✝ R : Type u_9 M : Type u_10 inst✝³ : Ring R inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x y : M hx✝ : ¬x = 0 hy : y = 0 hx : x = 0 ⊢ 1 • x = 0 [PROOFSTEP] rw [hx, smul_zero] [GOAL] case neg R✝ : Type u_1 R₂ : Type u_2 K : Type u_3 M✝ : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝¹⁰ : Semiring R✝ inst✝⁹ : AddCommMonoid M✝ inst✝⁸ : Module R✝ M✝ x✝ : M✝ p p' : Submodule R✝ M✝ inst✝⁷ : Semiring R₂ σ₁₂ : R✝ →+* R₂ inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : Module R₂ M₂ F : Type u_8 inst✝⁴ : SemilinearMapClass F σ₁₂ M✝ M₂ s t : Set M✝ R : Type u_9 M : Type u_10 inst✝³ : Ring R inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x y : M hx : ¬x = 0 hy : ¬y = 0 ⊢ span R {x} = span R {y} ↔ ∃ z, z • x = y [PROOFSTEP] constructor [GOAL] case neg.mp R✝ : Type u_1 R₂ : Type u_2 K : Type u_3 M✝ : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝¹⁰ : Semiring R✝ inst✝⁹ : AddCommMonoid M✝ inst✝⁸ : Module R✝ M✝ x✝ : M✝ p p' : Submodule R✝ M✝ inst✝⁷ : Semiring R₂ σ₁₂ : R✝ →+* R₂ inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : Module R₂ M₂ F : Type u_8 inst✝⁴ : SemilinearMapClass F σ₁₂ M✝ M₂ s t : Set M✝ R : Type u_9 M : Type u_10 inst✝³ : Ring R inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x y : M hx : ¬x = 0 hy : ¬y = 0 ⊢ span R {x} = span R {y} → ∃ z, z • x = y [PROOFSTEP] intro hxy [GOAL] case neg.mp R✝ : Type u_1 R₂ : Type u_2 K : Type u_3 M✝ : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝¹⁰ : Semiring R✝ inst✝⁹ : AddCommMonoid M✝ inst✝⁸ : Module R✝ M✝ x✝ : M✝ p p' : Submodule R✝ M✝ inst✝⁷ : Semiring R₂ σ₁₂ : R✝ →+* R₂ inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : Module R₂ M₂ F : Type u_8 inst✝⁴ : SemilinearMapClass F σ₁₂ M✝ M₂ s t : Set M✝ R : Type u_9 M : Type u_10 inst✝³ : Ring R inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x y : M hx : ¬x = 0 hy : ¬y = 0 hxy : span R {x} = span R {y} ⊢ ∃ z, z • x = y [PROOFSTEP] cases' mem_span_singleton.mp (by rw [hxy] apply mem_span_singleton_self) with v hv [GOAL] R✝ : Type u_1 R₂ : Type u_2 K : Type u_3 M✝ : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝¹⁰ : Semiring R✝ inst✝⁹ : AddCommMonoid M✝ inst✝⁸ : Module R✝ M✝ x✝ : M✝ p p' : Submodule R✝ M✝ inst✝⁷ : Semiring R₂ σ₁₂ : R✝ →+* R₂ inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : Module R₂ M₂ F : Type u_8 inst✝⁴ : SemilinearMapClass F σ₁₂ M✝ M₂ s t : Set M✝ R : Type u_9 M : Type u_10 inst✝³ : Ring R inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x y : M hx : ¬x = 0 hy : ¬y = 0 hxy : span R {x} = span R {y} ⊢ ?m.246152 ∈ span ?m.246042 {?m.246153} [PROOFSTEP] rw [hxy] [GOAL] R✝ : Type u_1 R₂ : Type u_2 K : Type u_3 M✝ : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝¹⁰ : Semiring R✝ inst✝⁹ : AddCommMonoid M✝ inst✝⁸ : Module R✝ M✝ x✝ : M✝ p p' : Submodule R✝ M✝ inst✝⁷ : Semiring R₂ σ₁₂ : R✝ →+* R₂ inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : Module R₂ M₂ F : Type u_8 inst✝⁴ : SemilinearMapClass F σ₁₂ M✝ M₂ s t : Set M✝ R : Type u_9 M : Type u_10 inst✝³ : Ring R inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x y : M hx : ¬x = 0 hy : ¬y = 0 hxy : span R {x} = span R {y} ⊢ ?m.246152 ∈ span R {y} R✝ : Type u_1 R₂ : Type u_2 K : Type u_3 M✝ : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝¹⁰ : Semiring R✝ inst✝⁹ : AddCommMonoid M✝ inst✝⁸ : Module R✝ M✝ x✝ : M✝ p p' : Submodule R✝ M✝ inst✝⁷ : Semiring R₂ σ₁₂ : R✝ →+* R₂ inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : Module R₂ M₂ F : Type u_8 inst✝⁴ : SemilinearMapClass F σ₁₂ M✝ M₂ s t : Set M✝ R : Type u_9 M : Type u_10 inst✝³ : Ring R inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x y : M hx : ¬x = 0 hy : ¬y = 0 hxy : span R {x} = span R {y} ⊢ M [PROOFSTEP] apply mem_span_singleton_self [GOAL] case neg.mp.intro R✝ : Type u_1 R₂ : Type u_2 K : Type u_3 M✝ : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝¹⁰ : Semiring R✝ inst✝⁹ : AddCommMonoid M✝ inst✝⁸ : Module R✝ M✝ x✝ : M✝ p p' : Submodule R✝ M✝ inst✝⁷ : Semiring R₂ σ₁₂ : R✝ →+* R₂ inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : Module R₂ M₂ F : Type u_8 inst✝⁴ : SemilinearMapClass F σ₁₂ M✝ M₂ s t : Set M✝ R : Type u_9 M : Type u_10 inst✝³ : Ring R inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x y : M hx : ¬x = 0 hy : ¬y = 0 hxy : span R {x} = span R {y} v : R hv : v • x = y ⊢ ∃ z, z • x = y [PROOFSTEP] cases' mem_span_singleton.mp (by rw [← hxy] apply mem_span_singleton_self) with i hi [GOAL] R✝ : Type u_1 R₂ : Type u_2 K : Type u_3 M✝ : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝¹⁰ : Semiring R✝ inst✝⁹ : AddCommMonoid M✝ inst✝⁸ : Module R✝ M✝ x✝ : M✝ p p' : Submodule R✝ M✝ inst✝⁷ : Semiring R₂ σ₁₂ : R✝ →+* R₂ inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : Module R₂ M₂ F : Type u_8 inst✝⁴ : SemilinearMapClass F σ₁₂ M✝ M₂ s t : Set M✝ R : Type u_9 M : Type u_10 inst✝³ : Ring R inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x y : M hx : ¬x = 0 hy : ¬y = 0 hxy : span R {x} = span R {y} v : R hv : v • x = y ⊢ ?m.246933 ∈ span ?m.246823 {?m.246934} [PROOFSTEP] rw [← hxy] [GOAL] R✝ : Type u_1 R₂ : Type u_2 K : Type u_3 M✝ : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝¹⁰ : Semiring R✝ inst✝⁹ : AddCommMonoid M✝ inst✝⁸ : Module R✝ M✝ x✝ : M✝ p p' : Submodule R✝ M✝ inst✝⁷ : Semiring R₂ σ₁₂ : R✝ →+* R₂ inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : Module R₂ M₂ F : Type u_8 inst✝⁴ : SemilinearMapClass F σ₁₂ M✝ M₂ s t : Set M✝ R : Type u_9 M : Type u_10 inst✝³ : Ring R inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x y : M hx : ¬x = 0 hy : ¬y = 0 hxy : span R {x} = span R {y} v : R hv : v • x = y ⊢ ?m.246933 ∈ span R {x} R✝ : Type u_1 R₂ : Type u_2 K : Type u_3 M✝ : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝¹⁰ : Semiring R✝ inst✝⁹ : AddCommMonoid M✝ inst✝⁸ : Module R✝ M✝ x✝ : M✝ p p' : Submodule R✝ M✝ inst✝⁷ : Semiring R₂ σ₁₂ : R✝ →+* R₂ inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : Module R₂ M₂ F : Type u_8 inst✝⁴ : SemilinearMapClass F σ₁₂ M✝ M₂ s t : Set M✝ R : Type u_9 M : Type u_10 inst✝³ : Ring R inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x y : M hx : ¬x = 0 hy : ¬y = 0 hxy : span R {x} = span R {y} v : R hv : v • x = y ⊢ M [PROOFSTEP] apply mem_span_singleton_self [GOAL] case neg.mp.intro.intro R✝ : Type u_1 R₂ : Type u_2 K : Type u_3 M✝ : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝¹⁰ : Semiring R✝ inst✝⁹ : AddCommMonoid M✝ inst✝⁸ : Module R✝ M✝ x✝ : M✝ p p' : Submodule R✝ M✝ inst✝⁷ : Semiring R₂ σ₁₂ : R✝ →+* R₂ inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : Module R₂ M₂ F : Type u_8 inst✝⁴ : SemilinearMapClass F σ₁₂ M✝ M₂ s t : Set M✝ R : Type u_9 M : Type u_10 inst✝³ : Ring R inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x y : M hx : ¬x = 0 hy : ¬y = 0 hxy : span R {x} = span R {y} v : R hv : v • x = y i : R hi : i • y = x ⊢ ∃ z, z • x = y [PROOFSTEP] have vi : v * i = 1 := by rw [← one_smul R y, ← hi, smul_smul] at hv exact smul_left_injective R hy hv [GOAL] R✝ : Type u_1 R₂ : Type u_2 K : Type u_3 M✝ : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝¹⁰ : Semiring R✝ inst✝⁹ : AddCommMonoid M✝ inst✝⁸ : Module R✝ M✝ x✝ : M✝ p p' : Submodule R✝ M✝ inst✝⁷ : Semiring R₂ σ₁₂ : R✝ →+* R₂ inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : Module R₂ M₂ F : Type u_8 inst✝⁴ : SemilinearMapClass F σ₁₂ M✝ M₂ s t : Set M✝ R : Type u_9 M : Type u_10 inst✝³ : Ring R inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x y : M hx : ¬x = 0 hy : ¬y = 0 hxy : span R {x} = span R {y} v : R hv : v • x = y i : R hi : i • y = x ⊢ v * i = 1 [PROOFSTEP] rw [← one_smul R y, ← hi, smul_smul] at hv [GOAL] R✝ : Type u_1 R₂ : Type u_2 K : Type u_3 M✝ : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝¹⁰ : Semiring R✝ inst✝⁹ : AddCommMonoid M✝ inst✝⁸ : Module R✝ M✝ x✝ : M✝ p p' : Submodule R✝ M✝ inst✝⁷ : Semiring R₂ σ₁₂ : R✝ →+* R₂ inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : Module R₂ M₂ F : Type u_8 inst✝⁴ : SemilinearMapClass F σ₁₂ M✝ M₂ s t : Set M✝ R : Type u_9 M : Type u_10 inst✝³ : Ring R inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x y : M hx : ¬x = 0 hy : ¬y = 0 hxy : span R {x} = span R {y} v i : R hv : (v * i) • y = 1 • y hi : i • y = x ⊢ v * i = 1 [PROOFSTEP] exact smul_left_injective R hy hv [GOAL] case neg.mp.intro.intro R✝ : Type u_1 R₂ : Type u_2 K : Type u_3 M✝ : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝¹⁰ : Semiring R✝ inst✝⁹ : AddCommMonoid M✝ inst✝⁸ : Module R✝ M✝ x✝ : M✝ p p' : Submodule R✝ M✝ inst✝⁷ : Semiring R₂ σ₁₂ : R✝ →+* R₂ inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : Module R₂ M₂ F : Type u_8 inst✝⁴ : SemilinearMapClass F σ₁₂ M✝ M₂ s t : Set M✝ R : Type u_9 M : Type u_10 inst✝³ : Ring R inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x y : M hx : ¬x = 0 hy : ¬y = 0 hxy : span R {x} = span R {y} v : R hv : v • x = y i : R hi : i • y = x vi : v * i = 1 ⊢ ∃ z, z • x = y [PROOFSTEP] have iv : i * v = 1 := by rw [← one_smul R x, ← hv, smul_smul] at hi exact smul_left_injective R hx hi [GOAL] R✝ : Type u_1 R₂ : Type u_2 K : Type u_3 M✝ : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝¹⁰ : Semiring R✝ inst✝⁹ : AddCommMonoid M✝ inst✝⁸ : Module R✝ M✝ x✝ : M✝ p p' : Submodule R✝ M✝ inst✝⁷ : Semiring R₂ σ₁₂ : R✝ →+* R₂ inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : Module R₂ M₂ F : Type u_8 inst✝⁴ : SemilinearMapClass F σ₁₂ M✝ M₂ s t : Set M✝ R : Type u_9 M : Type u_10 inst✝³ : Ring R inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x y : M hx : ¬x = 0 hy : ¬y = 0 hxy : span R {x} = span R {y} v : R hv : v • x = y i : R hi : i • y = x vi : v * i = 1 ⊢ i * v = 1 [PROOFSTEP] rw [← one_smul R x, ← hv, smul_smul] at hi [GOAL] R✝ : Type u_1 R₂ : Type u_2 K : Type u_3 M✝ : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝¹⁰ : Semiring R✝ inst✝⁹ : AddCommMonoid M✝ inst✝⁸ : Module R✝ M✝ x✝ : M✝ p p' : Submodule R✝ M✝ inst✝⁷ : Semiring R₂ σ₁₂ : R✝ →+* R₂ inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : Module R₂ M₂ F : Type u_8 inst✝⁴ : SemilinearMapClass F σ₁₂ M✝ M₂ s t : Set M✝ R : Type u_9 M : Type u_10 inst✝³ : Ring R inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x y : M hx : ¬x = 0 hy : ¬y = 0 hxy : span R {x} = span R {y} v : R hv : v • x = y i : R hi : (i * v) • x = 1 • x vi : v * i = 1 ⊢ i * v = 1 [PROOFSTEP] exact smul_left_injective R hx hi [GOAL] case neg.mp.intro.intro R✝ : Type u_1 R₂ : Type u_2 K : Type u_3 M✝ : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝¹⁰ : Semiring R✝ inst✝⁹ : AddCommMonoid M✝ inst✝⁸ : Module R✝ M✝ x✝ : M✝ p p' : Submodule R✝ M✝ inst✝⁷ : Semiring R₂ σ₁₂ : R✝ →+* R₂ inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : Module R₂ M₂ F : Type u_8 inst✝⁴ : SemilinearMapClass F σ₁₂ M✝ M₂ s t : Set M✝ R : Type u_9 M : Type u_10 inst✝³ : Ring R inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x y : M hx : ¬x = 0 hy : ¬y = 0 hxy : span R {x} = span R {y} v : R hv : v • x = y i : R hi : i • y = x vi : v * i = 1 iv : i * v = 1 ⊢ ∃ z, z • x = y [PROOFSTEP] exact ⟨⟨v, i, vi, iv⟩, hv⟩ [GOAL] case neg.mpr R✝ : Type u_1 R₂ : Type u_2 K : Type u_3 M✝ : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝¹⁰ : Semiring R✝ inst✝⁹ : AddCommMonoid M✝ inst✝⁸ : Module R✝ M✝ x✝ : M✝ p p' : Submodule R✝ M✝ inst✝⁷ : Semiring R₂ σ₁₂ : R✝ →+* R₂ inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : Module R₂ M₂ F : Type u_8 inst✝⁴ : SemilinearMapClass F σ₁₂ M✝ M₂ s t : Set M✝ R : Type u_9 M : Type u_10 inst✝³ : Ring R inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x y : M hx : ¬x = 0 hy : ¬y = 0 ⊢ (∃ z, z • x = y) → span R {x} = span R {y} [PROOFSTEP] rintro ⟨v, rfl⟩ [GOAL] case neg.mpr.intro R✝ : Type u_1 R₂ : Type u_2 K : Type u_3 M✝ : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝¹⁰ : Semiring R✝ inst✝⁹ : AddCommMonoid M✝ inst✝⁸ : Module R✝ M✝ x✝ : M✝ p p' : Submodule R✝ M✝ inst✝⁷ : Semiring R₂ σ₁₂ : R✝ →+* R₂ inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : Module R₂ M₂ F : Type u_8 inst✝⁴ : SemilinearMapClass F σ₁₂ M✝ M₂ s t : Set M✝ R : Type u_9 M : Type u_10 inst✝³ : Ring R inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x : M hx : ¬x = 0 v : Rˣ hy : ¬v • x = 0 ⊢ span R {x} = span R {v • x} [PROOFSTEP] rw [span_singleton_group_smul_eq] [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁷ : Semiring R inst✝⁶ : AddCommMonoid M inst✝⁵ : Module R M x✝ : M p p' : Submodule R M inst✝⁴ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝³ : AddCommMonoid M₂ inst✝² : Module R₂ M₂ F : Type u_8 inst✝¹ : SemilinearMapClass F σ₁₂ M M₂ s✝ t : Set M inst✝ : RingHomSurjective σ₁₂ f : F x : M s : Set M h : x ∈ span R s ⊢ ↑f x ∈ span R₂ (↑f '' s) [PROOFSTEP] rw [Submodule.span_image] [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁷ : Semiring R inst✝⁶ : AddCommMonoid M inst✝⁵ : Module R M x✝ : M p p' : Submodule R M inst✝⁴ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝³ : AddCommMonoid M₂ inst✝² : Module R₂ M₂ F : Type u_8 inst✝¹ : SemilinearMapClass F σ₁₂ M M₂ s✝ t : Set M inst✝ : RingHomSurjective σ₁₂ f : F x : M s : Set M h : x ∈ span R s ⊢ ↑f x ∈ map f (span R s) [PROOFSTEP] exact Submodule.mem_map_of_mem h [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁷ : Semiring R inst✝⁶ : AddCommMonoid M inst✝⁵ : Module R M x✝ : M p p' : Submodule R M inst✝⁴ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝³ : AddCommMonoid M₂ inst✝² : Module R₂ M₂ F : Type u_8 inst✝¹ : SemilinearMapClass F σ₁₂ M M₂ s✝ t : Set M inst✝ : RingHomSurjective σ₁₂ f : F x : M s : Set M hf : Injective ↑f ⊢ ↑f x ∈ span R₂ (↑f '' s) ↔ x ∈ span R s [PROOFSTEP] rw [← Submodule.mem_comap, ← Submodule.map_span, Submodule.comap_map_eq_of_injective hf] [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝ : M p✝ p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M p : Submodule R M x : { x // x ∈ p } ⊢ map (Submodule.subtype p) (span R {x}) = span R {↑x} [PROOFSTEP] simp [← span_image] [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p✝ p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M ι : Sort u_9 p : ι → Submodule R M ⊢ ⨆ (i : ι), p i = span R (⋃ (i : ι), ↑(p i)) [PROOFSTEP] simp_rw [← iSup_span, span_eq] [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p✝ p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M ι : Sort u_9 p : ι → Submodule R M ⊢ (⨆ (i : ι), p i).toAddSubmonoid = ⨆ (i : ι), (p i).toAddSubmonoid [PROOFSTEP] refine' le_antisymm (fun x => _) (iSup_le fun i => toAddSubmonoid_mono <| le_iSup _ i) [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝ : M p✝ p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M ι : Sort u_9 p : ι → Submodule R M x : M ⊢ x ∈ (⨆ (i : ι), p i).toAddSubmonoid → x ∈ ⨆ (i : ι), (p i).toAddSubmonoid [PROOFSTEP] simp_rw [iSup_eq_span, AddSubmonoid.iSup_eq_closure, mem_toAddSubmonoid, coe_toAddSubmonoid] [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝ : M p✝ p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M ι : Sort u_9 p : ι → Submodule R M x : M ⊢ x ∈ span R (⋃ (i : ι), ↑(p i)) → x ∈ AddSubmonoid.closure (⋃ (i : ι), ↑(p i)) [PROOFSTEP] intro hx [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝ : M p✝ p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M ι : Sort u_9 p : ι → Submodule R M x : M hx : x ∈ span R (⋃ (i : ι), ↑(p i)) ⊢ x ∈ AddSubmonoid.closure (⋃ (i : ι), ↑(p i)) [PROOFSTEP] refine' Submodule.span_induction hx (fun x hx => _) _ (fun x y hx hy => _) fun r x hx => _ [GOAL] case refine'_1 R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝¹ : M p✝ p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M ι : Sort u_9 p : ι → Submodule R M x✝ : M hx✝ : x✝ ∈ span R (⋃ (i : ι), ↑(p i)) x : M hx : x ∈ ⋃ (i : ι), ↑(p i) ⊢ x ∈ AddSubmonoid.closure (⋃ (i : ι), ↑(p i)) [PROOFSTEP] exact AddSubmonoid.subset_closure hx [GOAL] case refine'_2 R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝ : M p✝ p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M ι : Sort u_9 p : ι → Submodule R M x : M hx : x ∈ span R (⋃ (i : ι), ↑(p i)) ⊢ 0 ∈ AddSubmonoid.closure (⋃ (i : ι), ↑(p i)) [PROOFSTEP] exact AddSubmonoid.zero_mem _ [GOAL] case refine'_3 R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝¹ : M p✝ p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M ι : Sort u_9 p : ι → Submodule R M x✝ : M hx✝ : x✝ ∈ span R (⋃ (i : ι), ↑(p i)) x y : M hx : x ∈ AddSubmonoid.closure (⋃ (i : ι), ↑(p i)) hy : y ∈ AddSubmonoid.closure (⋃ (i : ι), ↑(p i)) ⊢ x + y ∈ AddSubmonoid.closure (⋃ (i : ι), ↑(p i)) [PROOFSTEP] exact AddSubmonoid.add_mem _ hx hy [GOAL] case refine'_4 R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝¹ : M p✝ p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M ι : Sort u_9 p : ι → Submodule R M x✝ : M hx✝ : x✝ ∈ span R (⋃ (i : ι), ↑(p i)) r : R x : M hx : x ∈ AddSubmonoid.closure (⋃ (i : ι), ↑(p i)) ⊢ r • x ∈ AddSubmonoid.closure (⋃ (i : ι), ↑(p i)) [PROOFSTEP] refine AddSubmonoid.closure_induction hx ?_ ?_ ?_ [GOAL] case refine'_4.refine_1 R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝¹ : M p✝ p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M ι : Sort u_9 p : ι → Submodule R M x✝ : M hx✝ : x✝ ∈ span R (⋃ (i : ι), ↑(p i)) r : R x : M hx : x ∈ AddSubmonoid.closure (⋃ (i : ι), ↑(p i)) ⊢ ∀ (x : M), x ∈ ⋃ (i : ι), ↑(p i) → r • x ∈ AddSubmonoid.closure (⋃ (i : ι), ↑(p i)) [PROOFSTEP] rintro x ⟨_, ⟨i, rfl⟩, hix : x ∈ p i⟩ [GOAL] case refine'_4.refine_1.intro.intro.intro R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝² : M p✝ p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M ι : Sort u_9 p : ι → Submodule R M x✝¹ : M hx✝ : x✝¹ ∈ span R (⋃ (i : ι), ↑(p i)) r : R x✝ : M hx : x✝ ∈ AddSubmonoid.closure (⋃ (i : ι), ↑(p i)) x : M i : ι hix : x ∈ p i ⊢ r • x ∈ AddSubmonoid.closure (⋃ (i : ι), ↑(p i)) [PROOFSTEP] apply AddSubmonoid.subset_closure (Set.mem_iUnion.mpr ⟨i, _⟩) [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝² : M p✝ p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M ι : Sort u_9 p : ι → Submodule R M x✝¹ : M hx✝ : x✝¹ ∈ span R (⋃ (i : ι), ↑(p i)) r : R x✝ : M hx : x✝ ∈ AddSubmonoid.closure (⋃ (i : ι), ↑(p i)) x : M i : ι hix : x ∈ p i ⊢ r • x ∈ ↑(p i) [PROOFSTEP] exact smul_mem _ r hix [GOAL] case refine'_4.refine_2 R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝¹ : M p✝ p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M ι : Sort u_9 p : ι → Submodule R M x✝ : M hx✝ : x✝ ∈ span R (⋃ (i : ι), ↑(p i)) r : R x : M hx : x ∈ AddSubmonoid.closure (⋃ (i : ι), ↑(p i)) ⊢ r • 0 ∈ AddSubmonoid.closure (⋃ (i : ι), ↑(p i)) [PROOFSTEP] rw [smul_zero] [GOAL] case refine'_4.refine_2 R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝¹ : M p✝ p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M ι : Sort u_9 p : ι → Submodule R M x✝ : M hx✝ : x✝ ∈ span R (⋃ (i : ι), ↑(p i)) r : R x : M hx : x ∈ AddSubmonoid.closure (⋃ (i : ι), ↑(p i)) ⊢ 0 ∈ AddSubmonoid.closure (⋃ (i : ι), ↑(p i)) [PROOFSTEP] exact AddSubmonoid.zero_mem _ [GOAL] case refine'_4.refine_3 R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝¹ : M p✝ p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M ι : Sort u_9 p : ι → Submodule R M x✝ : M hx✝ : x✝ ∈ span R (⋃ (i : ι), ↑(p i)) r : R x : M hx : x ∈ AddSubmonoid.closure (⋃ (i : ι), ↑(p i)) ⊢ ∀ (x y : M), r • x ∈ AddSubmonoid.closure (⋃ (i : ι), ↑(p i)) → r • y ∈ AddSubmonoid.closure (⋃ (i : ι), ↑(p i)) → r • (x + y) ∈ AddSubmonoid.closure (⋃ (i : ι), ↑(p i)) [PROOFSTEP] intro x y hx hy [GOAL] case refine'_4.refine_3 R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝² : M p✝ p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M ι : Sort u_9 p : ι → Submodule R M x✝¹ : M hx✝¹ : x✝¹ ∈ span R (⋃ (i : ι), ↑(p i)) r : R x✝ : M hx✝ : x✝ ∈ AddSubmonoid.closure (⋃ (i : ι), ↑(p i)) x y : M hx : r • x ∈ AddSubmonoid.closure (⋃ (i : ι), ↑(p i)) hy : r • y ∈ AddSubmonoid.closure (⋃ (i : ι), ↑(p i)) ⊢ r • (x + y) ∈ AddSubmonoid.closure (⋃ (i : ι), ↑(p i)) [PROOFSTEP] rw [smul_add] [GOAL] case refine'_4.refine_3 R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝² : M p✝ p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M ι : Sort u_9 p : ι → Submodule R M x✝¹ : M hx✝¹ : x✝¹ ∈ span R (⋃ (i : ι), ↑(p i)) r : R x✝ : M hx✝ : x✝ ∈ AddSubmonoid.closure (⋃ (i : ι), ↑(p i)) x y : M hx : r • x ∈ AddSubmonoid.closure (⋃ (i : ι), ↑(p i)) hy : r • y ∈ AddSubmonoid.closure (⋃ (i : ι), ↑(p i)) ⊢ r • x + r • y ∈ AddSubmonoid.closure (⋃ (i : ι), ↑(p i)) [PROOFSTEP] exact AddSubmonoid.add_mem _ hx hy [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝ : M p✝ p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M ι : Sort u_9 p : ι → Submodule R M C : M → Prop x : M hx : x ∈ ⨆ (i : ι), p i hp : ∀ (i : ι) (x : M), x ∈ p i → C x h0 : C 0 hadd : ∀ (x y : M), C x → C y → C (x + y) ⊢ C x [PROOFSTEP] rw [← mem_toAddSubmonoid, iSup_toAddSubmonoid] at hx [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝ : M p✝ p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M ι : Sort u_9 p : ι → Submodule R M C : M → Prop x : M hx : x ∈ ⨆ (i : ι), (p i).toAddSubmonoid hp : ∀ (i : ι) (x : M), x ∈ p i → C x h0 : C 0 hadd : ∀ (x y : M), C x → C y → C (x + y) ⊢ C x [PROOFSTEP] exact AddSubmonoid.iSup_induction (x := x) _ hx hp h0 hadd [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝ : M p✝ p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M ι : Sort u_9 p : ι → Submodule R M C : (x : M) → x ∈ ⨆ (i : ι), p i → Prop hp : ∀ (i : ι) (x : M) (hx : x ∈ p i), C x (_ : x ∈ ⨆ (i : ι), p i) h0 : C 0 (_ : 0 ∈ ⨆ (i : ι), p i) hadd : ∀ (x y : M) (hx : x ∈ ⨆ (i : ι), p i) (hy : y ∈ ⨆ (i : ι), p i), C x hx → C y hy → C (x + y) (_ : x + y ∈ ⨆ (i : ι), p i) x : M hx : x ∈ ⨆ (i : ι), p i ⊢ C x hx [PROOFSTEP] refine' Exists.elim _ fun (hx : x ∈ ⨆ i, p i) (hc : C x hx) => hc [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝ : M p✝ p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M ι : Sort u_9 p : ι → Submodule R M C : (x : M) → x ∈ ⨆ (i : ι), p i → Prop hp : ∀ (i : ι) (x : M) (hx : x ∈ p i), C x (_ : x ∈ ⨆ (i : ι), p i) h0 : C 0 (_ : 0 ∈ ⨆ (i : ι), p i) hadd : ∀ (x y : M) (hx : x ∈ ⨆ (i : ι), p i) (hy : y ∈ ⨆ (i : ι), p i), C x hx → C y hy → C (x + y) (_ : x + y ∈ ⨆ (i : ι), p i) x : M hx : x ∈ ⨆ (i : ι), p i ⊢ ∃ x_1, C x x_1 [PROOFSTEP] refine' iSup_induction p (C := fun x : M ↦ ∃ (hx : x ∈ ⨆ i, p i), C x hx) hx (fun i x hx => _) _ fun x y => _ [GOAL] case refine'_1 R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝¹ : M p✝ p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M ι : Sort u_9 p : ι → Submodule R M C : (x : M) → x ∈ ⨆ (i : ι), p i → Prop hp : ∀ (i : ι) (x : M) (hx : x ∈ p i), C x (_ : x ∈ ⨆ (i : ι), p i) h0 : C 0 (_ : 0 ∈ ⨆ (i : ι), p i) hadd : ∀ (x y : M) (hx : x ∈ ⨆ (i : ι), p i) (hy : y ∈ ⨆ (i : ι), p i), C x hx → C y hy → C (x + y) (_ : x + y ∈ ⨆ (i : ι), p i) x✝ : M hx✝ : x✝ ∈ ⨆ (i : ι), p i i : ι x : M hx : x ∈ p i ⊢ (fun x => ∃ hx, C x hx) x [PROOFSTEP] exact ⟨_, hp _ _ hx⟩ [GOAL] case refine'_2 R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝ : M p✝ p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M ι : Sort u_9 p : ι → Submodule R M C : (x : M) → x ∈ ⨆ (i : ι), p i → Prop hp : ∀ (i : ι) (x : M) (hx : x ∈ p i), C x (_ : x ∈ ⨆ (i : ι), p i) h0 : C 0 (_ : 0 ∈ ⨆ (i : ι), p i) hadd : ∀ (x y : M) (hx : x ∈ ⨆ (i : ι), p i) (hy : y ∈ ⨆ (i : ι), p i), C x hx → C y hy → C (x + y) (_ : x + y ∈ ⨆ (i : ι), p i) x : M hx : x ∈ ⨆ (i : ι), p i ⊢ (fun x => ∃ hx, C x hx) 0 [PROOFSTEP] exact ⟨_, h0⟩ [GOAL] case refine'_3 R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝¹ : M p✝ p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M ι : Sort u_9 p : ι → Submodule R M C : (x : M) → x ∈ ⨆ (i : ι), p i → Prop hp : ∀ (i : ι) (x : M) (hx : x ∈ p i), C x (_ : x ∈ ⨆ (i : ι), p i) h0 : C 0 (_ : 0 ∈ ⨆ (i : ι), p i) hadd : ∀ (x y : M) (hx : x ∈ ⨆ (i : ι), p i) (hy : y ∈ ⨆ (i : ι), p i), C x hx → C y hy → C (x + y) (_ : x + y ∈ ⨆ (i : ι), p i) x✝ : M hx : x✝ ∈ ⨆ (i : ι), p i x y : M ⊢ (fun x => ∃ hx, C x hx) x → (fun x => ∃ hx, C x hx) y → (fun x => ∃ hx, C x hx) (x + y) [PROOFSTEP] rintro ⟨_, Cx⟩ ⟨_, Cy⟩ [GOAL] case refine'_3.intro.intro R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝¹ : M p✝ p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M ι : Sort u_9 p : ι → Submodule R M C : (x : M) → x ∈ ⨆ (i : ι), p i → Prop hp : ∀ (i : ι) (x : M) (hx : x ∈ p i), C x (_ : x ∈ ⨆ (i : ι), p i) h0 : C 0 (_ : 0 ∈ ⨆ (i : ι), p i) hadd : ∀ (x y : M) (hx : x ∈ ⨆ (i : ι), p i) (hy : y ∈ ⨆ (i : ι), p i), C x hx → C y hy → C (x + y) (_ : x + y ∈ ⨆ (i : ι), p i) x✝ : M hx : x✝ ∈ ⨆ (i : ι), p i x y : M w✝¹ : x ∈ ⨆ (i : ι), p i Cx : C x w✝¹ w✝ : y ∈ ⨆ (i : ι), p i Cy : C y w✝ ⊢ ∃ hx, C (x + y) hx [PROOFSTEP] refine' ⟨_, hadd _ _ _ _ Cx Cy⟩ [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p✝ p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M m : M p : Submodule R M ⊢ span R {m} ≤ p ↔ m ∈ p [PROOFSTEP] rw [span_le, singleton_subset_iff, SetLike.mem_coe] [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝ : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M x : M ⊢ CompleteLattice.IsCompactElement (span R {x}) [PROOFSTEP] rw [CompleteLattice.isCompactElement_iff_le_of_directed_sSup_le] [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝ : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M x : M ⊢ ∀ (s : Set (Submodule R M)), Set.Nonempty s → DirectedOn (fun x x_1 => x ≤ x_1) s → span R {x} ≤ sSup s → ∃ x_1, x_1 ∈ s ∧ span R {x} ≤ x_1 [PROOFSTEP] intro d hemp hdir hsup [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝ : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M x : M d : Set (Submodule R M) hemp : Set.Nonempty d hdir : DirectedOn (fun x x_1 => x ≤ x_1) d hsup : span R {x} ≤ sSup d ⊢ ∃ x_1, x_1 ∈ d ∧ span R {x} ≤ x_1 [PROOFSTEP] have : x ∈ (sSup d) := (SetLike.le_def.mp hsup) (mem_span_singleton_self x) [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝ : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M x : M d : Set (Submodule R M) hemp : Set.Nonempty d hdir : DirectedOn (fun x x_1 => x ≤ x_1) d hsup : span R {x} ≤ sSup d this : x ∈ sSup d ⊢ ∃ x_1, x_1 ∈ d ∧ span R {x} ≤ x_1 [PROOFSTEP] obtain ⟨y, ⟨hyd, hxy⟩⟩ := (mem_sSup_of_directed hemp hdir).mp this [GOAL] case intro.intro R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝ : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M x : M d : Set (Submodule R M) hemp : Set.Nonempty d hdir : DirectedOn (fun x x_1 => x ≤ x_1) d hsup : span R {x} ≤ sSup d this : x ∈ sSup d y : Submodule R M hyd : y ∈ d hxy : x ∈ y ⊢ ∃ x_1, x_1 ∈ d ∧ span R {x} ≤ x_1 [PROOFSTEP] exact ⟨y, ⟨hyd, by simpa only [span_le, singleton_subset_iff]⟩⟩ [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝ : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M x : M d : Set (Submodule R M) hemp : Set.Nonempty d hdir : DirectedOn (fun x x_1 => x ≤ x_1) d hsup : span R {x} ≤ sSup d this : x ∈ sSup d y : Submodule R M hyd : y ∈ d hxy : x ∈ y ⊢ span R {x} ≤ y [PROOFSTEP] simpa only [span_le, singleton_subset_iff] [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S✝ : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M S : Finset M ⊢ CompleteLattice.IsCompactElement (span R ↑S) [PROOFSTEP] rw [span_eq_iSup_of_singleton_spans] [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S✝ : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M S : Finset M ⊢ CompleteLattice.IsCompactElement (⨆ (x : M) (_ : x ∈ ↑S), span R {x}) [PROOFSTEP] simp only [Finset.mem_coe] [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S✝ : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M S : Finset M ⊢ CompleteLattice.IsCompactElement (⨆ (x : M) (_ : x ∈ S), span R {x}) [PROOFSTEP] rw [← Finset.sup_eq_iSup] [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S✝ : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M S : Finset M ⊢ CompleteLattice.IsCompactElement (Finset.sup S fun x => span R {x}) [PROOFSTEP] exact CompleteLattice.finset_sup_compact_of_compact S fun x _ => singleton_span_isCompactElement x [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s✝ t✝ : Set M s t : Submodule R M ht : t ∈ (fun x => span R {x}) '' ↑s ⊢ CompleteLattice.IsCompactElement t [PROOFSTEP] rcases(Set.mem_image _ _ _).1 ht with ⟨x, _, rfl⟩ [GOAL] case intro.intro R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝ : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s✝ t : Set M s : Submodule R M x : M left✝ : x ∈ ↑s ht : span R {x} ∈ (fun x => span R {x}) '' ↑s ⊢ CompleteLattice.IsCompactElement (span R {x}) [PROOFSTEP] apply singleton_span_isCompactElement [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s✝ t : Set M s : Submodule R M ⊢ sSup ((fun x => span R {x}) '' ↑s) = s [PROOFSTEP] rw [sSup_eq_iSup, iSup_image, ← span_eq_iSup_of_singleton_spans, span_eq] [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p✝ p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M p : Submodule R M ⊢ p = sSup {T | ∃ m x x, T = span R {m}} [PROOFSTEP] let S := {T : Submodule R M | ∃ (m : M) (_ : m ∈ p) (_ : m ≠ 0), T = span R { m }} [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S✝ : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p✝ p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M p : Submodule R M S : Set (Submodule R M) := {T | ∃ m x x, T = span R {m}} ⊢ p = sSup {T | ∃ m x x, T = span R {m}} [PROOFSTEP] apply le_antisymm [GOAL] case a R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S✝ : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p✝ p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M p : Submodule R M S : Set (Submodule R M) := {T | ∃ m x x, T = span R {m}} ⊢ p ≤ sSup {T | ∃ m x x, T = span R {m}} [PROOFSTEP] intro m hm [GOAL] case a R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S✝ : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p✝ p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M p : Submodule R M S : Set (Submodule R M) := {T | ∃ m x x, T = span R {m}} m : M hm : m ∈ p ⊢ m ∈ sSup {T | ∃ m x x, T = span R {m}} [PROOFSTEP] by_cases h : m = 0 [GOAL] case pos R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S✝ : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p✝ p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M p : Submodule R M S : Set (Submodule R M) := {T | ∃ m x x, T = span R {m}} m : M hm : m ∈ p h : m = 0 ⊢ m ∈ sSup {T | ∃ m x x, T = span R {m}} [PROOFSTEP] rw [h] [GOAL] case pos R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S✝ : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p✝ p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M p : Submodule R M S : Set (Submodule R M) := {T | ∃ m x x, T = span R {m}} m : M hm : m ∈ p h : m = 0 ⊢ 0 ∈ sSup {T | ∃ m x x, T = span R {m}} [PROOFSTEP] simp [GOAL] case neg R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S✝ : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p✝ p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M p : Submodule R M S : Set (Submodule R M) := {T | ∃ m x x, T = span R {m}} m : M hm : m ∈ p h : ¬m = 0 ⊢ m ∈ sSup {T | ∃ m x x, T = span R {m}} [PROOFSTEP] exact @le_sSup _ _ S _ ⟨m, ⟨hm, ⟨h, rfl⟩⟩⟩ m (mem_span_singleton_self m) [GOAL] case a R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S✝ : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p✝ p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M p : Submodule R M S : Set (Submodule R M) := {T | ∃ m x x, T = span R {m}} ⊢ sSup {T | ∃ m x x, T = span R {m}} ≤ p [PROOFSTEP] rw [sSup_le_iff] [GOAL] case a R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S✝ : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p✝ p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M p : Submodule R M S : Set (Submodule R M) := {T | ∃ m x x, T = span R {m}} ⊢ ∀ (b : Submodule R M), b ∈ {T | ∃ m x x, T = span R {m}} → b ≤ p [PROOFSTEP] rintro S ⟨_, ⟨_, ⟨_, rfl⟩⟩⟩ [GOAL] case a.intro.intro.intro R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S✝ : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p✝ p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M p : Submodule R M S : Set (Submodule R M) := {T | ∃ m x x, T = span R {m}} w✝² : M w✝¹ : w✝² ∈ p w✝ : w✝² ≠ 0 ⊢ span R {w✝²} ≤ p [PROOFSTEP] rwa [span_singleton_le_iff_mem] [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M I : Submodule R M a : M ⊢ I < I ⊔ span R {a} ↔ ¬a ∈ I [PROOFSTEP] constructor [GOAL] case mp R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M I : Submodule R M a : M ⊢ I < I ⊔ span R {a} → ¬a ∈ I [PROOFSTEP] intro h [GOAL] case mp R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M I : Submodule R M a : M h : I < I ⊔ span R {a} ⊢ ¬a ∈ I [PROOFSTEP] by_contra akey [GOAL] case mp R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M I : Submodule R M a : M h : I < I ⊔ span R {a} akey : a ∈ I ⊢ False [PROOFSTEP] have h1 : (I ⊔ R ∙ a) ≤ I := by simp only [sup_le_iff] constructor · exact le_refl I · exact (span_singleton_le_iff_mem a I).mpr akey [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M I : Submodule R M a : M h : I < I ⊔ span R {a} akey : a ∈ I ⊢ I ⊔ span R {a} ≤ I [PROOFSTEP] simp only [sup_le_iff] [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M I : Submodule R M a : M h : I < I ⊔ span R {a} akey : a ∈ I ⊢ I ≤ I ∧ span R {a} ≤ I [PROOFSTEP] constructor [GOAL] case left R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M I : Submodule R M a : M h : I < I ⊔ span R {a} akey : a ∈ I ⊢ I ≤ I [PROOFSTEP] exact le_refl I [GOAL] case right R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M I : Submodule R M a : M h : I < I ⊔ span R {a} akey : a ∈ I ⊢ span R {a} ≤ I [PROOFSTEP] exact (span_singleton_le_iff_mem a I).mpr akey [GOAL] case mp R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M I : Submodule R M a : M h : I < I ⊔ span R {a} akey : a ∈ I h1 : I ⊔ span R {a} ≤ I ⊢ False [PROOFSTEP] have h2 := gt_of_ge_of_gt h1 h [GOAL] case mp R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M I : Submodule R M a : M h : I < I ⊔ span R {a} akey : a ∈ I h1 : I ⊔ span R {a} ≤ I h2 : I > I ⊢ False [PROOFSTEP] exact lt_irrefl I h2 [GOAL] case mpr R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M I : Submodule R M a : M ⊢ ¬a ∈ I → I < I ⊔ span R {a} [PROOFSTEP] intro h [GOAL] case mpr R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M I : Submodule R M a : M h : ¬a ∈ I ⊢ I < I ⊔ span R {a} [PROOFSTEP] apply SetLike.lt_iff_le_and_exists.mpr [GOAL] case mpr R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M I : Submodule R M a : M h : ¬a ∈ I ⊢ I ≤ I ⊔ span R {a} ∧ ∃ x, x ∈ I ⊔ span R {a} ∧ ¬x ∈ I [PROOFSTEP] constructor [GOAL] case mpr.left R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M I : Submodule R M a : M h : ¬a ∈ I ⊢ I ≤ I ⊔ span R {a} case mpr.right R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M I : Submodule R M a : M h : ¬a ∈ I ⊢ ∃ x, x ∈ I ⊔ span R {a} ∧ ¬x ∈ I [PROOFSTEP] simp only [le_sup_left] [GOAL] case mpr.right R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M I : Submodule R M a : M h : ¬a ∈ I ⊢ ∃ x, x ∈ I ⊔ span R {a} ∧ ¬x ∈ I [PROOFSTEP] use a [GOAL] case h R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M I : Submodule R M a : M h : ¬a ∈ I ⊢ a ∈ I ⊔ span R {a} ∧ ¬a ∈ I [PROOFSTEP] constructor [GOAL] case h.left R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M I : Submodule R M a : M h : ¬a ∈ I ⊢ a ∈ I ⊔ span R {a} case h.right R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M I : Submodule R M a : M h : ¬a ∈ I ⊢ ¬a ∈ I [PROOFSTEP] swap [GOAL] case h.right R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M I : Submodule R M a : M h : ¬a ∈ I ⊢ ¬a ∈ I [PROOFSTEP] assumption [GOAL] case h.left R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M I : Submodule R M a : M h : ¬a ∈ I ⊢ a ∈ I ⊔ span R {a} [PROOFSTEP] have : (R ∙ a) ≤ I ⊔ R ∙ a := le_sup_right [GOAL] case h.left R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M I : Submodule R M a : M h : ¬a ∈ I this : span R {a} ≤ I ⊔ span R {a} ⊢ a ∈ I ⊔ span R {a} [PROOFSTEP] exact this (mem_span_singleton_self a) [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p✝ p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M ι : Sort u_9 p : ι → Submodule R M m : M ⊢ m ∈ ⨆ (i : ι), p i ↔ ∀ (N : Submodule R M), (∀ (i : ι), p i ≤ N) → m ∈ N [PROOFSTEP] rw [← span_singleton_le_iff_mem, le_iSup_iff] [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x : M p✝ p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t : Set M ι : Sort u_9 p : ι → Submodule R M m : M ⊢ (∀ (b : Submodule R M), (∀ (i : ι), p i ≤ b) → span R {m} ≤ b) ↔ ∀ (N : Submodule R M), (∀ (i : ι), p i ≤ N) → m ∈ N [PROOFSTEP] simp only [span_singleton_le_iff_mem] [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S✝ : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝ : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t S : Set M x : M hx : x ∈ span R S ⊢ ∃ T, ↑T ⊆ S ∧ x ∈ span R ↑T [PROOFSTEP] classical refine' span_induction hx (fun x hx => _) _ _ _ · refine' ⟨{ x }, _, _⟩ · rwa [Finset.coe_singleton, Set.singleton_subset_iff] · rw [Finset.coe_singleton] exact Submodule.mem_span_singleton_self x · use∅ simp · rintro x y ⟨X, hX, hxX⟩ ⟨Y, hY, hyY⟩ refine' ⟨X ∪ Y, _, _⟩ · rw [Finset.coe_union] exact Set.union_subset hX hY rw [Finset.coe_union, span_union, mem_sup] exact ⟨x, hxX, y, hyY, rfl⟩ · rintro a x ⟨T, hT, h2⟩ exact ⟨T, hT, smul_mem _ _ h2⟩ [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S✝ : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝ : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t S : Set M x : M hx : x ∈ span R S ⊢ ∃ T, ↑T ⊆ S ∧ x ∈ span R ↑T [PROOFSTEP] refine' span_induction hx (fun x hx => _) _ _ _ [GOAL] case refine'_1 R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S✝ : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝¹ : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t S : Set M x✝ : M hx✝ : x✝ ∈ span R S x : M hx : x ∈ S ⊢ ∃ T, ↑T ⊆ S ∧ x ∈ span R ↑T [PROOFSTEP] refine' ⟨{ x }, _, _⟩ [GOAL] case refine'_1.refine'_1 R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S✝ : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝¹ : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t S : Set M x✝ : M hx✝ : x✝ ∈ span R S x : M hx : x ∈ S ⊢ ↑{x} ⊆ S [PROOFSTEP] rwa [Finset.coe_singleton, Set.singleton_subset_iff] [GOAL] case refine'_1.refine'_2 R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S✝ : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝¹ : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t S : Set M x✝ : M hx✝ : x✝ ∈ span R S x : M hx : x ∈ S ⊢ x ∈ span R ↑{x} [PROOFSTEP] rw [Finset.coe_singleton] [GOAL] case refine'_1.refine'_2 R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S✝ : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝¹ : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t S : Set M x✝ : M hx✝ : x✝ ∈ span R S x : M hx : x ∈ S ⊢ x ∈ span R {x} [PROOFSTEP] exact Submodule.mem_span_singleton_self x [GOAL] case refine'_2 R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S✝ : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝ : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t S : Set M x : M hx : x ∈ span R S ⊢ ∃ T, ↑T ⊆ S ∧ 0 ∈ span R ↑T [PROOFSTEP] use∅ [GOAL] case h R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S✝ : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝ : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t S : Set M x : M hx : x ∈ span R S ⊢ ↑∅ ⊆ S ∧ 0 ∈ span R ↑∅ [PROOFSTEP] simp [GOAL] case refine'_3 R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S✝ : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝ : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t S : Set M x : M hx : x ∈ span R S ⊢ ∀ (x y : M), (∃ T, ↑T ⊆ S ∧ x ∈ span R ↑T) → (∃ T, ↑T ⊆ S ∧ y ∈ span R ↑T) → ∃ T, ↑T ⊆ S ∧ x + y ∈ span R ↑T [PROOFSTEP] rintro x y ⟨X, hX, hxX⟩ ⟨Y, hY, hyY⟩ [GOAL] case refine'_3.intro.intro.intro.intro R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S✝ : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝¹ : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t S : Set M x✝ : M hx : x✝ ∈ span R S x y : M X : Finset M hX : ↑X ⊆ S hxX : x ∈ span R ↑X Y : Finset M hY : ↑Y ⊆ S hyY : y ∈ span R ↑Y ⊢ ∃ T, ↑T ⊆ S ∧ x + y ∈ span R ↑T [PROOFSTEP] refine' ⟨X ∪ Y, _, _⟩ [GOAL] case refine'_3.intro.intro.intro.intro.refine'_1 R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S✝ : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝¹ : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t S : Set M x✝ : M hx : x✝ ∈ span R S x y : M X : Finset M hX : ↑X ⊆ S hxX : x ∈ span R ↑X Y : Finset M hY : ↑Y ⊆ S hyY : y ∈ span R ↑Y ⊢ ↑(X ∪ Y) ⊆ S [PROOFSTEP] rw [Finset.coe_union] [GOAL] case refine'_3.intro.intro.intro.intro.refine'_1 R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S✝ : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝¹ : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t S : Set M x✝ : M hx : x✝ ∈ span R S x y : M X : Finset M hX : ↑X ⊆ S hxX : x ∈ span R ↑X Y : Finset M hY : ↑Y ⊆ S hyY : y ∈ span R ↑Y ⊢ ↑X ∪ ↑Y ⊆ S [PROOFSTEP] exact Set.union_subset hX hY [GOAL] case refine'_3.intro.intro.intro.intro.refine'_2 R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S✝ : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝¹ : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t S : Set M x✝ : M hx : x✝ ∈ span R S x y : M X : Finset M hX : ↑X ⊆ S hxX : x ∈ span R ↑X Y : Finset M hY : ↑Y ⊆ S hyY : y ∈ span R ↑Y ⊢ x + y ∈ span R ↑(X ∪ Y) [PROOFSTEP] rw [Finset.coe_union, span_union, mem_sup] [GOAL] case refine'_3.intro.intro.intro.intro.refine'_2 R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S✝ : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝¹ : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t S : Set M x✝ : M hx : x✝ ∈ span R S x y : M X : Finset M hX : ↑X ⊆ S hxX : x ∈ span R ↑X Y : Finset M hY : ↑Y ⊆ S hyY : y ∈ span R ↑Y ⊢ ∃ y_1, y_1 ∈ span R ↑X ∧ ∃ z, z ∈ span R ↑Y ∧ y_1 + z = x + y [PROOFSTEP] exact ⟨x, hxX, y, hyY, rfl⟩ [GOAL] case refine'_4 R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S✝ : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝ : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t S : Set M x : M hx : x ∈ span R S ⊢ ∀ (a : R) (x : M), (∃ T, ↑T ⊆ S ∧ x ∈ span R ↑T) → ∃ T, ↑T ⊆ S ∧ a • x ∈ span R ↑T [PROOFSTEP] rintro a x ⟨T, hT, h2⟩ [GOAL] case refine'_4.intro.intro R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S✝ : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M x✝¹ : M p p' : Submodule R M inst✝³ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 inst✝ : SemilinearMapClass F σ₁₂ M M₂ s t S : Set M x✝ : M hx : x✝ ∈ span R S a : R x : M T : Finset M hT : ↑T ⊆ S h2 : x ∈ span R ↑T ⊢ ∃ T, ↑T ⊆ S ∧ a • x ∈ span R ↑T [PROOFSTEP] exact ⟨T, hT, smul_mem _ _ h2⟩ [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁸ : Semiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M x : M p p' : Submodule R M inst✝⁵ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝⁴ : AddCommMonoid M₂ inst✝³ : Module R₂ M₂ F : Type u_8 inst✝² : SemilinearMapClass F σ₁₂ M M₂ s t : Set M M' : Type u_9 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' q₁ q₁' : Submodule R M' src✝ : AddSubmonoid (M × M') := AddSubmonoid.prod p.toAddSubmonoid q₁.toAddSubmonoid ⊢ ∀ (c : R) {x : M × M'}, x ∈ { toAddSubsemigroup := { carrier := ↑p ×ˢ ↑q₁, add_mem' := (_ : ∀ {a b : M × M'}, a ∈ src✝.carrier → b ∈ src✝.carrier → a + b ∈ src✝.carrier) }, zero_mem' := (_ : 0 ∈ src✝.carrier) }.toAddSubsemigroup.carrier → c • x ∈ { toAddSubsemigroup := { carrier := ↑p ×ˢ ↑q₁, add_mem' := (_ : ∀ {a b : M × M'}, a ∈ src✝.carrier → b ∈ src✝.carrier → a + b ∈ src✝.carrier) }, zero_mem' := (_ : 0 ∈ src✝.carrier) }.toAddSubsemigroup.carrier [PROOFSTEP] rintro a ⟨x, y⟩ ⟨hx, hy⟩ [GOAL] case mk.intro R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁸ : Semiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M x✝ : M p p' : Submodule R M inst✝⁵ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝⁴ : AddCommMonoid M₂ inst✝³ : Module R₂ M₂ F : Type u_8 inst✝² : SemilinearMapClass F σ₁₂ M M₂ s t : Set M M' : Type u_9 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' q₁ q₁' : Submodule R M' src✝ : AddSubmonoid (M × M') := AddSubmonoid.prod p.toAddSubmonoid q₁.toAddSubmonoid a : R x : M y : M' hx : (x, y).fst ∈ ↑p hy : (x, y).snd ∈ ↑q₁ ⊢ a • (x, y) ∈ { toAddSubsemigroup := { carrier := ↑p ×ˢ ↑q₁, add_mem' := (_ : ∀ {a b : M × M'}, a ∈ src✝.carrier → b ∈ src✝.carrier → a + b ∈ src✝.carrier) }, zero_mem' := (_ : 0 ∈ src✝.carrier) }.toAddSubsemigroup.carrier [PROOFSTEP] exact ⟨smul_mem _ a hx, smul_mem _ a hy⟩ [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁸ : Semiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M x : M p p' : Submodule R M inst✝⁵ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝⁴ : AddCommMonoid M₂ inst✝³ : Module R₂ M₂ F : Type u_8 inst✝² : SemilinearMapClass F σ₁₂ M M₂ s t : Set M M' : Type u_9 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' q₁ q₁' : Submodule R M' ⊢ prod ⊤ ⊤ = ⊤ [PROOFSTEP] ext [GOAL] case h R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁸ : Semiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M x : M p p' : Submodule R M inst✝⁵ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝⁴ : AddCommMonoid M₂ inst✝³ : Module R₂ M₂ F : Type u_8 inst✝² : SemilinearMapClass F σ₁₂ M M₂ s t : Set M M' : Type u_9 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' q₁ q₁' : Submodule R M' x✝ : M × M' ⊢ x✝ ∈ prod ⊤ ⊤ ↔ x✝ ∈ ⊤ [PROOFSTEP] simp [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁸ : Semiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M x : M p p' : Submodule R M inst✝⁵ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝⁴ : AddCommMonoid M₂ inst✝³ : Module R₂ M₂ F : Type u_8 inst✝² : SemilinearMapClass F σ₁₂ M M₂ s t : Set M M' : Type u_9 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' q₁ q₁' : Submodule R M' ⊢ prod ⊥ ⊥ = ⊥ [PROOFSTEP] ext ⟨x, y⟩ [GOAL] case h.mk R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁸ : Semiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M x✝ : M p p' : Submodule R M inst✝⁵ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝⁴ : AddCommMonoid M₂ inst✝³ : Module R₂ M₂ F : Type u_8 inst✝² : SemilinearMapClass F σ₁₂ M M₂ s t : Set M M' : Type u_9 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' q₁ q₁' : Submodule R M' x : M y : M' ⊢ (x, y) ∈ prod ⊥ ⊥ ↔ (x, y) ∈ ⊥ [PROOFSTEP] simp [Prod.zero_eq_mk] [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁸ : Semiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M x : M p p' : Submodule R M inst✝⁵ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝⁴ : AddCommMonoid M₂ inst✝³ : Module R₂ M₂ F : Type u_8 inst✝² : SemilinearMapClass F σ₁₂ M M₂ s t : Set M M' : Type u_9 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' q₁ q₁' : Submodule R M' ⊢ prod p q₁ ⊔ prod p' q₁' = prod (p ⊔ p') (q₁ ⊔ q₁') [PROOFSTEP] refine' le_antisymm (sup_le (prod_mono le_sup_left le_sup_left) (prod_mono le_sup_right le_sup_right)) _ [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁸ : Semiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M x : M p p' : Submodule R M inst✝⁵ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝⁴ : AddCommMonoid M₂ inst✝³ : Module R₂ M₂ F : Type u_8 inst✝² : SemilinearMapClass F σ₁₂ M M₂ s t : Set M M' : Type u_9 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' q₁ q₁' : Submodule R M' ⊢ prod (p ⊔ p') (q₁ ⊔ q₁') ≤ prod p q₁ ⊔ prod p' q₁' [PROOFSTEP] simp [SetLike.le_def] [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁸ : Semiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M x : M p p' : Submodule R M inst✝⁵ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝⁴ : AddCommMonoid M₂ inst✝³ : Module R₂ M₂ F : Type u_8 inst✝² : SemilinearMapClass F σ₁₂ M M₂ s t : Set M M' : Type u_9 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' q₁ q₁' : Submodule R M' ⊢ ∀ (a : M) (b : M'), a ∈ p ⊔ p' → b ∈ q₁ ⊔ q₁' → (a, b) ∈ prod p q₁ ⊔ prod p' q₁' [PROOFSTEP] intro xx yy hxx hyy [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁸ : Semiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M x : M p p' : Submodule R M inst✝⁵ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝⁴ : AddCommMonoid M₂ inst✝³ : Module R₂ M₂ F : Type u_8 inst✝² : SemilinearMapClass F σ₁₂ M M₂ s t : Set M M' : Type u_9 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' q₁ q₁' : Submodule R M' xx : M yy : M' hxx : xx ∈ p ⊔ p' hyy : yy ∈ q₁ ⊔ q₁' ⊢ (xx, yy) ∈ prod p q₁ ⊔ prod p' q₁' [PROOFSTEP] rcases mem_sup.1 hxx with ⟨x, hx, x', hx', rfl⟩ [GOAL] case intro.intro.intro.intro R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁸ : Semiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M x✝ : M p p' : Submodule R M inst✝⁵ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝⁴ : AddCommMonoid M₂ inst✝³ : Module R₂ M₂ F : Type u_8 inst✝² : SemilinearMapClass F σ₁₂ M M₂ s t : Set M M' : Type u_9 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' q₁ q₁' : Submodule R M' yy : M' hyy : yy ∈ q₁ ⊔ q₁' x : M hx : x ∈ p x' : M hx' : x' ∈ p' hxx : x + x' ∈ p ⊔ p' ⊢ (x + x', yy) ∈ prod p q₁ ⊔ prod p' q₁' [PROOFSTEP] rcases mem_sup.1 hyy with ⟨y, hy, y', hy', rfl⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁸ : Semiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M x✝ : M p p' : Submodule R M inst✝⁵ : Semiring R₂ σ₁₂ : R →+* R₂ inst✝⁴ : AddCommMonoid M₂ inst✝³ : Module R₂ M₂ F : Type u_8 inst✝² : SemilinearMapClass F σ₁₂ M M₂ s t : Set M M' : Type u_9 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' q₁ q₁' : Submodule R M' x : M hx : x ∈ p x' : M hx' : x' ∈ p' hxx : x + x' ∈ p ⊔ p' y : M' hy : y ∈ q₁ y' : M' hy' : y' ∈ q₁' hyy : y + y' ∈ q₁ ⊔ q₁' ⊢ (x + x', y + y') ∈ prod p q₁ ⊔ prod p' q₁' [PROOFSTEP] refine' mem_sup.2 ⟨(x, y), ⟨hx, hy⟩, (x', y'), ⟨hx', hy'⟩, rfl⟩ [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M s : Set M ⊢ span R (-s) = span R (↑(-LinearMap.id) '' s) [PROOFSTEP] simp [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M s : Set M ⊢ map (-LinearMap.id) (span R s) = span R s [PROOFSTEP] simp [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M x y : M s : Set M ⊢ x ∈ span R (insert y s) ↔ ∃ a, x + a • y ∈ span R s [PROOFSTEP] rw [mem_span_insert] [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M x y : M s : Set M ⊢ (∃ a z, z ∈ span R s ∧ x = a • y + z) ↔ ∃ a, x + a • y ∈ span R s [PROOFSTEP] constructor [GOAL] case mp R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M x y : M s : Set M ⊢ (∃ a z, z ∈ span R s ∧ x = a • y + z) → ∃ a, x + a • y ∈ span R s [PROOFSTEP] rintro ⟨a, z, hz, rfl⟩ [GOAL] case mp.intro.intro.intro R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M y : M s : Set M a : R z : M hz : z ∈ span R s ⊢ ∃ a_1, a • y + z + a_1 • y ∈ span R s [PROOFSTEP] exact ⟨-a, by simp [hz, add_assoc]⟩ [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M y : M s : Set M a : R z : M hz : z ∈ span R s ⊢ a • y + z + -a • y ∈ span R s [PROOFSTEP] simp [hz, add_assoc] [GOAL] case mpr R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M x y : M s : Set M ⊢ (∃ a, x + a • y ∈ span R s) → ∃ a z, z ∈ span R s ∧ x = a • y + z [PROOFSTEP] rintro ⟨a, h⟩ [GOAL] case mpr.intro R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M x y : M s : Set M a : R h : x + a • y ∈ span R s ⊢ ∃ a z, z ∈ span R s ∧ x = a • y + z [PROOFSTEP] exact ⟨-a, _, h, by simp [add_comm, add_left_comm]⟩ [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M x y : M s : Set M a : R h : x + a • y ∈ span R s ⊢ x = -a • y + (x + a • y) [PROOFSTEP] simp [add_comm, add_left_comm] [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M x✝ y z : Submodule R M xz : x✝ ≤ z a : M ha : a ∈ (x✝ ⊔ y) ⊓ z ⊢ a ∈ x✝ ⊔ y ⊓ z [PROOFSTEP] rw [mem_inf, mem_sup] at ha [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M x✝ y z : Submodule R M xz : x✝ ≤ z a : M ha : (∃ y_1, y_1 ∈ x✝ ∧ ∃ z, z ∈ y ∧ y_1 + z = a) ∧ a ∈ z ⊢ a ∈ x✝ ⊔ y ⊓ z [PROOFSTEP] rcases ha with ⟨⟨b, hb, c, hc, rfl⟩, haz⟩ [GOAL] case intro.intro.intro.intro.intro R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M x✝ y z : Submodule R M xz : x✝ ≤ z b : M hb : b ∈ x✝ c : M hc : c ∈ y haz : b + c ∈ z ⊢ b + c ∈ x✝ ⊔ y ⊓ z [PROOFSTEP] rw [mem_sup] [GOAL] case intro.intro.intro.intro.intro R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M x✝ y z : Submodule R M xz : x✝ ≤ z b : M hb : b ∈ x✝ c : M hc : c ∈ y haz : b + c ∈ z ⊢ ∃ y_1, y_1 ∈ x✝ ∧ ∃ z_1, z_1 ∈ y ⊓ z ∧ y_1 + z_1 = b + c [PROOFSTEP] refine' ⟨b, hb, c, mem_inf.2 ⟨hc, _⟩, rfl⟩ [GOAL] case intro.intro.intro.intro.intro R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M x✝ y z : Submodule R M xz : x✝ ≤ z b : M hb : b ∈ x✝ c : M hc : c ∈ y haz : b + c ∈ z ⊢ c ∈ z [PROOFSTEP] rw [← add_sub_cancel c b, add_comm] [GOAL] case intro.intro.intro.intro.intro R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M x✝ y z : Submodule R M xz : x✝ ≤ z b : M hb : b ∈ x✝ c : M hc : c ∈ y haz : b + c ∈ z ⊢ b + c - b ∈ z [PROOFSTEP] apply z.sub_mem haz (xz hb) [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : Semiring R₂ inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : AddCommGroup M₂ inst✝¹ : Module R₂ M₂ τ₁₂ : R →+* R₂ inst✝ : RingHomSurjective τ₁₂ F : Type u_8 sc : SemilinearMapClass F τ₁₂ M M₂ f : F p : Submodule R M ⊢ comap f (map f p) = p ⊔ LinearMap.ker f [PROOFSTEP] refine' le_antisymm _ (sup_le (le_comap_map _ _) (comap_mono bot_le)) [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : Semiring R₂ inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : AddCommGroup M₂ inst✝¹ : Module R₂ M₂ τ₁₂ : R →+* R₂ inst✝ : RingHomSurjective τ₁₂ F : Type u_8 sc : SemilinearMapClass F τ₁₂ M M₂ f : F p : Submodule R M ⊢ comap f (map f p) ≤ p ⊔ LinearMap.ker f [PROOFSTEP] rintro x ⟨y, hy, e⟩ [GOAL] case intro.intro R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : Semiring R₂ inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : AddCommGroup M₂ inst✝¹ : Module R₂ M₂ τ₁₂ : R →+* R₂ inst✝ : RingHomSurjective τ₁₂ F : Type u_8 sc : SemilinearMapClass F τ₁₂ M M₂ f : F p : Submodule R M x y : M hy : y ∈ ↑p e : ↑f y = ↑f x ⊢ x ∈ p ⊔ LinearMap.ker f [PROOFSTEP] exact mem_sup.2 ⟨y, hy, x - y, by simpa using sub_eq_zero.2 e.symm, by simp⟩ [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : Semiring R₂ inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : AddCommGroup M₂ inst✝¹ : Module R₂ M₂ τ₁₂ : R →+* R₂ inst✝ : RingHomSurjective τ₁₂ F : Type u_8 sc : SemilinearMapClass F τ₁₂ M M₂ f : F p : Submodule R M x y : M hy : y ∈ ↑p e : ↑f y = ↑f x ⊢ x - y ∈ LinearMap.ker f [PROOFSTEP] simpa using sub_eq_zero.2 e.symm [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : Semiring R₂ inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : AddCommGroup M₂ inst✝¹ : Module R₂ M₂ τ₁₂ : R →+* R₂ inst✝ : RingHomSurjective τ₁₂ F : Type u_8 sc : SemilinearMapClass F τ₁₂ M M₂ f : F p : Submodule R M x y : M hy : y ∈ ↑p e : ↑f y = ↑f x ⊢ y + (x - y) = x [PROOFSTEP] simp [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : Semiring R₂ inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : AddCommGroup M₂ inst✝¹ : Module R₂ M₂ τ₁₂ : R →+* R₂ inst✝ : RingHomSurjective τ₁₂ F : Type u_8 sc : SemilinearMapClass F τ₁₂ M M₂ f : F p : Submodule R M h : LinearMap.ker f ≤ p ⊢ comap f (map f p) = p [PROOFSTEP] rw [Submodule.comap_map_eq, sup_of_le_left h] [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : Semiring R₂ inst✝⁴ : AddCommGroup M inst✝³ : AddCommGroup M₂ inst✝² : Module R M inst✝¹ : Module R₂ M₂ τ₁₂ : R →+* R₂ inst✝ : RingHomSurjective τ₁₂ F : Type u_8 sc : SemilinearMapClass F τ₁₂ M M₂ f : F p p' : Submodule R M ⊢ map f p ≤ map f p' ↔ p ≤ p' ⊔ ker f [PROOFSTEP] rw [map_le_iff_le_comap, Submodule.comap_map_eq] [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : Semiring R₂ inst✝⁴ : AddCommGroup M inst✝³ : AddCommGroup M₂ inst✝² : Module R M inst✝¹ : Module R₂ M₂ τ₁₂ : R →+* R₂ inst✝ : RingHomSurjective τ₁₂ F : Type u_8 sc : SemilinearMapClass F τ₁₂ M M₂ f : F hf : ker f = ⊥ p p' : Submodule R M ⊢ map f p ≤ map f p' ↔ p ≤ p' [PROOFSTEP] rw [LinearMap.map_le_map_iff, hf, sup_bot_eq] [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : Semiring R₂ inst✝⁴ : AddCommGroup M inst✝³ : AddCommGroup M₂ inst✝² : Module R M inst✝¹ : Module R₂ M₂ τ₁₂ : R →+* R₂ inst✝ : RingHomSurjective τ₁₂ F : Type u_8 sc : SemilinearMapClass F τ₁₂ M M₂ f : F hf : range f = ⊤ p : Submodule R M ⊢ map f p = ⊤ ↔ p ⊔ ker f = ⊤ [PROOFSTEP] simp_rw [← top_le_iff, ← hf, range_eq_map, LinearMap.map_le_map_iff] [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M x y : M ⊢ y ∈ span R {x} ↔ y ∈ range (toSpanSingleton R M x) [PROOFSTEP] refine' Iff.trans _ LinearMap.mem_range.symm [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M x y : M ⊢ y ∈ span R {x} ↔ ∃ y_1, ↑(toSpanSingleton R M x) y_1 = y [PROOFSTEP] exact mem_span_singleton [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M ⊢ toSpanSingleton R M 0 = 0 [PROOFSTEP] ext [GOAL] case h R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M ⊢ ↑(toSpanSingleton R M 0) 1 = ↑0 1 [PROOFSTEP] simp [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : Semiring R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 σ₁₂ : R →+* R₂ inst✝ : SemilinearMapClass F σ₁₂ M M₂ s : Set M f g : F ⊢ Set.EqOn ↑f ↑g ↑(span R s) ↔ Set.EqOn (↑f) (↑g) s [PROOFSTEP] rw [← le_eqLocus, span_le] [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M inst✝³ : Semiring R₂ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R₂ M₂ F : Type u_8 σ₁₂ : R →+* R₂ inst✝ : SemilinearMapClass F σ₁₂ M M₂ s : Set M f g : F ⊢ s ⊆ ↑(eqLocus f g) ↔ Set.EqOn (↑f) (↑g) s [PROOFSTEP] rfl [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V f : V →ₗ[K] K x : V hx : ↑f x ≠ 0 y : V x✝ : y ∈ ⊤ ⊢ y - (↑f y * (↑f x)⁻¹) • x ∈ ker f [PROOFSTEP] rw [LinearMap.mem_ker, f.map_sub, f.map_smul, smul_eq_mul, mul_assoc, inv_mul_cancel hx, mul_one, sub_self] [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V f : V →ₗ[K] K x : V hx : ↑f x ≠ 0 y : V x✝ : y ∈ ⊤ ⊢ (↑f y * (↑f x)⁻¹) • x + (y - (↑f y * (↑f x)⁻¹) • x) = y [PROOFSTEP] simp only [add_sub_cancel'_right] [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝³ : Ring R inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x : M h : x ≠ 0 ⊢ ↑(toSpanNonzeroSingleton R M x h) 1 = { val := x, property := (_ : x ∈ Submodule.span R {x}) } [PROOFSTEP] apply SetLike.coe_eq_coe.mp [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝³ : Ring R inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x : M h : x ≠ 0 ⊢ ↑(↑(toSpanNonzeroSingleton R M x h) 1) = ↑{ val := x, property := (_ : x ∈ Submodule.span R {x}) } [PROOFSTEP] have : ↑(toSpanNonzeroSingleton R M x h 1) = toSpanSingleton R M x 1 := rfl [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝³ : Ring R inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x : M h : x ≠ 0 this : ↑(↑(toSpanNonzeroSingleton R M x h) 1) = ↑(toSpanSingleton R M x) 1 ⊢ ↑(↑(toSpanNonzeroSingleton R M x h) 1) = ↑{ val := x, property := (_ : x ∈ Submodule.span R {x}) } [PROOFSTEP] rw [this, toSpanSingleton_one, Submodule.coe_mk] [GOAL] R : Type u_1 R₂ : Type u_2 K : Type u_3 M : Type u_4 M₂ : Type u_5 V : Type u_6 S : Type u_7 inst✝³ : Ring R inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M x : M h : x ≠ 0 ⊢ ↑(coord R M x h) { val := x, property := (_ : x ∈ Submodule.span R {x}) } = 1 [PROOFSTEP] rw [← toSpanNonzeroSingleton_one R M x h, LinearEquiv.symm_apply_apply]
{"mathlib_filename": "Mathlib.LinearAlgebra.Span", "llama_tokens": 85273}
[GOAL] ι : Type u_1 R✝ : Type u_2 M₁ : Type u_3 M₂ : Type u_4 N₁ : Type u_5 N₂ : Type u_6 Mᵢ : ι → Type u_7 Nᵢ : ι → Type u_8 inst✝¹⁵ : Semiring R✝ inst✝¹⁴ : AddCommMonoid M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : AddCommMonoid N₁ inst✝¹¹ : AddCommMonoid N₂ inst✝¹⁰ : Module R✝ M₁ inst✝⁹ : Module R✝ M₂ inst✝⁸ : Module R✝ N₁ inst✝⁷ : Module R✝ N₂ inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i) inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i) inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i) inst✝³ : (i : ι) → Module R✝ (Nᵢ i) R : Type u_9 inst✝² : OrderedRing R inst✝¹ : Module R M₁ inst✝ : Module R M₂ Q₁ : QuadraticForm R M₁ Q₂ : QuadraticForm R M₂ h : Anisotropic (prod Q₁ Q₂) ⊢ Anisotropic Q₁ ∧ Anisotropic Q₂ [PROOFSTEP] simp_rw [Anisotropic, prod_apply, Prod.forall, Prod.mk_eq_zero] at h [GOAL] ι : Type u_1 R✝ : Type u_2 M₁ : Type u_3 M₂ : Type u_4 N₁ : Type u_5 N₂ : Type u_6 Mᵢ : ι → Type u_7 Nᵢ : ι → Type u_8 inst✝¹⁵ : Semiring R✝ inst✝¹⁴ : AddCommMonoid M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : AddCommMonoid N₁ inst✝¹¹ : AddCommMonoid N₂ inst✝¹⁰ : Module R✝ M₁ inst✝⁹ : Module R✝ M₂ inst✝⁸ : Module R✝ N₁ inst✝⁷ : Module R✝ N₂ inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i) inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i) inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i) inst✝³ : (i : ι) → Module R✝ (Nᵢ i) R : Type u_9 inst✝² : OrderedRing R inst✝¹ : Module R M₁ inst✝ : Module R M₂ Q₁ : QuadraticForm R M₁ Q₂ : QuadraticForm R M₂ h : ∀ (a : M₁) (b : M₂), ↑Q₁ a + ↑Q₂ b = 0 → a = 0 ∧ b = 0 ⊢ Anisotropic Q₁ ∧ Anisotropic Q₂ [PROOFSTEP] constructor [GOAL] case left ι : Type u_1 R✝ : Type u_2 M₁ : Type u_3 M₂ : Type u_4 N₁ : Type u_5 N₂ : Type u_6 Mᵢ : ι → Type u_7 Nᵢ : ι → Type u_8 inst✝¹⁵ : Semiring R✝ inst✝¹⁴ : AddCommMonoid M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : AddCommMonoid N₁ inst✝¹¹ : AddCommMonoid N₂ inst✝¹⁰ : Module R✝ M₁ inst✝⁹ : Module R✝ M₂ inst✝⁸ : Module R✝ N₁ inst✝⁷ : Module R✝ N₂ inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i) inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i) inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i) inst✝³ : (i : ι) → Module R✝ (Nᵢ i) R : Type u_9 inst✝² : OrderedRing R inst✝¹ : Module R M₁ inst✝ : Module R M₂ Q₁ : QuadraticForm R M₁ Q₂ : QuadraticForm R M₂ h : ∀ (a : M₁) (b : M₂), ↑Q₁ a + ↑Q₂ b = 0 → a = 0 ∧ b = 0 ⊢ Anisotropic Q₁ [PROOFSTEP] intro x hx [GOAL] case left ι : Type u_1 R✝ : Type u_2 M₁ : Type u_3 M₂ : Type u_4 N₁ : Type u_5 N₂ : Type u_6 Mᵢ : ι → Type u_7 Nᵢ : ι → Type u_8 inst✝¹⁵ : Semiring R✝ inst✝¹⁴ : AddCommMonoid M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : AddCommMonoid N₁ inst✝¹¹ : AddCommMonoid N₂ inst✝¹⁰ : Module R✝ M₁ inst✝⁹ : Module R✝ M₂ inst✝⁸ : Module R✝ N₁ inst✝⁷ : Module R✝ N₂ inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i) inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i) inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i) inst✝³ : (i : ι) → Module R✝ (Nᵢ i) R : Type u_9 inst✝² : OrderedRing R inst✝¹ : Module R M₁ inst✝ : Module R M₂ Q₁ : QuadraticForm R M₁ Q₂ : QuadraticForm R M₂ h : ∀ (a : M₁) (b : M₂), ↑Q₁ a + ↑Q₂ b = 0 → a = 0 ∧ b = 0 x : M₁ hx : ↑Q₁ x = 0 ⊢ x = 0 [PROOFSTEP] refine' (h x 0 _).1 [GOAL] case left ι : Type u_1 R✝ : Type u_2 M₁ : Type u_3 M₂ : Type u_4 N₁ : Type u_5 N₂ : Type u_6 Mᵢ : ι → Type u_7 Nᵢ : ι → Type u_8 inst✝¹⁵ : Semiring R✝ inst✝¹⁴ : AddCommMonoid M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : AddCommMonoid N₁ inst✝¹¹ : AddCommMonoid N₂ inst✝¹⁰ : Module R✝ M₁ inst✝⁹ : Module R✝ M₂ inst✝⁸ : Module R✝ N₁ inst✝⁷ : Module R✝ N₂ inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i) inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i) inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i) inst✝³ : (i : ι) → Module R✝ (Nᵢ i) R : Type u_9 inst✝² : OrderedRing R inst✝¹ : Module R M₁ inst✝ : Module R M₂ Q₁ : QuadraticForm R M₁ Q₂ : QuadraticForm R M₂ h : ∀ (a : M₁) (b : M₂), ↑Q₁ a + ↑Q₂ b = 0 → a = 0 ∧ b = 0 x : M₁ hx : ↑Q₁ x = 0 ⊢ ↑Q₁ x + ↑Q₂ 0 = 0 [PROOFSTEP] rw [hx, zero_add, map_zero] [GOAL] case right ι : Type u_1 R✝ : Type u_2 M₁ : Type u_3 M₂ : Type u_4 N₁ : Type u_5 N₂ : Type u_6 Mᵢ : ι → Type u_7 Nᵢ : ι → Type u_8 inst✝¹⁵ : Semiring R✝ inst✝¹⁴ : AddCommMonoid M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : AddCommMonoid N₁ inst✝¹¹ : AddCommMonoid N₂ inst✝¹⁰ : Module R✝ M₁ inst✝⁹ : Module R✝ M₂ inst✝⁸ : Module R✝ N₁ inst✝⁷ : Module R✝ N₂ inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i) inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i) inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i) inst✝³ : (i : ι) → Module R✝ (Nᵢ i) R : Type u_9 inst✝² : OrderedRing R inst✝¹ : Module R M₁ inst✝ : Module R M₂ Q₁ : QuadraticForm R M₁ Q₂ : QuadraticForm R M₂ h : ∀ (a : M₁) (b : M₂), ↑Q₁ a + ↑Q₂ b = 0 → a = 0 ∧ b = 0 ⊢ Anisotropic Q₂ [PROOFSTEP] intro x hx [GOAL] case right ι : Type u_1 R✝ : Type u_2 M₁ : Type u_3 M₂ : Type u_4 N₁ : Type u_5 N₂ : Type u_6 Mᵢ : ι → Type u_7 Nᵢ : ι → Type u_8 inst✝¹⁵ : Semiring R✝ inst✝¹⁴ : AddCommMonoid M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : AddCommMonoid N₁ inst✝¹¹ : AddCommMonoid N₂ inst✝¹⁰ : Module R✝ M₁ inst✝⁹ : Module R✝ M₂ inst✝⁸ : Module R✝ N₁ inst✝⁷ : Module R✝ N₂ inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i) inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i) inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i) inst✝³ : (i : ι) → Module R✝ (Nᵢ i) R : Type u_9 inst✝² : OrderedRing R inst✝¹ : Module R M₁ inst✝ : Module R M₂ Q₁ : QuadraticForm R M₁ Q₂ : QuadraticForm R M₂ h : ∀ (a : M₁) (b : M₂), ↑Q₁ a + ↑Q₂ b = 0 → a = 0 ∧ b = 0 x : M₂ hx : ↑Q₂ x = 0 ⊢ x = 0 [PROOFSTEP] refine' (h 0 x _).2 [GOAL] case right ι : Type u_1 R✝ : Type u_2 M₁ : Type u_3 M₂ : Type u_4 N₁ : Type u_5 N₂ : Type u_6 Mᵢ : ι → Type u_7 Nᵢ : ι → Type u_8 inst✝¹⁵ : Semiring R✝ inst✝¹⁴ : AddCommMonoid M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : AddCommMonoid N₁ inst✝¹¹ : AddCommMonoid N₂ inst✝¹⁰ : Module R✝ M₁ inst✝⁹ : Module R✝ M₂ inst✝⁸ : Module R✝ N₁ inst✝⁷ : Module R✝ N₂ inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i) inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i) inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i) inst✝³ : (i : ι) → Module R✝ (Nᵢ i) R : Type u_9 inst✝² : OrderedRing R inst✝¹ : Module R M₁ inst✝ : Module R M₂ Q₁ : QuadraticForm R M₁ Q₂ : QuadraticForm R M₂ h : ∀ (a : M₁) (b : M₂), ↑Q₁ a + ↑Q₂ b = 0 → a = 0 ∧ b = 0 x : M₂ hx : ↑Q₂ x = 0 ⊢ ↑Q₁ 0 + ↑Q₂ x = 0 [PROOFSTEP] rw [hx, add_zero, map_zero] [GOAL] ι : Type u_1 R✝ : Type u_2 M₁ : Type u_3 M₂ : Type u_4 N₁ : Type u_5 N₂ : Type u_6 Mᵢ : ι → Type u_7 Nᵢ : ι → Type u_8 inst✝¹⁵ : Semiring R✝ inst✝¹⁴ : AddCommMonoid M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : AddCommMonoid N₁ inst✝¹¹ : AddCommMonoid N₂ inst✝¹⁰ : Module R✝ M₁ inst✝⁹ : Module R✝ M₂ inst✝⁸ : Module R✝ N₁ inst✝⁷ : Module R✝ N₂ inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i) inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i) inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i) inst✝³ : (i : ι) → Module R✝ (Nᵢ i) R : Type u_9 inst✝² : OrderedRing R inst✝¹ : Module R M₁ inst✝ : Module R M₂ Q₁ : QuadraticForm R M₁ Q₂ : QuadraticForm R M₂ ⊢ (∀ (x : M₁ × M₂), 0 ≤ ↑(prod Q₁ Q₂) x) ↔ (∀ (x : M₁), 0 ≤ ↑Q₁ x) ∧ ∀ (x : M₂), 0 ≤ ↑Q₂ x [PROOFSTEP] simp_rw [Prod.forall, prod_apply] [GOAL] ι : Type u_1 R✝ : Type u_2 M₁ : Type u_3 M₂ : Type u_4 N₁ : Type u_5 N₂ : Type u_6 Mᵢ : ι → Type u_7 Nᵢ : ι → Type u_8 inst✝¹⁵ : Semiring R✝ inst✝¹⁴ : AddCommMonoid M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : AddCommMonoid N₁ inst✝¹¹ : AddCommMonoid N₂ inst✝¹⁰ : Module R✝ M₁ inst✝⁹ : Module R✝ M₂ inst✝⁸ : Module R✝ N₁ inst✝⁷ : Module R✝ N₂ inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i) inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i) inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i) inst✝³ : (i : ι) → Module R✝ (Nᵢ i) R : Type u_9 inst✝² : OrderedRing R inst✝¹ : Module R M₁ inst✝ : Module R M₂ Q₁ : QuadraticForm R M₁ Q₂ : QuadraticForm R M₂ ⊢ (∀ (a : M₁) (b : M₂), 0 ≤ ↑Q₁ a + ↑Q₂ b) ↔ (∀ (x : M₁), 0 ≤ ↑Q₁ x) ∧ ∀ (x : M₂), 0 ≤ ↑Q₂ x [PROOFSTEP] constructor [GOAL] case mp ι : Type u_1 R✝ : Type u_2 M₁ : Type u_3 M₂ : Type u_4 N₁ : Type u_5 N₂ : Type u_6 Mᵢ : ι → Type u_7 Nᵢ : ι → Type u_8 inst✝¹⁵ : Semiring R✝ inst✝¹⁴ : AddCommMonoid M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : AddCommMonoid N₁ inst✝¹¹ : AddCommMonoid N₂ inst✝¹⁰ : Module R✝ M₁ inst✝⁹ : Module R✝ M₂ inst✝⁸ : Module R✝ N₁ inst✝⁷ : Module R✝ N₂ inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i) inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i) inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i) inst✝³ : (i : ι) → Module R✝ (Nᵢ i) R : Type u_9 inst✝² : OrderedRing R inst✝¹ : Module R M₁ inst✝ : Module R M₂ Q₁ : QuadraticForm R M₁ Q₂ : QuadraticForm R M₂ ⊢ (∀ (a : M₁) (b : M₂), 0 ≤ ↑Q₁ a + ↑Q₂ b) → (∀ (x : M₁), 0 ≤ ↑Q₁ x) ∧ ∀ (x : M₂), 0 ≤ ↑Q₂ x [PROOFSTEP] intro h [GOAL] case mp ι : Type u_1 R✝ : Type u_2 M₁ : Type u_3 M₂ : Type u_4 N₁ : Type u_5 N₂ : Type u_6 Mᵢ : ι → Type u_7 Nᵢ : ι → Type u_8 inst✝¹⁵ : Semiring R✝ inst✝¹⁴ : AddCommMonoid M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : AddCommMonoid N₁ inst✝¹¹ : AddCommMonoid N₂ inst✝¹⁰ : Module R✝ M₁ inst✝⁹ : Module R✝ M₂ inst✝⁸ : Module R✝ N₁ inst✝⁷ : Module R✝ N₂ inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i) inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i) inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i) inst✝³ : (i : ι) → Module R✝ (Nᵢ i) R : Type u_9 inst✝² : OrderedRing R inst✝¹ : Module R M₁ inst✝ : Module R M₂ Q₁ : QuadraticForm R M₁ Q₂ : QuadraticForm R M₂ h : ∀ (a : M₁) (b : M₂), 0 ≤ ↑Q₁ a + ↑Q₂ b ⊢ (∀ (x : M₁), 0 ≤ ↑Q₁ x) ∧ ∀ (x : M₂), 0 ≤ ↑Q₂ x [PROOFSTEP] constructor [GOAL] case mp.left ι : Type u_1 R✝ : Type u_2 M₁ : Type u_3 M₂ : Type u_4 N₁ : Type u_5 N₂ : Type u_6 Mᵢ : ι → Type u_7 Nᵢ : ι → Type u_8 inst✝¹⁵ : Semiring R✝ inst✝¹⁴ : AddCommMonoid M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : AddCommMonoid N₁ inst✝¹¹ : AddCommMonoid N₂ inst✝¹⁰ : Module R✝ M₁ inst✝⁹ : Module R✝ M₂ inst✝⁸ : Module R✝ N₁ inst✝⁷ : Module R✝ N₂ inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i) inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i) inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i) inst✝³ : (i : ι) → Module R✝ (Nᵢ i) R : Type u_9 inst✝² : OrderedRing R inst✝¹ : Module R M₁ inst✝ : Module R M₂ Q₁ : QuadraticForm R M₁ Q₂ : QuadraticForm R M₂ h : ∀ (a : M₁) (b : M₂), 0 ≤ ↑Q₁ a + ↑Q₂ b ⊢ ∀ (x : M₁), 0 ≤ ↑Q₁ x [PROOFSTEP] intro x [GOAL] case mp.left ι : Type u_1 R✝ : Type u_2 M₁ : Type u_3 M₂ : Type u_4 N₁ : Type u_5 N₂ : Type u_6 Mᵢ : ι → Type u_7 Nᵢ : ι → Type u_8 inst✝¹⁵ : Semiring R✝ inst✝¹⁴ : AddCommMonoid M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : AddCommMonoid N₁ inst✝¹¹ : AddCommMonoid N₂ inst✝¹⁰ : Module R✝ M₁ inst✝⁹ : Module R✝ M₂ inst✝⁸ : Module R✝ N₁ inst✝⁷ : Module R✝ N₂ inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i) inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i) inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i) inst✝³ : (i : ι) → Module R✝ (Nᵢ i) R : Type u_9 inst✝² : OrderedRing R inst✝¹ : Module R M₁ inst✝ : Module R M₂ Q₁ : QuadraticForm R M₁ Q₂ : QuadraticForm R M₂ h : ∀ (a : M₁) (b : M₂), 0 ≤ ↑Q₁ a + ↑Q₂ b x : M₁ ⊢ 0 ≤ ↑Q₁ x [PROOFSTEP] simpa only [add_zero, map_zero] using h x 0 [GOAL] case mp.right ι : Type u_1 R✝ : Type u_2 M₁ : Type u_3 M₂ : Type u_4 N₁ : Type u_5 N₂ : Type u_6 Mᵢ : ι → Type u_7 Nᵢ : ι → Type u_8 inst✝¹⁵ : Semiring R✝ inst✝¹⁴ : AddCommMonoid M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : AddCommMonoid N₁ inst✝¹¹ : AddCommMonoid N₂ inst✝¹⁰ : Module R✝ M₁ inst✝⁹ : Module R✝ M₂ inst✝⁸ : Module R✝ N₁ inst✝⁷ : Module R✝ N₂ inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i) inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i) inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i) inst✝³ : (i : ι) → Module R✝ (Nᵢ i) R : Type u_9 inst✝² : OrderedRing R inst✝¹ : Module R M₁ inst✝ : Module R M₂ Q₁ : QuadraticForm R M₁ Q₂ : QuadraticForm R M₂ h : ∀ (a : M₁) (b : M₂), 0 ≤ ↑Q₁ a + ↑Q₂ b ⊢ ∀ (x : M₂), 0 ≤ ↑Q₂ x [PROOFSTEP] intro x [GOAL] case mp.right ι : Type u_1 R✝ : Type u_2 M₁ : Type u_3 M₂ : Type u_4 N₁ : Type u_5 N₂ : Type u_6 Mᵢ : ι → Type u_7 Nᵢ : ι → Type u_8 inst✝¹⁵ : Semiring R✝ inst✝¹⁴ : AddCommMonoid M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : AddCommMonoid N₁ inst✝¹¹ : AddCommMonoid N₂ inst✝¹⁰ : Module R✝ M₁ inst✝⁹ : Module R✝ M₂ inst✝⁸ : Module R✝ N₁ inst✝⁷ : Module R✝ N₂ inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i) inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i) inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i) inst✝³ : (i : ι) → Module R✝ (Nᵢ i) R : Type u_9 inst✝² : OrderedRing R inst✝¹ : Module R M₁ inst✝ : Module R M₂ Q₁ : QuadraticForm R M₁ Q₂ : QuadraticForm R M₂ h : ∀ (a : M₁) (b : M₂), 0 ≤ ↑Q₁ a + ↑Q₂ b x : M₂ ⊢ 0 ≤ ↑Q₂ x [PROOFSTEP] simpa only [zero_add, map_zero] using h 0 x [GOAL] case mpr ι : Type u_1 R✝ : Type u_2 M₁ : Type u_3 M₂ : Type u_4 N₁ : Type u_5 N₂ : Type u_6 Mᵢ : ι → Type u_7 Nᵢ : ι → Type u_8 inst✝¹⁵ : Semiring R✝ inst✝¹⁴ : AddCommMonoid M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : AddCommMonoid N₁ inst✝¹¹ : AddCommMonoid N₂ inst✝¹⁰ : Module R✝ M₁ inst✝⁹ : Module R✝ M₂ inst✝⁸ : Module R✝ N₁ inst✝⁷ : Module R✝ N₂ inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i) inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i) inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i) inst✝³ : (i : ι) → Module R✝ (Nᵢ i) R : Type u_9 inst✝² : OrderedRing R inst✝¹ : Module R M₁ inst✝ : Module R M₂ Q₁ : QuadraticForm R M₁ Q₂ : QuadraticForm R M₂ ⊢ ((∀ (x : M₁), 0 ≤ ↑Q₁ x) ∧ ∀ (x : M₂), 0 ≤ ↑Q₂ x) → ∀ (a : M₁) (b : M₂), 0 ≤ ↑Q₁ a + ↑Q₂ b [PROOFSTEP] rintro ⟨h₁, h₂⟩ x₁ x₂ [GOAL] case mpr.intro ι : Type u_1 R✝ : Type u_2 M₁ : Type u_3 M₂ : Type u_4 N₁ : Type u_5 N₂ : Type u_6 Mᵢ : ι → Type u_7 Nᵢ : ι → Type u_8 inst✝¹⁵ : Semiring R✝ inst✝¹⁴ : AddCommMonoid M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : AddCommMonoid N₁ inst✝¹¹ : AddCommMonoid N₂ inst✝¹⁰ : Module R✝ M₁ inst✝⁹ : Module R✝ M₂ inst✝⁸ : Module R✝ N₁ inst✝⁷ : Module R✝ N₂ inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i) inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i) inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i) inst✝³ : (i : ι) → Module R✝ (Nᵢ i) R : Type u_9 inst✝² : OrderedRing R inst✝¹ : Module R M₁ inst✝ : Module R M₂ Q₁ : QuadraticForm R M₁ Q₂ : QuadraticForm R M₂ h₁ : ∀ (x : M₁), 0 ≤ ↑Q₁ x h₂ : ∀ (x : M₂), 0 ≤ ↑Q₂ x x₁ : M₁ x₂ : M₂ ⊢ 0 ≤ ↑Q₁ x₁ + ↑Q₂ x₂ [PROOFSTEP] exact add_nonneg (h₁ x₁) (h₂ x₂) [GOAL] ι : Type u_1 R✝ : Type u_2 M₁ : Type u_3 M₂ : Type u_4 N₁ : Type u_5 N₂ : Type u_6 Mᵢ : ι → Type u_7 Nᵢ : ι → Type u_8 inst✝¹⁵ : Semiring R✝ inst✝¹⁴ : AddCommMonoid M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : AddCommMonoid N₁ inst✝¹¹ : AddCommMonoid N₂ inst✝¹⁰ : Module R✝ M₁ inst✝⁹ : Module R✝ M₂ inst✝⁸ : Module R✝ N₁ inst✝⁷ : Module R✝ N₂ inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i) inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i) inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i) inst✝³ : (i : ι) → Module R✝ (Nᵢ i) R : Type u_9 inst✝² : OrderedRing R inst✝¹ : Module R M₁ inst✝ : Module R M₂ Q₁ : QuadraticForm R M₁ Q₂ : QuadraticForm R M₂ ⊢ PosDef (prod Q₁ Q₂) ↔ PosDef Q₁ ∧ PosDef Q₂ [PROOFSTEP] simp_rw [posDef_iff_nonneg, nonneg_prod_iff] [GOAL] ι : Type u_1 R✝ : Type u_2 M₁ : Type u_3 M₂ : Type u_4 N₁ : Type u_5 N₂ : Type u_6 Mᵢ : ι → Type u_7 Nᵢ : ι → Type u_8 inst✝¹⁵ : Semiring R✝ inst✝¹⁴ : AddCommMonoid M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : AddCommMonoid N₁ inst✝¹¹ : AddCommMonoid N₂ inst✝¹⁰ : Module R✝ M₁ inst✝⁹ : Module R✝ M₂ inst✝⁸ : Module R✝ N₁ inst✝⁷ : Module R✝ N₂ inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i) inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i) inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i) inst✝³ : (i : ι) → Module R✝ (Nᵢ i) R : Type u_9 inst✝² : OrderedRing R inst✝¹ : Module R M₁ inst✝ : Module R M₂ Q₁ : QuadraticForm R M₁ Q₂ : QuadraticForm R M₂ ⊢ ((∀ (x : M₁), 0 ≤ ↑Q₁ x) ∧ ∀ (x : M₂), 0 ≤ ↑Q₂ x) ∧ Anisotropic (prod Q₁ Q₂) ↔ ((∀ (x : M₁), 0 ≤ ↑Q₁ x) ∧ Anisotropic Q₁) ∧ (∀ (x : M₂), 0 ≤ ↑Q₂ x) ∧ Anisotropic Q₂ [PROOFSTEP] constructor [GOAL] case mp ι : Type u_1 R✝ : Type u_2 M₁ : Type u_3 M₂ : Type u_4 N₁ : Type u_5 N₂ : Type u_6 Mᵢ : ι → Type u_7 Nᵢ : ι → Type u_8 inst✝¹⁵ : Semiring R✝ inst✝¹⁴ : AddCommMonoid M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : AddCommMonoid N₁ inst✝¹¹ : AddCommMonoid N₂ inst✝¹⁰ : Module R✝ M₁ inst✝⁹ : Module R✝ M₂ inst✝⁸ : Module R✝ N₁ inst✝⁷ : Module R✝ N₂ inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i) inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i) inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i) inst✝³ : (i : ι) → Module R✝ (Nᵢ i) R : Type u_9 inst✝² : OrderedRing R inst✝¹ : Module R M₁ inst✝ : Module R M₂ Q₁ : QuadraticForm R M₁ Q₂ : QuadraticForm R M₂ ⊢ ((∀ (x : M₁), 0 ≤ ↑Q₁ x) ∧ ∀ (x : M₂), 0 ≤ ↑Q₂ x) ∧ Anisotropic (prod Q₁ Q₂) → ((∀ (x : M₁), 0 ≤ ↑Q₁ x) ∧ Anisotropic Q₁) ∧ (∀ (x : M₂), 0 ≤ ↑Q₂ x) ∧ Anisotropic Q₂ [PROOFSTEP] rintro ⟨⟨hle₁, hle₂⟩, ha⟩ [GOAL] case mp.intro.intro ι : Type u_1 R✝ : Type u_2 M₁ : Type u_3 M₂ : Type u_4 N₁ : Type u_5 N₂ : Type u_6 Mᵢ : ι → Type u_7 Nᵢ : ι → Type u_8 inst✝¹⁵ : Semiring R✝ inst✝¹⁴ : AddCommMonoid M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : AddCommMonoid N₁ inst✝¹¹ : AddCommMonoid N₂ inst✝¹⁰ : Module R✝ M₁ inst✝⁹ : Module R✝ M₂ inst✝⁸ : Module R✝ N₁ inst✝⁷ : Module R✝ N₂ inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i) inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i) inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i) inst✝³ : (i : ι) → Module R✝ (Nᵢ i) R : Type u_9 inst✝² : OrderedRing R inst✝¹ : Module R M₁ inst✝ : Module R M₂ Q₁ : QuadraticForm R M₁ Q₂ : QuadraticForm R M₂ ha : Anisotropic (prod Q₁ Q₂) hle₁ : ∀ (x : M₁), 0 ≤ ↑Q₁ x hle₂ : ∀ (x : M₂), 0 ≤ ↑Q₂ x ⊢ ((∀ (x : M₁), 0 ≤ ↑Q₁ x) ∧ Anisotropic Q₁) ∧ (∀ (x : M₂), 0 ≤ ↑Q₂ x) ∧ Anisotropic Q₂ [PROOFSTEP] obtain ⟨ha₁, ha₂⟩ := anisotropic_of_prod ha [GOAL] case mp.intro.intro.intro ι : Type u_1 R✝ : Type u_2 M₁ : Type u_3 M₂ : Type u_4 N₁ : Type u_5 N₂ : Type u_6 Mᵢ : ι → Type u_7 Nᵢ : ι → Type u_8 inst✝¹⁵ : Semiring R✝ inst✝¹⁴ : AddCommMonoid M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : AddCommMonoid N₁ inst✝¹¹ : AddCommMonoid N₂ inst✝¹⁰ : Module R✝ M₁ inst✝⁹ : Module R✝ M₂ inst✝⁸ : Module R✝ N₁ inst✝⁷ : Module R✝ N₂ inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i) inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i) inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i) inst✝³ : (i : ι) → Module R✝ (Nᵢ i) R : Type u_9 inst✝² : OrderedRing R inst✝¹ : Module R M₁ inst✝ : Module R M₂ Q₁ : QuadraticForm R M₁ Q₂ : QuadraticForm R M₂ ha : Anisotropic (prod Q₁ Q₂) hle₁ : ∀ (x : M₁), 0 ≤ ↑Q₁ x hle₂ : ∀ (x : M₂), 0 ≤ ↑Q₂ x ha₁ : Anisotropic Q₁ ha₂ : Anisotropic Q₂ ⊢ ((∀ (x : M₁), 0 ≤ ↑Q₁ x) ∧ Anisotropic Q₁) ∧ (∀ (x : M₂), 0 ≤ ↑Q₂ x) ∧ Anisotropic Q₂ [PROOFSTEP] refine' ⟨⟨hle₁, ha₁⟩, ⟨hle₂, ha₂⟩⟩ [GOAL] case mpr ι : Type u_1 R✝ : Type u_2 M₁ : Type u_3 M₂ : Type u_4 N₁ : Type u_5 N₂ : Type u_6 Mᵢ : ι → Type u_7 Nᵢ : ι → Type u_8 inst✝¹⁵ : Semiring R✝ inst✝¹⁴ : AddCommMonoid M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : AddCommMonoid N₁ inst✝¹¹ : AddCommMonoid N₂ inst✝¹⁰ : Module R✝ M₁ inst✝⁹ : Module R✝ M₂ inst✝⁸ : Module R✝ N₁ inst✝⁷ : Module R✝ N₂ inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i) inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i) inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i) inst✝³ : (i : ι) → Module R✝ (Nᵢ i) R : Type u_9 inst✝² : OrderedRing R inst✝¹ : Module R M₁ inst✝ : Module R M₂ Q₁ : QuadraticForm R M₁ Q₂ : QuadraticForm R M₂ ⊢ ((∀ (x : M₁), 0 ≤ ↑Q₁ x) ∧ Anisotropic Q₁) ∧ (∀ (x : M₂), 0 ≤ ↑Q₂ x) ∧ Anisotropic Q₂ → ((∀ (x : M₁), 0 ≤ ↑Q₁ x) ∧ ∀ (x : M₂), 0 ≤ ↑Q₂ x) ∧ Anisotropic (prod Q₁ Q₂) [PROOFSTEP] rintro ⟨⟨hle₁, ha₁⟩, ⟨hle₂, ha₂⟩⟩ [GOAL] case mpr.intro.intro.intro ι : Type u_1 R✝ : Type u_2 M₁ : Type u_3 M₂ : Type u_4 N₁ : Type u_5 N₂ : Type u_6 Mᵢ : ι → Type u_7 Nᵢ : ι → Type u_8 inst✝¹⁵ : Semiring R✝ inst✝¹⁴ : AddCommMonoid M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : AddCommMonoid N₁ inst✝¹¹ : AddCommMonoid N₂ inst✝¹⁰ : Module R✝ M₁ inst✝⁹ : Module R✝ M₂ inst✝⁸ : Module R✝ N₁ inst✝⁷ : Module R✝ N₂ inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i) inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i) inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i) inst✝³ : (i : ι) → Module R✝ (Nᵢ i) R : Type u_9 inst✝² : OrderedRing R inst✝¹ : Module R M₁ inst✝ : Module R M₂ Q₁ : QuadraticForm R M₁ Q₂ : QuadraticForm R M₂ hle₁ : ∀ (x : M₁), 0 ≤ ↑Q₁ x ha₁ : Anisotropic Q₁ hle₂ : ∀ (x : M₂), 0 ≤ ↑Q₂ x ha₂ : Anisotropic Q₂ ⊢ ((∀ (x : M₁), 0 ≤ ↑Q₁ x) ∧ ∀ (x : M₂), 0 ≤ ↑Q₂ x) ∧ Anisotropic (prod Q₁ Q₂) [PROOFSTEP] refine' ⟨⟨hle₁, hle₂⟩, _⟩ [GOAL] case mpr.intro.intro.intro ι : Type u_1 R✝ : Type u_2 M₁ : Type u_3 M₂ : Type u_4 N₁ : Type u_5 N₂ : Type u_6 Mᵢ : ι → Type u_7 Nᵢ : ι → Type u_8 inst✝¹⁵ : Semiring R✝ inst✝¹⁴ : AddCommMonoid M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : AddCommMonoid N₁ inst✝¹¹ : AddCommMonoid N₂ inst✝¹⁰ : Module R✝ M₁ inst✝⁹ : Module R✝ M₂ inst✝⁸ : Module R✝ N₁ inst✝⁷ : Module R✝ N₂ inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i) inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i) inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i) inst✝³ : (i : ι) → Module R✝ (Nᵢ i) R : Type u_9 inst✝² : OrderedRing R inst✝¹ : Module R M₁ inst✝ : Module R M₂ Q₁ : QuadraticForm R M₁ Q₂ : QuadraticForm R M₂ hle₁ : ∀ (x : M₁), 0 ≤ ↑Q₁ x ha₁ : Anisotropic Q₁ hle₂ : ∀ (x : M₂), 0 ≤ ↑Q₂ x ha₂ : Anisotropic Q₂ ⊢ Anisotropic (prod Q₁ Q₂) [PROOFSTEP] rintro ⟨x₁, x₂⟩ (hx : Q₁ x₁ + Q₂ x₂ = 0) [GOAL] case mpr.intro.intro.intro.mk ι : Type u_1 R✝ : Type u_2 M₁ : Type u_3 M₂ : Type u_4 N₁ : Type u_5 N₂ : Type u_6 Mᵢ : ι → Type u_7 Nᵢ : ι → Type u_8 inst✝¹⁵ : Semiring R✝ inst✝¹⁴ : AddCommMonoid M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : AddCommMonoid N₁ inst✝¹¹ : AddCommMonoid N₂ inst✝¹⁰ : Module R✝ M₁ inst✝⁹ : Module R✝ M₂ inst✝⁸ : Module R✝ N₁ inst✝⁷ : Module R✝ N₂ inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i) inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i) inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i) inst✝³ : (i : ι) → Module R✝ (Nᵢ i) R : Type u_9 inst✝² : OrderedRing R inst✝¹ : Module R M₁ inst✝ : Module R M₂ Q₁ : QuadraticForm R M₁ Q₂ : QuadraticForm R M₂ hle₁ : ∀ (x : M₁), 0 ≤ ↑Q₁ x ha₁ : Anisotropic Q₁ hle₂ : ∀ (x : M₂), 0 ≤ ↑Q₂ x ha₂ : Anisotropic Q₂ x₁ : M₁ x₂ : M₂ hx : ↑Q₁ x₁ + ↑Q₂ x₂ = 0 ⊢ (x₁, x₂) = 0 [PROOFSTEP] rw [add_eq_zero_iff' (hle₁ x₁) (hle₂ x₂), ha₁.eq_zero_iff, ha₂.eq_zero_iff] at hx [GOAL] case mpr.intro.intro.intro.mk ι : Type u_1 R✝ : Type u_2 M₁ : Type u_3 M₂ : Type u_4 N₁ : Type u_5 N₂ : Type u_6 Mᵢ : ι → Type u_7 Nᵢ : ι → Type u_8 inst✝¹⁵ : Semiring R✝ inst✝¹⁴ : AddCommMonoid M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : AddCommMonoid N₁ inst✝¹¹ : AddCommMonoid N₂ inst✝¹⁰ : Module R✝ M₁ inst✝⁹ : Module R✝ M₂ inst✝⁸ : Module R✝ N₁ inst✝⁷ : Module R✝ N₂ inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i) inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i) inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i) inst✝³ : (i : ι) → Module R✝ (Nᵢ i) R : Type u_9 inst✝² : OrderedRing R inst✝¹ : Module R M₁ inst✝ : Module R M₂ Q₁ : QuadraticForm R M₁ Q₂ : QuadraticForm R M₂ hle₁ : ∀ (x : M₁), 0 ≤ ↑Q₁ x ha₁ : Anisotropic Q₁ hle₂ : ∀ (x : M₂), 0 ≤ ↑Q₂ x ha₂ : Anisotropic Q₂ x₁ : M₁ x₂ : M₂ hx : x₁ = 0 ∧ x₂ = 0 ⊢ (x₁, x₂) = 0 [PROOFSTEP] rwa [Prod.mk_eq_zero] [GOAL] ι : Type u_1 R : Type u_2 M₁ : Type u_3 M₂ : Type u_4 N₁ : Type u_5 N₂ : Type u_6 Mᵢ : ι → Type u_7 Nᵢ : ι → Type u_8 inst✝¹³ : Semiring R inst✝¹² : AddCommMonoid M₁ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : AddCommMonoid N₁ inst✝⁹ : AddCommMonoid N₂ inst✝⁸ : Module R M₁ inst✝⁷ : Module R M₂ inst✝⁶ : Module R N₁ inst✝⁵ : Module R N₂ inst✝⁴ : (i : ι) → AddCommMonoid (Mᵢ i) inst✝³ : (i : ι) → AddCommMonoid (Nᵢ i) inst✝² : (i : ι) → Module R (Mᵢ i) inst✝¹ : (i : ι) → Module R (Nᵢ i) inst✝ : Fintype ι Q : (i : ι) → QuadraticForm R (Mᵢ i) Q' : (i : ι) → QuadraticForm R (Nᵢ i) e : (i : ι) → IsometryEquiv (Q i) (Q' i) x : (i : ι) → Mᵢ i ⊢ ↑(QuadraticForm.pi Q') (AddHom.toFun (↑(LinearEquiv.piCongrRight fun i => (e i).toLinearEquiv)).toAddHom x) = ↑(QuadraticForm.pi Q) x [PROOFSTEP] simp only [pi_apply, LinearEquiv.piCongrRight, LinearEquiv.toFun_eq_coe, IsometryEquiv.coe_toLinearEquiv, IsometryEquiv.map_app] [GOAL] ι : Type u_1 R✝ : Type u_2 M₁ : Type u_3 M₂ : Type u_4 N₁ : Type u_5 N₂ : Type u_6 Mᵢ : ι → Type u_7 Nᵢ : ι → Type u_8 inst✝¹⁵ : Semiring R✝ inst✝¹⁴ : AddCommMonoid M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : AddCommMonoid N₁ inst✝¹¹ : AddCommMonoid N₂ inst✝¹⁰ : Module R✝ M₁ inst✝⁹ : Module R✝ M₂ inst✝⁸ : Module R✝ N₁ inst✝⁷ : Module R✝ N₂ inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i) inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i) inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i) inst✝³ : (i : ι) → Module R✝ (Nᵢ i) inst✝² : Fintype ι R : Type u_9 inst✝¹ : OrderedRing R inst✝ : (i : ι) → Module R (Mᵢ i) Q : (i : ι) → QuadraticForm R (Mᵢ i) h : Anisotropic (pi Q) ⊢ ∀ (i : ι), Anisotropic (Q i) [PROOFSTEP] simp_rw [Anisotropic, pi_apply, Function.funext_iff, Pi.zero_apply] at h [GOAL] ι : Type u_1 R✝ : Type u_2 M₁ : Type u_3 M₂ : Type u_4 N₁ : Type u_5 N₂ : Type u_6 Mᵢ : ι → Type u_7 Nᵢ : ι → Type u_8 inst✝¹⁵ : Semiring R✝ inst✝¹⁴ : AddCommMonoid M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : AddCommMonoid N₁ inst✝¹¹ : AddCommMonoid N₂ inst✝¹⁰ : Module R✝ M₁ inst✝⁹ : Module R✝ M₂ inst✝⁸ : Module R✝ N₁ inst✝⁷ : Module R✝ N₂ inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i) inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i) inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i) inst✝³ : (i : ι) → Module R✝ (Nᵢ i) inst✝² : Fintype ι R : Type u_9 inst✝¹ : OrderedRing R inst✝ : (i : ι) → Module R (Mᵢ i) Q : (i : ι) → QuadraticForm R (Mᵢ i) h : ∀ (x : (i : ι) → Mᵢ i), ∑ i : ι, ↑(Q i) (x i) = 0 → ∀ (a : ι), x a = 0 ⊢ ∀ (i : ι), Anisotropic (Q i) [PROOFSTEP] intro i x hx [GOAL] ι : Type u_1 R✝ : Type u_2 M₁ : Type u_3 M₂ : Type u_4 N₁ : Type u_5 N₂ : Type u_6 Mᵢ : ι → Type u_7 Nᵢ : ι → Type u_8 inst✝¹⁵ : Semiring R✝ inst✝¹⁴ : AddCommMonoid M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : AddCommMonoid N₁ inst✝¹¹ : AddCommMonoid N₂ inst✝¹⁰ : Module R✝ M₁ inst✝⁹ : Module R✝ M₂ inst✝⁸ : Module R✝ N₁ inst✝⁷ : Module R✝ N₂ inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i) inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i) inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i) inst✝³ : (i : ι) → Module R✝ (Nᵢ i) inst✝² : Fintype ι R : Type u_9 inst✝¹ : OrderedRing R inst✝ : (i : ι) → Module R (Mᵢ i) Q : (i : ι) → QuadraticForm R (Mᵢ i) h : ∀ (x : (i : ι) → Mᵢ i), ∑ i : ι, ↑(Q i) (x i) = 0 → ∀ (a : ι), x a = 0 i : ι x : Mᵢ i hx : ↑(Q i) x = 0 ⊢ x = 0 [PROOFSTEP] classical have := h (Pi.single i x) ?_ i · rw [Pi.single_eq_same] at this exact this apply Finset.sum_eq_zero intro j _ by_cases hji : j = i · subst hji; rw [Pi.single_eq_same, hx] · rw [Pi.single_eq_of_ne hji, map_zero] [GOAL] ι : Type u_1 R✝ : Type u_2 M₁ : Type u_3 M₂ : Type u_4 N₁ : Type u_5 N₂ : Type u_6 Mᵢ : ι → Type u_7 Nᵢ : ι → Type u_8 inst✝¹⁵ : Semiring R✝ inst✝¹⁴ : AddCommMonoid M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : AddCommMonoid N₁ inst✝¹¹ : AddCommMonoid N₂ inst✝¹⁰ : Module R✝ M₁ inst✝⁹ : Module R✝ M₂ inst✝⁸ : Module R✝ N₁ inst✝⁷ : Module R✝ N₂ inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i) inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i) inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i) inst✝³ : (i : ι) → Module R✝ (Nᵢ i) inst✝² : Fintype ι R : Type u_9 inst✝¹ : OrderedRing R inst✝ : (i : ι) → Module R (Mᵢ i) Q : (i : ι) → QuadraticForm R (Mᵢ i) h : ∀ (x : (i : ι) → Mᵢ i), ∑ i : ι, ↑(Q i) (x i) = 0 → ∀ (a : ι), x a = 0 i : ι x : Mᵢ i hx : ↑(Q i) x = 0 ⊢ x = 0 [PROOFSTEP] have := h (Pi.single i x) ?_ i [GOAL] case refine_2 ι : Type u_1 R✝ : Type u_2 M₁ : Type u_3 M₂ : Type u_4 N₁ : Type u_5 N₂ : Type u_6 Mᵢ : ι → Type u_7 Nᵢ : ι → Type u_8 inst✝¹⁵ : Semiring R✝ inst✝¹⁴ : AddCommMonoid M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : AddCommMonoid N₁ inst✝¹¹ : AddCommMonoid N₂ inst✝¹⁰ : Module R✝ M₁ inst✝⁹ : Module R✝ M₂ inst✝⁸ : Module R✝ N₁ inst✝⁷ : Module R✝ N₂ inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i) inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i) inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i) inst✝³ : (i : ι) → Module R✝ (Nᵢ i) inst✝² : Fintype ι R : Type u_9 inst✝¹ : OrderedRing R inst✝ : (i : ι) → Module R (Mᵢ i) Q : (i : ι) → QuadraticForm R (Mᵢ i) h : ∀ (x : (i : ι) → Mᵢ i), ∑ i : ι, ↑(Q i) (x i) = 0 → ∀ (a : ι), x a = 0 i : ι x : Mᵢ i hx : ↑(Q i) x = 0 this : Pi.single i x i = 0 ⊢ x = 0 [PROOFSTEP] rw [Pi.single_eq_same] at this [GOAL] case refine_2 ι : Type u_1 R✝ : Type u_2 M₁ : Type u_3 M₂ : Type u_4 N₁ : Type u_5 N₂ : Type u_6 Mᵢ : ι → Type u_7 Nᵢ : ι → Type u_8 inst✝¹⁵ : Semiring R✝ inst✝¹⁴ : AddCommMonoid M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : AddCommMonoid N₁ inst✝¹¹ : AddCommMonoid N₂ inst✝¹⁰ : Module R✝ M₁ inst✝⁹ : Module R✝ M₂ inst✝⁸ : Module R✝ N₁ inst✝⁷ : Module R✝ N₂ inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i) inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i) inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i) inst✝³ : (i : ι) → Module R✝ (Nᵢ i) inst✝² : Fintype ι R : Type u_9 inst✝¹ : OrderedRing R inst✝ : (i : ι) → Module R (Mᵢ i) Q : (i : ι) → QuadraticForm R (Mᵢ i) h : ∀ (x : (i : ι) → Mᵢ i), ∑ i : ι, ↑(Q i) (x i) = 0 → ∀ (a : ι), x a = 0 i : ι x : Mᵢ i hx : ↑(Q i) x = 0 this : x = 0 ⊢ x = 0 [PROOFSTEP] exact this [GOAL] case refine_1 ι : Type u_1 R✝ : Type u_2 M₁ : Type u_3 M₂ : Type u_4 N₁ : Type u_5 N₂ : Type u_6 Mᵢ : ι → Type u_7 Nᵢ : ι → Type u_8 inst✝¹⁵ : Semiring R✝ inst✝¹⁴ : AddCommMonoid M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : AddCommMonoid N₁ inst✝¹¹ : AddCommMonoid N₂ inst✝¹⁰ : Module R✝ M₁ inst✝⁹ : Module R✝ M₂ inst✝⁸ : Module R✝ N₁ inst✝⁷ : Module R✝ N₂ inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i) inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i) inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i) inst✝³ : (i : ι) → Module R✝ (Nᵢ i) inst✝² : Fintype ι R : Type u_9 inst✝¹ : OrderedRing R inst✝ : (i : ι) → Module R (Mᵢ i) Q : (i : ι) → QuadraticForm R (Mᵢ i) h : ∀ (x : (i : ι) → Mᵢ i), ∑ i : ι, ↑(Q i) (x i) = 0 → ∀ (a : ι), x a = 0 i : ι x : Mᵢ i hx : ↑(Q i) x = 0 ⊢ ∑ i_1 : ι, ↑(Q i_1) (Pi.single i x i_1) = 0 [PROOFSTEP] apply Finset.sum_eq_zero [GOAL] case refine_1.h ι : Type u_1 R✝ : Type u_2 M₁ : Type u_3 M₂ : Type u_4 N₁ : Type u_5 N₂ : Type u_6 Mᵢ : ι → Type u_7 Nᵢ : ι → Type u_8 inst✝¹⁵ : Semiring R✝ inst✝¹⁴ : AddCommMonoid M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : AddCommMonoid N₁ inst✝¹¹ : AddCommMonoid N₂ inst✝¹⁰ : Module R✝ M₁ inst✝⁹ : Module R✝ M₂ inst✝⁸ : Module R✝ N₁ inst✝⁷ : Module R✝ N₂ inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i) inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i) inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i) inst✝³ : (i : ι) → Module R✝ (Nᵢ i) inst✝² : Fintype ι R : Type u_9 inst✝¹ : OrderedRing R inst✝ : (i : ι) → Module R (Mᵢ i) Q : (i : ι) → QuadraticForm R (Mᵢ i) h : ∀ (x : (i : ι) → Mᵢ i), ∑ i : ι, ↑(Q i) (x i) = 0 → ∀ (a : ι), x a = 0 i : ι x : Mᵢ i hx : ↑(Q i) x = 0 ⊢ ∀ (x_1 : ι), x_1 ∈ Finset.univ → ↑(Q x_1) (Pi.single i x x_1) = 0 [PROOFSTEP] intro j _ [GOAL] case refine_1.h ι : Type u_1 R✝ : Type u_2 M₁ : Type u_3 M₂ : Type u_4 N₁ : Type u_5 N₂ : Type u_6 Mᵢ : ι → Type u_7 Nᵢ : ι → Type u_8 inst✝¹⁵ : Semiring R✝ inst✝¹⁴ : AddCommMonoid M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : AddCommMonoid N₁ inst✝¹¹ : AddCommMonoid N₂ inst✝¹⁰ : Module R✝ M₁ inst✝⁹ : Module R✝ M₂ inst✝⁸ : Module R✝ N₁ inst✝⁷ : Module R✝ N₂ inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i) inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i) inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i) inst✝³ : (i : ι) → Module R✝ (Nᵢ i) inst✝² : Fintype ι R : Type u_9 inst✝¹ : OrderedRing R inst✝ : (i : ι) → Module R (Mᵢ i) Q : (i : ι) → QuadraticForm R (Mᵢ i) h : ∀ (x : (i : ι) → Mᵢ i), ∑ i : ι, ↑(Q i) (x i) = 0 → ∀ (a : ι), x a = 0 i : ι x : Mᵢ i hx : ↑(Q i) x = 0 j : ι a✝ : j ∈ Finset.univ ⊢ ↑(Q j) (Pi.single i x j) = 0 [PROOFSTEP] by_cases hji : j = i [GOAL] case pos ι : Type u_1 R✝ : Type u_2 M₁ : Type u_3 M₂ : Type u_4 N₁ : Type u_5 N₂ : Type u_6 Mᵢ : ι → Type u_7 Nᵢ : ι → Type u_8 inst✝¹⁵ : Semiring R✝ inst✝¹⁴ : AddCommMonoid M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : AddCommMonoid N₁ inst✝¹¹ : AddCommMonoid N₂ inst✝¹⁰ : Module R✝ M₁ inst✝⁹ : Module R✝ M₂ inst✝⁸ : Module R✝ N₁ inst✝⁷ : Module R✝ N₂ inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i) inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i) inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i) inst✝³ : (i : ι) → Module R✝ (Nᵢ i) inst✝² : Fintype ι R : Type u_9 inst✝¹ : OrderedRing R inst✝ : (i : ι) → Module R (Mᵢ i) Q : (i : ι) → QuadraticForm R (Mᵢ i) h : ∀ (x : (i : ι) → Mᵢ i), ∑ i : ι, ↑(Q i) (x i) = 0 → ∀ (a : ι), x a = 0 i : ι x : Mᵢ i hx : ↑(Q i) x = 0 j : ι a✝ : j ∈ Finset.univ hji : j = i ⊢ ↑(Q j) (Pi.single i x j) = 0 [PROOFSTEP] subst hji [GOAL] case pos ι : Type u_1 R✝ : Type u_2 M₁ : Type u_3 M₂ : Type u_4 N₁ : Type u_5 N₂ : Type u_6 Mᵢ : ι → Type u_7 Nᵢ : ι → Type u_8 inst✝¹⁵ : Semiring R✝ inst✝¹⁴ : AddCommMonoid M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : AddCommMonoid N₁ inst✝¹¹ : AddCommMonoid N₂ inst✝¹⁰ : Module R✝ M₁ inst✝⁹ : Module R✝ M₂ inst✝⁸ : Module R✝ N₁ inst✝⁷ : Module R✝ N₂ inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i) inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i) inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i) inst✝³ : (i : ι) → Module R✝ (Nᵢ i) inst✝² : Fintype ι R : Type u_9 inst✝¹ : OrderedRing R inst✝ : (i : ι) → Module R (Mᵢ i) Q : (i : ι) → QuadraticForm R (Mᵢ i) h : ∀ (x : (i : ι) → Mᵢ i), ∑ i : ι, ↑(Q i) (x i) = 0 → ∀ (a : ι), x a = 0 j : ι a✝ : j ∈ Finset.univ x : Mᵢ j hx : ↑(Q j) x = 0 ⊢ ↑(Q j) (Pi.single j x j) = 0 [PROOFSTEP] rw [Pi.single_eq_same, hx] [GOAL] case neg ι : Type u_1 R✝ : Type u_2 M₁ : Type u_3 M₂ : Type u_4 N₁ : Type u_5 N₂ : Type u_6 Mᵢ : ι → Type u_7 Nᵢ : ι → Type u_8 inst✝¹⁵ : Semiring R✝ inst✝¹⁴ : AddCommMonoid M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : AddCommMonoid N₁ inst✝¹¹ : AddCommMonoid N₂ inst✝¹⁰ : Module R✝ M₁ inst✝⁹ : Module R✝ M₂ inst✝⁸ : Module R✝ N₁ inst✝⁷ : Module R✝ N₂ inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i) inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i) inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i) inst✝³ : (i : ι) → Module R✝ (Nᵢ i) inst✝² : Fintype ι R : Type u_9 inst✝¹ : OrderedRing R inst✝ : (i : ι) → Module R (Mᵢ i) Q : (i : ι) → QuadraticForm R (Mᵢ i) h : ∀ (x : (i : ι) → Mᵢ i), ∑ i : ι, ↑(Q i) (x i) = 0 → ∀ (a : ι), x a = 0 i : ι x : Mᵢ i hx : ↑(Q i) x = 0 j : ι a✝ : j ∈ Finset.univ hji : ¬j = i ⊢ ↑(Q j) (Pi.single i x j) = 0 [PROOFSTEP] rw [Pi.single_eq_of_ne hji, map_zero] [GOAL] ι : Type u_1 R✝ : Type u_2 M₁ : Type u_3 M₂ : Type u_4 N₁ : Type u_5 N₂ : Type u_6 Mᵢ : ι → Type u_7 Nᵢ : ι → Type u_8 inst✝¹⁵ : Semiring R✝ inst✝¹⁴ : AddCommMonoid M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : AddCommMonoid N₁ inst✝¹¹ : AddCommMonoid N₂ inst✝¹⁰ : Module R✝ M₁ inst✝⁹ : Module R✝ M₂ inst✝⁸ : Module R✝ N₁ inst✝⁷ : Module R✝ N₂ inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i) inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i) inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i) inst✝³ : (i : ι) → Module R✝ (Nᵢ i) inst✝² : Fintype ι R : Type u_9 inst✝¹ : OrderedRing R inst✝ : (i : ι) → Module R (Mᵢ i) Q : (i : ι) → QuadraticForm R (Mᵢ i) ⊢ (∀ (x : (i : ι) → Mᵢ i), 0 ≤ ↑(pi Q) x) ↔ ∀ (i : ι) (x : Mᵢ i), 0 ≤ ↑(Q i) x [PROOFSTEP] simp_rw [pi, sum_apply, comp_apply, LinearMap.proj_apply] [GOAL] ι : Type u_1 R✝ : Type u_2 M₁ : Type u_3 M₂ : Type u_4 N₁ : Type u_5 N₂ : Type u_6 Mᵢ : ι → Type u_7 Nᵢ : ι → Type u_8 inst✝¹⁵ : Semiring R✝ inst✝¹⁴ : AddCommMonoid M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : AddCommMonoid N₁ inst✝¹¹ : AddCommMonoid N₂ inst✝¹⁰ : Module R✝ M₁ inst✝⁹ : Module R✝ M₂ inst✝⁸ : Module R✝ N₁ inst✝⁷ : Module R✝ N₂ inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i) inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i) inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i) inst✝³ : (i : ι) → Module R✝ (Nᵢ i) inst✝² : Fintype ι R : Type u_9 inst✝¹ : OrderedRing R inst✝ : (i : ι) → Module R (Mᵢ i) Q : (i : ι) → QuadraticForm R (Mᵢ i) ⊢ (∀ (x : (i : ι) → Mᵢ i), 0 ≤ ∑ x_1 : ι, ↑(Q x_1) (x x_1)) ↔ ∀ (i : ι) (x : Mᵢ i), 0 ≤ ↑(Q i) x [PROOFSTEP] constructor -- TODO: does this generalize to a useful lemma independent of `QuadraticForm`? [GOAL] case mp ι : Type u_1 R✝ : Type u_2 M₁ : Type u_3 M₂ : Type u_4 N₁ : Type u_5 N₂ : Type u_6 Mᵢ : ι → Type u_7 Nᵢ : ι → Type u_8 inst✝¹⁵ : Semiring R✝ inst✝¹⁴ : AddCommMonoid M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : AddCommMonoid N₁ inst✝¹¹ : AddCommMonoid N₂ inst✝¹⁰ : Module R✝ M₁ inst✝⁹ : Module R✝ M₂ inst✝⁸ : Module R✝ N₁ inst✝⁷ : Module R✝ N₂ inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i) inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i) inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i) inst✝³ : (i : ι) → Module R✝ (Nᵢ i) inst✝² : Fintype ι R : Type u_9 inst✝¹ : OrderedRing R inst✝ : (i : ι) → Module R (Mᵢ i) Q : (i : ι) → QuadraticForm R (Mᵢ i) ⊢ (∀ (x : (i : ι) → Mᵢ i), 0 ≤ ∑ x_1 : ι, ↑(Q x_1) (x x_1)) → ∀ (i : ι) (x : Mᵢ i), 0 ≤ ↑(Q i) x [PROOFSTEP] intro h i x [GOAL] case mp ι : Type u_1 R✝ : Type u_2 M₁ : Type u_3 M₂ : Type u_4 N₁ : Type u_5 N₂ : Type u_6 Mᵢ : ι → Type u_7 Nᵢ : ι → Type u_8 inst✝¹⁵ : Semiring R✝ inst✝¹⁴ : AddCommMonoid M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : AddCommMonoid N₁ inst✝¹¹ : AddCommMonoid N₂ inst✝¹⁰ : Module R✝ M₁ inst✝⁹ : Module R✝ M₂ inst✝⁸ : Module R✝ N₁ inst✝⁷ : Module R✝ N₂ inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i) inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i) inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i) inst✝³ : (i : ι) → Module R✝ (Nᵢ i) inst✝² : Fintype ι R : Type u_9 inst✝¹ : OrderedRing R inst✝ : (i : ι) → Module R (Mᵢ i) Q : (i : ι) → QuadraticForm R (Mᵢ i) h : ∀ (x : (i : ι) → Mᵢ i), 0 ≤ ∑ x_1 : ι, ↑(Q x_1) (x x_1) i : ι x : Mᵢ i ⊢ 0 ≤ ↑(Q i) x [PROOFSTEP] classical convert h (Pi.single i x) using 1 rw [Finset.sum_eq_single_of_mem i (Finset.mem_univ _) fun j _ hji => ?_, Pi.single_eq_same] rw [Pi.single_eq_of_ne hji, map_zero] [GOAL] case mp ι : Type u_1 R✝ : Type u_2 M₁ : Type u_3 M₂ : Type u_4 N₁ : Type u_5 N₂ : Type u_6 Mᵢ : ι → Type u_7 Nᵢ : ι → Type u_8 inst✝¹⁵ : Semiring R✝ inst✝¹⁴ : AddCommMonoid M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : AddCommMonoid N₁ inst✝¹¹ : AddCommMonoid N₂ inst✝¹⁰ : Module R✝ M₁ inst✝⁹ : Module R✝ M₂ inst✝⁸ : Module R✝ N₁ inst✝⁷ : Module R✝ N₂ inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i) inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i) inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i) inst✝³ : (i : ι) → Module R✝ (Nᵢ i) inst✝² : Fintype ι R : Type u_9 inst✝¹ : OrderedRing R inst✝ : (i : ι) → Module R (Mᵢ i) Q : (i : ι) → QuadraticForm R (Mᵢ i) h : ∀ (x : (i : ι) → Mᵢ i), 0 ≤ ∑ x_1 : ι, ↑(Q x_1) (x x_1) i : ι x : Mᵢ i ⊢ 0 ≤ ↑(Q i) x [PROOFSTEP] convert h (Pi.single i x) using 1 [GOAL] case h.e'_4 ι : Type u_1 R✝ : Type u_2 M₁ : Type u_3 M₂ : Type u_4 N₁ : Type u_5 N₂ : Type u_6 Mᵢ : ι → Type u_7 Nᵢ : ι → Type u_8 inst✝¹⁵ : Semiring R✝ inst✝¹⁴ : AddCommMonoid M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : AddCommMonoid N₁ inst✝¹¹ : AddCommMonoid N₂ inst✝¹⁰ : Module R✝ M₁ inst✝⁹ : Module R✝ M₂ inst✝⁸ : Module R✝ N₁ inst✝⁷ : Module R✝ N₂ inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i) inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i) inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i) inst✝³ : (i : ι) → Module R✝ (Nᵢ i) inst✝² : Fintype ι R : Type u_9 inst✝¹ : OrderedRing R inst✝ : (i : ι) → Module R (Mᵢ i) Q : (i : ι) → QuadraticForm R (Mᵢ i) h : ∀ (x : (i : ι) → Mᵢ i), 0 ≤ ∑ x_1 : ι, ↑(Q x_1) (x x_1) i : ι x : Mᵢ i ⊢ ↑(Q i) x = ∑ x_1 : ι, ↑(Q x_1) (Pi.single i x x_1) [PROOFSTEP] rw [Finset.sum_eq_single_of_mem i (Finset.mem_univ _) fun j _ hji => ?_, Pi.single_eq_same] [GOAL] ι : Type u_1 R✝ : Type u_2 M₁ : Type u_3 M₂ : Type u_4 N₁ : Type u_5 N₂ : Type u_6 Mᵢ : ι → Type u_7 Nᵢ : ι → Type u_8 inst✝¹⁵ : Semiring R✝ inst✝¹⁴ : AddCommMonoid M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : AddCommMonoid N₁ inst✝¹¹ : AddCommMonoid N₂ inst✝¹⁰ : Module R✝ M₁ inst✝⁹ : Module R✝ M₂ inst✝⁸ : Module R✝ N₁ inst✝⁷ : Module R✝ N₂ inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i) inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i) inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i) inst✝³ : (i : ι) → Module R✝ (Nᵢ i) inst✝² : Fintype ι R : Type u_9 inst✝¹ : OrderedRing R inst✝ : (i : ι) → Module R (Mᵢ i) Q : (i : ι) → QuadraticForm R (Mᵢ i) h : ∀ (x : (i : ι) → Mᵢ i), 0 ≤ ∑ x_1 : ι, ↑(Q x_1) (x x_1) i : ι x : Mᵢ i j : ι x✝ : j ∈ Finset.univ hji : j ≠ i ⊢ ↑(Q j) (Pi.single i x j) = 0 [PROOFSTEP] rw [Pi.single_eq_of_ne hji, map_zero] [GOAL] case mpr ι : Type u_1 R✝ : Type u_2 M₁ : Type u_3 M₂ : Type u_4 N₁ : Type u_5 N₂ : Type u_6 Mᵢ : ι → Type u_7 Nᵢ : ι → Type u_8 inst✝¹⁵ : Semiring R✝ inst✝¹⁴ : AddCommMonoid M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : AddCommMonoid N₁ inst✝¹¹ : AddCommMonoid N₂ inst✝¹⁰ : Module R✝ M₁ inst✝⁹ : Module R✝ M₂ inst✝⁸ : Module R✝ N₁ inst✝⁷ : Module R✝ N₂ inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i) inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i) inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i) inst✝³ : (i : ι) → Module R✝ (Nᵢ i) inst✝² : Fintype ι R : Type u_9 inst✝¹ : OrderedRing R inst✝ : (i : ι) → Module R (Mᵢ i) Q : (i : ι) → QuadraticForm R (Mᵢ i) ⊢ (∀ (i : ι) (x : Mᵢ i), 0 ≤ ↑(Q i) x) → ∀ (x : (i : ι) → Mᵢ i), 0 ≤ ∑ x_1 : ι, ↑(Q x_1) (x x_1) [PROOFSTEP] rintro h x [GOAL] case mpr ι : Type u_1 R✝ : Type u_2 M₁ : Type u_3 M₂ : Type u_4 N₁ : Type u_5 N₂ : Type u_6 Mᵢ : ι → Type u_7 Nᵢ : ι → Type u_8 inst✝¹⁵ : Semiring R✝ inst✝¹⁴ : AddCommMonoid M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : AddCommMonoid N₁ inst✝¹¹ : AddCommMonoid N₂ inst✝¹⁰ : Module R✝ M₁ inst✝⁹ : Module R✝ M₂ inst✝⁸ : Module R✝ N₁ inst✝⁷ : Module R✝ N₂ inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i) inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i) inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i) inst✝³ : (i : ι) → Module R✝ (Nᵢ i) inst✝² : Fintype ι R : Type u_9 inst✝¹ : OrderedRing R inst✝ : (i : ι) → Module R (Mᵢ i) Q : (i : ι) → QuadraticForm R (Mᵢ i) h : ∀ (i : ι) (x : Mᵢ i), 0 ≤ ↑(Q i) x x : (i : ι) → Mᵢ i ⊢ 0 ≤ ∑ x_1 : ι, ↑(Q x_1) (x x_1) [PROOFSTEP] exact Finset.sum_nonneg fun i _ => h i (x i) [GOAL] ι : Type u_1 R✝ : Type u_2 M₁ : Type u_3 M₂ : Type u_4 N₁ : Type u_5 N₂ : Type u_6 Mᵢ : ι → Type u_7 Nᵢ : ι → Type u_8 inst✝¹⁵ : Semiring R✝ inst✝¹⁴ : AddCommMonoid M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : AddCommMonoid N₁ inst✝¹¹ : AddCommMonoid N₂ inst✝¹⁰ : Module R✝ M₁ inst✝⁹ : Module R✝ M₂ inst✝⁸ : Module R✝ N₁ inst✝⁷ : Module R✝ N₂ inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i) inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i) inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i) inst✝³ : (i : ι) → Module R✝ (Nᵢ i) inst✝² : Fintype ι R : Type u_9 inst✝¹ : OrderedRing R inst✝ : (i : ι) → Module R (Mᵢ i) Q : (i : ι) → QuadraticForm R (Mᵢ i) ⊢ PosDef (pi Q) ↔ ∀ (i : ι), PosDef (Q i) [PROOFSTEP] simp_rw [posDef_iff_nonneg, nonneg_pi_iff] [GOAL] ι : Type u_1 R✝ : Type u_2 M₁ : Type u_3 M₂ : Type u_4 N₁ : Type u_5 N₂ : Type u_6 Mᵢ : ι → Type u_7 Nᵢ : ι → Type u_8 inst✝¹⁵ : Semiring R✝ inst✝¹⁴ : AddCommMonoid M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : AddCommMonoid N₁ inst✝¹¹ : AddCommMonoid N₂ inst✝¹⁰ : Module R✝ M₁ inst✝⁹ : Module R✝ M₂ inst✝⁸ : Module R✝ N₁ inst✝⁷ : Module R✝ N₂ inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i) inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i) inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i) inst✝³ : (i : ι) → Module R✝ (Nᵢ i) inst✝² : Fintype ι R : Type u_9 inst✝¹ : OrderedRing R inst✝ : (i : ι) → Module R (Mᵢ i) Q : (i : ι) → QuadraticForm R (Mᵢ i) ⊢ (∀ (i : ι) (x : Mᵢ i), 0 ≤ ↑(Q i) x) ∧ Anisotropic (pi Q) ↔ ∀ (i : ι), (∀ (x : Mᵢ i), 0 ≤ ↑(Q i) x) ∧ Anisotropic (Q i) [PROOFSTEP] constructor [GOAL] case mp ι : Type u_1 R✝ : Type u_2 M₁ : Type u_3 M₂ : Type u_4 N₁ : Type u_5 N₂ : Type u_6 Mᵢ : ι → Type u_7 Nᵢ : ι → Type u_8 inst✝¹⁵ : Semiring R✝ inst✝¹⁴ : AddCommMonoid M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : AddCommMonoid N₁ inst✝¹¹ : AddCommMonoid N₂ inst✝¹⁰ : Module R✝ M₁ inst✝⁹ : Module R✝ M₂ inst✝⁸ : Module R✝ N₁ inst✝⁷ : Module R✝ N₂ inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i) inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i) inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i) inst✝³ : (i : ι) → Module R✝ (Nᵢ i) inst✝² : Fintype ι R : Type u_9 inst✝¹ : OrderedRing R inst✝ : (i : ι) → Module R (Mᵢ i) Q : (i : ι) → QuadraticForm R (Mᵢ i) ⊢ (∀ (i : ι) (x : Mᵢ i), 0 ≤ ↑(Q i) x) ∧ Anisotropic (pi Q) → ∀ (i : ι), (∀ (x : Mᵢ i), 0 ≤ ↑(Q i) x) ∧ Anisotropic (Q i) [PROOFSTEP] rintro ⟨hle, ha⟩ [GOAL] case mp.intro ι : Type u_1 R✝ : Type u_2 M₁ : Type u_3 M₂ : Type u_4 N₁ : Type u_5 N₂ : Type u_6 Mᵢ : ι → Type u_7 Nᵢ : ι → Type u_8 inst✝¹⁵ : Semiring R✝ inst✝¹⁴ : AddCommMonoid M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : AddCommMonoid N₁ inst✝¹¹ : AddCommMonoid N₂ inst✝¹⁰ : Module R✝ M₁ inst✝⁹ : Module R✝ M₂ inst✝⁸ : Module R✝ N₁ inst✝⁷ : Module R✝ N₂ inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i) inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i) inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i) inst✝³ : (i : ι) → Module R✝ (Nᵢ i) inst✝² : Fintype ι R : Type u_9 inst✝¹ : OrderedRing R inst✝ : (i : ι) → Module R (Mᵢ i) Q : (i : ι) → QuadraticForm R (Mᵢ i) hle : ∀ (i : ι) (x : Mᵢ i), 0 ≤ ↑(Q i) x ha : Anisotropic (pi Q) ⊢ ∀ (i : ι), (∀ (x : Mᵢ i), 0 ≤ ↑(Q i) x) ∧ Anisotropic (Q i) [PROOFSTEP] intro i [GOAL] case mp.intro ι : Type u_1 R✝ : Type u_2 M₁ : Type u_3 M₂ : Type u_4 N₁ : Type u_5 N₂ : Type u_6 Mᵢ : ι → Type u_7 Nᵢ : ι → Type u_8 inst✝¹⁵ : Semiring R✝ inst✝¹⁴ : AddCommMonoid M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : AddCommMonoid N₁ inst✝¹¹ : AddCommMonoid N₂ inst✝¹⁰ : Module R✝ M₁ inst✝⁹ : Module R✝ M₂ inst✝⁸ : Module R✝ N₁ inst✝⁷ : Module R✝ N₂ inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i) inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i) inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i) inst✝³ : (i : ι) → Module R✝ (Nᵢ i) inst✝² : Fintype ι R : Type u_9 inst✝¹ : OrderedRing R inst✝ : (i : ι) → Module R (Mᵢ i) Q : (i : ι) → QuadraticForm R (Mᵢ i) hle : ∀ (i : ι) (x : Mᵢ i), 0 ≤ ↑(Q i) x ha : Anisotropic (pi Q) i : ι ⊢ (∀ (x : Mᵢ i), 0 ≤ ↑(Q i) x) ∧ Anisotropic (Q i) [PROOFSTEP] exact ⟨hle i, anisotropic_of_pi ha i⟩ [GOAL] case mpr ι : Type u_1 R✝ : Type u_2 M₁ : Type u_3 M₂ : Type u_4 N₁ : Type u_5 N₂ : Type u_6 Mᵢ : ι → Type u_7 Nᵢ : ι → Type u_8 inst✝¹⁵ : Semiring R✝ inst✝¹⁴ : AddCommMonoid M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : AddCommMonoid N₁ inst✝¹¹ : AddCommMonoid N₂ inst✝¹⁰ : Module R✝ M₁ inst✝⁹ : Module R✝ M₂ inst✝⁸ : Module R✝ N₁ inst✝⁷ : Module R✝ N₂ inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i) inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i) inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i) inst✝³ : (i : ι) → Module R✝ (Nᵢ i) inst✝² : Fintype ι R : Type u_9 inst✝¹ : OrderedRing R inst✝ : (i : ι) → Module R (Mᵢ i) Q : (i : ι) → QuadraticForm R (Mᵢ i) ⊢ (∀ (i : ι), (∀ (x : Mᵢ i), 0 ≤ ↑(Q i) x) ∧ Anisotropic (Q i)) → (∀ (i : ι) (x : Mᵢ i), 0 ≤ ↑(Q i) x) ∧ Anisotropic (pi Q) [PROOFSTEP] intro h [GOAL] case mpr ι : Type u_1 R✝ : Type u_2 M₁ : Type u_3 M₂ : Type u_4 N₁ : Type u_5 N₂ : Type u_6 Mᵢ : ι → Type u_7 Nᵢ : ι → Type u_8 inst✝¹⁵ : Semiring R✝ inst✝¹⁴ : AddCommMonoid M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : AddCommMonoid N₁ inst✝¹¹ : AddCommMonoid N₂ inst✝¹⁰ : Module R✝ M₁ inst✝⁹ : Module R✝ M₂ inst✝⁸ : Module R✝ N₁ inst✝⁷ : Module R✝ N₂ inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i) inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i) inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i) inst✝³ : (i : ι) → Module R✝ (Nᵢ i) inst✝² : Fintype ι R : Type u_9 inst✝¹ : OrderedRing R inst✝ : (i : ι) → Module R (Mᵢ i) Q : (i : ι) → QuadraticForm R (Mᵢ i) h : ∀ (i : ι), (∀ (x : Mᵢ i), 0 ≤ ↑(Q i) x) ∧ Anisotropic (Q i) ⊢ (∀ (i : ι) (x : Mᵢ i), 0 ≤ ↑(Q i) x) ∧ Anisotropic (pi Q) [PROOFSTEP] refine' ⟨fun i => (h i).1, fun x hx => funext fun i => (h i).2 _ _⟩ [GOAL] case mpr ι : Type u_1 R✝ : Type u_2 M₁ : Type u_3 M₂ : Type u_4 N₁ : Type u_5 N₂ : Type u_6 Mᵢ : ι → Type u_7 Nᵢ : ι → Type u_8 inst✝¹⁵ : Semiring R✝ inst✝¹⁴ : AddCommMonoid M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : AddCommMonoid N₁ inst✝¹¹ : AddCommMonoid N₂ inst✝¹⁰ : Module R✝ M₁ inst✝⁹ : Module R✝ M₂ inst✝⁸ : Module R✝ N₁ inst✝⁷ : Module R✝ N₂ inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i) inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i) inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i) inst✝³ : (i : ι) → Module R✝ (Nᵢ i) inst✝² : Fintype ι R : Type u_9 inst✝¹ : OrderedRing R inst✝ : (i : ι) → Module R (Mᵢ i) Q : (i : ι) → QuadraticForm R (Mᵢ i) h : ∀ (i : ι), (∀ (x : Mᵢ i), 0 ≤ ↑(Q i) x) ∧ Anisotropic (Q i) x : (i : ι) → Mᵢ i hx : ↑(pi Q) x = 0 i : ι ⊢ ↑(Q i) (x i) = 0 [PROOFSTEP] rw [pi_apply, Finset.sum_eq_zero_iff_of_nonneg fun j _ => ?_] at hx [GOAL] case mpr ι : Type u_1 R✝ : Type u_2 M₁ : Type u_3 M₂ : Type u_4 N₁ : Type u_5 N₂ : Type u_6 Mᵢ : ι → Type u_7 Nᵢ : ι → Type u_8 inst✝¹⁵ : Semiring R✝ inst✝¹⁴ : AddCommMonoid M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : AddCommMonoid N₁ inst✝¹¹ : AddCommMonoid N₂ inst✝¹⁰ : Module R✝ M₁ inst✝⁹ : Module R✝ M₂ inst✝⁸ : Module R✝ N₁ inst✝⁷ : Module R✝ N₂ inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i) inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i) inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i) inst✝³ : (i : ι) → Module R✝ (Nᵢ i) inst✝² : Fintype ι R : Type u_9 inst✝¹ : OrderedRing R inst✝ : (i : ι) → Module R (Mᵢ i) Q : (i : ι) → QuadraticForm R (Mᵢ i) h : ∀ (i : ι), (∀ (x : Mᵢ i), 0 ≤ ↑(Q i) x) ∧ Anisotropic (Q i) x : (i : ι) → Mᵢ i hx : ∀ (i : ι), i ∈ Finset.univ → ↑(Q i) (x i) = 0 i : ι ⊢ ↑(Q i) (x i) = 0 [PROOFSTEP] exact hx _ (Finset.mem_univ _) [GOAL] ι : Type u_1 R✝ : Type u_2 M₁ : Type u_3 M₂ : Type u_4 N₁ : Type u_5 N₂ : Type u_6 Mᵢ : ι → Type u_7 Nᵢ : ι → Type u_8 inst✝¹⁵ : Semiring R✝ inst✝¹⁴ : AddCommMonoid M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : AddCommMonoid N₁ inst✝¹¹ : AddCommMonoid N₂ inst✝¹⁰ : Module R✝ M₁ inst✝⁹ : Module R✝ M₂ inst✝⁸ : Module R✝ N₁ inst✝⁷ : Module R✝ N₂ inst✝⁶ : (i : ι) → AddCommMonoid (Mᵢ i) inst✝⁵ : (i : ι) → AddCommMonoid (Nᵢ i) inst✝⁴ : (i : ι) → Module R✝ (Mᵢ i) inst✝³ : (i : ι) → Module R✝ (Nᵢ i) inst✝² : Fintype ι R : Type u_9 inst✝¹ : OrderedRing R inst✝ : (i : ι) → Module R (Mᵢ i) Q : (i : ι) → QuadraticForm R (Mᵢ i) h : ∀ (i : ι), (∀ (x : Mᵢ i), 0 ≤ ↑(Q i) x) ∧ Anisotropic (Q i) x : (i : ι) → Mᵢ i hx : ∑ i : ι, ↑(Q i) (x i) = 0 i j : ι x✝ : j ∈ Finset.univ ⊢ 0 ≤ ↑(Q j) (x j) [PROOFSTEP] exact (h j).1 _
{"mathlib_filename": "Mathlib.LinearAlgebra.QuadraticForm.Prod", "llama_tokens": 29681}
[GOAL] R : Type u_1 inst✝¹⁰ : CommRing R M✝ : Type u_2 inst✝⁹ : AddCommGroup M✝ inst✝⁸ : Module R M✝ M' : Type u_3 inst✝⁷ : AddCommGroup M' inst✝⁶ : Module R M' ι : Type u_4 inst✝⁵ : DecidableEq ι inst✝⁴ : Fintype ι e : Basis ι R M✝ A : Type u_5 inst✝³ : CommRing A m : Type u_6 n : Type u_7 inst✝² : Fintype m inst✝¹ : Fintype n inst✝ : DecidableEq n M N : Matrix n n A ⊢ det (M * N) = det (N * M) [PROOFSTEP] rw [det_mul, det_mul, mul_comm] [GOAL] R : Type u_1 inst✝¹¹ : CommRing R M✝ : Type u_2 inst✝¹⁰ : AddCommGroup M✝ inst✝⁹ : Module R M✝ M'✝ : Type u_3 inst✝⁸ : AddCommGroup M'✝ inst✝⁷ : Module R M'✝ ι : Type u_4 inst✝⁶ : DecidableEq ι inst✝⁵ : Fintype ι e : Basis ι R M✝ A : Type u_5 inst✝⁴ : CommRing A m : Type u_6 n : Type u_7 inst✝³ : Fintype m inst✝² : Fintype n inst✝¹ : DecidableEq m inst✝ : DecidableEq n M : Matrix n m A N M' : Matrix m n A hMM' : M * M' = 1 hM'M : M' * M = 1 ⊢ det (M * N) = det (N * M) [PROOFSTEP] nontriviality A [GOAL] R : Type u_1 inst✝¹¹ : CommRing R M✝ : Type u_2 inst✝¹⁰ : AddCommGroup M✝ inst✝⁹ : Module R M✝ M'✝ : Type u_3 inst✝⁸ : AddCommGroup M'✝ inst✝⁷ : Module R M'✝ ι : Type u_4 inst✝⁶ : DecidableEq ι inst✝⁵ : Fintype ι e : Basis ι R M✝ A : Type u_5 inst✝⁴ : CommRing A m : Type u_6 n : Type u_7 inst✝³ : Fintype m inst✝² : Fintype n inst✝¹ : DecidableEq m inst✝ : DecidableEq n M : Matrix n m A N M' : Matrix m n A hMM' : M * M' = 1 hM'M : M' * M = 1 ✝ : Nontrivial A ⊢ det (M * N) = det (N * M) [PROOFSTEP] let e := indexEquivOfInv hMM' hM'M [GOAL] R : Type u_1 inst✝¹¹ : CommRing R M✝ : Type u_2 inst✝¹⁰ : AddCommGroup M✝ inst✝⁹ : Module R M✝ M'✝ : Type u_3 inst✝⁸ : AddCommGroup M'✝ inst✝⁷ : Module R M'✝ ι : Type u_4 inst✝⁶ : DecidableEq ι inst✝⁵ : Fintype ι e✝ : Basis ι R M✝ A : Type u_5 inst✝⁴ : CommRing A m : Type u_6 n : Type u_7 inst✝³ : Fintype m inst✝² : Fintype n inst✝¹ : DecidableEq m inst✝ : DecidableEq n M : Matrix n m A N M' : Matrix m n A hMM' : M * M' = 1 hM'M : M' * M = 1 ✝ : Nontrivial A e : n ≃ m := indexEquivOfInv hMM' hM'M ⊢ det (M * N) = det (N * M) [PROOFSTEP] rw [← det_submatrix_equiv_self e, ← submatrix_mul_equiv _ _ _ (Equiv.refl n) _, det_comm, submatrix_mul_equiv, Equiv.coe_refl, submatrix_id_id] [GOAL] R : Type u_1 inst✝¹¹ : CommRing R M✝ : Type u_2 inst✝¹⁰ : AddCommGroup M✝ inst✝⁹ : Module R M✝ M'✝ : Type u_3 inst✝⁸ : AddCommGroup M'✝ inst✝⁷ : Module R M'✝ ι : Type u_4 inst✝⁶ : DecidableEq ι inst✝⁵ : Fintype ι e : Basis ι R M✝ A : Type u_5 inst✝⁴ : CommRing A m : Type u_6 n : Type u_7 inst✝³ : Fintype m inst✝² : Fintype n inst✝¹ : DecidableEq m inst✝ : DecidableEq n M : Matrix m n A M' : Matrix n m A N : Matrix n n A hMM' : M * M' = 1 hM'M : M' * M = 1 ⊢ det (M * N * M') = det N [PROOFSTEP] rw [← det_comm' hM'M hMM', ← Matrix.mul_assoc, hM'M, Matrix.one_mul] [GOAL] R : Type u_1 inst✝¹⁰ : CommRing R M : Type u_2 inst✝⁹ : AddCommGroup M inst✝⁸ : Module R M M' : Type u_3 inst✝⁷ : AddCommGroup M' inst✝⁶ : Module R M' ι : Type u_4 inst✝⁵ : DecidableEq ι inst✝⁴ : Fintype ι e : Basis ι R M A : Type u_5 inst✝³ : CommRing A inst✝² : Module A M κ : Type u_6 inst✝¹ : Fintype κ inst✝ : DecidableEq κ b : Basis ι A M c : Basis κ A M f : M →ₗ[A] M ⊢ det (↑(toMatrix b b) f) = det (↑(toMatrix c c) f) [PROOFSTEP] rw [← linearMap_toMatrix_mul_basis_toMatrix c b c, ← basis_toMatrix_mul_linearMap_toMatrix b c b, Matrix.det_conj_of_mul_eq_one] [GOAL] case hMM' R : Type u_1 inst✝¹⁰ : CommRing R M : Type u_2 inst✝⁹ : AddCommGroup M inst✝⁸ : Module R M M' : Type u_3 inst✝⁷ : AddCommGroup M' inst✝⁶ : Module R M' ι : Type u_4 inst✝⁵ : DecidableEq ι inst✝⁴ : Fintype ι e : Basis ι R M A : Type u_5 inst✝³ : CommRing A inst✝² : Module A M κ : Type u_6 inst✝¹ : Fintype κ inst✝ : DecidableEq κ b : Basis ι A M c : Basis κ A M f : M →ₗ[A] M ⊢ Basis.toMatrix c ↑b * Basis.toMatrix b ↑c = 1 [PROOFSTEP] rw [Basis.toMatrix_mul_toMatrix, Basis.toMatrix_self] [GOAL] case hM'M R : Type u_1 inst✝¹⁰ : CommRing R M : Type u_2 inst✝⁹ : AddCommGroup M inst✝⁸ : Module R M M' : Type u_3 inst✝⁷ : AddCommGroup M' inst✝⁶ : Module R M' ι : Type u_4 inst✝⁵ : DecidableEq ι inst✝⁴ : Fintype ι e : Basis ι R M A : Type u_5 inst✝³ : CommRing A inst✝² : Module A M κ : Type u_6 inst✝¹ : Fintype κ inst✝ : DecidableEq κ b : Basis ι A M c : Basis κ A M f : M →ₗ[A] M ⊢ Basis.toMatrix b ↑c * Basis.toMatrix c ↑b = 1 [PROOFSTEP] rw [Basis.toMatrix_mul_toMatrix, Basis.toMatrix_self] [GOAL] R : Type u_1 inst✝⁹ : CommRing R M : Type u_2 inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M M' : Type u_3 inst✝⁶ : AddCommGroup M' inst✝⁵ : Module R M' ι : Type u_4 inst✝⁴ : DecidableEq ι inst✝³ : Fintype ι e : Basis ι R M A : Type u_5 inst✝² : CommRing A inst✝¹ : Module A M κ : Type u_6 inst✝ : Fintype κ b : Basis ι A M f : M →ₗ[A] M ⊢ ↑(detAux (Trunc.mk b)) f = det (↑(toMatrix b b) f) [PROOFSTEP] rw [detAux] [GOAL] R : Type u_1 inst✝⁹ : CommRing R M : Type u_2 inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M M' : Type u_3 inst✝⁶ : AddCommGroup M' inst✝⁵ : Module R M' ι : Type u_4 inst✝⁴ : DecidableEq ι inst✝³ : Fintype ι e : Basis ι R M A : Type u_5 inst✝² : CommRing A inst✝¹ : Module A M κ : Type u_6 inst✝ : Fintype κ b : Basis ι A M f : M →ₗ[A] M ⊢ ↑(Trunc.lift (fun b => MonoidHom.comp detMonoidHom ↑(toMatrixAlgEquiv b)) (_ : ∀ (b c : Basis ι A M), (fun b => MonoidHom.comp detMonoidHom ↑(toMatrixAlgEquiv b)) b = (fun b => MonoidHom.comp detMonoidHom ↑(toMatrixAlgEquiv b)) c) (Trunc.mk b)) f = det (↑(toMatrix b b) f) [PROOFSTEP] rfl [GOAL] R : Type u_1 inst✝¹¹ : CommRing R M : Type u_2 inst✝¹⁰ : AddCommGroup M inst✝⁹ : Module R M M' : Type u_3 inst✝⁸ : AddCommGroup M' inst✝⁷ : Module R M' ι : Type u_4 inst✝⁶ : DecidableEq ι inst✝⁵ : Fintype ι e : Basis ι R M A : Type u_5 inst✝⁴ : CommRing A inst✝³ : Module A M κ : Type u_6 inst✝² : Fintype κ ι' : Type u_7 inst✝¹ : Fintype ι' inst✝ : DecidableEq ι' tb : Trunc (Basis ι A M) b' : Basis ι' A M f : M →ₗ[A] M ⊢ ↑(detAux tb) f = det (↑(toMatrix b' b') f) [PROOFSTEP] induction tb using Trunc.induction_on with | h b => rw [detAux_def', det_toMatrix_eq_det_toMatrix b b'] [GOAL] R : Type u_1 inst✝¹¹ : CommRing R M : Type u_2 inst✝¹⁰ : AddCommGroup M inst✝⁹ : Module R M M' : Type u_3 inst✝⁸ : AddCommGroup M' inst✝⁷ : Module R M' ι : Type u_4 inst✝⁶ : DecidableEq ι inst✝⁵ : Fintype ι e : Basis ι R M A : Type u_5 inst✝⁴ : CommRing A inst✝³ : Module A M κ : Type u_6 inst✝² : Fintype κ ι' : Type u_7 inst✝¹ : Fintype ι' inst✝ : DecidableEq ι' tb : Trunc (Basis ι A M) b' : Basis ι' A M f : M →ₗ[A] M ⊢ ↑(detAux tb) f = det (↑(toMatrix b' b') f) [PROOFSTEP] induction tb using Trunc.induction_on with | h b => rw [detAux_def', det_toMatrix_eq_det_toMatrix b b'] [GOAL] case h R : Type u_1 inst✝¹¹ : CommRing R M : Type u_2 inst✝¹⁰ : AddCommGroup M inst✝⁹ : Module R M M' : Type u_3 inst✝⁸ : AddCommGroup M' inst✝⁷ : Module R M' ι : Type u_4 inst✝⁶ : DecidableEq ι inst✝⁵ : Fintype ι e : Basis ι R M A : Type u_5 inst✝⁴ : CommRing A inst✝³ : Module A M κ : Type u_6 inst✝² : Fintype κ ι' : Type u_7 inst✝¹ : Fintype ι' inst✝ : DecidableEq ι' b' : Basis ι' A M f : M →ₗ[A] M b : Basis ι A M ⊢ ↑(detAux (Trunc.mk b)) f = det (↑(toMatrix b' b') f) [PROOFSTEP] | h b => rw [detAux_def', det_toMatrix_eq_det_toMatrix b b'] [GOAL] case h R : Type u_1 inst✝¹¹ : CommRing R M : Type u_2 inst✝¹⁰ : AddCommGroup M inst✝⁹ : Module R M M' : Type u_3 inst✝⁸ : AddCommGroup M' inst✝⁷ : Module R M' ι : Type u_4 inst✝⁶ : DecidableEq ι inst✝⁵ : Fintype ι e : Basis ι R M A : Type u_5 inst✝⁴ : CommRing A inst✝³ : Module A M κ : Type u_6 inst✝² : Fintype κ ι' : Type u_7 inst✝¹ : Fintype ι' inst✝ : DecidableEq ι' b' : Basis ι' A M f : M →ₗ[A] M b : Basis ι A M ⊢ ↑(detAux (Trunc.mk b)) f = det (↑(toMatrix b' b') f) [PROOFSTEP] rw [detAux_def', det_toMatrix_eq_det_toMatrix b b'] [GOAL] R : Type u_1 inst✝¹⁰ : CommRing R M : Type u_2 inst✝⁹ : AddCommGroup M inst✝⁸ : Module R M M' : Type u_3 inst✝⁷ : AddCommGroup M' inst✝⁶ : Module R M' ι : Type u_4 inst✝⁵ : DecidableEq ι inst✝⁴ : Fintype ι e : Basis ι R M A : Type u_5 inst✝³ : CommRing A inst✝² : Module A M κ : Type u_6 inst✝¹ : Fintype κ inst✝ : DecidableEq M ⊢ ↑LinearMap.det = ↑(if H : ∃ s, Nonempty (Basis { x // x ∈ s } A M) then detAux (Trunc.mk (Nonempty.some (_ : Nonempty (Basis { x // x ∈ Exists.choose H } A M)))) else 1) [PROOFSTEP] ext [GOAL] case h R : Type u_1 inst✝¹⁰ : CommRing R M : Type u_2 inst✝⁹ : AddCommGroup M inst✝⁸ : Module R M M' : Type u_3 inst✝⁷ : AddCommGroup M' inst✝⁶ : Module R M' ι : Type u_4 inst✝⁵ : DecidableEq ι inst✝⁴ : Fintype ι e : Basis ι R M A : Type u_5 inst✝³ : CommRing A inst✝² : Module A M κ : Type u_6 inst✝¹ : Fintype κ inst✝ : DecidableEq M x✝ : M →ₗ[A] M ⊢ ↑LinearMap.det x✝ = ↑(if H : ∃ s, Nonempty (Basis { x // x ∈ s } A M) then detAux (Trunc.mk (Nonempty.some (_ : Nonempty (Basis { x // x ∈ Exists.choose H } A M)))) else 1) x✝ [PROOFSTEP] rw [LinearMap.det_def] [GOAL] case h R : Type u_1 inst✝¹⁰ : CommRing R M : Type u_2 inst✝⁹ : AddCommGroup M inst✝⁸ : Module R M M' : Type u_3 inst✝⁷ : AddCommGroup M' inst✝⁶ : Module R M' ι : Type u_4 inst✝⁵ : DecidableEq ι inst✝⁴ : Fintype ι e : Basis ι R M A : Type u_5 inst✝³ : CommRing A inst✝² : Module A M κ : Type u_6 inst✝¹ : Fintype κ inst✝ : DecidableEq M x✝ : M →ₗ[A] M ⊢ ↑(if H : ∃ s, Nonempty (Basis { x // x ∈ s } A M) then detAux (Trunc.mk (Nonempty.some (_ : Nonempty (Basis { x // x ∈ Exists.choose H } A M)))) else 1) x✝ = ↑(if H : ∃ s, Nonempty (Basis { x // x ∈ s } A M) then detAux (Trunc.mk (Nonempty.some (_ : Nonempty (Basis { x // x ∈ Exists.choose H } A M)))) else 1) x✝ [PROOFSTEP] split_ifs [GOAL] case pos R : Type u_1 inst✝¹⁰ : CommRing R M : Type u_2 inst✝⁹ : AddCommGroup M inst✝⁸ : Module R M M' : Type u_3 inst✝⁷ : AddCommGroup M' inst✝⁶ : Module R M' ι : Type u_4 inst✝⁵ : DecidableEq ι inst✝⁴ : Fintype ι e : Basis ι R M A : Type u_5 inst✝³ : CommRing A inst✝² : Module A M κ : Type u_6 inst✝¹ : Fintype κ inst✝ : DecidableEq M x✝ : M →ₗ[A] M h✝ : ∃ s, Nonempty (Basis { x // x ∈ s } A M) ⊢ ↑(detAux (Trunc.mk (Nonempty.some (_ : Nonempty (Basis { x // x ∈ Exists.choose h✝ } A M))))) x✝ = ↑(detAux (Trunc.mk (Nonempty.some (_ : Nonempty (Basis { x // x ∈ Exists.choose h✝ } A M))))) x✝ [PROOFSTEP] congr -- use the correct `DecidableEq` instance [GOAL] case neg R : Type u_1 inst✝¹⁰ : CommRing R M : Type u_2 inst✝⁹ : AddCommGroup M inst✝⁸ : Module R M M' : Type u_3 inst✝⁷ : AddCommGroup M' inst✝⁶ : Module R M' ι : Type u_4 inst✝⁵ : DecidableEq ι inst✝⁴ : Fintype ι e : Basis ι R M A : Type u_5 inst✝³ : CommRing A inst✝² : Module A M κ : Type u_6 inst✝¹ : Fintype κ inst✝ : DecidableEq M x✝ : M →ₗ[A] M h✝ : ¬∃ s, Nonempty (Basis { x // x ∈ s } A M) ⊢ ↑1 x✝ = ↑1 x✝ [PROOFSTEP] rfl [GOAL] R : Type u_1 inst✝¹⁰ : CommRing R M : Type u_2 inst✝⁹ : AddCommGroup M inst✝⁸ : Module R M M' : Type u_3 inst✝⁷ : AddCommGroup M' inst✝⁶ : Module R M' ι : Type u_4 inst✝⁵ : DecidableEq ι inst✝⁴ : Fintype ι e : Basis ι R M A : Type u_5 inst✝³ : CommRing A inst✝² : Module A M κ : Type u_6 inst✝¹ : Fintype κ inst✝ : DecidableEq M s : Finset M b : Basis { x // x ∈ s } A M f : M →ₗ[A] M ⊢ ↑LinearMap.det f = det (↑(toMatrix b b) f) [PROOFSTEP] have : ∃ s : Finset M, Nonempty (Basis s A M) := ⟨s, ⟨b⟩⟩ [GOAL] R : Type u_1 inst✝¹⁰ : CommRing R M : Type u_2 inst✝⁹ : AddCommGroup M inst✝⁸ : Module R M M' : Type u_3 inst✝⁷ : AddCommGroup M' inst✝⁶ : Module R M' ι : Type u_4 inst✝⁵ : DecidableEq ι inst✝⁴ : Fintype ι e : Basis ι R M A : Type u_5 inst✝³ : CommRing A inst✝² : Module A M κ : Type u_6 inst✝¹ : Fintype κ inst✝ : DecidableEq M s : Finset M b : Basis { x // x ∈ s } A M f : M →ₗ[A] M this : ∃ s, Nonempty (Basis { x // x ∈ s } A M) ⊢ ↑LinearMap.det f = det (↑(toMatrix b b) f) [PROOFSTEP] rw [LinearMap.coe_det, dif_pos, detAux_def'' _ b] [GOAL] case hc R : Type u_1 inst✝¹⁰ : CommRing R M : Type u_2 inst✝⁹ : AddCommGroup M inst✝⁸ : Module R M M' : Type u_3 inst✝⁷ : AddCommGroup M' inst✝⁶ : Module R M' ι : Type u_4 inst✝⁵ : DecidableEq ι inst✝⁴ : Fintype ι e : Basis ι R M A : Type u_5 inst✝³ : CommRing A inst✝² : Module A M κ : Type u_6 inst✝¹ : Fintype κ inst✝ : DecidableEq M s : Finset M b : Basis { x // x ∈ s } A M f : M →ₗ[A] M this : ∃ s, Nonempty (Basis { x // x ∈ s } A M) ⊢ ∃ s, Nonempty (Basis { x // x ∈ s } A M) [PROOFSTEP] assumption [GOAL] R : Type u_1 inst✝⁹ : CommRing R M : Type u_2 inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M M' : Type u_3 inst✝⁶ : AddCommGroup M' inst✝⁵ : Module R M' ι : Type u_4 inst✝⁴ : DecidableEq ι inst✝³ : Fintype ι e : Basis ι R M A : Type u_5 inst✝² : CommRing A inst✝¹ : Module A M κ : Type u_6 inst✝ : Fintype κ b : Basis ι A M f : M →ₗ[A] M ⊢ det (↑(toMatrix b b) f) = ↑LinearMap.det f [PROOFSTEP] haveI := Classical.decEq M [GOAL] R : Type u_1 inst✝⁹ : CommRing R M : Type u_2 inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M M' : Type u_3 inst✝⁶ : AddCommGroup M' inst✝⁵ : Module R M' ι : Type u_4 inst✝⁴ : DecidableEq ι inst✝³ : Fintype ι e : Basis ι R M A : Type u_5 inst✝² : CommRing A inst✝¹ : Module A M κ : Type u_6 inst✝ : Fintype κ b : Basis ι A M f : M →ₗ[A] M this : DecidableEq M ⊢ det (↑(toMatrix b b) f) = ↑LinearMap.det f [PROOFSTEP] rw [det_eq_det_toMatrix_of_finset b.reindexFinsetRange] -- Porting note: moved out of `rw` due to error -- typeclass instance problem is stuck, it is often due to metavariables `DecidableEq ?m.628881` [GOAL] R : Type u_1 inst✝⁹ : CommRing R M : Type u_2 inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M M' : Type u_3 inst✝⁶ : AddCommGroup M' inst✝⁵ : Module R M' ι : Type u_4 inst✝⁴ : DecidableEq ι inst✝³ : Fintype ι e : Basis ι R M A : Type u_5 inst✝² : CommRing A inst✝¹ : Module A M κ : Type u_6 inst✝ : Fintype κ b : Basis ι A M f : M →ₗ[A] M this : DecidableEq M ⊢ det (↑(toMatrix b b) f) = det (↑(toMatrix (Basis.reindexFinsetRange b) (Basis.reindexFinsetRange b)) f) [PROOFSTEP] apply det_toMatrix_eq_det_toMatrix b [GOAL] R : Type u_1 inst✝¹¹ : CommRing R M : Type u_2 inst✝¹⁰ : AddCommGroup M inst✝⁹ : Module R M M' : Type u_3 inst✝⁸ : AddCommGroup M' inst✝⁷ : Module R M' ι✝ : Type u_4 inst✝⁶ : DecidableEq ι✝ inst✝⁵ : Fintype ι✝ e : Basis ι✝ R M A : Type u_5 inst✝⁴ : CommRing A inst✝³ : Module A M κ : Type u_6 inst✝² : Fintype κ ι : Type u_7 inst✝¹ : Fintype ι inst✝ : DecidableEq ι f : (ι → A) →ₗ[A] ι → A ⊢ det (↑toMatrix' f) = ↑LinearMap.det f [PROOFSTEP] simp [← toMatrix_eq_toMatrix'] [GOAL] R : Type u_1 inst✝⁹ : CommRing R M : Type u_2 inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M M' : Type u_3 inst✝⁶ : AddCommGroup M' inst✝⁵ : Module R M' ι : Type u_4 inst✝⁴ : DecidableEq ι inst✝³ : Fintype ι e : Basis ι R M A : Type u_5 inst✝² : CommRing A inst✝¹ : Module A M κ : Type u_6 inst✝ : Fintype κ b : Basis ι R M f : Matrix ι ι R ⊢ ↑LinearMap.det (↑(toLin b b) f) = det f [PROOFSTEP] rw [← LinearMap.det_toMatrix b, LinearMap.toMatrix_toLin] [GOAL] R : Type u_1 inst✝⁹ : CommRing R M : Type u_2 inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M M' : Type u_3 inst✝⁶ : AddCommGroup M' inst✝⁵ : Module R M' ι : Type u_4 inst✝⁴ : DecidableEq ι inst✝³ : Fintype ι e : Basis ι R M A : Type u_5 inst✝² : CommRing A inst✝¹ : Module A M κ : Type u_6 inst✝ : Fintype κ f : Matrix ι ι R ⊢ ↑LinearMap.det (↑toLin' f) = det f [PROOFSTEP] simp only [← toLin_eq_toLin', det_toLin] [GOAL] R : Type u_1 inst✝¹⁰ : CommRing R M : Type u_2 inst✝⁹ : AddCommGroup M inst✝⁸ : Module R M M' : Type u_3 inst✝⁷ : AddCommGroup M' inst✝⁶ : Module R M' ι : Type u_4 inst✝⁵ : DecidableEq ι inst✝⁴ : Fintype ι e : Basis ι R M A : Type u_5 inst✝³ : CommRing A inst✝² : Module A M κ : Type u_6 inst✝¹ : Fintype κ inst✝ : DecidableEq M P : A → Prop f : M →ₗ[A] M hb : ∀ (s : Finset M) (b : Basis { x // x ∈ s } A M), P (det (↑(toMatrix b b) f)) h1 : P 1 ⊢ P (↑LinearMap.det f) [PROOFSTEP] rw [LinearMap.det_def] [GOAL] R : Type u_1 inst✝¹⁰ : CommRing R M : Type u_2 inst✝⁹ : AddCommGroup M inst✝⁸ : Module R M M' : Type u_3 inst✝⁷ : AddCommGroup M' inst✝⁶ : Module R M' ι : Type u_4 inst✝⁵ : DecidableEq ι inst✝⁴ : Fintype ι e : Basis ι R M A : Type u_5 inst✝³ : CommRing A inst✝² : Module A M κ : Type u_6 inst✝¹ : Fintype κ inst✝ : DecidableEq M P : A → Prop f : M →ₗ[A] M hb : ∀ (s : Finset M) (b : Basis { x // x ∈ s } A M), P (det (↑(toMatrix b b) f)) h1 : P 1 ⊢ P (↑(if H : ∃ s, Nonempty (Basis { x // x ∈ s } A M) then detAux (Trunc.mk (Nonempty.some (_ : Nonempty (Basis { x // x ∈ Exists.choose H } A M)))) else 1) f) [PROOFSTEP] split_ifs with h [GOAL] case pos R : Type u_1 inst✝¹⁰ : CommRing R M : Type u_2 inst✝⁹ : AddCommGroup M inst✝⁸ : Module R M M' : Type u_3 inst✝⁷ : AddCommGroup M' inst✝⁶ : Module R M' ι : Type u_4 inst✝⁵ : DecidableEq ι inst✝⁴ : Fintype ι e : Basis ι R M A : Type u_5 inst✝³ : CommRing A inst✝² : Module A M κ : Type u_6 inst✝¹ : Fintype κ inst✝ : DecidableEq M P : A → Prop f : M →ₗ[A] M hb : ∀ (s : Finset M) (b : Basis { x // x ∈ s } A M), P (det (↑(toMatrix b b) f)) h1 : P 1 h : ∃ s, Nonempty (Basis { x // x ∈ s } A M) ⊢ P (↑(detAux (Trunc.mk (Nonempty.some (_ : Nonempty (Basis { x // x ∈ Exists.choose h } A M))))) f) [PROOFSTEP] convert hb _ h.choose_spec.some [GOAL] case h.e'_1 R : Type u_1 inst✝¹⁰ : CommRing R M : Type u_2 inst✝⁹ : AddCommGroup M inst✝⁸ : Module R M M' : Type u_3 inst✝⁷ : AddCommGroup M' inst✝⁶ : Module R M' ι : Type u_4 inst✝⁵ : DecidableEq ι inst✝⁴ : Fintype ι e : Basis ι R M A : Type u_5 inst✝³ : CommRing A inst✝² : Module A M κ : Type u_6 inst✝¹ : Fintype κ inst✝ : DecidableEq M P : A → Prop f : M →ₗ[A] M hb : ∀ (s : Finset M) (b : Basis { x // x ∈ s } A M), P (det (↑(toMatrix b b) f)) h1 : P 1 h : ∃ s, Nonempty (Basis { x // x ∈ s } A M) ⊢ ↑(detAux (Trunc.mk (Nonempty.some (_ : Nonempty (Basis { x // x ∈ Exists.choose h } A M))))) f = det (↑(toMatrix (Nonempty.some (_ : Nonempty (Basis { x // x ∈ Exists.choose h } A M))) (Nonempty.some (_ : Nonempty (Basis { x // x ∈ Exists.choose h } A M)))) f) [PROOFSTEP] convert detAux_def'' (Trunc.mk h.choose_spec.some) h.choose_spec.some f [GOAL] case neg R : Type u_1 inst✝¹⁰ : CommRing R M : Type u_2 inst✝⁹ : AddCommGroup M inst✝⁸ : Module R M M' : Type u_3 inst✝⁷ : AddCommGroup M' inst✝⁶ : Module R M' ι : Type u_4 inst✝⁵ : DecidableEq ι inst✝⁴ : Fintype ι e : Basis ι R M A : Type u_5 inst✝³ : CommRing A inst✝² : Module A M κ : Type u_6 inst✝¹ : Fintype κ inst✝ : DecidableEq M P : A → Prop f : M →ₗ[A] M hb : ∀ (s : Finset M) (b : Basis { x // x ∈ s } A M), P (det (↑(toMatrix b b) f)) h1 : P 1 h : ¬∃ s, Nonempty (Basis { x // x ∈ s } A M) ⊢ P (↑1 f) [PROOFSTEP] exact h1 [GOAL] R : Type u_1 inst✝¹² : CommRing R M✝ : Type u_2 inst✝¹¹ : AddCommGroup M✝ inst✝¹⁰ : Module R M✝ M' : Type u_3 inst✝⁹ : AddCommGroup M' inst✝⁸ : Module R M' ι : Type u_4 inst✝⁷ : DecidableEq ι inst✝⁶ : Fintype ι e : Basis ι R M✝ A : Type u_5 inst✝⁵ : CommRing A inst✝⁴ : Module A M✝ κ : Type u_6 inst✝³ : Fintype κ 𝕜 : Type u_7 inst✝² : Field 𝕜 M : Type u_8 inst✝¹ : AddCommGroup M inst✝ : Module 𝕜 M c : 𝕜 f : M →ₗ[𝕜] M ⊢ ↑LinearMap.det (c • f) = c ^ FiniteDimensional.finrank 𝕜 M * ↑LinearMap.det f [PROOFSTEP] by_cases H : ∃ s : Finset M, Nonempty (Basis s 𝕜 M) [GOAL] case pos R : Type u_1 inst✝¹² : CommRing R M✝ : Type u_2 inst✝¹¹ : AddCommGroup M✝ inst✝¹⁰ : Module R M✝ M' : Type u_3 inst✝⁹ : AddCommGroup M' inst✝⁸ : Module R M' ι : Type u_4 inst✝⁷ : DecidableEq ι inst✝⁶ : Fintype ι e : Basis ι R M✝ A : Type u_5 inst✝⁵ : CommRing A inst✝⁴ : Module A M✝ κ : Type u_6 inst✝³ : Fintype κ 𝕜 : Type u_7 inst✝² : Field 𝕜 M : Type u_8 inst✝¹ : AddCommGroup M inst✝ : Module 𝕜 M c : 𝕜 f : M →ₗ[𝕜] M H : ∃ s, Nonempty (Basis { x // x ∈ s } 𝕜 M) ⊢ ↑LinearMap.det (c • f) = c ^ FiniteDimensional.finrank 𝕜 M * ↑LinearMap.det f [PROOFSTEP] have : FiniteDimensional 𝕜 M := by rcases H with ⟨s, ⟨hs⟩⟩ exact FiniteDimensional.of_fintype_basis hs [GOAL] R : Type u_1 inst✝¹² : CommRing R M✝ : Type u_2 inst✝¹¹ : AddCommGroup M✝ inst✝¹⁰ : Module R M✝ M' : Type u_3 inst✝⁹ : AddCommGroup M' inst✝⁸ : Module R M' ι : Type u_4 inst✝⁷ : DecidableEq ι inst✝⁶ : Fintype ι e : Basis ι R M✝ A : Type u_5 inst✝⁵ : CommRing A inst✝⁴ : Module A M✝ κ : Type u_6 inst✝³ : Fintype κ 𝕜 : Type u_7 inst✝² : Field 𝕜 M : Type u_8 inst✝¹ : AddCommGroup M inst✝ : Module 𝕜 M c : 𝕜 f : M →ₗ[𝕜] M H : ∃ s, Nonempty (Basis { x // x ∈ s } 𝕜 M) ⊢ FiniteDimensional 𝕜 M [PROOFSTEP] rcases H with ⟨s, ⟨hs⟩⟩ [GOAL] case intro.intro R : Type u_1 inst✝¹² : CommRing R M✝ : Type u_2 inst✝¹¹ : AddCommGroup M✝ inst✝¹⁰ : Module R M✝ M' : Type u_3 inst✝⁹ : AddCommGroup M' inst✝⁸ : Module R M' ι : Type u_4 inst✝⁷ : DecidableEq ι inst✝⁶ : Fintype ι e : Basis ι R M✝ A : Type u_5 inst✝⁵ : CommRing A inst✝⁴ : Module A M✝ κ : Type u_6 inst✝³ : Fintype κ 𝕜 : Type u_7 inst✝² : Field 𝕜 M : Type u_8 inst✝¹ : AddCommGroup M inst✝ : Module 𝕜 M c : 𝕜 f : M →ₗ[𝕜] M s : Finset M hs : Basis { x // x ∈ s } 𝕜 M ⊢ FiniteDimensional 𝕜 M [PROOFSTEP] exact FiniteDimensional.of_fintype_basis hs [GOAL] case pos R : Type u_1 inst✝¹² : CommRing R M✝ : Type u_2 inst✝¹¹ : AddCommGroup M✝ inst✝¹⁰ : Module R M✝ M' : Type u_3 inst✝⁹ : AddCommGroup M' inst✝⁸ : Module R M' ι : Type u_4 inst✝⁷ : DecidableEq ι inst✝⁶ : Fintype ι e : Basis ι R M✝ A : Type u_5 inst✝⁵ : CommRing A inst✝⁴ : Module A M✝ κ : Type u_6 inst✝³ : Fintype κ 𝕜 : Type u_7 inst✝² : Field 𝕜 M : Type u_8 inst✝¹ : AddCommGroup M inst✝ : Module 𝕜 M c : 𝕜 f : M →ₗ[𝕜] M H : ∃ s, Nonempty (Basis { x // x ∈ s } 𝕜 M) this : FiniteDimensional 𝕜 M ⊢ ↑LinearMap.det (c • f) = c ^ FiniteDimensional.finrank 𝕜 M * ↑LinearMap.det f [PROOFSTEP] simp only [← det_toMatrix (FiniteDimensional.finBasis 𝕜 M), LinearEquiv.map_smul, Fintype.card_fin, Matrix.det_smul] [GOAL] case neg R : Type u_1 inst✝¹² : CommRing R M✝ : Type u_2 inst✝¹¹ : AddCommGroup M✝ inst✝¹⁰ : Module R M✝ M' : Type u_3 inst✝⁹ : AddCommGroup M' inst✝⁸ : Module R M' ι : Type u_4 inst✝⁷ : DecidableEq ι inst✝⁶ : Fintype ι e : Basis ι R M✝ A : Type u_5 inst✝⁵ : CommRing A inst✝⁴ : Module A M✝ κ : Type u_6 inst✝³ : Fintype κ 𝕜 : Type u_7 inst✝² : Field 𝕜 M : Type u_8 inst✝¹ : AddCommGroup M inst✝ : Module 𝕜 M c : 𝕜 f : M →ₗ[𝕜] M H : ¬∃ s, Nonempty (Basis { x // x ∈ s } 𝕜 M) ⊢ ↑LinearMap.det (c • f) = c ^ FiniteDimensional.finrank 𝕜 M * ↑LinearMap.det f [PROOFSTEP] classical have : FiniteDimensional.finrank 𝕜 M = 0 := finrank_eq_zero_of_not_exists_basis H simp [coe_det, H, this] [GOAL] case neg R : Type u_1 inst✝¹² : CommRing R M✝ : Type u_2 inst✝¹¹ : AddCommGroup M✝ inst✝¹⁰ : Module R M✝ M' : Type u_3 inst✝⁹ : AddCommGroup M' inst✝⁸ : Module R M' ι : Type u_4 inst✝⁷ : DecidableEq ι inst✝⁶ : Fintype ι e : Basis ι R M✝ A : Type u_5 inst✝⁵ : CommRing A inst✝⁴ : Module A M✝ κ : Type u_6 inst✝³ : Fintype κ 𝕜 : Type u_7 inst✝² : Field 𝕜 M : Type u_8 inst✝¹ : AddCommGroup M inst✝ : Module 𝕜 M c : 𝕜 f : M →ₗ[𝕜] M H : ¬∃ s, Nonempty (Basis { x // x ∈ s } 𝕜 M) ⊢ ↑LinearMap.det (c • f) = c ^ FiniteDimensional.finrank 𝕜 M * ↑LinearMap.det f [PROOFSTEP] have : FiniteDimensional.finrank 𝕜 M = 0 := finrank_eq_zero_of_not_exists_basis H [GOAL] case neg R : Type u_1 inst✝¹² : CommRing R M✝ : Type u_2 inst✝¹¹ : AddCommGroup M✝ inst✝¹⁰ : Module R M✝ M' : Type u_3 inst✝⁹ : AddCommGroup M' inst✝⁸ : Module R M' ι : Type u_4 inst✝⁷ : DecidableEq ι inst✝⁶ : Fintype ι e : Basis ι R M✝ A : Type u_5 inst✝⁵ : CommRing A inst✝⁴ : Module A M✝ κ : Type u_6 inst✝³ : Fintype κ 𝕜 : Type u_7 inst✝² : Field 𝕜 M : Type u_8 inst✝¹ : AddCommGroup M inst✝ : Module 𝕜 M c : 𝕜 f : M →ₗ[𝕜] M H : ¬∃ s, Nonempty (Basis { x // x ∈ s } 𝕜 M) this : FiniteDimensional.finrank 𝕜 M = 0 ⊢ ↑LinearMap.det (c • f) = c ^ FiniteDimensional.finrank 𝕜 M * ↑LinearMap.det f [PROOFSTEP] simp [coe_det, H, this] [GOAL] R : Type u_1 inst✝¹¹ : CommRing R M : Type u_2 inst✝¹⁰ : AddCommGroup M inst✝⁹ : Module R M M' : Type u_3 inst✝⁸ : AddCommGroup M' inst✝⁷ : Module R M' ι✝ : Type u_4 inst✝⁶ : DecidableEq ι✝ inst✝⁵ : Fintype ι✝ e : Basis ι✝ R M A : Type u_5 inst✝⁴ : CommRing A inst✝³ : Module A M κ : Type u_6 inst✝² : Fintype κ ι : Type u_7 inst✝¹ : Finite ι inst✝ : Nonempty ι b : Basis ι A M ⊢ ↑LinearMap.det 0 = 0 [PROOFSTEP] haveI := Classical.decEq ι [GOAL] R : Type u_1 inst✝¹¹ : CommRing R M : Type u_2 inst✝¹⁰ : AddCommGroup M inst✝⁹ : Module R M M' : Type u_3 inst✝⁸ : AddCommGroup M' inst✝⁷ : Module R M' ι✝ : Type u_4 inst✝⁶ : DecidableEq ι✝ inst✝⁵ : Fintype ι✝ e : Basis ι✝ R M A : Type u_5 inst✝⁴ : CommRing A inst✝³ : Module A M κ : Type u_6 inst✝² : Fintype κ ι : Type u_7 inst✝¹ : Finite ι inst✝ : Nonempty ι b : Basis ι A M this : DecidableEq ι ⊢ ↑LinearMap.det 0 = 0 [PROOFSTEP] cases nonempty_fintype ι [GOAL] case intro R : Type u_1 inst✝¹¹ : CommRing R M : Type u_2 inst✝¹⁰ : AddCommGroup M inst✝⁹ : Module R M M' : Type u_3 inst✝⁸ : AddCommGroup M' inst✝⁷ : Module R M' ι✝ : Type u_4 inst✝⁶ : DecidableEq ι✝ inst✝⁵ : Fintype ι✝ e : Basis ι✝ R M A : Type u_5 inst✝⁴ : CommRing A inst✝³ : Module A M κ : Type u_6 inst✝² : Fintype κ ι : Type u_7 inst✝¹ : Finite ι inst✝ : Nonempty ι b : Basis ι A M this : DecidableEq ι val✝ : Fintype ι ⊢ ↑LinearMap.det 0 = 0 [PROOFSTEP] rwa [← det_toMatrix b, LinearEquiv.map_zero, det_zero] [GOAL] R : Type u_1 inst✝¹² : CommRing R M✝ : Type u_2 inst✝¹¹ : AddCommGroup M✝ inst✝¹⁰ : Module R M✝ M' : Type u_3 inst✝⁹ : AddCommGroup M' inst✝⁸ : Module R M' ι : Type u_4 inst✝⁷ : DecidableEq ι inst✝⁶ : Fintype ι e : Basis ι R M✝ A : Type u_5 inst✝⁵ : CommRing A inst✝⁴ : Module A M✝ κ : Type u_6 inst✝³ : Fintype κ 𝕜 : Type u_7 inst✝² : Field 𝕜 M : Type u_8 inst✝¹ : AddCommGroup M inst✝ : Module 𝕜 M ⊢ ↑LinearMap.det 0 = 0 ^ FiniteDimensional.finrank 𝕜 M [PROOFSTEP] simp only [← zero_smul 𝕜 (1 : M →ₗ[𝕜] M), det_smul, mul_one, MonoidHom.map_one] [GOAL] R : Type u_1 inst✝¹⁰ : CommRing R M : Type u_2 inst✝⁹ : AddCommGroup M inst✝⁸ : Module R M M' : Type u_3 inst✝⁷ : AddCommGroup M' inst✝⁶ : Module R M' ι : Type u_4 inst✝⁵ : DecidableEq ι inst✝⁴ : Fintype ι e : Basis ι R M A : Type u_5 inst✝³ : CommRing A inst✝² : Module A M κ : Type u_6 inst✝¹ : Fintype κ inst✝ : Subsingleton M f : M →ₗ[R] M ⊢ ↑LinearMap.det f = 1 [PROOFSTEP] have b : Basis (Fin 0) R M := Basis.empty M [GOAL] R : Type u_1 inst✝¹⁰ : CommRing R M : Type u_2 inst✝⁹ : AddCommGroup M inst✝⁸ : Module R M M' : Type u_3 inst✝⁷ : AddCommGroup M' inst✝⁶ : Module R M' ι : Type u_4 inst✝⁵ : DecidableEq ι inst✝⁴ : Fintype ι e : Basis ι R M A : Type u_5 inst✝³ : CommRing A inst✝² : Module A M κ : Type u_6 inst✝¹ : Fintype κ inst✝ : Subsingleton M f : M →ₗ[R] M b : Basis (Fin 0) R M ⊢ ↑LinearMap.det f = 1 [PROOFSTEP] rw [← f.det_toMatrix b] [GOAL] R : Type u_1 inst✝¹⁰ : CommRing R M : Type u_2 inst✝⁹ : AddCommGroup M inst✝⁸ : Module R M M' : Type u_3 inst✝⁷ : AddCommGroup M' inst✝⁶ : Module R M' ι : Type u_4 inst✝⁵ : DecidableEq ι inst✝⁴ : Fintype ι e : Basis ι R M A : Type u_5 inst✝³ : CommRing A inst✝² : Module A M κ : Type u_6 inst✝¹ : Fintype κ inst✝ : Subsingleton M f : M →ₗ[R] M b : Basis (Fin 0) R M ⊢ det (↑(toMatrix b b) f) = 1 [PROOFSTEP] exact Matrix.det_isEmpty [GOAL] R : Type u_1 inst✝¹² : CommRing R M✝ : Type u_2 inst✝¹¹ : AddCommGroup M✝ inst✝¹⁰ : Module R M✝ M' : Type u_3 inst✝⁹ : AddCommGroup M' inst✝⁸ : Module R M' ι : Type u_4 inst✝⁷ : DecidableEq ι inst✝⁶ : Fintype ι e : Basis ι R M✝ A : Type u_5 inst✝⁵ : CommRing A inst✝⁴ : Module A M✝ κ : Type u_6 inst✝³ : Fintype κ 𝕜 : Type u_7 inst✝² : Field 𝕜 M : Type u_8 inst✝¹ : AddCommGroup M inst✝ : Module 𝕜 M h : FiniteDimensional.finrank 𝕜 M = 0 f : M →ₗ[𝕜] M ⊢ ↑LinearMap.det f = 1 [PROOFSTEP] classical refine' @LinearMap.det_cases M _ 𝕜 _ _ _ (fun t => t = 1) f _ rfl intro s b have : IsEmpty s := by rw [← Fintype.card_eq_zero_iff] exact (FiniteDimensional.finrank_eq_card_basis b).symm.trans h exact Matrix.det_isEmpty [GOAL] R : Type u_1 inst✝¹² : CommRing R M✝ : Type u_2 inst✝¹¹ : AddCommGroup M✝ inst✝¹⁰ : Module R M✝ M' : Type u_3 inst✝⁹ : AddCommGroup M' inst✝⁸ : Module R M' ι : Type u_4 inst✝⁷ : DecidableEq ι inst✝⁶ : Fintype ι e : Basis ι R M✝ A : Type u_5 inst✝⁵ : CommRing A inst✝⁴ : Module A M✝ κ : Type u_6 inst✝³ : Fintype κ 𝕜 : Type u_7 inst✝² : Field 𝕜 M : Type u_8 inst✝¹ : AddCommGroup M inst✝ : Module 𝕜 M h : FiniteDimensional.finrank 𝕜 M = 0 f : M →ₗ[𝕜] M ⊢ ↑LinearMap.det f = 1 [PROOFSTEP] refine' @LinearMap.det_cases M _ 𝕜 _ _ _ (fun t => t = 1) f _ rfl [GOAL] R : Type u_1 inst✝¹² : CommRing R M✝ : Type u_2 inst✝¹¹ : AddCommGroup M✝ inst✝¹⁰ : Module R M✝ M' : Type u_3 inst✝⁹ : AddCommGroup M' inst✝⁸ : Module R M' ι : Type u_4 inst✝⁷ : DecidableEq ι inst✝⁶ : Fintype ι e : Basis ι R M✝ A : Type u_5 inst✝⁵ : CommRing A inst✝⁴ : Module A M✝ κ : Type u_6 inst✝³ : Fintype κ 𝕜 : Type u_7 inst✝² : Field 𝕜 M : Type u_8 inst✝¹ : AddCommGroup M inst✝ : Module 𝕜 M h : FiniteDimensional.finrank 𝕜 M = 0 f : M →ₗ[𝕜] M ⊢ ∀ (s : Finset M) (b : Basis { x // x ∈ s } 𝕜 M), (fun t => t = 1) (det (↑(toMatrix b b) f)) [PROOFSTEP] intro s b [GOAL] R : Type u_1 inst✝¹² : CommRing R M✝ : Type u_2 inst✝¹¹ : AddCommGroup M✝ inst✝¹⁰ : Module R M✝ M' : Type u_3 inst✝⁹ : AddCommGroup M' inst✝⁸ : Module R M' ι : Type u_4 inst✝⁷ : DecidableEq ι inst✝⁶ : Fintype ι e : Basis ι R M✝ A : Type u_5 inst✝⁵ : CommRing A inst✝⁴ : Module A M✝ κ : Type u_6 inst✝³ : Fintype κ 𝕜 : Type u_7 inst✝² : Field 𝕜 M : Type u_8 inst✝¹ : AddCommGroup M inst✝ : Module 𝕜 M h : FiniteDimensional.finrank 𝕜 M = 0 f : M →ₗ[𝕜] M s : Finset M b : Basis { x // x ∈ s } 𝕜 M ⊢ det (↑(toMatrix b b) f) = 1 [PROOFSTEP] have : IsEmpty s := by rw [← Fintype.card_eq_zero_iff] exact (FiniteDimensional.finrank_eq_card_basis b).symm.trans h [GOAL] R : Type u_1 inst✝¹² : CommRing R M✝ : Type u_2 inst✝¹¹ : AddCommGroup M✝ inst✝¹⁰ : Module R M✝ M' : Type u_3 inst✝⁹ : AddCommGroup M' inst✝⁸ : Module R M' ι : Type u_4 inst✝⁷ : DecidableEq ι inst✝⁶ : Fintype ι e : Basis ι R M✝ A : Type u_5 inst✝⁵ : CommRing A inst✝⁴ : Module A M✝ κ : Type u_6 inst✝³ : Fintype κ 𝕜 : Type u_7 inst✝² : Field 𝕜 M : Type u_8 inst✝¹ : AddCommGroup M inst✝ : Module 𝕜 M h : FiniteDimensional.finrank 𝕜 M = 0 f : M →ₗ[𝕜] M s : Finset M b : Basis { x // x ∈ s } 𝕜 M ⊢ IsEmpty { x // x ∈ s } [PROOFSTEP] rw [← Fintype.card_eq_zero_iff] [GOAL] R : Type u_1 inst✝¹² : CommRing R M✝ : Type u_2 inst✝¹¹ : AddCommGroup M✝ inst✝¹⁰ : Module R M✝ M' : Type u_3 inst✝⁹ : AddCommGroup M' inst✝⁸ : Module R M' ι : Type u_4 inst✝⁷ : DecidableEq ι inst✝⁶ : Fintype ι e : Basis ι R M✝ A : Type u_5 inst✝⁵ : CommRing A inst✝⁴ : Module A M✝ κ : Type u_6 inst✝³ : Fintype κ 𝕜 : Type u_7 inst✝² : Field 𝕜 M : Type u_8 inst✝¹ : AddCommGroup M inst✝ : Module 𝕜 M h : FiniteDimensional.finrank 𝕜 M = 0 f : M →ₗ[𝕜] M s : Finset M b : Basis { x // x ∈ s } 𝕜 M ⊢ Fintype.card { x // x ∈ s } = 0 [PROOFSTEP] exact (FiniteDimensional.finrank_eq_card_basis b).symm.trans h [GOAL] R : Type u_1 inst✝¹² : CommRing R M✝ : Type u_2 inst✝¹¹ : AddCommGroup M✝ inst✝¹⁰ : Module R M✝ M' : Type u_3 inst✝⁹ : AddCommGroup M' inst✝⁸ : Module R M' ι : Type u_4 inst✝⁷ : DecidableEq ι inst✝⁶ : Fintype ι e : Basis ι R M✝ A : Type u_5 inst✝⁵ : CommRing A inst✝⁴ : Module A M✝ κ : Type u_6 inst✝³ : Fintype κ 𝕜 : Type u_7 inst✝² : Field 𝕜 M : Type u_8 inst✝¹ : AddCommGroup M inst✝ : Module 𝕜 M h : FiniteDimensional.finrank 𝕜 M = 0 f : M →ₗ[𝕜] M s : Finset M b : Basis { x // x ∈ s } 𝕜 M this : IsEmpty { x // x ∈ s } ⊢ det (↑(toMatrix b b) f) = 1 [PROOFSTEP] exact Matrix.det_isEmpty [GOAL] R : Type u_1 inst✝¹¹ : CommRing R M : Type u_2 inst✝¹⁰ : AddCommGroup M inst✝⁹ : Module R M M' : Type u_3 inst✝⁸ : AddCommGroup M' inst✝⁷ : Module R M' ι : Type u_4 inst✝⁶ : DecidableEq ι inst✝⁵ : Fintype ι e✝ : Basis ι R M A : Type u_5 inst✝⁴ : CommRing A inst✝³ : Module A M κ : Type u_6 inst✝² : Fintype κ N : Type u_7 inst✝¹ : AddCommGroup N inst✝ : Module A N f : M →ₗ[A] M e : M ≃ₗ[A] N ⊢ ↑LinearMap.det (comp (↑e) (comp f ↑(LinearEquiv.symm e))) = ↑LinearMap.det f [PROOFSTEP] classical by_cases H : ∃ s : Finset M, Nonempty (Basis s A M) · rcases H with ⟨s, ⟨b⟩⟩ rw [← det_toMatrix b f, ← det_toMatrix (b.map e), toMatrix_comp (b.map e) b (b.map e), toMatrix_comp (b.map e) b b, ← Matrix.mul_assoc, Matrix.det_conj_of_mul_eq_one] · rw [← toMatrix_comp, LinearEquiv.comp_coe, e.symm_trans_self, LinearEquiv.refl_toLinearMap, toMatrix_id] · rw [← toMatrix_comp, LinearEquiv.comp_coe, e.self_trans_symm, LinearEquiv.refl_toLinearMap, toMatrix_id] · have H' : ¬∃ t : Finset N, Nonempty (Basis t A N) := by contrapose! H rcases H with ⟨s, ⟨b⟩⟩ exact ⟨_, ⟨(b.map e.symm).reindexFinsetRange⟩⟩ simp only [coe_det, H, H', MonoidHom.one_apply, dif_neg] [GOAL] R : Type u_1 inst✝¹¹ : CommRing R M : Type u_2 inst✝¹⁰ : AddCommGroup M inst✝⁹ : Module R M M' : Type u_3 inst✝⁸ : AddCommGroup M' inst✝⁷ : Module R M' ι : Type u_4 inst✝⁶ : DecidableEq ι inst✝⁵ : Fintype ι e✝ : Basis ι R M A : Type u_5 inst✝⁴ : CommRing A inst✝³ : Module A M κ : Type u_6 inst✝² : Fintype κ N : Type u_7 inst✝¹ : AddCommGroup N inst✝ : Module A N f : M →ₗ[A] M e : M ≃ₗ[A] N ⊢ ↑LinearMap.det (comp (↑e) (comp f ↑(LinearEquiv.symm e))) = ↑LinearMap.det f [PROOFSTEP] by_cases H : ∃ s : Finset M, Nonempty (Basis s A M) [GOAL] case pos R : Type u_1 inst✝¹¹ : CommRing R M : Type u_2 inst✝¹⁰ : AddCommGroup M inst✝⁹ : Module R M M' : Type u_3 inst✝⁸ : AddCommGroup M' inst✝⁷ : Module R M' ι : Type u_4 inst✝⁶ : DecidableEq ι inst✝⁵ : Fintype ι e✝ : Basis ι R M A : Type u_5 inst✝⁴ : CommRing A inst✝³ : Module A M κ : Type u_6 inst✝² : Fintype κ N : Type u_7 inst✝¹ : AddCommGroup N inst✝ : Module A N f : M →ₗ[A] M e : M ≃ₗ[A] N H : ∃ s, Nonempty (Basis { x // x ∈ s } A M) ⊢ ↑LinearMap.det (comp (↑e) (comp f ↑(LinearEquiv.symm e))) = ↑LinearMap.det f [PROOFSTEP] rcases H with ⟨s, ⟨b⟩⟩ [GOAL] case pos.intro.intro R : Type u_1 inst✝¹¹ : CommRing R M : Type u_2 inst✝¹⁰ : AddCommGroup M inst✝⁹ : Module R M M' : Type u_3 inst✝⁸ : AddCommGroup M' inst✝⁷ : Module R M' ι : Type u_4 inst✝⁶ : DecidableEq ι inst✝⁵ : Fintype ι e✝ : Basis ι R M A : Type u_5 inst✝⁴ : CommRing A inst✝³ : Module A M κ : Type u_6 inst✝² : Fintype κ N : Type u_7 inst✝¹ : AddCommGroup N inst✝ : Module A N f : M →ₗ[A] M e : M ≃ₗ[A] N s : Finset M b : Basis { x // x ∈ s } A M ⊢ ↑LinearMap.det (comp (↑e) (comp f ↑(LinearEquiv.symm e))) = ↑LinearMap.det f [PROOFSTEP] rw [← det_toMatrix b f, ← det_toMatrix (b.map e), toMatrix_comp (b.map e) b (b.map e), toMatrix_comp (b.map e) b b, ← Matrix.mul_assoc, Matrix.det_conj_of_mul_eq_one] [GOAL] case pos.intro.intro.hMM' R : Type u_1 inst✝¹¹ : CommRing R M : Type u_2 inst✝¹⁰ : AddCommGroup M inst✝⁹ : Module R M M' : Type u_3 inst✝⁸ : AddCommGroup M' inst✝⁷ : Module R M' ι : Type u_4 inst✝⁶ : DecidableEq ι inst✝⁵ : Fintype ι e✝ : Basis ι R M A : Type u_5 inst✝⁴ : CommRing A inst✝³ : Module A M κ : Type u_6 inst✝² : Fintype κ N : Type u_7 inst✝¹ : AddCommGroup N inst✝ : Module A N f : M →ₗ[A] M e : M ≃ₗ[A] N s : Finset M b : Basis { x // x ∈ s } A M ⊢ ↑(toMatrix b (Basis.map b e)) ↑e * ↑(toMatrix (Basis.map b e) b) ↑(LinearEquiv.symm e) = 1 [PROOFSTEP] rw [← toMatrix_comp, LinearEquiv.comp_coe, e.symm_trans_self, LinearEquiv.refl_toLinearMap, toMatrix_id] [GOAL] case pos.intro.intro.hM'M R : Type u_1 inst✝¹¹ : CommRing R M : Type u_2 inst✝¹⁰ : AddCommGroup M inst✝⁹ : Module R M M' : Type u_3 inst✝⁸ : AddCommGroup M' inst✝⁷ : Module R M' ι : Type u_4 inst✝⁶ : DecidableEq ι inst✝⁵ : Fintype ι e✝ : Basis ι R M A : Type u_5 inst✝⁴ : CommRing A inst✝³ : Module A M κ : Type u_6 inst✝² : Fintype κ N : Type u_7 inst✝¹ : AddCommGroup N inst✝ : Module A N f : M →ₗ[A] M e : M ≃ₗ[A] N s : Finset M b : Basis { x // x ∈ s } A M ⊢ ↑(toMatrix (Basis.map b e) b) ↑(LinearEquiv.symm e) * ↑(toMatrix b (Basis.map b e)) ↑e = 1 [PROOFSTEP] rw [← toMatrix_comp, LinearEquiv.comp_coe, e.self_trans_symm, LinearEquiv.refl_toLinearMap, toMatrix_id] [GOAL] case neg R : Type u_1 inst✝¹¹ : CommRing R M : Type u_2 inst✝¹⁰ : AddCommGroup M inst✝⁹ : Module R M M' : Type u_3 inst✝⁸ : AddCommGroup M' inst✝⁷ : Module R M' ι : Type u_4 inst✝⁶ : DecidableEq ι inst✝⁵ : Fintype ι e✝ : Basis ι R M A : Type u_5 inst✝⁴ : CommRing A inst✝³ : Module A M κ : Type u_6 inst✝² : Fintype κ N : Type u_7 inst✝¹ : AddCommGroup N inst✝ : Module A N f : M →ₗ[A] M e : M ≃ₗ[A] N H : ¬∃ s, Nonempty (Basis { x // x ∈ s } A M) ⊢ ↑LinearMap.det (comp (↑e) (comp f ↑(LinearEquiv.symm e))) = ↑LinearMap.det f [PROOFSTEP] have H' : ¬∃ t : Finset N, Nonempty (Basis t A N) := by contrapose! H rcases H with ⟨s, ⟨b⟩⟩ exact ⟨_, ⟨(b.map e.symm).reindexFinsetRange⟩⟩ [GOAL] R : Type u_1 inst✝¹¹ : CommRing R M : Type u_2 inst✝¹⁰ : AddCommGroup M inst✝⁹ : Module R M M' : Type u_3 inst✝⁸ : AddCommGroup M' inst✝⁷ : Module R M' ι : Type u_4 inst✝⁶ : DecidableEq ι inst✝⁵ : Fintype ι e✝ : Basis ι R M A : Type u_5 inst✝⁴ : CommRing A inst✝³ : Module A M κ : Type u_6 inst✝² : Fintype κ N : Type u_7 inst✝¹ : AddCommGroup N inst✝ : Module A N f : M →ₗ[A] M e : M ≃ₗ[A] N H : ¬∃ s, Nonempty (Basis { x // x ∈ s } A M) ⊢ ¬∃ t, Nonempty (Basis { x // x ∈ t } A N) [PROOFSTEP] contrapose! H [GOAL] R : Type u_1 inst✝¹¹ : CommRing R M : Type u_2 inst✝¹⁰ : AddCommGroup M inst✝⁹ : Module R M M' : Type u_3 inst✝⁸ : AddCommGroup M' inst✝⁷ : Module R M' ι : Type u_4 inst✝⁶ : DecidableEq ι inst✝⁵ : Fintype ι e✝ : Basis ι R M A : Type u_5 inst✝⁴ : CommRing A inst✝³ : Module A M κ : Type u_6 inst✝² : Fintype κ N : Type u_7 inst✝¹ : AddCommGroup N inst✝ : Module A N f : M →ₗ[A] M e : M ≃ₗ[A] N H : ∃ t, Nonempty (Basis { x // x ∈ t } A N) ⊢ ∃ s, Nonempty (Basis { x // x ∈ s } A M) [PROOFSTEP] rcases H with ⟨s, ⟨b⟩⟩ [GOAL] case intro.intro R : Type u_1 inst✝¹¹ : CommRing R M : Type u_2 inst✝¹⁰ : AddCommGroup M inst✝⁹ : Module R M M' : Type u_3 inst✝⁸ : AddCommGroup M' inst✝⁷ : Module R M' ι : Type u_4 inst✝⁶ : DecidableEq ι inst✝⁵ : Fintype ι e✝ : Basis ι R M A : Type u_5 inst✝⁴ : CommRing A inst✝³ : Module A M κ : Type u_6 inst✝² : Fintype κ N : Type u_7 inst✝¹ : AddCommGroup N inst✝ : Module A N f : M →ₗ[A] M e : M ≃ₗ[A] N s : Finset N b : Basis { x // x ∈ s } A N ⊢ ∃ s, Nonempty (Basis { x // x ∈ s } A M) [PROOFSTEP] exact ⟨_, ⟨(b.map e.symm).reindexFinsetRange⟩⟩ [GOAL] case neg R : Type u_1 inst✝¹¹ : CommRing R M : Type u_2 inst✝¹⁰ : AddCommGroup M inst✝⁹ : Module R M M' : Type u_3 inst✝⁸ : AddCommGroup M' inst✝⁷ : Module R M' ι : Type u_4 inst✝⁶ : DecidableEq ι inst✝⁵ : Fintype ι e✝ : Basis ι R M A : Type u_5 inst✝⁴ : CommRing A inst✝³ : Module A M κ : Type u_6 inst✝² : Fintype κ N : Type u_7 inst✝¹ : AddCommGroup N inst✝ : Module A N f : M →ₗ[A] M e : M ≃ₗ[A] N H : ¬∃ s, Nonempty (Basis { x // x ∈ s } A M) H' : ¬∃ t, Nonempty (Basis { x // x ∈ t } A N) ⊢ ↑LinearMap.det (comp (↑e) (comp f ↑(LinearEquiv.symm e))) = ↑LinearMap.det f [PROOFSTEP] simp only [coe_det, H, H', MonoidHom.one_apply, dif_neg] [GOAL] R : Type u_1 inst✝¹¹ : CommRing R M : Type u_2 inst✝¹⁰ : AddCommGroup M inst✝⁹ : Module R M M' : Type u_3 inst✝⁸ : AddCommGroup M' inst✝⁷ : Module R M' ι : Type u_4 inst✝⁶ : DecidableEq ι inst✝⁵ : Fintype ι e : Basis ι R M A✝ : Type u_5 inst✝⁴ : CommRing A✝ inst✝³ : Module A✝ M κ : Type u_6 inst✝² : Fintype κ A : Type u_7 inst✝¹ : CommRing A inst✝ : Module A M f : M →ₗ[A] M hf : IsUnit f ⊢ IsUnit (↑LinearMap.det f) [PROOFSTEP] obtain ⟨g, hg⟩ : ∃ g, f.comp g = 1 := hf.exists_right_inv [GOAL] case intro R : Type u_1 inst✝¹¹ : CommRing R M : Type u_2 inst✝¹⁰ : AddCommGroup M inst✝⁹ : Module R M M' : Type u_3 inst✝⁸ : AddCommGroup M' inst✝⁷ : Module R M' ι : Type u_4 inst✝⁶ : DecidableEq ι inst✝⁵ : Fintype ι e : Basis ι R M A✝ : Type u_5 inst✝⁴ : CommRing A✝ inst✝³ : Module A✝ M κ : Type u_6 inst✝² : Fintype κ A : Type u_7 inst✝¹ : CommRing A inst✝ : Module A M f : M →ₗ[A] M hf : IsUnit f g : M →ₗ[A] M hg : comp f g = 1 ⊢ IsUnit (↑LinearMap.det f) [PROOFSTEP] have : LinearMap.det f * LinearMap.det g = 1 := by simp only [← LinearMap.det_comp, hg, MonoidHom.map_one] [GOAL] R : Type u_1 inst✝¹¹ : CommRing R M : Type u_2 inst✝¹⁰ : AddCommGroup M inst✝⁹ : Module R M M' : Type u_3 inst✝⁸ : AddCommGroup M' inst✝⁷ : Module R M' ι : Type u_4 inst✝⁶ : DecidableEq ι inst✝⁵ : Fintype ι e : Basis ι R M A✝ : Type u_5 inst✝⁴ : CommRing A✝ inst✝³ : Module A✝ M κ : Type u_6 inst✝² : Fintype κ A : Type u_7 inst✝¹ : CommRing A inst✝ : Module A M f : M →ₗ[A] M hf : IsUnit f g : M →ₗ[A] M hg : comp f g = 1 ⊢ ↑LinearMap.det f * ↑LinearMap.det g = 1 [PROOFSTEP] simp only [← LinearMap.det_comp, hg, MonoidHom.map_one] [GOAL] case intro R : Type u_1 inst✝¹¹ : CommRing R M : Type u_2 inst✝¹⁰ : AddCommGroup M inst✝⁹ : Module R M M' : Type u_3 inst✝⁸ : AddCommGroup M' inst✝⁷ : Module R M' ι : Type u_4 inst✝⁶ : DecidableEq ι inst✝⁵ : Fintype ι e : Basis ι R M A✝ : Type u_5 inst✝⁴ : CommRing A✝ inst✝³ : Module A✝ M κ : Type u_6 inst✝² : Fintype κ A : Type u_7 inst✝¹ : CommRing A inst✝ : Module A M f : M →ₗ[A] M hf : IsUnit f g : M →ₗ[A] M hg : comp f g = 1 this : ↑LinearMap.det f * ↑LinearMap.det g = 1 ⊢ IsUnit (↑LinearMap.det f) [PROOFSTEP] exact isUnit_of_mul_eq_one _ _ this [GOAL] R : Type u_1 inst✝¹¹ : CommRing R M : Type u_2 inst✝¹⁰ : AddCommGroup M inst✝⁹ : Module R M M' : Type u_3 inst✝⁸ : AddCommGroup M' inst✝⁷ : Module R M' ι : Type u_4 inst✝⁶ : DecidableEq ι inst✝⁵ : Fintype ι e : Basis ι R M A : Type u_5 inst✝⁴ : CommRing A inst✝³ : Module A M κ : Type u_6 inst✝² : Fintype κ 𝕜 : Type u_7 inst✝¹ : Field 𝕜 inst✝ : Module 𝕜 M f : M →ₗ[𝕜] M hf : ↑LinearMap.det f ≠ 1 ⊢ FiniteDimensional 𝕜 M [PROOFSTEP] by_cases H : ∃ s : Finset M, Nonempty (Basis s 𝕜 M) [GOAL] case pos R : Type u_1 inst✝¹¹ : CommRing R M : Type u_2 inst✝¹⁰ : AddCommGroup M inst✝⁹ : Module R M M' : Type u_3 inst✝⁸ : AddCommGroup M' inst✝⁷ : Module R M' ι : Type u_4 inst✝⁶ : DecidableEq ι inst✝⁵ : Fintype ι e : Basis ι R M A : Type u_5 inst✝⁴ : CommRing A inst✝³ : Module A M κ : Type u_6 inst✝² : Fintype κ 𝕜 : Type u_7 inst✝¹ : Field 𝕜 inst✝ : Module 𝕜 M f : M →ₗ[𝕜] M hf : ↑LinearMap.det f ≠ 1 H : ∃ s, Nonempty (Basis { x // x ∈ s } 𝕜 M) ⊢ FiniteDimensional 𝕜 M [PROOFSTEP] rcases H with ⟨s, ⟨hs⟩⟩ [GOAL] case pos.intro.intro R : Type u_1 inst✝¹¹ : CommRing R M : Type u_2 inst✝¹⁰ : AddCommGroup M inst✝⁹ : Module R M M' : Type u_3 inst✝⁸ : AddCommGroup M' inst✝⁷ : Module R M' ι : Type u_4 inst✝⁶ : DecidableEq ι inst✝⁵ : Fintype ι e : Basis ι R M A : Type u_5 inst✝⁴ : CommRing A inst✝³ : Module A M κ : Type u_6 inst✝² : Fintype κ 𝕜 : Type u_7 inst✝¹ : Field 𝕜 inst✝ : Module 𝕜 M f : M →ₗ[𝕜] M hf : ↑LinearMap.det f ≠ 1 s : Finset M hs : Basis { x // x ∈ s } 𝕜 M ⊢ FiniteDimensional 𝕜 M [PROOFSTEP] exact FiniteDimensional.of_fintype_basis hs [GOAL] case neg R : Type u_1 inst✝¹¹ : CommRing R M : Type u_2 inst✝¹⁰ : AddCommGroup M inst✝⁹ : Module R M M' : Type u_3 inst✝⁸ : AddCommGroup M' inst✝⁷ : Module R M' ι : Type u_4 inst✝⁶ : DecidableEq ι inst✝⁵ : Fintype ι e : Basis ι R M A : Type u_5 inst✝⁴ : CommRing A inst✝³ : Module A M κ : Type u_6 inst✝² : Fintype κ 𝕜 : Type u_7 inst✝¹ : Field 𝕜 inst✝ : Module 𝕜 M f : M →ₗ[𝕜] M hf : ↑LinearMap.det f ≠ 1 H : ¬∃ s, Nonempty (Basis { x // x ∈ s } 𝕜 M) ⊢ FiniteDimensional 𝕜 M [PROOFSTEP] classical simp [LinearMap.coe_det, H] at hf [GOAL] case neg R : Type u_1 inst✝¹¹ : CommRing R M : Type u_2 inst✝¹⁰ : AddCommGroup M inst✝⁹ : Module R M M' : Type u_3 inst✝⁸ : AddCommGroup M' inst✝⁷ : Module R M' ι : Type u_4 inst✝⁶ : DecidableEq ι inst✝⁵ : Fintype ι e : Basis ι R M A : Type u_5 inst✝⁴ : CommRing A inst✝³ : Module A M κ : Type u_6 inst✝² : Fintype κ 𝕜 : Type u_7 inst✝¹ : Field 𝕜 inst✝ : Module 𝕜 M f : M →ₗ[𝕜] M hf : ↑LinearMap.det f ≠ 1 H : ¬∃ s, Nonempty (Basis { x // x ∈ s } 𝕜 M) ⊢ FiniteDimensional 𝕜 M [PROOFSTEP] simp [LinearMap.coe_det, H] at hf [GOAL] R : Type u_1 inst✝¹¹ : CommRing R M : Type u_2 inst✝¹⁰ : AddCommGroup M inst✝⁹ : Module R M M' : Type u_3 inst✝⁸ : AddCommGroup M' inst✝⁷ : Module R M' ι : Type u_4 inst✝⁶ : DecidableEq ι inst✝⁵ : Fintype ι e : Basis ι R M A : Type u_5 inst✝⁴ : CommRing A inst✝³ : Module A M κ : Type u_6 inst✝² : Fintype κ 𝕜 : Type u_7 inst✝¹ : Field 𝕜 inst✝ : Module 𝕜 M f : M →ₗ[𝕜] M hf : ↑LinearMap.det f = 0 ⊢ range f < ⊤ [PROOFSTEP] have : FiniteDimensional 𝕜 M := by simp [f.finiteDimensional_of_det_ne_one, hf] [GOAL] R : Type u_1 inst✝¹¹ : CommRing R M : Type u_2 inst✝¹⁰ : AddCommGroup M inst✝⁹ : Module R M M' : Type u_3 inst✝⁸ : AddCommGroup M' inst✝⁷ : Module R M' ι : Type u_4 inst✝⁶ : DecidableEq ι inst✝⁵ : Fintype ι e : Basis ι R M A : Type u_5 inst✝⁴ : CommRing A inst✝³ : Module A M κ : Type u_6 inst✝² : Fintype κ 𝕜 : Type u_7 inst✝¹ : Field 𝕜 inst✝ : Module 𝕜 M f : M →ₗ[𝕜] M hf : ↑LinearMap.det f = 0 ⊢ FiniteDimensional 𝕜 M [PROOFSTEP] simp [f.finiteDimensional_of_det_ne_one, hf] [GOAL] R : Type u_1 inst✝¹¹ : CommRing R M : Type u_2 inst✝¹⁰ : AddCommGroup M inst✝⁹ : Module R M M' : Type u_3 inst✝⁸ : AddCommGroup M' inst✝⁷ : Module R M' ι : Type u_4 inst✝⁶ : DecidableEq ι inst✝⁵ : Fintype ι e : Basis ι R M A : Type u_5 inst✝⁴ : CommRing A inst✝³ : Module A M κ : Type u_6 inst✝² : Fintype κ 𝕜 : Type u_7 inst✝¹ : Field 𝕜 inst✝ : Module 𝕜 M f : M →ₗ[𝕜] M hf : ↑LinearMap.det f = 0 this : FiniteDimensional 𝕜 M ⊢ range f < ⊤ [PROOFSTEP] contrapose hf [GOAL] R : Type u_1 inst✝¹¹ : CommRing R M : Type u_2 inst✝¹⁰ : AddCommGroup M inst✝⁹ : Module R M M' : Type u_3 inst✝⁸ : AddCommGroup M' inst✝⁷ : Module R M' ι : Type u_4 inst✝⁶ : DecidableEq ι inst✝⁵ : Fintype ι e : Basis ι R M A : Type u_5 inst✝⁴ : CommRing A inst✝³ : Module A M κ : Type u_6 inst✝² : Fintype κ 𝕜 : Type u_7 inst✝¹ : Field 𝕜 inst✝ : Module 𝕜 M f : M →ₗ[𝕜] M this : FiniteDimensional 𝕜 M hf : ¬range f < ⊤ ⊢ ¬↑LinearMap.det f = 0 [PROOFSTEP] simp only [lt_top_iff_ne_top, Classical.not_not, ← isUnit_iff_range_eq_top] at hf [GOAL] R : Type u_1 inst✝¹¹ : CommRing R M : Type u_2 inst✝¹⁰ : AddCommGroup M inst✝⁹ : Module R M M' : Type u_3 inst✝⁸ : AddCommGroup M' inst✝⁷ : Module R M' ι : Type u_4 inst✝⁶ : DecidableEq ι inst✝⁵ : Fintype ι e : Basis ι R M A : Type u_5 inst✝⁴ : CommRing A inst✝³ : Module A M κ : Type u_6 inst✝² : Fintype κ 𝕜 : Type u_7 inst✝¹ : Field 𝕜 inst✝ : Module 𝕜 M f : M →ₗ[𝕜] M this : FiniteDimensional 𝕜 M hf : IsUnit f ⊢ ¬↑LinearMap.det f = 0 [PROOFSTEP] exact isUnit_iff_ne_zero.1 (f.isUnit_det hf) [GOAL] R : Type u_1 inst✝¹¹ : CommRing R M : Type u_2 inst✝¹⁰ : AddCommGroup M inst✝⁹ : Module R M M' : Type u_3 inst✝⁸ : AddCommGroup M' inst✝⁷ : Module R M' ι : Type u_4 inst✝⁶ : DecidableEq ι inst✝⁵ : Fintype ι e : Basis ι R M A : Type u_5 inst✝⁴ : CommRing A inst✝³ : Module A M κ : Type u_6 inst✝² : Fintype κ 𝕜 : Type u_7 inst✝¹ : Field 𝕜 inst✝ : Module 𝕜 M f : M →ₗ[𝕜] M hf : ↑LinearMap.det f = 0 ⊢ ⊥ < ker f [PROOFSTEP] have : FiniteDimensional 𝕜 M := by simp [f.finiteDimensional_of_det_ne_one, hf] [GOAL] R : Type u_1 inst✝¹¹ : CommRing R M : Type u_2 inst✝¹⁰ : AddCommGroup M inst✝⁹ : Module R M M' : Type u_3 inst✝⁸ : AddCommGroup M' inst✝⁷ : Module R M' ι : Type u_4 inst✝⁶ : DecidableEq ι inst✝⁵ : Fintype ι e : Basis ι R M A : Type u_5 inst✝⁴ : CommRing A inst✝³ : Module A M κ : Type u_6 inst✝² : Fintype κ 𝕜 : Type u_7 inst✝¹ : Field 𝕜 inst✝ : Module 𝕜 M f : M →ₗ[𝕜] M hf : ↑LinearMap.det f = 0 ⊢ FiniteDimensional 𝕜 M [PROOFSTEP] simp [f.finiteDimensional_of_det_ne_one, hf] [GOAL] R : Type u_1 inst✝¹¹ : CommRing R M : Type u_2 inst✝¹⁰ : AddCommGroup M inst✝⁹ : Module R M M' : Type u_3 inst✝⁸ : AddCommGroup M' inst✝⁷ : Module R M' ι : Type u_4 inst✝⁶ : DecidableEq ι inst✝⁵ : Fintype ι e : Basis ι R M A : Type u_5 inst✝⁴ : CommRing A inst✝³ : Module A M κ : Type u_6 inst✝² : Fintype κ 𝕜 : Type u_7 inst✝¹ : Field 𝕜 inst✝ : Module 𝕜 M f : M →ₗ[𝕜] M hf : ↑LinearMap.det f = 0 this : FiniteDimensional 𝕜 M ⊢ ⊥ < ker f [PROOFSTEP] contrapose hf [GOAL] R : Type u_1 inst✝¹¹ : CommRing R M : Type u_2 inst✝¹⁰ : AddCommGroup M inst✝⁹ : Module R M M' : Type u_3 inst✝⁸ : AddCommGroup M' inst✝⁷ : Module R M' ι : Type u_4 inst✝⁶ : DecidableEq ι inst✝⁵ : Fintype ι e : Basis ι R M A : Type u_5 inst✝⁴ : CommRing A inst✝³ : Module A M κ : Type u_6 inst✝² : Fintype κ 𝕜 : Type u_7 inst✝¹ : Field 𝕜 inst✝ : Module 𝕜 M f : M →ₗ[𝕜] M this : FiniteDimensional 𝕜 M hf : ¬⊥ < ker f ⊢ ¬↑LinearMap.det f = 0 [PROOFSTEP] simp only [bot_lt_iff_ne_bot, Classical.not_not, ← isUnit_iff_ker_eq_bot] at hf [GOAL] R : Type u_1 inst✝¹¹ : CommRing R M : Type u_2 inst✝¹⁰ : AddCommGroup M inst✝⁹ : Module R M M' : Type u_3 inst✝⁸ : AddCommGroup M' inst✝⁷ : Module R M' ι : Type u_4 inst✝⁶ : DecidableEq ι inst✝⁵ : Fintype ι e : Basis ι R M A : Type u_5 inst✝⁴ : CommRing A inst✝³ : Module A M κ : Type u_6 inst✝² : Fintype κ 𝕜 : Type u_7 inst✝¹ : Field 𝕜 inst✝ : Module 𝕜 M f : M →ₗ[𝕜] M this : FiniteDimensional 𝕜 M hf : IsUnit f ⊢ ¬↑LinearMap.det f = 0 [PROOFSTEP] exact isUnit_iff_ne_zero.1 (f.isUnit_det hf) [GOAL] R : Type u_1 inst✝⁶ : CommRing R M : Type u_2 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type u_3 inst✝³ : AddCommGroup M' inst✝² : Module R M' ι : Type u_4 inst✝¹ : DecidableEq ι inst✝ : Fintype ι e✝ : Basis ι R M f : M ≃ₗ[R] M e : M ≃ₗ[R] M' ⊢ ↑LinearEquiv.det (trans (trans (symm e) f) e) = ↑LinearEquiv.det f [PROOFSTEP] rw [← Units.eq_iff, coe_det, coe_det, ← comp_coe, ← comp_coe, LinearMap.det_conj] [GOAL] R : Type u_1 inst✝⁸ : CommRing R M : Type u_2 inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M M' : Type u_3 inst✝⁵ : AddCommGroup M' inst✝⁴ : Module R M' ι : Type u_4 inst✝³ : DecidableEq ι inst✝² : Fintype ι e : Basis ι R M A : Type u_5 inst✝¹ : CommRing A inst✝ : Module A M f : M ≃ₗ[A] M ⊢ ↑LinearMap.det ↑f * ↑LinearMap.det ↑(symm f) = 1 [PROOFSTEP] simp [← LinearMap.det_comp] [GOAL] R : Type u_1 inst✝⁸ : CommRing R M : Type u_2 inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M M' : Type u_3 inst✝⁵ : AddCommGroup M' inst✝⁴ : Module R M' ι : Type u_4 inst✝³ : DecidableEq ι inst✝² : Fintype ι e : Basis ι R M A : Type u_5 inst✝¹ : CommRing A inst✝ : Module A M f : M ≃ₗ[A] M ⊢ ↑LinearMap.det ↑(symm f) * ↑LinearMap.det ↑f = 1 [PROOFSTEP] simp [← LinearMap.det_comp] [GOAL] R : Type u_1 inst✝⁶ : CommRing R M : Type u_2 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type u_3 inst✝³ : AddCommGroup M' inst✝² : Module R M' ι : Type u_4 inst✝¹ : DecidableEq ι inst✝ : Fintype ι e : Basis ι R M f : M ≃ₗ[R] M' v : Basis ι R M v' : Basis ι R M' ⊢ IsUnit (det (↑(toMatrix v v') ↑f)) [PROOFSTEP] apply isUnit_det_of_left_inverse [GOAL] case h R : Type u_1 inst✝⁶ : CommRing R M : Type u_2 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type u_3 inst✝³ : AddCommGroup M' inst✝² : Module R M' ι : Type u_4 inst✝¹ : DecidableEq ι inst✝ : Fintype ι e : Basis ι R M f : M ≃ₗ[R] M' v : Basis ι R M v' : Basis ι R M' ⊢ ?B * ↑(toMatrix v v') ↑f = 1 case B R : Type u_1 inst✝⁶ : CommRing R M : Type u_2 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type u_3 inst✝³ : AddCommGroup M' inst✝² : Module R M' ι : Type u_4 inst✝¹ : DecidableEq ι inst✝ : Fintype ι e : Basis ι R M f : M ≃ₗ[R] M' v : Basis ι R M v' : Basis ι R M' ⊢ Matrix ι ι R [PROOFSTEP] simpa using (LinearMap.toMatrix_comp v v' v f.symm f).symm [GOAL] R : Type u_1 inst✝⁸ : CommRing R M : Type u_2 inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M M' : Type u_3 inst✝⁵ : AddCommGroup M' inst✝⁴ : Module R M' ι : Type u_4 inst✝³ : DecidableEq ι inst✝² : Fintype ι e : Basis ι R M 𝕜 : Type u_5 inst✝¹ : Field 𝕜 inst✝ : Module 𝕜 M f : M ≃ₗ[𝕜] M ⊢ ↑LinearMap.det ↑(symm f) = (↑LinearMap.det ↑f)⁻¹ [PROOFSTEP] field_simp [IsUnit.ne_zero f.isUnit_det'] [GOAL] R : Type u_1 inst✝⁶ : CommRing R M : Type u_2 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type u_3 inst✝³ : AddCommGroup M' inst✝² : Module R M' ι : Type u_4 inst✝¹ : DecidableEq ι inst✝ : Fintype ι e : Basis ι R M f : M →ₗ[R] M' v : Basis ι R M v' : Basis ι R M' h : IsUnit (det (↑(toMatrix v v') f)) x : M ⊢ ↑(↑(toLin v' v) (↑(toMatrix v v') f)⁻¹) (↑f x) = ↑(↑(toLin v v) ((↑(toMatrix v v') f)⁻¹ * ↑(toMatrix v v') f)) x [PROOFSTEP] rw [toLin_mul v v' v, toLin_toMatrix, LinearMap.comp_apply] [GOAL] R : Type u_1 inst✝⁶ : CommRing R M : Type u_2 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type u_3 inst✝³ : AddCommGroup M' inst✝² : Module R M' ι : Type u_4 inst✝¹ : DecidableEq ι inst✝ : Fintype ι e : Basis ι R M f : M →ₗ[R] M' v : Basis ι R M v' : Basis ι R M' h : IsUnit (det (↑(toMatrix v v') f)) x : M ⊢ ↑(↑(toLin v v) ((↑(toMatrix v v') f)⁻¹ * ↑(toMatrix v v') f)) x = x [PROOFSTEP] simp [h] [GOAL] R : Type u_1 inst✝⁶ : CommRing R M : Type u_2 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type u_3 inst✝³ : AddCommGroup M' inst✝² : Module R M' ι : Type u_4 inst✝¹ : DecidableEq ι inst✝ : Fintype ι e : Basis ι R M f : M →ₗ[R] M' v : Basis ι R M v' : Basis ι R M' h : IsUnit (det (↑(toMatrix v v') f)) x : M' ⊢ ↑f (↑(↑(toLin v' v) (↑(toMatrix v v') f)⁻¹) x) = ↑(↑(toLin v' v') (↑(toMatrix v v') f * (↑(toMatrix v v') f)⁻¹)) x [PROOFSTEP] rw [toLin_mul v' v v', LinearMap.comp_apply, toLin_toMatrix v v'] [GOAL] R : Type u_1 inst✝⁶ : CommRing R M : Type u_2 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type u_3 inst✝³ : AddCommGroup M' inst✝² : Module R M' ι : Type u_4 inst✝¹ : DecidableEq ι inst✝ : Fintype ι e : Basis ι R M f : M →ₗ[R] M' v : Basis ι R M v' : Basis ι R M' h : IsUnit (det (↑(toMatrix v v') f)) x : M' ⊢ ↑(↑(toLin v' v') (↑(toMatrix v v') f * (↑(toMatrix v v') f)⁻¹)) x = x [PROOFSTEP] simp [h] [GOAL] R : Type u_1 inst✝⁶ : CommRing R M : Type u_2 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type u_3 inst✝³ : AddCommGroup M' inst✝² : Module R M' ι : Type u_4 inst✝¹ : DecidableEq ι inst✝ : Fintype ι e : Basis ι R M f : M →ₗ[R] M' v : Basis ι R M v' : Basis ι R M' h : IsUnit (det (↑(toMatrix v v') f)) ⊢ ↑(ofIsUnitDet h) = f [PROOFSTEP] ext x [GOAL] case h R : Type u_1 inst✝⁶ : CommRing R M : Type u_2 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type u_3 inst✝³ : AddCommGroup M' inst✝² : Module R M' ι : Type u_4 inst✝¹ : DecidableEq ι inst✝ : Fintype ι e : Basis ι R M f : M →ₗ[R] M' v : Basis ι R M v' : Basis ι R M' h : IsUnit (det (↑(toMatrix v v') f)) x : M ⊢ ↑↑(ofIsUnitDet h) x = ↑f x [PROOFSTEP] rfl [GOAL] R : Type u_1 inst✝¹⁰ : CommRing R M✝ : Type u_2 inst✝⁹ : AddCommGroup M✝ inst✝⁸ : Module R M✝ M' : Type u_3 inst✝⁷ : AddCommGroup M' inst✝⁶ : Module R M' ι : Type u_4 inst✝⁵ : DecidableEq ι inst✝⁴ : Fintype ι e : Basis ι R M✝ 𝕜 : Type u_5 inst✝³ : Field 𝕜 M : Type u_6 inst✝² : AddCommGroup M inst✝¹ : Module 𝕜 M inst✝ : FiniteDimensional 𝕜 M f : M →ₗ[𝕜] M hf : ↑LinearMap.det f ≠ 0 ⊢ IsUnit (det (↑(toMatrix (FiniteDimensional.finBasis 𝕜 M) (FiniteDimensional.finBasis 𝕜 M)) f)) [PROOFSTEP] rw [LinearMap.det_toMatrix] [GOAL] R : Type u_1 inst✝¹⁰ : CommRing R M✝ : Type u_2 inst✝⁹ : AddCommGroup M✝ inst✝⁸ : Module R M✝ M' : Type u_3 inst✝⁷ : AddCommGroup M' inst✝⁶ : Module R M' ι : Type u_4 inst✝⁵ : DecidableEq ι inst✝⁴ : Fintype ι e : Basis ι R M✝ 𝕜 : Type u_5 inst✝³ : Field 𝕜 M : Type u_6 inst✝² : AddCommGroup M inst✝¹ : Module 𝕜 M inst✝ : FiniteDimensional 𝕜 M f : M →ₗ[𝕜] M hf : ↑LinearMap.det f ≠ 0 ⊢ IsUnit (↑LinearMap.det f) [PROOFSTEP] exact isUnit_iff_ne_zero.2 hf [GOAL] R : Type u_1 inst✝⁶ : CommRing R M : Type u_2 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type u_3 inst✝³ : AddCommGroup M' inst✝² : Module R M' ι : Type u_4 inst✝¹ : DecidableEq ι inst✝ : Fintype ι e✝ : Basis ι R M e : M ≃ₗ[R] M f f' : M →ₗ[R] M h : ∀ (x : M), ↑f x = ↑f' (↑e x) ⊢ Associated (↑LinearMap.det f) (↑LinearMap.det f') [PROOFSTEP] suffices Associated (LinearMap.det (f' ∘ₗ ↑e)) (LinearMap.det f') by convert this using 2 ext x exact h x [GOAL] R : Type u_1 inst✝⁶ : CommRing R M : Type u_2 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type u_3 inst✝³ : AddCommGroup M' inst✝² : Module R M' ι : Type u_4 inst✝¹ : DecidableEq ι inst✝ : Fintype ι e✝ : Basis ι R M e : M ≃ₗ[R] M f f' : M →ₗ[R] M h : ∀ (x : M), ↑f x = ↑f' (↑e x) this : Associated (↑LinearMap.det (comp f' ↑e)) (↑LinearMap.det f') ⊢ Associated (↑LinearMap.det f) (↑LinearMap.det f') [PROOFSTEP] convert this using 2 [GOAL] case h.e'_3.h.e'_6 R : Type u_1 inst✝⁶ : CommRing R M : Type u_2 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type u_3 inst✝³ : AddCommGroup M' inst✝² : Module R M' ι : Type u_4 inst✝¹ : DecidableEq ι inst✝ : Fintype ι e✝ : Basis ι R M e : M ≃ₗ[R] M f f' : M →ₗ[R] M h : ∀ (x : M), ↑f x = ↑f' (↑e x) this : Associated (↑LinearMap.det (comp f' ↑e)) (↑LinearMap.det f') ⊢ f = comp f' ↑e [PROOFSTEP] ext x [GOAL] case h.e'_3.h.e'_6.h R : Type u_1 inst✝⁶ : CommRing R M : Type u_2 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type u_3 inst✝³ : AddCommGroup M' inst✝² : Module R M' ι : Type u_4 inst✝¹ : DecidableEq ι inst✝ : Fintype ι e✝ : Basis ι R M e : M ≃ₗ[R] M f f' : M →ₗ[R] M h : ∀ (x : M), ↑f x = ↑f' (↑e x) this : Associated (↑LinearMap.det (comp f' ↑e)) (↑LinearMap.det f') x : M ⊢ ↑f x = ↑(comp f' ↑e) x [PROOFSTEP] exact h x [GOAL] R : Type u_1 inst✝⁶ : CommRing R M : Type u_2 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type u_3 inst✝³ : AddCommGroup M' inst✝² : Module R M' ι : Type u_4 inst✝¹ : DecidableEq ι inst✝ : Fintype ι e✝ : Basis ι R M e : M ≃ₗ[R] M f f' : M →ₗ[R] M h : ∀ (x : M), ↑f x = ↑f' (↑e x) ⊢ Associated (↑LinearMap.det (comp f' ↑e)) (↑LinearMap.det f') [PROOFSTEP] rw [← mul_one (LinearMap.det f'), LinearMap.det_comp] [GOAL] R : Type u_1 inst✝⁶ : CommRing R M : Type u_2 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type u_3 inst✝³ : AddCommGroup M' inst✝² : Module R M' ι : Type u_4 inst✝¹ : DecidableEq ι inst✝ : Fintype ι e✝ : Basis ι R M e : M ≃ₗ[R] M f f' : M →ₗ[R] M h : ∀ (x : M), ↑f x = ↑f' (↑e x) ⊢ Associated (↑LinearMap.det f' * ↑LinearMap.det ↑e) (↑LinearMap.det f' * 1) [PROOFSTEP] exact Associated.mul_left _ (associated_one_iff_isUnit.mpr e.isUnit_det') [GOAL] R : Type u_1 inst✝⁸ : CommRing R M : Type u_2 inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M M' : Type u_3 inst✝⁵ : AddCommGroup M' inst✝⁴ : Module R M' ι : Type u_4 inst✝³ : DecidableEq ι inst✝² : Fintype ι e✝ : Basis ι R M N : Type u_5 inst✝¹ : AddCommGroup N inst✝ : Module R N f : N →ₗ[R] M e e' : M ≃ₗ[R] N ⊢ Associated (↑LinearMap.det (comp f ↑e)) (↑LinearMap.det (comp f ↑e')) [PROOFSTEP] refine' LinearMap.associated_det_of_eq_comp (e.trans e'.symm) _ _ _ [GOAL] R : Type u_1 inst✝⁸ : CommRing R M : Type u_2 inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M M' : Type u_3 inst✝⁵ : AddCommGroup M' inst✝⁴ : Module R M' ι : Type u_4 inst✝³ : DecidableEq ι inst✝² : Fintype ι e✝ : Basis ι R M N : Type u_5 inst✝¹ : AddCommGroup N inst✝ : Module R N f : N →ₗ[R] M e e' : M ≃ₗ[R] N ⊢ ∀ (x : M), ↑(comp f ↑e) x = ↑(comp f ↑e') (↑(LinearEquiv.trans e (LinearEquiv.symm e')) x) [PROOFSTEP] intro x [GOAL] R : Type u_1 inst✝⁸ : CommRing R M : Type u_2 inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M M' : Type u_3 inst✝⁵ : AddCommGroup M' inst✝⁴ : Module R M' ι : Type u_4 inst✝³ : DecidableEq ι inst✝² : Fintype ι e✝ : Basis ι R M N : Type u_5 inst✝¹ : AddCommGroup N inst✝ : Module R N f : N →ₗ[R] M e e' : M ≃ₗ[R] N x : M ⊢ ↑(comp f ↑e) x = ↑(comp f ↑e') (↑(LinearEquiv.trans e (LinearEquiv.symm e')) x) [PROOFSTEP] simp only [LinearMap.comp_apply, LinearEquiv.coe_coe, LinearEquiv.trans_apply, LinearEquiv.apply_symm_apply] [GOAL] R : Type u_1 inst✝⁶ : CommRing R M : Type u_2 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type u_3 inst✝³ : AddCommGroup M' inst✝² : Module R M' ι : Type u_4 inst✝¹ : DecidableEq ι inst✝ : Fintype ι e : Basis ι R M ⊢ ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M), (fun v => Matrix.det (toMatrix e v)) (update m i (x + y)) = (fun v => Matrix.det (toMatrix e v)) (update m i x) + (fun v => Matrix.det (toMatrix e v)) (update m i y) [PROOFSTEP] intro inst v i x y [GOAL] R : Type u_1 inst✝⁶ : CommRing R M : Type u_2 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type u_3 inst✝³ : AddCommGroup M' inst✝² : Module R M' ι : Type u_4 inst✝¹ : DecidableEq ι inst✝ : Fintype ι e : Basis ι R M inst : DecidableEq ι v : ι → M i : ι x y : M ⊢ (fun v => Matrix.det (toMatrix e v)) (update v i (x + y)) = (fun v => Matrix.det (toMatrix e v)) (update v i x) + (fun v => Matrix.det (toMatrix e v)) (update v i y) [PROOFSTEP] cases Subsingleton.elim inst ‹_› [GOAL] case refl R : Type u_1 inst✝⁶ : CommRing R M : Type u_2 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type u_3 inst✝³ : AddCommGroup M' inst✝² : Module R M' ι : Type u_4 inst✝¹ : DecidableEq ι inst✝ : Fintype ι e : Basis ι R M inst : DecidableEq ι v : ι → M i : ι x y : M ⊢ (fun v => Matrix.det (toMatrix e v)) (update v i (x + y)) = (fun v => Matrix.det (toMatrix e v)) (update v i x) + (fun v => Matrix.det (toMatrix e v)) (update v i y) [PROOFSTEP] simp only [e.toMatrix_update, LinearEquiv.map_add, Finsupp.coe_add] -- Porting note: was `exact det_update_column_add _ _ _ _` [GOAL] case refl R : Type u_1 inst✝⁶ : CommRing R M : Type u_2 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type u_3 inst✝³ : AddCommGroup M' inst✝² : Module R M' ι : Type u_4 inst✝¹ : DecidableEq ι inst✝ : Fintype ι e : Basis ι R M inst : DecidableEq ι v : ι → M i : ι x y : M ⊢ Matrix.det (updateColumn (toMatrix e v) i (↑(↑e.repr x) + ↑(↑e.repr y))) = Matrix.det (updateColumn (toMatrix e v) i ↑(↑e.repr x)) + Matrix.det (updateColumn (toMatrix e v) i ↑(↑e.repr y)) [PROOFSTEP] convert det_updateColumn_add (e.toMatrix v) i (e.repr x) (e.repr y) [GOAL] R : Type u_1 inst✝⁶ : CommRing R M : Type u_2 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type u_3 inst✝³ : AddCommGroup M' inst✝² : Module R M' ι : Type u_4 inst✝¹ : DecidableEq ι inst✝ : Fintype ι e : Basis ι R M ⊢ ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M), (fun v => Matrix.det (toMatrix e v)) (update m i (c • x)) = c • (fun v => Matrix.det (toMatrix e v)) (update m i x) [PROOFSTEP] intro inst u i c x [GOAL] R : Type u_1 inst✝⁶ : CommRing R M : Type u_2 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type u_3 inst✝³ : AddCommGroup M' inst✝² : Module R M' ι : Type u_4 inst✝¹ : DecidableEq ι inst✝ : Fintype ι e : Basis ι R M inst : DecidableEq ι u : ι → M i : ι c : R x : M ⊢ (fun v => Matrix.det (toMatrix e v)) (update u i (c • x)) = c • (fun v => Matrix.det (toMatrix e v)) (update u i x) [PROOFSTEP] cases Subsingleton.elim inst ‹_› [GOAL] case refl R : Type u_1 inst✝⁶ : CommRing R M : Type u_2 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type u_3 inst✝³ : AddCommGroup M' inst✝² : Module R M' ι : Type u_4 inst✝¹ : DecidableEq ι inst✝ : Fintype ι e : Basis ι R M inst : DecidableEq ι u : ι → M i : ι c : R x : M ⊢ (fun v => Matrix.det (toMatrix e v)) (update u i (c • x)) = c • (fun v => Matrix.det (toMatrix e v)) (update u i x) [PROOFSTEP] simp only [e.toMatrix_update, Algebra.id.smul_eq_mul, LinearEquiv.map_smul] -- Porting note: was `apply det_update_column_smul` [GOAL] case refl R : Type u_1 inst✝⁶ : CommRing R M : Type u_2 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type u_3 inst✝³ : AddCommGroup M' inst✝² : Module R M' ι : Type u_4 inst✝¹ : DecidableEq ι inst✝ : Fintype ι e : Basis ι R M inst : DecidableEq ι u : ι → M i : ι c : R x : M ⊢ Matrix.det (updateColumn (toMatrix e u) i ↑(c • ↑e.repr x)) = c * Matrix.det (updateColumn (toMatrix e u) i ↑(↑e.repr x)) [PROOFSTEP] convert det_updateColumn_smul (e.toMatrix u) i c (e.repr x) [GOAL] R : Type u_1 inst✝⁶ : CommRing R M : Type u_2 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type u_3 inst✝³ : AddCommGroup M' inst✝² : Module R M' ι : Type u_4 inst✝¹ : DecidableEq ι inst✝ : Fintype ι e : Basis ι R M ⊢ ∀ (v : ι → M) (i j : ι), v i = v j → i ≠ j → MultilinearMap.toFun { toFun := fun v => Matrix.det (toMatrix e v), map_add' := (_ : ∀ [inst : DecidableEq ι] (v : ι → M) (i : ι) (x y : M), (fun v => Matrix.det (toMatrix e v)) (update v i (x + y)) = (fun v => Matrix.det (toMatrix e v)) (update v i x) + (fun v => Matrix.det (toMatrix e v)) (update v i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι] (u : ι → M) (i : ι) (c : R) (x : M), (fun v => Matrix.det (toMatrix e v)) (update u i (c • x)) = c • (fun v => Matrix.det (toMatrix e v)) (update u i x)) } v = 0 [PROOFSTEP] intro v i j h hij [GOAL] R : Type u_1 inst✝⁶ : CommRing R M : Type u_2 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type u_3 inst✝³ : AddCommGroup M' inst✝² : Module R M' ι : Type u_4 inst✝¹ : DecidableEq ι inst✝ : Fintype ι e : Basis ι R M v : ι → M i j : ι h : v i = v j hij : i ≠ j ⊢ MultilinearMap.toFun { toFun := fun v => Matrix.det (toMatrix e v), map_add' := (_ : ∀ [inst : DecidableEq ι] (v : ι → M) (i : ι) (x y : M), (fun v => Matrix.det (toMatrix e v)) (update v i (x + y)) = (fun v => Matrix.det (toMatrix e v)) (update v i x) + (fun v => Matrix.det (toMatrix e v)) (update v i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι] (u : ι → M) (i : ι) (c : R) (x : M), (fun v => Matrix.det (toMatrix e v)) (update u i (c • x)) = c • (fun v => Matrix.det (toMatrix e v)) (update u i x)) } v = 0 [PROOFSTEP] simp only [GOAL] R : Type u_1 inst✝⁶ : CommRing R M : Type u_2 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type u_3 inst✝³ : AddCommGroup M' inst✝² : Module R M' ι : Type u_4 inst✝¹ : DecidableEq ι inst✝ : Fintype ι e : Basis ι R M v : ι → M i j : ι h : v i = v j hij : i ≠ j ⊢ Matrix.det (toMatrix e v) = 0 [PROOFSTEP] rw [← Function.update_eq_self i v, h, ← det_transpose, e.toMatrix_update, ← updateRow_transpose, ← e.toMatrix_transpose_apply] [GOAL] R : Type u_1 inst✝⁶ : CommRing R M : Type u_2 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type u_3 inst✝³ : AddCommGroup M' inst✝² : Module R M' ι : Type u_4 inst✝¹ : DecidableEq ι inst✝ : Fintype ι e : Basis ι R M v : ι → M i j : ι h : v i = v j hij : i ≠ j ⊢ Matrix.det (updateRow (toMatrix e v)ᵀ i ((toMatrix e v)ᵀ j)) = 0 [PROOFSTEP] apply det_zero_of_row_eq hij [GOAL] R : Type u_1 inst✝⁶ : CommRing R M : Type u_2 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type u_3 inst✝³ : AddCommGroup M' inst✝² : Module R M' ι : Type u_4 inst✝¹ : DecidableEq ι inst✝ : Fintype ι e : Basis ι R M v : ι → M i j : ι h : v i = v j hij : i ≠ j ⊢ updateRow (toMatrix e v)ᵀ i ((toMatrix e v)ᵀ j) i = updateRow (toMatrix e v)ᵀ i ((toMatrix e v)ᵀ j) j [PROOFSTEP] rw [updateRow_ne hij.symm, updateRow_self] [GOAL] R : Type u_1 inst✝⁶ : CommRing R M : Type u_2 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type u_3 inst✝³ : AddCommGroup M' inst✝² : Module R M' ι : Type u_4 inst✝¹ : DecidableEq ι inst✝ : Fintype ι e : Basis ι R M ⊢ ↑(det e) ↑e = 1 [PROOFSTEP] simp [e.det_apply] [GOAL] R : Type u_1 inst✝⁷ : CommRing R M : Type u_2 inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type u_3 inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' ι : Type u_4 inst✝² : DecidableEq ι inst✝¹ : Fintype ι e : Basis ι R M inst✝ : IsEmpty ι ⊢ det e = AlternatingMap.constOfIsEmpty R M ι 1 [PROOFSTEP] ext v [GOAL] case H R : Type u_1 inst✝⁷ : CommRing R M : Type u_2 inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type u_3 inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' ι : Type u_4 inst✝² : DecidableEq ι inst✝¹ : Fintype ι e : Basis ι R M inst✝ : IsEmpty ι v : ι → M ⊢ ↑(det e) v = ↑(AlternatingMap.constOfIsEmpty R M ι 1) v [PROOFSTEP] exact Matrix.det_isEmpty [GOAL] R : Type u_1 inst✝⁷ : CommRing R M : Type u_2 inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type u_3 inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' ι : Type u_4 inst✝² : DecidableEq ι inst✝¹ : Fintype ι e : Basis ι R M inst✝ : Nontrivial R h : det e = 0 ⊢ False [PROOFSTEP] simpa [h] using e.det_self [GOAL] R : Type u_1 inst✝⁶ : CommRing R M : Type u_2 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type u_3 inst✝³ : AddCommGroup M' inst✝² : Module R M' ι : Type u_4 inst✝¹ : DecidableEq ι inst✝ : Fintype ι e : Basis ι R M v : ι → M ⊢ LinearIndependent R v ∧ span R (Set.range v) = ⊤ ↔ IsUnit (↑(Basis.det e) v) [PROOFSTEP] constructor [GOAL] case mp R : Type u_1 inst✝⁶ : CommRing R M : Type u_2 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type u_3 inst✝³ : AddCommGroup M' inst✝² : Module R M' ι : Type u_4 inst✝¹ : DecidableEq ι inst✝ : Fintype ι e : Basis ι R M v : ι → M ⊢ LinearIndependent R v ∧ span R (Set.range v) = ⊤ → IsUnit (↑(Basis.det e) v) [PROOFSTEP] rintro ⟨hli, hspan⟩ [GOAL] case mp.intro R : Type u_1 inst✝⁶ : CommRing R M : Type u_2 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type u_3 inst✝³ : AddCommGroup M' inst✝² : Module R M' ι : Type u_4 inst✝¹ : DecidableEq ι inst✝ : Fintype ι e : Basis ι R M v : ι → M hli : LinearIndependent R v hspan : span R (Set.range v) = ⊤ ⊢ IsUnit (↑(Basis.det e) v) [PROOFSTEP] set v' := Basis.mk hli hspan.ge [GOAL] case mp.intro R : Type u_1 inst✝⁶ : CommRing R M : Type u_2 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type u_3 inst✝³ : AddCommGroup M' inst✝² : Module R M' ι : Type u_4 inst✝¹ : DecidableEq ι inst✝ : Fintype ι e : Basis ι R M v : ι → M hli : LinearIndependent R v hspan : span R (Set.range v) = ⊤ v' : Basis ι R M := Basis.mk hli (_ : ⊤ ≤ span R (Set.range v)) ⊢ IsUnit (↑(Basis.det e) v) [PROOFSTEP] rw [e.det_apply] [GOAL] case mp.intro R : Type u_1 inst✝⁶ : CommRing R M : Type u_2 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type u_3 inst✝³ : AddCommGroup M' inst✝² : Module R M' ι : Type u_4 inst✝¹ : DecidableEq ι inst✝ : Fintype ι e : Basis ι R M v : ι → M hli : LinearIndependent R v hspan : span R (Set.range v) = ⊤ v' : Basis ι R M := Basis.mk hli (_ : ⊤ ≤ span R (Set.range v)) ⊢ IsUnit (det (Basis.toMatrix e v)) [PROOFSTEP] convert LinearEquiv.isUnit_det (LinearEquiv.refl R M) v' e using 2 [GOAL] case h.e'_3.h.e'_6 R : Type u_1 inst✝⁶ : CommRing R M : Type u_2 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type u_3 inst✝³ : AddCommGroup M' inst✝² : Module R M' ι : Type u_4 inst✝¹ : DecidableEq ι inst✝ : Fintype ι e : Basis ι R M v : ι → M hli : LinearIndependent R v hspan : span R (Set.range v) = ⊤ v' : Basis ι R M := Basis.mk hli (_ : ⊤ ≤ span R (Set.range v)) ⊢ Basis.toMatrix e v = ↑(toMatrix v' e) ↑(LinearEquiv.refl R M) [PROOFSTEP] ext i j [GOAL] case h.e'_3.h.e'_6.a.h R : Type u_1 inst✝⁶ : CommRing R M : Type u_2 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type u_3 inst✝³ : AddCommGroup M' inst✝² : Module R M' ι : Type u_4 inst✝¹ : DecidableEq ι inst✝ : Fintype ι e : Basis ι R M v : ι → M hli : LinearIndependent R v hspan : span R (Set.range v) = ⊤ v' : Basis ι R M := Basis.mk hli (_ : ⊤ ≤ span R (Set.range v)) i j : ι ⊢ Basis.toMatrix e v i j = ↑(toMatrix v' e) (↑(LinearEquiv.refl R M)) i j [PROOFSTEP] simp [GOAL] case mpr R : Type u_1 inst✝⁶ : CommRing R M : Type u_2 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type u_3 inst✝³ : AddCommGroup M' inst✝² : Module R M' ι : Type u_4 inst✝¹ : DecidableEq ι inst✝ : Fintype ι e : Basis ι R M v : ι → M ⊢ IsUnit (↑(Basis.det e) v) → LinearIndependent R v ∧ span R (Set.range v) = ⊤ [PROOFSTEP] intro h [GOAL] case mpr R : Type u_1 inst✝⁶ : CommRing R M : Type u_2 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type u_3 inst✝³ : AddCommGroup M' inst✝² : Module R M' ι : Type u_4 inst✝¹ : DecidableEq ι inst✝ : Fintype ι e : Basis ι R M v : ι → M h : IsUnit (↑(Basis.det e) v) ⊢ LinearIndependent R v ∧ span R (Set.range v) = ⊤ [PROOFSTEP] rw [Basis.det_apply, Basis.toMatrix_eq_toMatrix_constr] at h [GOAL] case mpr R : Type u_1 inst✝⁶ : CommRing R M : Type u_2 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type u_3 inst✝³ : AddCommGroup M' inst✝² : Module R M' ι : Type u_4 inst✝¹ : DecidableEq ι inst✝ : Fintype ι e : Basis ι R M v : ι → M h : IsUnit (det (↑(toMatrix e e) (↑(Basis.constr e ℕ) v))) ⊢ LinearIndependent R v ∧ span R (Set.range v) = ⊤ [PROOFSTEP] set v' := Basis.map e (LinearEquiv.ofIsUnitDet h) with v'_def [GOAL] case mpr R : Type u_1 inst✝⁶ : CommRing R M : Type u_2 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type u_3 inst✝³ : AddCommGroup M' inst✝² : Module R M' ι : Type u_4 inst✝¹ : DecidableEq ι inst✝ : Fintype ι e : Basis ι R M v : ι → M h : IsUnit (det (↑(toMatrix e e) (↑(Basis.constr e ℕ) v))) v' : Basis ι R M := Basis.map e (LinearEquiv.ofIsUnitDet h) v'_def : v' = Basis.map e (LinearEquiv.ofIsUnitDet h) ⊢ LinearIndependent R v ∧ span R (Set.range v) = ⊤ [PROOFSTEP] have : ⇑v' = v := by ext i rw [v'_def, Basis.map_apply, LinearEquiv.ofIsUnitDet_apply, e.constr_basis] [GOAL] R : Type u_1 inst✝⁶ : CommRing R M : Type u_2 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type u_3 inst✝³ : AddCommGroup M' inst✝² : Module R M' ι : Type u_4 inst✝¹ : DecidableEq ι inst✝ : Fintype ι e : Basis ι R M v : ι → M h : IsUnit (det (↑(toMatrix e e) (↑(Basis.constr e ℕ) v))) v' : Basis ι R M := Basis.map e (LinearEquiv.ofIsUnitDet h) v'_def : v' = Basis.map e (LinearEquiv.ofIsUnitDet h) ⊢ ↑v' = v [PROOFSTEP] ext i [GOAL] case h R : Type u_1 inst✝⁶ : CommRing R M : Type u_2 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type u_3 inst✝³ : AddCommGroup M' inst✝² : Module R M' ι : Type u_4 inst✝¹ : DecidableEq ι inst✝ : Fintype ι e : Basis ι R M v : ι → M h : IsUnit (det (↑(toMatrix e e) (↑(Basis.constr e ℕ) v))) v' : Basis ι R M := Basis.map e (LinearEquiv.ofIsUnitDet h) v'_def : v' = Basis.map e (LinearEquiv.ofIsUnitDet h) i : ι ⊢ ↑v' i = v i [PROOFSTEP] rw [v'_def, Basis.map_apply, LinearEquiv.ofIsUnitDet_apply, e.constr_basis] [GOAL] case mpr R : Type u_1 inst✝⁶ : CommRing R M : Type u_2 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type u_3 inst✝³ : AddCommGroup M' inst✝² : Module R M' ι : Type u_4 inst✝¹ : DecidableEq ι inst✝ : Fintype ι e : Basis ι R M v : ι → M h : IsUnit (det (↑(toMatrix e e) (↑(Basis.constr e ℕ) v))) v' : Basis ι R M := Basis.map e (LinearEquiv.ofIsUnitDet h) v'_def : v' = Basis.map e (LinearEquiv.ofIsUnitDet h) this : ↑v' = v ⊢ LinearIndependent R v ∧ span R (Set.range v) = ⊤ [PROOFSTEP] rw [← this] [GOAL] case mpr R : Type u_1 inst✝⁶ : CommRing R M : Type u_2 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type u_3 inst✝³ : AddCommGroup M' inst✝² : Module R M' ι : Type u_4 inst✝¹ : DecidableEq ι inst✝ : Fintype ι e : Basis ι R M v : ι → M h : IsUnit (det (↑(toMatrix e e) (↑(Basis.constr e ℕ) v))) v' : Basis ι R M := Basis.map e (LinearEquiv.ofIsUnitDet h) v'_def : v' = Basis.map e (LinearEquiv.ofIsUnitDet h) this : ↑v' = v ⊢ LinearIndependent R ↑v' ∧ span R (Set.range ↑v') = ⊤ [PROOFSTEP] exact ⟨v'.linearIndependent, v'.span_eq⟩ [GOAL] R : Type u_1 inst✝⁶ : CommRing R M : Type u_2 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type u_3 inst✝³ : AddCommGroup M' inst✝² : Module R M' ι : Type u_4 inst✝¹ : DecidableEq ι inst✝ : Fintype ι e : Basis ι R M f : AlternatingMap R M R ι ⊢ f = ↑f ↑e • Basis.det e [PROOFSTEP] refine' Basis.ext_alternating e fun i h => _ [GOAL] R : Type u_1 inst✝⁶ : CommRing R M : Type u_2 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type u_3 inst✝³ : AddCommGroup M' inst✝² : Module R M' ι : Type u_4 inst✝¹ : DecidableEq ι inst✝ : Fintype ι e : Basis ι R M f : AlternatingMap R M R ι i : ι → ι h : Injective i ⊢ (↑f fun i_1 => ↑e (i i_1)) = ↑(↑f ↑e • Basis.det e) fun i_1 => ↑e (i i_1) [PROOFSTEP] let σ : Equiv.Perm ι := Equiv.ofBijective i (Finite.injective_iff_bijective.1 h) [GOAL] R : Type u_1 inst✝⁶ : CommRing R M : Type u_2 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type u_3 inst✝³ : AddCommGroup M' inst✝² : Module R M' ι : Type u_4 inst✝¹ : DecidableEq ι inst✝ : Fintype ι e : Basis ι R M f : AlternatingMap R M R ι i : ι → ι h : Injective i σ : Equiv.Perm ι := Equiv.ofBijective i (_ : Bijective i) ⊢ (↑f fun i_1 => ↑e (i i_1)) = ↑(↑f ↑e • Basis.det e) fun i_1 => ↑e (i i_1) [PROOFSTEP] change f (e ∘ σ) = (f e • e.det) (e ∘ σ) [GOAL] R : Type u_1 inst✝⁶ : CommRing R M : Type u_2 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type u_3 inst✝³ : AddCommGroup M' inst✝² : Module R M' ι : Type u_4 inst✝¹ : DecidableEq ι inst✝ : Fintype ι e : Basis ι R M f : AlternatingMap R M R ι i : ι → ι h : Injective i σ : Equiv.Perm ι := Equiv.ofBijective i (_ : Bijective i) ⊢ ↑f (↑e ∘ ↑σ) = ↑(↑f ↑e • Basis.det e) (↑e ∘ ↑σ) [PROOFSTEP] simp [AlternatingMap.map_perm, Basis.det_self] [GOAL] R : Type u_1 inst✝⁷ : CommRing R M : Type u_2 inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type u_3 inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' ι✝ : Type u_4 inst✝² : DecidableEq ι✝ inst✝¹ : Fintype ι✝ e✝ : Basis ι✝ R M ι : Type u_5 inst✝ : Finite ι e : Basis ι R M f : AlternatingMap R M R ι h : ↑f ↑e = 0 ⊢ f = 0 [PROOFSTEP] cases nonempty_fintype ι [GOAL] case intro R : Type u_1 inst✝⁷ : CommRing R M : Type u_2 inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type u_3 inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' ι✝ : Type u_4 inst✝² : DecidableEq ι✝ inst✝¹ : Fintype ι✝ e✝ : Basis ι✝ R M ι : Type u_5 inst✝ : Finite ι e : Basis ι R M f : AlternatingMap R M R ι h : ↑f ↑e = 0 val✝ : Fintype ι ⊢ f = 0 [PROOFSTEP] letI := Classical.decEq ι [GOAL] case intro R : Type u_1 inst✝⁷ : CommRing R M : Type u_2 inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type u_3 inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' ι✝ : Type u_4 inst✝² : DecidableEq ι✝ inst✝¹ : Fintype ι✝ e✝ : Basis ι✝ R M ι : Type u_5 inst✝ : Finite ι e : Basis ι R M f : AlternatingMap R M R ι h : ↑f ↑e = 0 val✝ : Fintype ι this : DecidableEq ι := Classical.decEq ι ⊢ f = 0 [PROOFSTEP] simpa [h] using f.eq_smul_basis_det e [GOAL] R : Type u_1 inst✝⁸ : CommRing R M : Type u_2 inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M M' : Type u_3 inst✝⁵ : AddCommGroup M' inst✝⁴ : Module R M' ι : Type u_4 inst✝³ : DecidableEq ι inst✝² : Fintype ι e✝ : Basis ι R M A : Type u_5 inst✝¹ : CommRing A inst✝ : Module A M e : Basis ι A M f : M →ₗ[A] M v : ι → M ⊢ ↑(det e) (↑f ∘ v) = ↑LinearMap.det f * ↑(det e) v [PROOFSTEP] rw [Basis.det_apply, Basis.det_apply, ← f.det_toMatrix e, ← Matrix.det_mul, e.toMatrix_eq_toMatrix_constr (f ∘ v), e.toMatrix_eq_toMatrix_constr v, ← toMatrix_comp, e.constr_comp] [GOAL] R : Type u_1 inst✝⁹ : CommRing R M : Type u_2 inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M M' : Type u_3 inst✝⁶ : AddCommGroup M' inst✝⁵ : Module R M' ι : Type u_4 inst✝⁴ : DecidableEq ι inst✝³ : Fintype ι e : Basis ι R M A : Type u_5 inst✝² : CommRing A inst✝¹ : Module A M inst✝ : Module A M' b : Basis ι A M b' : Basis ι A M' f : M →ₗ[A] M' ⊢ ↑(det b') (↑f ∘ ↑b) = ↑LinearMap.det (LinearMap.comp f ↑(Basis.equiv b' b (Equiv.refl ι))) [PROOFSTEP] rw [Basis.det_apply, ← LinearMap.det_toMatrix b', LinearMap.toMatrix_comp _ b, Matrix.det_mul, LinearMap.toMatrix_basis_equiv, Matrix.det_one, mul_one] [GOAL] R : Type u_1 inst✝⁹ : CommRing R M : Type u_2 inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M M' : Type u_3 inst✝⁶ : AddCommGroup M' inst✝⁵ : Module R M' ι : Type u_4 inst✝⁴ : DecidableEq ι inst✝³ : Fintype ι e : Basis ι R M A : Type u_5 inst✝² : CommRing A inst✝¹ : Module A M inst✝ : Module A M' b : Basis ι A M b' : Basis ι A M' f : M →ₗ[A] M' ⊢ Matrix.det (toMatrix b' (↑f ∘ ↑b)) = Matrix.det (↑(LinearMap.toMatrix b b') f) [PROOFSTEP] congr 1 [GOAL] case e_M R : Type u_1 inst✝⁹ : CommRing R M : Type u_2 inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M M' : Type u_3 inst✝⁶ : AddCommGroup M' inst✝⁵ : Module R M' ι : Type u_4 inst✝⁴ : DecidableEq ι inst✝³ : Fintype ι e : Basis ι R M A : Type u_5 inst✝² : CommRing A inst✝¹ : Module A M inst✝ : Module A M' b : Basis ι A M b' : Basis ι A M' f : M →ₗ[A] M' ⊢ toMatrix b' (↑f ∘ ↑b) = ↑(LinearMap.toMatrix b b') f [PROOFSTEP] ext i j [GOAL] case e_M.a.h R : Type u_1 inst✝⁹ : CommRing R M : Type u_2 inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M M' : Type u_3 inst✝⁶ : AddCommGroup M' inst✝⁵ : Module R M' ι : Type u_4 inst✝⁴ : DecidableEq ι inst✝³ : Fintype ι e : Basis ι R M A : Type u_5 inst✝² : CommRing A inst✝¹ : Module A M inst✝ : Module A M' b : Basis ι A M b' : Basis ι A M' f : M →ₗ[A] M' i j : ι ⊢ toMatrix b' (↑f ∘ ↑b) i j = ↑(LinearMap.toMatrix b b') f i j [PROOFSTEP] rw [Basis.toMatrix_apply, LinearMap.toMatrix_apply, Function.comp_apply] [GOAL] R : Type u_1 inst✝¹⁰ : CommRing R M : Type u_2 inst✝⁹ : AddCommGroup M inst✝⁸ : Module R M M' : Type u_3 inst✝⁷ : AddCommGroup M' inst✝⁶ : Module R M' ι : Type u_4 inst✝⁵ : DecidableEq ι inst✝⁴ : Fintype ι e✝ : Basis ι R M A : Type u_5 inst✝³ : CommRing A inst✝² : Module A M ι' : Type u_6 inst✝¹ : Fintype ι' inst✝ : DecidableEq ι' b : Basis ι R M v : ι' → M e : ι ≃ ι' ⊢ ↑(det (reindex b e)) v = ↑(det b) (v ∘ ↑e) [PROOFSTEP] rw [Basis.det_apply, Basis.toMatrix_reindex', det_reindexAlgEquiv, Basis.det_apply] [GOAL] R : Type u_1 inst✝¹⁰ : CommRing R M : Type u_2 inst✝⁹ : AddCommGroup M inst✝⁸ : Module R M M' : Type u_3 inst✝⁷ : AddCommGroup M' inst✝⁶ : Module R M' ι : Type u_4 inst✝⁵ : DecidableEq ι inst✝⁴ : Fintype ι e✝ : Basis ι R M A : Type u_5 inst✝³ : CommRing A inst✝² : Module A M ι' : Type u_6 inst✝¹ : Fintype ι' inst✝ : DecidableEq ι' b : Basis ι R M v : ι → M e : ι' ≃ ι ⊢ ↑(det (reindex b e.symm)) (v ∘ ↑e) = ↑(det b) v [PROOFSTEP] rw [Basis.det_reindex, Function.comp.assoc, e.self_comp_symm, Function.comp.right_id] [GOAL] R : Type u_1 inst✝⁸ : CommRing R M : Type u_2 inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M M' : Type u_3 inst✝⁵ : AddCommGroup M' inst✝⁴ : Module R M' ι : Type u_4 inst✝³ : DecidableEq ι inst✝² : Fintype ι e : Basis ι R M A : Type u_5 inst✝¹ : CommRing A inst✝ : Module A M b : Basis ι R M f : M ≃ₗ[R] M' v : ι → M' ⊢ ↑(det (Basis.map b f)) v = ↑(det b) (↑(LinearEquiv.symm f) ∘ v) [PROOFSTEP] rw [Basis.det_apply, Basis.toMatrix_map, Basis.det_apply] [GOAL] R : Type u_1 inst✝⁸ : CommRing R M : Type u_2 inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M M' : Type u_3 inst✝⁵ : AddCommGroup M' inst✝⁴ : Module R M' ι : Type u_4 inst✝³ : DecidableEq ι inst✝² : Fintype ι e : Basis ι R M A : Type u_5 inst✝¹ : CommRing A inst✝ : Module A M ⊢ Basis.det (basisFun R ι) = detRowAlternating [PROOFSTEP] ext M [GOAL] case H R : Type u_1 inst✝⁸ : CommRing R M✝ : Type u_2 inst✝⁷ : AddCommGroup M✝ inst✝⁶ : Module R M✝ M' : Type u_3 inst✝⁵ : AddCommGroup M' inst✝⁴ : Module R M' ι : Type u_4 inst✝³ : DecidableEq ι inst✝² : Fintype ι e : Basis ι R M✝ A : Type u_5 inst✝¹ : CommRing A inst✝ : Module A M✝ M : ι → ι → R ⊢ ↑(Basis.det (basisFun R ι)) M = ↑detRowAlternating M [PROOFSTEP] rw [Basis.det_apply, Basis.coePiBasisFun.toMatrix_eq_transpose, det_transpose] [GOAL] R : Type u_1 inst✝⁸ : CommRing R M : Type u_2 inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M M' : Type u_3 inst✝⁵ : AddCommGroup M' inst✝⁴ : Module R M' ι : Type u_4 inst✝³ : DecidableEq ι inst✝² : Fintype ι e : Basis ι R M A : Type u_5 inst✝¹ : CommRing A inst✝ : Module A M v : ι → M hli : LinearIndependent R v hsp : ⊤ ≤ span R (Set.range v) i : ι ⊢ ↑(det e) v • coord (Basis.mk hli hsp) i = MultilinearMap.toLinearMap (↑(det e)) v i [PROOFSTEP] apply (Basis.mk hli hsp).ext [GOAL] R : Type u_1 inst✝⁸ : CommRing R M : Type u_2 inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M M' : Type u_3 inst✝⁵ : AddCommGroup M' inst✝⁴ : Module R M' ι : Type u_4 inst✝³ : DecidableEq ι inst✝² : Fintype ι e : Basis ι R M A : Type u_5 inst✝¹ : CommRing A inst✝ : Module A M v : ι → M hli : LinearIndependent R v hsp : ⊤ ≤ span R (Set.range v) i : ι ⊢ ∀ (i_1 : ι), ↑(↑(det e) v • coord (Basis.mk hli hsp) i) (↑(Basis.mk hli hsp) i_1) = ↑(MultilinearMap.toLinearMap (↑(det e)) v i) (↑(Basis.mk hli hsp) i_1) [PROOFSTEP] intro k [GOAL] R : Type u_1 inst✝⁸ : CommRing R M : Type u_2 inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M M' : Type u_3 inst✝⁵ : AddCommGroup M' inst✝⁴ : Module R M' ι : Type u_4 inst✝³ : DecidableEq ι inst✝² : Fintype ι e : Basis ι R M A : Type u_5 inst✝¹ : CommRing A inst✝ : Module A M v : ι → M hli : LinearIndependent R v hsp : ⊤ ≤ span R (Set.range v) i k : ι ⊢ ↑(↑(det e) v • coord (Basis.mk hli hsp) i) (↑(Basis.mk hli hsp) k) = ↑(MultilinearMap.toLinearMap (↑(det e)) v i) (↑(Basis.mk hli hsp) k) [PROOFSTEP] rcases eq_or_ne k i with (rfl | hik) [GOAL] case inl R : Type u_1 inst✝⁸ : CommRing R M : Type u_2 inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M M' : Type u_3 inst✝⁵ : AddCommGroup M' inst✝⁴ : Module R M' ι : Type u_4 inst✝³ : DecidableEq ι inst✝² : Fintype ι e : Basis ι R M A : Type u_5 inst✝¹ : CommRing A inst✝ : Module A M v : ι → M hli : LinearIndependent R v hsp : ⊤ ≤ span R (Set.range v) k : ι ⊢ ↑(↑(det e) v • coord (Basis.mk hli hsp) k) (↑(Basis.mk hli hsp) k) = ↑(MultilinearMap.toLinearMap (↑(det e)) v k) (↑(Basis.mk hli hsp) k) [PROOFSTEP] simp only [Algebra.id.smul_eq_mul, Basis.coe_mk, LinearMap.smul_apply, LinearMap.coe_mk, MultilinearMap.toLinearMap_apply] [GOAL] case inr R : Type u_1 inst✝⁸ : CommRing R M : Type u_2 inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M M' : Type u_3 inst✝⁵ : AddCommGroup M' inst✝⁴ : Module R M' ι : Type u_4 inst✝³ : DecidableEq ι inst✝² : Fintype ι e : Basis ι R M A : Type u_5 inst✝¹ : CommRing A inst✝ : Module A M v : ι → M hli : LinearIndependent R v hsp : ⊤ ≤ span R (Set.range v) i k : ι hik : k ≠ i ⊢ ↑(↑(det e) v • coord (Basis.mk hli hsp) i) (↑(Basis.mk hli hsp) k) = ↑(MultilinearMap.toLinearMap (↑(det e)) v i) (↑(Basis.mk hli hsp) k) [PROOFSTEP] simp only [Algebra.id.smul_eq_mul, Basis.coe_mk, LinearMap.smul_apply, LinearMap.coe_mk, MultilinearMap.toLinearMap_apply] [GOAL] case inl R : Type u_1 inst✝⁸ : CommRing R M : Type u_2 inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M M' : Type u_3 inst✝⁵ : AddCommGroup M' inst✝⁴ : Module R M' ι : Type u_4 inst✝³ : DecidableEq ι inst✝² : Fintype ι e : Basis ι R M A : Type u_5 inst✝¹ : CommRing A inst✝ : Module A M v : ι → M hli : LinearIndependent R v hsp : ⊤ ≤ span R (Set.range v) k : ι ⊢ ↑(det e) v * ↑(coord (Basis.mk hli hsp) k) (v k) = ↑↑(det e) (update v k (v k)) [PROOFSTEP] rw [Basis.mk_coord_apply_eq, mul_one, update_eq_self] [GOAL] case inl R : Type u_1 inst✝⁸ : CommRing R M : Type u_2 inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M M' : Type u_3 inst✝⁵ : AddCommGroup M' inst✝⁴ : Module R M' ι : Type u_4 inst✝³ : DecidableEq ι inst✝² : Fintype ι e : Basis ι R M A : Type u_5 inst✝¹ : CommRing A inst✝ : Module A M v : ι → M hli : LinearIndependent R v hsp : ⊤ ≤ span R (Set.range v) k : ι ⊢ ↑(det e) v = ↑↑(det e) v [PROOFSTEP] congr [GOAL] case inr R : Type u_1 inst✝⁸ : CommRing R M : Type u_2 inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M M' : Type u_3 inst✝⁵ : AddCommGroup M' inst✝⁴ : Module R M' ι : Type u_4 inst✝³ : DecidableEq ι inst✝² : Fintype ι e : Basis ι R M A : Type u_5 inst✝¹ : CommRing A inst✝ : Module A M v : ι → M hli : LinearIndependent R v hsp : ⊤ ≤ span R (Set.range v) i k : ι hik : k ≠ i ⊢ ↑(det e) v * ↑(coord (Basis.mk hli hsp) i) (v k) = ↑↑(det e) (update v i (v k)) [PROOFSTEP] rw [Basis.mk_coord_apply_ne hik, mul_zero, eq_comm] [GOAL] case inr R : Type u_1 inst✝⁸ : CommRing R M : Type u_2 inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M M' : Type u_3 inst✝⁵ : AddCommGroup M' inst✝⁴ : Module R M' ι : Type u_4 inst✝³ : DecidableEq ι inst✝² : Fintype ι e : Basis ι R M A : Type u_5 inst✝¹ : CommRing A inst✝ : Module A M v : ι → M hli : LinearIndependent R v hsp : ⊤ ≤ span R (Set.range v) i k : ι hik : k ≠ i ⊢ ↑↑(det e) (update v i (v k)) = 0 [PROOFSTEP] exact e.det.map_eq_zero_of_eq _ (by simp [hik, Function.update_apply]) hik [GOAL] R : Type u_1 inst✝⁸ : CommRing R M : Type u_2 inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M M' : Type u_3 inst✝⁵ : AddCommGroup M' inst✝⁴ : Module R M' ι : Type u_4 inst✝³ : DecidableEq ι inst✝² : Fintype ι e : Basis ι R M A : Type u_5 inst✝¹ : CommRing A inst✝ : Module A M v : ι → M hli : LinearIndependent R v hsp : ⊤ ≤ span R (Set.range v) i k : ι hik : k ≠ i ⊢ update v i (v k) k = update v i (v k) i [PROOFSTEP] simp [hik, Function.update_apply] [GOAL] R : Type u_1 inst✝⁸ : CommRing R M : Type u_2 inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M M' : Type u_3 inst✝⁵ : AddCommGroup M' inst✝⁴ : Module R M' ι : Type u_4 inst✝³ : DecidableEq ι inst✝² : Fintype ι e✝ : Basis ι R M A : Type u_5 inst✝¹ : CommRing A inst✝ : Module A M e : Basis ι R M w : ι → Rˣ ⊢ det (unitsSMul e w) = ↑(∏ i : ι, w i)⁻¹ • det e [PROOFSTEP] ext f [GOAL] case H R : Type u_1 inst✝⁸ : CommRing R M : Type u_2 inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M M' : Type u_3 inst✝⁵ : AddCommGroup M' inst✝⁴ : Module R M' ι : Type u_4 inst✝³ : DecidableEq ι inst✝² : Fintype ι e✝ : Basis ι R M A : Type u_5 inst✝¹ : CommRing A inst✝ : Module A M e : Basis ι R M w : ι → Rˣ f : ι → M ⊢ ↑(det (unitsSMul e w)) f = ↑(↑(∏ i : ι, w i)⁻¹ • det e) f [PROOFSTEP] change (Matrix.det fun i j => (e.unitsSMul w).repr (f j) i) = (↑(∏ i, w i)⁻¹ : R) • Matrix.det fun i j => e.repr (f j) i [GOAL] case H R : Type u_1 inst✝⁸ : CommRing R M : Type u_2 inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M M' : Type u_3 inst✝⁵ : AddCommGroup M' inst✝⁴ : Module R M' ι : Type u_4 inst✝³ : DecidableEq ι inst✝² : Fintype ι e✝ : Basis ι R M A : Type u_5 inst✝¹ : CommRing A inst✝ : Module A M e : Basis ι R M w : ι → Rˣ f : ι → M ⊢ (Matrix.det fun i j => ↑(↑(unitsSMul e w).repr (f j)) i) = ↑(∏ i : ι, w i)⁻¹ • Matrix.det fun i j => ↑(↑e.repr (f j)) i [PROOFSTEP] simp only [e.repr_unitsSMul] [GOAL] case H R : Type u_1 inst✝⁸ : CommRing R M : Type u_2 inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M M' : Type u_3 inst✝⁵ : AddCommGroup M' inst✝⁴ : Module R M' ι : Type u_4 inst✝³ : DecidableEq ι inst✝² : Fintype ι e✝ : Basis ι R M A : Type u_5 inst✝¹ : CommRing A inst✝ : Module A M e : Basis ι R M w : ι → Rˣ f : ι → M ⊢ (Matrix.det fun i j => (w i)⁻¹ • ↑(↑e.repr (f j)) i) = ↑(∏ i : ι, w i)⁻¹ • Matrix.det fun i j => ↑(↑e.repr (f j)) i [PROOFSTEP] convert Matrix.det_mul_column (fun i => (↑(w i)⁻¹ : R)) fun i j => e.repr (f j) i [GOAL] case h.e'_3.h.e'_1 R : Type u_1 inst✝⁸ : CommRing R M : Type u_2 inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M M' : Type u_3 inst✝⁵ : AddCommGroup M' inst✝⁴ : Module R M' ι : Type u_4 inst✝³ : DecidableEq ι inst✝² : Fintype ι e✝ : Basis ι R M A : Type u_5 inst✝¹ : CommRing A inst✝ : Module A M e : Basis ι R M w : ι → Rˣ f : ι → M ⊢ ↑(∏ i : ι, w i)⁻¹ = ∏ i : ι, ↑(w i)⁻¹ [PROOFSTEP] simp only [← Finset.prod_inv_distrib] -- Porting note: was `simp [← Finset.prod_inv_distrib]` [GOAL] case h.e'_3.h.e'_1 R : Type u_1 inst✝⁸ : CommRing R M : Type u_2 inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M M' : Type u_3 inst✝⁵ : AddCommGroup M' inst✝⁴ : Module R M' ι : Type u_4 inst✝³ : DecidableEq ι inst✝² : Fintype ι e✝ : Basis ι R M A : Type u_5 inst✝¹ : CommRing A inst✝ : Module A M e : Basis ι R M w : ι → Rˣ f : ι → M ⊢ ↑(∏ x : ι, (w x)⁻¹) = ∏ i : ι, ↑(w i)⁻¹ [PROOFSTEP] norm_cast [GOAL] R : Type u_1 inst✝⁸ : CommRing R M : Type u_2 inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M M' : Type u_3 inst✝⁵ : AddCommGroup M' inst✝⁴ : Module R M' ι : Type u_4 inst✝³ : DecidableEq ι inst✝² : Fintype ι e : Basis ι R M A : Type u_5 inst✝¹ : CommRing A inst✝ : Module A M w : ι → Rˣ ⊢ ↑(det e) ↑(unitsSMul e w) = ∏ i : ι, ↑(w i) [PROOFSTEP] simp [Basis.det_apply]
{"mathlib_filename": "Mathlib.LinearAlgebra.Determinant", "llama_tokens": 47443}
[GOAL] R : Type u inst✝⁶ : CommSemiring R M : Type v inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M ι : Type w inst✝³ : DecidableEq ι inst✝² : Fintype ι κ : Type u_1 inst✝¹ : DecidableEq κ inst✝ : Fintype κ b : Basis ι R M c : Basis κ R M f : M →ₗ[R] M ⊢ trace (↑(toMatrix b b) f) = trace (↑(toMatrix b b) (comp (comp id f) id)) [PROOFSTEP] rw [LinearMap.id_comp, LinearMap.comp_id] [GOAL] R : Type u inst✝⁶ : CommSemiring R M : Type v inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M ι : Type w inst✝³ : DecidableEq ι inst✝² : Fintype ι κ : Type u_1 inst✝¹ : DecidableEq κ inst✝ : Fintype κ b : Basis ι R M c : Basis κ R M f : M →ₗ[R] M ⊢ trace (↑(toMatrix b b) (comp (comp id f) id)) = trace (↑(toMatrix c b) id * ↑(toMatrix c c) f * ↑(toMatrix b c) id) [PROOFSTEP] rw [LinearMap.toMatrix_comp _ c, LinearMap.toMatrix_comp _ c] [GOAL] R : Type u inst✝⁶ : CommSemiring R M : Type v inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M ι : Type w inst✝³ : DecidableEq ι inst✝² : Fintype ι κ : Type u_1 inst✝¹ : DecidableEq κ inst✝ : Fintype κ b : Basis ι R M c : Basis κ R M f : M →ₗ[R] M ⊢ trace (↑(toMatrix c b) id * ↑(toMatrix c c) f * ↑(toMatrix b c) id) = trace (↑(toMatrix c c) f * ↑(toMatrix b c) id * ↑(toMatrix c b) id) [PROOFSTEP] rw [Matrix.mul_assoc, Matrix.trace_mul_comm] [GOAL] R : Type u inst✝⁶ : CommSemiring R M : Type v inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M ι : Type w inst✝³ : DecidableEq ι inst✝² : Fintype ι κ : Type u_1 inst✝¹ : DecidableEq κ inst✝ : Fintype κ b : Basis ι R M c : Basis κ R M f : M →ₗ[R] M ⊢ trace (↑(toMatrix c c) f * ↑(toMatrix b c) id * ↑(toMatrix c b) id) = trace (↑(toMatrix c c) (comp (comp f id) id)) [PROOFSTEP] rw [LinearMap.toMatrix_comp _ b, LinearMap.toMatrix_comp _ c] [GOAL] R : Type u inst✝⁶ : CommSemiring R M : Type v inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M ι : Type w inst✝³ : DecidableEq ι inst✝² : Fintype ι κ : Type u_1 inst✝¹ : DecidableEq κ inst✝ : Fintype κ b : Basis ι R M c : Basis κ R M f : M →ₗ[R] M ⊢ trace (↑(toMatrix c c) (comp (comp f id) id)) = trace (↑(toMatrix c c) f) [PROOFSTEP] rw [LinearMap.comp_id, LinearMap.comp_id] [GOAL] R : Type u inst✝⁶ : CommSemiring R M : Type v inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M ι : Type w inst✝³ : DecidableEq ι inst✝² : Fintype ι κ : Type u_1 inst✝¹ : DecidableEq κ inst✝ : Fintype κ b✝ : Basis ι R M c : Basis κ R M s : Finset M b : Basis { x // x ∈ s } R M f : M →ₗ[R] M ⊢ ↑(trace R M) f = Matrix.trace (↑(toMatrix b b) f) [PROOFSTEP] have : ∃ s : Finset M, Nonempty (Basis s R M) := ⟨s, ⟨b⟩⟩ [GOAL] R : Type u inst✝⁶ : CommSemiring R M : Type v inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M ι : Type w inst✝³ : DecidableEq ι inst✝² : Fintype ι κ : Type u_1 inst✝¹ : DecidableEq κ inst✝ : Fintype κ b✝ : Basis ι R M c : Basis κ R M s : Finset M b : Basis { x // x ∈ s } R M f : M →ₗ[R] M this : ∃ s, Nonempty (Basis { x // x ∈ s } R M) ⊢ ↑(trace R M) f = Matrix.trace (↑(toMatrix b b) f) [PROOFSTEP] rw [trace, dif_pos this, ← traceAux_def] [GOAL] R : Type u inst✝⁶ : CommSemiring R M : Type v inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M ι : Type w inst✝³ : DecidableEq ι inst✝² : Fintype ι κ : Type u_1 inst✝¹ : DecidableEq κ inst✝ : Fintype κ b✝ : Basis ι R M c : Basis κ R M s : Finset M b : Basis { x // x ∈ s } R M f : M →ₗ[R] M this : ∃ s, Nonempty (Basis { x // x ∈ s } R M) ⊢ ↑(traceAux R (Nonempty.some (_ : Nonempty (Basis { x // x ∈ Exists.choose this } R M)))) f = ↑(traceAux R b) f [PROOFSTEP] congr 1 [GOAL] case e_a R : Type u inst✝⁶ : CommSemiring R M : Type v inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M ι : Type w inst✝³ : DecidableEq ι inst✝² : Fintype ι κ : Type u_1 inst✝¹ : DecidableEq κ inst✝ : Fintype κ b✝ : Basis ι R M c : Basis κ R M s : Finset M b : Basis { x // x ∈ s } R M f : M →ₗ[R] M this : ∃ s, Nonempty (Basis { x // x ∈ s } R M) ⊢ traceAux R (Nonempty.some (_ : Nonempty (Basis { x // x ∈ Exists.choose this } R M))) = traceAux R b [PROOFSTEP] apply traceAux_eq [GOAL] R : Type u inst✝⁶ : CommSemiring R M : Type v inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M ι : Type w inst✝³ : DecidableEq ι inst✝² : Fintype ι κ : Type u_1 inst✝¹ : DecidableEq κ inst✝ : Fintype κ b : Basis ι R M c : Basis κ R M f : M →ₗ[R] M ⊢ ↑(trace R M) f = Matrix.trace (↑(toMatrix b b) f) [PROOFSTEP] rw [trace_eq_matrix_trace_of_finset R b.reindexFinsetRange, ← traceAux_def, ← traceAux_def, traceAux_eq R b b.reindexFinsetRange] [GOAL] R : Type u inst✝⁶ : CommSemiring R M : Type v inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M ι : Type w inst✝³ : DecidableEq ι inst✝² : Fintype ι κ : Type u_1 inst✝¹ : DecidableEq κ inst✝ : Fintype κ b : Basis ι R M c : Basis κ R M f g : M →ₗ[R] M H : ∃ s, Nonempty (Basis { x // x ∈ s } R M) ⊢ ↑(trace R M) (f * g) = ↑(trace R M) (g * f) [PROOFSTEP] let ⟨s, ⟨b⟩⟩ := H [GOAL] R : Type u inst✝⁶ : CommSemiring R M : Type v inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M ι : Type w inst✝³ : DecidableEq ι inst✝² : Fintype ι κ : Type u_1 inst✝¹ : DecidableEq κ inst✝ : Fintype κ b✝ : Basis ι R M c : Basis κ R M f g : M →ₗ[R] M H : ∃ s, Nonempty (Basis { x // x ∈ s } R M) s : Finset M b : Basis { x // x ∈ s } R M ⊢ ↑(trace R M) (f * g) = ↑(trace R M) (g * f) [PROOFSTEP] simp_rw [trace_eq_matrix_trace R b, LinearMap.toMatrix_mul] [GOAL] R : Type u inst✝⁶ : CommSemiring R M : Type v inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M ι : Type w inst✝³ : DecidableEq ι inst✝² : Fintype ι κ : Type u_1 inst✝¹ : DecidableEq κ inst✝ : Fintype κ b✝ : Basis ι R M c : Basis κ R M f g : M →ₗ[R] M H : ∃ s, Nonempty (Basis { x // x ∈ s } R M) s : Finset M b : Basis { x // x ∈ s } R M ⊢ Matrix.trace (↑(toMatrix b b) f * ↑(toMatrix b b) g) = Matrix.trace (↑(toMatrix b b) g * ↑(toMatrix b b) f) [PROOFSTEP] apply Matrix.trace_mul_comm [GOAL] R : Type u inst✝⁶ : CommSemiring R M : Type v inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M ι : Type w inst✝³ : DecidableEq ι inst✝² : Fintype ι κ : Type u_1 inst✝¹ : DecidableEq κ inst✝ : Fintype κ b : Basis ι R M c : Basis κ R M f g : M →ₗ[R] M H : ¬∃ s, Nonempty (Basis { x // x ∈ s } R M) ⊢ ↑(trace R M) (f * g) = ↑(trace R M) (g * f) [PROOFSTEP] rw [trace, dif_neg H, LinearMap.zero_apply, LinearMap.zero_apply] [GOAL] R : Type u inst✝⁶ : CommSemiring R M : Type v inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M ι : Type w inst✝³ : DecidableEq ι inst✝² : Fintype ι κ : Type u_1 inst✝¹ : DecidableEq κ inst✝ : Fintype κ b : Basis ι R M c : Basis κ R M f g h : M →ₗ[R] M ⊢ ↑(trace R M) (f * g * h) = ↑(trace R M) (h * f * g) [PROOFSTEP] rw [LinearMap.trace_mul_comm, ← mul_assoc] [GOAL] R : Type u inst✝⁶ : CommSemiring R M : Type v inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M ι : Type w inst✝³ : DecidableEq ι inst✝² : Fintype ι κ : Type u_1 inst✝¹ : DecidableEq κ inst✝ : Fintype κ b : Basis ι R M c : Basis κ R M f g h : M →ₗ[R] M ⊢ ↑(trace R M) (f * (g * h)) = ↑(trace R M) (h * (f * g)) [PROOFSTEP] rw [← mul_assoc, LinearMap.trace_mul_comm] [GOAL] R : Type u inst✝⁶ : CommSemiring R M : Type v inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M ι : Type w inst✝³ : DecidableEq ι inst✝² : Fintype ι κ : Type u_1 inst✝¹ : DecidableEq κ inst✝ : Fintype κ b : Basis ι R M c : Basis κ R M g : M →ₗ[R] M f : (M →ₗ[R] M)ˣ ⊢ ↑(trace R M) (↑f * g * ↑f⁻¹) = ↑(trace R M) g [PROOFSTEP] rw [trace_mul_comm] [GOAL] R : Type u inst✝⁶ : CommSemiring R M : Type v inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M ι : Type w inst✝³ : DecidableEq ι inst✝² : Fintype ι κ : Type u_1 inst✝¹ : DecidableEq κ inst✝ : Fintype κ b : Basis ι R M c : Basis κ R M g : M →ₗ[R] M f : (M →ₗ[R] M)ˣ ⊢ ↑(trace R M) (↑f⁻¹ * (↑f * g)) = ↑(trace R M) g [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝⁷ : CommRing R M : Type u_2 inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M N : Type u_3 P : Type u_4 inst✝⁴ : AddCommGroup N inst✝³ : Module R N inst✝² : AddCommGroup P inst✝¹ : Module R P ι : Type u_5 inst✝ : Finite ι b : Basis ι R M ⊢ comp (trace R M) (dualTensorHom R M M) = contractLeft R M [PROOFSTEP] classical cases nonempty_fintype ι apply Basis.ext (Basis.tensorProduct (Basis.dualBasis b) b) rintro ⟨i, j⟩ simp only [Function.comp_apply, Basis.tensorProduct_apply, Basis.coe_dualBasis, coe_comp] rw [trace_eq_matrix_trace R b, toMatrix_dualTensorHom] by_cases hij : i = j · rw [hij] simp rw [Matrix.StdBasisMatrix.trace_zero j i (1 : R) hij] simp [Finsupp.single_eq_pi_single, hij] [GOAL] R : Type u_1 inst✝⁷ : CommRing R M : Type u_2 inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M N : Type u_3 P : Type u_4 inst✝⁴ : AddCommGroup N inst✝³ : Module R N inst✝² : AddCommGroup P inst✝¹ : Module R P ι : Type u_5 inst✝ : Finite ι b : Basis ι R M ⊢ comp (trace R M) (dualTensorHom R M M) = contractLeft R M [PROOFSTEP] cases nonempty_fintype ι [GOAL] case intro R : Type u_1 inst✝⁷ : CommRing R M : Type u_2 inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M N : Type u_3 P : Type u_4 inst✝⁴ : AddCommGroup N inst✝³ : Module R N inst✝² : AddCommGroup P inst✝¹ : Module R P ι : Type u_5 inst✝ : Finite ι b : Basis ι R M val✝ : Fintype ι ⊢ comp (trace R M) (dualTensorHom R M M) = contractLeft R M [PROOFSTEP] apply Basis.ext (Basis.tensorProduct (Basis.dualBasis b) b) [GOAL] case intro R : Type u_1 inst✝⁷ : CommRing R M : Type u_2 inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M N : Type u_3 P : Type u_4 inst✝⁴ : AddCommGroup N inst✝³ : Module R N inst✝² : AddCommGroup P inst✝¹ : Module R P ι : Type u_5 inst✝ : Finite ι b : Basis ι R M val✝ : Fintype ι ⊢ ∀ (i : ι × ι), ↑(comp (trace R M) (dualTensorHom R M M)) (↑(Basis.tensorProduct (Basis.dualBasis b) b) i) = ↑(contractLeft R M) (↑(Basis.tensorProduct (Basis.dualBasis b) b) i) [PROOFSTEP] rintro ⟨i, j⟩ [GOAL] case intro.mk R : Type u_1 inst✝⁷ : CommRing R M : Type u_2 inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M N : Type u_3 P : Type u_4 inst✝⁴ : AddCommGroup N inst✝³ : Module R N inst✝² : AddCommGroup P inst✝¹ : Module R P ι : Type u_5 inst✝ : Finite ι b : Basis ι R M val✝ : Fintype ι i j : ι ⊢ ↑(comp (trace R M) (dualTensorHom R M M)) (↑(Basis.tensorProduct (Basis.dualBasis b) b) (i, j)) = ↑(contractLeft R M) (↑(Basis.tensorProduct (Basis.dualBasis b) b) (i, j)) [PROOFSTEP] simp only [Function.comp_apply, Basis.tensorProduct_apply, Basis.coe_dualBasis, coe_comp] [GOAL] case intro.mk R : Type u_1 inst✝⁷ : CommRing R M : Type u_2 inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M N : Type u_3 P : Type u_4 inst✝⁴ : AddCommGroup N inst✝³ : Module R N inst✝² : AddCommGroup P inst✝¹ : Module R P ι : Type u_5 inst✝ : Finite ι b : Basis ι R M val✝ : Fintype ι i j : ι ⊢ ↑(trace R M) (↑(dualTensorHom R M M) (Basis.coord b i ⊗ₜ[R] ↑b j)) = ↑(contractLeft R M) (Basis.coord b i ⊗ₜ[R] ↑b j) [PROOFSTEP] rw [trace_eq_matrix_trace R b, toMatrix_dualTensorHom] [GOAL] case intro.mk R : Type u_1 inst✝⁷ : CommRing R M : Type u_2 inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M N : Type u_3 P : Type u_4 inst✝⁴ : AddCommGroup N inst✝³ : Module R N inst✝² : AddCommGroup P inst✝¹ : Module R P ι : Type u_5 inst✝ : Finite ι b : Basis ι R M val✝ : Fintype ι i j : ι ⊢ Matrix.trace (stdBasisMatrix j i 1) = ↑(contractLeft R M) (Basis.coord b i ⊗ₜ[R] ↑b j) [PROOFSTEP] by_cases hij : i = j [GOAL] case pos R : Type u_1 inst✝⁷ : CommRing R M : Type u_2 inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M N : Type u_3 P : Type u_4 inst✝⁴ : AddCommGroup N inst✝³ : Module R N inst✝² : AddCommGroup P inst✝¹ : Module R P ι : Type u_5 inst✝ : Finite ι b : Basis ι R M val✝ : Fintype ι i j : ι hij : i = j ⊢ Matrix.trace (stdBasisMatrix j i 1) = ↑(contractLeft R M) (Basis.coord b i ⊗ₜ[R] ↑b j) [PROOFSTEP] rw [hij] [GOAL] case pos R : Type u_1 inst✝⁷ : CommRing R M : Type u_2 inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M N : Type u_3 P : Type u_4 inst✝⁴ : AddCommGroup N inst✝³ : Module R N inst✝² : AddCommGroup P inst✝¹ : Module R P ι : Type u_5 inst✝ : Finite ι b : Basis ι R M val✝ : Fintype ι i j : ι hij : i = j ⊢ Matrix.trace (stdBasisMatrix j j 1) = ↑(contractLeft R M) (Basis.coord b j ⊗ₜ[R] ↑b j) [PROOFSTEP] simp [GOAL] case neg R : Type u_1 inst✝⁷ : CommRing R M : Type u_2 inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M N : Type u_3 P : Type u_4 inst✝⁴ : AddCommGroup N inst✝³ : Module R N inst✝² : AddCommGroup P inst✝¹ : Module R P ι : Type u_5 inst✝ : Finite ι b : Basis ι R M val✝ : Fintype ι i j : ι hij : ¬i = j ⊢ Matrix.trace (stdBasisMatrix j i 1) = ↑(contractLeft R M) (Basis.coord b i ⊗ₜ[R] ↑b j) [PROOFSTEP] rw [Matrix.StdBasisMatrix.trace_zero j i (1 : R) hij] [GOAL] case neg R : Type u_1 inst✝⁷ : CommRing R M : Type u_2 inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M N : Type u_3 P : Type u_4 inst✝⁴ : AddCommGroup N inst✝³ : Module R N inst✝² : AddCommGroup P inst✝¹ : Module R P ι : Type u_5 inst✝ : Finite ι b : Basis ι R M val✝ : Fintype ι i j : ι hij : ¬i = j ⊢ 0 = ↑(contractLeft R M) (Basis.coord b i ⊗ₜ[R] ↑b j) [PROOFSTEP] simp [Finsupp.single_eq_pi_single, hij] [GOAL] R : Type u_1 inst✝⁸ : CommRing R M : Type u_2 inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M N : Type u_3 P : Type u_4 inst✝⁵ : AddCommGroup N inst✝⁴ : Module R N inst✝³ : AddCommGroup P inst✝² : Module R P ι : Type u_5 inst✝¹ : Fintype ι inst✝ : DecidableEq ι b : Basis ι R M ⊢ trace R M = comp (contractLeft R M) ↑(LinearEquiv.symm (dualTensorHomEquivOfBasis b)) [PROOFSTEP] simp [LinearEquiv.eq_comp_toLinearMap_symm, trace_eq_contract_of_basis b] [GOAL] R : Type u_1 inst✝¹² : CommRing R M : Type u_2 inst✝¹¹ : AddCommGroup M inst✝¹⁰ : Module R M N : Type u_3 P : Type u_4 inst✝⁹ : AddCommGroup N inst✝⁸ : Module R N inst✝⁷ : AddCommGroup P inst✝⁶ : Module R P ι : Type u_5 inst✝⁵ : Module.Free R M inst✝⁴ : Module.Finite R M inst✝³ : Module.Free R N inst✝² : Module.Finite R N inst✝¹ : Module.Free R P inst✝ : Module.Finite R P x : Module.Dual R M ⊗[R] M ⊢ ↑(trace R M) (↑(dualTensorHom R M M) x) = ↑(contractLeft R M) x [PROOFSTEP] rw [← comp_apply, trace_eq_contract] [GOAL] R : Type u_1 inst✝¹² : CommRing R M : Type u_2 inst✝¹¹ : AddCommGroup M inst✝¹⁰ : Module R M N : Type u_3 P : Type u_4 inst✝⁹ : AddCommGroup N inst✝⁸ : Module R N inst✝⁷ : AddCommGroup P inst✝⁶ : Module R P ι : Type u_5 inst✝⁵ : Module.Free R M inst✝⁴ : Module.Finite R M inst✝³ : Module.Free R N inst✝² : Module.Finite R N inst✝¹ : Module.Free R P inst✝ : Module.Finite R P ⊢ ↑(trace R M) 1 = ↑(finrank R M) [PROOFSTEP] cases subsingleton_or_nontrivial R [GOAL] case inl R : Type u_1 inst✝¹² : CommRing R M : Type u_2 inst✝¹¹ : AddCommGroup M inst✝¹⁰ : Module R M N : Type u_3 P : Type u_4 inst✝⁹ : AddCommGroup N inst✝⁸ : Module R N inst✝⁷ : AddCommGroup P inst✝⁶ : Module R P ι : Type u_5 inst✝⁵ : Module.Free R M inst✝⁴ : Module.Finite R M inst✝³ : Module.Free R N inst✝² : Module.Finite R N inst✝¹ : Module.Free R P inst✝ : Module.Finite R P h✝ : Subsingleton R ⊢ ↑(trace R M) 1 = ↑(finrank R M) case inr R : Type u_1 inst✝¹² : CommRing R M : Type u_2 inst✝¹¹ : AddCommGroup M inst✝¹⁰ : Module R M N : Type u_3 P : Type u_4 inst✝⁹ : AddCommGroup N inst✝⁸ : Module R N inst✝⁷ : AddCommGroup P inst✝⁶ : Module R P ι : Type u_5 inst✝⁵ : Module.Free R M inst✝⁴ : Module.Finite R M inst✝³ : Module.Free R N inst✝² : Module.Finite R N inst✝¹ : Module.Free R P inst✝ : Module.Finite R P h✝ : Nontrivial R ⊢ ↑(trace R M) 1 = ↑(finrank R M) [PROOFSTEP] simp [GOAL] case inr R : Type u_1 inst✝¹² : CommRing R M : Type u_2 inst✝¹¹ : AddCommGroup M inst✝¹⁰ : Module R M N : Type u_3 P : Type u_4 inst✝⁹ : AddCommGroup N inst✝⁸ : Module R N inst✝⁷ : AddCommGroup P inst✝⁶ : Module R P ι : Type u_5 inst✝⁵ : Module.Free R M inst✝⁴ : Module.Finite R M inst✝³ : Module.Free R N inst✝² : Module.Finite R N inst✝¹ : Module.Free R P inst✝ : Module.Finite R P h✝ : Nontrivial R ⊢ ↑(trace R M) 1 = ↑(finrank R M) [PROOFSTEP] have b := Module.Free.chooseBasis R M [GOAL] case inr R : Type u_1 inst✝¹² : CommRing R M : Type u_2 inst✝¹¹ : AddCommGroup M inst✝¹⁰ : Module R M N : Type u_3 P : Type u_4 inst✝⁹ : AddCommGroup N inst✝⁸ : Module R N inst✝⁷ : AddCommGroup P inst✝⁶ : Module R P ι : Type u_5 inst✝⁵ : Module.Free R M inst✝⁴ : Module.Finite R M inst✝³ : Module.Free R N inst✝² : Module.Finite R N inst✝¹ : Module.Free R P inst✝ : Module.Finite R P h✝ : Nontrivial R b : Basis (Module.Free.ChooseBasisIndex R M) R M ⊢ ↑(trace R M) 1 = ↑(finrank R M) [PROOFSTEP] rw [trace_eq_matrix_trace R b, toMatrix_one, finrank_eq_card_chooseBasisIndex] [GOAL] case inr R : Type u_1 inst✝¹² : CommRing R M : Type u_2 inst✝¹¹ : AddCommGroup M inst✝¹⁰ : Module R M N : Type u_3 P : Type u_4 inst✝⁹ : AddCommGroup N inst✝⁸ : Module R N inst✝⁷ : AddCommGroup P inst✝⁶ : Module R P ι : Type u_5 inst✝⁵ : Module.Free R M inst✝⁴ : Module.Finite R M inst✝³ : Module.Free R N inst✝² : Module.Finite R N inst✝¹ : Module.Free R P inst✝ : Module.Finite R P h✝ : Nontrivial R b : Basis (Module.Free.ChooseBasisIndex R M) R M ⊢ Matrix.trace 1 = ↑(Fintype.card (Module.Free.ChooseBasisIndex R M)) [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝¹² : CommRing R M : Type u_2 inst✝¹¹ : AddCommGroup M inst✝¹⁰ : Module R M N : Type u_3 P : Type u_4 inst✝⁹ : AddCommGroup N inst✝⁸ : Module R N inst✝⁷ : AddCommGroup P inst✝⁶ : Module R P ι : Type u_5 inst✝⁵ : Module.Free R M inst✝⁴ : Module.Finite R M inst✝³ : Module.Free R N inst✝² : Module.Finite R N inst✝¹ : Module.Free R P inst✝ : Module.Finite R P ⊢ ↑(trace R M) id = ↑(finrank R M) [PROOFSTEP] rw [← one_eq_id, trace_one] [GOAL] R : Type u_1 inst✝¹² : CommRing R M : Type u_2 inst✝¹¹ : AddCommGroup M inst✝¹⁰ : Module R M N : Type u_3 P : Type u_4 inst✝⁹ : AddCommGroup N inst✝⁸ : Module R N inst✝⁷ : AddCommGroup P inst✝⁶ : Module R P ι : Type u_5 inst✝⁵ : Module.Free R M inst✝⁴ : Module.Finite R M inst✝³ : Module.Free R N inst✝² : Module.Finite R N inst✝¹ : Module.Free R P inst✝ : Module.Finite R P ⊢ comp (trace R (Module.Dual R M)) Module.Dual.transpose = trace R M [PROOFSTEP] let e := dualTensorHomEquiv R M M [GOAL] R : Type u_1 inst✝¹² : CommRing R M : Type u_2 inst✝¹¹ : AddCommGroup M inst✝¹⁰ : Module R M N : Type u_3 P : Type u_4 inst✝⁹ : AddCommGroup N inst✝⁸ : Module R N inst✝⁷ : AddCommGroup P inst✝⁶ : Module R P ι : Type u_5 inst✝⁵ : Module.Free R M inst✝⁴ : Module.Finite R M inst✝³ : Module.Free R N inst✝² : Module.Finite R N inst✝¹ : Module.Free R P inst✝ : Module.Finite R P e : Module.Dual R M ⊗[R] M ≃ₗ[R] M →ₗ[R] M := dualTensorHomEquiv R M M ⊢ comp (trace R (Module.Dual R M)) Module.Dual.transpose = trace R M [PROOFSTEP] have h : Function.Surjective e.toLinearMap := e.surjective [GOAL] R : Type u_1 inst✝¹² : CommRing R M : Type u_2 inst✝¹¹ : AddCommGroup M inst✝¹⁰ : Module R M N : Type u_3 P : Type u_4 inst✝⁹ : AddCommGroup N inst✝⁸ : Module R N inst✝⁷ : AddCommGroup P inst✝⁶ : Module R P ι : Type u_5 inst✝⁵ : Module.Free R M inst✝⁴ : Module.Finite R M inst✝³ : Module.Free R N inst✝² : Module.Finite R N inst✝¹ : Module.Free R P inst✝ : Module.Finite R P e : Module.Dual R M ⊗[R] M ≃ₗ[R] M →ₗ[R] M := dualTensorHomEquiv R M M h : Function.Surjective ↑↑e ⊢ comp (trace R (Module.Dual R M)) Module.Dual.transpose = trace R M [PROOFSTEP] refine' (cancel_right h).1 _ [GOAL] R : Type u_1 inst✝¹² : CommRing R M : Type u_2 inst✝¹¹ : AddCommGroup M inst✝¹⁰ : Module R M N : Type u_3 P : Type u_4 inst✝⁹ : AddCommGroup N inst✝⁸ : Module R N inst✝⁷ : AddCommGroup P inst✝⁶ : Module R P ι : Type u_5 inst✝⁵ : Module.Free R M inst✝⁴ : Module.Finite R M inst✝³ : Module.Free R N inst✝² : Module.Finite R N inst✝¹ : Module.Free R P inst✝ : Module.Finite R P e : Module.Dual R M ⊗[R] M ≃ₗ[R] M →ₗ[R] M := dualTensorHomEquiv R M M h : Function.Surjective ↑↑e ⊢ comp (comp (trace R (Module.Dual R M)) Module.Dual.transpose) ↑e = comp (trace R M) ↑e [PROOFSTEP] ext f m [GOAL] case a.h.h R : Type u_1 inst✝¹² : CommRing R M : Type u_2 inst✝¹¹ : AddCommGroup M inst✝¹⁰ : Module R M N : Type u_3 P : Type u_4 inst✝⁹ : AddCommGroup N inst✝⁸ : Module R N inst✝⁷ : AddCommGroup P inst✝⁶ : Module R P ι : Type u_5 inst✝⁵ : Module.Free R M inst✝⁴ : Module.Finite R M inst✝³ : Module.Free R N inst✝² : Module.Finite R N inst✝¹ : Module.Free R P inst✝ : Module.Finite R P e : Module.Dual R M ⊗[R] M ≃ₗ[R] M →ₗ[R] M := dualTensorHomEquiv R M M h : Function.Surjective ↑↑e f : Module.Dual R M m : M ⊢ ↑(↑(AlgebraTensorModule.curry (comp (comp (trace R (Module.Dual R M)) Module.Dual.transpose) ↑e)) f) m = ↑(↑(AlgebraTensorModule.curry (comp (trace R M) ↑e)) f) m [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝¹² : CommRing R M : Type u_2 inst✝¹¹ : AddCommGroup M inst✝¹⁰ : Module R M N : Type u_3 P : Type u_4 inst✝⁹ : AddCommGroup N inst✝⁸ : Module R N inst✝⁷ : AddCommGroup P inst✝⁶ : Module R P ι : Type u_5 inst✝⁵ : Module.Free R M inst✝⁴ : Module.Finite R M inst✝³ : Module.Free R N inst✝² : Module.Finite R N inst✝¹ : Module.Free R P inst✝ : Module.Finite R P ⊢ comp (trace R (M × N)) (prodMapLinear R M N M N R) = comp (coprod id id) (prodMap (trace R M) (trace R N)) [PROOFSTEP] let e := (dualTensorHomEquiv R M M).prod (dualTensorHomEquiv R N N) [GOAL] R : Type u_1 inst✝¹² : CommRing R M : Type u_2 inst✝¹¹ : AddCommGroup M inst✝¹⁰ : Module R M N : Type u_3 P : Type u_4 inst✝⁹ : AddCommGroup N inst✝⁸ : Module R N inst✝⁷ : AddCommGroup P inst✝⁶ : Module R P ι : Type u_5 inst✝⁵ : Module.Free R M inst✝⁴ : Module.Finite R M inst✝³ : Module.Free R N inst✝² : Module.Finite R N inst✝¹ : Module.Free R P inst✝ : Module.Finite R P e : (Module.Dual R M ⊗[R] M × Module.Dual R N ⊗[R] N) ≃ₗ[R] (M →ₗ[R] M) × (N →ₗ[R] N) := LinearEquiv.prod (dualTensorHomEquiv R M M) (dualTensorHomEquiv R N N) ⊢ comp (trace R (M × N)) (prodMapLinear R M N M N R) = comp (coprod id id) (prodMap (trace R M) (trace R N)) [PROOFSTEP] have h : Function.Surjective e.toLinearMap := e.surjective [GOAL] R : Type u_1 inst✝¹² : CommRing R M : Type u_2 inst✝¹¹ : AddCommGroup M inst✝¹⁰ : Module R M N : Type u_3 P : Type u_4 inst✝⁹ : AddCommGroup N inst✝⁸ : Module R N inst✝⁷ : AddCommGroup P inst✝⁶ : Module R P ι : Type u_5 inst✝⁵ : Module.Free R M inst✝⁴ : Module.Finite R M inst✝³ : Module.Free R N inst✝² : Module.Finite R N inst✝¹ : Module.Free R P inst✝ : Module.Finite R P e : (Module.Dual R M ⊗[R] M × Module.Dual R N ⊗[R] N) ≃ₗ[R] (M →ₗ[R] M) × (N →ₗ[R] N) := LinearEquiv.prod (dualTensorHomEquiv R M M) (dualTensorHomEquiv R N N) h : Function.Surjective ↑↑e ⊢ comp (trace R (M × N)) (prodMapLinear R M N M N R) = comp (coprod id id) (prodMap (trace R M) (trace R N)) [PROOFSTEP] refine' (cancel_right h).1 _ [GOAL] R : Type u_1 inst✝¹² : CommRing R M : Type u_2 inst✝¹¹ : AddCommGroup M inst✝¹⁰ : Module R M N : Type u_3 P : Type u_4 inst✝⁹ : AddCommGroup N inst✝⁸ : Module R N inst✝⁷ : AddCommGroup P inst✝⁶ : Module R P ι : Type u_5 inst✝⁵ : Module.Free R M inst✝⁴ : Module.Finite R M inst✝³ : Module.Free R N inst✝² : Module.Finite R N inst✝¹ : Module.Free R P inst✝ : Module.Finite R P e : (Module.Dual R M ⊗[R] M × Module.Dual R N ⊗[R] N) ≃ₗ[R] (M →ₗ[R] M) × (N →ₗ[R] N) := LinearEquiv.prod (dualTensorHomEquiv R M M) (dualTensorHomEquiv R N N) h : Function.Surjective ↑↑e ⊢ comp (comp (trace R (M × N)) (prodMapLinear R M N M N R)) ↑e = comp (comp (coprod id id) (prodMap (trace R M) (trace R N))) ↑e [PROOFSTEP] ext [GOAL] case hl.a.h.h R : Type u_1 inst✝¹² : CommRing R M : Type u_2 inst✝¹¹ : AddCommGroup M inst✝¹⁰ : Module R M N : Type u_3 P : Type u_4 inst✝⁹ : AddCommGroup N inst✝⁸ : Module R N inst✝⁷ : AddCommGroup P inst✝⁶ : Module R P ι : Type u_5 inst✝⁵ : Module.Free R M inst✝⁴ : Module.Finite R M inst✝³ : Module.Free R N inst✝² : Module.Finite R N inst✝¹ : Module.Free R P inst✝ : Module.Finite R P e : (Module.Dual R M ⊗[R] M × Module.Dual R N ⊗[R] N) ≃ₗ[R] (M →ₗ[R] M) × (N →ₗ[R] N) := LinearEquiv.prod (dualTensorHomEquiv R M M) (dualTensorHomEquiv R N N) h : Function.Surjective ↑↑e x✝¹ : Module.Dual R M x✝ : M ⊢ ↑(↑(AlgebraTensorModule.curry (comp (comp (comp (trace R (M × N)) (prodMapLinear R M N M N R)) ↑e) (inl R (Module.Dual R M ⊗[R] M) (Module.Dual R N ⊗[R] N)))) x✝¹) x✝ = ↑(↑(AlgebraTensorModule.curry (comp (comp (comp (coprod id id) (prodMap (trace R M) (trace R N))) ↑e) (inl R (Module.Dual R M ⊗[R] M) (Module.Dual R N ⊗[R] N)))) x✝¹) x✝ [PROOFSTEP] simp only [dualTensorHomEquiv, LinearEquiv.coe_prod, dualTensorHomEquivOfBasis_toLinearMap, AlgebraTensorModule.curry_apply, curry_apply, coe_restrictScalars, coe_comp, coe_inl, Function.comp_apply, prodMap_apply, map_zero, prodMapLinear_apply, dualTensorHom_prodMap_zero, trace_eq_contract_apply, contractLeft_apply, fst_apply, coprod_apply, id_coe, id_eq, add_zero] [GOAL] case hr.a.h.h R : Type u_1 inst✝¹² : CommRing R M : Type u_2 inst✝¹¹ : AddCommGroup M inst✝¹⁰ : Module R M N : Type u_3 P : Type u_4 inst✝⁹ : AddCommGroup N inst✝⁸ : Module R N inst✝⁷ : AddCommGroup P inst✝⁶ : Module R P ι : Type u_5 inst✝⁵ : Module.Free R M inst✝⁴ : Module.Finite R M inst✝³ : Module.Free R N inst✝² : Module.Finite R N inst✝¹ : Module.Free R P inst✝ : Module.Finite R P e : (Module.Dual R M ⊗[R] M × Module.Dual R N ⊗[R] N) ≃ₗ[R] (M →ₗ[R] M) × (N →ₗ[R] N) := LinearEquiv.prod (dualTensorHomEquiv R M M) (dualTensorHomEquiv R N N) h : Function.Surjective ↑↑e x✝¹ : Module.Dual R N x✝ : N ⊢ ↑(↑(AlgebraTensorModule.curry (comp (comp (comp (trace R (M × N)) (prodMapLinear R M N M N R)) ↑e) (inr R (Module.Dual R M ⊗[R] M) (Module.Dual R N ⊗[R] N)))) x✝¹) x✝ = ↑(↑(AlgebraTensorModule.curry (comp (comp (comp (coprod id id) (prodMap (trace R M) (trace R N))) ↑e) (inr R (Module.Dual R M ⊗[R] M) (Module.Dual R N ⊗[R] N)))) x✝¹) x✝ [PROOFSTEP] simp only [dualTensorHomEquiv, LinearEquiv.coe_prod, dualTensorHomEquivOfBasis_toLinearMap, AlgebraTensorModule.curry_apply, curry_apply, coe_restrictScalars, coe_comp, coe_inr, Function.comp_apply, prodMap_apply, map_zero, prodMapLinear_apply, zero_prodMap_dualTensorHom, trace_eq_contract_apply, contractLeft_apply, snd_apply, coprod_apply, id_coe, id_eq, zero_add] [GOAL] R : Type u_1 inst✝¹² : CommRing R M : Type u_2 inst✝¹¹ : AddCommGroup M inst✝¹⁰ : Module R M N : Type u_3 P : Type u_4 inst✝⁹ : AddCommGroup N inst✝⁸ : Module R N inst✝⁷ : AddCommGroup P inst✝⁶ : Module R P ι : Type u_5 inst✝⁵ : Module.Free R M inst✝⁴ : Module.Finite R M inst✝³ : Module.Free R N inst✝² : Module.Finite R N inst✝¹ : Module.Free R P inst✝ : Module.Finite R P f : M →ₗ[R] M g : N →ₗ[R] N ⊢ ↑(trace R (M × N)) (prodMap f g) = ↑(trace R M) f + ↑(trace R N) g [PROOFSTEP] have h := ext_iff.1 (trace_prodMap R M N) (f, g) [GOAL] R : Type u_1 inst✝¹² : CommRing R M : Type u_2 inst✝¹¹ : AddCommGroup M inst✝¹⁰ : Module R M N : Type u_3 P : Type u_4 inst✝⁹ : AddCommGroup N inst✝⁸ : Module R N inst✝⁷ : AddCommGroup P inst✝⁶ : Module R P ι : Type u_5 inst✝⁵ : Module.Free R M inst✝⁴ : Module.Finite R M inst✝³ : Module.Free R N inst✝² : Module.Finite R N inst✝¹ : Module.Free R P inst✝ : Module.Finite R P f : M →ₗ[R] M g : N →ₗ[R] N h : ↑(comp (trace R (M × N)) (prodMapLinear R M N M N R)) (f, g) = ↑(comp (coprod id id) (prodMap (trace R M) (trace R N))) (f, g) ⊢ ↑(trace R (M × N)) (prodMap f g) = ↑(trace R M) f + ↑(trace R N) g [PROOFSTEP] simp only [coe_comp, Function.comp_apply, prodMap_apply, coprod_apply, id_coe, id.def, prodMapLinear_apply] at h [GOAL] R : Type u_1 inst✝¹² : CommRing R M : Type u_2 inst✝¹¹ : AddCommGroup M inst✝¹⁰ : Module R M N : Type u_3 P : Type u_4 inst✝⁹ : AddCommGroup N inst✝⁸ : Module R N inst✝⁷ : AddCommGroup P inst✝⁶ : Module R P ι : Type u_5 inst✝⁵ : Module.Free R M inst✝⁴ : Module.Finite R M inst✝³ : Module.Free R N inst✝² : Module.Finite R N inst✝¹ : Module.Free R P inst✝ : Module.Finite R P f : M →ₗ[R] M g : N →ₗ[R] N h : ↑(trace R (M × N)) (prodMap f g) = ↑(trace R M) f + ↑(trace R N) g ⊢ ↑(trace R (M × N)) (prodMap f g) = ↑(trace R M) f + ↑(trace R N) g [PROOFSTEP] exact h [GOAL] R : Type u_1 inst✝¹² : CommRing R M : Type u_2 inst✝¹¹ : AddCommGroup M inst✝¹⁰ : Module R M N : Type u_3 P : Type u_4 inst✝⁹ : AddCommGroup N inst✝⁸ : Module R N inst✝⁷ : AddCommGroup P inst✝⁶ : Module R P ι : Type u_5 inst✝⁵ : Module.Free R M inst✝⁴ : Module.Finite R M inst✝³ : Module.Free R N inst✝² : Module.Finite R N inst✝¹ : Module.Free R P inst✝ : Module.Finite R P ⊢ compr₂ (mapBilinear R M N M N) (trace R (M ⊗[R] N)) = compl₁₂ (lsmul R R) (trace R M) (trace R N) [PROOFSTEP] apply (compl₁₂_inj (show Surjective (dualTensorHom R M M) from (dualTensorHomEquiv R M M).surjective) (show Surjective (dualTensorHom R N N) from (dualTensorHomEquiv R N N).surjective)).1 [GOAL] R : Type u_1 inst✝¹² : CommRing R M : Type u_2 inst✝¹¹ : AddCommGroup M inst✝¹⁰ : Module R M N : Type u_3 P : Type u_4 inst✝⁹ : AddCommGroup N inst✝⁸ : Module R N inst✝⁷ : AddCommGroup P inst✝⁶ : Module R P ι : Type u_5 inst✝⁵ : Module.Free R M inst✝⁴ : Module.Finite R M inst✝³ : Module.Free R N inst✝² : Module.Finite R N inst✝¹ : Module.Free R P inst✝ : Module.Finite R P ⊢ compl₁₂ (compr₂ (mapBilinear R M N M N) (trace R (M ⊗[R] N))) (dualTensorHom R M M) (dualTensorHom R N N) = compl₁₂ (compl₁₂ (lsmul R R) (trace R M) (trace R N)) (dualTensorHom R M M) (dualTensorHom R N N) [PROOFSTEP] ext f m g n [GOAL] case a.h.h.a.h.h R : Type u_1 inst✝¹² : CommRing R M : Type u_2 inst✝¹¹ : AddCommGroup M inst✝¹⁰ : Module R M N : Type u_3 P : Type u_4 inst✝⁹ : AddCommGroup N inst✝⁸ : Module R N inst✝⁷ : AddCommGroup P inst✝⁶ : Module R P ι : Type u_5 inst✝⁵ : Module.Free R M inst✝⁴ : Module.Finite R M inst✝³ : Module.Free R N inst✝² : Module.Finite R N inst✝¹ : Module.Free R P inst✝ : Module.Finite R P f : Module.Dual R M m : M g : Module.Dual R N n : N ⊢ ↑(↑(AlgebraTensorModule.curry (↑(↑(AlgebraTensorModule.curry (compl₁₂ (compr₂ (mapBilinear R M N M N) (trace R (M ⊗[R] N))) (dualTensorHom R M M) (dualTensorHom R N N))) f) m)) g) n = ↑(↑(AlgebraTensorModule.curry (↑(↑(AlgebraTensorModule.curry (compl₁₂ (compl₁₂ (lsmul R R) (trace R M) (trace R N)) (dualTensorHom R M M) (dualTensorHom R N N))) f) m)) g) n [PROOFSTEP] simp only [AlgebraTensorModule.curry_apply, toFun_eq_coe, TensorProduct.curry_apply, coe_restrictScalars, compl₁₂_apply, compr₂_apply, mapBilinear_apply, trace_eq_contract_apply, contractLeft_apply, lsmul_apply, Algebra.id.smul_eq_mul, map_dualTensorHom, dualDistrib_apply] [GOAL] R : Type u_1 inst✝¹² : CommRing R M : Type u_2 inst✝¹¹ : AddCommGroup M inst✝¹⁰ : Module R M N : Type u_3 P : Type u_4 inst✝⁹ : AddCommGroup N inst✝⁸ : Module R N inst✝⁷ : AddCommGroup P inst✝⁶ : Module R P ι : Type u_5 inst✝⁵ : Module.Free R M inst✝⁴ : Module.Finite R M inst✝³ : Module.Free R N inst✝² : Module.Finite R N inst✝¹ : Module.Free R P inst✝ : Module.Finite R P ⊢ compr₂ (llcomp R M N M) (trace R M) = compr₂ (flip (llcomp R N M N)) (trace R N) [PROOFSTEP] apply (compl₁₂_inj (show Surjective (dualTensorHom R N M) from (dualTensorHomEquiv R N M).surjective) (show Surjective (dualTensorHom R M N) from (dualTensorHomEquiv R M N).surjective)).1 [GOAL] R : Type u_1 inst✝¹² : CommRing R M : Type u_2 inst✝¹¹ : AddCommGroup M inst✝¹⁰ : Module R M N : Type u_3 P : Type u_4 inst✝⁹ : AddCommGroup N inst✝⁸ : Module R N inst✝⁷ : AddCommGroup P inst✝⁶ : Module R P ι : Type u_5 inst✝⁵ : Module.Free R M inst✝⁴ : Module.Finite R M inst✝³ : Module.Free R N inst✝² : Module.Finite R N inst✝¹ : Module.Free R P inst✝ : Module.Finite R P ⊢ compl₁₂ (compr₂ (llcomp R M N M) (trace R M)) (dualTensorHom R N M) (dualTensorHom R M N) = compl₁₂ (compr₂ (flip (llcomp R N M N)) (trace R N)) (dualTensorHom R N M) (dualTensorHom R M N) [PROOFSTEP] ext g m f n [GOAL] case a.h.h.a.h.h R : Type u_1 inst✝¹² : CommRing R M : Type u_2 inst✝¹¹ : AddCommGroup M inst✝¹⁰ : Module R M N : Type u_3 P : Type u_4 inst✝⁹ : AddCommGroup N inst✝⁸ : Module R N inst✝⁷ : AddCommGroup P inst✝⁶ : Module R P ι : Type u_5 inst✝⁵ : Module.Free R M inst✝⁴ : Module.Finite R M inst✝³ : Module.Free R N inst✝² : Module.Finite R N inst✝¹ : Module.Free R P inst✝ : Module.Finite R P g : Module.Dual R N m : M f : Module.Dual R M n : N ⊢ ↑(↑(AlgebraTensorModule.curry (↑(↑(AlgebraTensorModule.curry (compl₁₂ (compr₂ (llcomp R M N M) (trace R M)) (dualTensorHom R N M) (dualTensorHom R M N))) g) m)) f) n = ↑(↑(AlgebraTensorModule.curry (↑(↑(AlgebraTensorModule.curry (compl₁₂ (compr₂ (flip (llcomp R N M N)) (trace R N)) (dualTensorHom R N M) (dualTensorHom R M N))) g) m)) f) n [PROOFSTEP] simp only [AlgebraTensorModule.curry_apply, TensorProduct.curry_apply, coe_restrictScalars, compl₁₂_apply, compr₂_apply, llcomp_apply', comp_dualTensorHom, map_smulₛₗ, RingHom.id_apply, trace_eq_contract_apply, contractLeft_apply, smul_eq_mul, mul_comm, flip_apply] [GOAL] R : Type u_1 inst✝¹² : CommRing R M : Type u_2 inst✝¹¹ : AddCommGroup M inst✝¹⁰ : Module R M N : Type u_3 P : Type u_4 inst✝⁹ : AddCommGroup N inst✝⁸ : Module R N inst✝⁷ : AddCommGroup P inst✝⁶ : Module R P ι : Type u_5 inst✝⁵ : Module.Free R M inst✝⁴ : Module.Finite R M inst✝³ : Module.Free R N inst✝² : Module.Finite R N inst✝¹ : Module.Free R P inst✝ : Module.Finite R P f : M →ₗ[R] M ⊢ ↑(trace R (Module.Dual R M)) (↑Module.Dual.transpose f) = ↑(trace R M) f [PROOFSTEP] rw [← comp_apply, trace_transpose] [GOAL] R : Type u_1 inst✝¹² : CommRing R M : Type u_2 inst✝¹¹ : AddCommGroup M inst✝¹⁰ : Module R M N : Type u_3 P : Type u_4 inst✝⁹ : AddCommGroup N inst✝⁸ : Module R N inst✝⁷ : AddCommGroup P inst✝⁶ : Module R P ι : Type u_5 inst✝⁵ : Module.Free R M inst✝⁴ : Module.Finite R M inst✝³ : Module.Free R N inst✝² : Module.Finite R N inst✝¹ : Module.Free R P inst✝ : Module.Finite R P f : M →ₗ[R] M g : N →ₗ[R] N ⊢ ↑(trace R (M ⊗[R] N)) (TensorProduct.map f g) = ↑(trace R M) f * ↑(trace R N) g [PROOFSTEP] have h := ext_iff.1 (ext_iff.1 (trace_tensorProduct R M N) f) g [GOAL] R : Type u_1 inst✝¹² : CommRing R M : Type u_2 inst✝¹¹ : AddCommGroup M inst✝¹⁰ : Module R M N : Type u_3 P : Type u_4 inst✝⁹ : AddCommGroup N inst✝⁸ : Module R N inst✝⁷ : AddCommGroup P inst✝⁶ : Module R P ι : Type u_5 inst✝⁵ : Module.Free R M inst✝⁴ : Module.Finite R M inst✝³ : Module.Free R N inst✝² : Module.Finite R N inst✝¹ : Module.Free R P inst✝ : Module.Finite R P f : M →ₗ[R] M g : N →ₗ[R] N h : ↑(↑(compr₂ (mapBilinear R M N M N) (trace R (M ⊗[R] N))) f) g = ↑(↑(compl₁₂ (lsmul R R) (trace R M) (trace R N)) f) g ⊢ ↑(trace R (M ⊗[R] N)) (TensorProduct.map f g) = ↑(trace R M) f * ↑(trace R N) g [PROOFSTEP] simp only [compr₂_apply, mapBilinear_apply, compl₁₂_apply, lsmul_apply, Algebra.id.smul_eq_mul] at h [GOAL] R : Type u_1 inst✝¹² : CommRing R M : Type u_2 inst✝¹¹ : AddCommGroup M inst✝¹⁰ : Module R M N : Type u_3 P : Type u_4 inst✝⁹ : AddCommGroup N inst✝⁸ : Module R N inst✝⁷ : AddCommGroup P inst✝⁶ : Module R P ι : Type u_5 inst✝⁵ : Module.Free R M inst✝⁴ : Module.Finite R M inst✝³ : Module.Free R N inst✝² : Module.Finite R N inst✝¹ : Module.Free R P inst✝ : Module.Finite R P f : M →ₗ[R] M g : N →ₗ[R] N h : ↑(trace R (M ⊗[R] N)) (TensorProduct.map f g) = ↑(trace R M) f * ↑(trace R N) g ⊢ ↑(trace R (M ⊗[R] N)) (TensorProduct.map f g) = ↑(trace R M) f * ↑(trace R N) g [PROOFSTEP] exact h [GOAL] R : Type u_1 inst✝¹² : CommRing R M : Type u_2 inst✝¹¹ : AddCommGroup M inst✝¹⁰ : Module R M N : Type u_3 P : Type u_4 inst✝⁹ : AddCommGroup N inst✝⁸ : Module R N inst✝⁷ : AddCommGroup P inst✝⁶ : Module R P ι : Type u_5 inst✝⁵ : Module.Free R M inst✝⁴ : Module.Finite R M inst✝³ : Module.Free R N inst✝² : Module.Finite R N inst✝¹ : Module.Free R P inst✝ : Module.Finite R P f : M →ₗ[R] N g : N →ₗ[R] M ⊢ ↑(trace R M) (comp g f) = ↑(trace R N) (comp f g) [PROOFSTEP] have h := ext_iff.1 (ext_iff.1 (trace_comp_comm R M N) g) f [GOAL] R : Type u_1 inst✝¹² : CommRing R M : Type u_2 inst✝¹¹ : AddCommGroup M inst✝¹⁰ : Module R M N : Type u_3 P : Type u_4 inst✝⁹ : AddCommGroup N inst✝⁸ : Module R N inst✝⁷ : AddCommGroup P inst✝⁶ : Module R P ι : Type u_5 inst✝⁵ : Module.Free R M inst✝⁴ : Module.Finite R M inst✝³ : Module.Free R N inst✝² : Module.Finite R N inst✝¹ : Module.Free R P inst✝ : Module.Finite R P f : M →ₗ[R] N g : N →ₗ[R] M h : ↑(↑(compr₂ (llcomp R M N M) (trace R M)) g) f = ↑(↑(compr₂ (flip (llcomp R N M N)) (trace R N)) g) f ⊢ ↑(trace R M) (comp g f) = ↑(trace R N) (comp f g) [PROOFSTEP] simp only [llcomp_apply', compr₂_apply, flip_apply] at h [GOAL] R : Type u_1 inst✝¹² : CommRing R M : Type u_2 inst✝¹¹ : AddCommGroup M inst✝¹⁰ : Module R M N : Type u_3 P : Type u_4 inst✝⁹ : AddCommGroup N inst✝⁸ : Module R N inst✝⁷ : AddCommGroup P inst✝⁶ : Module R P ι : Type u_5 inst✝⁵ : Module.Free R M inst✝⁴ : Module.Finite R M inst✝³ : Module.Free R N inst✝² : Module.Finite R N inst✝¹ : Module.Free R P inst✝ : Module.Finite R P f : M →ₗ[R] N g : N →ₗ[R] M h : ↑(trace R M) (comp g f) = ↑(trace R N) (comp f g) ⊢ ↑(trace R M) (comp g f) = ↑(trace R N) (comp f g) [PROOFSTEP] exact h [GOAL] R : Type u_1 inst✝¹² : CommRing R M : Type u_2 inst✝¹¹ : AddCommGroup M inst✝¹⁰ : Module R M N : Type u_3 P : Type u_4 inst✝⁹ : AddCommGroup N inst✝⁸ : Module R N inst✝⁷ : AddCommGroup P inst✝⁶ : Module R P ι : Type u_5 inst✝⁵ : Module.Free R M inst✝⁴ : Module.Finite R M inst✝³ : Module.Free R N inst✝² : Module.Finite R N inst✝¹ : Module.Free R P inst✝ : Module.Finite R P f : M →ₗ[R] N g : N →ₗ[R] P h : P →ₗ[R] M ⊢ ↑(trace R P) (comp g (comp f h)) = ↑(trace R N) (comp f (comp h g)) [PROOFSTEP] rw [trace_comp_comm', comp_assoc] [GOAL] R : Type u_1 inst✝¹² : CommRing R M : Type u_2 inst✝¹¹ : AddCommGroup M inst✝¹⁰ : Module R M N : Type u_3 P : Type u_4 inst✝⁹ : AddCommGroup N inst✝⁸ : Module R N inst✝⁷ : AddCommGroup P inst✝⁶ : Module R P ι : Type u_5 inst✝⁵ : Module.Free R M inst✝⁴ : Module.Finite R M inst✝³ : Module.Free R N inst✝² : Module.Finite R N inst✝¹ : Module.Free R P inst✝ : Module.Finite R P f : M →ₗ[R] N g : N →ₗ[R] P h : P →ₗ[R] M ⊢ ↑(trace R P) (comp (comp g f) h) = ↑(trace R M) (comp (comp h g) f) [PROOFSTEP] rw [trace_comp_comm', ← comp_assoc] [GOAL] R : Type u_1 inst✝¹² : CommRing R M : Type u_2 inst✝¹¹ : AddCommGroup M inst✝¹⁰ : Module R M N : Type u_3 P : Type u_4 inst✝⁹ : AddCommGroup N inst✝⁸ : Module R N inst✝⁷ : AddCommGroup P inst✝⁶ : Module R P ι : Type u_5 inst✝⁵ : Module.Free R M inst✝⁴ : Module.Finite R M inst✝³ : Module.Free R N inst✝² : Module.Finite R N inst✝¹ : Module.Free R P inst✝ : Module.Finite R P f : M →ₗ[R] M e : M ≃ₗ[R] N ⊢ ↑(trace R N) (↑(LinearEquiv.conj e) f) = ↑(trace R M) f [PROOFSTEP] rw [e.conj_apply, trace_comp_comm', ← comp_assoc, LinearEquiv.comp_coe, LinearEquiv.self_trans_symm, LinearEquiv.refl_toLinearMap, id_comp] [GOAL] R : Type u_1 inst✝¹⁶ : CommRing R M : Type u_2 inst✝¹⁵ : AddCommGroup M inst✝¹⁴ : Module R M N : Type u_3 P : Type u_4 inst✝¹³ : AddCommGroup N inst✝¹² : Module R N inst✝¹¹ : AddCommGroup P inst✝¹⁰ : Module R P ι : Type u_5 inst✝⁹ : Module.Free R M inst✝⁸ : Module.Finite R M inst✝⁷ : Module.Free R N inst✝⁶ : Module.Finite R N inst✝⁵ : Module.Free R P inst✝⁴ : Module.Finite R P p : Submodule R M f : M →ₗ[R] M h : IsProj p f inst✝³ : Module.Free R { x // x ∈ p } inst✝² : Module.Finite R { x // x ∈ p } inst✝¹ : Module.Free R { x // x ∈ ker f } inst✝ : Module.Finite R { x // x ∈ ker f } ⊢ ↑(LinearMap.trace R M) f = ↑(finrank R { x // x ∈ p }) [PROOFSTEP] rw [h.eq_conj_prodMap, trace_conj', trace_prodMap', trace_id, map_zero, add_zero]
{"mathlib_filename": "Mathlib.LinearAlgebra.Trace", "llama_tokens": 19350}
[GOAL] R : Type u M : Type v inst✝⁷ : CommRing R inst✝⁶ : Nontrivial R inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : Module.Free R M inst✝² : Module.Finite R M f : M →ₗ[R] M ι : Type w inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M ⊢ Matrix.charpoly (↑(toMatrix b b) f) = charpoly f [PROOFSTEP] let A := toMatrix b b f [GOAL] R : Type u M : Type v inst✝⁷ : CommRing R inst✝⁶ : Nontrivial R inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : Module.Free R M inst✝² : Module.Finite R M f : M →ₗ[R] M ι : Type w inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M A : (fun x => Matrix ι ι R) f := ↑(toMatrix b b) f ⊢ Matrix.charpoly (↑(toMatrix b b) f) = charpoly f [PROOFSTEP] let b' := chooseBasis R M [GOAL] R : Type u M : Type v inst✝⁷ : CommRing R inst✝⁶ : Nontrivial R inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : Module.Free R M inst✝² : Module.Finite R M f : M →ₗ[R] M ι : Type w inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M A : (fun x => Matrix ι ι R) f := ↑(toMatrix b b) f b' : Basis (ChooseBasisIndex R M) R M := chooseBasis R M ⊢ Matrix.charpoly (↑(toMatrix b b) f) = charpoly f [PROOFSTEP] let ι' := ChooseBasisIndex R M [GOAL] R : Type u M : Type v inst✝⁷ : CommRing R inst✝⁶ : Nontrivial R inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : Module.Free R M inst✝² : Module.Finite R M f : M →ₗ[R] M ι : Type w inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M A : (fun x => Matrix ι ι R) f := ↑(toMatrix b b) f b' : Basis (ChooseBasisIndex R M) R M := chooseBasis R M ι' : Type v := ChooseBasisIndex R M ⊢ Matrix.charpoly (↑(toMatrix b b) f) = charpoly f [PROOFSTEP] let A' := toMatrix b' b' f [GOAL] R : Type u M : Type v inst✝⁷ : CommRing R inst✝⁶ : Nontrivial R inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : Module.Free R M inst✝² : Module.Finite R M f : M →ₗ[R] M ι : Type w inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M A : (fun x => Matrix ι ι R) f := ↑(toMatrix b b) f b' : Basis (ChooseBasisIndex R M) R M := chooseBasis R M ι' : Type v := ChooseBasisIndex R M A' : (fun x => Matrix (ChooseBasisIndex R M) (ChooseBasisIndex R M) R) f := ↑(toMatrix b' b') f ⊢ Matrix.charpoly (↑(toMatrix b b) f) = charpoly f [PROOFSTEP] let e := Basis.indexEquiv b b' [GOAL] R : Type u M : Type v inst✝⁷ : CommRing R inst✝⁶ : Nontrivial R inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : Module.Free R M inst✝² : Module.Finite R M f : M →ₗ[R] M ι : Type w inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M A : (fun x => Matrix ι ι R) f := ↑(toMatrix b b) f b' : Basis (ChooseBasisIndex R M) R M := chooseBasis R M ι' : Type v := ChooseBasisIndex R M A' : (fun x => Matrix (ChooseBasisIndex R M) (ChooseBasisIndex R M) R) f := ↑(toMatrix b' b') f e : ι ≃ ChooseBasisIndex R M := Basis.indexEquiv b b' ⊢ Matrix.charpoly (↑(toMatrix b b) f) = charpoly f [PROOFSTEP] let φ := reindexLinearEquiv R R e e [GOAL] R : Type u M : Type v inst✝⁷ : CommRing R inst✝⁶ : Nontrivial R inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : Module.Free R M inst✝² : Module.Finite R M f : M →ₗ[R] M ι : Type w inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M A : (fun x => Matrix ι ι R) f := ↑(toMatrix b b) f b' : Basis (ChooseBasisIndex R M) R M := chooseBasis R M ι' : Type v := ChooseBasisIndex R M A' : (fun x => Matrix (ChooseBasisIndex R M) (ChooseBasisIndex R M) R) f := ↑(toMatrix b' b') f e : ι ≃ ChooseBasisIndex R M := Basis.indexEquiv b b' φ : Matrix ι ι R ≃ₗ[R] Matrix (ChooseBasisIndex R M) (ChooseBasisIndex R M) R := reindexLinearEquiv R R e e ⊢ Matrix.charpoly (↑(toMatrix b b) f) = charpoly f [PROOFSTEP] let φ₁ := reindexLinearEquiv R R e (Equiv.refl ι') [GOAL] R : Type u M : Type v inst✝⁷ : CommRing R inst✝⁶ : Nontrivial R inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : Module.Free R M inst✝² : Module.Finite R M f : M →ₗ[R] M ι : Type w inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M A : (fun x => Matrix ι ι R) f := ↑(toMatrix b b) f b' : Basis (ChooseBasisIndex R M) R M := chooseBasis R M ι' : Type v := ChooseBasisIndex R M A' : (fun x => Matrix (ChooseBasisIndex R M) (ChooseBasisIndex R M) R) f := ↑(toMatrix b' b') f e : ι ≃ ChooseBasisIndex R M := Basis.indexEquiv b b' φ : Matrix ι ι R ≃ₗ[R] Matrix (ChooseBasisIndex R M) (ChooseBasisIndex R M) R := reindexLinearEquiv R R e e φ₁ : Matrix ι ι' R ≃ₗ[R] Matrix (ChooseBasisIndex R M) ι' R := reindexLinearEquiv R R e (Equiv.refl ι') ⊢ Matrix.charpoly (↑(toMatrix b b) f) = charpoly f [PROOFSTEP] let φ₂ := reindexLinearEquiv R R (Equiv.refl ι') (Equiv.refl ι') [GOAL] R : Type u M : Type v inst✝⁷ : CommRing R inst✝⁶ : Nontrivial R inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : Module.Free R M inst✝² : Module.Finite R M f : M →ₗ[R] M ι : Type w inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M A : (fun x => Matrix ι ι R) f := ↑(toMatrix b b) f b' : Basis (ChooseBasisIndex R M) R M := chooseBasis R M ι' : Type v := ChooseBasisIndex R M A' : (fun x => Matrix (ChooseBasisIndex R M) (ChooseBasisIndex R M) R) f := ↑(toMatrix b' b') f e : ι ≃ ChooseBasisIndex R M := Basis.indexEquiv b b' φ : Matrix ι ι R ≃ₗ[R] Matrix (ChooseBasisIndex R M) (ChooseBasisIndex R M) R := reindexLinearEquiv R R e e φ₁ : Matrix ι ι' R ≃ₗ[R] Matrix (ChooseBasisIndex R M) ι' R := reindexLinearEquiv R R e (Equiv.refl ι') φ₂ : Matrix ι' ι' R ≃ₗ[R] Matrix ι' ι' R := reindexLinearEquiv R R (Equiv.refl ι') (Equiv.refl ι') ⊢ Matrix.charpoly (↑(toMatrix b b) f) = charpoly f [PROOFSTEP] let φ₃ := reindexLinearEquiv R R (Equiv.refl ι') e [GOAL] R : Type u M : Type v inst✝⁷ : CommRing R inst✝⁶ : Nontrivial R inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : Module.Free R M inst✝² : Module.Finite R M f : M →ₗ[R] M ι : Type w inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M A : (fun x => Matrix ι ι R) f := ↑(toMatrix b b) f b' : Basis (ChooseBasisIndex R M) R M := chooseBasis R M ι' : Type v := ChooseBasisIndex R M A' : (fun x => Matrix (ChooseBasisIndex R M) (ChooseBasisIndex R M) R) f := ↑(toMatrix b' b') f e : ι ≃ ChooseBasisIndex R M := Basis.indexEquiv b b' φ : Matrix ι ι R ≃ₗ[R] Matrix (ChooseBasisIndex R M) (ChooseBasisIndex R M) R := reindexLinearEquiv R R e e φ₁ : Matrix ι ι' R ≃ₗ[R] Matrix (ChooseBasisIndex R M) ι' R := reindexLinearEquiv R R e (Equiv.refl ι') φ₂ : Matrix ι' ι' R ≃ₗ[R] Matrix ι' ι' R := reindexLinearEquiv R R (Equiv.refl ι') (Equiv.refl ι') φ₃ : Matrix ι' ι R ≃ₗ[R] Matrix ι' (ChooseBasisIndex R M) R := reindexLinearEquiv R R (Equiv.refl ι') e ⊢ Matrix.charpoly (↑(toMatrix b b) f) = charpoly f [PROOFSTEP] let P := b.toMatrix b' [GOAL] R : Type u M : Type v inst✝⁷ : CommRing R inst✝⁶ : Nontrivial R inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : Module.Free R M inst✝² : Module.Finite R M f : M →ₗ[R] M ι : Type w inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M A : (fun x => Matrix ι ι R) f := ↑(toMatrix b b) f b' : Basis (ChooseBasisIndex R M) R M := chooseBasis R M ι' : Type v := ChooseBasisIndex R M A' : (fun x => Matrix (ChooseBasisIndex R M) (ChooseBasisIndex R M) R) f := ↑(toMatrix b' b') f e : ι ≃ ChooseBasisIndex R M := Basis.indexEquiv b b' φ : Matrix ι ι R ≃ₗ[R] Matrix (ChooseBasisIndex R M) (ChooseBasisIndex R M) R := reindexLinearEquiv R R e e φ₁ : Matrix ι ι' R ≃ₗ[R] Matrix (ChooseBasisIndex R M) ι' R := reindexLinearEquiv R R e (Equiv.refl ι') φ₂ : Matrix ι' ι' R ≃ₗ[R] Matrix ι' ι' R := reindexLinearEquiv R R (Equiv.refl ι') (Equiv.refl ι') φ₃ : Matrix ι' ι R ≃ₗ[R] Matrix ι' (ChooseBasisIndex R M) R := reindexLinearEquiv R R (Equiv.refl ι') e P : Matrix ι (ChooseBasisIndex R M) R := Basis.toMatrix b ↑b' ⊢ Matrix.charpoly (↑(toMatrix b b) f) = charpoly f [PROOFSTEP] let Q := b'.toMatrix b [GOAL] R : Type u M : Type v inst✝⁷ : CommRing R inst✝⁶ : Nontrivial R inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : Module.Free R M inst✝² : Module.Finite R M f : M →ₗ[R] M ι : Type w inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M A : (fun x => Matrix ι ι R) f := ↑(toMatrix b b) f b' : Basis (ChooseBasisIndex R M) R M := chooseBasis R M ι' : Type v := ChooseBasisIndex R M A' : (fun x => Matrix (ChooseBasisIndex R M) (ChooseBasisIndex R M) R) f := ↑(toMatrix b' b') f e : ι ≃ ChooseBasisIndex R M := Basis.indexEquiv b b' φ : Matrix ι ι R ≃ₗ[R] Matrix (ChooseBasisIndex R M) (ChooseBasisIndex R M) R := reindexLinearEquiv R R e e φ₁ : Matrix ι ι' R ≃ₗ[R] Matrix (ChooseBasisIndex R M) ι' R := reindexLinearEquiv R R e (Equiv.refl ι') φ₂ : Matrix ι' ι' R ≃ₗ[R] Matrix ι' ι' R := reindexLinearEquiv R R (Equiv.refl ι') (Equiv.refl ι') φ₃ : Matrix ι' ι R ≃ₗ[R] Matrix ι' (ChooseBasisIndex R M) R := reindexLinearEquiv R R (Equiv.refl ι') e P : Matrix ι (ChooseBasisIndex R M) R := Basis.toMatrix b ↑b' Q : Matrix (ChooseBasisIndex R M) ι R := Basis.toMatrix b' ↑b ⊢ Matrix.charpoly (↑(toMatrix b b) f) = charpoly f [PROOFSTEP] have hPQ : C.mapMatrix (φ₁ P) * C.mapMatrix (φ₃ Q) = 1 := by rw [RingHom.mapMatrix_apply, RingHom.mapMatrix_apply, ← Matrix.map_mul, reindexLinearEquiv_mul R R, Basis.toMatrix_mul_toMatrix_flip, reindexLinearEquiv_one, ← RingHom.mapMatrix_apply, RingHom.map_one] [GOAL] R : Type u M : Type v inst✝⁷ : CommRing R inst✝⁶ : Nontrivial R inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : Module.Free R M inst✝² : Module.Finite R M f : M →ₗ[R] M ι : Type w inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M A : (fun x => Matrix ι ι R) f := ↑(toMatrix b b) f b' : Basis (ChooseBasisIndex R M) R M := chooseBasis R M ι' : Type v := ChooseBasisIndex R M A' : (fun x => Matrix (ChooseBasisIndex R M) (ChooseBasisIndex R M) R) f := ↑(toMatrix b' b') f e : ι ≃ ChooseBasisIndex R M := Basis.indexEquiv b b' φ : Matrix ι ι R ≃ₗ[R] Matrix (ChooseBasisIndex R M) (ChooseBasisIndex R M) R := reindexLinearEquiv R R e e φ₁ : Matrix ι ι' R ≃ₗ[R] Matrix (ChooseBasisIndex R M) ι' R := reindexLinearEquiv R R e (Equiv.refl ι') φ₂ : Matrix ι' ι' R ≃ₗ[R] Matrix ι' ι' R := reindexLinearEquiv R R (Equiv.refl ι') (Equiv.refl ι') φ₃ : Matrix ι' ι R ≃ₗ[R] Matrix ι' (ChooseBasisIndex R M) R := reindexLinearEquiv R R (Equiv.refl ι') e P : Matrix ι (ChooseBasisIndex R M) R := Basis.toMatrix b ↑b' Q : Matrix (ChooseBasisIndex R M) ι R := Basis.toMatrix b' ↑b ⊢ ↑(RingHom.mapMatrix C) (↑φ₁ P) * ↑(RingHom.mapMatrix C) (↑φ₃ Q) = 1 [PROOFSTEP] rw [RingHom.mapMatrix_apply, RingHom.mapMatrix_apply, ← Matrix.map_mul, reindexLinearEquiv_mul R R, Basis.toMatrix_mul_toMatrix_flip, reindexLinearEquiv_one, ← RingHom.mapMatrix_apply, RingHom.map_one] [GOAL] R : Type u M : Type v inst✝⁷ : CommRing R inst✝⁶ : Nontrivial R inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : Module.Free R M inst✝² : Module.Finite R M f : M →ₗ[R] M ι : Type w inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M A : (fun x => Matrix ι ι R) f := ↑(toMatrix b b) f b' : Basis (ChooseBasisIndex R M) R M := chooseBasis R M ι' : Type v := ChooseBasisIndex R M A' : (fun x => Matrix (ChooseBasisIndex R M) (ChooseBasisIndex R M) R) f := ↑(toMatrix b' b') f e : ι ≃ ChooseBasisIndex R M := Basis.indexEquiv b b' φ : Matrix ι ι R ≃ₗ[R] Matrix (ChooseBasisIndex R M) (ChooseBasisIndex R M) R := reindexLinearEquiv R R e e φ₁ : Matrix ι ι' R ≃ₗ[R] Matrix (ChooseBasisIndex R M) ι' R := reindexLinearEquiv R R e (Equiv.refl ι') φ₂ : Matrix ι' ι' R ≃ₗ[R] Matrix ι' ι' R := reindexLinearEquiv R R (Equiv.refl ι') (Equiv.refl ι') φ₃ : Matrix ι' ι R ≃ₗ[R] Matrix ι' (ChooseBasisIndex R M) R := reindexLinearEquiv R R (Equiv.refl ι') e P : Matrix ι (ChooseBasisIndex R M) R := Basis.toMatrix b ↑b' Q : Matrix (ChooseBasisIndex R M) ι R := Basis.toMatrix b' ↑b hPQ : ↑(RingHom.mapMatrix C) (↑φ₁ P) * ↑(RingHom.mapMatrix C) (↑φ₃ Q) = 1 ⊢ Matrix.charpoly (↑(toMatrix b b) f) = charpoly f [PROOFSTEP] calc A.charpoly = (reindex e e A).charpoly := (charpoly_reindex _ _).symm _ = det (scalar ι' X - C.mapMatrix (φ A)) := rfl _ = det (scalar ι' X - C.mapMatrix (φ (P * A' * Q))) := by rw [basis_toMatrix_mul_linearMap_toMatrix_mul_basis_toMatrix] _ = det (scalar ι' X - C.mapMatrix (φ₁ P * φ₂ A' * φ₃ Q)) := by rw [reindexLinearEquiv_mul, reindexLinearEquiv_mul] _ = det (scalar ι' X - C.mapMatrix (φ₁ P) * C.mapMatrix A' * C.mapMatrix (φ₃ Q)) := by simp _ = det (scalar ι' X * C.mapMatrix (φ₁ P) * C.mapMatrix (φ₃ Q) - C.mapMatrix (φ₁ P) * C.mapMatrix A' * C.mapMatrix (φ₃ Q)) := by rw [Matrix.mul_assoc ((scalar ι') X), hPQ, Matrix.mul_one] _ = det (C.mapMatrix (φ₁ P) * scalar ι' X * C.mapMatrix (φ₃ Q) - C.mapMatrix (φ₁ P) * C.mapMatrix A' * C.mapMatrix (φ₃ Q)) := by simp _ = det (C.mapMatrix (φ₁ P) * (scalar ι' X - C.mapMatrix A') * C.mapMatrix (φ₃ Q)) := by rw [← Matrix.sub_mul, ← Matrix.mul_sub] _ = det (C.mapMatrix (φ₁ P)) * det (scalar ι' X - C.mapMatrix A') * det (C.mapMatrix (φ₃ Q)) := by rw [det_mul, det_mul] _ = det (C.mapMatrix (φ₁ P)) * det (C.mapMatrix (φ₃ Q)) * det (scalar ι' X - C.mapMatrix A') := by ring _ = det (scalar ι' X - C.mapMatrix A') := by rw [← det_mul, hPQ, det_one, one_mul] _ = f.charpoly := rfl [GOAL] R : Type u M : Type v inst✝⁷ : CommRing R inst✝⁶ : Nontrivial R inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : Module.Free R M inst✝² : Module.Finite R M f : M →ₗ[R] M ι : Type w inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M A : (fun x => Matrix ι ι R) f := ↑(toMatrix b b) f b' : Basis (ChooseBasisIndex R M) R M := chooseBasis R M ι' : Type v := ChooseBasisIndex R M A' : (fun x => Matrix (ChooseBasisIndex R M) (ChooseBasisIndex R M) R) f := ↑(toMatrix b' b') f e : ι ≃ ChooseBasisIndex R M := Basis.indexEquiv b b' φ : Matrix ι ι R ≃ₗ[R] Matrix (ChooseBasisIndex R M) (ChooseBasisIndex R M) R := reindexLinearEquiv R R e e φ₁ : Matrix ι ι' R ≃ₗ[R] Matrix (ChooseBasisIndex R M) ι' R := reindexLinearEquiv R R e (Equiv.refl ι') φ₂ : Matrix ι' ι' R ≃ₗ[R] Matrix ι' ι' R := reindexLinearEquiv R R (Equiv.refl ι') (Equiv.refl ι') φ₃ : Matrix ι' ι R ≃ₗ[R] Matrix ι' (ChooseBasisIndex R M) R := reindexLinearEquiv R R (Equiv.refl ι') e P : Matrix ι (ChooseBasisIndex R M) R := Basis.toMatrix b ↑b' Q : Matrix (ChooseBasisIndex R M) ι R := Basis.toMatrix b' ↑b hPQ : ↑(RingHom.mapMatrix C) (↑φ₁ P) * ↑(RingHom.mapMatrix C) (↑φ₃ Q) = 1 ⊢ det (↑(scalar ι') X - ↑(RingHom.mapMatrix C) (↑φ A)) = det (↑(scalar ι') X - ↑(RingHom.mapMatrix C) (↑φ (P * A' * Q))) [PROOFSTEP] rw [basis_toMatrix_mul_linearMap_toMatrix_mul_basis_toMatrix] [GOAL] R : Type u M : Type v inst✝⁷ : CommRing R inst✝⁶ : Nontrivial R inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : Module.Free R M inst✝² : Module.Finite R M f : M →ₗ[R] M ι : Type w inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M A : (fun x => Matrix ι ι R) f := ↑(toMatrix b b) f b' : Basis (ChooseBasisIndex R M) R M := chooseBasis R M ι' : Type v := ChooseBasisIndex R M A' : (fun x => Matrix (ChooseBasisIndex R M) (ChooseBasisIndex R M) R) f := ↑(toMatrix b' b') f e : ι ≃ ChooseBasisIndex R M := Basis.indexEquiv b b' φ : Matrix ι ι R ≃ₗ[R] Matrix (ChooseBasisIndex R M) (ChooseBasisIndex R M) R := reindexLinearEquiv R R e e φ₁ : Matrix ι ι' R ≃ₗ[R] Matrix (ChooseBasisIndex R M) ι' R := reindexLinearEquiv R R e (Equiv.refl ι') φ₂ : Matrix ι' ι' R ≃ₗ[R] Matrix ι' ι' R := reindexLinearEquiv R R (Equiv.refl ι') (Equiv.refl ι') φ₃ : Matrix ι' ι R ≃ₗ[R] Matrix ι' (ChooseBasisIndex R M) R := reindexLinearEquiv R R (Equiv.refl ι') e P : Matrix ι (ChooseBasisIndex R M) R := Basis.toMatrix b ↑b' Q : Matrix (ChooseBasisIndex R M) ι R := Basis.toMatrix b' ↑b hPQ : ↑(RingHom.mapMatrix C) (↑φ₁ P) * ↑(RingHom.mapMatrix C) (↑φ₃ Q) = 1 ⊢ det (↑(scalar ι') X - ↑(RingHom.mapMatrix C) (↑φ (P * A' * Q))) = det (↑(scalar ι') X - ↑(RingHom.mapMatrix C) (↑φ₁ P * ↑φ₂ A' * ↑φ₃ Q)) [PROOFSTEP] rw [reindexLinearEquiv_mul, reindexLinearEquiv_mul] [GOAL] R : Type u M : Type v inst✝⁷ : CommRing R inst✝⁶ : Nontrivial R inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : Module.Free R M inst✝² : Module.Finite R M f : M →ₗ[R] M ι : Type w inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M A : (fun x => Matrix ι ι R) f := ↑(toMatrix b b) f b' : Basis (ChooseBasisIndex R M) R M := chooseBasis R M ι' : Type v := ChooseBasisIndex R M A' : (fun x => Matrix (ChooseBasisIndex R M) (ChooseBasisIndex R M) R) f := ↑(toMatrix b' b') f e : ι ≃ ChooseBasisIndex R M := Basis.indexEquiv b b' φ : Matrix ι ι R ≃ₗ[R] Matrix (ChooseBasisIndex R M) (ChooseBasisIndex R M) R := reindexLinearEquiv R R e e φ₁ : Matrix ι ι' R ≃ₗ[R] Matrix (ChooseBasisIndex R M) ι' R := reindexLinearEquiv R R e (Equiv.refl ι') φ₂ : Matrix ι' ι' R ≃ₗ[R] Matrix ι' ι' R := reindexLinearEquiv R R (Equiv.refl ι') (Equiv.refl ι') φ₃ : Matrix ι' ι R ≃ₗ[R] Matrix ι' (ChooseBasisIndex R M) R := reindexLinearEquiv R R (Equiv.refl ι') e P : Matrix ι (ChooseBasisIndex R M) R := Basis.toMatrix b ↑b' Q : Matrix (ChooseBasisIndex R M) ι R := Basis.toMatrix b' ↑b hPQ : ↑(RingHom.mapMatrix C) (↑φ₁ P) * ↑(RingHom.mapMatrix C) (↑φ₃ Q) = 1 ⊢ det (↑(scalar ι') X - ↑(RingHom.mapMatrix C) (↑φ₁ P * ↑φ₂ A' * ↑φ₃ Q)) = det (↑(scalar ι') X - ↑(RingHom.mapMatrix C) (↑φ₁ P) * ↑(RingHom.mapMatrix C) A' * ↑(RingHom.mapMatrix C) (↑φ₃ Q)) [PROOFSTEP] simp [GOAL] R : Type u M : Type v inst✝⁷ : CommRing R inst✝⁶ : Nontrivial R inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : Module.Free R M inst✝² : Module.Finite R M f : M →ₗ[R] M ι : Type w inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M A : (fun x => Matrix ι ι R) f := ↑(toMatrix b b) f b' : Basis (ChooseBasisIndex R M) R M := chooseBasis R M ι' : Type v := ChooseBasisIndex R M A' : (fun x => Matrix (ChooseBasisIndex R M) (ChooseBasisIndex R M) R) f := ↑(toMatrix b' b') f e : ι ≃ ChooseBasisIndex R M := Basis.indexEquiv b b' φ : Matrix ι ι R ≃ₗ[R] Matrix (ChooseBasisIndex R M) (ChooseBasisIndex R M) R := reindexLinearEquiv R R e e φ₁ : Matrix ι ι' R ≃ₗ[R] Matrix (ChooseBasisIndex R M) ι' R := reindexLinearEquiv R R e (Equiv.refl ι') φ₂ : Matrix ι' ι' R ≃ₗ[R] Matrix ι' ι' R := reindexLinearEquiv R R (Equiv.refl ι') (Equiv.refl ι') φ₃ : Matrix ι' ι R ≃ₗ[R] Matrix ι' (ChooseBasisIndex R M) R := reindexLinearEquiv R R (Equiv.refl ι') e P : Matrix ι (ChooseBasisIndex R M) R := Basis.toMatrix b ↑b' Q : Matrix (ChooseBasisIndex R M) ι R := Basis.toMatrix b' ↑b hPQ : ↑(RingHom.mapMatrix C) (↑φ₁ P) * ↑(RingHom.mapMatrix C) (↑φ₃ Q) = 1 ⊢ det (↑(scalar ι') X - ↑(RingHom.mapMatrix C) (↑φ₁ P) * ↑(RingHom.mapMatrix C) A' * ↑(RingHom.mapMatrix C) (↑φ₃ Q)) = det (↑(scalar ι') X * ↑(RingHom.mapMatrix C) (↑φ₁ P) * ↑(RingHom.mapMatrix C) (↑φ₃ Q) - ↑(RingHom.mapMatrix C) (↑φ₁ P) * ↑(RingHom.mapMatrix C) A' * ↑(RingHom.mapMatrix C) (↑φ₃ Q)) [PROOFSTEP] rw [Matrix.mul_assoc ((scalar ι') X), hPQ, Matrix.mul_one] [GOAL] R : Type u M : Type v inst✝⁷ : CommRing R inst✝⁶ : Nontrivial R inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : Module.Free R M inst✝² : Module.Finite R M f : M →ₗ[R] M ι : Type w inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M A : (fun x => Matrix ι ι R) f := ↑(toMatrix b b) f b' : Basis (ChooseBasisIndex R M) R M := chooseBasis R M ι' : Type v := ChooseBasisIndex R M A' : (fun x => Matrix (ChooseBasisIndex R M) (ChooseBasisIndex R M) R) f := ↑(toMatrix b' b') f e : ι ≃ ChooseBasisIndex R M := Basis.indexEquiv b b' φ : Matrix ι ι R ≃ₗ[R] Matrix (ChooseBasisIndex R M) (ChooseBasisIndex R M) R := reindexLinearEquiv R R e e φ₁ : Matrix ι ι' R ≃ₗ[R] Matrix (ChooseBasisIndex R M) ι' R := reindexLinearEquiv R R e (Equiv.refl ι') φ₂ : Matrix ι' ι' R ≃ₗ[R] Matrix ι' ι' R := reindexLinearEquiv R R (Equiv.refl ι') (Equiv.refl ι') φ₃ : Matrix ι' ι R ≃ₗ[R] Matrix ι' (ChooseBasisIndex R M) R := reindexLinearEquiv R R (Equiv.refl ι') e P : Matrix ι (ChooseBasisIndex R M) R := Basis.toMatrix b ↑b' Q : Matrix (ChooseBasisIndex R M) ι R := Basis.toMatrix b' ↑b hPQ : ↑(RingHom.mapMatrix C) (↑φ₁ P) * ↑(RingHom.mapMatrix C) (↑φ₃ Q) = 1 ⊢ det (↑(scalar ι') X * ↑(RingHom.mapMatrix C) (↑φ₁ P) * ↑(RingHom.mapMatrix C) (↑φ₃ Q) - ↑(RingHom.mapMatrix C) (↑φ₁ P) * ↑(RingHom.mapMatrix C) A' * ↑(RingHom.mapMatrix C) (↑φ₃ Q)) = det (↑(RingHom.mapMatrix C) (↑φ₁ P) * ↑(scalar ι') X * ↑(RingHom.mapMatrix C) (↑φ₃ Q) - ↑(RingHom.mapMatrix C) (↑φ₁ P) * ↑(RingHom.mapMatrix C) A' * ↑(RingHom.mapMatrix C) (↑φ₃ Q)) [PROOFSTEP] simp [GOAL] R : Type u M : Type v inst✝⁷ : CommRing R inst✝⁶ : Nontrivial R inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : Module.Free R M inst✝² : Module.Finite R M f : M →ₗ[R] M ι : Type w inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M A : (fun x => Matrix ι ι R) f := ↑(toMatrix b b) f b' : Basis (ChooseBasisIndex R M) R M := chooseBasis R M ι' : Type v := ChooseBasisIndex R M A' : (fun x => Matrix (ChooseBasisIndex R M) (ChooseBasisIndex R M) R) f := ↑(toMatrix b' b') f e : ι ≃ ChooseBasisIndex R M := Basis.indexEquiv b b' φ : Matrix ι ι R ≃ₗ[R] Matrix (ChooseBasisIndex R M) (ChooseBasisIndex R M) R := reindexLinearEquiv R R e e φ₁ : Matrix ι ι' R ≃ₗ[R] Matrix (ChooseBasisIndex R M) ι' R := reindexLinearEquiv R R e (Equiv.refl ι') φ₂ : Matrix ι' ι' R ≃ₗ[R] Matrix ι' ι' R := reindexLinearEquiv R R (Equiv.refl ι') (Equiv.refl ι') φ₃ : Matrix ι' ι R ≃ₗ[R] Matrix ι' (ChooseBasisIndex R M) R := reindexLinearEquiv R R (Equiv.refl ι') e P : Matrix ι (ChooseBasisIndex R M) R := Basis.toMatrix b ↑b' Q : Matrix (ChooseBasisIndex R M) ι R := Basis.toMatrix b' ↑b hPQ : ↑(RingHom.mapMatrix C) (↑φ₁ P) * ↑(RingHom.mapMatrix C) (↑φ₃ Q) = 1 ⊢ det (↑(RingHom.mapMatrix C) (↑φ₁ P) * ↑(scalar ι') X * ↑(RingHom.mapMatrix C) (↑φ₃ Q) - ↑(RingHom.mapMatrix C) (↑φ₁ P) * ↑(RingHom.mapMatrix C) A' * ↑(RingHom.mapMatrix C) (↑φ₃ Q)) = det (↑(RingHom.mapMatrix C) (↑φ₁ P) * (↑(scalar ι') X - ↑(RingHom.mapMatrix C) A') * ↑(RingHom.mapMatrix C) (↑φ₃ Q)) [PROOFSTEP] rw [← Matrix.sub_mul, ← Matrix.mul_sub] [GOAL] R : Type u M : Type v inst✝⁷ : CommRing R inst✝⁶ : Nontrivial R inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : Module.Free R M inst✝² : Module.Finite R M f : M →ₗ[R] M ι : Type w inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M A : (fun x => Matrix ι ι R) f := ↑(toMatrix b b) f b' : Basis (ChooseBasisIndex R M) R M := chooseBasis R M ι' : Type v := ChooseBasisIndex R M A' : (fun x => Matrix (ChooseBasisIndex R M) (ChooseBasisIndex R M) R) f := ↑(toMatrix b' b') f e : ι ≃ ChooseBasisIndex R M := Basis.indexEquiv b b' φ : Matrix ι ι R ≃ₗ[R] Matrix (ChooseBasisIndex R M) (ChooseBasisIndex R M) R := reindexLinearEquiv R R e e φ₁ : Matrix ι ι' R ≃ₗ[R] Matrix (ChooseBasisIndex R M) ι' R := reindexLinearEquiv R R e (Equiv.refl ι') φ₂ : Matrix ι' ι' R ≃ₗ[R] Matrix ι' ι' R := reindexLinearEquiv R R (Equiv.refl ι') (Equiv.refl ι') φ₃ : Matrix ι' ι R ≃ₗ[R] Matrix ι' (ChooseBasisIndex R M) R := reindexLinearEquiv R R (Equiv.refl ι') e P : Matrix ι (ChooseBasisIndex R M) R := Basis.toMatrix b ↑b' Q : Matrix (ChooseBasisIndex R M) ι R := Basis.toMatrix b' ↑b hPQ : ↑(RingHom.mapMatrix C) (↑φ₁ P) * ↑(RingHom.mapMatrix C) (↑φ₃ Q) = 1 ⊢ det (↑(RingHom.mapMatrix C) (↑φ₁ P) * (↑(scalar ι') X - ↑(RingHom.mapMatrix C) A') * ↑(RingHom.mapMatrix C) (↑φ₃ Q)) = det (↑(RingHom.mapMatrix C) (↑φ₁ P)) * det (↑(scalar ι') X - ↑(RingHom.mapMatrix C) A') * det (↑(RingHom.mapMatrix C) (↑φ₃ Q)) [PROOFSTEP] rw [det_mul, det_mul] [GOAL] R : Type u M : Type v inst✝⁷ : CommRing R inst✝⁶ : Nontrivial R inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : Module.Free R M inst✝² : Module.Finite R M f : M →ₗ[R] M ι : Type w inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M A : (fun x => Matrix ι ι R) f := ↑(toMatrix b b) f b' : Basis (ChooseBasisIndex R M) R M := chooseBasis R M ι' : Type v := ChooseBasisIndex R M A' : (fun x => Matrix (ChooseBasisIndex R M) (ChooseBasisIndex R M) R) f := ↑(toMatrix b' b') f e : ι ≃ ChooseBasisIndex R M := Basis.indexEquiv b b' φ : Matrix ι ι R ≃ₗ[R] Matrix (ChooseBasisIndex R M) (ChooseBasisIndex R M) R := reindexLinearEquiv R R e e φ₁ : Matrix ι ι' R ≃ₗ[R] Matrix (ChooseBasisIndex R M) ι' R := reindexLinearEquiv R R e (Equiv.refl ι') φ₂ : Matrix ι' ι' R ≃ₗ[R] Matrix ι' ι' R := reindexLinearEquiv R R (Equiv.refl ι') (Equiv.refl ι') φ₃ : Matrix ι' ι R ≃ₗ[R] Matrix ι' (ChooseBasisIndex R M) R := reindexLinearEquiv R R (Equiv.refl ι') e P : Matrix ι (ChooseBasisIndex R M) R := Basis.toMatrix b ↑b' Q : Matrix (ChooseBasisIndex R M) ι R := Basis.toMatrix b' ↑b hPQ : ↑(RingHom.mapMatrix C) (↑φ₁ P) * ↑(RingHom.mapMatrix C) (↑φ₃ Q) = 1 ⊢ det (↑(RingHom.mapMatrix C) (↑φ₁ P)) * det (↑(scalar ι') X - ↑(RingHom.mapMatrix C) A') * det (↑(RingHom.mapMatrix C) (↑φ₃ Q)) = det (↑(RingHom.mapMatrix C) (↑φ₁ P)) * det (↑(RingHom.mapMatrix C) (↑φ₃ Q)) * det (↑(scalar ι') X - ↑(RingHom.mapMatrix C) A') [PROOFSTEP] ring [GOAL] R : Type u M : Type v inst✝⁷ : CommRing R inst✝⁶ : Nontrivial R inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : Module.Free R M inst✝² : Module.Finite R M f : M →ₗ[R] M ι : Type w inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M A : (fun x => Matrix ι ι R) f := ↑(toMatrix b b) f b' : Basis (ChooseBasisIndex R M) R M := chooseBasis R M ι' : Type v := ChooseBasisIndex R M A' : (fun x => Matrix (ChooseBasisIndex R M) (ChooseBasisIndex R M) R) f := ↑(toMatrix b' b') f e : ι ≃ ChooseBasisIndex R M := Basis.indexEquiv b b' φ : Matrix ι ι R ≃ₗ[R] Matrix (ChooseBasisIndex R M) (ChooseBasisIndex R M) R := reindexLinearEquiv R R e e φ₁ : Matrix ι ι' R ≃ₗ[R] Matrix (ChooseBasisIndex R M) ι' R := reindexLinearEquiv R R e (Equiv.refl ι') φ₂ : Matrix ι' ι' R ≃ₗ[R] Matrix ι' ι' R := reindexLinearEquiv R R (Equiv.refl ι') (Equiv.refl ι') φ₃ : Matrix ι' ι R ≃ₗ[R] Matrix ι' (ChooseBasisIndex R M) R := reindexLinearEquiv R R (Equiv.refl ι') e P : Matrix ι (ChooseBasisIndex R M) R := Basis.toMatrix b ↑b' Q : Matrix (ChooseBasisIndex R M) ι R := Basis.toMatrix b' ↑b hPQ : ↑(RingHom.mapMatrix C) (↑φ₁ P) * ↑(RingHom.mapMatrix C) (↑φ₃ Q) = 1 ⊢ det (↑(RingHom.mapMatrix C) (↑φ₁ P)) * det (↑(RingHom.mapMatrix C) (↑φ₃ Q)) * det (↑(scalar ι') X - ↑(RingHom.mapMatrix C) A') = det (↑(scalar ι') X - ↑(RingHom.mapMatrix C) A') [PROOFSTEP] rw [← det_mul, hPQ, det_one, one_mul]
{"mathlib_filename": "Mathlib.LinearAlgebra.Charpoly.ToMatrix", "llama_tokens": 12322}
[GOAL] ι : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₃ : Type u_7 V : Type u_8 inst✝⁸ : Semiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : AddCommMonoid M₃ inst✝³ : Module R M inst✝² : Module R M₁ inst✝¹ : Module R M₂ inst✝ : Module R M₃ Q₁ : QuadraticForm R M₁ Q₂ : QuadraticForm R M₂ Q₃ : QuadraticForm R M₃ f g : IsometryEquiv Q₁ Q₂ ⊢ (fun f => ↑f.toLinearEquiv) f = (fun f => ↑f.toLinearEquiv) g → (fun f => ↑(LinearEquiv.symm f.toLinearEquiv)) f = (fun f => ↑(LinearEquiv.symm f.toLinearEquiv)) g → f = g [PROOFSTEP] cases f [GOAL] case mk ι : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₃ : Type u_7 V : Type u_8 inst✝⁸ : Semiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : AddCommMonoid M₃ inst✝³ : Module R M inst✝² : Module R M₁ inst✝¹ : Module R M₂ inst✝ : Module R M₃ Q₁ : QuadraticForm R M₁ Q₂ : QuadraticForm R M₂ Q₃ : QuadraticForm R M₃ g : IsometryEquiv Q₁ Q₂ toLinearEquiv✝ : M₁ ≃ₗ[R] M₂ map_app'✝ : ∀ (m : M₁), ↑Q₂ (AddHom.toFun toLinearEquiv✝.toAddHom m) = ↑Q₁ m ⊢ (fun f => ↑f.toLinearEquiv) { toLinearEquiv := toLinearEquiv✝, map_app' := map_app'✝ } = (fun f => ↑f.toLinearEquiv) g → (fun f => ↑(LinearEquiv.symm f.toLinearEquiv)) { toLinearEquiv := toLinearEquiv✝, map_app' := map_app'✝ } = (fun f => ↑(LinearEquiv.symm f.toLinearEquiv)) g → { toLinearEquiv := toLinearEquiv✝, map_app' := map_app'✝ } = g [PROOFSTEP] cases g [GOAL] case mk.mk ι : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₃ : Type u_7 V : Type u_8 inst✝⁸ : Semiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : AddCommMonoid M₃ inst✝³ : Module R M inst✝² : Module R M₁ inst✝¹ : Module R M₂ inst✝ : Module R M₃ Q₁ : QuadraticForm R M₁ Q₂ : QuadraticForm R M₂ Q₃ : QuadraticForm R M₃ toLinearEquiv✝¹ : M₁ ≃ₗ[R] M₂ map_app'✝¹ : ∀ (m : M₁), ↑Q₂ (AddHom.toFun toLinearEquiv✝¹.toAddHom m) = ↑Q₁ m toLinearEquiv✝ : M₁ ≃ₗ[R] M₂ map_app'✝ : ∀ (m : M₁), ↑Q₂ (AddHom.toFun toLinearEquiv✝.toAddHom m) = ↑Q₁ m ⊢ (fun f => ↑f.toLinearEquiv) { toLinearEquiv := toLinearEquiv✝¹, map_app' := map_app'✝¹ } = (fun f => ↑f.toLinearEquiv) { toLinearEquiv := toLinearEquiv✝, map_app' := map_app'✝ } → (fun f => ↑(LinearEquiv.symm f.toLinearEquiv)) { toLinearEquiv := toLinearEquiv✝¹, map_app' := map_app'✝¹ } = (fun f => ↑(LinearEquiv.symm f.toLinearEquiv)) { toLinearEquiv := toLinearEquiv✝, map_app' := map_app'✝ } → { toLinearEquiv := toLinearEquiv✝¹, map_app' := map_app'✝¹ } = { toLinearEquiv := toLinearEquiv✝, map_app' := map_app'✝ } [PROOFSTEP] simp (config := { contextual := true }) [GOAL] ι : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₃ : Type u_7 V : Type u_8 inst✝⁸ : Semiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : AddCommMonoid M₃ inst✝³ : Module R M inst✝² : Module R M₁ inst✝¹ : Module R M₂ inst✝ : Module R M₃ Q₁ : QuadraticForm R M₁ Q₂ : QuadraticForm R M₂ Q₃ : QuadraticForm R M₃ f : IsometryEquiv Q₁ Q₂ src✝ : M₂ ≃ₗ[R] M₁ := LinearEquiv.symm f.toLinearEquiv ⊢ ∀ (m : M₂), ↑Q₁ (AddHom.toFun (↑{ toLinearMap := ↑src✝, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun), right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }).toAddHom m) = ↑Q₂ m [PROOFSTEP] intro m [GOAL] ι : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₃ : Type u_7 V : Type u_8 inst✝⁸ : Semiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : AddCommMonoid M₃ inst✝³ : Module R M inst✝² : Module R M₁ inst✝¹ : Module R M₂ inst✝ : Module R M₃ Q₁ : QuadraticForm R M₁ Q₂ : QuadraticForm R M₂ Q₃ : QuadraticForm R M₃ f : IsometryEquiv Q₁ Q₂ src✝ : M₂ ≃ₗ[R] M₁ := LinearEquiv.symm f.toLinearEquiv m : M₂ ⊢ ↑Q₁ (AddHom.toFun (↑{ toLinearMap := ↑src✝, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun), right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }).toAddHom m) = ↑Q₂ m [PROOFSTEP] rw [← f.map_app] [GOAL] ι : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₃ : Type u_7 V : Type u_8 inst✝⁸ : Semiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : AddCommMonoid M₃ inst✝³ : Module R M inst✝² : Module R M₁ inst✝¹ : Module R M₂ inst✝ : Module R M₃ Q₁ : QuadraticForm R M₁ Q₂ : QuadraticForm R M₂ Q₃ : QuadraticForm R M₃ f : IsometryEquiv Q₁ Q₂ src✝ : M₂ ≃ₗ[R] M₁ := LinearEquiv.symm f.toLinearEquiv m : M₂ ⊢ ↑Q₂ (↑f (AddHom.toFun (↑{ toLinearMap := ↑src✝, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun), right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }).toAddHom m)) = ↑Q₂ m [PROOFSTEP] congr [GOAL] case h.e_6.h ι : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₃ : Type u_7 V : Type u_8 inst✝⁸ : Semiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : AddCommMonoid M₃ inst✝³ : Module R M inst✝² : Module R M₁ inst✝¹ : Module R M₂ inst✝ : Module R M₃ Q₁ : QuadraticForm R M₁ Q₂ : QuadraticForm R M₂ Q₃ : QuadraticForm R M₃ f : IsometryEquiv Q₁ Q₂ src✝ : M₂ ≃ₗ[R] M₁ := LinearEquiv.symm f.toLinearEquiv m : M₂ ⊢ ↑f (AddHom.toFun (↑{ toLinearMap := ↑src✝, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun), right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }).toAddHom m) = m [PROOFSTEP] exact f.toLinearEquiv.apply_symm_apply m [GOAL] ι : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₃ : Type u_7 V : Type u_8 inst✝⁸ : Semiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : AddCommMonoid M₃ inst✝³ : Module R M inst✝² : Module R M₁ inst✝¹ : Module R M₂ inst✝ : Module R M₃ Q₁ : QuadraticForm R M₁ Q₂ : QuadraticForm R M₂ Q₃ : QuadraticForm R M₃ f : IsometryEquiv Q₁ Q₂ g : IsometryEquiv Q₂ Q₃ src✝ : M₁ ≃ₗ[R] M₃ := LinearEquiv.trans f.toLinearEquiv g.toLinearEquiv ⊢ ∀ (m : M₁), ↑Q₃ (AddHom.toFun (↑{ toLinearMap := ↑src✝, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun), right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }).toAddHom m) = ↑Q₁ m [PROOFSTEP] intro m [GOAL] ι : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₃ : Type u_7 V : Type u_8 inst✝⁸ : Semiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : AddCommMonoid M₃ inst✝³ : Module R M inst✝² : Module R M₁ inst✝¹ : Module R M₂ inst✝ : Module R M₃ Q₁ : QuadraticForm R M₁ Q₂ : QuadraticForm R M₂ Q₃ : QuadraticForm R M₃ f : IsometryEquiv Q₁ Q₂ g : IsometryEquiv Q₂ Q₃ src✝ : M₁ ≃ₗ[R] M₃ := LinearEquiv.trans f.toLinearEquiv g.toLinearEquiv m : M₁ ⊢ ↑Q₃ (AddHom.toFun (↑{ toLinearMap := ↑src✝, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun), right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }).toAddHom m) = ↑Q₁ m [PROOFSTEP] rw [← f.map_app, ← g.map_app] [GOAL] ι : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₃ : Type u_7 V : Type u_8 inst✝⁸ : Semiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : AddCommMonoid M₃ inst✝³ : Module R M inst✝² : Module R M₁ inst✝¹ : Module R M₂ inst✝ : Module R M₃ Q₁ : QuadraticForm R M₁ Q₂ : QuadraticForm R M₂ Q₃ : QuadraticForm R M₃ f : IsometryEquiv Q₁ Q₂ g : IsometryEquiv Q₂ Q₃ src✝ : M₁ ≃ₗ[R] M₃ := LinearEquiv.trans f.toLinearEquiv g.toLinearEquiv m : M₁ ⊢ ↑Q₃ (AddHom.toFun (↑{ toLinearMap := ↑src✝, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun), right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }).toAddHom m) = ↑Q₃ (↑g (↑f m)) [PROOFSTEP] rfl [GOAL] ι : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₃ : Type u_7 V : Type u_8 inst✝⁹ : Semiring R inst✝⁸ : AddCommMonoid M inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommMonoid M₃ inst✝⁴ : Module R M inst✝³ : Module R M₁ inst✝² : Module R M₂ inst✝¹ : Module R M₃ inst✝ : Fintype ι v : Basis ι R M Q : QuadraticForm R M f : M₁ ≃ₗ[R] M src✝ : M ≃ₗ[R] M₁ := LinearEquiv.symm f ⊢ ∀ (m : M), ↑(comp Q ↑f) (AddHom.toFun (↑{ toLinearMap := ↑src✝, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun), right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }).toAddHom m) = ↑Q m [PROOFSTEP] intro [GOAL] ι : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₃ : Type u_7 V : Type u_8 inst✝⁹ : Semiring R inst✝⁸ : AddCommMonoid M inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommMonoid M₃ inst✝⁴ : Module R M inst✝³ : Module R M₁ inst✝² : Module R M₂ inst✝¹ : Module R M₃ inst✝ : Fintype ι v : Basis ι R M Q : QuadraticForm R M f : M₁ ≃ₗ[R] M src✝ : M ≃ₗ[R] M₁ := LinearEquiv.symm f m✝ : M ⊢ ↑(comp Q ↑f) (AddHom.toFun (↑{ toLinearMap := ↑src✝, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun), right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }).toAddHom m✝) = ↑Q m✝ [PROOFSTEP] simp only [comp_apply, LinearEquiv.coe_coe, LinearEquiv.toFun_eq_coe, LinearEquiv.apply_symm_apply, f.apply_symm_apply] [GOAL] ι : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₃ : Type u_7 V : Type u_8 inst✝¹³ : Semiring R inst✝¹² : AddCommMonoid M inst✝¹¹ : AddCommMonoid M₁ inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : AddCommMonoid M₃ inst✝⁸ : Module R M inst✝⁷ : Module R M₁ inst✝⁶ : Module R M₂ inst✝⁵ : Module R M₃ inst✝⁴ : Fintype ι v✝ : Basis ι R M inst✝³ : Field K inst✝² : Invertible 2 inst✝¹ : AddCommGroup V inst✝ : Module K V Q : QuadraticForm K V v : Basis (Fin (FiniteDimensional.finrank K V)) K V hv₁ : BilinForm.iIsOrtho (↑associated Q) ↑v ⊢ IsometryEquiv Q (weightedSumSquares K fun i => ↑Q (↑v i)) [PROOFSTEP] let iso := Q.isometryEquivBasisRepr v [GOAL] ι : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₃ : Type u_7 V : Type u_8 inst✝¹³ : Semiring R inst✝¹² : AddCommMonoid M inst✝¹¹ : AddCommMonoid M₁ inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : AddCommMonoid M₃ inst✝⁸ : Module R M inst✝⁷ : Module R M₁ inst✝⁶ : Module R M₂ inst✝⁵ : Module R M₃ inst✝⁴ : Fintype ι v✝ : Basis ι R M inst✝³ : Field K inst✝² : Invertible 2 inst✝¹ : AddCommGroup V inst✝ : Module K V Q : QuadraticForm K V v : Basis (Fin (FiniteDimensional.finrank K V)) K V hv₁ : BilinForm.iIsOrtho (↑associated Q) ↑v iso : IsometryEquiv Q (basisRepr Q v) := isometryEquivBasisRepr Q v ⊢ IsometryEquiv Q (weightedSumSquares K fun i => ↑Q (↑v i)) [PROOFSTEP] refine' ⟨iso, fun m => _⟩ [GOAL] ι : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₃ : Type u_7 V : Type u_8 inst✝¹³ : Semiring R inst✝¹² : AddCommMonoid M inst✝¹¹ : AddCommMonoid M₁ inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : AddCommMonoid M₃ inst✝⁸ : Module R M inst✝⁷ : Module R M₁ inst✝⁶ : Module R M₂ inst✝⁵ : Module R M₃ inst✝⁴ : Fintype ι v✝ : Basis ι R M inst✝³ : Field K inst✝² : Invertible 2 inst✝¹ : AddCommGroup V inst✝ : Module K V Q : QuadraticForm K V v : Basis (Fin (FiniteDimensional.finrank K V)) K V hv₁ : BilinForm.iIsOrtho (↑associated Q) ↑v iso : IsometryEquiv Q (basisRepr Q v) := isometryEquivBasisRepr Q v m : V ⊢ ↑(weightedSumSquares K fun i => ↑Q (↑v i)) (AddHom.toFun iso.toAddHom m) = ↑Q m [PROOFSTEP] convert iso.map_app m [GOAL] case h.e'_2.h.e'_5 ι : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₃ : Type u_7 V : Type u_8 inst✝¹³ : Semiring R inst✝¹² : AddCommMonoid M inst✝¹¹ : AddCommMonoid M₁ inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : AddCommMonoid M₃ inst✝⁸ : Module R M inst✝⁷ : Module R M₁ inst✝⁶ : Module R M₂ inst✝⁵ : Module R M₃ inst✝⁴ : Fintype ι v✝ : Basis ι R M inst✝³ : Field K inst✝² : Invertible 2 inst✝¹ : AddCommGroup V inst✝ : Module K V Q : QuadraticForm K V v : Basis (Fin (FiniteDimensional.finrank K V)) K V hv₁ : BilinForm.iIsOrtho (↑associated Q) ↑v iso : IsometryEquiv Q (basisRepr Q v) := isometryEquivBasisRepr Q v m : V ⊢ (weightedSumSquares K fun i => ↑Q (↑v i)) = basisRepr Q v [PROOFSTEP] rw [basisRepr_eq_of_iIsOrtho _ _ hv₁] [GOAL] ι : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₃ : Type u_7 V : Type u_8 inst✝¹⁴ : Semiring R inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid M₁ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : AddCommMonoid M₃ inst✝⁹ : Module R M inst✝⁸ : Module R M₁ inst✝⁷ : Module R M₂ inst✝⁶ : Module R M₃ inst✝⁵ : Fintype ι v : Basis ι R M inst✝⁴ : Field K inst✝³ : Invertible 2 inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V Q : QuadraticForm K V hQ : Nondegenerate (↑associated Q) ⊢ ∃ w, Equivalent Q (weightedSumSquares K w) [PROOFSTEP] obtain ⟨v, hv₁⟩ := exists_orthogonal_basis (associated_isSymm K Q) [GOAL] case intro ι : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₃ : Type u_7 V : Type u_8 inst✝¹⁴ : Semiring R inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid M₁ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : AddCommMonoid M₃ inst✝⁹ : Module R M inst✝⁸ : Module R M₁ inst✝⁷ : Module R M₂ inst✝⁶ : Module R M₃ inst✝⁵ : Fintype ι v✝ : Basis ι R M inst✝⁴ : Field K inst✝³ : Invertible 2 inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V Q : QuadraticForm K V hQ : Nondegenerate (↑associated Q) v : Basis (Fin (FiniteDimensional.finrank K V)) K V hv₁ : iIsOrtho (↑(associatedHom K) Q) ↑v ⊢ ∃ w, Equivalent Q (weightedSumSquares K w) [PROOFSTEP] have hv₂ := hv₁.not_isOrtho_basis_self_of_nondegenerate hQ [GOAL] case intro ι : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₃ : Type u_7 V : Type u_8 inst✝¹⁴ : Semiring R inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid M₁ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : AddCommMonoid M₃ inst✝⁹ : Module R M inst✝⁸ : Module R M₁ inst✝⁷ : Module R M₂ inst✝⁶ : Module R M₃ inst✝⁵ : Fintype ι v✝ : Basis ι R M inst✝⁴ : Field K inst✝³ : Invertible 2 inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V Q : QuadraticForm K V hQ : Nondegenerate (↑associated Q) v : Basis (Fin (FiniteDimensional.finrank K V)) K V hv₁ : iIsOrtho (↑(associatedHom K) Q) ↑v hv₂ : ∀ (i : Fin (FiniteDimensional.finrank K V)), ¬IsOrtho (↑(associatedHom K) Q) (↑v i) (↑v i) ⊢ ∃ w, Equivalent Q (weightedSumSquares K w) [PROOFSTEP] simp_rw [IsOrtho, associated_eq_self_apply] at hv₂ [GOAL] case intro ι : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₃ : Type u_7 V : Type u_8 inst✝¹⁴ : Semiring R inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid M₁ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : AddCommMonoid M₃ inst✝⁹ : Module R M inst✝⁸ : Module R M₁ inst✝⁷ : Module R M₂ inst✝⁶ : Module R M₃ inst✝⁵ : Fintype ι v✝ : Basis ι R M inst✝⁴ : Field K inst✝³ : Invertible 2 inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V Q : QuadraticForm K V hQ : Nondegenerate (↑associated Q) v : Basis (Fin (FiniteDimensional.finrank K V)) K V hv₁ : iIsOrtho (↑(associatedHom K) Q) ↑v hv₂ : ∀ (i : Fin (FiniteDimensional.finrank K V)), ¬↑Q (↑v i) = 0 ⊢ ∃ w, Equivalent Q (weightedSumSquares K w) [PROOFSTEP] exact ⟨fun i => Units.mk0 _ (hv₂ i), ⟨Q.isometryEquivWeightedSumSquares v hv₁⟩⟩
{"mathlib_filename": "Mathlib.LinearAlgebra.QuadraticForm.IsometryEquiv", "llama_tokens": 7896}
[GOAL] ι : Type u_1 inst✝¹ : Fintype ι inst✝ : DecidableEq ι w' : ι → ℂ ⊢ IsometryEquiv (weightedSumSquares ℂ w') (weightedSumSquares ℂ fun i => if w' i = 0 then 0 else 1) [PROOFSTEP] let w i := if h : w' i = 0 then (1 : Units ℂ) else Units.mk0 (w' i) h [GOAL] ι : Type u_1 inst✝¹ : Fintype ι inst✝ : DecidableEq ι w' : ι → ℂ w : ι → ℂˣ := fun i => if h : w' i = 0 then 1 else Units.mk0 (w' i) h ⊢ IsometryEquiv (weightedSumSquares ℂ w') (weightedSumSquares ℂ fun i => if w' i = 0 then 0 else 1) [PROOFSTEP] have hw' : ∀ i : ι, (w i : ℂ) ^ (-(1 / 2 : ℂ)) ≠ 0 := by intro i hi exact (w i).ne_zero ((Complex.cpow_eq_zero_iff _ _).1 hi).1 [GOAL] ι : Type u_1 inst✝¹ : Fintype ι inst✝ : DecidableEq ι w' : ι → ℂ w : ι → ℂˣ := fun i => if h : w' i = 0 then 1 else Units.mk0 (w' i) h ⊢ ∀ (i : ι), ↑(w i) ^ (-(1 / 2)) ≠ 0 [PROOFSTEP] intro i hi [GOAL] ι : Type u_1 inst✝¹ : Fintype ι inst✝ : DecidableEq ι w' : ι → ℂ w : ι → ℂˣ := fun i => if h : w' i = 0 then 1 else Units.mk0 (w' i) h i : ι hi : ↑(w i) ^ (-(1 / 2)) = 0 ⊢ False [PROOFSTEP] exact (w i).ne_zero ((Complex.cpow_eq_zero_iff _ _).1 hi).1 [GOAL] ι : Type u_1 inst✝¹ : Fintype ι inst✝ : DecidableEq ι w' : ι → ℂ w : ι → ℂˣ := fun i => if h : w' i = 0 then 1 else Units.mk0 (w' i) h hw' : ∀ (i : ι), ↑(w i) ^ (-(1 / 2)) ≠ 0 ⊢ IsometryEquiv (weightedSumSquares ℂ w') (weightedSumSquares ℂ fun i => if w' i = 0 then 0 else 1) [PROOFSTEP] convert (weightedSumSquares ℂ w').isometryEquivBasisRepr ((Pi.basisFun ℂ ι).unitsSMul fun i => (isUnit_iff_ne_zero.2 <| hw' i).unit) [GOAL] case h.e'_10 ι : Type u_1 inst✝¹ : Fintype ι inst✝ : DecidableEq ι w' : ι → ℂ w : ι → ℂˣ := fun i => if h : w' i = 0 then 1 else Units.mk0 (w' i) h hw' : ∀ (i : ι), ↑(w i) ^ (-(1 / 2)) ≠ 0 ⊢ (weightedSumSquares ℂ fun i => if w' i = 0 then 0 else 1) = basisRepr (weightedSumSquares ℂ w') (Basis.unitsSMul (Pi.basisFun ℂ ι) fun i => IsUnit.unit (_ : IsUnit (↑(w i) ^ (-(1 / 2))))) [PROOFSTEP] ext1 v [GOAL] case h.e'_10.H ι : Type u_1 inst✝¹ : Fintype ι inst✝ : DecidableEq ι w' : ι → ℂ w : ι → ℂˣ := fun i => if h : w' i = 0 then 1 else Units.mk0 (w' i) h hw' : ∀ (i : ι), ↑(w i) ^ (-(1 / 2)) ≠ 0 v : ι → ℂ ⊢ ↑(weightedSumSquares ℂ fun i => if w' i = 0 then 0 else 1) v = ↑(basisRepr (weightedSumSquares ℂ w') (Basis.unitsSMul (Pi.basisFun ℂ ι) fun i => IsUnit.unit (_ : IsUnit (↑(w i) ^ (-(1 / 2)))))) v [PROOFSTEP] erw [basisRepr_apply, weightedSumSquares_apply, weightedSumSquares_apply] [GOAL] case h.e'_10.H ι : Type u_1 inst✝¹ : Fintype ι inst✝ : DecidableEq ι w' : ι → ℂ w : ι → ℂˣ := fun i => if h : w' i = 0 then 1 else Units.mk0 (w' i) h hw' : ∀ (i : ι), ↑(w i) ^ (-(1 / 2)) ≠ 0 v : ι → ℂ ⊢ ∑ i : ι, (if w' i = 0 then 0 else 1) • (v i * v i) = ∑ i : ι, w' i • (Finset.sum univ (fun i => v i • ↑(Basis.unitsSMul (Pi.basisFun ℂ ι) fun i => IsUnit.unit (_ : IsUnit (↑(w i) ^ (-(1 / 2))))) i) i * Finset.sum univ (fun i => v i • ↑(Basis.unitsSMul (Pi.basisFun ℂ ι) fun i => IsUnit.unit (_ : IsUnit (↑(w i) ^ (-(1 / 2))))) i) i) [PROOFSTEP] refine' sum_congr rfl fun j hj => _ [GOAL] case h.e'_10.H ι : Type u_1 inst✝¹ : Fintype ι inst✝ : DecidableEq ι w' : ι → ℂ w : ι → ℂˣ := fun i => if h : w' i = 0 then 1 else Units.mk0 (w' i) h hw' : ∀ (i : ι), ↑(w i) ^ (-(1 / 2)) ≠ 0 v : ι → ℂ j : ι hj : j ∈ univ ⊢ (if w' j = 0 then 0 else 1) • (v j * v j) = w' j • (Finset.sum univ (fun i => v i • ↑(Basis.unitsSMul (Pi.basisFun ℂ ι) fun i => IsUnit.unit (_ : IsUnit (↑(w i) ^ (-(1 / 2))))) i) j * Finset.sum univ (fun i => v i • ↑(Basis.unitsSMul (Pi.basisFun ℂ ι) fun i => IsUnit.unit (_ : IsUnit (↑(w i) ^ (-(1 / 2))))) i) j) [PROOFSTEP] have hsum : (∑ i : ι, v i • ((isUnit_iff_ne_zero.2 <| hw' i).unit : ℂ) • (Pi.basisFun ℂ ι) i) j = v j • w j ^ (-(1 / 2 : ℂ)) := by rw [Finset.sum_apply, sum_eq_single j, Pi.basisFun_apply, IsUnit.unit_spec, LinearMap.stdBasis_apply, Pi.smul_apply, Pi.smul_apply, Function.update_same, smul_eq_mul, smul_eq_mul, smul_eq_mul, mul_one] intro i _ hij rw [Pi.basisFun_apply, LinearMap.stdBasis_apply, Pi.smul_apply, Pi.smul_apply, Function.update_noteq hij.symm, Pi.zero_apply, smul_eq_mul, smul_eq_mul, mul_zero, mul_zero] intro hj'; exact False.elim (hj' hj) [GOAL] ι : Type u_1 inst✝¹ : Fintype ι inst✝ : DecidableEq ι w' : ι → ℂ w : ι → ℂˣ := fun i => if h : w' i = 0 then 1 else Units.mk0 (w' i) h hw' : ∀ (i : ι), ↑(w i) ^ (-(1 / 2)) ≠ 0 v : ι → ℂ j : ι hj : j ∈ univ ⊢ Finset.sum univ (fun i => v i • ↑(IsUnit.unit (_ : IsUnit (↑(w i) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℂ ι) i) j = v j • ↑(w j) ^ (-(1 / 2)) [PROOFSTEP] rw [Finset.sum_apply, sum_eq_single j, Pi.basisFun_apply, IsUnit.unit_spec, LinearMap.stdBasis_apply, Pi.smul_apply, Pi.smul_apply, Function.update_same, smul_eq_mul, smul_eq_mul, smul_eq_mul, mul_one] [GOAL] case h₀ ι : Type u_1 inst✝¹ : Fintype ι inst✝ : DecidableEq ι w' : ι → ℂ w : ι → ℂˣ := fun i => if h : w' i = 0 then 1 else Units.mk0 (w' i) h hw' : ∀ (i : ι), ↑(w i) ^ (-(1 / 2)) ≠ 0 v : ι → ℂ j : ι hj : j ∈ univ ⊢ ∀ (b : ι), b ∈ univ → b ≠ j → (v b • ↑(IsUnit.unit (_ : IsUnit (↑(w b) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℂ ι) b) j = 0 case h₁ ι : Type u_1 inst✝¹ : Fintype ι inst✝ : DecidableEq ι w' : ι → ℂ w : ι → ℂˣ := fun i => if h : w' i = 0 then 1 else Units.mk0 (w' i) h hw' : ∀ (i : ι), ↑(w i) ^ (-(1 / 2)) ≠ 0 v : ι → ℂ j : ι hj : j ∈ univ ⊢ ¬j ∈ univ → (v j • ↑(IsUnit.unit (_ : IsUnit (↑(w j) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℂ ι) j) j = 0 [PROOFSTEP] intro i _ hij [GOAL] case h₀ ι : Type u_1 inst✝¹ : Fintype ι inst✝ : DecidableEq ι w' : ι → ℂ w : ι → ℂˣ := fun i => if h : w' i = 0 then 1 else Units.mk0 (w' i) h hw' : ∀ (i : ι), ↑(w i) ^ (-(1 / 2)) ≠ 0 v : ι → ℂ j : ι hj : j ∈ univ i : ι a✝ : i ∈ univ hij : i ≠ j ⊢ (v i • ↑(IsUnit.unit (_ : IsUnit (↑(w i) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℂ ι) i) j = 0 case h₁ ι : Type u_1 inst✝¹ : Fintype ι inst✝ : DecidableEq ι w' : ι → ℂ w : ι → ℂˣ := fun i => if h : w' i = 0 then 1 else Units.mk0 (w' i) h hw' : ∀ (i : ι), ↑(w i) ^ (-(1 / 2)) ≠ 0 v : ι → ℂ j : ι hj : j ∈ univ ⊢ ¬j ∈ univ → (v j • ↑(IsUnit.unit (_ : IsUnit (↑(w j) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℂ ι) j) j = 0 [PROOFSTEP] rw [Pi.basisFun_apply, LinearMap.stdBasis_apply, Pi.smul_apply, Pi.smul_apply, Function.update_noteq hij.symm, Pi.zero_apply, smul_eq_mul, smul_eq_mul, mul_zero, mul_zero] [GOAL] case h₁ ι : Type u_1 inst✝¹ : Fintype ι inst✝ : DecidableEq ι w' : ι → ℂ w : ι → ℂˣ := fun i => if h : w' i = 0 then 1 else Units.mk0 (w' i) h hw' : ∀ (i : ι), ↑(w i) ^ (-(1 / 2)) ≠ 0 v : ι → ℂ j : ι hj : j ∈ univ ⊢ ¬j ∈ univ → (v j • ↑(IsUnit.unit (_ : IsUnit (↑(w j) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℂ ι) j) j = 0 [PROOFSTEP] intro hj' [GOAL] case h₁ ι : Type u_1 inst✝¹ : Fintype ι inst✝ : DecidableEq ι w' : ι → ℂ w : ι → ℂˣ := fun i => if h : w' i = 0 then 1 else Units.mk0 (w' i) h hw' : ∀ (i : ι), ↑(w i) ^ (-(1 / 2)) ≠ 0 v : ι → ℂ j : ι hj : j ∈ univ hj' : ¬j ∈ univ ⊢ (v j • ↑(IsUnit.unit (_ : IsUnit (↑(w j) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℂ ι) j) j = 0 [PROOFSTEP] exact False.elim (hj' hj) [GOAL] case h.e'_10.H ι : Type u_1 inst✝¹ : Fintype ι inst✝ : DecidableEq ι w' : ι → ℂ w : ι → ℂˣ := fun i => if h : w' i = 0 then 1 else Units.mk0 (w' i) h hw' : ∀ (i : ι), ↑(w i) ^ (-(1 / 2)) ≠ 0 v : ι → ℂ j : ι hj : j ∈ univ hsum : Finset.sum univ (fun i => v i • ↑(IsUnit.unit (_ : IsUnit (↑(w i) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℂ ι) i) j = v j • ↑(w j) ^ (-(1 / 2)) ⊢ (if w' j = 0 then 0 else 1) • (v j * v j) = w' j • (Finset.sum univ (fun i => v i • ↑(Basis.unitsSMul (Pi.basisFun ℂ ι) fun i => IsUnit.unit (_ : IsUnit (↑(w i) ^ (-(1 / 2))))) i) j * Finset.sum univ (fun i => v i • ↑(Basis.unitsSMul (Pi.basisFun ℂ ι) fun i => IsUnit.unit (_ : IsUnit (↑(w i) ^ (-(1 / 2))))) i) j) [PROOFSTEP] simp_rw [Basis.unitsSMul_apply] [GOAL] case h.e'_10.H ι : Type u_1 inst✝¹ : Fintype ι inst✝ : DecidableEq ι w' : ι → ℂ w : ι → ℂˣ := fun i => if h : w' i = 0 then 1 else Units.mk0 (w' i) h hw' : ∀ (i : ι), ↑(w i) ^ (-(1 / 2)) ≠ 0 v : ι → ℂ j : ι hj : j ∈ univ hsum : Finset.sum univ (fun i => v i • ↑(IsUnit.unit (_ : IsUnit (↑(w i) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℂ ι) i) j = v j • ↑(w j) ^ (-(1 / 2)) ⊢ (if w' j = 0 then 0 else 1) • (v j * v j) = w' j • (Finset.sum univ (fun x => v x • IsUnit.unit (_ : IsUnit (↑(w x) ^ (-(1 / 2)))) • ↑(Pi.basisFun ℂ ι) x) j * Finset.sum univ (fun x => v x • IsUnit.unit (_ : IsUnit (↑(w x) ^ (-(1 / 2)))) • ↑(Pi.basisFun ℂ ι) x) j) [PROOFSTEP] erw [hsum, smul_eq_mul] [GOAL] case h.e'_10.H ι : Type u_1 inst✝¹ : Fintype ι inst✝ : DecidableEq ι w' : ι → ℂ w : ι → ℂˣ := fun i => if h : w' i = 0 then 1 else Units.mk0 (w' i) h hw' : ∀ (i : ι), ↑(w i) ^ (-(1 / 2)) ≠ 0 v : ι → ℂ j : ι hj : j ∈ univ hsum : Finset.sum univ (fun i => v i • ↑(IsUnit.unit (_ : IsUnit (↑(w i) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℂ ι) i) j = v j • ↑(w j) ^ (-(1 / 2)) ⊢ (if w' j = 0 then 0 else 1) * (v j * v j) = w' j • (v j • ↑(w j) ^ (-(1 / 2)) * v j • ↑(w j) ^ (-(1 / 2))) [PROOFSTEP] split_ifs with h [GOAL] case pos ι : Type u_1 inst✝¹ : Fintype ι inst✝ : DecidableEq ι w' : ι → ℂ w : ι → ℂˣ := fun i => if h : w' i = 0 then 1 else Units.mk0 (w' i) h hw' : ∀ (i : ι), ↑(w i) ^ (-(1 / 2)) ≠ 0 v : ι → ℂ j : ι hj : j ∈ univ hsum : Finset.sum univ (fun i => v i • ↑(IsUnit.unit (_ : IsUnit (↑(w i) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℂ ι) i) j = v j • ↑(w j) ^ (-(1 / 2)) h : w' j = 0 ⊢ 0 * (v j * v j) = w' j • (v j • ↑1 ^ (-(1 / 2)) * v j • ↑1 ^ (-(1 / 2))) [PROOFSTEP] simp only [h, zero_smul, zero_mul] [GOAL] case neg ι : Type u_1 inst✝¹ : Fintype ι inst✝ : DecidableEq ι w' : ι → ℂ w : ι → ℂˣ := fun i => if h : w' i = 0 then 1 else Units.mk0 (w' i) h hw' : ∀ (i : ι), ↑(w i) ^ (-(1 / 2)) ≠ 0 v : ι → ℂ j : ι hj : j ∈ univ hsum : Finset.sum univ (fun i => v i • ↑(IsUnit.unit (_ : IsUnit (↑(w i) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℂ ι) i) j = v j • ↑(w j) ^ (-(1 / 2)) h : ¬w' j = 0 ⊢ 1 * (v j * v j) = w' j • (v j • ↑(Units.mk0 (w' j) h) ^ (-(1 / 2)) * v j • ↑(Units.mk0 (w' j) h) ^ (-(1 / 2))) [PROOFSTEP] have hww' : w' j = w j := by simp only [dif_neg h, Units.val_mk0] [GOAL] ι : Type u_1 inst✝¹ : Fintype ι inst✝ : DecidableEq ι w' : ι → ℂ w : ι → ℂˣ := fun i => if h : w' i = 0 then 1 else Units.mk0 (w' i) h hw' : ∀ (i : ι), ↑(w i) ^ (-(1 / 2)) ≠ 0 v : ι → ℂ j : ι hj : j ∈ univ hsum : Finset.sum univ (fun i => v i • ↑(IsUnit.unit (_ : IsUnit (↑(w i) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℂ ι) i) j = v j • ↑(w j) ^ (-(1 / 2)) h : ¬w' j = 0 ⊢ w' j = ↑(w j) [PROOFSTEP] simp only [dif_neg h, Units.val_mk0] [GOAL] case neg ι : Type u_1 inst✝¹ : Fintype ι inst✝ : DecidableEq ι w' : ι → ℂ w : ι → ℂˣ := fun i => if h : w' i = 0 then 1 else Units.mk0 (w' i) h hw' : ∀ (i : ι), ↑(w i) ^ (-(1 / 2)) ≠ 0 v : ι → ℂ j : ι hj : j ∈ univ hsum : Finset.sum univ (fun i => v i • ↑(IsUnit.unit (_ : IsUnit (↑(w i) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℂ ι) i) j = v j • ↑(w j) ^ (-(1 / 2)) h : ¬w' j = 0 hww' : w' j = ↑(w j) ⊢ 1 * (v j * v j) = w' j • (v j • ↑(Units.mk0 (w' j) h) ^ (-(1 / 2)) * v j • ↑(Units.mk0 (w' j) h) ^ (-(1 / 2))) [PROOFSTEP] simp only [one_mul, Units.val_mk0, smul_eq_mul] [GOAL] case neg ι : Type u_1 inst✝¹ : Fintype ι inst✝ : DecidableEq ι w' : ι → ℂ w : ι → ℂˣ := fun i => if h : w' i = 0 then 1 else Units.mk0 (w' i) h hw' : ∀ (i : ι), ↑(w i) ^ (-(1 / 2)) ≠ 0 v : ι → ℂ j : ι hj : j ∈ univ hsum : Finset.sum univ (fun i => v i • ↑(IsUnit.unit (_ : IsUnit (↑(w i) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℂ ι) i) j = v j • ↑(w j) ^ (-(1 / 2)) h : ¬w' j = 0 hww' : w' j = ↑(w j) ⊢ v j * v j = w' j * (v j * w' j ^ (-(1 / 2)) * (v j * w' j ^ (-(1 / 2)))) [PROOFSTEP] rw [hww'] [GOAL] case neg ι : Type u_1 inst✝¹ : Fintype ι inst✝ : DecidableEq ι w' : ι → ℂ w : ι → ℂˣ := fun i => if h : w' i = 0 then 1 else Units.mk0 (w' i) h hw' : ∀ (i : ι), ↑(w i) ^ (-(1 / 2)) ≠ 0 v : ι → ℂ j : ι hj : j ∈ univ hsum : Finset.sum univ (fun i => v i • ↑(IsUnit.unit (_ : IsUnit (↑(w i) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℂ ι) i) j = v j • ↑(w j) ^ (-(1 / 2)) h : ¬w' j = 0 hww' : w' j = ↑(w j) ⊢ v j * v j = ↑(w j) * (v j * ↑(w j) ^ (-(1 / 2)) * (v j * ↑(w j) ^ (-(1 / 2)))) [PROOFSTEP] suffices v j * v j = w j ^ (-(1 / 2 : ℂ)) * w j ^ (-(1 / 2 : ℂ)) * w j * v j * v j by rw [this]; ring [GOAL] ι : Type u_1 inst✝¹ : Fintype ι inst✝ : DecidableEq ι w' : ι → ℂ w : ι → ℂˣ := fun i => if h : w' i = 0 then 1 else Units.mk0 (w' i) h hw' : ∀ (i : ι), ↑(w i) ^ (-(1 / 2)) ≠ 0 v : ι → ℂ j : ι hj : j ∈ univ hsum : Finset.sum univ (fun i => v i • ↑(IsUnit.unit (_ : IsUnit (↑(w i) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℂ ι) i) j = v j • ↑(w j) ^ (-(1 / 2)) h : ¬w' j = 0 hww' : w' j = ↑(w j) this : v j * v j = ↑(w j) ^ (-(1 / 2)) * ↑(w j) ^ (-(1 / 2)) * ↑(w j) * v j * v j ⊢ v j * v j = ↑(w j) * (v j * ↑(w j) ^ (-(1 / 2)) * (v j * ↑(w j) ^ (-(1 / 2)))) [PROOFSTEP] rw [this] [GOAL] ι : Type u_1 inst✝¹ : Fintype ι inst✝ : DecidableEq ι w' : ι → ℂ w : ι → ℂˣ := fun i => if h : w' i = 0 then 1 else Units.mk0 (w' i) h hw' : ∀ (i : ι), ↑(w i) ^ (-(1 / 2)) ≠ 0 v : ι → ℂ j : ι hj : j ∈ univ hsum : Finset.sum univ (fun i => v i • ↑(IsUnit.unit (_ : IsUnit (↑(w i) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℂ ι) i) j = v j • ↑(w j) ^ (-(1 / 2)) h : ¬w' j = 0 hww' : w' j = ↑(w j) this : v j * v j = ↑(w j) ^ (-(1 / 2)) * ↑(w j) ^ (-(1 / 2)) * ↑(w j) * v j * v j ⊢ ↑(w j) ^ (-(1 / 2)) * ↑(w j) ^ (-(1 / 2)) * ↑(w j) * v j * v j = ↑(w j) * (v j * ↑(w j) ^ (-(1 / 2)) * (v j * ↑(w j) ^ (-(1 / 2)))) [PROOFSTEP] ring [GOAL] case neg ι : Type u_1 inst✝¹ : Fintype ι inst✝ : DecidableEq ι w' : ι → ℂ w : ι → ℂˣ := fun i => if h : w' i = 0 then 1 else Units.mk0 (w' i) h hw' : ∀ (i : ι), ↑(w i) ^ (-(1 / 2)) ≠ 0 v : ι → ℂ j : ι hj : j ∈ univ hsum : Finset.sum univ (fun i => v i • ↑(IsUnit.unit (_ : IsUnit (↑(w i) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℂ ι) i) j = v j • ↑(w j) ^ (-(1 / 2)) h : ¬w' j = 0 hww' : w' j = ↑(w j) ⊢ v j * v j = ↑(w j) ^ (-(1 / 2)) * ↑(w j) ^ (-(1 / 2)) * ↑(w j) * v j * v j [PROOFSTEP] rw [← Complex.cpow_add _ _ (w j).ne_zero, show -(1 / 2 : ℂ) + -(1 / 2) = -1 by simp [← two_mul], Complex.cpow_neg_one, inv_mul_cancel (w j).ne_zero, one_mul] [GOAL] ι : Type u_1 inst✝¹ : Fintype ι inst✝ : DecidableEq ι w' : ι → ℂ w : ι → ℂˣ := fun i => if h : w' i = 0 then 1 else Units.mk0 (w' i) h hw' : ∀ (i : ι), ↑(w i) ^ (-(1 / 2)) ≠ 0 v : ι → ℂ j : ι hj : j ∈ univ hsum : Finset.sum univ (fun i => v i • ↑(IsUnit.unit (_ : IsUnit (↑(w i) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℂ ι) i) j = v j • ↑(w j) ^ (-(1 / 2)) h : ¬w' j = 0 hww' : w' j = ↑(w j) ⊢ -(1 / 2) + -(1 / 2) = -1 [PROOFSTEP] simp [← two_mul] [GOAL] ι : Type u_1 inst✝¹ : Fintype ι inst✝ : DecidableEq ι w : ι → ℂˣ ⊢ IsometryEquiv (weightedSumSquares ℂ w) (weightedSumSquares ℂ 1) [PROOFSTEP] simpa using isometryEquivSumSquares ((↑) ∘ w)
{"mathlib_filename": "Mathlib.LinearAlgebra.QuadraticForm.Complex", "llama_tokens": 8420}
[GOAL] R : Type u_1 M : Type u_2 inst✝⁵ : CommRing R inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : Module.Free R M inst✝¹ : Module.Finite R M inst✝ : Nontrivial M ⊢ ↑LinearMap.det 0 = 0 [PROOFSTEP] letI : Nonempty (Module.Free.ChooseBasisIndex R M) := (Module.Free.chooseBasis R M).index_nonempty [GOAL] R : Type u_1 M : Type u_2 inst✝⁵ : CommRing R inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : Module.Free R M inst✝¹ : Module.Finite R M inst✝ : Nontrivial M this : Nonempty (Module.Free.ChooseBasisIndex R M) := Basis.index_nonempty (Module.Free.chooseBasis R M) ⊢ ↑LinearMap.det 0 = 0 [PROOFSTEP] nontriviality R [GOAL] R : Type u_1 M : Type u_2 inst✝⁵ : CommRing R inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : Module.Free R M inst✝¹ : Module.Finite R M inst✝ : Nontrivial M this : Nonempty (Module.Free.ChooseBasisIndex R M) := Basis.index_nonempty (Module.Free.chooseBasis R M) ✝ : Nontrivial R ⊢ ↑LinearMap.det 0 = 0 [PROOFSTEP] exact LinearMap.det_zero' (Module.Free.chooseBasis R M)
{"mathlib_filename": "Mathlib.LinearAlgebra.FreeModule.Determinant", "llama_tokens": 463}
[GOAL] ι : Type u_1 inst✝¹ : Fintype ι inst✝ : DecidableEq ι w : ι → ℝ ⊢ IsometryEquiv (weightedSumSquares ℝ w) (weightedSumSquares ℝ (sign ∘ w)) [PROOFSTEP] let u i := if h : w i = 0 then (1 : ℝˣ) else Units.mk0 (w i) h [GOAL] ι : Type u_1 inst✝¹ : Fintype ι inst✝ : DecidableEq ι w : ι → ℝ u : ι → ℝˣ := fun i => if h : w i = 0 then 1 else Units.mk0 (w i) h ⊢ IsometryEquiv (weightedSumSquares ℝ w) (weightedSumSquares ℝ (sign ∘ w)) [PROOFSTEP] have hu' : ∀ i : ι, (Real.sign (u i) * u i) ^ (-(1 / 2 : ℝ)) ≠ 0 := by intro i refine' (ne_of_lt (Real.rpow_pos_of_pos (sign_mul_pos_of_ne_zero _ <| Units.ne_zero _) _)).symm [GOAL] ι : Type u_1 inst✝¹ : Fintype ι inst✝ : DecidableEq ι w : ι → ℝ u : ι → ℝˣ := fun i => if h : w i = 0 then 1 else Units.mk0 (w i) h ⊢ ∀ (i : ι), (sign ↑(u i) * ↑(u i)) ^ (-(1 / 2)) ≠ 0 [PROOFSTEP] intro i [GOAL] ι : Type u_1 inst✝¹ : Fintype ι inst✝ : DecidableEq ι w : ι → ℝ u : ι → ℝˣ := fun i => if h : w i = 0 then 1 else Units.mk0 (w i) h i : ι ⊢ (sign ↑(u i) * ↑(u i)) ^ (-(1 / 2)) ≠ 0 [PROOFSTEP] refine' (ne_of_lt (Real.rpow_pos_of_pos (sign_mul_pos_of_ne_zero _ <| Units.ne_zero _) _)).symm [GOAL] ι : Type u_1 inst✝¹ : Fintype ι inst✝ : DecidableEq ι w : ι → ℝ u : ι → ℝˣ := fun i => if h : w i = 0 then 1 else Units.mk0 (w i) h hu' : ∀ (i : ι), (sign ↑(u i) * ↑(u i)) ^ (-(1 / 2)) ≠ 0 ⊢ IsometryEquiv (weightedSumSquares ℝ w) (weightedSumSquares ℝ (sign ∘ w)) [PROOFSTEP] convert (weightedSumSquares ℝ w).isometryEquivBasisRepr ((Pi.basisFun ℝ ι).unitsSMul fun i => (isUnit_iff_ne_zero.2 <| hu' i).unit) [GOAL] case h.e'_10 ι : Type u_1 inst✝¹ : Fintype ι inst✝ : DecidableEq ι w : ι → ℝ u : ι → ℝˣ := fun i => if h : w i = 0 then 1 else Units.mk0 (w i) h hu' : ∀ (i : ι), (sign ↑(u i) * ↑(u i)) ^ (-(1 / 2)) ≠ 0 ⊢ weightedSumSquares ℝ (sign ∘ w) = basisRepr (weightedSumSquares ℝ w) (Basis.unitsSMul (Pi.basisFun ℝ ι) fun i => IsUnit.unit (_ : IsUnit ((sign ↑(u i) * ↑(u i)) ^ (-(1 / 2))))) [PROOFSTEP] ext1 v [GOAL] case h.e'_10.H ι : Type u_1 inst✝¹ : Fintype ι inst✝ : DecidableEq ι w : ι → ℝ u : ι → ℝˣ := fun i => if h : w i = 0 then 1 else Units.mk0 (w i) h hu' : ∀ (i : ι), (sign ↑(u i) * ↑(u i)) ^ (-(1 / 2)) ≠ 0 v : ι → ℝ ⊢ ↑(weightedSumSquares ℝ (sign ∘ w)) v = ↑(basisRepr (weightedSumSquares ℝ w) (Basis.unitsSMul (Pi.basisFun ℝ ι) fun i => IsUnit.unit (_ : IsUnit ((sign ↑(u i) * ↑(u i)) ^ (-(1 / 2)))))) v [PROOFSTEP] rw [basisRepr_apply, weightedSumSquares_apply, weightedSumSquares_apply] [GOAL] case h.e'_10.H ι : Type u_1 inst✝¹ : Fintype ι inst✝ : DecidableEq ι w : ι → ℝ u : ι → ℝˣ := fun i => if h : w i = 0 then 1 else Units.mk0 (w i) h hu' : ∀ (i : ι), (sign ↑(u i) * ↑(u i)) ^ (-(1 / 2)) ≠ 0 v : ι → ℝ ⊢ ∑ i : ι, (sign ∘ w) i • (v i * v i) = ∑ i : ι, w i • (Finset.sum univ (fun i => v i • ↑(Basis.unitsSMul (Pi.basisFun ℝ ι) fun i => IsUnit.unit (_ : IsUnit ((sign ↑(u i) * ↑(u i)) ^ (-(1 / 2))))) i) i * Finset.sum univ (fun i => v i • ↑(Basis.unitsSMul (Pi.basisFun ℝ ι) fun i => IsUnit.unit (_ : IsUnit ((sign ↑(u i) * ↑(u i)) ^ (-(1 / 2))))) i) i) [PROOFSTEP] refine' sum_congr rfl fun j hj => _ [GOAL] case h.e'_10.H ι : Type u_1 inst✝¹ : Fintype ι inst✝ : DecidableEq ι w : ι → ℝ u : ι → ℝˣ := fun i => if h : w i = 0 then 1 else Units.mk0 (w i) h hu' : ∀ (i : ι), (sign ↑(u i) * ↑(u i)) ^ (-(1 / 2)) ≠ 0 v : ι → ℝ j : ι hj : j ∈ univ ⊢ (sign ∘ w) j • (v j * v j) = w j • (Finset.sum univ (fun i => v i • ↑(Basis.unitsSMul (Pi.basisFun ℝ ι) fun i => IsUnit.unit (_ : IsUnit ((sign ↑(u i) * ↑(u i)) ^ (-(1 / 2))))) i) j * Finset.sum univ (fun i => v i • ↑(Basis.unitsSMul (Pi.basisFun ℝ ι) fun i => IsUnit.unit (_ : IsUnit ((sign ↑(u i) * ↑(u i)) ^ (-(1 / 2))))) i) j) [PROOFSTEP] have hsum : (∑ i : ι, v i • ((isUnit_iff_ne_zero.2 <| hu' i).unit : ℝ) • (Pi.basisFun ℝ ι) i) j = v j • (Real.sign (u j) * u j) ^ (-(1 / 2 : ℝ)) := by rw [Finset.sum_apply, sum_eq_single j, Pi.basisFun_apply, IsUnit.unit_spec, LinearMap.stdBasis_apply, Pi.smul_apply, Pi.smul_apply, Function.update_same, smul_eq_mul, smul_eq_mul, smul_eq_mul, mul_one] intro i _ hij rw [Pi.basisFun_apply, LinearMap.stdBasis_apply, Pi.smul_apply, Pi.smul_apply, Function.update_noteq hij.symm, Pi.zero_apply, smul_eq_mul, smul_eq_mul, mul_zero, mul_zero] intro hj'; exact False.elim (hj' hj) [GOAL] ι : Type u_1 inst✝¹ : Fintype ι inst✝ : DecidableEq ι w : ι → ℝ u : ι → ℝˣ := fun i => if h : w i = 0 then 1 else Units.mk0 (w i) h hu' : ∀ (i : ι), (sign ↑(u i) * ↑(u i)) ^ (-(1 / 2)) ≠ 0 v : ι → ℝ j : ι hj : j ∈ univ ⊢ Finset.sum univ (fun i => v i • ↑(IsUnit.unit (_ : IsUnit ((sign ↑(u i) * ↑(u i)) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℝ ι) i) j = v j • (sign ↑(u j) * ↑(u j)) ^ (-(1 / 2)) [PROOFSTEP] rw [Finset.sum_apply, sum_eq_single j, Pi.basisFun_apply, IsUnit.unit_spec, LinearMap.stdBasis_apply, Pi.smul_apply, Pi.smul_apply, Function.update_same, smul_eq_mul, smul_eq_mul, smul_eq_mul, mul_one] [GOAL] case h₀ ι : Type u_1 inst✝¹ : Fintype ι inst✝ : DecidableEq ι w : ι → ℝ u : ι → ℝˣ := fun i => if h : w i = 0 then 1 else Units.mk0 (w i) h hu' : ∀ (i : ι), (sign ↑(u i) * ↑(u i)) ^ (-(1 / 2)) ≠ 0 v : ι → ℝ j : ι hj : j ∈ univ ⊢ ∀ (b : ι), b ∈ univ → b ≠ j → (v b • ↑(IsUnit.unit (_ : IsUnit ((sign ↑(u b) * ↑(u b)) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℝ ι) b) j = 0 case h₁ ι : Type u_1 inst✝¹ : Fintype ι inst✝ : DecidableEq ι w : ι → ℝ u : ι → ℝˣ := fun i => if h : w i = 0 then 1 else Units.mk0 (w i) h hu' : ∀ (i : ι), (sign ↑(u i) * ↑(u i)) ^ (-(1 / 2)) ≠ 0 v : ι → ℝ j : ι hj : j ∈ univ ⊢ ¬j ∈ univ → (v j • ↑(IsUnit.unit (_ : IsUnit ((sign ↑(u j) * ↑(u j)) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℝ ι) j) j = 0 [PROOFSTEP] intro i _ hij [GOAL] case h₀ ι : Type u_1 inst✝¹ : Fintype ι inst✝ : DecidableEq ι w : ι → ℝ u : ι → ℝˣ := fun i => if h : w i = 0 then 1 else Units.mk0 (w i) h hu' : ∀ (i : ι), (sign ↑(u i) * ↑(u i)) ^ (-(1 / 2)) ≠ 0 v : ι → ℝ j : ι hj : j ∈ univ i : ι a✝ : i ∈ univ hij : i ≠ j ⊢ (v i • ↑(IsUnit.unit (_ : IsUnit ((sign ↑(u i) * ↑(u i)) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℝ ι) i) j = 0 case h₁ ι : Type u_1 inst✝¹ : Fintype ι inst✝ : DecidableEq ι w : ι → ℝ u : ι → ℝˣ := fun i => if h : w i = 0 then 1 else Units.mk0 (w i) h hu' : ∀ (i : ι), (sign ↑(u i) * ↑(u i)) ^ (-(1 / 2)) ≠ 0 v : ι → ℝ j : ι hj : j ∈ univ ⊢ ¬j ∈ univ → (v j • ↑(IsUnit.unit (_ : IsUnit ((sign ↑(u j) * ↑(u j)) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℝ ι) j) j = 0 [PROOFSTEP] rw [Pi.basisFun_apply, LinearMap.stdBasis_apply, Pi.smul_apply, Pi.smul_apply, Function.update_noteq hij.symm, Pi.zero_apply, smul_eq_mul, smul_eq_mul, mul_zero, mul_zero] [GOAL] case h₁ ι : Type u_1 inst✝¹ : Fintype ι inst✝ : DecidableEq ι w : ι → ℝ u : ι → ℝˣ := fun i => if h : w i = 0 then 1 else Units.mk0 (w i) h hu' : ∀ (i : ι), (sign ↑(u i) * ↑(u i)) ^ (-(1 / 2)) ≠ 0 v : ι → ℝ j : ι hj : j ∈ univ ⊢ ¬j ∈ univ → (v j • ↑(IsUnit.unit (_ : IsUnit ((sign ↑(u j) * ↑(u j)) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℝ ι) j) j = 0 [PROOFSTEP] intro hj' [GOAL] case h₁ ι : Type u_1 inst✝¹ : Fintype ι inst✝ : DecidableEq ι w : ι → ℝ u : ι → ℝˣ := fun i => if h : w i = 0 then 1 else Units.mk0 (w i) h hu' : ∀ (i : ι), (sign ↑(u i) * ↑(u i)) ^ (-(1 / 2)) ≠ 0 v : ι → ℝ j : ι hj : j ∈ univ hj' : ¬j ∈ univ ⊢ (v j • ↑(IsUnit.unit (_ : IsUnit ((sign ↑(u j) * ↑(u j)) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℝ ι) j) j = 0 [PROOFSTEP] exact False.elim (hj' hj) [GOAL] case h.e'_10.H ι : Type u_1 inst✝¹ : Fintype ι inst✝ : DecidableEq ι w : ι → ℝ u : ι → ℝˣ := fun i => if h : w i = 0 then 1 else Units.mk0 (w i) h hu' : ∀ (i : ι), (sign ↑(u i) * ↑(u i)) ^ (-(1 / 2)) ≠ 0 v : ι → ℝ j : ι hj : j ∈ univ hsum : Finset.sum univ (fun i => v i • ↑(IsUnit.unit (_ : IsUnit ((sign ↑(u i) * ↑(u i)) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℝ ι) i) j = v j • (sign ↑(u j) * ↑(u j)) ^ (-(1 / 2)) ⊢ (sign ∘ w) j • (v j * v j) = w j • (Finset.sum univ (fun i => v i • ↑(Basis.unitsSMul (Pi.basisFun ℝ ι) fun i => IsUnit.unit (_ : IsUnit ((sign ↑(u i) * ↑(u i)) ^ (-(1 / 2))))) i) j * Finset.sum univ (fun i => v i • ↑(Basis.unitsSMul (Pi.basisFun ℝ ι) fun i => IsUnit.unit (_ : IsUnit ((sign ↑(u i) * ↑(u i)) ^ (-(1 / 2))))) i) j) [PROOFSTEP] simp_rw [Basis.unitsSMul_apply] [GOAL] case h.e'_10.H ι : Type u_1 inst✝¹ : Fintype ι inst✝ : DecidableEq ι w : ι → ℝ u : ι → ℝˣ := fun i => if h : w i = 0 then 1 else Units.mk0 (w i) h hu' : ∀ (i : ι), (sign ↑(u i) * ↑(u i)) ^ (-(1 / 2)) ≠ 0 v : ι → ℝ j : ι hj : j ∈ univ hsum : Finset.sum univ (fun i => v i • ↑(IsUnit.unit (_ : IsUnit ((sign ↑(u i) * ↑(u i)) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℝ ι) i) j = v j • (sign ↑(u j) * ↑(u j)) ^ (-(1 / 2)) ⊢ (sign ∘ w) j • (v j * v j) = w j • (Finset.sum univ (fun x => v x • IsUnit.unit (_ : IsUnit ((sign ↑(u x) * ↑(u x)) ^ (-(1 / 2)))) • ↑(Pi.basisFun ℝ ι) x) j * Finset.sum univ (fun x => v x • IsUnit.unit (_ : IsUnit ((sign ↑(u x) * ↑(u x)) ^ (-(1 / 2)))) • ↑(Pi.basisFun ℝ ι) x) j) [PROOFSTEP] erw [hsum] [GOAL] case h.e'_10.H ι : Type u_1 inst✝¹ : Fintype ι inst✝ : DecidableEq ι w : ι → ℝ u : ι → ℝˣ := fun i => if h : w i = 0 then 1 else Units.mk0 (w i) h hu' : ∀ (i : ι), (sign ↑(u i) * ↑(u i)) ^ (-(1 / 2)) ≠ 0 v : ι → ℝ j : ι hj : j ∈ univ hsum : Finset.sum univ (fun i => v i • ↑(IsUnit.unit (_ : IsUnit ((sign ↑(u i) * ↑(u i)) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℝ ι) i) j = v j • (sign ↑(u j) * ↑(u j)) ^ (-(1 / 2)) ⊢ (sign ∘ w) j • (v j * v j) = w j • (v j • (sign ↑(u j) * ↑(u j)) ^ (-(1 / 2)) * v j • (sign ↑(u j) * ↑(u j)) ^ (-(1 / 2))) [PROOFSTEP] simp only [Function.comp, smul_eq_mul] [GOAL] case h.e'_10.H ι : Type u_1 inst✝¹ : Fintype ι inst✝ : DecidableEq ι w : ι → ℝ u : ι → ℝˣ := fun i => if h : w i = 0 then 1 else Units.mk0 (w i) h hu' : ∀ (i : ι), (sign ↑(u i) * ↑(u i)) ^ (-(1 / 2)) ≠ 0 v : ι → ℝ j : ι hj : j ∈ univ hsum : Finset.sum univ (fun i => v i • ↑(IsUnit.unit (_ : IsUnit ((sign ↑(u i) * ↑(u i)) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℝ ι) i) j = v j • (sign ↑(u j) * ↑(u j)) ^ (-(1 / 2)) ⊢ sign (w j) * (v j * v j) = w j * (v j * (sign ↑(if h : w j = 0 then 1 else Units.mk0 (w j) h) * ↑(if h : w j = 0 then 1 else Units.mk0 (w j) h)) ^ (-(1 / 2)) * (v j * (sign ↑(if h : w j = 0 then 1 else Units.mk0 (w j) h) * ↑(if h : w j = 0 then 1 else Units.mk0 (w j) h)) ^ (-(1 / 2)))) [PROOFSTEP] split_ifs with h [GOAL] case pos ι : Type u_1 inst✝¹ : Fintype ι inst✝ : DecidableEq ι w : ι → ℝ u : ι → ℝˣ := fun i => if h : w i = 0 then 1 else Units.mk0 (w i) h hu' : ∀ (i : ι), (sign ↑(u i) * ↑(u i)) ^ (-(1 / 2)) ≠ 0 v : ι → ℝ j : ι hj : j ∈ univ hsum : Finset.sum univ (fun i => v i • ↑(IsUnit.unit (_ : IsUnit ((sign ↑(u i) * ↑(u i)) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℝ ι) i) j = v j • (sign ↑(u j) * ↑(u j)) ^ (-(1 / 2)) h : w j = 0 ⊢ sign (w j) * (v j * v j) = w j * (v j * (sign ↑1 * ↑1) ^ (-(1 / 2)) * (v j * (sign ↑1 * ↑1) ^ (-(1 / 2)))) [PROOFSTEP] simp only [h, zero_smul, zero_mul, Real.sign_zero] [GOAL] case neg ι : Type u_1 inst✝¹ : Fintype ι inst✝ : DecidableEq ι w : ι → ℝ u : ι → ℝˣ := fun i => if h : w i = 0 then 1 else Units.mk0 (w i) h hu' : ∀ (i : ι), (sign ↑(u i) * ↑(u i)) ^ (-(1 / 2)) ≠ 0 v : ι → ℝ j : ι hj : j ∈ univ hsum : Finset.sum univ (fun i => v i • ↑(IsUnit.unit (_ : IsUnit ((sign ↑(u i) * ↑(u i)) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℝ ι) i) j = v j • (sign ↑(u j) * ↑(u j)) ^ (-(1 / 2)) h : ¬w j = 0 ⊢ sign (w j) * (v j * v j) = w j * (v j * (sign ↑(Units.mk0 (w j) h) * ↑(Units.mk0 (w j) h)) ^ (-(1 / 2)) * (v j * (sign ↑(Units.mk0 (w j) h) * ↑(Units.mk0 (w j) h)) ^ (-(1 / 2)))) [PROOFSTEP] have hwu : w j = u j := by simp only [dif_neg h, Units.val_mk0] [GOAL] ι : Type u_1 inst✝¹ : Fintype ι inst✝ : DecidableEq ι w : ι → ℝ u : ι → ℝˣ := fun i => if h : w i = 0 then 1 else Units.mk0 (w i) h hu' : ∀ (i : ι), (sign ↑(u i) * ↑(u i)) ^ (-(1 / 2)) ≠ 0 v : ι → ℝ j : ι hj : j ∈ univ hsum : Finset.sum univ (fun i => v i • ↑(IsUnit.unit (_ : IsUnit ((sign ↑(u i) * ↑(u i)) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℝ ι) i) j = v j • (sign ↑(u j) * ↑(u j)) ^ (-(1 / 2)) h : ¬w j = 0 ⊢ w j = ↑(u j) [PROOFSTEP] simp only [dif_neg h, Units.val_mk0] [GOAL] case neg ι : Type u_1 inst✝¹ : Fintype ι inst✝ : DecidableEq ι w : ι → ℝ u : ι → ℝˣ := fun i => if h : w i = 0 then 1 else Units.mk0 (w i) h hu' : ∀ (i : ι), (sign ↑(u i) * ↑(u i)) ^ (-(1 / 2)) ≠ 0 v : ι → ℝ j : ι hj : j ∈ univ hsum : Finset.sum univ (fun i => v i • ↑(IsUnit.unit (_ : IsUnit ((sign ↑(u i) * ↑(u i)) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℝ ι) i) j = v j • (sign ↑(u j) * ↑(u j)) ^ (-(1 / 2)) h : ¬w j = 0 hwu : w j = ↑(u j) ⊢ sign (w j) * (v j * v j) = w j * (v j * (sign ↑(Units.mk0 (w j) h) * ↑(Units.mk0 (w j) h)) ^ (-(1 / 2)) * (v j * (sign ↑(Units.mk0 (w j) h) * ↑(Units.mk0 (w j) h)) ^ (-(1 / 2)))) [PROOFSTEP] simp only [Units.val_mk0] [GOAL] case neg ι : Type u_1 inst✝¹ : Fintype ι inst✝ : DecidableEq ι w : ι → ℝ u : ι → ℝˣ := fun i => if h : w i = 0 then 1 else Units.mk0 (w i) h hu' : ∀ (i : ι), (sign ↑(u i) * ↑(u i)) ^ (-(1 / 2)) ≠ 0 v : ι → ℝ j : ι hj : j ∈ univ hsum : Finset.sum univ (fun i => v i • ↑(IsUnit.unit (_ : IsUnit ((sign ↑(u i) * ↑(u i)) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℝ ι) i) j = v j • (sign ↑(u j) * ↑(u j)) ^ (-(1 / 2)) h : ¬w j = 0 hwu : w j = ↑(u j) ⊢ sign (w j) * (v j * v j) = w j * (v j * (sign (w j) * w j) ^ (-(1 / 2)) * (v j * (sign (w j) * w j) ^ (-(1 / 2)))) [PROOFSTEP] rw [hwu] [GOAL] case neg ι : Type u_1 inst✝¹ : Fintype ι inst✝ : DecidableEq ι w : ι → ℝ u : ι → ℝˣ := fun i => if h : w i = 0 then 1 else Units.mk0 (w i) h hu' : ∀ (i : ι), (sign ↑(u i) * ↑(u i)) ^ (-(1 / 2)) ≠ 0 v : ι → ℝ j : ι hj : j ∈ univ hsum : Finset.sum univ (fun i => v i • ↑(IsUnit.unit (_ : IsUnit ((sign ↑(u i) * ↑(u i)) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℝ ι) i) j = v j • (sign ↑(u j) * ↑(u j)) ^ (-(1 / 2)) h : ¬w j = 0 hwu : w j = ↑(u j) ⊢ sign ↑(u j) * (v j * v j) = ↑(u j) * (v j * (sign ↑(u j) * ↑(u j)) ^ (-(1 / 2)) * (v j * (sign ↑(u j) * ↑(u j)) ^ (-(1 / 2)))) [PROOFSTEP] suffices (u j : ℝ).sign * v j * v j = (Real.sign (u j) * u j) ^ (-(1 / 2 : ℝ)) * (Real.sign (u j) * u j) ^ (-(1 / 2 : ℝ)) * u j * v j * v j by erw [← mul_assoc, this]; ring [GOAL] ι : Type u_1 inst✝¹ : Fintype ι inst✝ : DecidableEq ι w : ι → ℝ u : ι → ℝˣ := fun i => if h : w i = 0 then 1 else Units.mk0 (w i) h hu' : ∀ (i : ι), (sign ↑(u i) * ↑(u i)) ^ (-(1 / 2)) ≠ 0 v : ι → ℝ j : ι hj : j ∈ univ hsum : Finset.sum univ (fun i => v i • ↑(IsUnit.unit (_ : IsUnit ((sign ↑(u i) * ↑(u i)) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℝ ι) i) j = v j • (sign ↑(u j) * ↑(u j)) ^ (-(1 / 2)) h : ¬w j = 0 hwu : w j = ↑(u j) this : sign ↑(u j) * v j * v j = (sign ↑(u j) * ↑(u j)) ^ (-(1 / 2)) * (sign ↑(u j) * ↑(u j)) ^ (-(1 / 2)) * ↑(u j) * v j * v j ⊢ sign ↑(u j) * (v j * v j) = ↑(u j) * (v j * (sign ↑(u j) * ↑(u j)) ^ (-(1 / 2)) * (v j * (sign ↑(u j) * ↑(u j)) ^ (-(1 / 2)))) [PROOFSTEP] erw [← mul_assoc, this] [GOAL] ι : Type u_1 inst✝¹ : Fintype ι inst✝ : DecidableEq ι w : ι → ℝ u : ι → ℝˣ := fun i => if h : w i = 0 then 1 else Units.mk0 (w i) h hu' : ∀ (i : ι), (sign ↑(u i) * ↑(u i)) ^ (-(1 / 2)) ≠ 0 v : ι → ℝ j : ι hj : j ∈ univ hsum : Finset.sum univ (fun i => v i • ↑(IsUnit.unit (_ : IsUnit ((sign ↑(u i) * ↑(u i)) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℝ ι) i) j = v j • (sign ↑(u j) * ↑(u j)) ^ (-(1 / 2)) h : ¬w j = 0 hwu : w j = ↑(u j) this : sign ↑(u j) * v j * v j = (sign ↑(u j) * ↑(u j)) ^ (-(1 / 2)) * (sign ↑(u j) * ↑(u j)) ^ (-(1 / 2)) * ↑(u j) * v j * v j ⊢ (sign ↑(u j) * ↑(u j)) ^ (-(1 / 2)) * (sign ↑(u j) * ↑(u j)) ^ (-(1 / 2)) * ↑(u j) * v j * v j = ↑(u j) * (v j * (sign ↑(u j) * ↑(u j)) ^ (-(1 / 2)) * (v j * (sign ↑(u j) * ↑(u j)) ^ (-(1 / 2)))) [PROOFSTEP] ring [GOAL] case neg ι : Type u_1 inst✝¹ : Fintype ι inst✝ : DecidableEq ι w : ι → ℝ u : ι → ℝˣ := fun i => if h : w i = 0 then 1 else Units.mk0 (w i) h hu' : ∀ (i : ι), (sign ↑(u i) * ↑(u i)) ^ (-(1 / 2)) ≠ 0 v : ι → ℝ j : ι hj : j ∈ univ hsum : Finset.sum univ (fun i => v i • ↑(IsUnit.unit (_ : IsUnit ((sign ↑(u i) * ↑(u i)) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℝ ι) i) j = v j • (sign ↑(u j) * ↑(u j)) ^ (-(1 / 2)) h : ¬w j = 0 hwu : w j = ↑(u j) ⊢ sign ↑(u j) * v j * v j = (sign ↑(u j) * ↑(u j)) ^ (-(1 / 2)) * (sign ↑(u j) * ↑(u j)) ^ (-(1 / 2)) * ↑(u j) * v j * v j [PROOFSTEP] rw [← Real.rpow_add (sign_mul_pos_of_ne_zero _ <| Units.ne_zero _), show -(1 / 2 : ℝ) + -(1 / 2) = -1 by ring, Real.rpow_neg_one, mul_inv, inv_sign, mul_assoc (Real.sign (u j)) (u j)⁻¹, inv_mul_cancel (Units.ne_zero _), mul_one] [GOAL] ι : Type u_1 inst✝¹ : Fintype ι inst✝ : DecidableEq ι w : ι → ℝ u : ι → ℝˣ := fun i => if h : w i = 0 then 1 else Units.mk0 (w i) h hu' : ∀ (i : ι), (sign ↑(u i) * ↑(u i)) ^ (-(1 / 2)) ≠ 0 v : ι → ℝ j : ι hj : j ∈ univ hsum : Finset.sum univ (fun i => v i • ↑(IsUnit.unit (_ : IsUnit ((sign ↑(u i) * ↑(u i)) ^ (-(1 / 2))))) • ↑(Pi.basisFun ℝ ι) i) j = v j • (sign ↑(u j) * ↑(u j)) ^ (-(1 / 2)) h : ¬w j = 0 hwu : w j = ↑(u j) ⊢ -(1 / 2) + -(1 / 2) = -1 [PROOFSTEP] ring
{"mathlib_filename": "Mathlib.LinearAlgebra.QuadraticForm.Real", "llama_tokens": 9686}
{"mathlib_filename": "Mathlib.LinearAlgebra.FreeModule.Basic", "llama_tokens": 0}
[GOAL] R : Type u_1 M : Type u_2 inst✝¹⁴ : Semiring R inst✝¹³ : AddCommMonoid M inst✝¹² : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹¹ : Ring R₁ inst✝¹⁰ : AddCommGroup M₁ inst✝⁹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝⁸ : CommSemiring R₂ inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁵ : CommRing R₃ inst✝⁴ : AddCommGroup M₃ inst✝³ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ x : M ⊢ bilin B 0 x = 0 [PROOFSTEP] rw [← @zero_smul R _ _ _ _ (0 : M), smul_left, zero_mul] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁴ : Semiring R inst✝¹³ : AddCommMonoid M inst✝¹² : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹¹ : Ring R₁ inst✝¹⁰ : AddCommGroup M₁ inst✝⁹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝⁸ : CommSemiring R₂ inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁵ : CommRing R₃ inst✝⁴ : AddCommGroup M₃ inst✝³ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ x : M ⊢ bilin B x 0 = 0 [PROOFSTEP] rw [← @zero_smul R _ _ _ _ (0 : M), smul_right, zero_mul] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁴ : Semiring R inst✝¹³ : AddCommMonoid M inst✝¹² : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹¹ : Ring R₁ inst✝¹⁰ : AddCommGroup M₁ inst✝⁹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝⁸ : CommSemiring R₂ inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁵ : CommRing R₃ inst✝⁴ : AddCommGroup M₃ inst✝³ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ x y : M₁ ⊢ bilin B₁ (-x) y = -bilin B₁ x y [PROOFSTEP] rw [← @neg_one_smul R₁ _ _, smul_left, neg_one_mul] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁴ : Semiring R inst✝¹³ : AddCommMonoid M inst✝¹² : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹¹ : Ring R₁ inst✝¹⁰ : AddCommGroup M₁ inst✝⁹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝⁸ : CommSemiring R₂ inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁵ : CommRing R₃ inst✝⁴ : AddCommGroup M₃ inst✝³ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ x y : M₁ ⊢ bilin B₁ x (-y) = -bilin B₁ x y [PROOFSTEP] rw [← @neg_one_smul R₁ _ _, smul_right, neg_one_mul] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁴ : Semiring R inst✝¹³ : AddCommMonoid M inst✝¹² : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹¹ : Ring R₁ inst✝¹⁰ : AddCommGroup M₁ inst✝⁹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝⁸ : CommSemiring R₂ inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁵ : CommRing R₃ inst✝⁴ : AddCommGroup M₃ inst✝³ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ x y z : M₁ ⊢ bilin B₁ (x - y) z = bilin B₁ x z - bilin B₁ y z [PROOFSTEP] rw [sub_eq_add_neg, sub_eq_add_neg, add_left, neg_left] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁴ : Semiring R inst✝¹³ : AddCommMonoid M inst✝¹² : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹¹ : Ring R₁ inst✝¹⁰ : AddCommGroup M₁ inst✝⁹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝⁸ : CommSemiring R₂ inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁵ : CommRing R₃ inst✝⁴ : AddCommGroup M₃ inst✝³ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ x y z : M₁ ⊢ bilin B₁ x (y - z) = bilin B₁ x y - bilin B₁ x z [PROOFSTEP] rw [sub_eq_add_neg, sub_eq_add_neg, add_right, neg_right] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁴ : Semiring R inst✝¹³ : AddCommMonoid M inst✝¹² : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹¹ : Ring R₁ inst✝¹⁰ : AddCommGroup M₁ inst✝⁹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝⁸ : CommSemiring R₂ inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁵ : CommRing R₃ inst✝⁴ : AddCommGroup M₃ inst✝³ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ D✝ : BilinForm R M D₁ : BilinForm R₁ M₁ B D : BilinForm R M h : B.bilin = D.bilin ⊢ B = D [PROOFSTEP] cases B [GOAL] case mk R : Type u_1 M : Type u_2 inst✝¹⁴ : Semiring R inst✝¹³ : AddCommMonoid M inst✝¹² : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹¹ : Ring R₁ inst✝¹⁰ : AddCommGroup M₁ inst✝⁹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝⁸ : CommSemiring R₂ inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁵ : CommRing R₃ inst✝⁴ : AddCommGroup M₃ inst✝³ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ D✝ : BilinForm R M D₁ : BilinForm R₁ M₁ D : BilinForm R M bilin✝ : M → M → R bilin_add_left✝ : ∀ (x y z : M), bilin✝ (x + y) z = bilin✝ x z + bilin✝ y z bilin_smul_left✝ : ∀ (a : R) (x y : M), bilin✝ (a • x) y = a * bilin✝ x y bilin_add_right✝ : ∀ (x y z : M), bilin✝ x (y + z) = bilin✝ x y + bilin✝ x z bilin_smul_right✝ : ∀ (a : R) (x y : M), bilin✝ x (a • y) = a * bilin✝ x y h : { bilin := bilin✝, bilin_add_left := bilin_add_left✝, bilin_smul_left := bilin_smul_left✝, bilin_add_right := bilin_add_right✝, bilin_smul_right := bilin_smul_right✝ }.bilin = D.bilin ⊢ { bilin := bilin✝, bilin_add_left := bilin_add_left✝, bilin_smul_left := bilin_smul_left✝, bilin_add_right := bilin_add_right✝, bilin_smul_right := bilin_smul_right✝ } = D [PROOFSTEP] cases D [GOAL] case mk.mk R : Type u_1 M : Type u_2 inst✝¹⁴ : Semiring R inst✝¹³ : AddCommMonoid M inst✝¹² : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹¹ : Ring R₁ inst✝¹⁰ : AddCommGroup M₁ inst✝⁹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝⁸ : CommSemiring R₂ inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁵ : CommRing R₃ inst✝⁴ : AddCommGroup M₃ inst✝³ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ D : BilinForm R M D₁ : BilinForm R₁ M₁ bilin✝¹ : M → M → R bilin_add_left✝¹ : ∀ (x y z : M), bilin✝¹ (x + y) z = bilin✝¹ x z + bilin✝¹ y z bilin_smul_left✝¹ : ∀ (a : R) (x y : M), bilin✝¹ (a • x) y = a * bilin✝¹ x y bilin_add_right✝¹ : ∀ (x y z : M), bilin✝¹ x (y + z) = bilin✝¹ x y + bilin✝¹ x z bilin_smul_right✝¹ : ∀ (a : R) (x y : M), bilin✝¹ x (a • y) = a * bilin✝¹ x y bilin✝ : M → M → R bilin_add_left✝ : ∀ (x y z : M), bilin✝ (x + y) z = bilin✝ x z + bilin✝ y z bilin_smul_left✝ : ∀ (a : R) (x y : M), bilin✝ (a • x) y = a * bilin✝ x y bilin_add_right✝ : ∀ (x y z : M), bilin✝ x (y + z) = bilin✝ x y + bilin✝ x z bilin_smul_right✝ : ∀ (a : R) (x y : M), bilin✝ x (a • y) = a * bilin✝ x y h : { bilin := bilin✝¹, bilin_add_left := bilin_add_left✝¹, bilin_smul_left := bilin_smul_left✝¹, bilin_add_right := bilin_add_right✝¹, bilin_smul_right := bilin_smul_right✝¹ }.bilin = { bilin := bilin✝, bilin_add_left := bilin_add_left✝, bilin_smul_left := bilin_smul_left✝, bilin_add_right := bilin_add_right✝, bilin_smul_right := bilin_smul_right✝ }.bilin ⊢ { bilin := bilin✝¹, bilin_add_left := bilin_add_left✝¹, bilin_smul_left := bilin_smul_left✝¹, bilin_add_right := bilin_add_right✝¹, bilin_smul_right := bilin_smul_right✝¹ } = { bilin := bilin✝, bilin_add_left := bilin_add_left✝, bilin_smul_left := bilin_smul_left✝, bilin_add_right := bilin_add_right✝, bilin_smul_right := bilin_smul_right✝ } [PROOFSTEP] congr [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁴ : Semiring R inst✝¹³ : AddCommMonoid M inst✝¹² : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹¹ : Ring R₁ inst✝¹⁰ : AddCommGroup M₁ inst✝⁹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝⁸ : CommSemiring R₂ inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁵ : CommRing R₃ inst✝⁴ : AddCommGroup M₃ inst✝³ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ D : BilinForm R M D₁ : BilinForm R₁ M₁ H : ∀ (x y : M), bilin B x y = bilin D x y ⊢ B.bilin = D.bilin [PROOFSTEP] funext [GOAL] case h.h R : Type u_1 M : Type u_2 inst✝¹⁴ : Semiring R inst✝¹³ : AddCommMonoid M inst✝¹² : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹¹ : Ring R₁ inst✝¹⁰ : AddCommGroup M₁ inst✝⁹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝⁸ : CommSemiring R₂ inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁵ : CommRing R₃ inst✝⁴ : AddCommGroup M₃ inst✝³ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ D : BilinForm R M D₁ : BilinForm R₁ M₁ H : ∀ (x y : M), bilin B x y = bilin D x y x✝¹ x✝ : M ⊢ bilin B x✝¹ x✝ = bilin D x✝¹ x✝ [PROOFSTEP] exact H _ _ [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁴ : Semiring R inst✝¹³ : AddCommMonoid M inst✝¹² : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹¹ : Ring R₁ inst✝¹⁰ : AddCommGroup M₁ inst✝⁹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝⁸ : CommSemiring R₂ inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁵ : CommRing R₃ inst✝⁴ : AddCommGroup M₃ inst✝³ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ D✝ : BilinForm R M D₁ : BilinForm R₁ M₁ B D : BilinForm R M x y z : M ⊢ (fun x y => bilin B x y + bilin D x y) (x + y) z = (fun x y => bilin B x y + bilin D x y) x z + (fun x y => bilin B x y + bilin D x y) y z [PROOFSTEP] simp only [add_left, add_left, add_add_add_comm] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁴ : Semiring R inst✝¹³ : AddCommMonoid M inst✝¹² : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹¹ : Ring R₁ inst✝¹⁰ : AddCommGroup M₁ inst✝⁹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝⁸ : CommSemiring R₂ inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁵ : CommRing R₃ inst✝⁴ : AddCommGroup M₃ inst✝³ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ D✝ : BilinForm R M D₁ : BilinForm R₁ M₁ B D : BilinForm R M a : R x y : M ⊢ (fun x y => bilin B x y + bilin D x y) (a • x) y = a * (fun x y => bilin B x y + bilin D x y) x y [PROOFSTEP] simp only [smul_left, smul_left, mul_add] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁴ : Semiring R inst✝¹³ : AddCommMonoid M inst✝¹² : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹¹ : Ring R₁ inst✝¹⁰ : AddCommGroup M₁ inst✝⁹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝⁸ : CommSemiring R₂ inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁵ : CommRing R₃ inst✝⁴ : AddCommGroup M₃ inst✝³ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ D✝ : BilinForm R M D₁ : BilinForm R₁ M₁ B D : BilinForm R M x y z : M ⊢ (fun x y => bilin B x y + bilin D x y) x (y + z) = (fun x y => bilin B x y + bilin D x y) x y + (fun x y => bilin B x y + bilin D x y) x z [PROOFSTEP] simp only [add_right, add_right, add_add_add_comm] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁴ : Semiring R inst✝¹³ : AddCommMonoid M inst✝¹² : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹¹ : Ring R₁ inst✝¹⁰ : AddCommGroup M₁ inst✝⁹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝⁸ : CommSemiring R₂ inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁵ : CommRing R₃ inst✝⁴ : AddCommGroup M₃ inst✝³ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ D✝ : BilinForm R M D₁ : BilinForm R₁ M₁ B D : BilinForm R M a : R x y : M ⊢ (fun x y => bilin B x y + bilin D x y) x (a • y) = a * (fun x y => bilin B x y + bilin D x y) x y [PROOFSTEP] simp only [smul_right, smul_right, mul_add] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁷ : Semiring R inst✝¹⁶ : AddCommMonoid M inst✝¹⁵ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁴ : Ring R₁ inst✝¹³ : AddCommGroup M₁ inst✝¹² : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹¹ : CommSemiring R₂ inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁸ : CommRing R₃ inst✝⁷ : AddCommGroup M₃ inst✝⁶ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ D : BilinForm R M D₁ : BilinForm R₁ M₁ α : Type ?u.105863 inst✝² : Monoid α inst✝¹ : DistribMulAction α R inst✝ : SMulCommClass α R R c : α B : BilinForm R M x y z : M ⊢ (fun x y => c • bilin B x y) (x + y) z = (fun x y => c • bilin B x y) x z + (fun x y => c • bilin B x y) y z [PROOFSTEP] simp only [add_left, smul_add] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁷ : Semiring R inst✝¹⁶ : AddCommMonoid M inst✝¹⁵ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁴ : Ring R₁ inst✝¹³ : AddCommGroup M₁ inst✝¹² : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹¹ : CommSemiring R₂ inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁸ : CommRing R₃ inst✝⁷ : AddCommGroup M₃ inst✝⁶ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ D : BilinForm R M D₁ : BilinForm R₁ M₁ α : Type ?u.105863 inst✝² : Monoid α inst✝¹ : DistribMulAction α R inst✝ : SMulCommClass α R R c : α B : BilinForm R M a : R x y : M ⊢ (fun x y => c • bilin B x y) (a • x) y = a * (fun x y => c • bilin B x y) x y [PROOFSTEP] simp only [smul_left, mul_smul_comm] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁷ : Semiring R inst✝¹⁶ : AddCommMonoid M inst✝¹⁵ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁴ : Ring R₁ inst✝¹³ : AddCommGroup M₁ inst✝¹² : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹¹ : CommSemiring R₂ inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁸ : CommRing R₃ inst✝⁷ : AddCommGroup M₃ inst✝⁶ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ D : BilinForm R M D₁ : BilinForm R₁ M₁ α : Type ?u.105863 inst✝² : Monoid α inst✝¹ : DistribMulAction α R inst✝ : SMulCommClass α R R c : α B : BilinForm R M x y z : M ⊢ (fun x y => c • bilin B x y) x (y + z) = (fun x y => c • bilin B x y) x y + (fun x y => c • bilin B x y) x z [PROOFSTEP] simp only [add_right, smul_add] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁷ : Semiring R inst✝¹⁶ : AddCommMonoid M inst✝¹⁵ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁴ : Ring R₁ inst✝¹³ : AddCommGroup M₁ inst✝¹² : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹¹ : CommSemiring R₂ inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁸ : CommRing R₃ inst✝⁷ : AddCommGroup M₃ inst✝⁶ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ D : BilinForm R M D₁ : BilinForm R₁ M₁ α : Type ?u.105863 inst✝² : Monoid α inst✝¹ : DistribMulAction α R inst✝ : SMulCommClass α R R c : α B : BilinForm R M a : R x y : M ⊢ (fun x y => c • bilin B x y) x (a • y) = a * (fun x y => c • bilin B x y) x y [PROOFSTEP] simp only [smul_right, mul_smul_comm] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁴ : Semiring R inst✝¹³ : AddCommMonoid M inst✝¹² : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹¹ : Ring R₁ inst✝¹⁰ : AddCommGroup M₁ inst✝⁹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝⁸ : CommSemiring R₂ inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁵ : CommRing R₃ inst✝⁴ : AddCommGroup M₃ inst✝³ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ D : BilinForm R M D₁ B : BilinForm R₁ M₁ x y z : M₁ ⊢ (fun x y => -bilin B x y) (x + y) z = (fun x y => -bilin B x y) x z + (fun x y => -bilin B x y) y z [PROOFSTEP] simp only [add_left, neg_add] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁴ : Semiring R inst✝¹³ : AddCommMonoid M inst✝¹² : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹¹ : Ring R₁ inst✝¹⁰ : AddCommGroup M₁ inst✝⁹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝⁸ : CommSemiring R₂ inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁵ : CommRing R₃ inst✝⁴ : AddCommGroup M₃ inst✝³ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ D : BilinForm R M D₁ B : BilinForm R₁ M₁ a : R₁ x y : M₁ ⊢ (fun x y => -bilin B x y) (a • x) y = a * (fun x y => -bilin B x y) x y [PROOFSTEP] simp only [smul_left, mul_neg] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁴ : Semiring R inst✝¹³ : AddCommMonoid M inst✝¹² : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹¹ : Ring R₁ inst✝¹⁰ : AddCommGroup M₁ inst✝⁹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝⁸ : CommSemiring R₂ inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁵ : CommRing R₃ inst✝⁴ : AddCommGroup M₃ inst✝³ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ D : BilinForm R M D₁ B : BilinForm R₁ M₁ x y z : M₁ ⊢ (fun x y => -bilin B x y) x (y + z) = (fun x y => -bilin B x y) x y + (fun x y => -bilin B x y) x z [PROOFSTEP] simp only [add_right, neg_add] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁴ : Semiring R inst✝¹³ : AddCommMonoid M inst✝¹² : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹¹ : Ring R₁ inst✝¹⁰ : AddCommGroup M₁ inst✝⁹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝⁸ : CommSemiring R₂ inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁵ : CommRing R₃ inst✝⁴ : AddCommGroup M₃ inst✝³ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ D : BilinForm R M D₁ B : BilinForm R₁ M₁ a : R₁ x y : M₁ ⊢ (fun x y => -bilin B x y) x (a • y) = a * (fun x y => -bilin B x y) x y [PROOFSTEP] simp only [smul_right, mul_neg] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁴ : Semiring R inst✝¹³ : AddCommMonoid M inst✝¹² : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹¹ : Ring R₁ inst✝¹⁰ : AddCommGroup M₁ inst✝⁹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝⁸ : CommSemiring R₂ inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁵ : CommRing R₃ inst✝⁴ : AddCommGroup M₃ inst✝³ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ D✝ : BilinForm R M D₁ B D : BilinForm R₁ M₁ x y z : M₁ ⊢ (fun x y => bilin B x y - bilin D x y) (x + y) z = (fun x y => bilin B x y - bilin D x y) x z + (fun x y => bilin B x y - bilin D x y) y z [PROOFSTEP] simp only [add_left, add_left, add_sub_add_comm] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁴ : Semiring R inst✝¹³ : AddCommMonoid M inst✝¹² : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹¹ : Ring R₁ inst✝¹⁰ : AddCommGroup M₁ inst✝⁹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝⁸ : CommSemiring R₂ inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁵ : CommRing R₃ inst✝⁴ : AddCommGroup M₃ inst✝³ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ D✝ : BilinForm R M D₁ B D : BilinForm R₁ M₁ a : R₁ x y : M₁ ⊢ (fun x y => bilin B x y - bilin D x y) (a • x) y = a * (fun x y => bilin B x y - bilin D x y) x y [PROOFSTEP] simp only [smul_left, smul_left, mul_sub] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁴ : Semiring R inst✝¹³ : AddCommMonoid M inst✝¹² : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹¹ : Ring R₁ inst✝¹⁰ : AddCommGroup M₁ inst✝⁹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝⁸ : CommSemiring R₂ inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁵ : CommRing R₃ inst✝⁴ : AddCommGroup M₃ inst✝³ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ D✝ : BilinForm R M D₁ B D : BilinForm R₁ M₁ x y z : M₁ ⊢ (fun x y => bilin B x y - bilin D x y) x (y + z) = (fun x y => bilin B x y - bilin D x y) x y + (fun x y => bilin B x y - bilin D x y) x z [PROOFSTEP] simp only [add_right, add_right, add_sub_add_comm] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁴ : Semiring R inst✝¹³ : AddCommMonoid M inst✝¹² : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹¹ : Ring R₁ inst✝¹⁰ : AddCommGroup M₁ inst✝⁹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝⁸ : CommSemiring R₂ inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁵ : CommRing R₃ inst✝⁴ : AddCommGroup M₃ inst✝³ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ D✝ : BilinForm R M D₁ B D : BilinForm R₁ M₁ a : R₁ x y : M₁ ⊢ (fun x y => bilin B x y - bilin D x y) x (a • y) = a * (fun x y => bilin B x y - bilin D x y) x y [PROOFSTEP] simp only [smul_right, smul_right, mul_sub] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁵ : Semiring R inst✝¹⁴ : AddCommMonoid M inst✝¹³ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹² : Ring R₁ inst✝¹¹ : AddCommGroup M₁ inst✝¹⁰ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝⁹ : CommSemiring R₂ inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁶ : CommRing R₃ inst✝⁵ : AddCommGroup M₃ inst✝⁴ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝³ : Field K inst✝² : AddCommGroup V inst✝¹ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ D : BilinForm R M D₁ : BilinForm R₁ M₁ inst✝ : Algebra R₂ R A₁ A₂ : BilinForm R M ⊢ (fun A => { bilin := fun i j => bilin A j i, bilin_add_left := (_ : ∀ (x y z : M), bilin A z (x + y) = bilin A z x + bilin A z y), bilin_smul_left := (_ : ∀ (a : R) (x y : M), bilin A y (a • x) = a * bilin A y x), bilin_add_right := (_ : ∀ (x y z : M), bilin A (y + z) x = bilin A y x + bilin A z x), bilin_smul_right := (_ : ∀ (a : R) (x y : M), bilin A (a • y) x = a * bilin A y x) }) (A₁ + A₂) = (fun A => { bilin := fun i j => bilin A j i, bilin_add_left := (_ : ∀ (x y z : M), bilin A z (x + y) = bilin A z x + bilin A z y), bilin_smul_left := (_ : ∀ (a : R) (x y : M), bilin A y (a • x) = a * bilin A y x), bilin_add_right := (_ : ∀ (x y z : M), bilin A (y + z) x = bilin A y x + bilin A z x), bilin_smul_right := (_ : ∀ (a : R) (x y : M), bilin A (a • y) x = a * bilin A y x) }) A₁ + (fun A => { bilin := fun i j => bilin A j i, bilin_add_left := (_ : ∀ (x y z : M), bilin A z (x + y) = bilin A z x + bilin A z y), bilin_smul_left := (_ : ∀ (a : R) (x y : M), bilin A y (a • x) = a * bilin A y x), bilin_add_right := (_ : ∀ (x y z : M), bilin A (y + z) x = bilin A y x + bilin A z x), bilin_smul_right := (_ : ∀ (a : R) (x y : M), bilin A (a • y) x = a * bilin A y x) }) A₂ [PROOFSTEP] ext [GOAL] case H R : Type u_1 M : Type u_2 inst✝¹⁵ : Semiring R inst✝¹⁴ : AddCommMonoid M inst✝¹³ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹² : Ring R₁ inst✝¹¹ : AddCommGroup M₁ inst✝¹⁰ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝⁹ : CommSemiring R₂ inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁶ : CommRing R₃ inst✝⁵ : AddCommGroup M₃ inst✝⁴ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝³ : Field K inst✝² : AddCommGroup V inst✝¹ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ D : BilinForm R M D₁ : BilinForm R₁ M₁ inst✝ : Algebra R₂ R A₁ A₂ : BilinForm R M x✝ y✝ : M ⊢ bilin ((fun A => { bilin := fun i j => bilin A j i, bilin_add_left := (_ : ∀ (x y z : M), bilin A z (x + y) = bilin A z x + bilin A z y), bilin_smul_left := (_ : ∀ (a : R) (x y : M), bilin A y (a • x) = a * bilin A y x), bilin_add_right := (_ : ∀ (x y z : M), bilin A (y + z) x = bilin A y x + bilin A z x), bilin_smul_right := (_ : ∀ (a : R) (x y : M), bilin A (a • y) x = a * bilin A y x) }) (A₁ + A₂)) x✝ y✝ = bilin ((fun A => { bilin := fun i j => bilin A j i, bilin_add_left := (_ : ∀ (x y z : M), bilin A z (x + y) = bilin A z x + bilin A z y), bilin_smul_left := (_ : ∀ (a : R) (x y : M), bilin A y (a • x) = a * bilin A y x), bilin_add_right := (_ : ∀ (x y z : M), bilin A (y + z) x = bilin A y x + bilin A z x), bilin_smul_right := (_ : ∀ (a : R) (x y : M), bilin A (a • y) x = a * bilin A y x) }) A₁ + (fun A => { bilin := fun i j => bilin A j i, bilin_add_left := (_ : ∀ (x y z : M), bilin A z (x + y) = bilin A z x + bilin A z y), bilin_smul_left := (_ : ∀ (a : R) (x y : M), bilin A y (a • x) = a * bilin A y x), bilin_add_right := (_ : ∀ (x y z : M), bilin A (y + z) x = bilin A y x + bilin A z x), bilin_smul_right := (_ : ∀ (a : R) (x y : M), bilin A (a • y) x = a * bilin A y x) }) A₂) x✝ y✝ [PROOFSTEP] simp [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁵ : Semiring R inst✝¹⁴ : AddCommMonoid M inst✝¹³ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹² : Ring R₁ inst✝¹¹ : AddCommGroup M₁ inst✝¹⁰ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝⁹ : CommSemiring R₂ inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁶ : CommRing R₃ inst✝⁵ : AddCommGroup M₃ inst✝⁴ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝³ : Field K inst✝² : AddCommGroup V inst✝¹ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ D : BilinForm R M D₁ : BilinForm R₁ M₁ inst✝ : Algebra R₂ R c : R₂ A : BilinForm R M ⊢ AddHom.toFun { toFun := fun A => { bilin := fun i j => bilin A j i, bilin_add_left := (_ : ∀ (x y z : M), bilin A z (x + y) = bilin A z x + bilin A z y), bilin_smul_left := (_ : ∀ (a : R) (x y : M), bilin A y (a • x) = a * bilin A y x), bilin_add_right := (_ : ∀ (x y z : M), bilin A (y + z) x = bilin A y x + bilin A z x), bilin_smul_right := (_ : ∀ (a : R) (x y : M), bilin A (a • y) x = a * bilin A y x) }, map_add' := (_ : ∀ (A₁ A₂ : BilinForm R M), (fun A => { bilin := fun i j => bilin A j i, bilin_add_left := (_ : ∀ (x y z : M), bilin A z (x + y) = bilin A z x + bilin A z y), bilin_smul_left := (_ : ∀ (a : R) (x y : M), bilin A y (a • x) = a * bilin A y x), bilin_add_right := (_ : ∀ (x y z : M), bilin A (y + z) x = bilin A y x + bilin A z x), bilin_smul_right := (_ : ∀ (a : R) (x y : M), bilin A (a • y) x = a * bilin A y x) }) (A₁ + A₂) = (fun A => { bilin := fun i j => bilin A j i, bilin_add_left := (_ : ∀ (x y z : M), bilin A z (x + y) = bilin A z x + bilin A z y), bilin_smul_left := (_ : ∀ (a : R) (x y : M), bilin A y (a • x) = a * bilin A y x), bilin_add_right := (_ : ∀ (x y z : M), bilin A (y + z) x = bilin A y x + bilin A z x), bilin_smul_right := (_ : ∀ (a : R) (x y : M), bilin A (a • y) x = a * bilin A y x) }) A₁ + (fun A => { bilin := fun i j => bilin A j i, bilin_add_left := (_ : ∀ (x y z : M), bilin A z (x + y) = bilin A z x + bilin A z y), bilin_smul_left := (_ : ∀ (a : R) (x y : M), bilin A y (a • x) = a * bilin A y x), bilin_add_right := (_ : ∀ (x y z : M), bilin A (y + z) x = bilin A y x + bilin A z x), bilin_smul_right := (_ : ∀ (a : R) (x y : M), bilin A (a • y) x = a * bilin A y x) }) A₂) } (c • A) = ↑(RingHom.id R₂) c • AddHom.toFun { toFun := fun A => { bilin := fun i j => bilin A j i, bilin_add_left := (_ : ∀ (x y z : M), bilin A z (x + y) = bilin A z x + bilin A z y), bilin_smul_left := (_ : ∀ (a : R) (x y : M), bilin A y (a • x) = a * bilin A y x), bilin_add_right := (_ : ∀ (x y z : M), bilin A (y + z) x = bilin A y x + bilin A z x), bilin_smul_right := (_ : ∀ (a : R) (x y : M), bilin A (a • y) x = a * bilin A y x) }, map_add' := (_ : ∀ (A₁ A₂ : BilinForm R M), (fun A => { bilin := fun i j => bilin A j i, bilin_add_left := (_ : ∀ (x y z : M), bilin A z (x + y) = bilin A z x + bilin A z y), bilin_smul_left := (_ : ∀ (a : R) (x y : M), bilin A y (a • x) = a * bilin A y x), bilin_add_right := (_ : ∀ (x y z : M), bilin A (y + z) x = bilin A y x + bilin A z x), bilin_smul_right := (_ : ∀ (a : R) (x y : M), bilin A (a • y) x = a * bilin A y x) }) (A₁ + A₂) = (fun A => { bilin := fun i j => bilin A j i, bilin_add_left := (_ : ∀ (x y z : M), bilin A z (x + y) = bilin A z x + bilin A z y), bilin_smul_left := (_ : ∀ (a : R) (x y : M), bilin A y (a • x) = a * bilin A y x), bilin_add_right := (_ : ∀ (x y z : M), bilin A (y + z) x = bilin A y x + bilin A z x), bilin_smul_right := (_ : ∀ (a : R) (x y : M), bilin A (a • y) x = a * bilin A y x) }) A₁ + (fun A => { bilin := fun i j => bilin A j i, bilin_add_left := (_ : ∀ (x y z : M), bilin A z (x + y) = bilin A z x + bilin A z y), bilin_smul_left := (_ : ∀ (a : R) (x y : M), bilin A y (a • x) = a * bilin A y x), bilin_add_right := (_ : ∀ (x y z : M), bilin A (y + z) x = bilin A y x + bilin A z x), bilin_smul_right := (_ : ∀ (a : R) (x y : M), bilin A (a • y) x = a * bilin A y x) }) A₂) } A [PROOFSTEP] ext [GOAL] case H R : Type u_1 M : Type u_2 inst✝¹⁵ : Semiring R inst✝¹⁴ : AddCommMonoid M inst✝¹³ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹² : Ring R₁ inst✝¹¹ : AddCommGroup M₁ inst✝¹⁰ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝⁹ : CommSemiring R₂ inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁶ : CommRing R₃ inst✝⁵ : AddCommGroup M₃ inst✝⁴ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝³ : Field K inst✝² : AddCommGroup V inst✝¹ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ D : BilinForm R M D₁ : BilinForm R₁ M₁ inst✝ : Algebra R₂ R c : R₂ A : BilinForm R M x✝ y✝ : M ⊢ bilin (AddHom.toFun { toFun := fun A => { bilin := fun i j => bilin A j i, bilin_add_left := (_ : ∀ (x y z : M), bilin A z (x + y) = bilin A z x + bilin A z y), bilin_smul_left := (_ : ∀ (a : R) (x y : M), bilin A y (a • x) = a * bilin A y x), bilin_add_right := (_ : ∀ (x y z : M), bilin A (y + z) x = bilin A y x + bilin A z x), bilin_smul_right := (_ : ∀ (a : R) (x y : M), bilin A (a • y) x = a * bilin A y x) }, map_add' := (_ : ∀ (A₁ A₂ : BilinForm R M), (fun A => { bilin := fun i j => bilin A j i, bilin_add_left := (_ : ∀ (x y z : M), bilin A z (x + y) = bilin A z x + bilin A z y), bilin_smul_left := (_ : ∀ (a : R) (x y : M), bilin A y (a • x) = a * bilin A y x), bilin_add_right := (_ : ∀ (x y z : M), bilin A (y + z) x = bilin A y x + bilin A z x), bilin_smul_right := (_ : ∀ (a : R) (x y : M), bilin A (a • y) x = a * bilin A y x) }) (A₁ + A₂) = (fun A => { bilin := fun i j => bilin A j i, bilin_add_left := (_ : ∀ (x y z : M), bilin A z (x + y) = bilin A z x + bilin A z y), bilin_smul_left := (_ : ∀ (a : R) (x y : M), bilin A y (a • x) = a * bilin A y x), bilin_add_right := (_ : ∀ (x y z : M), bilin A (y + z) x = bilin A y x + bilin A z x), bilin_smul_right := (_ : ∀ (a : R) (x y : M), bilin A (a • y) x = a * bilin A y x) }) A₁ + (fun A => { bilin := fun i j => bilin A j i, bilin_add_left := (_ : ∀ (x y z : M), bilin A z (x + y) = bilin A z x + bilin A z y), bilin_smul_left := (_ : ∀ (a : R) (x y : M), bilin A y (a • x) = a * bilin A y x), bilin_add_right := (_ : ∀ (x y z : M), bilin A (y + z) x = bilin A y x + bilin A z x), bilin_smul_right := (_ : ∀ (a : R) (x y : M), bilin A (a • y) x = a * bilin A y x) }) A₂) } (c • A)) x✝ y✝ = bilin (↑(RingHom.id R₂) c • AddHom.toFun { toFun := fun A => { bilin := fun i j => bilin A j i, bilin_add_left := (_ : ∀ (x y z : M), bilin A z (x + y) = bilin A z x + bilin A z y), bilin_smul_left := (_ : ∀ (a : R) (x y : M), bilin A y (a • x) = a * bilin A y x), bilin_add_right := (_ : ∀ (x y z : M), bilin A (y + z) x = bilin A y x + bilin A z x), bilin_smul_right := (_ : ∀ (a : R) (x y : M), bilin A (a • y) x = a * bilin A y x) }, map_add' := (_ : ∀ (A₁ A₂ : BilinForm R M), (fun A => { bilin := fun i j => bilin A j i, bilin_add_left := (_ : ∀ (x y z : M), bilin A z (x + y) = bilin A z x + bilin A z y), bilin_smul_left := (_ : ∀ (a : R) (x y : M), bilin A y (a • x) = a * bilin A y x), bilin_add_right := (_ : ∀ (x y z : M), bilin A (y + z) x = bilin A y x + bilin A z x), bilin_smul_right := (_ : ∀ (a : R) (x y : M), bilin A (a • y) x = a * bilin A y x) }) (A₁ + A₂) = (fun A => { bilin := fun i j => bilin A j i, bilin_add_left := (_ : ∀ (x y z : M), bilin A z (x + y) = bilin A z x + bilin A z y), bilin_smul_left := (_ : ∀ (a : R) (x y : M), bilin A y (a • x) = a * bilin A y x), bilin_add_right := (_ : ∀ (x y z : M), bilin A (y + z) x = bilin A y x + bilin A z x), bilin_smul_right := (_ : ∀ (a : R) (x y : M), bilin A (a • y) x = a * bilin A y x) }) A₁ + (fun A => { bilin := fun i j => bilin A j i, bilin_add_left := (_ : ∀ (x y z : M), bilin A z (x + y) = bilin A z x + bilin A z y), bilin_smul_left := (_ : ∀ (a : R) (x y : M), bilin A y (a • x) = a * bilin A y x), bilin_add_right := (_ : ∀ (x y z : M), bilin A (y + z) x = bilin A y x + bilin A z x), bilin_smul_right := (_ : ∀ (a : R) (x y : M), bilin A (a • y) x = a * bilin A y x) }) A₂) } A) x✝ y✝ [PROOFSTEP] simp [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁵ : Semiring R inst✝¹⁴ : AddCommMonoid M inst✝¹³ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹² : Ring R₁ inst✝¹¹ : AddCommGroup M₁ inst✝¹⁰ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝⁹ : CommSemiring R₂ inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁶ : CommRing R₃ inst✝⁵ : AddCommGroup M₃ inst✝⁴ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝³ : Field K inst✝² : AddCommGroup V inst✝¹ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ D : BilinForm R M D₁ : BilinForm R₁ M₁ inst✝ : Algebra R₂ R A : BilinForm R M ⊢ ↑(flipHomAux R₂) (↑(flipHomAux R₂) A) = A [PROOFSTEP] ext A [GOAL] case H R : Type u_1 M : Type u_2 inst✝¹⁵ : Semiring R inst✝¹⁴ : AddCommMonoid M inst✝¹³ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹² : Ring R₁ inst✝¹¹ : AddCommGroup M₁ inst✝¹⁰ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝⁹ : CommSemiring R₂ inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁶ : CommRing R₃ inst✝⁵ : AddCommGroup M₃ inst✝⁴ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝³ : Field K inst✝² : AddCommGroup V inst✝¹ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ D : BilinForm R M D₁ : BilinForm R₁ M₁ inst✝ : Algebra R₂ R A✝ : BilinForm R M A y✝ : M ⊢ bilin (↑(flipHomAux R₂) (↑(flipHomAux R₂) A✝)) A y✝ = bilin A✝ A y✝ [PROOFSTEP] simp [flipHomAux] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁵ : Semiring R inst✝¹⁴ : AddCommMonoid M inst✝¹³ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹² : Ring R₁ inst✝¹¹ : AddCommGroup M₁ inst✝¹⁰ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝⁹ : CommSemiring R₂ inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁶ : CommRing R₃ inst✝⁵ : AddCommGroup M₃ inst✝⁴ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝³ : Field K inst✝² : AddCommGroup V inst✝¹ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ D : BilinForm R M D₁ : BilinForm R₁ M₁ inst✝ : Algebra R₂ R ⊢ LinearEquiv.trans (flipHom R₂) (flipHom R₂) = LinearEquiv.refl R₂ (BilinForm R M) [PROOFSTEP] ext A [GOAL] case h.H R : Type u_1 M : Type u_2 inst✝¹⁵ : Semiring R inst✝¹⁴ : AddCommMonoid M inst✝¹³ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹² : Ring R₁ inst✝¹¹ : AddCommGroup M₁ inst✝¹⁰ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝⁹ : CommSemiring R₂ inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁶ : CommRing R₃ inst✝⁵ : AddCommGroup M₃ inst✝⁴ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝³ : Field K inst✝² : AddCommGroup V inst✝¹ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ D : BilinForm R M D₁ : BilinForm R₁ M₁ inst✝ : Algebra R₂ R A : BilinForm R M x✝ y✝ : M ⊢ bilin (↑(LinearEquiv.trans (flipHom R₂) (flipHom R₂)) A) x✝ y✝ = bilin (↑(LinearEquiv.refl R₂ (BilinForm R M)) A) x✝ y✝ [PROOFSTEP] simp [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁷ : Semiring R inst✝¹⁶ : AddCommMonoid M inst✝¹⁵ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁴ : Ring R₁ inst✝¹³ : AddCommGroup M₁ inst✝¹² : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹¹ : CommSemiring R₂ inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁸ : CommRing R₃ inst✝⁷ : AddCommGroup M₃ inst✝⁶ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ D : BilinForm R M D₁ : BilinForm R₁ M₁ inst✝² : Algebra R₂ R inst✝¹ : Module R₂ M inst✝ : IsScalarTower R₂ R M A : BilinForm R M x₁ x₂ x : M ⊢ ↑(toLinHomAux₁ A (x₁ + x₂)) x = ↑(toLinHomAux₁ A x₁ + toLinHomAux₁ A x₂) x [PROOFSTEP] simp only [toLinHomAux₁, LinearMap.coe_mk, LinearMap.add_apply, add_left, AddHom.coe_mk] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁷ : Semiring R inst✝¹⁶ : AddCommMonoid M inst✝¹⁵ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁴ : Ring R₁ inst✝¹³ : AddCommGroup M₁ inst✝¹² : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹¹ : CommSemiring R₂ inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁸ : CommRing R₃ inst✝⁷ : AddCommGroup M₃ inst✝⁶ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ D : BilinForm R M D₁ : BilinForm R₁ M₁ inst✝² : Algebra R₂ R inst✝¹ : Module R₂ M inst✝ : IsScalarTower R₂ R M A : BilinForm R M c : R₂ x : M ⊢ ∀ (x_1 : M), ↑(AddHom.toFun { toFun := toLinHomAux₁ A, map_add' := (_ : ∀ (x₁ x₂ : M), toLinHomAux₁ A (x₁ + x₂) = toLinHomAux₁ A x₁ + toLinHomAux₁ A x₂) } (c • x)) x_1 = ↑(↑(RingHom.id R₂) c • AddHom.toFun { toFun := toLinHomAux₁ A, map_add' := (_ : ∀ (x₁ x₂ : M), toLinHomAux₁ A (x₁ + x₂) = toLinHomAux₁ A x₁ + toLinHomAux₁ A x₂) } x) x_1 [PROOFSTEP] dsimp [toLinHomAux₁] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁷ : Semiring R inst✝¹⁶ : AddCommMonoid M inst✝¹⁵ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁴ : Ring R₁ inst✝¹³ : AddCommGroup M₁ inst✝¹² : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹¹ : CommSemiring R₂ inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁸ : CommRing R₃ inst✝⁷ : AddCommGroup M₃ inst✝⁶ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ D : BilinForm R M D₁ : BilinForm R₁ M₁ inst✝² : Algebra R₂ R inst✝¹ : Module R₂ M inst✝ : IsScalarTower R₂ R M A : BilinForm R M c : R₂ x : M ⊢ ∀ (x_1 : M), bilin A (c • x) x_1 = c • bilin A x x_1 [PROOFSTEP] intros -- Porting note: moved out of `simp only` [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁷ : Semiring R inst✝¹⁶ : AddCommMonoid M inst✝¹⁵ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁴ : Ring R₁ inst✝¹³ : AddCommGroup M₁ inst✝¹² : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹¹ : CommSemiring R₂ inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁸ : CommRing R₃ inst✝⁷ : AddCommGroup M₃ inst✝⁶ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ D : BilinForm R M D₁ : BilinForm R₁ M₁ inst✝² : Algebra R₂ R inst✝¹ : Module R₂ M inst✝ : IsScalarTower R₂ R M A : BilinForm R M c : R₂ x x✝ : M ⊢ bilin A (c • x) x✝ = c • bilin A x x✝ [PROOFSTEP] rw [← algebraMap_smul R c x] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁷ : Semiring R inst✝¹⁶ : AddCommMonoid M inst✝¹⁵ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁴ : Ring R₁ inst✝¹³ : AddCommGroup M₁ inst✝¹² : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹¹ : CommSemiring R₂ inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁸ : CommRing R₃ inst✝⁷ : AddCommGroup M₃ inst✝⁶ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ D : BilinForm R M D₁ : BilinForm R₁ M₁ inst✝² : Algebra R₂ R inst✝¹ : Module R₂ M inst✝ : IsScalarTower R₂ R M A : BilinForm R M c : R₂ x x✝ : M ⊢ bilin A (↑(algebraMap R₂ R) c • x) x✝ = c • bilin A x x✝ [PROOFSTEP] simp only [Algebra.smul_def, LinearMap.coe_mk, LinearMap.smul_apply, smul_left] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁷ : Semiring R inst✝¹⁶ : AddCommMonoid M inst✝¹⁵ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁴ : Ring R₁ inst✝¹³ : AddCommGroup M₁ inst✝¹² : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹¹ : CommSemiring R₂ inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁸ : CommRing R₃ inst✝⁷ : AddCommGroup M₃ inst✝⁶ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ D : BilinForm R M D₁ : BilinForm R₁ M₁ inst✝² : Algebra R₂ R inst✝¹ : Module R₂ M inst✝ : IsScalarTower R₂ R M A₁ A₂ : BilinForm R M x : M ⊢ ↑(toLinHomAux₂ (A₁ + A₂)) x = ↑(toLinHomAux₂ A₁ + toLinHomAux₂ A₂) x [PROOFSTEP] dsimp only [toLinHomAux₁, toLinHomAux₂] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁷ : Semiring R inst✝¹⁶ : AddCommMonoid M inst✝¹⁵ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁴ : Ring R₁ inst✝¹³ : AddCommGroup M₁ inst✝¹² : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹¹ : CommSemiring R₂ inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁸ : CommRing R₃ inst✝⁷ : AddCommGroup M₃ inst✝⁶ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ D : BilinForm R M D₁ : BilinForm R₁ M₁ inst✝² : Algebra R₂ R inst✝¹ : Module R₂ M inst✝ : IsScalarTower R₂ R M A₁ A₂ : BilinForm R M x : M ⊢ ↑{ toAddHom := { toFun := fun x => { toAddHom := { toFun := fun y => bilin (A₁ + A₂) x y, map_add' := (_ : ∀ (y z : M), bilin (A₁ + A₂) x (y + z) = bilin (A₁ + A₂) x y + bilin (A₁ + A₂) x z) }, map_smul' := (_ : ∀ (c : R) (y : M), bilin (A₁ + A₂) x (c • y) = c * bilin (A₁ + A₂) x y) }, map_add' := (_ : ∀ (x₁ x₂ : M), toLinHomAux₁ (A₁ + A₂) (x₁ + x₂) = toLinHomAux₁ (A₁ + A₂) x₁ + toLinHomAux₁ (A₁ + A₂) x₂) }, map_smul' := (_ : ∀ (c : R₂) (x : M), AddHom.toFun { toFun := toLinHomAux₁ (A₁ + A₂), map_add' := (_ : ∀ (x₁ x₂ : M), toLinHomAux₁ (A₁ + A₂) (x₁ + x₂) = toLinHomAux₁ (A₁ + A₂) x₁ + toLinHomAux₁ (A₁ + A₂) x₂) } (c • x) = ↑(RingHom.id R₂) c • AddHom.toFun { toFun := toLinHomAux₁ (A₁ + A₂), map_add' := (_ : ∀ (x₁ x₂ : M), toLinHomAux₁ (A₁ + A₂) (x₁ + x₂) = toLinHomAux₁ (A₁ + A₂) x₁ + toLinHomAux₁ (A₁ + A₂) x₂) } x) } x = ↑({ toAddHom := { toFun := fun x => { toAddHom := { toFun := fun y => bilin A₁ x y, map_add' := (_ : ∀ (y z : M), bilin A₁ x (y + z) = bilin A₁ x y + bilin A₁ x z) }, map_smul' := (_ : ∀ (c : R) (y : M), bilin A₁ x (c • y) = c * bilin A₁ x y) }, map_add' := (_ : ∀ (x₁ x₂ : M), toLinHomAux₁ A₁ (x₁ + x₂) = toLinHomAux₁ A₁ x₁ + toLinHomAux₁ A₁ x₂) }, map_smul' := (_ : ∀ (c : R₂) (x : M), AddHom.toFun { toFun := toLinHomAux₁ A₁, map_add' := (_ : ∀ (x₁ x₂ : M), toLinHomAux₁ A₁ (x₁ + x₂) = toLinHomAux₁ A₁ x₁ + toLinHomAux₁ A₁ x₂) } (c • x) = ↑(RingHom.id R₂) c • AddHom.toFun { toFun := toLinHomAux₁ A₁, map_add' := (_ : ∀ (x₁ x₂ : M), toLinHomAux₁ A₁ (x₁ + x₂) = toLinHomAux₁ A₁ x₁ + toLinHomAux₁ A₁ x₂) } x) } + { toAddHom := { toFun := fun x => { toAddHom := { toFun := fun y => bilin A₂ x y, map_add' := (_ : ∀ (y z : M), bilin A₂ x (y + z) = bilin A₂ x y + bilin A₂ x z) }, map_smul' := (_ : ∀ (c : R) (y : M), bilin A₂ x (c • y) = c * bilin A₂ x y) }, map_add' := (_ : ∀ (x₁ x₂ : M), toLinHomAux₁ A₂ (x₁ + x₂) = toLinHomAux₁ A₂ x₁ + toLinHomAux₁ A₂ x₂) }, map_smul' := (_ : ∀ (c : R₂) (x : M), AddHom.toFun { toFun := toLinHomAux₁ A₂, map_add' := (_ : ∀ (x₁ x₂ : M), toLinHomAux₁ A₂ (x₁ + x₂) = toLinHomAux₁ A₂ x₁ + toLinHomAux₁ A₂ x₂) } (c • x) = ↑(RingHom.id R₂) c • AddHom.toFun { toFun := toLinHomAux₁ A₂, map_add' := (_ : ∀ (x₁ x₂ : M), toLinHomAux₁ A₂ (x₁ + x₂) = toLinHomAux₁ A₂ x₁ + toLinHomAux₁ A₂ x₂) } x) }) x [PROOFSTEP] apply LinearMap.ext [GOAL] case h R : Type u_1 M : Type u_2 inst✝¹⁷ : Semiring R inst✝¹⁶ : AddCommMonoid M inst✝¹⁵ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁴ : Ring R₁ inst✝¹³ : AddCommGroup M₁ inst✝¹² : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹¹ : CommSemiring R₂ inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁸ : CommRing R₃ inst✝⁷ : AddCommGroup M₃ inst✝⁶ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ D : BilinForm R M D₁ : BilinForm R₁ M₁ inst✝² : Algebra R₂ R inst✝¹ : Module R₂ M inst✝ : IsScalarTower R₂ R M A₁ A₂ : BilinForm R M x : M ⊢ ∀ (x_1 : M), ↑(↑{ toAddHom := { toFun := fun x => { toAddHom := { toFun := fun y => bilin (A₁ + A₂) x y, map_add' := (_ : ∀ (y z : M), bilin (A₁ + A₂) x (y + z) = bilin (A₁ + A₂) x y + bilin (A₁ + A₂) x z) }, map_smul' := (_ : ∀ (c : R) (y : M), bilin (A₁ + A₂) x (c • y) = c * bilin (A₁ + A₂) x y) }, map_add' := (_ : ∀ (x₁ x₂ : M), toLinHomAux₁ (A₁ + A₂) (x₁ + x₂) = toLinHomAux₁ (A₁ + A₂) x₁ + toLinHomAux₁ (A₁ + A₂) x₂) }, map_smul' := (_ : ∀ (c : R₂) (x : M), AddHom.toFun { toFun := toLinHomAux₁ (A₁ + A₂), map_add' := (_ : ∀ (x₁ x₂ : M), toLinHomAux₁ (A₁ + A₂) (x₁ + x₂) = toLinHomAux₁ (A₁ + A₂) x₁ + toLinHomAux₁ (A₁ + A₂) x₂) } (c • x) = ↑(RingHom.id R₂) c • AddHom.toFun { toFun := toLinHomAux₁ (A₁ + A₂), map_add' := (_ : ∀ (x₁ x₂ : M), toLinHomAux₁ (A₁ + A₂) (x₁ + x₂) = toLinHomAux₁ (A₁ + A₂) x₁ + toLinHomAux₁ (A₁ + A₂) x₂) } x) } x) x_1 = ↑(↑({ toAddHom := { toFun := fun x => { toAddHom := { toFun := fun y => bilin A₁ x y, map_add' := (_ : ∀ (y z : M), bilin A₁ x (y + z) = bilin A₁ x y + bilin A₁ x z) }, map_smul' := (_ : ∀ (c : R) (y : M), bilin A₁ x (c • y) = c * bilin A₁ x y) }, map_add' := (_ : ∀ (x₁ x₂ : M), toLinHomAux₁ A₁ (x₁ + x₂) = toLinHomAux₁ A₁ x₁ + toLinHomAux₁ A₁ x₂) }, map_smul' := (_ : ∀ (c : R₂) (x : M), AddHom.toFun { toFun := toLinHomAux₁ A₁, map_add' := (_ : ∀ (x₁ x₂ : M), toLinHomAux₁ A₁ (x₁ + x₂) = toLinHomAux₁ A₁ x₁ + toLinHomAux₁ A₁ x₂) } (c • x) = ↑(RingHom.id R₂) c • AddHom.toFun { toFun := toLinHomAux₁ A₁, map_add' := (_ : ∀ (x₁ x₂ : M), toLinHomAux₁ A₁ (x₁ + x₂) = toLinHomAux₁ A₁ x₁ + toLinHomAux₁ A₁ x₂) } x) } + { toAddHom := { toFun := fun x => { toAddHom := { toFun := fun y => bilin A₂ x y, map_add' := (_ : ∀ (y z : M), bilin A₂ x (y + z) = bilin A₂ x y + bilin A₂ x z) }, map_smul' := (_ : ∀ (c : R) (y : M), bilin A₂ x (c • y) = c * bilin A₂ x y) }, map_add' := (_ : ∀ (x₁ x₂ : M), toLinHomAux₁ A₂ (x₁ + x₂) = toLinHomAux₁ A₂ x₁ + toLinHomAux₁ A₂ x₂) }, map_smul' := (_ : ∀ (c : R₂) (x : M), AddHom.toFun { toFun := toLinHomAux₁ A₂, map_add' := (_ : ∀ (x₁ x₂ : M), toLinHomAux₁ A₂ (x₁ + x₂) = toLinHomAux₁ A₂ x₁ + toLinHomAux₁ A₂ x₂) } (c • x) = ↑(RingHom.id R₂) c • AddHom.toFun { toFun := toLinHomAux₁ A₂, map_add' := (_ : ∀ (x₁ x₂ : M), toLinHomAux₁ A₂ (x₁ + x₂) = toLinHomAux₁ A₂ x₁ + toLinHomAux₁ A₂ x₂) } x) }) x) x_1 [PROOFSTEP] intro y [GOAL] case h R : Type u_1 M : Type u_2 inst✝¹⁷ : Semiring R inst✝¹⁶ : AddCommMonoid M inst✝¹⁵ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁴ : Ring R₁ inst✝¹³ : AddCommGroup M₁ inst✝¹² : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹¹ : CommSemiring R₂ inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁸ : CommRing R₃ inst✝⁷ : AddCommGroup M₃ inst✝⁶ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ D : BilinForm R M D₁ : BilinForm R₁ M₁ inst✝² : Algebra R₂ R inst✝¹ : Module R₂ M inst✝ : IsScalarTower R₂ R M A₁ A₂ : BilinForm R M x y : M ⊢ ↑(↑{ toAddHom := { toFun := fun x => { toAddHom := { toFun := fun y => bilin (A₁ + A₂) x y, map_add' := (_ : ∀ (y z : M), bilin (A₁ + A₂) x (y + z) = bilin (A₁ + A₂) x y + bilin (A₁ + A₂) x z) }, map_smul' := (_ : ∀ (c : R) (y : M), bilin (A₁ + A₂) x (c • y) = c * bilin (A₁ + A₂) x y) }, map_add' := (_ : ∀ (x₁ x₂ : M), toLinHomAux₁ (A₁ + A₂) (x₁ + x₂) = toLinHomAux₁ (A₁ + A₂) x₁ + toLinHomAux₁ (A₁ + A₂) x₂) }, map_smul' := (_ : ∀ (c : R₂) (x : M), AddHom.toFun { toFun := toLinHomAux₁ (A₁ + A₂), map_add' := (_ : ∀ (x₁ x₂ : M), toLinHomAux₁ (A₁ + A₂) (x₁ + x₂) = toLinHomAux₁ (A₁ + A₂) x₁ + toLinHomAux₁ (A₁ + A₂) x₂) } (c • x) = ↑(RingHom.id R₂) c • AddHom.toFun { toFun := toLinHomAux₁ (A₁ + A₂), map_add' := (_ : ∀ (x₁ x₂ : M), toLinHomAux₁ (A₁ + A₂) (x₁ + x₂) = toLinHomAux₁ (A₁ + A₂) x₁ + toLinHomAux₁ (A₁ + A₂) x₂) } x) } x) y = ↑(↑({ toAddHom := { toFun := fun x => { toAddHom := { toFun := fun y => bilin A₁ x y, map_add' := (_ : ∀ (y z : M), bilin A₁ x (y + z) = bilin A₁ x y + bilin A₁ x z) }, map_smul' := (_ : ∀ (c : R) (y : M), bilin A₁ x (c • y) = c * bilin A₁ x y) }, map_add' := (_ : ∀ (x₁ x₂ : M), toLinHomAux₁ A₁ (x₁ + x₂) = toLinHomAux₁ A₁ x₁ + toLinHomAux₁ A₁ x₂) }, map_smul' := (_ : ∀ (c : R₂) (x : M), AddHom.toFun { toFun := toLinHomAux₁ A₁, map_add' := (_ : ∀ (x₁ x₂ : M), toLinHomAux₁ A₁ (x₁ + x₂) = toLinHomAux₁ A₁ x₁ + toLinHomAux₁ A₁ x₂) } (c • x) = ↑(RingHom.id R₂) c • AddHom.toFun { toFun := toLinHomAux₁ A₁, map_add' := (_ : ∀ (x₁ x₂ : M), toLinHomAux₁ A₁ (x₁ + x₂) = toLinHomAux₁ A₁ x₁ + toLinHomAux₁ A₁ x₂) } x) } + { toAddHom := { toFun := fun x => { toAddHom := { toFun := fun y => bilin A₂ x y, map_add' := (_ : ∀ (y z : M), bilin A₂ x (y + z) = bilin A₂ x y + bilin A₂ x z) }, map_smul' := (_ : ∀ (c : R) (y : M), bilin A₂ x (c • y) = c * bilin A₂ x y) }, map_add' := (_ : ∀ (x₁ x₂ : M), toLinHomAux₁ A₂ (x₁ + x₂) = toLinHomAux₁ A₂ x₁ + toLinHomAux₁ A₂ x₂) }, map_smul' := (_ : ∀ (c : R₂) (x : M), AddHom.toFun { toFun := toLinHomAux₁ A₂, map_add' := (_ : ∀ (x₁ x₂ : M), toLinHomAux₁ A₂ (x₁ + x₂) = toLinHomAux₁ A₂ x₁ + toLinHomAux₁ A₂ x₂) } (c • x) = ↑(RingHom.id R₂) c • AddHom.toFun { toFun := toLinHomAux₁ A₂, map_add' := (_ : ∀ (x₁ x₂ : M), toLinHomAux₁ A₂ (x₁ + x₂) = toLinHomAux₁ A₂ x₁ + toLinHomAux₁ A₂ x₂) } x) }) x) y [PROOFSTEP] simp only [toLinHomAux₂, toLinHomAux₁, LinearMap.coe_mk, LinearMap.add_apply, add_apply, AddHom.coe_mk] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁷ : Semiring R inst✝¹⁶ : AddCommMonoid M inst✝¹⁵ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁴ : Ring R₁ inst✝¹³ : AddCommGroup M₁ inst✝¹² : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹¹ : CommSemiring R₂ inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁸ : CommRing R₃ inst✝⁷ : AddCommGroup M₃ inst✝⁶ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ D : BilinForm R M D₁ : BilinForm R₁ M₁ inst✝² : Algebra R₂ R inst✝¹ : Module R₂ M inst✝ : IsScalarTower R₂ R M c : R₂ A : BilinForm R M ⊢ AddHom.toFun { toFun := toLinHomAux₂, map_add' := (_ : ∀ (A₁ A₂ : BilinForm R M), toLinHomAux₂ (A₁ + A₂) = toLinHomAux₂ A₁ + toLinHomAux₂ A₂) } (c • A) = ↑(RingHom.id R₂) c • AddHom.toFun { toFun := toLinHomAux₂, map_add' := (_ : ∀ (A₁ A₂ : BilinForm R M), toLinHomAux₂ (A₁ + A₂) = toLinHomAux₂ A₁ + toLinHomAux₂ A₂) } A [PROOFSTEP] dsimp [toLinHomAux₁, toLinHomAux₂] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁷ : Semiring R inst✝¹⁶ : AddCommMonoid M inst✝¹⁵ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁴ : Ring R₁ inst✝¹³ : AddCommGroup M₁ inst✝¹² : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹¹ : CommSemiring R₂ inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁸ : CommRing R₃ inst✝⁷ : AddCommGroup M₃ inst✝⁶ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ D : BilinForm R M D₁ : BilinForm R₁ M₁ inst✝² : Algebra R₂ R inst✝¹ : Module R₂ M inst✝ : IsScalarTower R₂ R M c : R₂ A : BilinForm R M ⊢ { toAddHom := { toFun := fun x => { toAddHom := { toFun := fun y => c • bilin A x y, map_add' := (_ : ∀ (y z : M), bilin (c • A) x (y + z) = bilin (c • A) x y + bilin (c • A) x z) }, map_smul' := (_ : ∀ (c_1 : R) (y : M), bilin (c • A) x (c_1 • y) = c_1 * bilin (c • A) x y) }, map_add' := (_ : ∀ (x₁ x₂ : M), toLinHomAux₁ (c • A) (x₁ + x₂) = toLinHomAux₁ (c • A) x₁ + toLinHomAux₁ (c • A) x₂) }, map_smul' := (_ : ∀ (c_1 : R₂) (x : M), AddHom.toFun { toFun := toLinHomAux₁ (c • A), map_add' := (_ : ∀ (x₁ x₂ : M), toLinHomAux₁ (c • A) (x₁ + x₂) = toLinHomAux₁ (c • A) x₁ + toLinHomAux₁ (c • A) x₂) } (c_1 • x) = ↑(RingHom.id R₂) c_1 • AddHom.toFun { toFun := toLinHomAux₁ (c • A), map_add' := (_ : ∀ (x₁ x₂ : M), toLinHomAux₁ (c • A) (x₁ + x₂) = toLinHomAux₁ (c • A) x₁ + toLinHomAux₁ (c • A) x₂) } x) } = c • { toAddHom := { toFun := fun x => { toAddHom := { toFun := fun y => bilin A x y, map_add' := (_ : ∀ (y z : M), bilin A x (y + z) = bilin A x y + bilin A x z) }, map_smul' := (_ : ∀ (c : R) (y : M), bilin A x (c • y) = c * bilin A x y) }, map_add' := (_ : ∀ (x₁ x₂ : M), toLinHomAux₁ A (x₁ + x₂) = toLinHomAux₁ A x₁ + toLinHomAux₁ A x₂) }, map_smul' := (_ : ∀ (c : R₂) (x : M), AddHom.toFun { toFun := toLinHomAux₁ A, map_add' := (_ : ∀ (x₁ x₂ : M), toLinHomAux₁ A (x₁ + x₂) = toLinHomAux₁ A x₁ + toLinHomAux₁ A x₂) } (c • x) = ↑(RingHom.id R₂) c • AddHom.toFun { toFun := toLinHomAux₁ A, map_add' := (_ : ∀ (x₁ x₂ : M), toLinHomAux₁ A (x₁ + x₂) = toLinHomAux₁ A x₁ + toLinHomAux₁ A x₂) } x) } [PROOFSTEP] apply LinearMap.ext [GOAL] case h R : Type u_1 M : Type u_2 inst✝¹⁷ : Semiring R inst✝¹⁶ : AddCommMonoid M inst✝¹⁵ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁴ : Ring R₁ inst✝¹³ : AddCommGroup M₁ inst✝¹² : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹¹ : CommSemiring R₂ inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁸ : CommRing R₃ inst✝⁷ : AddCommGroup M₃ inst✝⁶ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ D : BilinForm R M D₁ : BilinForm R₁ M₁ inst✝² : Algebra R₂ R inst✝¹ : Module R₂ M inst✝ : IsScalarTower R₂ R M c : R₂ A : BilinForm R M ⊢ ∀ (x : M), ↑{ toAddHom := { toFun := fun x => { toAddHom := { toFun := fun y => c • bilin A x y, map_add' := (_ : ∀ (y z : M), bilin (c • A) x (y + z) = bilin (c • A) x y + bilin (c • A) x z) }, map_smul' := (_ : ∀ (c_1 : R) (y : M), bilin (c • A) x (c_1 • y) = c_1 * bilin (c • A) x y) }, map_add' := (_ : ∀ (x₁ x₂ : M), toLinHomAux₁ (c • A) (x₁ + x₂) = toLinHomAux₁ (c • A) x₁ + toLinHomAux₁ (c • A) x₂) }, map_smul' := (_ : ∀ (c_1 : R₂) (x : M), AddHom.toFun { toFun := toLinHomAux₁ (c • A), map_add' := (_ : ∀ (x₁ x₂ : M), toLinHomAux₁ (c • A) (x₁ + x₂) = toLinHomAux₁ (c • A) x₁ + toLinHomAux₁ (c • A) x₂) } (c_1 • x) = ↑(RingHom.id R₂) c_1 • AddHom.toFun { toFun := toLinHomAux₁ (c • A), map_add' := (_ : ∀ (x₁ x₂ : M), toLinHomAux₁ (c • A) (x₁ + x₂) = toLinHomAux₁ (c • A) x₁ + toLinHomAux₁ (c • A) x₂) } x) } x = ↑(c • { toAddHom := { toFun := fun x => { toAddHom := { toFun := fun y => bilin A x y, map_add' := (_ : ∀ (y z : M), bilin A x (y + z) = bilin A x y + bilin A x z) }, map_smul' := (_ : ∀ (c : R) (y : M), bilin A x (c • y) = c * bilin A x y) }, map_add' := (_ : ∀ (x₁ x₂ : M), toLinHomAux₁ A (x₁ + x₂) = toLinHomAux₁ A x₁ + toLinHomAux₁ A x₂) }, map_smul' := (_ : ∀ (c : R₂) (x : M), AddHom.toFun { toFun := toLinHomAux₁ A, map_add' := (_ : ∀ (x₁ x₂ : M), toLinHomAux₁ A (x₁ + x₂) = toLinHomAux₁ A x₁ + toLinHomAux₁ A x₂) } (c • x) = ↑(RingHom.id R₂) c • AddHom.toFun { toFun := toLinHomAux₁ A, map_add' := (_ : ∀ (x₁ x₂ : M), toLinHomAux₁ A (x₁ + x₂) = toLinHomAux₁ A x₁ + toLinHomAux₁ A x₂) } x) }) x [PROOFSTEP] intro x [GOAL] case h R : Type u_1 M : Type u_2 inst✝¹⁷ : Semiring R inst✝¹⁶ : AddCommMonoid M inst✝¹⁵ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁴ : Ring R₁ inst✝¹³ : AddCommGroup M₁ inst✝¹² : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹¹ : CommSemiring R₂ inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁸ : CommRing R₃ inst✝⁷ : AddCommGroup M₃ inst✝⁶ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ D : BilinForm R M D₁ : BilinForm R₁ M₁ inst✝² : Algebra R₂ R inst✝¹ : Module R₂ M inst✝ : IsScalarTower R₂ R M c : R₂ A : BilinForm R M x : M ⊢ ↑{ toAddHom := { toFun := fun x => { toAddHom := { toFun := fun y => c • bilin A x y, map_add' := (_ : ∀ (y z : M), bilin (c • A) x (y + z) = bilin (c • A) x y + bilin (c • A) x z) }, map_smul' := (_ : ∀ (c_1 : R) (y : M), bilin (c • A) x (c_1 • y) = c_1 * bilin (c • A) x y) }, map_add' := (_ : ∀ (x₁ x₂ : M), toLinHomAux₁ (c • A) (x₁ + x₂) = toLinHomAux₁ (c • A) x₁ + toLinHomAux₁ (c • A) x₂) }, map_smul' := (_ : ∀ (c_1 : R₂) (x : M), AddHom.toFun { toFun := toLinHomAux₁ (c • A), map_add' := (_ : ∀ (x₁ x₂ : M), toLinHomAux₁ (c • A) (x₁ + x₂) = toLinHomAux₁ (c • A) x₁ + toLinHomAux₁ (c • A) x₂) } (c_1 • x) = ↑(RingHom.id R₂) c_1 • AddHom.toFun { toFun := toLinHomAux₁ (c • A), map_add' := (_ : ∀ (x₁ x₂ : M), toLinHomAux₁ (c • A) (x₁ + x₂) = toLinHomAux₁ (c • A) x₁ + toLinHomAux₁ (c • A) x₂) } x) } x = ↑(c • { toAddHom := { toFun := fun x => { toAddHom := { toFun := fun y => bilin A x y, map_add' := (_ : ∀ (y z : M), bilin A x (y + z) = bilin A x y + bilin A x z) }, map_smul' := (_ : ∀ (c : R) (y : M), bilin A x (c • y) = c * bilin A x y) }, map_add' := (_ : ∀ (x₁ x₂ : M), toLinHomAux₁ A (x₁ + x₂) = toLinHomAux₁ A x₁ + toLinHomAux₁ A x₂) }, map_smul' := (_ : ∀ (c : R₂) (x : M), AddHom.toFun { toFun := toLinHomAux₁ A, map_add' := (_ : ∀ (x₁ x₂ : M), toLinHomAux₁ A (x₁ + x₂) = toLinHomAux₁ A x₁ + toLinHomAux₁ A x₂) } (c • x) = ↑(RingHom.id R₂) c • AddHom.toFun { toFun := toLinHomAux₁ A, map_add' := (_ : ∀ (x₁ x₂ : M), toLinHomAux₁ A (x₁ + x₂) = toLinHomAux₁ A x₁ + toLinHomAux₁ A x₂) } x) }) x [PROOFSTEP] apply LinearMap.ext [GOAL] case h.h R : Type u_1 M : Type u_2 inst✝¹⁷ : Semiring R inst✝¹⁶ : AddCommMonoid M inst✝¹⁵ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁴ : Ring R₁ inst✝¹³ : AddCommGroup M₁ inst✝¹² : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹¹ : CommSemiring R₂ inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁸ : CommRing R₃ inst✝⁷ : AddCommGroup M₃ inst✝⁶ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ D : BilinForm R M D₁ : BilinForm R₁ M₁ inst✝² : Algebra R₂ R inst✝¹ : Module R₂ M inst✝ : IsScalarTower R₂ R M c : R₂ A : BilinForm R M x : M ⊢ ∀ (x_1 : M), ↑(↑{ toAddHom := { toFun := fun x => { toAddHom := { toFun := fun y => c • bilin A x y, map_add' := (_ : ∀ (y z : M), bilin (c • A) x (y + z) = bilin (c • A) x y + bilin (c • A) x z) }, map_smul' := (_ : ∀ (c_1 : R) (y : M), bilin (c • A) x (c_1 • y) = c_1 * bilin (c • A) x y) }, map_add' := (_ : ∀ (x₁ x₂ : M), toLinHomAux₁ (c • A) (x₁ + x₂) = toLinHomAux₁ (c • A) x₁ + toLinHomAux₁ (c • A) x₂) }, map_smul' := (_ : ∀ (c_1 : R₂) (x : M), AddHom.toFun { toFun := toLinHomAux₁ (c • A), map_add' := (_ : ∀ (x₁ x₂ : M), toLinHomAux₁ (c • A) (x₁ + x₂) = toLinHomAux₁ (c • A) x₁ + toLinHomAux₁ (c • A) x₂) } (c_1 • x) = ↑(RingHom.id R₂) c_1 • AddHom.toFun { toFun := toLinHomAux₁ (c • A), map_add' := (_ : ∀ (x₁ x₂ : M), toLinHomAux₁ (c • A) (x₁ + x₂) = toLinHomAux₁ (c • A) x₁ + toLinHomAux₁ (c • A) x₂) } x) } x) x_1 = ↑(↑(c • { toAddHom := { toFun := fun x => { toAddHom := { toFun := fun y => bilin A x y, map_add' := (_ : ∀ (y z : M), bilin A x (y + z) = bilin A x y + bilin A x z) }, map_smul' := (_ : ∀ (c : R) (y : M), bilin A x (c • y) = c * bilin A x y) }, map_add' := (_ : ∀ (x₁ x₂ : M), toLinHomAux₁ A (x₁ + x₂) = toLinHomAux₁ A x₁ + toLinHomAux₁ A x₂) }, map_smul' := (_ : ∀ (c : R₂) (x : M), AddHom.toFun { toFun := toLinHomAux₁ A, map_add' := (_ : ∀ (x₁ x₂ : M), toLinHomAux₁ A (x₁ + x₂) = toLinHomAux₁ A x₁ + toLinHomAux₁ A x₂) } (c • x) = ↑(RingHom.id R₂) c • AddHom.toFun { toFun := toLinHomAux₁ A, map_add' := (_ : ∀ (x₁ x₂ : M), toLinHomAux₁ A (x₁ + x₂) = toLinHomAux₁ A x₁ + toLinHomAux₁ A x₂) } x) }) x) x_1 [PROOFSTEP] intro y [GOAL] case h.h R : Type u_1 M : Type u_2 inst✝¹⁷ : Semiring R inst✝¹⁶ : AddCommMonoid M inst✝¹⁵ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁴ : Ring R₁ inst✝¹³ : AddCommGroup M₁ inst✝¹² : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹¹ : CommSemiring R₂ inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁸ : CommRing R₃ inst✝⁷ : AddCommGroup M₃ inst✝⁶ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ D : BilinForm R M D₁ : BilinForm R₁ M₁ inst✝² : Algebra R₂ R inst✝¹ : Module R₂ M inst✝ : IsScalarTower R₂ R M c : R₂ A : BilinForm R M x y : M ⊢ ↑(↑{ toAddHom := { toFun := fun x => { toAddHom := { toFun := fun y => c • bilin A x y, map_add' := (_ : ∀ (y z : M), bilin (c • A) x (y + z) = bilin (c • A) x y + bilin (c • A) x z) }, map_smul' := (_ : ∀ (c_1 : R) (y : M), bilin (c • A) x (c_1 • y) = c_1 * bilin (c • A) x y) }, map_add' := (_ : ∀ (x₁ x₂ : M), toLinHomAux₁ (c • A) (x₁ + x₂) = toLinHomAux₁ (c • A) x₁ + toLinHomAux₁ (c • A) x₂) }, map_smul' := (_ : ∀ (c_1 : R₂) (x : M), AddHom.toFun { toFun := toLinHomAux₁ (c • A), map_add' := (_ : ∀ (x₁ x₂ : M), toLinHomAux₁ (c • A) (x₁ + x₂) = toLinHomAux₁ (c • A) x₁ + toLinHomAux₁ (c • A) x₂) } (c_1 • x) = ↑(RingHom.id R₂) c_1 • AddHom.toFun { toFun := toLinHomAux₁ (c • A), map_add' := (_ : ∀ (x₁ x₂ : M), toLinHomAux₁ (c • A) (x₁ + x₂) = toLinHomAux₁ (c • A) x₁ + toLinHomAux₁ (c • A) x₂) } x) } x) y = ↑(↑(c • { toAddHom := { toFun := fun x => { toAddHom := { toFun := fun y => bilin A x y, map_add' := (_ : ∀ (y z : M), bilin A x (y + z) = bilin A x y + bilin A x z) }, map_smul' := (_ : ∀ (c : R) (y : M), bilin A x (c • y) = c * bilin A x y) }, map_add' := (_ : ∀ (x₁ x₂ : M), toLinHomAux₁ A (x₁ + x₂) = toLinHomAux₁ A x₁ + toLinHomAux₁ A x₂) }, map_smul' := (_ : ∀ (c : R₂) (x : M), AddHom.toFun { toFun := toLinHomAux₁ A, map_add' := (_ : ∀ (x₁ x₂ : M), toLinHomAux₁ A (x₁ + x₂) = toLinHomAux₁ A x₁ + toLinHomAux₁ A x₂) } (c • x) = ↑(RingHom.id R₂) c • AddHom.toFun { toFun := toLinHomAux₁ A, map_add' := (_ : ∀ (x₁ x₂ : M), toLinHomAux₁ A (x₁ + x₂) = toLinHomAux₁ A x₁ + toLinHomAux₁ A x₂) } x) }) x) y [PROOFSTEP] simp only [toLinHomAux₂, toLinHomAux₁, LinearMap.coe_mk, LinearMap.smul_apply, smul_apply, AddHom.coe_mk] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁴ : Semiring R inst✝¹³ : AddCommMonoid M inst✝¹² : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹¹ : Ring R₁ inst✝¹⁰ : AddCommGroup M₁ inst✝⁹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝⁸ : CommSemiring R₂ inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁵ : CommRing R₃ inst✝⁴ : AddCommGroup M₃ inst✝³ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ f : M₂ →ₗ[R₂] M₂ →ₗ[R₂] R₂ x y z : M₂ ⊢ (fun x y => ↑(↑f x) y) (x + y) z = (fun x y => ↑(↑f x) y) x z + (fun x y => ↑(↑f x) y) y z [PROOFSTEP] simp only [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁴ : Semiring R inst✝¹³ : AddCommMonoid M inst✝¹² : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹¹ : Ring R₁ inst✝¹⁰ : AddCommGroup M₁ inst✝⁹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝⁸ : CommSemiring R₂ inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁵ : CommRing R₃ inst✝⁴ : AddCommGroup M₃ inst✝³ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ f : M₂ →ₗ[R₂] M₂ →ₗ[R₂] R₂ x y z : M₂ ⊢ ↑(↑f (x + y)) z = ↑(↑f x) z + ↑(↑f y) z [PROOFSTEP] exact (LinearMap.map_add f x y).symm ▸ LinearMap.add_apply (f x) (f y) z [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁴ : Semiring R inst✝¹³ : AddCommMonoid M inst✝¹² : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹¹ : Ring R₁ inst✝¹⁰ : AddCommGroup M₁ inst✝⁹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝⁸ : CommSemiring R₂ inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁵ : CommRing R₃ inst✝⁴ : AddCommGroup M₃ inst✝³ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ f : M₂ →ₗ[R₂] M₂ →ₗ[R₂] R₂ a : R₂ x y : M₂ ⊢ (fun x y => ↑(↑f x) y) (a • x) y = a * (fun x y => ↑(↑f x) y) x y [PROOFSTEP] simp only [LinearMap.map_smul, LinearMap.smul_apply, smul_eq_mul] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁴ : Semiring R inst✝¹³ : AddCommMonoid M inst✝¹² : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹¹ : Ring R₁ inst✝¹⁰ : AddCommGroup M₁ inst✝⁹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝⁸ : CommSemiring R₂ inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁵ : CommRing R₃ inst✝⁴ : AddCommGroup M₃ inst✝³ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ src✝ : BilinForm R₂ M₂ →ₗ[R₂] M₂ →ₗ[R₂] M₂ →ₗ[R₂] R₂ := toLinHom R₂ B : BilinForm R₂ M₂ ⊢ LinearMap.toBilinAux (AddHom.toFun { toAddHom := src✝.toAddHom, map_smul' := (_ : ∀ (r : R₂) (x : BilinForm R₂ M₂), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R₂) r • AddHom.toFun src✝.toAddHom x) }.toAddHom B) = B [PROOFSTEP] ext [GOAL] case H R : Type u_1 M : Type u_2 inst✝¹⁴ : Semiring R inst✝¹³ : AddCommMonoid M inst✝¹² : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹¹ : Ring R₁ inst✝¹⁰ : AddCommGroup M₁ inst✝⁹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝⁸ : CommSemiring R₂ inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁵ : CommRing R₃ inst✝⁴ : AddCommGroup M₃ inst✝³ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ src✝ : BilinForm R₂ M₂ →ₗ[R₂] M₂ →ₗ[R₂] M₂ →ₗ[R₂] R₂ := toLinHom R₂ B : BilinForm R₂ M₂ x✝ y✝ : M₂ ⊢ bilin (LinearMap.toBilinAux (AddHom.toFun { toAddHom := src✝.toAddHom, map_smul' := (_ : ∀ (r : R₂) (x : BilinForm R₂ M₂), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R₂) r • AddHom.toFun src✝.toAddHom x) }.toAddHom B)) x✝ y✝ = bilin B x✝ y✝ [PROOFSTEP] simp [LinearMap.toBilinAux] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁴ : Semiring R inst✝¹³ : AddCommMonoid M inst✝¹² : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹¹ : Ring R₁ inst✝¹⁰ : AddCommGroup M₁ inst✝⁹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝⁸ : CommSemiring R₂ inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁵ : CommRing R₃ inst✝⁴ : AddCommGroup M₃ inst✝³ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ src✝ : BilinForm R₂ M₂ →ₗ[R₂] M₂ →ₗ[R₂] M₂ →ₗ[R₂] R₂ := toLinHom R₂ B : M₂ →ₗ[R₂] M₂ →ₗ[R₂] R₂ ⊢ AddHom.toFun { toAddHom := src✝.toAddHom, map_smul' := (_ : ∀ (r : R₂) (x : BilinForm R₂ M₂), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R₂) r • AddHom.toFun src✝.toAddHom x) }.toAddHom (LinearMap.toBilinAux B) = B [PROOFSTEP] ext [GOAL] case h.h R : Type u_1 M : Type u_2 inst✝¹⁴ : Semiring R inst✝¹³ : AddCommMonoid M inst✝¹² : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹¹ : Ring R₁ inst✝¹⁰ : AddCommGroup M₁ inst✝⁹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝⁸ : CommSemiring R₂ inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁵ : CommRing R₃ inst✝⁴ : AddCommGroup M₃ inst✝³ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ src✝ : BilinForm R₂ M₂ →ₗ[R₂] M₂ →ₗ[R₂] M₂ →ₗ[R₂] R₂ := toLinHom R₂ B : M₂ →ₗ[R₂] M₂ →ₗ[R₂] R₂ x✝¹ x✝ : M₂ ⊢ ↑(↑(AddHom.toFun { toAddHom := src✝.toAddHom, map_smul' := (_ : ∀ (r : R₂) (x : BilinForm R₂ M₂), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R₂) r • AddHom.toFun src✝.toAddHom x) }.toAddHom (LinearMap.toBilinAux B)) x✝¹) x✝ = ↑(↑B x✝¹) x✝ [PROOFSTEP] simp [LinearMap.toBilinAux] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁸ : Semiring R inst✝¹⁷ : AddCommMonoid M inst✝¹⁶ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁵ : Ring R₁ inst✝¹⁴ : AddCommGroup M₁ inst✝¹³ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹² : CommSemiring R₂ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁹ : CommRing R₃ inst✝⁸ : AddCommGroup M₃ inst✝⁷ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁶ : Field K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ R' : Type u_11 inst✝³ : CommSemiring R' inst✝² : Algebra R' R inst✝¹ : Module R' M inst✝ : IsScalarTower R' R M f : R →ₗ[R'] R' B : BilinForm R M x y z : M ⊢ (fun x y => ↑f (BilinForm.bilin B x y)) (x + y) z = (fun x y => ↑f (BilinForm.bilin B x y)) x z + (fun x y => ↑f (BilinForm.bilin B x y)) y z [PROOFSTEP] simp only [BilinForm.add_left, map_add] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁸ : Semiring R inst✝¹⁷ : AddCommMonoid M inst✝¹⁶ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁵ : Ring R₁ inst✝¹⁴ : AddCommGroup M₁ inst✝¹³ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹² : CommSemiring R₂ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁹ : CommRing R₃ inst✝⁸ : AddCommGroup M₃ inst✝⁷ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁶ : Field K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ R' : Type u_11 inst✝³ : CommSemiring R' inst✝² : Algebra R' R inst✝¹ : Module R' M inst✝ : IsScalarTower R' R M f : R →ₗ[R'] R' B : BilinForm R M r : R' x y : M ⊢ (fun x y => ↑f (BilinForm.bilin B x y)) (r • x) y = r * (fun x y => ↑f (BilinForm.bilin B x y)) x y [PROOFSTEP] simp only [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁸ : Semiring R inst✝¹⁷ : AddCommMonoid M inst✝¹⁶ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁵ : Ring R₁ inst✝¹⁴ : AddCommGroup M₁ inst✝¹³ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹² : CommSemiring R₂ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁹ : CommRing R₃ inst✝⁸ : AddCommGroup M₃ inst✝⁷ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁶ : Field K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ R' : Type u_11 inst✝³ : CommSemiring R' inst✝² : Algebra R' R inst✝¹ : Module R' M inst✝ : IsScalarTower R' R M f : R →ₗ[R'] R' B : BilinForm R M r : R' x y : M ⊢ ↑f (BilinForm.bilin B (r • x) y) = r * ↑f (BilinForm.bilin B x y) [PROOFSTEP] rw [← smul_one_smul R r (_ : M), BilinForm.smul_left, smul_one_mul r (_ : R), map_smul, smul_eq_mul] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁸ : Semiring R inst✝¹⁷ : AddCommMonoid M inst✝¹⁶ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁵ : Ring R₁ inst✝¹⁴ : AddCommGroup M₁ inst✝¹³ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹² : CommSemiring R₂ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁹ : CommRing R₃ inst✝⁸ : AddCommGroup M₃ inst✝⁷ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁶ : Field K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ R' : Type u_11 inst✝³ : CommSemiring R' inst✝² : Algebra R' R inst✝¹ : Module R' M inst✝ : IsScalarTower R' R M f : R →ₗ[R'] R' B : BilinForm R M x y z : M ⊢ (fun x y => ↑f (BilinForm.bilin B x y)) x (y + z) = (fun x y => ↑f (BilinForm.bilin B x y)) x y + (fun x y => ↑f (BilinForm.bilin B x y)) x z [PROOFSTEP] simp only [BilinForm.add_right, map_add] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁸ : Semiring R inst✝¹⁷ : AddCommMonoid M inst✝¹⁶ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁵ : Ring R₁ inst✝¹⁴ : AddCommGroup M₁ inst✝¹³ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹² : CommSemiring R₂ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁹ : CommRing R₃ inst✝⁸ : AddCommGroup M₃ inst✝⁷ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁶ : Field K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ R' : Type u_11 inst✝³ : CommSemiring R' inst✝² : Algebra R' R inst✝¹ : Module R' M inst✝ : IsScalarTower R' R M f : R →ₗ[R'] R' B : BilinForm R M r : R' x y : M ⊢ (fun x y => ↑f (BilinForm.bilin B x y)) x (r • y) = r * (fun x y => ↑f (BilinForm.bilin B x y)) x y [PROOFSTEP] simp only [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁸ : Semiring R inst✝¹⁷ : AddCommMonoid M inst✝¹⁶ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁵ : Ring R₁ inst✝¹⁴ : AddCommGroup M₁ inst✝¹³ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹² : CommSemiring R₂ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁹ : CommRing R₃ inst✝⁸ : AddCommGroup M₃ inst✝⁷ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁶ : Field K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ R' : Type u_11 inst✝³ : CommSemiring R' inst✝² : Algebra R' R inst✝¹ : Module R' M inst✝ : IsScalarTower R' R M f : R →ₗ[R'] R' B : BilinForm R M r : R' x y : M ⊢ ↑f (BilinForm.bilin B x (r • y)) = r * ↑f (BilinForm.bilin B x y) [PROOFSTEP] rw [← smul_one_smul R r (_ : M), BilinForm.smul_right, smul_one_mul r (_ : R), map_smul, smul_eq_mul] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M' : Type w inst✝¹ : AddCommMonoid M' inst✝ : Module R M' B : BilinForm R M' l r : M →ₗ[R] M' x y z : M ⊢ (fun x y => bilin B (↑l x) (↑r y)) (x + y) z = (fun x y => bilin B (↑l x) (↑r y)) x z + (fun x y => bilin B (↑l x) (↑r y)) y z [PROOFSTEP] simp only [LinearMap.map_add, add_left] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M' : Type w inst✝¹ : AddCommMonoid M' inst✝ : Module R M' B : BilinForm R M' l r : M →ₗ[R] M' x : R y z : M ⊢ (fun x y => bilin B (↑l x) (↑r y)) (x • y) z = x * (fun x y => bilin B (↑l x) (↑r y)) y z [PROOFSTEP] simp only [LinearMap.map_smul, smul_left] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M' : Type w inst✝¹ : AddCommMonoid M' inst✝ : Module R M' B : BilinForm R M' l r : M →ₗ[R] M' x y z : M ⊢ (fun x y => bilin B (↑l x) (↑r y)) x (y + z) = (fun x y => bilin B (↑l x) (↑r y)) x y + (fun x y => bilin B (↑l x) (↑r y)) x z [PROOFSTEP] simp only [LinearMap.map_add, add_right] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M' : Type w inst✝¹ : AddCommMonoid M' inst✝ : Module R M' B : BilinForm R M' l r : M →ₗ[R] M' x : R y z : M ⊢ (fun x y => bilin B (↑l x) (↑r y)) y (x • z) = x * (fun x y => bilin B (↑l x) (↑r y)) y z [PROOFSTEP] simp only [LinearMap.map_smul, smul_right] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M' : Type w inst✝¹ : AddCommMonoid M' inst✝ : Module R M' B : BilinForm R M r : M →ₗ[R] M ⊢ comp B LinearMap.id r = compRight B r [PROOFSTEP] ext [GOAL] case H R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M' : Type w inst✝¹ : AddCommMonoid M' inst✝ : Module R M' B : BilinForm R M r : M →ₗ[R] M x✝ y✝ : M ⊢ bilin (comp B LinearMap.id r) x✝ y✝ = bilin (compRight B r) x✝ y✝ [PROOFSTEP] rfl [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M' : Type w inst✝¹ : AddCommMonoid M' inst✝ : Module R M' B : BilinForm R M l : M →ₗ[R] M ⊢ comp B l LinearMap.id = compLeft B l [PROOFSTEP] ext [GOAL] case H R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M' : Type w inst✝¹ : AddCommMonoid M' inst✝ : Module R M' B : BilinForm R M l : M →ₗ[R] M x✝ y✝ : M ⊢ bilin (comp B l LinearMap.id) x✝ y✝ = bilin (compLeft B l) x✝ y✝ [PROOFSTEP] rfl [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M' : Type w inst✝¹ : AddCommMonoid M' inst✝ : Module R M' B : BilinForm R M ⊢ compLeft B LinearMap.id = B [PROOFSTEP] ext [GOAL] case H R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M' : Type w inst✝¹ : AddCommMonoid M' inst✝ : Module R M' B : BilinForm R M x✝ y✝ : M ⊢ bilin (compLeft B LinearMap.id) x✝ y✝ = bilin B x✝ y✝ [PROOFSTEP] rfl [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M' : Type w inst✝¹ : AddCommMonoid M' inst✝ : Module R M' B : BilinForm R M ⊢ compRight B LinearMap.id = B [PROOFSTEP] ext [GOAL] case H R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M' : Type w inst✝¹ : AddCommMonoid M' inst✝ : Module R M' B : BilinForm R M x✝ y✝ : M ⊢ bilin (compRight B LinearMap.id) x✝ y✝ = bilin B x✝ y✝ [PROOFSTEP] rfl [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M' : Type w inst✝¹ : AddCommMonoid M' inst✝ : Module R M' B : BilinForm R M ⊢ comp B LinearMap.id LinearMap.id = B [PROOFSTEP] ext [GOAL] case H R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M' : Type w inst✝¹ : AddCommMonoid M' inst✝ : Module R M' B : BilinForm R M x✝ y✝ : M ⊢ bilin (comp B LinearMap.id LinearMap.id) x✝ y✝ = bilin B x✝ y✝ [PROOFSTEP] rfl [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B : BilinForm R M B₁✝ : BilinForm R₁ M₁ B₂✝ : BilinForm R₂ M₂ M' : Type w inst✝¹ : AddCommMonoid M' inst✝ : Module R M' B₁ B₂ : BilinForm R M' l r : M →ₗ[R] M' hₗ : Function.Surjective ↑l hᵣ : Function.Surjective ↑r ⊢ comp B₁ l r = comp B₂ l r ↔ B₁ = B₂ [PROOFSTEP] constructor [GOAL] case mp R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B : BilinForm R M B₁✝ : BilinForm R₁ M₁ B₂✝ : BilinForm R₂ M₂ M' : Type w inst✝¹ : AddCommMonoid M' inst✝ : Module R M' B₁ B₂ : BilinForm R M' l r : M →ₗ[R] M' hₗ : Function.Surjective ↑l hᵣ : Function.Surjective ↑r ⊢ comp B₁ l r = comp B₂ l r → B₁ = B₂ [PROOFSTEP] intro h [GOAL] case mpr R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B : BilinForm R M B₁✝ : BilinForm R₁ M₁ B₂✝ : BilinForm R₂ M₂ M' : Type w inst✝¹ : AddCommMonoid M' inst✝ : Module R M' B₁ B₂ : BilinForm R M' l r : M →ₗ[R] M' hₗ : Function.Surjective ↑l hᵣ : Function.Surjective ↑r ⊢ B₁ = B₂ → comp B₁ l r = comp B₂ l r [PROOFSTEP] intro h [GOAL] case mp R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B : BilinForm R M B₁✝ : BilinForm R₁ M₁ B₂✝ : BilinForm R₂ M₂ M' : Type w inst✝¹ : AddCommMonoid M' inst✝ : Module R M' B₁ B₂ : BilinForm R M' l r : M →ₗ[R] M' hₗ : Function.Surjective ↑l hᵣ : Function.Surjective ↑r h : comp B₁ l r = comp B₂ l r ⊢ B₁ = B₂ [PROOFSTEP] ext x y [GOAL] case mp.H R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B : BilinForm R M B₁✝ : BilinForm R₁ M₁ B₂✝ : BilinForm R₂ M₂ M' : Type w inst✝¹ : AddCommMonoid M' inst✝ : Module R M' B₁ B₂ : BilinForm R M' l r : M →ₗ[R] M' hₗ : Function.Surjective ↑l hᵣ : Function.Surjective ↑r h : comp B₁ l r = comp B₂ l r x y : M' ⊢ bilin B₁ x y = bilin B₂ x y [PROOFSTEP] cases' hₗ x with x' hx [GOAL] case mp.H.intro R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B : BilinForm R M B₁✝ : BilinForm R₁ M₁ B₂✝ : BilinForm R₂ M₂ M' : Type w inst✝¹ : AddCommMonoid M' inst✝ : Module R M' B₁ B₂ : BilinForm R M' l r : M →ₗ[R] M' hₗ : Function.Surjective ↑l hᵣ : Function.Surjective ↑r h : comp B₁ l r = comp B₂ l r x y : M' x' : M hx : ↑l x' = x ⊢ bilin B₁ x y = bilin B₂ x y [PROOFSTEP] subst hx [GOAL] case mp.H.intro R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B : BilinForm R M B₁✝ : BilinForm R₁ M₁ B₂✝ : BilinForm R₂ M₂ M' : Type w inst✝¹ : AddCommMonoid M' inst✝ : Module R M' B₁ B₂ : BilinForm R M' l r : M →ₗ[R] M' hₗ : Function.Surjective ↑l hᵣ : Function.Surjective ↑r h : comp B₁ l r = comp B₂ l r y : M' x' : M ⊢ bilin B₁ (↑l x') y = bilin B₂ (↑l x') y [PROOFSTEP] cases' hᵣ y with y' hy [GOAL] case mp.H.intro.intro R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B : BilinForm R M B₁✝ : BilinForm R₁ M₁ B₂✝ : BilinForm R₂ M₂ M' : Type w inst✝¹ : AddCommMonoid M' inst✝ : Module R M' B₁ B₂ : BilinForm R M' l r : M →ₗ[R] M' hₗ : Function.Surjective ↑l hᵣ : Function.Surjective ↑r h : comp B₁ l r = comp B₂ l r y : M' x' y' : M hy : ↑r y' = y ⊢ bilin B₁ (↑l x') y = bilin B₂ (↑l x') y [PROOFSTEP] subst hy [GOAL] case mp.H.intro.intro R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B : BilinForm R M B₁✝ : BilinForm R₁ M₁ B₂✝ : BilinForm R₂ M₂ M' : Type w inst✝¹ : AddCommMonoid M' inst✝ : Module R M' B₁ B₂ : BilinForm R M' l r : M →ₗ[R] M' hₗ : Function.Surjective ↑l hᵣ : Function.Surjective ↑r h : comp B₁ l r = comp B₂ l r x' y' : M ⊢ bilin B₁ (↑l x') (↑r y') = bilin B₂ (↑l x') (↑r y') [PROOFSTEP] rw [← comp_apply, ← comp_apply, h] [GOAL] case mpr R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B : BilinForm R M B₁✝ : BilinForm R₁ M₁ B₂✝ : BilinForm R₂ M₂ M' : Type w inst✝¹ : AddCommMonoid M' inst✝ : Module R M' B₁ B₂ : BilinForm R M' l r : M →ₗ[R] M' hₗ : Function.Surjective ↑l hᵣ : Function.Surjective ↑r h : B₁ = B₂ ⊢ comp B₁ l r = comp B₂ l r [PROOFSTEP] rw [h] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁸ : Semiring R inst✝¹⁷ : AddCommMonoid M inst✝¹⁶ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁵ : Ring R₁ inst✝¹⁴ : AddCommGroup M₁ inst✝¹³ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹² : CommSemiring R₂ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁹ : CommRing R₃ inst✝⁸ : AddCommGroup M₃ inst✝⁷ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁶ : Field K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 M₂'' : Type u_12 inst✝³ : AddCommMonoid M₂' inst✝² : AddCommMonoid M₂'' inst✝¹ : Module R₂ M₂' inst✝ : Module R₂ M₂'' e : M₂ ≃ₗ[R₂] M₂' B B' : BilinForm R₂ M₂ x y : M₂' ⊢ bilin ((fun B => comp B ↑(LinearEquiv.symm e) ↑(LinearEquiv.symm e)) (B + B')) x y = bilin ((fun B => comp B ↑(LinearEquiv.symm e) ↑(LinearEquiv.symm e)) B + (fun B => comp B ↑(LinearEquiv.symm e) ↑(LinearEquiv.symm e)) B') x y [PROOFSTEP] simp only [comp_apply, add_apply] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁸ : Semiring R inst✝¹⁷ : AddCommMonoid M inst✝¹⁶ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁵ : Ring R₁ inst✝¹⁴ : AddCommGroup M₁ inst✝¹³ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹² : CommSemiring R₂ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁹ : CommRing R₃ inst✝⁸ : AddCommGroup M₃ inst✝⁷ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁶ : Field K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 M₂'' : Type u_12 inst✝³ : AddCommMonoid M₂' inst✝² : AddCommMonoid M₂'' inst✝¹ : Module R₂ M₂' inst✝ : Module R₂ M₂'' e : M₂ ≃ₗ[R₂] M₂' B : R₂ B' : BilinForm R₂ M₂ x y : M₂' ⊢ bilin (AddHom.toFun { toFun := fun B => comp B ↑(LinearEquiv.symm e) ↑(LinearEquiv.symm e), map_add' := (_ : ∀ (B B' : BilinForm R₂ M₂), (fun B => comp B ↑(LinearEquiv.symm e) ↑(LinearEquiv.symm e)) (B + B') = (fun B => comp B ↑(LinearEquiv.symm e) ↑(LinearEquiv.symm e)) B + (fun B => comp B ↑(LinearEquiv.symm e) ↑(LinearEquiv.symm e)) B') } (B • B')) x y = bilin (↑(RingHom.id R₂) B • AddHom.toFun { toFun := fun B => comp B ↑(LinearEquiv.symm e) ↑(LinearEquiv.symm e), map_add' := (_ : ∀ (B B' : BilinForm R₂ M₂), (fun B => comp B ↑(LinearEquiv.symm e) ↑(LinearEquiv.symm e)) (B + B') = (fun B => comp B ↑(LinearEquiv.symm e) ↑(LinearEquiv.symm e)) B + (fun B => comp B ↑(LinearEquiv.symm e) ↑(LinearEquiv.symm e)) B') } B') x y [PROOFSTEP] simp [comp_apply, smul_apply] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁸ : Semiring R inst✝¹⁷ : AddCommMonoid M inst✝¹⁶ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁵ : Ring R₁ inst✝¹⁴ : AddCommGroup M₁ inst✝¹³ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹² : CommSemiring R₂ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁹ : CommRing R₃ inst✝⁸ : AddCommGroup M₃ inst✝⁷ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁶ : Field K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 M₂'' : Type u_12 inst✝³ : AddCommMonoid M₂' inst✝² : AddCommMonoid M₂'' inst✝¹ : Module R₂ M₂' inst✝ : Module R₂ M₂'' e : M₂ ≃ₗ[R₂] M₂' B : BilinForm R₂ M₂ x y : M₂ ⊢ bilin ((fun B => comp B ↑e ↑e) (AddHom.toFun { toAddHom := { toFun := fun B => comp B ↑(LinearEquiv.symm e) ↑(LinearEquiv.symm e), map_add' := (_ : ∀ (B B' : BilinForm R₂ M₂), (fun B => comp B ↑(LinearEquiv.symm e) ↑(LinearEquiv.symm e)) (B + B') = (fun B => comp B ↑(LinearEquiv.symm e) ↑(LinearEquiv.symm e)) B + (fun B => comp B ↑(LinearEquiv.symm e) ↑(LinearEquiv.symm e)) B') }, map_smul' := (_ : ∀ (B : R₂) (B' : BilinForm R₂ M₂), AddHom.toFun { toFun := fun B => comp B ↑(LinearEquiv.symm e) ↑(LinearEquiv.symm e), map_add' := (_ : ∀ (B B' : BilinForm R₂ M₂), (fun B => comp B ↑(LinearEquiv.symm e) ↑(LinearEquiv.symm e)) (B + B') = (fun B => comp B ↑(LinearEquiv.symm e) ↑(LinearEquiv.symm e)) B + (fun B => comp B ↑(LinearEquiv.symm e) ↑(LinearEquiv.symm e)) B') } (B • B') = ↑(RingHom.id R₂) B • AddHom.toFun { toFun := fun B => comp B ↑(LinearEquiv.symm e) ↑(LinearEquiv.symm e), map_add' := (_ : ∀ (B B' : BilinForm R₂ M₂), (fun B => comp B ↑(LinearEquiv.symm e) ↑(LinearEquiv.symm e)) (B + B') = (fun B => comp B ↑(LinearEquiv.symm e) ↑(LinearEquiv.symm e)) B + (fun B => comp B ↑(LinearEquiv.symm e) ↑(LinearEquiv.symm e)) B') } B') }.toAddHom B)) x y = bilin B x y [PROOFSTEP] simp only [comp_apply, LinearEquiv.coe_coe, e.symm_apply_apply] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁸ : Semiring R inst✝¹⁷ : AddCommMonoid M inst✝¹⁶ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁵ : Ring R₁ inst✝¹⁴ : AddCommGroup M₁ inst✝¹³ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹² : CommSemiring R₂ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁹ : CommRing R₃ inst✝⁸ : AddCommGroup M₃ inst✝⁷ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁶ : Field K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 M₂'' : Type u_12 inst✝³ : AddCommMonoid M₂' inst✝² : AddCommMonoid M₂'' inst✝¹ : Module R₂ M₂' inst✝ : Module R₂ M₂'' e : M₂ ≃ₗ[R₂] M₂' B : BilinForm R₂ M₂' x y : M₂' ⊢ bilin (AddHom.toFun { toAddHom := { toFun := fun B => comp B ↑(LinearEquiv.symm e) ↑(LinearEquiv.symm e), map_add' := (_ : ∀ (B B' : BilinForm R₂ M₂), (fun B => comp B ↑(LinearEquiv.symm e) ↑(LinearEquiv.symm e)) (B + B') = (fun B => comp B ↑(LinearEquiv.symm e) ↑(LinearEquiv.symm e)) B + (fun B => comp B ↑(LinearEquiv.symm e) ↑(LinearEquiv.symm e)) B') }, map_smul' := (_ : ∀ (B : R₂) (B' : BilinForm R₂ M₂), AddHom.toFun { toFun := fun B => comp B ↑(LinearEquiv.symm e) ↑(LinearEquiv.symm e), map_add' := (_ : ∀ (B B' : BilinForm R₂ M₂), (fun B => comp B ↑(LinearEquiv.symm e) ↑(LinearEquiv.symm e)) (B + B') = (fun B => comp B ↑(LinearEquiv.symm e) ↑(LinearEquiv.symm e)) B + (fun B => comp B ↑(LinearEquiv.symm e) ↑(LinearEquiv.symm e)) B') } (B • B') = ↑(RingHom.id R₂) B • AddHom.toFun { toFun := fun B => comp B ↑(LinearEquiv.symm e) ↑(LinearEquiv.symm e), map_add' := (_ : ∀ (B B' : BilinForm R₂ M₂), (fun B => comp B ↑(LinearEquiv.symm e) ↑(LinearEquiv.symm e)) (B + B') = (fun B => comp B ↑(LinearEquiv.symm e) ↑(LinearEquiv.symm e)) B + (fun B => comp B ↑(LinearEquiv.symm e) ↑(LinearEquiv.symm e)) B') } B') }.toAddHom ((fun B => comp B ↑e ↑e) B)) x y = bilin B x y [PROOFSTEP] simp only [comp_apply, LinearEquiv.coe_coe, e.apply_symm_apply] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁸ : Semiring R inst✝¹⁷ : AddCommMonoid M inst✝¹⁶ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁵ : Ring R₁ inst✝¹⁴ : AddCommGroup M₁ inst✝¹³ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹² : CommSemiring R₂ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁹ : CommRing R₃ inst✝⁸ : AddCommGroup M₃ inst✝⁷ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁶ : Field K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 M₂'' : Type u_12 inst✝³ : AddCommMonoid M₂' inst✝² : AddCommMonoid M₂'' inst✝¹ : Module R₂ M₂' inst✝ : Module R₂ M₂'' e : M₂ ≃ₗ[R₂] M₂' ⊢ LinearEquiv.symm (congr e) = congr (LinearEquiv.symm e) [PROOFSTEP] ext [GOAL] case h.H R : Type u_1 M : Type u_2 inst✝¹⁸ : Semiring R inst✝¹⁷ : AddCommMonoid M inst✝¹⁶ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁵ : Ring R₁ inst✝¹⁴ : AddCommGroup M₁ inst✝¹³ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹² : CommSemiring R₂ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁹ : CommRing R₃ inst✝⁸ : AddCommGroup M₃ inst✝⁷ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁶ : Field K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 M₂'' : Type u_12 inst✝³ : AddCommMonoid M₂' inst✝² : AddCommMonoid M₂'' inst✝¹ : Module R₂ M₂' inst✝ : Module R₂ M₂'' e : M₂ ≃ₗ[R₂] M₂' x✝¹ : BilinForm R₂ M₂' x✝ y✝ : M₂ ⊢ bilin (↑(LinearEquiv.symm (congr e)) x✝¹) x✝ y✝ = bilin (↑(congr (LinearEquiv.symm e)) x✝¹) x✝ y✝ [PROOFSTEP] simp only [congr_apply, LinearEquiv.symm_symm] [GOAL] case h.H R : Type u_1 M : Type u_2 inst✝¹⁸ : Semiring R inst✝¹⁷ : AddCommMonoid M inst✝¹⁶ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁵ : Ring R₁ inst✝¹⁴ : AddCommGroup M₁ inst✝¹³ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹² : CommSemiring R₂ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁹ : CommRing R₃ inst✝⁸ : AddCommGroup M₃ inst✝⁷ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁶ : Field K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 M₂'' : Type u_12 inst✝³ : AddCommMonoid M₂' inst✝² : AddCommMonoid M₂'' inst✝¹ : Module R₂ M₂' inst✝ : Module R₂ M₂'' e : M₂ ≃ₗ[R₂] M₂' x✝¹ : BilinForm R₂ M₂' x✝ y✝ : M₂ ⊢ bilin (↑(LinearEquiv.symm (congr e)) x✝¹) x✝ y✝ = bilin x✝¹ (↑e x✝) (↑e y✝) [PROOFSTEP] rfl [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁸ : Semiring R inst✝¹⁷ : AddCommMonoid M inst✝¹⁶ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁵ : Ring R₁ inst✝¹⁴ : AddCommGroup M₁ inst✝¹³ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹² : CommSemiring R₂ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁹ : CommRing R₃ inst✝⁸ : AddCommGroup M₃ inst✝⁷ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁶ : Field K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 M₂'' : Type u_12 inst✝³ : AddCommMonoid M₂' inst✝² : AddCommMonoid M₂'' inst✝¹ : Module R₂ M₂' inst✝ : Module R₂ M₂'' f g : M₂ →ₗ[R₂] R₂ x y z : M₂ ⊢ (fun x y => ↑f x * ↑g y) (x + y) z = (fun x y => ↑f x * ↑g y) x z + (fun x y => ↑f x * ↑g y) y z [PROOFSTEP] simp only [LinearMap.map_add, add_mul] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁸ : Semiring R inst✝¹⁷ : AddCommMonoid M inst✝¹⁶ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁵ : Ring R₁ inst✝¹⁴ : AddCommGroup M₁ inst✝¹³ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹² : CommSemiring R₂ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁹ : CommRing R₃ inst✝⁸ : AddCommGroup M₃ inst✝⁷ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁶ : Field K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 M₂'' : Type u_12 inst✝³ : AddCommMonoid M₂' inst✝² : AddCommMonoid M₂'' inst✝¹ : Module R₂ M₂' inst✝ : Module R₂ M₂'' f g : M₂ →ₗ[R₂] R₂ x : R₂ y z : M₂ ⊢ (fun x y => ↑f x * ↑g y) (x • y) z = x * (fun x y => ↑f x * ↑g y) y z [PROOFSTEP] simp only [LinearMap.map_smul, smul_eq_mul, mul_assoc] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁸ : Semiring R inst✝¹⁷ : AddCommMonoid M inst✝¹⁶ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁵ : Ring R₁ inst✝¹⁴ : AddCommGroup M₁ inst✝¹³ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹² : CommSemiring R₂ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁹ : CommRing R₃ inst✝⁸ : AddCommGroup M₃ inst✝⁷ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁶ : Field K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 M₂'' : Type u_12 inst✝³ : AddCommMonoid M₂' inst✝² : AddCommMonoid M₂'' inst✝¹ : Module R₂ M₂' inst✝ : Module R₂ M₂'' f g : M₂ →ₗ[R₂] R₂ x y z : M₂ ⊢ (fun x y => ↑f x * ↑g y) x (y + z) = (fun x y => ↑f x * ↑g y) x y + (fun x y => ↑f x * ↑g y) x z [PROOFSTEP] simp only [LinearMap.map_add, mul_add] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁸ : Semiring R inst✝¹⁷ : AddCommMonoid M inst✝¹⁶ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁵ : Ring R₁ inst✝¹⁴ : AddCommGroup M₁ inst✝¹³ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹² : CommSemiring R₂ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁹ : CommRing R₃ inst✝⁸ : AddCommGroup M₃ inst✝⁷ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁶ : Field K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 M₂'' : Type u_12 inst✝³ : AddCommMonoid M₂' inst✝² : AddCommMonoid M₂'' inst✝¹ : Module R₂ M₂' inst✝ : Module R₂ M₂'' f g : M₂ →ₗ[R₂] R₂ x : R₂ y z : M₂ ⊢ (fun x y => ↑f x * ↑g y) y (x • z) = x * (fun x y => ↑f x * ↑g y) y z [PROOFSTEP] simp only [LinearMap.map_smul, smul_eq_mul, mul_left_comm] [GOAL] R : Type u_1 M : Type u_2 inst✝²² : Semiring R inst✝²¹ : AddCommMonoid M inst✝²⁰ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁹ : Ring R₁ inst✝¹⁸ : AddCommGroup M₁ inst✝¹⁷ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁶ : CommSemiring R₂ inst✝¹⁵ : AddCommMonoid M₂ inst✝¹⁴ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝¹³ : CommRing R₃ inst✝¹² : AddCommGroup M₃ inst✝¹¹ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝¹⁰ : Field K inst✝⁹ : AddCommGroup V inst✝⁸ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 M₂'' : Type u_12 inst✝⁷ : AddCommMonoid M₂' inst✝⁶ : AddCommMonoid M₂'' inst✝⁵ : Module R₂ M₂' inst✝⁴ : Module R₂ M₂'' R₄ : Type u_13 M₄ : Type u_14 inst✝³ : Ring R₄ inst✝² : IsDomain R₄ inst✝¹ : AddCommGroup M₄ inst✝ : Module R₄ M₄ G : BilinForm R₄ M₄ x y : M₄ a : R₄ ha : a ≠ 0 ⊢ IsOrtho G (a • x) y ↔ IsOrtho G x y [PROOFSTEP] dsimp only [IsOrtho] [GOAL] R : Type u_1 M : Type u_2 inst✝²² : Semiring R inst✝²¹ : AddCommMonoid M inst✝²⁰ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁹ : Ring R₁ inst✝¹⁸ : AddCommGroup M₁ inst✝¹⁷ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁶ : CommSemiring R₂ inst✝¹⁵ : AddCommMonoid M₂ inst✝¹⁴ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝¹³ : CommRing R₃ inst✝¹² : AddCommGroup M₃ inst✝¹¹ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝¹⁰ : Field K inst✝⁹ : AddCommGroup V inst✝⁸ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 M₂'' : Type u_12 inst✝⁷ : AddCommMonoid M₂' inst✝⁶ : AddCommMonoid M₂'' inst✝⁵ : Module R₂ M₂' inst✝⁴ : Module R₂ M₂'' R₄ : Type u_13 M₄ : Type u_14 inst✝³ : Ring R₄ inst✝² : IsDomain R₄ inst✝¹ : AddCommGroup M₄ inst✝ : Module R₄ M₄ G : BilinForm R₄ M₄ x y : M₄ a : R₄ ha : a ≠ 0 ⊢ bilin G (a • x) y = 0 ↔ bilin G x y = 0 [PROOFSTEP] rw [smul_left, mul_eq_zero, or_iff_right ha] [GOAL] R : Type u_1 M : Type u_2 inst✝²² : Semiring R inst✝²¹ : AddCommMonoid M inst✝²⁰ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁹ : Ring R₁ inst✝¹⁸ : AddCommGroup M₁ inst✝¹⁷ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁶ : CommSemiring R₂ inst✝¹⁵ : AddCommMonoid M₂ inst✝¹⁴ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝¹³ : CommRing R₃ inst✝¹² : AddCommGroup M₃ inst✝¹¹ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝¹⁰ : Field K inst✝⁹ : AddCommGroup V inst✝⁸ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 M₂'' : Type u_12 inst✝⁷ : AddCommMonoid M₂' inst✝⁶ : AddCommMonoid M₂'' inst✝⁵ : Module R₂ M₂' inst✝⁴ : Module R₂ M₂'' R₄ : Type u_13 M₄ : Type u_14 inst✝³ : Ring R₄ inst✝² : IsDomain R₄ inst✝¹ : AddCommGroup M₄ inst✝ : Module R₄ M₄ G : BilinForm R₄ M₄ x y : M₄ a : R₄ ha : a ≠ 0 ⊢ IsOrtho G x (a • y) ↔ IsOrtho G x y [PROOFSTEP] dsimp only [IsOrtho] [GOAL] R : Type u_1 M : Type u_2 inst✝²² : Semiring R inst✝²¹ : AddCommMonoid M inst✝²⁰ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁹ : Ring R₁ inst✝¹⁸ : AddCommGroup M₁ inst✝¹⁷ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁶ : CommSemiring R₂ inst✝¹⁵ : AddCommMonoid M₂ inst✝¹⁴ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝¹³ : CommRing R₃ inst✝¹² : AddCommGroup M₃ inst✝¹¹ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝¹⁰ : Field K inst✝⁹ : AddCommGroup V inst✝⁸ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 M₂'' : Type u_12 inst✝⁷ : AddCommMonoid M₂' inst✝⁶ : AddCommMonoid M₂'' inst✝⁵ : Module R₂ M₂' inst✝⁴ : Module R₂ M₂'' R₄ : Type u_13 M₄ : Type u_14 inst✝³ : Ring R₄ inst✝² : IsDomain R₄ inst✝¹ : AddCommGroup M₄ inst✝ : Module R₄ M₄ G : BilinForm R₄ M₄ x y : M₄ a : R₄ ha : a ≠ 0 ⊢ bilin G x (a • y) = 0 ↔ bilin G x y = 0 [PROOFSTEP] rw [smul_right, mul_eq_zero, or_iff_right ha] [GOAL] R : Type u_1 M : Type u_2 inst✝²² : Semiring R inst✝²¹ : AddCommMonoid M inst✝²⁰ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁹ : Ring R₁ inst✝¹⁸ : AddCommGroup M₁ inst✝¹⁷ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁶ : CommSemiring R₂ inst✝¹⁵ : AddCommMonoid M₂ inst✝¹⁴ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝¹³ : CommRing R₃ inst✝¹² : AddCommGroup M₃ inst✝¹¹ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝¹⁰ : Field K inst✝⁹ : AddCommGroup V inst✝⁸ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 M₂'' : Type u_12 inst✝⁷ : AddCommMonoid M₂' inst✝⁶ : AddCommMonoid M₂'' inst✝⁵ : Module R₂ M₂' inst✝⁴ : Module R₂ M₂'' R₄ : Type u_13 M₄ : Type u_14 inst✝³ : Ring R₄ inst✝² : IsDomain R₄ inst✝¹ : AddCommGroup M₄ inst✝ : Module R₄ M₄ G : BilinForm R₄ M₄ n : Type w B : BilinForm K V v : n → V hv₁ : iIsOrtho B v hv₂ : ∀ (i : n), ¬IsOrtho B (v i) (v i) ⊢ LinearIndependent K v [PROOFSTEP] classical rw [linearIndependent_iff'] intro s w hs i hi have : B (s.sum fun i : n => w i • v i) (v i) = 0 := by rw [hs, zero_left] have hsum : (s.sum fun j : n => w j * B (v j) (v i)) = w i * B (v i) (v i) := by apply Finset.sum_eq_single_of_mem i hi intro j _ hij rw [iIsOrtho_def.1 hv₁ _ _ hij, mul_zero] simp_rw [sum_left, smul_left, hsum] at this exact eq_zero_of_ne_zero_of_mul_right_eq_zero (hv₂ i) this [GOAL] R : Type u_1 M : Type u_2 inst✝²² : Semiring R inst✝²¹ : AddCommMonoid M inst✝²⁰ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁹ : Ring R₁ inst✝¹⁸ : AddCommGroup M₁ inst✝¹⁷ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁶ : CommSemiring R₂ inst✝¹⁵ : AddCommMonoid M₂ inst✝¹⁴ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝¹³ : CommRing R₃ inst✝¹² : AddCommGroup M₃ inst✝¹¹ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝¹⁰ : Field K inst✝⁹ : AddCommGroup V inst✝⁸ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 M₂'' : Type u_12 inst✝⁷ : AddCommMonoid M₂' inst✝⁶ : AddCommMonoid M₂'' inst✝⁵ : Module R₂ M₂' inst✝⁴ : Module R₂ M₂'' R₄ : Type u_13 M₄ : Type u_14 inst✝³ : Ring R₄ inst✝² : IsDomain R₄ inst✝¹ : AddCommGroup M₄ inst✝ : Module R₄ M₄ G : BilinForm R₄ M₄ n : Type w B : BilinForm K V v : n → V hv₁ : iIsOrtho B v hv₂ : ∀ (i : n), ¬IsOrtho B (v i) (v i) ⊢ LinearIndependent K v [PROOFSTEP] rw [linearIndependent_iff'] [GOAL] R : Type u_1 M : Type u_2 inst✝²² : Semiring R inst✝²¹ : AddCommMonoid M inst✝²⁰ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁹ : Ring R₁ inst✝¹⁸ : AddCommGroup M₁ inst✝¹⁷ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁶ : CommSemiring R₂ inst✝¹⁵ : AddCommMonoid M₂ inst✝¹⁴ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝¹³ : CommRing R₃ inst✝¹² : AddCommGroup M₃ inst✝¹¹ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝¹⁰ : Field K inst✝⁹ : AddCommGroup V inst✝⁸ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 M₂'' : Type u_12 inst✝⁷ : AddCommMonoid M₂' inst✝⁶ : AddCommMonoid M₂'' inst✝⁵ : Module R₂ M₂' inst✝⁴ : Module R₂ M₂'' R₄ : Type u_13 M₄ : Type u_14 inst✝³ : Ring R₄ inst✝² : IsDomain R₄ inst✝¹ : AddCommGroup M₄ inst✝ : Module R₄ M₄ G : BilinForm R₄ M₄ n : Type w B : BilinForm K V v : n → V hv₁ : iIsOrtho B v hv₂ : ∀ (i : n), ¬IsOrtho B (v i) (v i) ⊢ ∀ (s : Finset n) (g : n → K), ∑ i in s, g i • v i = 0 → ∀ (i : n), i ∈ s → g i = 0 [PROOFSTEP] intro s w hs i hi [GOAL] R : Type u_1 M : Type u_2 inst✝²² : Semiring R inst✝²¹ : AddCommMonoid M inst✝²⁰ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁹ : Ring R₁ inst✝¹⁸ : AddCommGroup M₁ inst✝¹⁷ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁶ : CommSemiring R₂ inst✝¹⁵ : AddCommMonoid M₂ inst✝¹⁴ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝¹³ : CommRing R₃ inst✝¹² : AddCommGroup M₃ inst✝¹¹ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝¹⁰ : Field K inst✝⁹ : AddCommGroup V inst✝⁸ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 M₂'' : Type u_12 inst✝⁷ : AddCommMonoid M₂' inst✝⁶ : AddCommMonoid M₂'' inst✝⁵ : Module R₂ M₂' inst✝⁴ : Module R₂ M₂'' R₄ : Type u_13 M₄ : Type u_14 inst✝³ : Ring R₄ inst✝² : IsDomain R₄ inst✝¹ : AddCommGroup M₄ inst✝ : Module R₄ M₄ G : BilinForm R₄ M₄ n : Type w B : BilinForm K V v : n → V hv₁ : iIsOrtho B v hv₂ : ∀ (i : n), ¬IsOrtho B (v i) (v i) s : Finset n w : n → K hs : ∑ i in s, w i • v i = 0 i : n hi : i ∈ s ⊢ w i = 0 [PROOFSTEP] have : B (s.sum fun i : n => w i • v i) (v i) = 0 := by rw [hs, zero_left] [GOAL] R : Type u_1 M : Type u_2 inst✝²² : Semiring R inst✝²¹ : AddCommMonoid M inst✝²⁰ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁹ : Ring R₁ inst✝¹⁸ : AddCommGroup M₁ inst✝¹⁷ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁶ : CommSemiring R₂ inst✝¹⁵ : AddCommMonoid M₂ inst✝¹⁴ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝¹³ : CommRing R₃ inst✝¹² : AddCommGroup M₃ inst✝¹¹ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝¹⁰ : Field K inst✝⁹ : AddCommGroup V inst✝⁸ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 M₂'' : Type u_12 inst✝⁷ : AddCommMonoid M₂' inst✝⁶ : AddCommMonoid M₂'' inst✝⁵ : Module R₂ M₂' inst✝⁴ : Module R₂ M₂'' R₄ : Type u_13 M₄ : Type u_14 inst✝³ : Ring R₄ inst✝² : IsDomain R₄ inst✝¹ : AddCommGroup M₄ inst✝ : Module R₄ M₄ G : BilinForm R₄ M₄ n : Type w B : BilinForm K V v : n → V hv₁ : iIsOrtho B v hv₂ : ∀ (i : n), ¬IsOrtho B (v i) (v i) s : Finset n w : n → K hs : ∑ i in s, w i • v i = 0 i : n hi : i ∈ s ⊢ bilin B (∑ i in s, w i • v i) (v i) = 0 [PROOFSTEP] rw [hs, zero_left] [GOAL] R : Type u_1 M : Type u_2 inst✝²² : Semiring R inst✝²¹ : AddCommMonoid M inst✝²⁰ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁹ : Ring R₁ inst✝¹⁸ : AddCommGroup M₁ inst✝¹⁷ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁶ : CommSemiring R₂ inst✝¹⁵ : AddCommMonoid M₂ inst✝¹⁴ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝¹³ : CommRing R₃ inst✝¹² : AddCommGroup M₃ inst✝¹¹ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝¹⁰ : Field K inst✝⁹ : AddCommGroup V inst✝⁸ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 M₂'' : Type u_12 inst✝⁷ : AddCommMonoid M₂' inst✝⁶ : AddCommMonoid M₂'' inst✝⁵ : Module R₂ M₂' inst✝⁴ : Module R₂ M₂'' R₄ : Type u_13 M₄ : Type u_14 inst✝³ : Ring R₄ inst✝² : IsDomain R₄ inst✝¹ : AddCommGroup M₄ inst✝ : Module R₄ M₄ G : BilinForm R₄ M₄ n : Type w B : BilinForm K V v : n → V hv₁ : iIsOrtho B v hv₂ : ∀ (i : n), ¬IsOrtho B (v i) (v i) s : Finset n w : n → K hs : ∑ i in s, w i • v i = 0 i : n hi : i ∈ s this : bilin B (∑ i in s, w i • v i) (v i) = 0 ⊢ w i = 0 [PROOFSTEP] have hsum : (s.sum fun j : n => w j * B (v j) (v i)) = w i * B (v i) (v i) := by apply Finset.sum_eq_single_of_mem i hi intro j _ hij rw [iIsOrtho_def.1 hv₁ _ _ hij, mul_zero] [GOAL] R : Type u_1 M : Type u_2 inst✝²² : Semiring R inst✝²¹ : AddCommMonoid M inst✝²⁰ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁹ : Ring R₁ inst✝¹⁸ : AddCommGroup M₁ inst✝¹⁷ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁶ : CommSemiring R₂ inst✝¹⁵ : AddCommMonoid M₂ inst✝¹⁴ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝¹³ : CommRing R₃ inst✝¹² : AddCommGroup M₃ inst✝¹¹ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝¹⁰ : Field K inst✝⁹ : AddCommGroup V inst✝⁸ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 M₂'' : Type u_12 inst✝⁷ : AddCommMonoid M₂' inst✝⁶ : AddCommMonoid M₂'' inst✝⁵ : Module R₂ M₂' inst✝⁴ : Module R₂ M₂'' R₄ : Type u_13 M₄ : Type u_14 inst✝³ : Ring R₄ inst✝² : IsDomain R₄ inst✝¹ : AddCommGroup M₄ inst✝ : Module R₄ M₄ G : BilinForm R₄ M₄ n : Type w B : BilinForm K V v : n → V hv₁ : iIsOrtho B v hv₂ : ∀ (i : n), ¬IsOrtho B (v i) (v i) s : Finset n w : n → K hs : ∑ i in s, w i • v i = 0 i : n hi : i ∈ s this : bilin B (∑ i in s, w i • v i) (v i) = 0 ⊢ ∑ j in s, w j * bilin B (v j) (v i) = w i * bilin B (v i) (v i) [PROOFSTEP] apply Finset.sum_eq_single_of_mem i hi [GOAL] R : Type u_1 M : Type u_2 inst✝²² : Semiring R inst✝²¹ : AddCommMonoid M inst✝²⁰ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁹ : Ring R₁ inst✝¹⁸ : AddCommGroup M₁ inst✝¹⁷ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁶ : CommSemiring R₂ inst✝¹⁵ : AddCommMonoid M₂ inst✝¹⁴ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝¹³ : CommRing R₃ inst✝¹² : AddCommGroup M₃ inst✝¹¹ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝¹⁰ : Field K inst✝⁹ : AddCommGroup V inst✝⁸ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 M₂'' : Type u_12 inst✝⁷ : AddCommMonoid M₂' inst✝⁶ : AddCommMonoid M₂'' inst✝⁵ : Module R₂ M₂' inst✝⁴ : Module R₂ M₂'' R₄ : Type u_13 M₄ : Type u_14 inst✝³ : Ring R₄ inst✝² : IsDomain R₄ inst✝¹ : AddCommGroup M₄ inst✝ : Module R₄ M₄ G : BilinForm R₄ M₄ n : Type w B : BilinForm K V v : n → V hv₁ : iIsOrtho B v hv₂ : ∀ (i : n), ¬IsOrtho B (v i) (v i) s : Finset n w : n → K hs : ∑ i in s, w i • v i = 0 i : n hi : i ∈ s this : bilin B (∑ i in s, w i • v i) (v i) = 0 ⊢ ∀ (b : n), b ∈ s → b ≠ i → w b * bilin B (v b) (v i) = 0 [PROOFSTEP] intro j _ hij [GOAL] R : Type u_1 M : Type u_2 inst✝²² : Semiring R inst✝²¹ : AddCommMonoid M inst✝²⁰ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁹ : Ring R₁ inst✝¹⁸ : AddCommGroup M₁ inst✝¹⁷ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁶ : CommSemiring R₂ inst✝¹⁵ : AddCommMonoid M₂ inst✝¹⁴ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝¹³ : CommRing R₃ inst✝¹² : AddCommGroup M₃ inst✝¹¹ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝¹⁰ : Field K inst✝⁹ : AddCommGroup V inst✝⁸ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 M₂'' : Type u_12 inst✝⁷ : AddCommMonoid M₂' inst✝⁶ : AddCommMonoid M₂'' inst✝⁵ : Module R₂ M₂' inst✝⁴ : Module R₂ M₂'' R₄ : Type u_13 M₄ : Type u_14 inst✝³ : Ring R₄ inst✝² : IsDomain R₄ inst✝¹ : AddCommGroup M₄ inst✝ : Module R₄ M₄ G : BilinForm R₄ M₄ n : Type w B : BilinForm K V v : n → V hv₁ : iIsOrtho B v hv₂ : ∀ (i : n), ¬IsOrtho B (v i) (v i) s : Finset n w : n → K hs : ∑ i in s, w i • v i = 0 i : n hi : i ∈ s this : bilin B (∑ i in s, w i • v i) (v i) = 0 j : n a✝ : j ∈ s hij : j ≠ i ⊢ w j * bilin B (v j) (v i) = 0 [PROOFSTEP] rw [iIsOrtho_def.1 hv₁ _ _ hij, mul_zero] [GOAL] R : Type u_1 M : Type u_2 inst✝²² : Semiring R inst✝²¹ : AddCommMonoid M inst✝²⁰ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁹ : Ring R₁ inst✝¹⁸ : AddCommGroup M₁ inst✝¹⁷ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁶ : CommSemiring R₂ inst✝¹⁵ : AddCommMonoid M₂ inst✝¹⁴ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝¹³ : CommRing R₃ inst✝¹² : AddCommGroup M₃ inst✝¹¹ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝¹⁰ : Field K inst✝⁹ : AddCommGroup V inst✝⁸ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 M₂'' : Type u_12 inst✝⁷ : AddCommMonoid M₂' inst✝⁶ : AddCommMonoid M₂'' inst✝⁵ : Module R₂ M₂' inst✝⁴ : Module R₂ M₂'' R₄ : Type u_13 M₄ : Type u_14 inst✝³ : Ring R₄ inst✝² : IsDomain R₄ inst✝¹ : AddCommGroup M₄ inst✝ : Module R₄ M₄ G : BilinForm R₄ M₄ n : Type w B : BilinForm K V v : n → V hv₁ : iIsOrtho B v hv₂ : ∀ (i : n), ¬IsOrtho B (v i) (v i) s : Finset n w : n → K hs : ∑ i in s, w i • v i = 0 i : n hi : i ∈ s this : bilin B (∑ i in s, w i • v i) (v i) = 0 hsum : ∑ j in s, w j * bilin B (v j) (v i) = w i * bilin B (v i) (v i) ⊢ w i = 0 [PROOFSTEP] simp_rw [sum_left, smul_left, hsum] at this [GOAL] R : Type u_1 M : Type u_2 inst✝²² : Semiring R inst✝²¹ : AddCommMonoid M inst✝²⁰ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁹ : Ring R₁ inst✝¹⁸ : AddCommGroup M₁ inst✝¹⁷ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁶ : CommSemiring R₂ inst✝¹⁵ : AddCommMonoid M₂ inst✝¹⁴ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝¹³ : CommRing R₃ inst✝¹² : AddCommGroup M₃ inst✝¹¹ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝¹⁰ : Field K inst✝⁹ : AddCommGroup V inst✝⁸ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 M₂'' : Type u_12 inst✝⁷ : AddCommMonoid M₂' inst✝⁶ : AddCommMonoid M₂'' inst✝⁵ : Module R₂ M₂' inst✝⁴ : Module R₂ M₂'' R₄ : Type u_13 M₄ : Type u_14 inst✝³ : Ring R₄ inst✝² : IsDomain R₄ inst✝¹ : AddCommGroup M₄ inst✝ : Module R₄ M₄ G : BilinForm R₄ M₄ n : Type w B : BilinForm K V v : n → V hv₁ : iIsOrtho B v hv₂ : ∀ (i : n), ¬IsOrtho B (v i) (v i) s : Finset n w : n → K hs : ∑ i in s, w i • v i = 0 i : n hi : i ∈ s hsum : ∑ j in s, w j * bilin B (v j) (v i) = w i * bilin B (v i) (v i) this : w i * bilin B (v i) (v i) = 0 ⊢ w i = 0 [PROOFSTEP] exact eq_zero_of_ne_zero_of_mul_right_eq_zero (hv₂ i) this [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁸ : Semiring R inst✝¹⁷ : AddCommMonoid M inst✝¹⁶ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁵ : Ring R₁ inst✝¹⁴ : AddCommGroup M₁ inst✝¹³ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹² : CommSemiring R₂ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁹ : CommRing R₃ inst✝⁸ : AddCommGroup M₃ inst✝⁷ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁶ : Field K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 M₂'' : Type u_12 inst✝³ : AddCommMonoid M₂' inst✝² : AddCommMonoid M₂'' inst✝¹ : Module R₂ M₂' inst✝ : Module R₂ M₂'' F₂ : BilinForm R₂ M₂ ι : Type u_13 b : Basis ι R₂ M₂ x y : M₂ ⊢ (Finsupp.sum (↑b.repr x) fun i xi => Finsupp.sum (↑b.repr y) fun j yj => xi • yj • bilin B₂ (↑b i) (↑b j)) = bilin B₂ x y [PROOFSTEP] conv_rhs => rw [← b.total_repr x, ← b.total_repr y] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁸ : Semiring R inst✝¹⁷ : AddCommMonoid M inst✝¹⁶ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁵ : Ring R₁ inst✝¹⁴ : AddCommGroup M₁ inst✝¹³ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹² : CommSemiring R₂ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁹ : CommRing R₃ inst✝⁸ : AddCommGroup M₃ inst✝⁷ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁶ : Field K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 M₂'' : Type u_12 inst✝³ : AddCommMonoid M₂' inst✝² : AddCommMonoid M₂'' inst✝¹ : Module R₂ M₂' inst✝ : Module R₂ M₂'' F₂ : BilinForm R₂ M₂ ι : Type u_13 b : Basis ι R₂ M₂ x y : M₂ | bilin B₂ x y [PROOFSTEP] rw [← b.total_repr x, ← b.total_repr y] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁸ : Semiring R inst✝¹⁷ : AddCommMonoid M inst✝¹⁶ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁵ : Ring R₁ inst✝¹⁴ : AddCommGroup M₁ inst✝¹³ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹² : CommSemiring R₂ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁹ : CommRing R₃ inst✝⁸ : AddCommGroup M₃ inst✝⁷ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁶ : Field K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 M₂'' : Type u_12 inst✝³ : AddCommMonoid M₂' inst✝² : AddCommMonoid M₂'' inst✝¹ : Module R₂ M₂' inst✝ : Module R₂ M₂'' F₂ : BilinForm R₂ M₂ ι : Type u_13 b : Basis ι R₂ M₂ x y : M₂ | bilin B₂ x y [PROOFSTEP] rw [← b.total_repr x, ← b.total_repr y] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁸ : Semiring R inst✝¹⁷ : AddCommMonoid M inst✝¹⁶ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁵ : Ring R₁ inst✝¹⁴ : AddCommGroup M₁ inst✝¹³ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹² : CommSemiring R₂ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁹ : CommRing R₃ inst✝⁸ : AddCommGroup M₃ inst✝⁷ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁶ : Field K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 M₂'' : Type u_12 inst✝³ : AddCommMonoid M₂' inst✝² : AddCommMonoid M₂'' inst✝¹ : Module R₂ M₂' inst✝ : Module R₂ M₂'' F₂ : BilinForm R₂ M₂ ι : Type u_13 b : Basis ι R₂ M₂ x y : M₂ | bilin B₂ x y [PROOFSTEP] rw [← b.total_repr x, ← b.total_repr y] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁸ : Semiring R inst✝¹⁷ : AddCommMonoid M inst✝¹⁶ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁵ : Ring R₁ inst✝¹⁴ : AddCommGroup M₁ inst✝¹³ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹² : CommSemiring R₂ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁹ : CommRing R₃ inst✝⁸ : AddCommGroup M₃ inst✝⁷ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁶ : Field K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 M₂'' : Type u_12 inst✝³ : AddCommMonoid M₂' inst✝² : AddCommMonoid M₂'' inst✝¹ : Module R₂ M₂' inst✝ : Module R₂ M₂'' F₂ : BilinForm R₂ M₂ ι : Type u_13 b : Basis ι R₂ M₂ x y : M₂ ⊢ (Finsupp.sum (↑b.repr x) fun i xi => Finsupp.sum (↑b.repr y) fun j yj => xi • yj • bilin B₂ (↑b i) (↑b j)) = bilin B₂ (↑(Finsupp.total ι M₂ R₂ ↑b) (↑b.repr x)) (↑(Finsupp.total ι M₂ R₂ ↑b) (↑b.repr y)) [PROOFSTEP] simp_rw [Finsupp.total_apply, Finsupp.sum, sum_left, sum_right, smul_left, smul_right, smul_eq_mul] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁹ : Semiring R inst✝¹⁸ : AddCommMonoid M inst✝¹⁷ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁶ : Ring R₁ inst✝¹⁵ : AddCommGroup M₁ inst✝¹⁴ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹³ : CommSemiring R₂ inst✝¹² : AddCommMonoid M₂ inst✝¹¹ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝¹⁰ : CommRing R₃ inst✝⁹ : AddCommGroup M₃ inst✝⁸ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁷ : Field K inst✝⁶ : AddCommGroup V inst✝⁵ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 M₂'' : Type u_12 inst✝⁴ : AddCommMonoid M₂' inst✝³ : AddCommMonoid M₂'' inst✝² : Module R₂ M₂' inst✝¹ : Module R₂ M₂'' inst✝ : Algebra R₂ R x✝¹ x✝ : M ⊢ bilin B x✝¹ x✝ = bilin B x✝ x✝¹ ↔ bilin (↑(flipHom R₂) B) x✝¹ x✝ = bilin B x✝¹ x✝ [PROOFSTEP] exact eq_comm [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁸ : Semiring R inst✝¹⁷ : AddCommMonoid M inst✝¹⁶ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁵ : Ring R₁ inst✝¹⁴ : AddCommGroup M₁ inst✝¹³ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹² : CommSemiring R₂ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁹ : CommRing R₃ inst✝⁸ : AddCommGroup M₃ inst✝⁷ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁶ : Field K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 M₂'' : Type u_12 inst✝³ : AddCommMonoid M₂' inst✝² : AddCommMonoid M₂'' inst✝¹ : Module R₂ M₂' inst✝ : Module R₂ M₂'' H : IsAlt B₁ x y : M₁ ⊢ -bilin B₁ x y = bilin B₁ y x [PROOFSTEP] have H1 : B₁ (x + y) (x + y) = 0 := self_eq_zero H (x + y) [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁸ : Semiring R inst✝¹⁷ : AddCommMonoid M inst✝¹⁶ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁵ : Ring R₁ inst✝¹⁴ : AddCommGroup M₁ inst✝¹³ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹² : CommSemiring R₂ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁹ : CommRing R₃ inst✝⁸ : AddCommGroup M₃ inst✝⁷ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁶ : Field K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 M₂'' : Type u_12 inst✝³ : AddCommMonoid M₂' inst✝² : AddCommMonoid M₂'' inst✝¹ : Module R₂ M₂' inst✝ : Module R₂ M₂'' H : IsAlt B₁ x y : M₁ H1 : bilin B₁ (x + y) (x + y) = 0 ⊢ -bilin B₁ x y = bilin B₁ y x [PROOFSTEP] rw [add_left, add_right, add_right, self_eq_zero H, self_eq_zero H, zero_add, add_zero, add_eq_zero_iff_neg_eq] at H1 [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁸ : Semiring R inst✝¹⁷ : AddCommMonoid M inst✝¹⁶ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁵ : Ring R₁ inst✝¹⁴ : AddCommGroup M₁ inst✝¹³ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹² : CommSemiring R₂ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁹ : CommRing R₃ inst✝⁸ : AddCommGroup M₃ inst✝⁷ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁶ : Field K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 M₂'' : Type u_12 inst✝³ : AddCommMonoid M₂' inst✝² : AddCommMonoid M₂'' inst✝¹ : Module R₂ M₂' inst✝ : Module R₂ M₂'' H : IsAlt B₁ x y : M₁ H1 : -bilin B₁ x y = bilin B₁ y x ⊢ -bilin B₁ x y = bilin B₁ y x [PROOFSTEP] exact H1 [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁸ : Semiring R inst✝¹⁷ : AddCommMonoid M inst✝¹⁶ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁵ : Ring R₁ inst✝¹⁴ : AddCommGroup M₁ inst✝¹³ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹² : CommSemiring R₂ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁹ : CommRing R₃ inst✝⁸ : AddCommGroup M₃ inst✝⁷ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁶ : Field K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 M₂'' : Type u_12 inst✝³ : AddCommMonoid M₂' inst✝² : AddCommMonoid M₂'' inst✝¹ : Module R₂ M₂' inst✝ : Module R₂ M₂'' H : IsAlt B₁ ⊢ IsRefl B₁ [PROOFSTEP] intro x y h [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁸ : Semiring R inst✝¹⁷ : AddCommMonoid M inst✝¹⁶ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁵ : Ring R₁ inst✝¹⁴ : AddCommGroup M₁ inst✝¹³ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹² : CommSemiring R₂ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁹ : CommRing R₃ inst✝⁸ : AddCommGroup M₃ inst✝⁷ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁶ : Field K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 M₂'' : Type u_12 inst✝³ : AddCommMonoid M₂' inst✝² : AddCommMonoid M₂'' inst✝¹ : Module R₂ M₂' inst✝ : Module R₂ M₂'' H : IsAlt B₁ x y : M₁ h : bilin B₁ x y = 0 ⊢ bilin B₁ y x = 0 [PROOFSTEP] rw [← neg_eq H, h, neg_zero] [GOAL] R : Type u_1 M : Type u_2 inst✝²⁰ : Semiring R inst✝¹⁹ : AddCommMonoid M inst✝¹⁸ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁷ : Ring R₁ inst✝¹⁶ : AddCommGroup M₁ inst✝¹⁵ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁴ : CommSemiring R₂ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝¹¹ : CommRing R₃ inst✝¹⁰ : AddCommGroup M₃ inst✝⁹ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁸ : Field K inst✝⁷ : AddCommGroup V inst✝⁶ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 M₂'' : Type u_12 inst✝⁵ : AddCommMonoid M₂' inst✝⁴ : AddCommMonoid M₂'' inst✝³ : Module R₂ M₂' inst✝² : Module R₂ M₂'' F : BilinForm R M M' : Type u_13 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' B' : BilinForm R M' f✝ f' : M →ₗ[R] M' g✝ g' : M' →ₗ[R] M f g : Module.End R M ⊢ IsAdjointPair B F f g ↔ compLeft F f = compRight B g [PROOFSTEP] constructor [GOAL] case mp R : Type u_1 M : Type u_2 inst✝²⁰ : Semiring R inst✝¹⁹ : AddCommMonoid M inst✝¹⁸ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁷ : Ring R₁ inst✝¹⁶ : AddCommGroup M₁ inst✝¹⁵ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁴ : CommSemiring R₂ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝¹¹ : CommRing R₃ inst✝¹⁰ : AddCommGroup M₃ inst✝⁹ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁸ : Field K inst✝⁷ : AddCommGroup V inst✝⁶ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 M₂'' : Type u_12 inst✝⁵ : AddCommMonoid M₂' inst✝⁴ : AddCommMonoid M₂'' inst✝³ : Module R₂ M₂' inst✝² : Module R₂ M₂'' F : BilinForm R M M' : Type u_13 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' B' : BilinForm R M' f✝ f' : M →ₗ[R] M' g✝ g' : M' →ₗ[R] M f g : Module.End R M ⊢ IsAdjointPair B F f g → compLeft F f = compRight B g [PROOFSTEP] intro h [GOAL] case mpr R : Type u_1 M : Type u_2 inst✝²⁰ : Semiring R inst✝¹⁹ : AddCommMonoid M inst✝¹⁸ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁷ : Ring R₁ inst✝¹⁶ : AddCommGroup M₁ inst✝¹⁵ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁴ : CommSemiring R₂ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝¹¹ : CommRing R₃ inst✝¹⁰ : AddCommGroup M₃ inst✝⁹ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁸ : Field K inst✝⁷ : AddCommGroup V inst✝⁶ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 M₂'' : Type u_12 inst✝⁵ : AddCommMonoid M₂' inst✝⁴ : AddCommMonoid M₂'' inst✝³ : Module R₂ M₂' inst✝² : Module R₂ M₂'' F : BilinForm R M M' : Type u_13 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' B' : BilinForm R M' f✝ f' : M →ₗ[R] M' g✝ g' : M' →ₗ[R] M f g : Module.End R M ⊢ compLeft F f = compRight B g → IsAdjointPair B F f g [PROOFSTEP] intro h [GOAL] case mp R : Type u_1 M : Type u_2 inst✝²⁰ : Semiring R inst✝¹⁹ : AddCommMonoid M inst✝¹⁸ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁷ : Ring R₁ inst✝¹⁶ : AddCommGroup M₁ inst✝¹⁵ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁴ : CommSemiring R₂ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝¹¹ : CommRing R₃ inst✝¹⁰ : AddCommGroup M₃ inst✝⁹ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁸ : Field K inst✝⁷ : AddCommGroup V inst✝⁶ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 M₂'' : Type u_12 inst✝⁵ : AddCommMonoid M₂' inst✝⁴ : AddCommMonoid M₂'' inst✝³ : Module R₂ M₂' inst✝² : Module R₂ M₂'' F : BilinForm R M M' : Type u_13 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' B' : BilinForm R M' f✝ f' : M →ₗ[R] M' g✝ g' : M' →ₗ[R] M f g : Module.End R M h : IsAdjointPair B F f g ⊢ compLeft F f = compRight B g [PROOFSTEP] ext x [GOAL] case mp.H R : Type u_1 M : Type u_2 inst✝²⁰ : Semiring R inst✝¹⁹ : AddCommMonoid M inst✝¹⁸ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁷ : Ring R₁ inst✝¹⁶ : AddCommGroup M₁ inst✝¹⁵ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁴ : CommSemiring R₂ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝¹¹ : CommRing R₃ inst✝¹⁰ : AddCommGroup M₃ inst✝⁹ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁸ : Field K inst✝⁷ : AddCommGroup V inst✝⁶ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 M₂'' : Type u_12 inst✝⁵ : AddCommMonoid M₂' inst✝⁴ : AddCommMonoid M₂'' inst✝³ : Module R₂ M₂' inst✝² : Module R₂ M₂'' F : BilinForm R M M' : Type u_13 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' B' : BilinForm R M' f✝ f' : M →ₗ[R] M' g✝ g' : M' →ₗ[R] M f g : Module.End R M h : IsAdjointPair B F f g x y✝ : M ⊢ bilin (compLeft F f) x y✝ = bilin (compRight B g) x y✝ [PROOFSTEP] simp only [compLeft_apply, compRight_apply] [GOAL] case mp.H R : Type u_1 M : Type u_2 inst✝²⁰ : Semiring R inst✝¹⁹ : AddCommMonoid M inst✝¹⁸ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁷ : Ring R₁ inst✝¹⁶ : AddCommGroup M₁ inst✝¹⁵ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁴ : CommSemiring R₂ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝¹¹ : CommRing R₃ inst✝¹⁰ : AddCommGroup M₃ inst✝⁹ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁸ : Field K inst✝⁷ : AddCommGroup V inst✝⁶ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 M₂'' : Type u_12 inst✝⁵ : AddCommMonoid M₂' inst✝⁴ : AddCommMonoid M₂'' inst✝³ : Module R₂ M₂' inst✝² : Module R₂ M₂'' F : BilinForm R M M' : Type u_13 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' B' : BilinForm R M' f✝ f' : M →ₗ[R] M' g✝ g' : M' →ₗ[R] M f g : Module.End R M h : IsAdjointPair B F f g x y✝ : M ⊢ bilin F (↑f x) y✝ = bilin B x (↑g y✝) [PROOFSTEP] apply h [GOAL] case mpr R : Type u_1 M : Type u_2 inst✝²⁰ : Semiring R inst✝¹⁹ : AddCommMonoid M inst✝¹⁸ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁷ : Ring R₁ inst✝¹⁶ : AddCommGroup M₁ inst✝¹⁵ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁴ : CommSemiring R₂ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝¹¹ : CommRing R₃ inst✝¹⁰ : AddCommGroup M₃ inst✝⁹ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁸ : Field K inst✝⁷ : AddCommGroup V inst✝⁶ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 M₂'' : Type u_12 inst✝⁵ : AddCommMonoid M₂' inst✝⁴ : AddCommMonoid M₂'' inst✝³ : Module R₂ M₂' inst✝² : Module R₂ M₂'' F : BilinForm R M M' : Type u_13 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' B' : BilinForm R M' f✝ f' : M →ₗ[R] M' g✝ g' : M' →ₗ[R] M f g : Module.End R M h : compLeft F f = compRight B g ⊢ IsAdjointPair B F f g [PROOFSTEP] intro x y [GOAL] case mpr R : Type u_1 M : Type u_2 inst✝²⁰ : Semiring R inst✝¹⁹ : AddCommMonoid M inst✝¹⁸ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁷ : Ring R₁ inst✝¹⁶ : AddCommGroup M₁ inst✝¹⁵ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁴ : CommSemiring R₂ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝¹¹ : CommRing R₃ inst✝¹⁰ : AddCommGroup M₃ inst✝⁹ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁸ : Field K inst✝⁷ : AddCommGroup V inst✝⁶ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 M₂'' : Type u_12 inst✝⁵ : AddCommMonoid M₂' inst✝⁴ : AddCommMonoid M₂'' inst✝³ : Module R₂ M₂' inst✝² : Module R₂ M₂'' F : BilinForm R M M' : Type u_13 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' B' : BilinForm R M' f✝ f' : M →ₗ[R] M' g✝ g' : M' →ₗ[R] M f g : Module.End R M h : compLeft F f = compRight B g x y : M ⊢ bilin F (↑f x) y = bilin B x (↑g y) [PROOFSTEP] rw [← compLeft_apply, ← compRight_apply] [GOAL] case mpr R : Type u_1 M : Type u_2 inst✝²⁰ : Semiring R inst✝¹⁹ : AddCommMonoid M inst✝¹⁸ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁷ : Ring R₁ inst✝¹⁶ : AddCommGroup M₁ inst✝¹⁵ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁴ : CommSemiring R₂ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝¹¹ : CommRing R₃ inst✝¹⁰ : AddCommGroup M₃ inst✝⁹ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁸ : Field K inst✝⁷ : AddCommGroup V inst✝⁶ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 M₂'' : Type u_12 inst✝⁵ : AddCommMonoid M₂' inst✝⁴ : AddCommMonoid M₂'' inst✝³ : Module R₂ M₂' inst✝² : Module R₂ M₂'' F : BilinForm R M M' : Type u_13 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' B' : BilinForm R M' f✝ f' : M →ₗ[R] M' g✝ g' : M' →ₗ[R] M f g : Module.End R M h : compLeft F f = compRight B g x y : M ⊢ bilin (compLeft F f) x y = bilin (compRight B g) x y [PROOFSTEP] rw [h] [GOAL] R : Type u_1 M : Type u_2 inst✝²⁰ : Semiring R inst✝¹⁹ : AddCommMonoid M inst✝¹⁸ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁷ : Ring R₁ inst✝¹⁶ : AddCommGroup M₁ inst✝¹⁵ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁴ : CommSemiring R₂ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝¹¹ : CommRing R₃ inst✝¹⁰ : AddCommGroup M₃ inst✝⁹ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁸ : Field K inst✝⁷ : AddCommGroup V inst✝⁶ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 M₂'' : Type u_12 inst✝⁵ : AddCommMonoid M₂' inst✝⁴ : AddCommMonoid M₂'' inst✝³ : Module R₂ M₂' inst✝² : Module R₂ M₂'' F : BilinForm R M M' : Type u_13 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' B' : BilinForm R M' f f' : M →ₗ[R] M' g g' : M' →ₗ[R] M x : M y : M' ⊢ bilin B' (↑0 x) y = bilin B x (↑0 y) [PROOFSTEP] simp only [BilinForm.zero_left, BilinForm.zero_right, LinearMap.zero_apply] [GOAL] R : Type u_1 M : Type u_2 inst✝²⁰ : Semiring R inst✝¹⁹ : AddCommMonoid M inst✝¹⁸ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁷ : Ring R₁ inst✝¹⁶ : AddCommGroup M₁ inst✝¹⁵ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁴ : CommSemiring R₂ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝¹¹ : CommRing R₃ inst✝¹⁰ : AddCommGroup M₃ inst✝⁹ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁸ : Field K inst✝⁷ : AddCommGroup V inst✝⁶ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 M₂'' : Type u_12 inst✝⁵ : AddCommMonoid M₂' inst✝⁴ : AddCommMonoid M₂'' inst✝³ : Module R₂ M₂' inst✝² : Module R₂ M₂'' F : BilinForm R M M' : Type u_13 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' B' : BilinForm R M' f f' : M →ₗ[R] M' g g' : M' →ₗ[R] M h : IsAdjointPair B B' f g h' : IsAdjointPair B B' f' g' x : M y : M' ⊢ bilin B' (↑(f + f') x) y = bilin B x (↑(g + g') y) [PROOFSTEP] rw [LinearMap.add_apply, LinearMap.add_apply, add_left, add_right, h, h'] [GOAL] R : Type u_1 M : Type u_2 inst✝²² : Semiring R inst✝²¹ : AddCommMonoid M inst✝²⁰ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁹ : Ring R₁ inst✝¹⁸ : AddCommGroup M₁ inst✝¹⁷ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁶ : CommSemiring R₂ inst✝¹⁵ : AddCommMonoid M₂ inst✝¹⁴ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝¹³ : CommRing R₃ inst✝¹² : AddCommGroup M₃ inst✝¹¹ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝¹⁰ : Field K inst✝⁹ : AddCommGroup V inst✝⁸ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 M₂'' : Type u_12 inst✝⁷ : AddCommMonoid M₂' inst✝⁶ : AddCommMonoid M₂'' inst✝⁵ : Module R₂ M₂' inst✝⁴ : Module R₂ M₂'' F : BilinForm R M M' : Type u_13 inst✝³ : AddCommMonoid M' inst✝² : Module R M' B' : BilinForm R M' f f' : M →ₗ[R] M' g g' : M' →ₗ[R] M M₁' : Type u_14 inst✝¹ : AddCommGroup M₁' inst✝ : Module R₁ M₁' B₁' : BilinForm R₁ M₁' f₁ f₁' : M₁ →ₗ[R₁] M₁' g₁ g₁' : M₁' →ₗ[R₁] M₁ h : IsAdjointPair B₁ B₁' f₁ g₁ h' : IsAdjointPair B₁ B₁' f₁' g₁' x : M₁ y : M₁' ⊢ bilin B₁' (↑(f₁ - f₁') x) y = bilin B₁ x (↑(g₁ - g₁') y) [PROOFSTEP] rw [LinearMap.sub_apply, LinearMap.sub_apply, sub_left, sub_right, h, h'] [GOAL] R : Type u_1 M : Type u_2 inst✝²² : Semiring R inst✝²¹ : AddCommMonoid M inst✝²⁰ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁹ : Ring R₁ inst✝¹⁸ : AddCommGroup M₁ inst✝¹⁷ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁶ : CommSemiring R₂ inst✝¹⁵ : AddCommMonoid M₂ inst✝¹⁴ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝¹³ : CommRing R₃ inst✝¹² : AddCommGroup M₃ inst✝¹¹ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝¹⁰ : Field K inst✝⁹ : AddCommGroup V inst✝⁸ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 M₂'' : Type u_12 inst✝⁷ : AddCommMonoid M₂' inst✝⁶ : AddCommMonoid M₂'' inst✝⁵ : Module R₂ M₂' inst✝⁴ : Module R₂ M₂'' F : BilinForm R M M' : Type u_13 inst✝³ : AddCommMonoid M' inst✝² : Module R M' B' : BilinForm R M' f f' : M →ₗ[R] M' g g' : M' →ₗ[R] M M₁' : Type u_14 inst✝¹ : AddCommGroup M₁' inst✝ : Module R₁ M₁' B₁' : BilinForm R₁ M₁' f₁ f₁' : M₁ →ₗ[R₁] M₁' g₁ g₁' : M₁' →ₗ[R₁] M₁ B₂' : BilinForm R₂ M₂' f₂ f₂' : M₂ →ₗ[R₂] M₂' g₂ g₂' : M₂' →ₗ[R₂] M₂ c : R₂ h : IsAdjointPair B₂ B₂' f₂ g₂ x : M₂ y : M₂' ⊢ bilin B₂' (↑(c • f₂) x) y = bilin B₂ x (↑(c • g₂) y) [PROOFSTEP] rw [LinearMap.smul_apply, LinearMap.smul_apply, smul_left, smul_right, h] [GOAL] R : Type u_1 M : Type u_2 inst✝²⁴ : Semiring R inst✝²³ : AddCommMonoid M inst✝²² : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝²¹ : Ring R₁ inst✝²⁰ : AddCommGroup M₁ inst✝¹⁹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁸ : CommSemiring R₂ inst✝¹⁷ : AddCommMonoid M₂ inst✝¹⁶ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝¹⁵ : CommRing R₃ inst✝¹⁴ : AddCommGroup M₃ inst✝¹³ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝¹² : Field K inst✝¹¹ : AddCommGroup V inst✝¹⁰ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 M₂'' : Type u_12 inst✝⁹ : AddCommMonoid M₂' inst✝⁸ : AddCommMonoid M₂'' inst✝⁷ : Module R₂ M₂' inst✝⁶ : Module R₂ M₂'' F : BilinForm R M M' : Type u_13 inst✝⁵ : AddCommMonoid M' inst✝⁴ : Module R M' B' : BilinForm R M' f f'✝ : M →ₗ[R] M' g g'✝ : M' →ₗ[R] M M₁' : Type u_14 inst✝³ : AddCommGroup M₁' inst✝² : Module R₁ M₁' B₁' : BilinForm R₁ M₁' f₁ f₁' : M₁ →ₗ[R₁] M₁' g₁ g₁' : M₁' →ₗ[R₁] M₁ B₂' : BilinForm R₂ M₂' f₂ f₂' : M₂ →ₗ[R₂] M₂' g₂ g₂' : M₂' →ₗ[R₂] M₂ M'' : Type u_15 inst✝¹ : AddCommMonoid M'' inst✝ : Module R M'' B'' : BilinForm R M'' f' : M' →ₗ[R] M'' g' : M'' →ₗ[R] M' h : IsAdjointPair B B' f g h' : IsAdjointPair B' B'' f' g' x : M y : M'' ⊢ bilin B'' (↑(LinearMap.comp f' f) x) y = bilin B x (↑(LinearMap.comp g g') y) [PROOFSTEP] rw [LinearMap.comp_apply, LinearMap.comp_apply, h', h] [GOAL] R : Type u_1 M : Type u_2 inst✝²⁴ : Semiring R inst✝²³ : AddCommMonoid M inst✝²² : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝²¹ : Ring R₁ inst✝²⁰ : AddCommGroup M₁ inst✝¹⁹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁸ : CommSemiring R₂ inst✝¹⁷ : AddCommMonoid M₂ inst✝¹⁶ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝¹⁵ : CommRing R₃ inst✝¹⁴ : AddCommGroup M₃ inst✝¹³ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝¹² : Field K inst✝¹¹ : AddCommGroup V inst✝¹⁰ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 M₂'' : Type u_12 inst✝⁹ : AddCommMonoid M₂' inst✝⁸ : AddCommMonoid M₂'' inst✝⁷ : Module R₂ M₂' inst✝⁶ : Module R₂ M₂'' F : BilinForm R M M' : Type u_13 inst✝⁵ : AddCommMonoid M' inst✝⁴ : Module R M' B' : BilinForm R M' f✝ f'✝ : M →ₗ[R] M' g✝ g'✝ : M' →ₗ[R] M M₁' : Type u_14 inst✝³ : AddCommGroup M₁' inst✝² : Module R₁ M₁' B₁' : BilinForm R₁ M₁' f₁ f₁' : M₁ →ₗ[R₁] M₁' g₁ g₁' : M₁' →ₗ[R₁] M₁ B₂' : BilinForm R₂ M₂' f₂ f₂' : M₂ →ₗ[R₂] M₂' g₂ g₂' : M₂' →ₗ[R₂] M₂ M'' : Type u_15 inst✝¹ : AddCommMonoid M'' inst✝ : Module R M'' B'' : BilinForm R M'' f g f' g' : Module.End R M h : IsAdjointPair B B f g h' : IsAdjointPair B B f' g' x y : M ⊢ bilin B (↑(f * f') x) y = bilin B x (↑(g' * g) y) [PROOFSTEP] rw [LinearMap.mul_apply, LinearMap.mul_apply, h, h'] [GOAL] R : Type u_1 M : Type u_2 inst✝²⁴ : Semiring R inst✝²³ : AddCommMonoid M inst✝²² : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝²¹ : Ring R₁ inst✝²⁰ : AddCommGroup M₁ inst✝¹⁹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁸ : CommSemiring R₂ inst✝¹⁷ : AddCommMonoid M₂ inst✝¹⁶ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝¹⁵ : CommRing R₃ inst✝¹⁴ : AddCommGroup M₃ inst✝¹³ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝¹² : Field K inst✝¹¹ : AddCommGroup V inst✝¹⁰ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 M₂'' : Type u_12 inst✝⁹ : AddCommMonoid M₂' inst✝⁸ : AddCommMonoid M₂'' inst✝⁷ : Module R₂ M₂' inst✝⁶ : Module R₂ M₂'' F : BilinForm R M M' : Type u_13 inst✝⁵ : AddCommMonoid M' inst✝⁴ : Module R M' B' : BilinForm R M' f✝ f' : M →ₗ[R] M' g g' : M' →ₗ[R] M M₁' : Type u_14 inst✝³ : AddCommGroup M₁' inst✝² : Module R₁ M₁' B₁' : BilinForm R₁ M₁' f₁ f₁' : M₁ →ₗ[R₁] M₁' g₁ g₁' : M₁' →ₗ[R₁] M₁ B₂' : BilinForm R₂ M₂' f₂ f₂' : M₂ →ₗ[R₂] M₂' g₂ g₂' : M₂' →ₗ[R₂] M₂ M'' : Type u_15 inst✝¹ : AddCommMonoid M'' inst✝ : Module R M'' B'' : BilinForm R M'' F₂ : BilinForm R₂ M₂ f : Module.End R₂ M₂ ⊢ f ∈ isPairSelfAdjointSubmodule B₂ F₂ ↔ IsPairSelfAdjoint B₂ F₂ f [PROOFSTEP] rfl [GOAL] R : Type u_1 M : Type u_2 inst✝²⁴ : Semiring R inst✝²³ : AddCommMonoid M inst✝²² : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝²¹ : Ring R₁ inst✝²⁰ : AddCommGroup M₁ inst✝¹⁹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁸ : CommSemiring R₂ inst✝¹⁷ : AddCommMonoid M₂ inst✝¹⁶ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝¹⁵ : CommRing R₃ inst✝¹⁴ : AddCommGroup M₃ inst✝¹³ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝¹² : Field K inst✝¹¹ : AddCommGroup V inst✝¹⁰ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 M₂'' : Type u_12 inst✝⁹ : AddCommMonoid M₂' inst✝⁸ : AddCommMonoid M₂'' inst✝⁷ : Module R₂ M₂' inst✝⁶ : Module R₂ M₂'' F : BilinForm R M M' : Type u_13 inst✝⁵ : AddCommMonoid M' inst✝⁴ : Module R M' B' : BilinForm R M' f✝ f' : M →ₗ[R] M' g g' : M' →ₗ[R] M M₁' : Type u_14 inst✝³ : AddCommGroup M₁' inst✝² : Module R₁ M₁' B₁' : BilinForm R₁ M₁' f₁ f₁' : M₁ →ₗ[R₁] M₁' g₁ g₁' : M₁' →ₗ[R₁] M₁ B₂' : BilinForm R₂ M₂' f₂ f₂' : M₂ →ₗ[R₂] M₂' g₂ g₂' : M₂' →ₗ[R₂] M₂ M'' : Type u_15 inst✝¹ : AddCommMonoid M'' inst✝ : Module R M'' B'' : BilinForm R M'' F₂ : BilinForm R₂ M₂ e : M₂' ≃ₗ[R₂] M₂ f : Module.End R₂ M₂ ⊢ IsPairSelfAdjoint B₂ F₂ f ↔ IsPairSelfAdjoint (comp B₂ ↑e ↑e) (comp F₂ ↑e ↑e) (↑(LinearEquiv.conj (LinearEquiv.symm e)) f) [PROOFSTEP] have hₗ : (F₂.comp ↑e ↑e).compLeft (e.symm.conj f) = (F₂.compLeft f).comp ↑e ↑e := by ext simp [LinearEquiv.symm_conj_apply] [GOAL] R : Type u_1 M : Type u_2 inst✝²⁴ : Semiring R inst✝²³ : AddCommMonoid M inst✝²² : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝²¹ : Ring R₁ inst✝²⁰ : AddCommGroup M₁ inst✝¹⁹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁸ : CommSemiring R₂ inst✝¹⁷ : AddCommMonoid M₂ inst✝¹⁶ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝¹⁵ : CommRing R₃ inst✝¹⁴ : AddCommGroup M₃ inst✝¹³ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝¹² : Field K inst✝¹¹ : AddCommGroup V inst✝¹⁰ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 M₂'' : Type u_12 inst✝⁹ : AddCommMonoid M₂' inst✝⁸ : AddCommMonoid M₂'' inst✝⁷ : Module R₂ M₂' inst✝⁶ : Module R₂ M₂'' F : BilinForm R M M' : Type u_13 inst✝⁵ : AddCommMonoid M' inst✝⁴ : Module R M' B' : BilinForm R M' f✝ f' : M →ₗ[R] M' g g' : M' →ₗ[R] M M₁' : Type u_14 inst✝³ : AddCommGroup M₁' inst✝² : Module R₁ M₁' B₁' : BilinForm R₁ M₁' f₁ f₁' : M₁ →ₗ[R₁] M₁' g₁ g₁' : M₁' →ₗ[R₁] M₁ B₂' : BilinForm R₂ M₂' f₂ f₂' : M₂ →ₗ[R₂] M₂' g₂ g₂' : M₂' →ₗ[R₂] M₂ M'' : Type u_15 inst✝¹ : AddCommMonoid M'' inst✝ : Module R M'' B'' : BilinForm R M'' F₂ : BilinForm R₂ M₂ e : M₂' ≃ₗ[R₂] M₂ f : Module.End R₂ M₂ ⊢ compLeft (comp F₂ ↑e ↑e) (↑(LinearEquiv.conj (LinearEquiv.symm e)) f) = comp (compLeft F₂ f) ↑e ↑e [PROOFSTEP] ext [GOAL] case H R : Type u_1 M : Type u_2 inst✝²⁴ : Semiring R inst✝²³ : AddCommMonoid M inst✝²² : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝²¹ : Ring R₁ inst✝²⁰ : AddCommGroup M₁ inst✝¹⁹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁸ : CommSemiring R₂ inst✝¹⁷ : AddCommMonoid M₂ inst✝¹⁶ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝¹⁵ : CommRing R₃ inst✝¹⁴ : AddCommGroup M₃ inst✝¹³ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝¹² : Field K inst✝¹¹ : AddCommGroup V inst✝¹⁰ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 M₂'' : Type u_12 inst✝⁹ : AddCommMonoid M₂' inst✝⁸ : AddCommMonoid M₂'' inst✝⁷ : Module R₂ M₂' inst✝⁶ : Module R₂ M₂'' F : BilinForm R M M' : Type u_13 inst✝⁵ : AddCommMonoid M' inst✝⁴ : Module R M' B' : BilinForm R M' f✝ f' : M →ₗ[R] M' g g' : M' →ₗ[R] M M₁' : Type u_14 inst✝³ : AddCommGroup M₁' inst✝² : Module R₁ M₁' B₁' : BilinForm R₁ M₁' f₁ f₁' : M₁ →ₗ[R₁] M₁' g₁ g₁' : M₁' →ₗ[R₁] M₁ B₂' : BilinForm R₂ M₂' f₂ f₂' : M₂ →ₗ[R₂] M₂' g₂ g₂' : M₂' →ₗ[R₂] M₂ M'' : Type u_15 inst✝¹ : AddCommMonoid M'' inst✝ : Module R M'' B'' : BilinForm R M'' F₂ : BilinForm R₂ M₂ e : M₂' ≃ₗ[R₂] M₂ f : Module.End R₂ M₂ x✝ y✝ : M₂' ⊢ bilin (compLeft (comp F₂ ↑e ↑e) (↑(LinearEquiv.conj (LinearEquiv.symm e)) f)) x✝ y✝ = bilin (comp (compLeft F₂ f) ↑e ↑e) x✝ y✝ [PROOFSTEP] simp [LinearEquiv.symm_conj_apply] [GOAL] R : Type u_1 M : Type u_2 inst✝²⁴ : Semiring R inst✝²³ : AddCommMonoid M inst✝²² : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝²¹ : Ring R₁ inst✝²⁰ : AddCommGroup M₁ inst✝¹⁹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁸ : CommSemiring R₂ inst✝¹⁷ : AddCommMonoid M₂ inst✝¹⁶ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝¹⁵ : CommRing R₃ inst✝¹⁴ : AddCommGroup M₃ inst✝¹³ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝¹² : Field K inst✝¹¹ : AddCommGroup V inst✝¹⁰ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 M₂'' : Type u_12 inst✝⁹ : AddCommMonoid M₂' inst✝⁸ : AddCommMonoid M₂'' inst✝⁷ : Module R₂ M₂' inst✝⁶ : Module R₂ M₂'' F : BilinForm R M M' : Type u_13 inst✝⁵ : AddCommMonoid M' inst✝⁴ : Module R M' B' : BilinForm R M' f✝ f' : M →ₗ[R] M' g g' : M' →ₗ[R] M M₁' : Type u_14 inst✝³ : AddCommGroup M₁' inst✝² : Module R₁ M₁' B₁' : BilinForm R₁ M₁' f₁ f₁' : M₁ →ₗ[R₁] M₁' g₁ g₁' : M₁' →ₗ[R₁] M₁ B₂' : BilinForm R₂ M₂' f₂ f₂' : M₂ →ₗ[R₂] M₂' g₂ g₂' : M₂' →ₗ[R₂] M₂ M'' : Type u_15 inst✝¹ : AddCommMonoid M'' inst✝ : Module R M'' B'' : BilinForm R M'' F₂ : BilinForm R₂ M₂ e : M₂' ≃ₗ[R₂] M₂ f : Module.End R₂ M₂ hₗ : compLeft (comp F₂ ↑e ↑e) (↑(LinearEquiv.conj (LinearEquiv.symm e)) f) = comp (compLeft F₂ f) ↑e ↑e ⊢ IsPairSelfAdjoint B₂ F₂ f ↔ IsPairSelfAdjoint (comp B₂ ↑e ↑e) (comp F₂ ↑e ↑e) (↑(LinearEquiv.conj (LinearEquiv.symm e)) f) [PROOFSTEP] have hᵣ : (B₂.comp ↑e ↑e).compRight (e.symm.conj f) = (B₂.compRight f).comp ↑e ↑e := by ext simp [LinearEquiv.conj_apply] [GOAL] R : Type u_1 M : Type u_2 inst✝²⁴ : Semiring R inst✝²³ : AddCommMonoid M inst✝²² : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝²¹ : Ring R₁ inst✝²⁰ : AddCommGroup M₁ inst✝¹⁹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁸ : CommSemiring R₂ inst✝¹⁷ : AddCommMonoid M₂ inst✝¹⁶ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝¹⁵ : CommRing R₃ inst✝¹⁴ : AddCommGroup M₃ inst✝¹³ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝¹² : Field K inst✝¹¹ : AddCommGroup V inst✝¹⁰ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 M₂'' : Type u_12 inst✝⁹ : AddCommMonoid M₂' inst✝⁸ : AddCommMonoid M₂'' inst✝⁷ : Module R₂ M₂' inst✝⁶ : Module R₂ M₂'' F : BilinForm R M M' : Type u_13 inst✝⁵ : AddCommMonoid M' inst✝⁴ : Module R M' B' : BilinForm R M' f✝ f' : M →ₗ[R] M' g g' : M' →ₗ[R] M M₁' : Type u_14 inst✝³ : AddCommGroup M₁' inst✝² : Module R₁ M₁' B₁' : BilinForm R₁ M₁' f₁ f₁' : M₁ →ₗ[R₁] M₁' g₁ g₁' : M₁' →ₗ[R₁] M₁ B₂' : BilinForm R₂ M₂' f₂ f₂' : M₂ →ₗ[R₂] M₂' g₂ g₂' : M₂' →ₗ[R₂] M₂ M'' : Type u_15 inst✝¹ : AddCommMonoid M'' inst✝ : Module R M'' B'' : BilinForm R M'' F₂ : BilinForm R₂ M₂ e : M₂' ≃ₗ[R₂] M₂ f : Module.End R₂ M₂ hₗ : compLeft (comp F₂ ↑e ↑e) (↑(LinearEquiv.conj (LinearEquiv.symm e)) f) = comp (compLeft F₂ f) ↑e ↑e ⊢ compRight (comp B₂ ↑e ↑e) (↑(LinearEquiv.conj (LinearEquiv.symm e)) f) = comp (compRight B₂ f) ↑e ↑e [PROOFSTEP] ext [GOAL] case H R : Type u_1 M : Type u_2 inst✝²⁴ : Semiring R inst✝²³ : AddCommMonoid M inst✝²² : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝²¹ : Ring R₁ inst✝²⁰ : AddCommGroup M₁ inst✝¹⁹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁸ : CommSemiring R₂ inst✝¹⁷ : AddCommMonoid M₂ inst✝¹⁶ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝¹⁵ : CommRing R₃ inst✝¹⁴ : AddCommGroup M₃ inst✝¹³ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝¹² : Field K inst✝¹¹ : AddCommGroup V inst✝¹⁰ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 M₂'' : Type u_12 inst✝⁹ : AddCommMonoid M₂' inst✝⁸ : AddCommMonoid M₂'' inst✝⁷ : Module R₂ M₂' inst✝⁶ : Module R₂ M₂'' F : BilinForm R M M' : Type u_13 inst✝⁵ : AddCommMonoid M' inst✝⁴ : Module R M' B' : BilinForm R M' f✝ f' : M →ₗ[R] M' g g' : M' →ₗ[R] M M₁' : Type u_14 inst✝³ : AddCommGroup M₁' inst✝² : Module R₁ M₁' B₁' : BilinForm R₁ M₁' f₁ f₁' : M₁ →ₗ[R₁] M₁' g₁ g₁' : M₁' →ₗ[R₁] M₁ B₂' : BilinForm R₂ M₂' f₂ f₂' : M₂ →ₗ[R₂] M₂' g₂ g₂' : M₂' →ₗ[R₂] M₂ M'' : Type u_15 inst✝¹ : AddCommMonoid M'' inst✝ : Module R M'' B'' : BilinForm R M'' F₂ : BilinForm R₂ M₂ e : M₂' ≃ₗ[R₂] M₂ f : Module.End R₂ M₂ hₗ : compLeft (comp F₂ ↑e ↑e) (↑(LinearEquiv.conj (LinearEquiv.symm e)) f) = comp (compLeft F₂ f) ↑e ↑e x✝ y✝ : M₂' ⊢ bilin (compRight (comp B₂ ↑e ↑e) (↑(LinearEquiv.conj (LinearEquiv.symm e)) f)) x✝ y✝ = bilin (comp (compRight B₂ f) ↑e ↑e) x✝ y✝ [PROOFSTEP] simp [LinearEquiv.conj_apply] [GOAL] R : Type u_1 M : Type u_2 inst✝²⁴ : Semiring R inst✝²³ : AddCommMonoid M inst✝²² : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝²¹ : Ring R₁ inst✝²⁰ : AddCommGroup M₁ inst✝¹⁹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁸ : CommSemiring R₂ inst✝¹⁷ : AddCommMonoid M₂ inst✝¹⁶ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝¹⁵ : CommRing R₃ inst✝¹⁴ : AddCommGroup M₃ inst✝¹³ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝¹² : Field K inst✝¹¹ : AddCommGroup V inst✝¹⁰ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 M₂'' : Type u_12 inst✝⁹ : AddCommMonoid M₂' inst✝⁸ : AddCommMonoid M₂'' inst✝⁷ : Module R₂ M₂' inst✝⁶ : Module R₂ M₂'' F : BilinForm R M M' : Type u_13 inst✝⁵ : AddCommMonoid M' inst✝⁴ : Module R M' B' : BilinForm R M' f✝ f' : M →ₗ[R] M' g g' : M' →ₗ[R] M M₁' : Type u_14 inst✝³ : AddCommGroup M₁' inst✝² : Module R₁ M₁' B₁' : BilinForm R₁ M₁' f₁ f₁' : M₁ →ₗ[R₁] M₁' g₁ g₁' : M₁' →ₗ[R₁] M₁ B₂' : BilinForm R₂ M₂' f₂ f₂' : M₂ →ₗ[R₂] M₂' g₂ g₂' : M₂' →ₗ[R₂] M₂ M'' : Type u_15 inst✝¹ : AddCommMonoid M'' inst✝ : Module R M'' B'' : BilinForm R M'' F₂ : BilinForm R₂ M₂ e : M₂' ≃ₗ[R₂] M₂ f : Module.End R₂ M₂ hₗ : compLeft (comp F₂ ↑e ↑e) (↑(LinearEquiv.conj (LinearEquiv.symm e)) f) = comp (compLeft F₂ f) ↑e ↑e hᵣ : compRight (comp B₂ ↑e ↑e) (↑(LinearEquiv.conj (LinearEquiv.symm e)) f) = comp (compRight B₂ f) ↑e ↑e ⊢ IsPairSelfAdjoint B₂ F₂ f ↔ IsPairSelfAdjoint (comp B₂ ↑e ↑e) (comp F₂ ↑e ↑e) (↑(LinearEquiv.conj (LinearEquiv.symm e)) f) [PROOFSTEP] have he : Function.Surjective (⇑(↑e : M₂' →ₗ[R₂] M₂) : M₂' → M₂) := e.surjective [GOAL] R : Type u_1 M : Type u_2 inst✝²⁴ : Semiring R inst✝²³ : AddCommMonoid M inst✝²² : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝²¹ : Ring R₁ inst✝²⁰ : AddCommGroup M₁ inst✝¹⁹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁸ : CommSemiring R₂ inst✝¹⁷ : AddCommMonoid M₂ inst✝¹⁶ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝¹⁵ : CommRing R₃ inst✝¹⁴ : AddCommGroup M₃ inst✝¹³ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝¹² : Field K inst✝¹¹ : AddCommGroup V inst✝¹⁰ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 M₂'' : Type u_12 inst✝⁹ : AddCommMonoid M₂' inst✝⁸ : AddCommMonoid M₂'' inst✝⁷ : Module R₂ M₂' inst✝⁶ : Module R₂ M₂'' F : BilinForm R M M' : Type u_13 inst✝⁵ : AddCommMonoid M' inst✝⁴ : Module R M' B' : BilinForm R M' f✝ f' : M →ₗ[R] M' g g' : M' →ₗ[R] M M₁' : Type u_14 inst✝³ : AddCommGroup M₁' inst✝² : Module R₁ M₁' B₁' : BilinForm R₁ M₁' f₁ f₁' : M₁ →ₗ[R₁] M₁' g₁ g₁' : M₁' →ₗ[R₁] M₁ B₂' : BilinForm R₂ M₂' f₂ f₂' : M₂ →ₗ[R₂] M₂' g₂ g₂' : M₂' →ₗ[R₂] M₂ M'' : Type u_15 inst✝¹ : AddCommMonoid M'' inst✝ : Module R M'' B'' : BilinForm R M'' F₂ : BilinForm R₂ M₂ e : M₂' ≃ₗ[R₂] M₂ f : Module.End R₂ M₂ hₗ : compLeft (comp F₂ ↑e ↑e) (↑(LinearEquiv.conj (LinearEquiv.symm e)) f) = comp (compLeft F₂ f) ↑e ↑e hᵣ : compRight (comp B₂ ↑e ↑e) (↑(LinearEquiv.conj (LinearEquiv.symm e)) f) = comp (compRight B₂ f) ↑e ↑e he : Function.Surjective ↑↑e ⊢ IsPairSelfAdjoint B₂ F₂ f ↔ IsPairSelfAdjoint (comp B₂ ↑e ↑e) (comp F₂ ↑e ↑e) (↑(LinearEquiv.conj (LinearEquiv.symm e)) f) [PROOFSTEP] show BilinForm.IsAdjointPair _ _ _ _ ↔ BilinForm.IsAdjointPair _ _ _ _ [GOAL] R : Type u_1 M : Type u_2 inst✝²⁴ : Semiring R inst✝²³ : AddCommMonoid M inst✝²² : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝²¹ : Ring R₁ inst✝²⁰ : AddCommGroup M₁ inst✝¹⁹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁸ : CommSemiring R₂ inst✝¹⁷ : AddCommMonoid M₂ inst✝¹⁶ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝¹⁵ : CommRing R₃ inst✝¹⁴ : AddCommGroup M₃ inst✝¹³ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝¹² : Field K inst✝¹¹ : AddCommGroup V inst✝¹⁰ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 M₂'' : Type u_12 inst✝⁹ : AddCommMonoid M₂' inst✝⁸ : AddCommMonoid M₂'' inst✝⁷ : Module R₂ M₂' inst✝⁶ : Module R₂ M₂'' F : BilinForm R M M' : Type u_13 inst✝⁵ : AddCommMonoid M' inst✝⁴ : Module R M' B' : BilinForm R M' f✝ f' : M →ₗ[R] M' g g' : M' →ₗ[R] M M₁' : Type u_14 inst✝³ : AddCommGroup M₁' inst✝² : Module R₁ M₁' B₁' : BilinForm R₁ M₁' f₁ f₁' : M₁ →ₗ[R₁] M₁' g₁ g₁' : M₁' →ₗ[R₁] M₁ B₂' : BilinForm R₂ M₂' f₂ f₂' : M₂ →ₗ[R₂] M₂' g₂ g₂' : M₂' →ₗ[R₂] M₂ M'' : Type u_15 inst✝¹ : AddCommMonoid M'' inst✝ : Module R M'' B'' : BilinForm R M'' F₂ : BilinForm R₂ M₂ e : M₂' ≃ₗ[R₂] M₂ f : Module.End R₂ M₂ hₗ : compLeft (comp F₂ ↑e ↑e) (↑(LinearEquiv.conj (LinearEquiv.symm e)) f) = comp (compLeft F₂ f) ↑e ↑e hᵣ : compRight (comp B₂ ↑e ↑e) (↑(LinearEquiv.conj (LinearEquiv.symm e)) f) = comp (compRight B₂ f) ↑e ↑e he : Function.Surjective ↑↑e ⊢ IsAdjointPair B₂ F₂ f f ↔ IsAdjointPair (comp B₂ ↑e ↑e) (comp F₂ ↑e ↑e) (↑(LinearEquiv.conj (LinearEquiv.symm e)) f) (↑(LinearEquiv.conj (LinearEquiv.symm e)) f) [PROOFSTEP] rw [isAdjointPair_iff_compLeft_eq_compRight, isAdjointPair_iff_compLeft_eq_compRight, hᵣ, hₗ, comp_inj _ _ he he] [GOAL] R : Type u_1 M : Type u_2 inst✝²⁴ : Semiring R inst✝²³ : AddCommMonoid M inst✝²² : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝²¹ : Ring R₁ inst✝²⁰ : AddCommGroup M₁ inst✝¹⁹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁸ : CommSemiring R₂ inst✝¹⁷ : AddCommMonoid M₂ inst✝¹⁶ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝¹⁵ : CommRing R₃ inst✝¹⁴ : AddCommGroup M₃ inst✝¹³ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝¹² : Field K inst✝¹¹ : AddCommGroup V inst✝¹⁰ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 M₂'' : Type u_12 inst✝⁹ : AddCommMonoid M₂' inst✝⁸ : AddCommMonoid M₂'' inst✝⁷ : Module R₂ M₂' inst✝⁶ : Module R₂ M₂'' F : BilinForm R M M' : Type u_13 inst✝⁵ : AddCommMonoid M' inst✝⁴ : Module R M' B' : BilinForm R M' f✝ f' : M →ₗ[R] M' g g' : M' →ₗ[R] M M₁' : Type u_14 inst✝³ : AddCommGroup M₁' inst✝² : Module R₁ M₁' B₁' : BilinForm R₁ M₁' f₁ f₁' : M₁ →ₗ[R₁] M₁' g₁ g₁' : M₁' →ₗ[R₁] M₁ B₂' : BilinForm R₂ M₂' f₂ f₂' : M₂ →ₗ[R₂] M₂' g₂ g₂' : M₂' →ₗ[R₂] M₂ M'' : Type u_15 inst✝¹ : AddCommMonoid M'' inst✝ : Module R M'' B'' : BilinForm R M'' F₂ : BilinForm R₂ M₂ f : Module.End R₁ M₁ ⊢ (∀ (x y : M₁), bilin B₁ (↑f x) y = bilin B₁ x (↑(-f) y)) ↔ ∀ (x y : M₁), bilin B₁ (↑f x) y = bilin (-B₁) x (↑f y) [PROOFSTEP] simp only [LinearMap.neg_apply, BilinForm.neg_apply, BilinForm.neg_right] [GOAL] R : Type u_1 M : Type u_2 inst✝²⁴ : Semiring R inst✝²³ : AddCommMonoid M inst✝²² : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝²¹ : Ring R₁ inst✝²⁰ : AddCommGroup M₁ inst✝¹⁹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁸ : CommSemiring R₂ inst✝¹⁷ : AddCommMonoid M₂ inst✝¹⁶ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝¹⁵ : CommRing R₃ inst✝¹⁴ : AddCommGroup M₃ inst✝¹³ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝¹² : Field K inst✝¹¹ : AddCommGroup V inst✝¹⁰ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 M₂'' : Type u_12 inst✝⁹ : AddCommMonoid M₂' inst✝⁸ : AddCommMonoid M₂'' inst✝⁷ : Module R₂ M₂' inst✝⁶ : Module R₂ M₂'' F : BilinForm R M M' : Type u_13 inst✝⁵ : AddCommMonoid M' inst✝⁴ : Module R M' B' : BilinForm R M' f✝ f' : M →ₗ[R] M' g g' : M' →ₗ[R] M M₁' : Type u_14 inst✝³ : AddCommGroup M₁' inst✝² : Module R₁ M₁' B₁' : BilinForm R₁ M₁' f₁ f₁' : M₁ →ₗ[R₁] M₁' g₁ g₁' : M₁' →ₗ[R₁] M₁ B₂' : BilinForm R₂ M₂' f₂ f₂' : M₂ →ₗ[R₂] M₂' g₂ g₂' : M₂' →ₗ[R₂] M₂ M'' : Type u_15 inst✝¹ : AddCommMonoid M'' inst✝ : Module R M'' B'' : BilinForm R M'' F₂ : BilinForm R₂ M₂ B₃ : BilinForm R₃ M₃ f : Module.End R₃ M₃ ⊢ f ∈ skewAdjointSubmodule B₃ ↔ IsSkewAdjoint B₃ f [PROOFSTEP] rw [isSkewAdjoint_iff_neg_self_adjoint] [GOAL] R : Type u_1 M : Type u_2 inst✝²⁴ : Semiring R inst✝²³ : AddCommMonoid M inst✝²² : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝²¹ : Ring R₁ inst✝²⁰ : AddCommGroup M₁ inst✝¹⁹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁸ : CommSemiring R₂ inst✝¹⁷ : AddCommMonoid M₂ inst✝¹⁶ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝¹⁵ : CommRing R₃ inst✝¹⁴ : AddCommGroup M₃ inst✝¹³ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝¹² : Field K inst✝¹¹ : AddCommGroup V inst✝¹⁰ : Module K V B : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 M₂'' : Type u_12 inst✝⁹ : AddCommMonoid M₂' inst✝⁸ : AddCommMonoid M₂'' inst✝⁷ : Module R₂ M₂' inst✝⁶ : Module R₂ M₂'' F : BilinForm R M M' : Type u_13 inst✝⁵ : AddCommMonoid M' inst✝⁴ : Module R M' B' : BilinForm R M' f✝ f' : M →ₗ[R] M' g g' : M' →ₗ[R] M M₁' : Type u_14 inst✝³ : AddCommGroup M₁' inst✝² : Module R₁ M₁' B₁' : BilinForm R₁ M₁' f₁ f₁' : M₁ →ₗ[R₁] M₁' g₁ g₁' : M₁' →ₗ[R₁] M₁ B₂' : BilinForm R₂ M₂' f₂ f₂' : M₂ →ₗ[R₂] M₂' g₂ g₂' : M₂' →ₗ[R₂] M₂ M'' : Type u_15 inst✝¹ : AddCommMonoid M'' inst✝ : Module R M'' B'' : BilinForm R M'' F₂ : BilinForm R₂ M₂ B₃ : BilinForm R₃ M₃ f : Module.End R₃ M₃ ⊢ f ∈ skewAdjointSubmodule B₃ ↔ IsAdjointPair (-B₃) B₃ f f [PROOFSTEP] exact Iff.rfl [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁴ : Semiring R inst✝¹³ : AddCommMonoid M inst✝¹² : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹¹ : Ring R₁ inst✝¹⁰ : AddCommGroup M₁ inst✝⁹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝⁸ : CommSemiring R₂ inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁵ : CommRing R₃ inst✝⁴ : AddCommGroup M₃ inst✝³ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ B : BilinForm R M N : Submodule R M x y : M hx : x ∈ {m | ∀ (n : M), n ∈ N → IsOrtho B n m} hy : y ∈ {m | ∀ (n : M), n ∈ N → IsOrtho B n m} n : M hn : n ∈ N ⊢ IsOrtho B n (x + y) [PROOFSTEP] rw [IsOrtho, add_right, show B n x = 0 from hx n hn, show B n y = 0 from hy n hn, zero_add] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁴ : Semiring R inst✝¹³ : AddCommMonoid M inst✝¹² : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹¹ : Ring R₁ inst✝¹⁰ : AddCommGroup M₁ inst✝⁹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝⁸ : CommSemiring R₂ inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁵ : CommRing R₃ inst✝⁴ : AddCommGroup M₃ inst✝³ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ B : BilinForm R M N : Submodule R M c : R x : M hx : x ∈ { toAddSubsemigroup := { carrier := {m | ∀ (n : M), n ∈ N → IsOrtho B n m}, add_mem' := (_ : ∀ {x y : M}, x ∈ {m | ∀ (n : M), n ∈ N → IsOrtho B n m} → y ∈ {m | ∀ (n : M), n ∈ N → IsOrtho B n m} → ∀ (n : M), n ∈ N → IsOrtho B n (x + y)) }, zero_mem' := (_ : ∀ (x : M), x ∈ N → IsOrtho B x 0) }.toAddSubsemigroup.carrier n : M hn : n ∈ N ⊢ IsOrtho B n (c • x) [PROOFSTEP] rw [IsOrtho, smul_right, show B n x = 0 from hx n hn, mul_zero] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁴ : Semiring R inst✝¹³ : AddCommMonoid M inst✝¹² : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹¹ : Ring R₁ inst✝¹⁰ : AddCommGroup M₁ inst✝⁹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝⁸ : CommSemiring R₂ inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁵ : CommRing R₃ inst✝⁴ : AddCommGroup M₃ inst✝³ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ N L : Submodule R M B : BilinForm K V x : V hx : ¬IsOrtho B x x ⊢ Submodule.span K {x} ⊓ orthogonal B (Submodule.span K {x}) = ⊥ [PROOFSTEP] rw [← Finset.coe_singleton] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁴ : Semiring R inst✝¹³ : AddCommMonoid M inst✝¹² : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹¹ : Ring R₁ inst✝¹⁰ : AddCommGroup M₁ inst✝⁹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝⁸ : CommSemiring R₂ inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁵ : CommRing R₃ inst✝⁴ : AddCommGroup M₃ inst✝³ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ N L : Submodule R M B : BilinForm K V x : V hx : ¬IsOrtho B x x ⊢ Submodule.span K ↑{x} ⊓ orthogonal B (Submodule.span K ↑{x}) = ⊥ [PROOFSTEP] refine' eq_bot_iff.2 fun y h => _ [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁴ : Semiring R inst✝¹³ : AddCommMonoid M inst✝¹² : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹¹ : Ring R₁ inst✝¹⁰ : AddCommGroup M₁ inst✝⁹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝⁸ : CommSemiring R₂ inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁵ : CommRing R₃ inst✝⁴ : AddCommGroup M₃ inst✝³ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ N L : Submodule R M B : BilinForm K V x : V hx : ¬IsOrtho B x x y : V h : y ∈ Submodule.span K ↑{x} ⊓ orthogonal B (Submodule.span K ↑{x}) ⊢ y ∈ ⊥ [PROOFSTEP] rcases mem_span_finset.1 h.1 with ⟨μ, rfl⟩ [GOAL] case intro R : Type u_1 M : Type u_2 inst✝¹⁴ : Semiring R inst✝¹³ : AddCommMonoid M inst✝¹² : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹¹ : Ring R₁ inst✝¹⁰ : AddCommGroup M₁ inst✝⁹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝⁸ : CommSemiring R₂ inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁵ : CommRing R₃ inst✝⁴ : AddCommGroup M₃ inst✝³ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ N L : Submodule R M B : BilinForm K V x : V hx : ¬IsOrtho B x x μ : V → K h : ∑ i in {x}, μ i • i ∈ Submodule.span K ↑{x} ⊓ orthogonal B (Submodule.span K ↑{x}) ⊢ ∑ i in {x}, μ i • i ∈ ⊥ [PROOFSTEP] have := h.2 x ?_ [GOAL] case intro.refine_2 R : Type u_1 M : Type u_2 inst✝¹⁴ : Semiring R inst✝¹³ : AddCommMonoid M inst✝¹² : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹¹ : Ring R₁ inst✝¹⁰ : AddCommGroup M₁ inst✝⁹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝⁸ : CommSemiring R₂ inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁵ : CommRing R₃ inst✝⁴ : AddCommGroup M₃ inst✝³ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ N L : Submodule R M B : BilinForm K V x : V hx : ¬IsOrtho B x x μ : V → K h : ∑ i in {x}, μ i • i ∈ Submodule.span K ↑{x} ⊓ orthogonal B (Submodule.span K ↑{x}) this : IsOrtho B x (∑ i in {x}, μ i • i) ⊢ ∑ i in {x}, μ i • i ∈ ⊥ [PROOFSTEP] rw [Finset.sum_singleton] at this ⊢ [GOAL] case intro.refine_2 R : Type u_1 M : Type u_2 inst✝¹⁴ : Semiring R inst✝¹³ : AddCommMonoid M inst✝¹² : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹¹ : Ring R₁ inst✝¹⁰ : AddCommGroup M₁ inst✝⁹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝⁸ : CommSemiring R₂ inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁵ : CommRing R₃ inst✝⁴ : AddCommGroup M₃ inst✝³ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ N L : Submodule R M B : BilinForm K V x : V hx : ¬IsOrtho B x x μ : V → K h : ∑ i in {x}, μ i • i ∈ Submodule.span K ↑{x} ⊓ orthogonal B (Submodule.span K ↑{x}) this : IsOrtho B x (μ x • x) ⊢ μ x • x ∈ ⊥ [PROOFSTEP] suffices hμzero : μ x = 0 [GOAL] case intro.refine_2 R : Type u_1 M : Type u_2 inst✝¹⁴ : Semiring R inst✝¹³ : AddCommMonoid M inst✝¹² : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹¹ : Ring R₁ inst✝¹⁰ : AddCommGroup M₁ inst✝⁹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝⁸ : CommSemiring R₂ inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁵ : CommRing R₃ inst✝⁴ : AddCommGroup M₃ inst✝³ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ N L : Submodule R M B : BilinForm K V x : V hx : ¬IsOrtho B x x μ : V → K h : ∑ i in {x}, μ i • i ∈ Submodule.span K ↑{x} ⊓ orthogonal B (Submodule.span K ↑{x}) this : IsOrtho B x (μ x • x) hμzero : μ x = 0 ⊢ μ x • x ∈ ⊥ [PROOFSTEP] rw [hμzero, zero_smul, Submodule.mem_bot] [GOAL] case hμzero R : Type u_1 M : Type u_2 inst✝¹⁴ : Semiring R inst✝¹³ : AddCommMonoid M inst✝¹² : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹¹ : Ring R₁ inst✝¹⁰ : AddCommGroup M₁ inst✝⁹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝⁸ : CommSemiring R₂ inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁵ : CommRing R₃ inst✝⁴ : AddCommGroup M₃ inst✝³ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ N L : Submodule R M B : BilinForm K V x : V hx : ¬IsOrtho B x x μ : V → K h : ∑ i in {x}, μ i • i ∈ Submodule.span K ↑{x} ⊓ orthogonal B (Submodule.span K ↑{x}) this : IsOrtho B x (μ x • x) ⊢ μ x = 0 [PROOFSTEP] change B x (μ x • x) = 0 at this [GOAL] case hμzero R : Type u_1 M : Type u_2 inst✝¹⁴ : Semiring R inst✝¹³ : AddCommMonoid M inst✝¹² : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹¹ : Ring R₁ inst✝¹⁰ : AddCommGroup M₁ inst✝⁹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝⁸ : CommSemiring R₂ inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁵ : CommRing R₃ inst✝⁴ : AddCommGroup M₃ inst✝³ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ N L : Submodule R M B : BilinForm K V x : V hx : ¬IsOrtho B x x μ : V → K h : ∑ i in {x}, μ i • i ∈ Submodule.span K ↑{x} ⊓ orthogonal B (Submodule.span K ↑{x}) this : bilin B x (μ x • x) = 0 ⊢ μ x = 0 [PROOFSTEP] rw [smul_right] at this [GOAL] case hμzero R : Type u_1 M : Type u_2 inst✝¹⁴ : Semiring R inst✝¹³ : AddCommMonoid M inst✝¹² : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹¹ : Ring R₁ inst✝¹⁰ : AddCommGroup M₁ inst✝⁹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝⁸ : CommSemiring R₂ inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁵ : CommRing R₃ inst✝⁴ : AddCommGroup M₃ inst✝³ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ N L : Submodule R M B : BilinForm K V x : V hx : ¬IsOrtho B x x μ : V → K h : ∑ i in {x}, μ i • i ∈ Submodule.span K ↑{x} ⊓ orthogonal B (Submodule.span K ↑{x}) this : μ x * bilin B x x = 0 ⊢ μ x = 0 [PROOFSTEP] exact eq_zero_of_ne_zero_of_mul_right_eq_zero hx this [GOAL] case intro.refine_1 R : Type u_1 M : Type u_2 inst✝¹⁴ : Semiring R inst✝¹³ : AddCommMonoid M inst✝¹² : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹¹ : Ring R₁ inst✝¹⁰ : AddCommGroup M₁ inst✝⁹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝⁸ : CommSemiring R₂ inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁵ : CommRing R₃ inst✝⁴ : AddCommGroup M₃ inst✝³ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ N L : Submodule R M B : BilinForm K V x : V hx : ¬IsOrtho B x x μ : V → K h : ∑ i in {x}, μ i • i ∈ Submodule.span K ↑{x} ⊓ orthogonal B (Submodule.span K ↑{x}) ⊢ x ∈ Submodule.span K ↑{x} [PROOFSTEP] rw [Submodule.mem_span] [GOAL] case intro.refine_1 R : Type u_1 M : Type u_2 inst✝¹⁴ : Semiring R inst✝¹³ : AddCommMonoid M inst✝¹² : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹¹ : Ring R₁ inst✝¹⁰ : AddCommGroup M₁ inst✝⁹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝⁸ : CommSemiring R₂ inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁵ : CommRing R₃ inst✝⁴ : AddCommGroup M₃ inst✝³ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ N L : Submodule R M B : BilinForm K V x : V hx : ¬IsOrtho B x x μ : V → K h : ∑ i in {x}, μ i • i ∈ Submodule.span K ↑{x} ⊓ orthogonal B (Submodule.span K ↑{x}) ⊢ ∀ (p : Submodule K V), ↑{x} ⊆ ↑p → x ∈ p [PROOFSTEP] exact fun _ hp => hp <| Finset.mem_singleton_self _ [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁴ : Semiring R inst✝¹³ : AddCommMonoid M inst✝¹² : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹¹ : Ring R₁ inst✝¹⁰ : AddCommGroup M₁ inst✝⁹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝⁸ : CommSemiring R₂ inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁵ : CommRing R₃ inst✝⁴ : AddCommGroup M₃ inst✝³ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ N L : Submodule R M B : BilinForm K V x : V ⊢ orthogonal B (Submodule.span K {x}) = LinearMap.ker (↑(↑toLin B) x) [PROOFSTEP] ext y [GOAL] case h R : Type u_1 M : Type u_2 inst✝¹⁴ : Semiring R inst✝¹³ : AddCommMonoid M inst✝¹² : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹¹ : Ring R₁ inst✝¹⁰ : AddCommGroup M₁ inst✝⁹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝⁸ : CommSemiring R₂ inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁵ : CommRing R₃ inst✝⁴ : AddCommGroup M₃ inst✝³ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ N L : Submodule R M B : BilinForm K V x y : V ⊢ y ∈ orthogonal B (Submodule.span K {x}) ↔ y ∈ LinearMap.ker (↑(↑toLin B) x) [PROOFSTEP] simp_rw [mem_orthogonal_iff, LinearMap.mem_ker, Submodule.mem_span_singleton] [GOAL] case h R : Type u_1 M : Type u_2 inst✝¹⁴ : Semiring R inst✝¹³ : AddCommMonoid M inst✝¹² : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹¹ : Ring R₁ inst✝¹⁰ : AddCommGroup M₁ inst✝⁹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝⁸ : CommSemiring R₂ inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁵ : CommRing R₃ inst✝⁴ : AddCommGroup M₃ inst✝³ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ N L : Submodule R M B : BilinForm K V x y : V ⊢ (∀ (n : V), (∃ a, a • x = n) → IsOrtho B n y) ↔ ↑(↑(↑toLin B) x) y = 0 [PROOFSTEP] constructor [GOAL] case h.mp R : Type u_1 M : Type u_2 inst✝¹⁴ : Semiring R inst✝¹³ : AddCommMonoid M inst✝¹² : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹¹ : Ring R₁ inst✝¹⁰ : AddCommGroup M₁ inst✝⁹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝⁸ : CommSemiring R₂ inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁵ : CommRing R₃ inst✝⁴ : AddCommGroup M₃ inst✝³ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ N L : Submodule R M B : BilinForm K V x y : V ⊢ (∀ (n : V), (∃ a, a • x = n) → IsOrtho B n y) → ↑(↑(↑toLin B) x) y = 0 [PROOFSTEP] exact fun h => h x ⟨1, one_smul _ _⟩ [GOAL] case h.mpr R : Type u_1 M : Type u_2 inst✝¹⁴ : Semiring R inst✝¹³ : AddCommMonoid M inst✝¹² : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹¹ : Ring R₁ inst✝¹⁰ : AddCommGroup M₁ inst✝⁹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝⁸ : CommSemiring R₂ inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁵ : CommRing R₃ inst✝⁴ : AddCommGroup M₃ inst✝³ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ N L : Submodule R M B : BilinForm K V x y : V ⊢ ↑(↑(↑toLin B) x) y = 0 → ∀ (n : V), (∃ a, a • x = n) → IsOrtho B n y [PROOFSTEP] rintro h _ ⟨z, rfl⟩ [GOAL] case h.mpr.intro R : Type u_1 M : Type u_2 inst✝¹⁴ : Semiring R inst✝¹³ : AddCommMonoid M inst✝¹² : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹¹ : Ring R₁ inst✝¹⁰ : AddCommGroup M₁ inst✝⁹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝⁸ : CommSemiring R₂ inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁵ : CommRing R₃ inst✝⁴ : AddCommGroup M₃ inst✝³ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ N L : Submodule R M B : BilinForm K V x y : V h : ↑(↑(↑toLin B) x) y = 0 z : K ⊢ IsOrtho B (z • x) y [PROOFSTEP] rw [IsOrtho, smul_left, mul_eq_zero] [GOAL] case h.mpr.intro R : Type u_1 M : Type u_2 inst✝¹⁴ : Semiring R inst✝¹³ : AddCommMonoid M inst✝¹² : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹¹ : Ring R₁ inst✝¹⁰ : AddCommGroup M₁ inst✝⁹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝⁸ : CommSemiring R₂ inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁵ : CommRing R₃ inst✝⁴ : AddCommGroup M₃ inst✝³ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ N L : Submodule R M B : BilinForm K V x y : V h : ↑(↑(↑toLin B) x) y = 0 z : K ⊢ z = 0 ∨ bilin B x y = 0 [PROOFSTEP] exact Or.intro_right _ h [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁴ : Semiring R inst✝¹³ : AddCommMonoid M inst✝¹² : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹¹ : Ring R₁ inst✝¹⁰ : AddCommGroup M₁ inst✝⁹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝⁸ : CommSemiring R₂ inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁵ : CommRing R₃ inst✝⁴ : AddCommGroup M₃ inst✝³ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ N L : Submodule R M B : BilinForm K V x : V hx : ¬IsOrtho B x x ⊢ Submodule.span K {x} ⊔ orthogonal B (Submodule.span K {x}) = ⊤ [PROOFSTEP] rw [orthogonal_span_singleton_eq_toLin_ker] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁴ : Semiring R inst✝¹³ : AddCommMonoid M inst✝¹² : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹¹ : Ring R₁ inst✝¹⁰ : AddCommGroup M₁ inst✝⁹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝⁸ : CommSemiring R₂ inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁵ : CommRing R₃ inst✝⁴ : AddCommGroup M₃ inst✝³ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ N L : Submodule R M B : BilinForm K V x : V hx : ¬IsOrtho B x x ⊢ Submodule.span K {x} ⊔ LinearMap.ker (↑(↑toLin B) x) = ⊤ [PROOFSTEP] exact LinearMap.span_singleton_sup_ker_eq_top _ hx [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝¹ : AddCommMonoid M₂' inst✝ : Module R₂ M₂' B : BilinForm R₂ M₂ e : M₂ ≃ₗ[R₂] M₂' h : Nondegenerate (↑(congr e) B) ⊢ Nondegenerate B [PROOFSTEP] convert h.congr e.symm [GOAL] case h.e'_6 R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝¹ : AddCommMonoid M₂' inst✝ : Module R₂ M₂' B : BilinForm R₂ M₂ e : M₂ ≃ₗ[R₂] M₂' h : Nondegenerate (↑(congr e) B) ⊢ B = ↑(congr (LinearEquiv.symm e)) (↑(congr e) B) [PROOFSTEP] rw [congr_congr, e.self_trans_symm, congr_refl, LinearEquiv.refl_apply] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝¹ : AddCommMonoid M₂' inst✝ : Module R₂ M₂' B : BilinForm R₂ M₂ ⊢ Nondegenerate B ↔ LinearMap.ker (↑toLin B) = ⊥ [PROOFSTEP] rw [LinearMap.ker_eq_bot'] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝¹ : AddCommMonoid M₂' inst✝ : Module R₂ M₂' B : BilinForm R₂ M₂ ⊢ Nondegenerate B ↔ ∀ (m : M₂), ↑(↑toLin B) m = 0 → m = 0 [PROOFSTEP] constructor [GOAL] case mp R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝¹ : AddCommMonoid M₂' inst✝ : Module R₂ M₂' B : BilinForm R₂ M₂ ⊢ Nondegenerate B → ∀ (m : M₂), ↑(↑toLin B) m = 0 → m = 0 [PROOFSTEP] intro h [GOAL] case mpr R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝¹ : AddCommMonoid M₂' inst✝ : Module R₂ M₂' B : BilinForm R₂ M₂ ⊢ (∀ (m : M₂), ↑(↑toLin B) m = 0 → m = 0) → Nondegenerate B [PROOFSTEP] intro h [GOAL] case mp R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝¹ : AddCommMonoid M₂' inst✝ : Module R₂ M₂' B : BilinForm R₂ M₂ h : Nondegenerate B ⊢ ∀ (m : M₂), ↑(↑toLin B) m = 0 → m = 0 [PROOFSTEP] refine' fun m hm => h _ fun x => _ [GOAL] case mp R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝¹ : AddCommMonoid M₂' inst✝ : Module R₂ M₂' B : BilinForm R₂ M₂ h : Nondegenerate B m : M₂ hm : ↑(↑toLin B) m = 0 x : M₂ ⊢ bilin B m x = 0 [PROOFSTEP] rw [← toLin_apply, hm] [GOAL] case mp R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝¹ : AddCommMonoid M₂' inst✝ : Module R₂ M₂' B : BilinForm R₂ M₂ h : Nondegenerate B m : M₂ hm : ↑(↑toLin B) m = 0 x : M₂ ⊢ ↑0 x = 0 [PROOFSTEP] rfl [GOAL] case mpr R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝¹ : AddCommMonoid M₂' inst✝ : Module R₂ M₂' B : BilinForm R₂ M₂ h : ∀ (m : M₂), ↑(↑toLin B) m = 0 → m = 0 ⊢ Nondegenerate B [PROOFSTEP] intro m hm [GOAL] case mpr R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝¹ : AddCommMonoid M₂' inst✝ : Module R₂ M₂' B : BilinForm R₂ M₂ h : ∀ (m : M₂), ↑(↑toLin B) m = 0 → m = 0 m : M₂ hm : ∀ (n : M₂), bilin B m n = 0 ⊢ m = 0 [PROOFSTEP] apply h [GOAL] case mpr.a R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝¹ : AddCommMonoid M₂' inst✝ : Module R₂ M₂' B : BilinForm R₂ M₂ h : ∀ (m : M₂), ↑(↑toLin B) m = 0 → m = 0 m : M₂ hm : ∀ (n : M₂), bilin B m n = 0 ⊢ ↑(↑toLin B) m = 0 [PROOFSTEP] ext x [GOAL] case mpr.a.h R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝¹ : AddCommMonoid M₂' inst✝ : Module R₂ M₂' B : BilinForm R₂ M₂ h : ∀ (m : M₂), ↑(↑toLin B) m = 0 → m = 0 m : M₂ hm : ∀ (n : M₂), bilin B m n = 0 x : M₂ ⊢ ↑(↑(↑toLin B) m) x = ↑0 x [PROOFSTEP] exact hm x [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝¹ : AddCommMonoid M₂' inst✝ : Module R₂ M₂' B : BilinForm R₁ M₁ b : IsRefl B W : Submodule R₁ M₁ hW : Disjoint W (orthogonal B W) ⊢ Nondegenerate (restrict B W) [PROOFSTEP] rintro ⟨x, hx⟩ b₁ [GOAL] case mk R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝¹ : AddCommMonoid M₂' inst✝ : Module R₂ M₂' B : BilinForm R₁ M₁ b : IsRefl B W : Submodule R₁ M₁ hW : Disjoint W (orthogonal B W) x : M₁ hx : x ∈ W b₁ : ∀ (n : { x // x ∈ W }), bilin (restrict B W) { val := x, property := hx } n = 0 ⊢ { val := x, property := hx } = 0 [PROOFSTEP] rw [Submodule.mk_eq_zero, ← Submodule.mem_bot R₁] [GOAL] case mk R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝¹ : AddCommMonoid M₂' inst✝ : Module R₂ M₂' B : BilinForm R₁ M₁ b : IsRefl B W : Submodule R₁ M₁ hW : Disjoint W (orthogonal B W) x : M₁ hx : x ∈ W b₁ : ∀ (n : { x // x ∈ W }), bilin (restrict B W) { val := x, property := hx } n = 0 ⊢ x ∈ ⊥ [PROOFSTEP] refine' hW.le_bot ⟨hx, fun y hy => _⟩ [GOAL] case mk R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝¹ : AddCommMonoid M₂' inst✝ : Module R₂ M₂' B : BilinForm R₁ M₁ b : IsRefl B W : Submodule R₁ M₁ hW : Disjoint W (orthogonal B W) x : M₁ hx : x ∈ W b₁ : ∀ (n : { x // x ∈ W }), bilin (restrict B W) { val := x, property := hx } n = 0 y : M₁ hy : y ∈ W ⊢ IsOrtho B y x [PROOFSTEP] specialize b₁ ⟨y, hy⟩ [GOAL] case mk R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝¹ : AddCommMonoid M₂' inst✝ : Module R₂ M₂' B : BilinForm R₁ M₁ b : IsRefl B W : Submodule R₁ M₁ hW : Disjoint W (orthogonal B W) x : M₁ hx : x ∈ W y : M₁ hy : y ∈ W b₁ : bilin (restrict B W) { val := x, property := hx } { val := y, property := hy } = 0 ⊢ IsOrtho B y x [PROOFSTEP] rw [restrict_apply, Submodule.coe_mk, Submodule.coe_mk] at b₁ [GOAL] case mk R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝¹ : AddCommMonoid M₂' inst✝ : Module R₂ M₂' B : BilinForm R₁ M₁ b : IsRefl B W : Submodule R₁ M₁ hW : Disjoint W (orthogonal B W) x : M₁ hx : x ∈ W y : M₁ hy : y ∈ W b₁ : bilin B x y = 0 ⊢ IsOrtho B y x [PROOFSTEP] exact isOrtho_def.mpr (b x y b₁) [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁷ : Semiring R inst✝¹⁶ : AddCommMonoid M inst✝¹⁵ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁴ : Ring R₁ inst✝¹³ : AddCommGroup M₁ inst✝¹² : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹¹ : CommSemiring R₂ inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁸ : CommRing R₃ inst✝⁷ : AddCommGroup M₃ inst✝⁶ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝² : AddCommMonoid M₂' inst✝¹ : Module R₂ M₂' n : Type w inst✝ : Nontrivial R B : BilinForm R M v : Basis n R M h : iIsOrtho B ↑v hB : Nondegenerate B i : n ⊢ ¬IsOrtho B (↑v i) (↑v i) [PROOFSTEP] intro ho [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁷ : Semiring R inst✝¹⁶ : AddCommMonoid M inst✝¹⁵ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁴ : Ring R₁ inst✝¹³ : AddCommGroup M₁ inst✝¹² : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹¹ : CommSemiring R₂ inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁸ : CommRing R₃ inst✝⁷ : AddCommGroup M₃ inst✝⁶ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝² : AddCommMonoid M₂' inst✝¹ : Module R₂ M₂' n : Type w inst✝ : Nontrivial R B : BilinForm R M v : Basis n R M h : iIsOrtho B ↑v hB : Nondegenerate B i : n ho : IsOrtho B (↑v i) (↑v i) ⊢ False [PROOFSTEP] refine' v.ne_zero i (hB (v i) fun m => _) [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁷ : Semiring R inst✝¹⁶ : AddCommMonoid M inst✝¹⁵ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁴ : Ring R₁ inst✝¹³ : AddCommGroup M₁ inst✝¹² : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹¹ : CommSemiring R₂ inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁸ : CommRing R₃ inst✝⁷ : AddCommGroup M₃ inst✝⁶ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝² : AddCommMonoid M₂' inst✝¹ : Module R₂ M₂' n : Type w inst✝ : Nontrivial R B : BilinForm R M v : Basis n R M h : iIsOrtho B ↑v hB : Nondegenerate B i : n ho : IsOrtho B (↑v i) (↑v i) m : M ⊢ bilin B (↑v i) m = 0 [PROOFSTEP] obtain ⟨vi, rfl⟩ := v.repr.symm.surjective m [GOAL] case intro R : Type u_1 M : Type u_2 inst✝¹⁷ : Semiring R inst✝¹⁶ : AddCommMonoid M inst✝¹⁵ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁴ : Ring R₁ inst✝¹³ : AddCommGroup M₁ inst✝¹² : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹¹ : CommSemiring R₂ inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁸ : CommRing R₃ inst✝⁷ : AddCommGroup M₃ inst✝⁶ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝² : AddCommMonoid M₂' inst✝¹ : Module R₂ M₂' n : Type w inst✝ : Nontrivial R B : BilinForm R M v : Basis n R M h : iIsOrtho B ↑v hB : Nondegenerate B i : n ho : IsOrtho B (↑v i) (↑v i) vi : n →₀ R ⊢ bilin B (↑v i) (↑(LinearEquiv.symm v.repr) vi) = 0 [PROOFSTEP] rw [Basis.repr_symm_apply, Finsupp.total_apply, Finsupp.sum, sum_right] [GOAL] case intro R : Type u_1 M : Type u_2 inst✝¹⁷ : Semiring R inst✝¹⁶ : AddCommMonoid M inst✝¹⁵ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁴ : Ring R₁ inst✝¹³ : AddCommGroup M₁ inst✝¹² : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹¹ : CommSemiring R₂ inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁸ : CommRing R₃ inst✝⁷ : AddCommGroup M₃ inst✝⁶ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝² : AddCommMonoid M₂' inst✝¹ : Module R₂ M₂' n : Type w inst✝ : Nontrivial R B : BilinForm R M v : Basis n R M h : iIsOrtho B ↑v hB : Nondegenerate B i : n ho : IsOrtho B (↑v i) (↑v i) vi : n →₀ R ⊢ ∑ i_1 in vi.support, bilin B (↑v i) (↑vi i_1 • ↑v i_1) = 0 [PROOFSTEP] apply Finset.sum_eq_zero [GOAL] case intro.h R : Type u_1 M : Type u_2 inst✝¹⁷ : Semiring R inst✝¹⁶ : AddCommMonoid M inst✝¹⁵ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁴ : Ring R₁ inst✝¹³ : AddCommGroup M₁ inst✝¹² : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹¹ : CommSemiring R₂ inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁸ : CommRing R₃ inst✝⁷ : AddCommGroup M₃ inst✝⁶ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝² : AddCommMonoid M₂' inst✝¹ : Module R₂ M₂' n : Type w inst✝ : Nontrivial R B : BilinForm R M v : Basis n R M h : iIsOrtho B ↑v hB : Nondegenerate B i : n ho : IsOrtho B (↑v i) (↑v i) vi : n →₀ R ⊢ ∀ (x : n), x ∈ vi.support → bilin B (↑v i) (↑vi x • ↑v x) = 0 [PROOFSTEP] rintro j - [GOAL] case intro.h R : Type u_1 M : Type u_2 inst✝¹⁷ : Semiring R inst✝¹⁶ : AddCommMonoid M inst✝¹⁵ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁴ : Ring R₁ inst✝¹³ : AddCommGroup M₁ inst✝¹² : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹¹ : CommSemiring R₂ inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁸ : CommRing R₃ inst✝⁷ : AddCommGroup M₃ inst✝⁶ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝² : AddCommMonoid M₂' inst✝¹ : Module R₂ M₂' n : Type w inst✝ : Nontrivial R B : BilinForm R M v : Basis n R M h : iIsOrtho B ↑v hB : Nondegenerate B i : n ho : IsOrtho B (↑v i) (↑v i) vi : n →₀ R j : n ⊢ bilin B (↑v i) (↑vi j • ↑v j) = 0 [PROOFSTEP] rw [smul_right] [GOAL] case intro.h R : Type u_1 M : Type u_2 inst✝¹⁷ : Semiring R inst✝¹⁶ : AddCommMonoid M inst✝¹⁵ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁴ : Ring R₁ inst✝¹³ : AddCommGroup M₁ inst✝¹² : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹¹ : CommSemiring R₂ inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁸ : CommRing R₃ inst✝⁷ : AddCommGroup M₃ inst✝⁶ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝² : AddCommMonoid M₂' inst✝¹ : Module R₂ M₂' n : Type w inst✝ : Nontrivial R B : BilinForm R M v : Basis n R M h : iIsOrtho B ↑v hB : Nondegenerate B i : n ho : IsOrtho B (↑v i) (↑v i) vi : n →₀ R j : n ⊢ ↑vi j * bilin B (↑v i) (↑v j) = 0 [PROOFSTEP] convert mul_zero (vi j) using 2 [GOAL] case h.e'_2.h.e'_6 R : Type u_1 M : Type u_2 inst✝¹⁷ : Semiring R inst✝¹⁶ : AddCommMonoid M inst✝¹⁵ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁴ : Ring R₁ inst✝¹³ : AddCommGroup M₁ inst✝¹² : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹¹ : CommSemiring R₂ inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁸ : CommRing R₃ inst✝⁷ : AddCommGroup M₃ inst✝⁶ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝² : AddCommMonoid M₂' inst✝¹ : Module R₂ M₂' n : Type w inst✝ : Nontrivial R B : BilinForm R M v : Basis n R M h : iIsOrtho B ↑v hB : Nondegenerate B i : n ho : IsOrtho B (↑v i) (↑v i) vi : n →₀ R j : n ⊢ bilin B (↑v i) (↑v j) = 0 [PROOFSTEP] obtain rfl | hij := eq_or_ne i j [GOAL] case h.e'_2.h.e'_6.inl R : Type u_1 M : Type u_2 inst✝¹⁷ : Semiring R inst✝¹⁶ : AddCommMonoid M inst✝¹⁵ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁴ : Ring R₁ inst✝¹³ : AddCommGroup M₁ inst✝¹² : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹¹ : CommSemiring R₂ inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁸ : CommRing R₃ inst✝⁷ : AddCommGroup M₃ inst✝⁶ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝² : AddCommMonoid M₂' inst✝¹ : Module R₂ M₂' n : Type w inst✝ : Nontrivial R B : BilinForm R M v : Basis n R M h : iIsOrtho B ↑v hB : Nondegenerate B i : n ho : IsOrtho B (↑v i) (↑v i) vi : n →₀ R ⊢ bilin B (↑v i) (↑v i) = 0 [PROOFSTEP] exact ho [GOAL] case h.e'_2.h.e'_6.inr R : Type u_1 M : Type u_2 inst✝¹⁷ : Semiring R inst✝¹⁶ : AddCommMonoid M inst✝¹⁵ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁴ : Ring R₁ inst✝¹³ : AddCommGroup M₁ inst✝¹² : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹¹ : CommSemiring R₂ inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁸ : CommRing R₃ inst✝⁷ : AddCommGroup M₃ inst✝⁶ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝² : AddCommMonoid M₂' inst✝¹ : Module R₂ M₂' n : Type w inst✝ : Nontrivial R B : BilinForm R M v : Basis n R M h : iIsOrtho B ↑v hB : Nondegenerate B i : n ho : IsOrtho B (↑v i) (↑v i) vi : n →₀ R j : n hij : i ≠ j ⊢ bilin B (↑v i) (↑v j) = 0 [PROOFSTEP] exact h hij [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁸ : Semiring R inst✝¹⁷ : AddCommMonoid M inst✝¹⁶ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁵ : Ring R₁ inst✝¹⁴ : AddCommGroup M₁ inst✝¹³ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹² : CommSemiring R₂ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁹ : CommRing R₃ inst✝⁸ : AddCommGroup M₃ inst✝⁷ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁶ : Field K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝³ : AddCommMonoid M₂' inst✝² : Module R₂ M₂' n : Type w inst✝¹ : Nontrivial R inst✝ : NoZeroDivisors R B : BilinForm R M v : Basis n R M hO : iIsOrtho B ↑v ⊢ Nondegenerate B ↔ ∀ (i : n), ¬IsOrtho B (↑v i) (↑v i) [PROOFSTEP] refine' ⟨hO.not_isOrtho_basis_self_of_nondegenerate, fun ho m hB => _⟩ [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁸ : Semiring R inst✝¹⁷ : AddCommMonoid M inst✝¹⁶ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁵ : Ring R₁ inst✝¹⁴ : AddCommGroup M₁ inst✝¹³ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹² : CommSemiring R₂ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁹ : CommRing R₃ inst✝⁸ : AddCommGroup M₃ inst✝⁷ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁶ : Field K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝³ : AddCommMonoid M₂' inst✝² : Module R₂ M₂' n : Type w inst✝¹ : Nontrivial R inst✝ : NoZeroDivisors R B : BilinForm R M v : Basis n R M hO : iIsOrtho B ↑v ho : ∀ (i : n), ¬IsOrtho B (↑v i) (↑v i) m : M hB : ∀ (n : M), bilin B m n = 0 ⊢ m = 0 [PROOFSTEP] obtain ⟨vi, rfl⟩ := v.repr.symm.surjective m [GOAL] case intro R : Type u_1 M : Type u_2 inst✝¹⁸ : Semiring R inst✝¹⁷ : AddCommMonoid M inst✝¹⁶ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁵ : Ring R₁ inst✝¹⁴ : AddCommGroup M₁ inst✝¹³ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹² : CommSemiring R₂ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁹ : CommRing R₃ inst✝⁸ : AddCommGroup M₃ inst✝⁷ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁶ : Field K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝³ : AddCommMonoid M₂' inst✝² : Module R₂ M₂' n : Type w inst✝¹ : Nontrivial R inst✝ : NoZeroDivisors R B : BilinForm R M v : Basis n R M hO : iIsOrtho B ↑v ho : ∀ (i : n), ¬IsOrtho B (↑v i) (↑v i) vi : n →₀ R hB : ∀ (n_1 : M), bilin B (↑(LinearEquiv.symm v.repr) vi) n_1 = 0 ⊢ ↑(LinearEquiv.symm v.repr) vi = 0 [PROOFSTEP] rw [LinearEquiv.map_eq_zero_iff] [GOAL] case intro R : Type u_1 M : Type u_2 inst✝¹⁸ : Semiring R inst✝¹⁷ : AddCommMonoid M inst✝¹⁶ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁵ : Ring R₁ inst✝¹⁴ : AddCommGroup M₁ inst✝¹³ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹² : CommSemiring R₂ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁹ : CommRing R₃ inst✝⁸ : AddCommGroup M₃ inst✝⁷ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁶ : Field K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝³ : AddCommMonoid M₂' inst✝² : Module R₂ M₂' n : Type w inst✝¹ : Nontrivial R inst✝ : NoZeroDivisors R B : BilinForm R M v : Basis n R M hO : iIsOrtho B ↑v ho : ∀ (i : n), ¬IsOrtho B (↑v i) (↑v i) vi : n →₀ R hB : ∀ (n_1 : M), bilin B (↑(LinearEquiv.symm v.repr) vi) n_1 = 0 ⊢ vi = 0 [PROOFSTEP] ext i [GOAL] case intro.h R : Type u_1 M : Type u_2 inst✝¹⁸ : Semiring R inst✝¹⁷ : AddCommMonoid M inst✝¹⁶ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁵ : Ring R₁ inst✝¹⁴ : AddCommGroup M₁ inst✝¹³ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹² : CommSemiring R₂ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁹ : CommRing R₃ inst✝⁸ : AddCommGroup M₃ inst✝⁷ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁶ : Field K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝³ : AddCommMonoid M₂' inst✝² : Module R₂ M₂' n : Type w inst✝¹ : Nontrivial R inst✝ : NoZeroDivisors R B : BilinForm R M v : Basis n R M hO : iIsOrtho B ↑v ho : ∀ (i : n), ¬IsOrtho B (↑v i) (↑v i) vi : n →₀ R hB : ∀ (n_1 : M), bilin B (↑(LinearEquiv.symm v.repr) vi) n_1 = 0 i : n ⊢ ↑vi i = ↑0 i [PROOFSTEP] rw [Finsupp.zero_apply] [GOAL] case intro.h R : Type u_1 M : Type u_2 inst✝¹⁸ : Semiring R inst✝¹⁷ : AddCommMonoid M inst✝¹⁶ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁵ : Ring R₁ inst✝¹⁴ : AddCommGroup M₁ inst✝¹³ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹² : CommSemiring R₂ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁹ : CommRing R₃ inst✝⁸ : AddCommGroup M₃ inst✝⁷ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁶ : Field K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝³ : AddCommMonoid M₂' inst✝² : Module R₂ M₂' n : Type w inst✝¹ : Nontrivial R inst✝ : NoZeroDivisors R B : BilinForm R M v : Basis n R M hO : iIsOrtho B ↑v ho : ∀ (i : n), ¬IsOrtho B (↑v i) (↑v i) vi : n →₀ R hB : ∀ (n_1 : M), bilin B (↑(LinearEquiv.symm v.repr) vi) n_1 = 0 i : n ⊢ ↑vi i = 0 [PROOFSTEP] specialize hB (v i) [GOAL] case intro.h R : Type u_1 M : Type u_2 inst✝¹⁸ : Semiring R inst✝¹⁷ : AddCommMonoid M inst✝¹⁶ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁵ : Ring R₁ inst✝¹⁴ : AddCommGroup M₁ inst✝¹³ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹² : CommSemiring R₂ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁹ : CommRing R₃ inst✝⁸ : AddCommGroup M₃ inst✝⁷ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁶ : Field K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝³ : AddCommMonoid M₂' inst✝² : Module R₂ M₂' n : Type w inst✝¹ : Nontrivial R inst✝ : NoZeroDivisors R B : BilinForm R M v : Basis n R M hO : iIsOrtho B ↑v ho : ∀ (i : n), ¬IsOrtho B (↑v i) (↑v i) vi : n →₀ R i : n hB : bilin B (↑(LinearEquiv.symm v.repr) vi) (↑v i) = 0 ⊢ ↑vi i = 0 [PROOFSTEP] simp_rw [Basis.repr_symm_apply, Finsupp.total_apply, Finsupp.sum, sum_left, smul_left] at hB [GOAL] case intro.h R : Type u_1 M : Type u_2 inst✝¹⁸ : Semiring R inst✝¹⁷ : AddCommMonoid M inst✝¹⁶ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁵ : Ring R₁ inst✝¹⁴ : AddCommGroup M₁ inst✝¹³ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹² : CommSemiring R₂ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁹ : CommRing R₃ inst✝⁸ : AddCommGroup M₃ inst✝⁷ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁶ : Field K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝³ : AddCommMonoid M₂' inst✝² : Module R₂ M₂' n : Type w inst✝¹ : Nontrivial R inst✝ : NoZeroDivisors R B : BilinForm R M v : Basis n R M hO : iIsOrtho B ↑v ho : ∀ (i : n), ¬IsOrtho B (↑v i) (↑v i) vi : n →₀ R i : n hB : ∑ x in vi.support, ↑vi x * bilin B (↑v x) (↑v i) = 0 ⊢ ↑vi i = 0 [PROOFSTEP] rw [Finset.sum_eq_single i] at hB [GOAL] case intro.h R : Type u_1 M : Type u_2 inst✝¹⁸ : Semiring R inst✝¹⁷ : AddCommMonoid M inst✝¹⁶ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁵ : Ring R₁ inst✝¹⁴ : AddCommGroup M₁ inst✝¹³ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹² : CommSemiring R₂ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁹ : CommRing R₃ inst✝⁸ : AddCommGroup M₃ inst✝⁷ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁶ : Field K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝³ : AddCommMonoid M₂' inst✝² : Module R₂ M₂' n : Type w inst✝¹ : Nontrivial R inst✝ : NoZeroDivisors R B : BilinForm R M v : Basis n R M hO : iIsOrtho B ↑v ho : ∀ (i : n), ¬IsOrtho B (↑v i) (↑v i) vi : n →₀ R i : n hB : ↑vi i * bilin B (↑v i) (↑v i) = 0 ⊢ ↑vi i = 0 [PROOFSTEP] exact eq_zero_of_ne_zero_of_mul_right_eq_zero (ho i) hB [GOAL] case intro.h.h₀ R : Type u_1 M : Type u_2 inst✝¹⁸ : Semiring R inst✝¹⁷ : AddCommMonoid M inst✝¹⁶ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁵ : Ring R₁ inst✝¹⁴ : AddCommGroup M₁ inst✝¹³ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹² : CommSemiring R₂ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁹ : CommRing R₃ inst✝⁸ : AddCommGroup M₃ inst✝⁷ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁶ : Field K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝³ : AddCommMonoid M₂' inst✝² : Module R₂ M₂' n : Type w inst✝¹ : Nontrivial R inst✝ : NoZeroDivisors R B : BilinForm R M v : Basis n R M hO : iIsOrtho B ↑v ho : ∀ (i : n), ¬IsOrtho B (↑v i) (↑v i) vi : n →₀ R i : n hB : ∑ x in vi.support, ↑vi x * bilin B (↑v x) (↑v i) = 0 ⊢ ∀ (b : n), b ∈ vi.support → b ≠ i → ↑vi b * bilin B (↑v b) (↑v i) = 0 [PROOFSTEP] intro j _ hij [GOAL] case intro.h.h₀ R : Type u_1 M : Type u_2 inst✝¹⁸ : Semiring R inst✝¹⁷ : AddCommMonoid M inst✝¹⁶ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁵ : Ring R₁ inst✝¹⁴ : AddCommGroup M₁ inst✝¹³ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹² : CommSemiring R₂ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁹ : CommRing R₃ inst✝⁸ : AddCommGroup M₃ inst✝⁷ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁶ : Field K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝³ : AddCommMonoid M₂' inst✝² : Module R₂ M₂' n : Type w inst✝¹ : Nontrivial R inst✝ : NoZeroDivisors R B : BilinForm R M v : Basis n R M hO : iIsOrtho B ↑v ho : ∀ (i : n), ¬IsOrtho B (↑v i) (↑v i) vi : n →₀ R i : n hB : ∑ x in vi.support, ↑vi x * bilin B (↑v x) (↑v i) = 0 j : n a✝ : j ∈ vi.support hij : j ≠ i ⊢ ↑vi j * bilin B (↑v j) (↑v i) = 0 [PROOFSTEP] convert mul_zero (vi j) using 2 [GOAL] case h.e'_2.h.e'_6 R : Type u_1 M : Type u_2 inst✝¹⁸ : Semiring R inst✝¹⁷ : AddCommMonoid M inst✝¹⁶ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁵ : Ring R₁ inst✝¹⁴ : AddCommGroup M₁ inst✝¹³ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹² : CommSemiring R₂ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁹ : CommRing R₃ inst✝⁸ : AddCommGroup M₃ inst✝⁷ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁶ : Field K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝³ : AddCommMonoid M₂' inst✝² : Module R₂ M₂' n : Type w inst✝¹ : Nontrivial R inst✝ : NoZeroDivisors R B : BilinForm R M v : Basis n R M hO : iIsOrtho B ↑v ho : ∀ (i : n), ¬IsOrtho B (↑v i) (↑v i) vi : n →₀ R i : n hB : ∑ x in vi.support, ↑vi x * bilin B (↑v x) (↑v i) = 0 j : n a✝ : j ∈ vi.support hij : j ≠ i ⊢ bilin B (↑v j) (↑v i) = 0 [PROOFSTEP] exact hO hij [GOAL] case intro.h.h₁ R : Type u_1 M : Type u_2 inst✝¹⁸ : Semiring R inst✝¹⁷ : AddCommMonoid M inst✝¹⁶ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁵ : Ring R₁ inst✝¹⁴ : AddCommGroup M₁ inst✝¹³ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹² : CommSemiring R₂ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁹ : CommRing R₃ inst✝⁸ : AddCommGroup M₃ inst✝⁷ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁶ : Field K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝³ : AddCommMonoid M₂' inst✝² : Module R₂ M₂' n : Type w inst✝¹ : Nontrivial R inst✝ : NoZeroDivisors R B : BilinForm R M v : Basis n R M hO : iIsOrtho B ↑v ho : ∀ (i : n), ¬IsOrtho B (↑v i) (↑v i) vi : n →₀ R i : n hB : ∑ x in vi.support, ↑vi x * bilin B (↑v x) (↑v i) = 0 ⊢ ¬i ∈ vi.support → ↑vi i * bilin B (↑v i) (↑v i) = 0 [PROOFSTEP] intro hi [GOAL] case intro.h.h₁ R : Type u_1 M : Type u_2 inst✝¹⁸ : Semiring R inst✝¹⁷ : AddCommMonoid M inst✝¹⁶ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁵ : Ring R₁ inst✝¹⁴ : AddCommGroup M₁ inst✝¹³ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹² : CommSemiring R₂ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁹ : CommRing R₃ inst✝⁸ : AddCommGroup M₃ inst✝⁷ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁶ : Field K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝³ : AddCommMonoid M₂' inst✝² : Module R₂ M₂' n : Type w inst✝¹ : Nontrivial R inst✝ : NoZeroDivisors R B : BilinForm R M v : Basis n R M hO : iIsOrtho B ↑v ho : ∀ (i : n), ¬IsOrtho B (↑v i) (↑v i) vi : n →₀ R i : n hB : ∑ x in vi.support, ↑vi x * bilin B (↑v x) (↑v i) = 0 hi : ¬i ∈ vi.support ⊢ ↑vi i * bilin B (↑v i) (↑v i) = 0 [PROOFSTEP] convert zero_mul (M₀ := R) _ using 2 [GOAL] case h.e'_2.h.e'_5 R : Type u_1 M : Type u_2 inst✝¹⁸ : Semiring R inst✝¹⁷ : AddCommMonoid M inst✝¹⁶ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁵ : Ring R₁ inst✝¹⁴ : AddCommGroup M₁ inst✝¹³ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹² : CommSemiring R₂ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁹ : CommRing R₃ inst✝⁸ : AddCommGroup M₃ inst✝⁷ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁶ : Field K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝³ : AddCommMonoid M₂' inst✝² : Module R₂ M₂' n : Type w inst✝¹ : Nontrivial R inst✝ : NoZeroDivisors R B : BilinForm R M v : Basis n R M hO : iIsOrtho B ↑v ho : ∀ (i : n), ¬IsOrtho B (↑v i) (↑v i) vi : n →₀ R i : n hB : ∑ x in vi.support, ↑vi x * bilin B (↑v x) (↑v i) = 0 hi : ¬i ∈ vi.support ⊢ ↑vi i = 0 [PROOFSTEP] exact Finsupp.not_mem_support_iff.mp hi [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝¹ : AddCommMonoid M₂' inst✝ : Module R₂ M₂' B : BilinForm K V W : Subspace K V b : IsRefl B ⊢ Submodule.map (Submodule.subtype W) (LinearMap.ker (LinearMap.domRestrict (↑toLin B) W)) = W ⊓ orthogonal B ⊤ [PROOFSTEP] ext x [GOAL] case h R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝¹ : AddCommMonoid M₂' inst✝ : Module R₂ M₂' B : BilinForm K V W : Subspace K V b : IsRefl B x : V ⊢ x ∈ Submodule.map (Submodule.subtype W) (LinearMap.ker (LinearMap.domRestrict (↑toLin B) W)) ↔ x ∈ W ⊓ orthogonal B ⊤ [PROOFSTEP] constructor [GOAL] case h.mp R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝¹ : AddCommMonoid M₂' inst✝ : Module R₂ M₂' B : BilinForm K V W : Subspace K V b : IsRefl B x : V ⊢ x ∈ Submodule.map (Submodule.subtype W) (LinearMap.ker (LinearMap.domRestrict (↑toLin B) W)) → x ∈ W ⊓ orthogonal B ⊤ [PROOFSTEP] intro hx [GOAL] case h.mpr R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝¹ : AddCommMonoid M₂' inst✝ : Module R₂ M₂' B : BilinForm K V W : Subspace K V b : IsRefl B x : V ⊢ x ∈ W ⊓ orthogonal B ⊤ → x ∈ Submodule.map (Submodule.subtype W) (LinearMap.ker (LinearMap.domRestrict (↑toLin B) W)) [PROOFSTEP] intro hx [GOAL] case h.mp R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝¹ : AddCommMonoid M₂' inst✝ : Module R₂ M₂' B : BilinForm K V W : Subspace K V b : IsRefl B x : V hx : x ∈ Submodule.map (Submodule.subtype W) (LinearMap.ker (LinearMap.domRestrict (↑toLin B) W)) ⊢ x ∈ W ⊓ orthogonal B ⊤ [PROOFSTEP] rcases hx with ⟨⟨x, hx⟩, hker, rfl⟩ [GOAL] case h.mp.intro.mk.intro R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝¹ : AddCommMonoid M₂' inst✝ : Module R₂ M₂' B : BilinForm K V W : Subspace K V b : IsRefl B x : V hx : x ∈ W hker : { val := x, property := hx } ∈ ↑(LinearMap.ker (LinearMap.domRestrict (↑toLin B) W)) ⊢ ↑(Submodule.subtype W) { val := x, property := hx } ∈ W ⊓ orthogonal B ⊤ [PROOFSTEP] erw [LinearMap.mem_ker] at hker [GOAL] case h.mp.intro.mk.intro R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝¹ : AddCommMonoid M₂' inst✝ : Module R₂ M₂' B : BilinForm K V W : Subspace K V b : IsRefl B x : V hx : x ∈ W hker : ↑(LinearMap.domRestrict (↑toLin B) W) { val := x, property := hx } = 0 ⊢ ↑(Submodule.subtype W) { val := x, property := hx } ∈ W ⊓ orthogonal B ⊤ [PROOFSTEP] constructor [GOAL] case h.mp.intro.mk.intro.left R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝¹ : AddCommMonoid M₂' inst✝ : Module R₂ M₂' B : BilinForm K V W : Subspace K V b : IsRefl B x : V hx : x ∈ W hker : ↑(LinearMap.domRestrict (↑toLin B) W) { val := x, property := hx } = 0 ⊢ ↑(Submodule.subtype W) { val := x, property := hx } ∈ ↑W [PROOFSTEP] simp [hx] [GOAL] case h.mp.intro.mk.intro.right R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝¹ : AddCommMonoid M₂' inst✝ : Module R₂ M₂' B : BilinForm K V W : Subspace K V b : IsRefl B x : V hx : x ∈ W hker : ↑(LinearMap.domRestrict (↑toLin B) W) { val := x, property := hx } = 0 ⊢ ↑(Submodule.subtype W) { val := x, property := hx } ∈ ↑(orthogonal B ⊤) [PROOFSTEP] intro y _ [GOAL] case h.mp.intro.mk.intro.right R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝¹ : AddCommMonoid M₂' inst✝ : Module R₂ M₂' B : BilinForm K V W : Subspace K V b : IsRefl B x : V hx : x ∈ W hker : ↑(LinearMap.domRestrict (↑toLin B) W) { val := x, property := hx } = 0 y : V a✝ : y ∈ ⊤ ⊢ IsOrtho B y (↑(Submodule.subtype W) { val := x, property := hx }) [PROOFSTEP] rw [IsOrtho, b] [GOAL] case h.mp.intro.mk.intro.right.a R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝¹ : AddCommMonoid M₂' inst✝ : Module R₂ M₂' B : BilinForm K V W : Subspace K V b : IsRefl B x : V hx : x ∈ W hker : ↑(LinearMap.domRestrict (↑toLin B) W) { val := x, property := hx } = 0 y : V a✝ : y ∈ ⊤ ⊢ bilin B (↑(Submodule.subtype W) { val := x, property := hx }) y = 0 [PROOFSTEP] change (B.toLin.domRestrict W) ⟨x, hx⟩ y = 0 [GOAL] case h.mp.intro.mk.intro.right.a R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝¹ : AddCommMonoid M₂' inst✝ : Module R₂ M₂' B : BilinForm K V W : Subspace K V b : IsRefl B x : V hx : x ∈ W hker : ↑(LinearMap.domRestrict (↑toLin B) W) { val := x, property := hx } = 0 y : V a✝ : y ∈ ⊤ ⊢ ↑(↑(LinearMap.domRestrict (↑toLin B) W) { val := x, property := hx }) y = 0 [PROOFSTEP] rw [hker] [GOAL] case h.mp.intro.mk.intro.right.a R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝¹ : AddCommMonoid M₂' inst✝ : Module R₂ M₂' B : BilinForm K V W : Subspace K V b : IsRefl B x : V hx : x ∈ W hker : ↑(LinearMap.domRestrict (↑toLin B) W) { val := x, property := hx } = 0 y : V a✝ : y ∈ ⊤ ⊢ ↑0 y = 0 [PROOFSTEP] rfl [GOAL] case h.mpr R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝¹ : AddCommMonoid M₂' inst✝ : Module R₂ M₂' B : BilinForm K V W : Subspace K V b : IsRefl B x : V hx : x ∈ W ⊓ orthogonal B ⊤ ⊢ x ∈ Submodule.map (Submodule.subtype W) (LinearMap.ker (LinearMap.domRestrict (↑toLin B) W)) [PROOFSTEP] simp_rw [Submodule.mem_map, LinearMap.mem_ker] [GOAL] case h.mpr R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝¹ : AddCommMonoid M₂' inst✝ : Module R₂ M₂' B : BilinForm K V W : Subspace K V b : IsRefl B x : V hx : x ∈ W ⊓ orthogonal B ⊤ ⊢ ∃ y, ↑(LinearMap.domRestrict (↑toLin B) W) y = 0 ∧ ↑(Submodule.subtype W) y = x [PROOFSTEP] refine' ⟨⟨x, hx.1⟩, _, rfl⟩ [GOAL] case h.mpr R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝¹ : AddCommMonoid M₂' inst✝ : Module R₂ M₂' B : BilinForm K V W : Subspace K V b : IsRefl B x : V hx : x ∈ W ⊓ orthogonal B ⊤ ⊢ ↑(LinearMap.domRestrict (↑toLin B) W) { val := x, property := (_ : x ∈ ↑W) } = 0 [PROOFSTEP] ext y [GOAL] case h.mpr.h R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝¹ : AddCommMonoid M₂' inst✝ : Module R₂ M₂' B : BilinForm K V W : Subspace K V b : IsRefl B x : V hx : x ∈ W ⊓ orthogonal B ⊤ y : V ⊢ ↑(↑(LinearMap.domRestrict (↑toLin B) W) { val := x, property := (_ : x ∈ ↑W) }) y = ↑0 y [PROOFSTEP] change B x y = 0 [GOAL] case h.mpr.h R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝¹ : AddCommMonoid M₂' inst✝ : Module R₂ M₂' B : BilinForm K V W : Subspace K V b : IsRefl B x : V hx : x ∈ W ⊓ orthogonal B ⊤ y : V ⊢ bilin B x y = 0 [PROOFSTEP] rw [b] [GOAL] case h.mpr.h.a R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝¹ : AddCommMonoid M₂' inst✝ : Module R₂ M₂' B : BilinForm K V W : Subspace K V b : IsRefl B x : V hx : x ∈ W ⊓ orthogonal B ⊤ y : V ⊢ bilin B y x = 0 [PROOFSTEP] exact hx.2 _ Submodule.mem_top [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝¹ : AddCommMonoid M₂' inst✝ : Module R₂ M₂' B : BilinForm K V W : Subspace K V ⊢ Submodule.dualCoannihilator (LinearMap.range (LinearMap.domRestrict (↑toLin B) W)) = orthogonal B W [PROOFSTEP] ext x [GOAL] case h R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝¹ : AddCommMonoid M₂' inst✝ : Module R₂ M₂' B : BilinForm K V W : Subspace K V x : V ⊢ x ∈ Submodule.dualCoannihilator (LinearMap.range (LinearMap.domRestrict (↑toLin B) W)) ↔ x ∈ orthogonal B W [PROOFSTEP] constructor [GOAL] case h.mp R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝¹ : AddCommMonoid M₂' inst✝ : Module R₂ M₂' B : BilinForm K V W : Subspace K V x : V ⊢ x ∈ Submodule.dualCoannihilator (LinearMap.range (LinearMap.domRestrict (↑toLin B) W)) → x ∈ orthogonal B W [PROOFSTEP] rw [mem_orthogonal_iff] [GOAL] case h.mpr R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝¹ : AddCommMonoid M₂' inst✝ : Module R₂ M₂' B : BilinForm K V W : Subspace K V x : V ⊢ x ∈ orthogonal B W → x ∈ Submodule.dualCoannihilator (LinearMap.range (LinearMap.domRestrict (↑toLin B) W)) [PROOFSTEP] rw [mem_orthogonal_iff] [GOAL] case h.mp R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝¹ : AddCommMonoid M₂' inst✝ : Module R₂ M₂' B : BilinForm K V W : Subspace K V x : V ⊢ x ∈ Submodule.dualCoannihilator (LinearMap.range (LinearMap.domRestrict (↑toLin B) W)) → ∀ (n : V), n ∈ W → IsOrtho B n x [PROOFSTEP] intro hx [GOAL] case h.mpr R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝¹ : AddCommMonoid M₂' inst✝ : Module R₂ M₂' B : BilinForm K V W : Subspace K V x : V ⊢ (∀ (n : V), n ∈ W → IsOrtho B n x) → x ∈ Submodule.dualCoannihilator (LinearMap.range (LinearMap.domRestrict (↑toLin B) W)) [PROOFSTEP] intro hx [GOAL] case h.mp R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝¹ : AddCommMonoid M₂' inst✝ : Module R₂ M₂' B : BilinForm K V W : Subspace K V x : V hx : x ∈ Submodule.dualCoannihilator (LinearMap.range (LinearMap.domRestrict (↑toLin B) W)) ⊢ ∀ (n : V), n ∈ W → IsOrtho B n x [PROOFSTEP] intro y hy [GOAL] case h.mp R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝¹ : AddCommMonoid M₂' inst✝ : Module R₂ M₂' B : BilinForm K V W : Subspace K V x : V hx : x ∈ Submodule.dualCoannihilator (LinearMap.range (LinearMap.domRestrict (↑toLin B) W)) y : V hy : y ∈ W ⊢ IsOrtho B y x [PROOFSTEP] rw [Submodule.mem_dualCoannihilator] at hx [GOAL] case h.mp R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝¹ : AddCommMonoid M₂' inst✝ : Module R₂ M₂' B : BilinForm K V W : Subspace K V x : V hx : ∀ (φ : Module.Dual K V), φ ∈ LinearMap.range (LinearMap.domRestrict (↑toLin B) W) → ↑φ x = 0 y : V hy : y ∈ W ⊢ IsOrtho B y x [PROOFSTEP] refine' hx (B.toLin.domRestrict W ⟨y, hy⟩) ⟨⟨y, hy⟩, rfl⟩ [GOAL] case h.mpr R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝¹ : AddCommMonoid M₂' inst✝ : Module R₂ M₂' B : BilinForm K V W : Subspace K V x : V hx : ∀ (n : V), n ∈ W → IsOrtho B n x ⊢ x ∈ Submodule.dualCoannihilator (LinearMap.range (LinearMap.domRestrict (↑toLin B) W)) [PROOFSTEP] rw [Submodule.mem_dualCoannihilator] [GOAL] case h.mpr R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝¹ : AddCommMonoid M₂' inst✝ : Module R₂ M₂' B : BilinForm K V W : Subspace K V x : V hx : ∀ (n : V), n ∈ W → IsOrtho B n x ⊢ ∀ (φ : Module.Dual K V), φ ∈ LinearMap.range (LinearMap.domRestrict (↑toLin B) W) → ↑φ x = 0 [PROOFSTEP] rintro _ ⟨⟨w, hw⟩, rfl⟩ [GOAL] case h.mpr.intro.mk R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝¹ : AddCommMonoid M₂' inst✝ : Module R₂ M₂' B : BilinForm K V W : Subspace K V x : V hx : ∀ (n : V), n ∈ W → IsOrtho B n x w : V hw : w ∈ W ⊢ ↑(↑(LinearMap.domRestrict (↑toLin B) W) { val := w, property := hw }) x = 0 [PROOFSTEP] exact hx w hw [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁷ : Semiring R inst✝¹⁶ : AddCommMonoid M inst✝¹⁵ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁴ : Ring R₁ inst✝¹³ : AddCommGroup M₁ inst✝¹² : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹¹ : CommSemiring R₂ inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁸ : CommRing R₃ inst✝⁷ : AddCommGroup M₃ inst✝⁶ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝² : AddCommMonoid M₂' inst✝¹ : Module R₂ M₂' inst✝ : FiniteDimensional K V B : BilinForm K V W : Subspace K V b₁ : IsRefl B ⊢ finrank K { x // x ∈ W } + finrank K { x // x ∈ orthogonal B W } = finrank K V + finrank K { x // x ∈ W ⊓ orthogonal B ⊤ } [PROOFSTEP] rw [← toLin_restrict_ker_eq_inf_orthogonal _ _ b₁, ← toLin_restrict_range_dualCoannihilator_eq_orthogonal _ _, finrank_map_subtype_eq] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁷ : Semiring R inst✝¹⁶ : AddCommMonoid M inst✝¹⁵ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁴ : Ring R₁ inst✝¹³ : AddCommGroup M₁ inst✝¹² : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹¹ : CommSemiring R₂ inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁸ : CommRing R₃ inst✝⁷ : AddCommGroup M₃ inst✝⁶ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝² : AddCommMonoid M₂' inst✝¹ : Module R₂ M₂' inst✝ : FiniteDimensional K V B : BilinForm K V W : Subspace K V b₁ : IsRefl B ⊢ finrank K { x // x ∈ W } + finrank K { x // x ∈ dualCoannihilator (LinearMap.range (LinearMap.domRestrict (↑toLin B) W)) } = finrank K V + finrank K { x // x ∈ LinearMap.ker (LinearMap.domRestrict (↑toLin B) W) } [PROOFSTEP] conv_rhs => rw [← @Subspace.finrank_add_finrank_dualCoannihilator_eq K V _ _ _ _ (LinearMap.range (B.toLin.domRestrict W)), add_comm, ← add_assoc, add_comm (finrank K (LinearMap.ker (B.toLin.domRestrict W))), LinearMap.finrank_range_add_finrank_ker] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁷ : Semiring R inst✝¹⁶ : AddCommMonoid M inst✝¹⁵ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁴ : Ring R₁ inst✝¹³ : AddCommGroup M₁ inst✝¹² : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹¹ : CommSemiring R₂ inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁸ : CommRing R₃ inst✝⁷ : AddCommGroup M₃ inst✝⁶ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝² : AddCommMonoid M₂' inst✝¹ : Module R₂ M₂' inst✝ : FiniteDimensional K V B : BilinForm K V W : Subspace K V b₁ : IsRefl B | finrank K V + finrank K { x // x ∈ LinearMap.ker (LinearMap.domRestrict (↑toLin B) W) } [PROOFSTEP] rw [← @Subspace.finrank_add_finrank_dualCoannihilator_eq K V _ _ _ _ (LinearMap.range (B.toLin.domRestrict W)), add_comm, ← add_assoc, add_comm (finrank K (LinearMap.ker (B.toLin.domRestrict W))), LinearMap.finrank_range_add_finrank_ker] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁷ : Semiring R inst✝¹⁶ : AddCommMonoid M inst✝¹⁵ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁴ : Ring R₁ inst✝¹³ : AddCommGroup M₁ inst✝¹² : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹¹ : CommSemiring R₂ inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁸ : CommRing R₃ inst✝⁷ : AddCommGroup M₃ inst✝⁶ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝² : AddCommMonoid M₂' inst✝¹ : Module R₂ M₂' inst✝ : FiniteDimensional K V B : BilinForm K V W : Subspace K V b₁ : IsRefl B | finrank K V + finrank K { x // x ∈ LinearMap.ker (LinearMap.domRestrict (↑toLin B) W) } [PROOFSTEP] rw [← @Subspace.finrank_add_finrank_dualCoannihilator_eq K V _ _ _ _ (LinearMap.range (B.toLin.domRestrict W)), add_comm, ← add_assoc, add_comm (finrank K (LinearMap.ker (B.toLin.domRestrict W))), LinearMap.finrank_range_add_finrank_ker] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁷ : Semiring R inst✝¹⁶ : AddCommMonoid M inst✝¹⁵ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁴ : Ring R₁ inst✝¹³ : AddCommGroup M₁ inst✝¹² : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹¹ : CommSemiring R₂ inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁸ : CommRing R₃ inst✝⁷ : AddCommGroup M₃ inst✝⁶ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝² : AddCommMonoid M₂' inst✝¹ : Module R₂ M₂' inst✝ : FiniteDimensional K V B : BilinForm K V W : Subspace K V b₁ : IsRefl B | finrank K V + finrank K { x // x ∈ LinearMap.ker (LinearMap.domRestrict (↑toLin B) W) } [PROOFSTEP] rw [← @Subspace.finrank_add_finrank_dualCoannihilator_eq K V _ _ _ _ (LinearMap.range (B.toLin.domRestrict W)), add_comm, ← add_assoc, add_comm (finrank K (LinearMap.ker (B.toLin.domRestrict W))), LinearMap.finrank_range_add_finrank_ker] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁷ : Semiring R inst✝¹⁶ : AddCommMonoid M inst✝¹⁵ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁴ : Ring R₁ inst✝¹³ : AddCommGroup M₁ inst✝¹² : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹¹ : CommSemiring R₂ inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁸ : CommRing R₃ inst✝⁷ : AddCommGroup M₃ inst✝⁶ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝² : AddCommMonoid M₂' inst✝¹ : Module R₂ M₂' inst✝ : FiniteDimensional K V B : BilinForm K V W : Subspace K V b₁ : IsRefl B b₂ : Nondegenerate (restrict B W) ⊢ IsCompl W (orthogonal B W) [PROOFSTEP] have : W ⊓ B.orthogonal W = ⊥ := by rw [eq_bot_iff] intro x hx obtain ⟨hx₁, hx₂⟩ := mem_inf.1 hx refine' Subtype.mk_eq_mk.1 (b₂ ⟨x, hx₁⟩ _) rintro ⟨n, hn⟩ rw [restrict_apply, coe_mk, coe_mk, b₁] exact hx₂ n hn [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁷ : Semiring R inst✝¹⁶ : AddCommMonoid M inst✝¹⁵ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁴ : Ring R₁ inst✝¹³ : AddCommGroup M₁ inst✝¹² : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹¹ : CommSemiring R₂ inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁸ : CommRing R₃ inst✝⁷ : AddCommGroup M₃ inst✝⁶ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝² : AddCommMonoid M₂' inst✝¹ : Module R₂ M₂' inst✝ : FiniteDimensional K V B : BilinForm K V W : Subspace K V b₁ : IsRefl B b₂ : Nondegenerate (restrict B W) ⊢ W ⊓ orthogonal B W = ⊥ [PROOFSTEP] rw [eq_bot_iff] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁷ : Semiring R inst✝¹⁶ : AddCommMonoid M inst✝¹⁵ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁴ : Ring R₁ inst✝¹³ : AddCommGroup M₁ inst✝¹² : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹¹ : CommSemiring R₂ inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁸ : CommRing R₃ inst✝⁷ : AddCommGroup M₃ inst✝⁶ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝² : AddCommMonoid M₂' inst✝¹ : Module R₂ M₂' inst✝ : FiniteDimensional K V B : BilinForm K V W : Subspace K V b₁ : IsRefl B b₂ : Nondegenerate (restrict B W) ⊢ W ⊓ orthogonal B W ≤ ⊥ [PROOFSTEP] intro x hx [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁷ : Semiring R inst✝¹⁶ : AddCommMonoid M inst✝¹⁵ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁴ : Ring R₁ inst✝¹³ : AddCommGroup M₁ inst✝¹² : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹¹ : CommSemiring R₂ inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁸ : CommRing R₃ inst✝⁷ : AddCommGroup M₃ inst✝⁶ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝² : AddCommMonoid M₂' inst✝¹ : Module R₂ M₂' inst✝ : FiniteDimensional K V B : BilinForm K V W : Subspace K V b₁ : IsRefl B b₂ : Nondegenerate (restrict B W) x : V hx : x ∈ W ⊓ orthogonal B W ⊢ x ∈ ⊥ [PROOFSTEP] obtain ⟨hx₁, hx₂⟩ := mem_inf.1 hx [GOAL] case intro R : Type u_1 M : Type u_2 inst✝¹⁷ : Semiring R inst✝¹⁶ : AddCommMonoid M inst✝¹⁵ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁴ : Ring R₁ inst✝¹³ : AddCommGroup M₁ inst✝¹² : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹¹ : CommSemiring R₂ inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁸ : CommRing R₃ inst✝⁷ : AddCommGroup M₃ inst✝⁶ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝² : AddCommMonoid M₂' inst✝¹ : Module R₂ M₂' inst✝ : FiniteDimensional K V B : BilinForm K V W : Subspace K V b₁ : IsRefl B b₂ : Nondegenerate (restrict B W) x : V hx : x ∈ W ⊓ orthogonal B W hx₁ : x ∈ W hx₂ : x ∈ orthogonal B W ⊢ x ∈ ⊥ [PROOFSTEP] refine' Subtype.mk_eq_mk.1 (b₂ ⟨x, hx₁⟩ _) [GOAL] case intro R : Type u_1 M : Type u_2 inst✝¹⁷ : Semiring R inst✝¹⁶ : AddCommMonoid M inst✝¹⁵ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁴ : Ring R₁ inst✝¹³ : AddCommGroup M₁ inst✝¹² : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹¹ : CommSemiring R₂ inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁸ : CommRing R₃ inst✝⁷ : AddCommGroup M₃ inst✝⁶ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝² : AddCommMonoid M₂' inst✝¹ : Module R₂ M₂' inst✝ : FiniteDimensional K V B : BilinForm K V W : Subspace K V b₁ : IsRefl B b₂ : Nondegenerate (restrict B W) x : V hx : x ∈ W ⊓ orthogonal B W hx₁ : x ∈ W hx₂ : x ∈ orthogonal B W ⊢ ∀ (n : { x // x ∈ W }), bilin (restrict B W) { val := x, property := hx₁ } n = 0 [PROOFSTEP] rintro ⟨n, hn⟩ [GOAL] case intro.mk R : Type u_1 M : Type u_2 inst✝¹⁷ : Semiring R inst✝¹⁶ : AddCommMonoid M inst✝¹⁵ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁴ : Ring R₁ inst✝¹³ : AddCommGroup M₁ inst✝¹² : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹¹ : CommSemiring R₂ inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁸ : CommRing R₃ inst✝⁷ : AddCommGroup M₃ inst✝⁶ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝² : AddCommMonoid M₂' inst✝¹ : Module R₂ M₂' inst✝ : FiniteDimensional K V B : BilinForm K V W : Subspace K V b₁ : IsRefl B b₂ : Nondegenerate (restrict B W) x : V hx : x ∈ W ⊓ orthogonal B W hx₁ : x ∈ W hx₂ : x ∈ orthogonal B W n : V hn : n ∈ W ⊢ bilin (restrict B W) { val := x, property := hx₁ } { val := n, property := hn } = 0 [PROOFSTEP] rw [restrict_apply, coe_mk, coe_mk, b₁] [GOAL] case intro.mk.a R : Type u_1 M : Type u_2 inst✝¹⁷ : Semiring R inst✝¹⁶ : AddCommMonoid M inst✝¹⁵ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁴ : Ring R₁ inst✝¹³ : AddCommGroup M₁ inst✝¹² : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹¹ : CommSemiring R₂ inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁸ : CommRing R₃ inst✝⁷ : AddCommGroup M₃ inst✝⁶ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝² : AddCommMonoid M₂' inst✝¹ : Module R₂ M₂' inst✝ : FiniteDimensional K V B : BilinForm K V W : Subspace K V b₁ : IsRefl B b₂ : Nondegenerate (restrict B W) x : V hx : x ∈ W ⊓ orthogonal B W hx₁ : x ∈ W hx₂ : x ∈ orthogonal B W n : V hn : n ∈ W ⊢ bilin B n x = 0 [PROOFSTEP] exact hx₂ n hn [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁷ : Semiring R inst✝¹⁶ : AddCommMonoid M inst✝¹⁵ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁴ : Ring R₁ inst✝¹³ : AddCommGroup M₁ inst✝¹² : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹¹ : CommSemiring R₂ inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁸ : CommRing R₃ inst✝⁷ : AddCommGroup M₃ inst✝⁶ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝² : AddCommMonoid M₂' inst✝¹ : Module R₂ M₂' inst✝ : FiniteDimensional K V B : BilinForm K V W : Subspace K V b₁ : IsRefl B b₂ : Nondegenerate (restrict B W) this : W ⊓ orthogonal B W = ⊥ ⊢ IsCompl W (orthogonal B W) [PROOFSTEP] refine' IsCompl.of_eq this (eq_top_of_finrank_eq <| (finrank_le _).antisymm _) [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁷ : Semiring R inst✝¹⁶ : AddCommMonoid M inst✝¹⁵ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁴ : Ring R₁ inst✝¹³ : AddCommGroup M₁ inst✝¹² : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹¹ : CommSemiring R₂ inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁸ : CommRing R₃ inst✝⁷ : AddCommGroup M₃ inst✝⁶ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝² : AddCommMonoid M₂' inst✝¹ : Module R₂ M₂' inst✝ : FiniteDimensional K V B : BilinForm K V W : Subspace K V b₁ : IsRefl B b₂ : Nondegenerate (restrict B W) this : W ⊓ orthogonal B W = ⊥ ⊢ finrank K V ≤ finrank K { x // x ∈ W ⊔ orthogonal B W } [PROOFSTEP] conv_rhs => rw [← add_zero (finrank K _)] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁷ : Semiring R inst✝¹⁶ : AddCommMonoid M inst✝¹⁵ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁴ : Ring R₁ inst✝¹³ : AddCommGroup M₁ inst✝¹² : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹¹ : CommSemiring R₂ inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁸ : CommRing R₃ inst✝⁷ : AddCommGroup M₃ inst✝⁶ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝² : AddCommMonoid M₂' inst✝¹ : Module R₂ M₂' inst✝ : FiniteDimensional K V B : BilinForm K V W : Subspace K V b₁ : IsRefl B b₂ : Nondegenerate (restrict B W) this : W ⊓ orthogonal B W = ⊥ | finrank K { x // x ∈ W ⊔ orthogonal B W } [PROOFSTEP] rw [← add_zero (finrank K _)] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁷ : Semiring R inst✝¹⁶ : AddCommMonoid M inst✝¹⁵ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁴ : Ring R₁ inst✝¹³ : AddCommGroup M₁ inst✝¹² : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹¹ : CommSemiring R₂ inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁸ : CommRing R₃ inst✝⁷ : AddCommGroup M₃ inst✝⁶ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝² : AddCommMonoid M₂' inst✝¹ : Module R₂ M₂' inst✝ : FiniteDimensional K V B : BilinForm K V W : Subspace K V b₁ : IsRefl B b₂ : Nondegenerate (restrict B W) this : W ⊓ orthogonal B W = ⊥ | finrank K { x // x ∈ W ⊔ orthogonal B W } [PROOFSTEP] rw [← add_zero (finrank K _)] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁷ : Semiring R inst✝¹⁶ : AddCommMonoid M inst✝¹⁵ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁴ : Ring R₁ inst✝¹³ : AddCommGroup M₁ inst✝¹² : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹¹ : CommSemiring R₂ inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁸ : CommRing R₃ inst✝⁷ : AddCommGroup M₃ inst✝⁶ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝² : AddCommMonoid M₂' inst✝¹ : Module R₂ M₂' inst✝ : FiniteDimensional K V B : BilinForm K V W : Subspace K V b₁ : IsRefl B b₂ : Nondegenerate (restrict B W) this : W ⊓ orthogonal B W = ⊥ | finrank K { x // x ∈ W ⊔ orthogonal B W } [PROOFSTEP] rw [← add_zero (finrank K _)] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁷ : Semiring R inst✝¹⁶ : AddCommMonoid M inst✝¹⁵ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁴ : Ring R₁ inst✝¹³ : AddCommGroup M₁ inst✝¹² : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹¹ : CommSemiring R₂ inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁸ : CommRing R₃ inst✝⁷ : AddCommGroup M₃ inst✝⁶ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝² : AddCommMonoid M₂' inst✝¹ : Module R₂ M₂' inst✝ : FiniteDimensional K V B : BilinForm K V W : Subspace K V b₁ : IsRefl B b₂ : Nondegenerate (restrict B W) this : W ⊓ orthogonal B W = ⊥ ⊢ finrank K V ≤ finrank K { x // x ∈ W ⊔ orthogonal B W } + 0 [PROOFSTEP] rw [← finrank_bot K V, ← this, finrank_sup_add_finrank_inf_eq, finrank_add_finrank_orthogonal b₁] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁷ : Semiring R inst✝¹⁶ : AddCommMonoid M inst✝¹⁵ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁴ : Ring R₁ inst✝¹³ : AddCommGroup M₁ inst✝¹² : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹¹ : CommSemiring R₂ inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁸ : CommRing R₃ inst✝⁷ : AddCommGroup M₃ inst✝⁶ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝² : AddCommMonoid M₂' inst✝¹ : Module R₂ M₂' inst✝ : FiniteDimensional K V B : BilinForm K V W : Subspace K V b₁ : IsRefl B b₂ : Nondegenerate (restrict B W) this : W ⊓ orthogonal B W = ⊥ ⊢ finrank K V ≤ finrank K V + finrank K { x // x ∈ W ⊓ orthogonal B ⊤ } [PROOFSTEP] exact le_self_add [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁹ : Semiring R inst✝¹⁸ : AddCommMonoid M inst✝¹⁷ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁶ : Ring R₁ inst✝¹⁵ : AddCommGroup M₁ inst✝¹⁴ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹³ : CommSemiring R₂ inst✝¹² : AddCommMonoid M₂ inst✝¹¹ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝¹⁰ : CommRing R₃ inst✝⁹ : AddCommGroup M₃ inst✝⁸ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁷ : Field K inst✝⁶ : AddCommGroup V inst✝⁵ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝⁴ : AddCommMonoid M₂' inst✝³ : Module R₂ M₂' inst✝² : FiniteDimensional K V ι : Type u_12 inst✝¹ : DecidableEq ι inst✝ : Fintype ι B : BilinForm K V hB : Nondegenerate B b : Basis ι K V x : V i : ι ⊢ ↑(↑(dualBasis B hB b).repr x) i = bilin B x (↑b i) [PROOFSTEP] rw [dualBasis, Basis.map_repr, LinearEquiv.symm_symm, LinearEquiv.trans_apply, Basis.dualBasis_repr, toDual_def] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁹ : Semiring R inst✝¹⁸ : AddCommMonoid M inst✝¹⁷ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁶ : Ring R₁ inst✝¹⁵ : AddCommGroup M₁ inst✝¹⁴ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹³ : CommSemiring R₂ inst✝¹² : AddCommMonoid M₂ inst✝¹¹ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝¹⁰ : CommRing R₃ inst✝⁹ : AddCommGroup M₃ inst✝⁸ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁷ : Field K inst✝⁶ : AddCommGroup V inst✝⁵ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝⁴ : AddCommMonoid M₂' inst✝³ : Module R₂ M₂' inst✝² : FiniteDimensional K V ι : Type u_12 inst✝¹ : DecidableEq ι inst✝ : Fintype ι B : BilinForm K V hB : Nondegenerate B b : Basis ι K V i j : ι ⊢ bilin B (↑(dualBasis B hB b) i) (↑b j) = if j = i then 1 else 0 [PROOFSTEP] rw [dualBasis, Basis.map_apply, Basis.coe_dualBasis, ← toDual_def hB, LinearEquiv.apply_symm_apply, Basis.coord_apply, Basis.repr_self, Finsupp.single_apply] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁹ : Semiring R inst✝¹⁸ : AddCommMonoid M inst✝¹⁷ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁶ : Ring R₁ inst✝¹⁵ : AddCommGroup M₁ inst✝¹⁴ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹³ : CommSemiring R₂ inst✝¹² : AddCommMonoid M₂ inst✝¹¹ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝¹⁰ : CommRing R₃ inst✝⁹ : AddCommGroup M₃ inst✝⁸ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁷ : Field K inst✝⁶ : AddCommGroup V inst✝⁵ : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝⁴ : AddCommMonoid M₂' inst✝³ : Module R₂ M₂' inst✝² : FiniteDimensional K V ι : Type u_12 inst✝¹ : DecidableEq ι inst✝ : Fintype ι B : BilinForm K V hB : Nondegenerate B sym : IsSymm B b : Basis ι K V i j : ι ⊢ bilin B (↑b i) (↑(dualBasis B hB b) j) = if i = j then 1 else 0 [PROOFSTEP] rw [sym, apply_dualBasis_left] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝¹ : AddCommMonoid M₂' inst✝ : Module R₂ M₂' B : BilinForm K V b₁ : Nondegenerate B b₂ : IsRefl B x : V hx : ¬IsOrtho B x x ⊢ Nondegenerate (restrict B (orthogonal B (Submodule.span K {x}))) [PROOFSTEP] refine' fun m hm => Submodule.coe_eq_zero.1 (b₁ m.1 fun n => _) [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝¹ : AddCommMonoid M₂' inst✝ : Module R₂ M₂' B : BilinForm K V b₁ : Nondegenerate B b₂ : IsRefl B x : V hx : ¬IsOrtho B x x m : { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } hm : ∀ (n : { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) }), bilin (restrict B (orthogonal B (Submodule.span K {x}))) m n = 0 n : V ⊢ bilin B (↑m) n = 0 [PROOFSTEP] have : n ∈ (K ∙ x) ⊔ B.orthogonal (K ∙ x) := (span_singleton_sup_orthogonal_eq_top hx).symm ▸ Submodule.mem_top [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝¹ : AddCommMonoid M₂' inst✝ : Module R₂ M₂' B : BilinForm K V b₁ : Nondegenerate B b₂ : IsRefl B x : V hx : ¬IsOrtho B x x m : { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } hm : ∀ (n : { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) }), bilin (restrict B (orthogonal B (Submodule.span K {x}))) m n = 0 n : V this : n ∈ Submodule.span K {x} ⊔ orthogonal B (Submodule.span K {x}) ⊢ bilin B (↑m) n = 0 [PROOFSTEP] rcases Submodule.mem_sup.1 this with ⟨y, hy, z, hz, rfl⟩ [GOAL] case intro.intro.intro.intro R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝¹ : AddCommMonoid M₂' inst✝ : Module R₂ M₂' B : BilinForm K V b₁ : Nondegenerate B b₂ : IsRefl B x : V hx : ¬IsOrtho B x x m : { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } hm : ∀ (n : { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) }), bilin (restrict B (orthogonal B (Submodule.span K {x}))) m n = 0 y : V hy : y ∈ Submodule.span K {x} z : V hz : z ∈ orthogonal B (Submodule.span K {x}) this : y + z ∈ Submodule.span K {x} ⊔ orthogonal B (Submodule.span K {x}) ⊢ bilin B (↑m) (y + z) = 0 [PROOFSTEP] specialize hm ⟨z, hz⟩ [GOAL] case intro.intro.intro.intro R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝¹ : AddCommMonoid M₂' inst✝ : Module R₂ M₂' B : BilinForm K V b₁ : Nondegenerate B b₂ : IsRefl B x : V hx : ¬IsOrtho B x x m : { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } y : V hy : y ∈ Submodule.span K {x} z : V hz : z ∈ orthogonal B (Submodule.span K {x}) this : y + z ∈ Submodule.span K {x} ⊔ orthogonal B (Submodule.span K {x}) hm : bilin (restrict B (orthogonal B (Submodule.span K {x}))) m { val := z, property := hz } = 0 ⊢ bilin B (↑m) (y + z) = 0 [PROOFSTEP] rw [restrict] at hm [GOAL] case intro.intro.intro.intro R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝¹ : AddCommMonoid M₂' inst✝ : Module R₂ M₂' B : BilinForm K V b₁ : Nondegenerate B b₂ : IsRefl B x : V hx : ¬IsOrtho B x x m : { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } y : V hy : y ∈ Submodule.span K {x} z : V hz : z ∈ orthogonal B (Submodule.span K {x}) this : y + z ∈ Submodule.span K {x} ⊔ orthogonal B (Submodule.span K {x}) hm : bilin { bilin := fun a b => bilin B ↑a ↑b, bilin_add_left := (_ : ∀ (x_1 x_2 x_3 : { x_3 // x_3 ∈ orthogonal B (Submodule.span K {x}) }), bilin B (↑x_1 + ↑x_2) ↑x_3 = bilin B ↑x_1 ↑x_3 + bilin B ↑x_2 ↑x_3), bilin_smul_left := (_ : ∀ (x_1 : K) (x_2 x_3 : { x_3 // x_3 ∈ orthogonal B (Submodule.span K {x}) }), bilin B (x_1 • ↑x_2) ↑x_3 = x_1 * bilin B ↑x_2 ↑x_3), bilin_add_right := (_ : ∀ (x_1 x_2 x_3 : { x_3 // x_3 ∈ orthogonal B (Submodule.span K {x}) }), bilin B (↑x_1) (↑x_2 + ↑x_3) = bilin B ↑x_1 ↑x_2 + bilin B ↑x_1 ↑x_3), bilin_smul_right := (_ : ∀ (x_1 : K) (x_2 x_3 : { x_3 // x_3 ∈ orthogonal B (Submodule.span K {x}) }), bilin B (↑x_2) (x_1 • ↑x_3) = x_1 * bilin B ↑x_2 ↑x_3) } m { val := z, property := hz } = 0 ⊢ bilin B (↑m) (y + z) = 0 [PROOFSTEP] erw [add_right, show B m.1 y = 0 by rw [b₂]; exact m.2 y hy, hm, add_zero] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝¹ : AddCommMonoid M₂' inst✝ : Module R₂ M₂' B : BilinForm K V b₁ : Nondegenerate B b₂ : IsRefl B x : V hx : ¬IsOrtho B x x m : { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } y : V hy : y ∈ Submodule.span K {x} z : V hz : z ∈ orthogonal B (Submodule.span K {x}) this : y + z ∈ Submodule.span K {x} ⊔ orthogonal B (Submodule.span K {x}) hm : bilin { bilin := fun a b => bilin B ↑a ↑b, bilin_add_left := (_ : ∀ (x_1 x_2 x_3 : { x_3 // x_3 ∈ orthogonal B (Submodule.span K {x}) }), bilin B (↑x_1 + ↑x_2) ↑x_3 = bilin B ↑x_1 ↑x_3 + bilin B ↑x_2 ↑x_3), bilin_smul_left := (_ : ∀ (x_1 : K) (x_2 x_3 : { x_3 // x_3 ∈ orthogonal B (Submodule.span K {x}) }), bilin B (x_1 • ↑x_2) ↑x_3 = x_1 * bilin B ↑x_2 ↑x_3), bilin_add_right := (_ : ∀ (x_1 x_2 x_3 : { x_3 // x_3 ∈ orthogonal B (Submodule.span K {x}) }), bilin B (↑x_1) (↑x_2 + ↑x_3) = bilin B ↑x_1 ↑x_2 + bilin B ↑x_1 ↑x_3), bilin_smul_right := (_ : ∀ (x_1 : K) (x_2 x_3 : { x_3 // x_3 ∈ orthogonal B (Submodule.span K {x}) }), bilin B (↑x_2) (x_1 • ↑x_3) = x_1 * bilin B ↑x_2 ↑x_3) } m { val := z, property := hz } = 0 ⊢ bilin B (↑m) y = 0 [PROOFSTEP] rw [b₂] [GOAL] case a R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝¹ : AddCommMonoid M₂' inst✝ : Module R₂ M₂' B : BilinForm K V b₁ : Nondegenerate B b₂ : IsRefl B x : V hx : ¬IsOrtho B x x m : { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } y : V hy : y ∈ Submodule.span K {x} z : V hz : z ∈ orthogonal B (Submodule.span K {x}) this : y + z ∈ Submodule.span K {x} ⊔ orthogonal B (Submodule.span K {x}) hm : bilin { bilin := fun a b => bilin B ↑a ↑b, bilin_add_left := (_ : ∀ (x_1 x_2 x_3 : { x_3 // x_3 ∈ orthogonal B (Submodule.span K {x}) }), bilin B (↑x_1 + ↑x_2) ↑x_3 = bilin B ↑x_1 ↑x_3 + bilin B ↑x_2 ↑x_3), bilin_smul_left := (_ : ∀ (x_1 : K) (x_2 x_3 : { x_3 // x_3 ∈ orthogonal B (Submodule.span K {x}) }), bilin B (x_1 • ↑x_2) ↑x_3 = x_1 * bilin B ↑x_2 ↑x_3), bilin_add_right := (_ : ∀ (x_1 x_2 x_3 : { x_3 // x_3 ∈ orthogonal B (Submodule.span K {x}) }), bilin B (↑x_1) (↑x_2 + ↑x_3) = bilin B ↑x_1 ↑x_2 + bilin B ↑x_1 ↑x_3), bilin_smul_right := (_ : ∀ (x_1 : K) (x_2 x_3 : { x_3 // x_3 ∈ orthogonal B (Submodule.span K {x}) }), bilin B (↑x_2) (x_1 • ↑x_3) = x_1 * bilin B ↑x_2 ↑x_3) } m { val := z, property := hz } = 0 ⊢ bilin B y ↑m = 0 [PROOFSTEP] exact m.2 y hy [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝¹ : AddCommMonoid M₂' inst✝ : Module R₂ M₂' B : BilinForm R₁ M₁ b : Nondegenerate B φ ψ : M₁ →ₗ[R₁] M₁ h : compLeft B φ = compLeft B ψ ⊢ φ = ψ [PROOFSTEP] ext w [GOAL] case h R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝¹ : AddCommMonoid M₂' inst✝ : Module R₂ M₂' B : BilinForm R₁ M₁ b : Nondegenerate B φ ψ : M₁ →ₗ[R₁] M₁ h : compLeft B φ = compLeft B ψ w : M₁ ⊢ ↑φ w = ↑ψ w [PROOFSTEP] refine' eq_of_sub_eq_zero (b _ _) [GOAL] case h R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝¹ : AddCommMonoid M₂' inst✝ : Module R₂ M₂' B : BilinForm R₁ M₁ b : Nondegenerate B φ ψ : M₁ →ₗ[R₁] M₁ h : compLeft B φ = compLeft B ψ w : M₁ ⊢ ∀ (n : M₁), bilin B (↑φ w - ↑ψ w) n = 0 [PROOFSTEP] intro v [GOAL] case h R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝¹ : AddCommMonoid M₂' inst✝ : Module R₂ M₂' B : BilinForm R₁ M₁ b : Nondegenerate B φ ψ : M₁ →ₗ[R₁] M₁ h : compLeft B φ = compLeft B ψ w v : M₁ ⊢ bilin B (↑φ w - ↑ψ w) v = 0 [PROOFSTEP] rw [sub_left, ← compLeft_apply, ← compLeft_apply, ← h, sub_self] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁶ : Semiring R inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹³ : Ring R₁ inst✝¹² : AddCommGroup M₁ inst✝¹¹ : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁷ : CommRing R₃ inst✝⁶ : AddCommGroup M₃ inst✝⁵ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V B✝ : BilinForm R M B₁ : BilinForm R₁ M₁ B₂ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝¹ : AddCommMonoid M₂' inst✝ : Module R₂ M₂' B : BilinForm R₁ M₁ b : Nondegenerate B φ ψ₁ ψ₂ : M₁ →ₗ[R₁] M₁ hψ₁ : IsAdjointPair B B ψ₁ φ hψ₂ : IsAdjointPair B B ψ₂ φ v w : M₁ ⊢ bilin (compLeft B ψ₁) v w = bilin (compLeft B ψ₂) v w [PROOFSTEP] rw [compLeft_apply, compLeft_apply, hψ₁, hψ₂] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁷ : Semiring R inst✝¹⁶ : AddCommMonoid M inst✝¹⁵ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁴ : Ring R₁ inst✝¹³ : AddCommGroup M₁ inst✝¹² : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹¹ : CommSemiring R₂ inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁸ : CommRing R₃ inst✝⁷ : AddCommGroup M₃ inst✝⁶ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V B : BilinForm R M B₁✝ : BilinForm R₁ M₁ B₂✝ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝² : AddCommMonoid M₂' inst✝¹ : Module R₂ M₂' inst✝ : FiniteDimensional K V B₁ B₂ : BilinForm K V b₂ : Nondegenerate B₂ v : V ⊢ ↑(↑toLin B₂) (↑(symmCompOfNondegenerate B₁ B₂ b₂) v) = ↑(↑toLin B₁) v [PROOFSTEP] erw [symmCompOfNondegenerate, LinearEquiv.apply_symm_apply (B₂.toDual b₂) _] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁷ : Semiring R inst✝¹⁶ : AddCommMonoid M inst✝¹⁵ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁴ : Ring R₁ inst✝¹³ : AddCommGroup M₁ inst✝¹² : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹¹ : CommSemiring R₂ inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁸ : CommRing R₃ inst✝⁷ : AddCommGroup M₃ inst✝⁶ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V B : BilinForm R M B₁✝ : BilinForm R₁ M₁ B₂✝ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝² : AddCommMonoid M₂' inst✝¹ : Module R₂ M₂' inst✝ : FiniteDimensional K V B₁ B₂ : BilinForm K V b₂ : Nondegenerate B₂ v w : V ⊢ bilin B₂ (↑(symmCompOfNondegenerate B₁ B₂ b₂) w) v = bilin B₁ w v [PROOFSTEP] conv_lhs => rw [← BilinForm.toLin_apply, comp_symmCompOfNondegenerate_apply] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁷ : Semiring R inst✝¹⁶ : AddCommMonoid M inst✝¹⁵ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁴ : Ring R₁ inst✝¹³ : AddCommGroup M₁ inst✝¹² : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹¹ : CommSemiring R₂ inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁸ : CommRing R₃ inst✝⁷ : AddCommGroup M₃ inst✝⁶ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V B : BilinForm R M B₁✝ : BilinForm R₁ M₁ B₂✝ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝² : AddCommMonoid M₂' inst✝¹ : Module R₂ M₂' inst✝ : FiniteDimensional K V B₁ B₂ : BilinForm K V b₂ : Nondegenerate B₂ v w : V | bilin B₂ (↑(symmCompOfNondegenerate B₁ B₂ b₂) w) v [PROOFSTEP] rw [← BilinForm.toLin_apply, comp_symmCompOfNondegenerate_apply] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁷ : Semiring R inst✝¹⁶ : AddCommMonoid M inst✝¹⁵ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁴ : Ring R₁ inst✝¹³ : AddCommGroup M₁ inst✝¹² : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹¹ : CommSemiring R₂ inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁸ : CommRing R₃ inst✝⁷ : AddCommGroup M₃ inst✝⁶ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V B : BilinForm R M B₁✝ : BilinForm R₁ M₁ B₂✝ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝² : AddCommMonoid M₂' inst✝¹ : Module R₂ M₂' inst✝ : FiniteDimensional K V B₁ B₂ : BilinForm K V b₂ : Nondegenerate B₂ v w : V | bilin B₂ (↑(symmCompOfNondegenerate B₁ B₂ b₂) w) v [PROOFSTEP] rw [← BilinForm.toLin_apply, comp_symmCompOfNondegenerate_apply] [GOAL] R : Type u_1 M : Type u_2 inst✝¹⁷ : Semiring R inst✝¹⁶ : AddCommMonoid M inst✝¹⁵ : Module R M R₁ : Type u_3 M₁ : Type u_4 inst✝¹⁴ : Ring R₁ inst✝¹³ : AddCommGroup M₁ inst✝¹² : Module R₁ M₁ R₂ : Type u_5 M₂ : Type u_6 inst✝¹¹ : CommSemiring R₂ inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : Module R₂ M₂ R₃ : Type u_7 M₃ : Type u_8 inst✝⁸ : CommRing R₃ inst✝⁷ : AddCommGroup M₃ inst✝⁶ : Module R₃ M₃ V : Type u_9 K : Type u_10 inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V B : BilinForm R M B₁✝ : BilinForm R₁ M₁ B₂✝ : BilinForm R₂ M₂ M₂' : Type u_11 inst✝² : AddCommMonoid M₂' inst✝¹ : Module R₂ M₂' inst✝ : FiniteDimensional K V B₁ B₂ : BilinForm K V b₂ : Nondegenerate B₂ v w : V | bilin B₂ (↑(symmCompOfNondegenerate B₁ B₂ b₂) w) v [PROOFSTEP] rw [← BilinForm.toLin_apply, comp_symmCompOfNondegenerate_apply]
{"mathlib_filename": "Mathlib.LinearAlgebra.BilinearForm", "llama_tokens": 153991}
[GOAL] R : Type u M : Type v N : Type w inst✝⁷ : Ring R inst✝⁶ : StrongRankCondition R inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : Module.Free R M inst✝² : AddCommGroup N inst✝¹ : Module R N inst✝ : Module.Free R N ι : Type w ⊢ Module.rank R (ι →₀ M) = Cardinal.lift #ι * Cardinal.lift (Module.rank R M) [PROOFSTEP] obtain ⟨⟨_, bs⟩⟩ := Module.Free.exists_basis (R := R) (M := M) [GOAL] case intro.mk R : Type u M : Type v N : Type w inst✝⁷ : Ring R inst✝⁶ : StrongRankCondition R inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : Module.Free R M inst✝² : AddCommGroup N inst✝¹ : Module R N inst✝ : Module.Free R N ι : Type w fst✝ : Type v bs : Basis fst✝ R M ⊢ Module.rank R (ι →₀ M) = Cardinal.lift #ι * Cardinal.lift (Module.rank R M) [PROOFSTEP] rw [← bs.mk_eq_rank'', ← (Finsupp.basis fun _ : ι => bs).mk_eq_rank'', Cardinal.mk_sigma, Cardinal.sum_const] [GOAL] R : Type u M : Type v N : Type w inst✝⁷ : Ring R inst✝⁶ : StrongRankCondition R inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : Module.Free R M inst✝² : AddCommGroup N inst✝¹ : Module R N inst✝ : Module.Free R N ι : Type v ⊢ Module.rank R (ι →₀ M) = #ι * Module.rank R M [PROOFSTEP] simp [rank_finsupp] [GOAL] R : Type u M : Type v N : Type w inst✝⁷ : Ring R inst✝⁶ : StrongRankCondition R inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : Module.Free R M inst✝² : AddCommGroup N inst✝¹ : Module R N inst✝ : Module.Free R N ι : Type w ⊢ Module.rank R (ι →₀ R) = Cardinal.lift #ι [PROOFSTEP] simp [rank_finsupp] [GOAL] R : Type u M : Type v N : Type w inst✝⁷ : Ring R inst✝⁶ : StrongRankCondition R inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : Module.Free R M inst✝² : AddCommGroup N inst✝¹ : Module R N inst✝ : Module.Free R N ι : Type u ⊢ Module.rank R (ι →₀ R) = #ι [PROOFSTEP] simp [GOAL] R : Type u M✝ : Type v N : Type w inst✝¹⁰ : Ring R inst✝⁹ : StrongRankCondition R inst✝⁸ : AddCommGroup M✝ inst✝⁷ : Module R M✝ inst✝⁶ : Module.Free R M✝ inst✝⁵ : AddCommGroup N inst✝⁴ : Module R N inst✝³ : Module.Free R N ι : Type v M : ι → Type w inst✝² : (i : ι) → AddCommGroup (M i) inst✝¹ : (i : ι) → Module R (M i) inst✝ : ∀ (i : ι), Module.Free R (M i) ⊢ Module.rank R (⨁ (i : ι), M i) = sum fun i => Module.rank R (M i) [PROOFSTEP] let B i := chooseBasis R (M i) [GOAL] R : Type u M✝ : Type v N : Type w inst✝¹⁰ : Ring R inst✝⁹ : StrongRankCondition R inst✝⁸ : AddCommGroup M✝ inst✝⁷ : Module R M✝ inst✝⁶ : Module.Free R M✝ inst✝⁵ : AddCommGroup N inst✝⁴ : Module R N inst✝³ : Module.Free R N ι : Type v M : ι → Type w inst✝² : (i : ι) → AddCommGroup (M i) inst✝¹ : (i : ι) → Module R (M i) inst✝ : ∀ (i : ι), Module.Free R (M i) B : (i : ι) → Basis (ChooseBasisIndex R (M i)) R (M i) := fun i => chooseBasis R (M i) ⊢ Module.rank R (⨁ (i : ι), M i) = sum fun i => Module.rank R (M i) [PROOFSTEP] let b : Basis _ R (⨁ i, M i) := DFinsupp.basis fun i => B i [GOAL] R : Type u M✝ : Type v N : Type w inst✝¹⁰ : Ring R inst✝⁹ : StrongRankCondition R inst✝⁸ : AddCommGroup M✝ inst✝⁷ : Module R M✝ inst✝⁶ : Module.Free R M✝ inst✝⁵ : AddCommGroup N inst✝⁴ : Module R N inst✝³ : Module.Free R N ι : Type v M : ι → Type w inst✝² : (i : ι) → AddCommGroup (M i) inst✝¹ : (i : ι) → Module R (M i) inst✝ : ∀ (i : ι), Module.Free R (M i) B : (i : ι) → Basis (ChooseBasisIndex R (M i)) R (M i) := fun i => chooseBasis R (M i) b : Basis ((i : ι) × ChooseBasisIndex R (M i)) R (⨁ (i : ι), M i) := DFinsupp.basis fun i => B i ⊢ Module.rank R (⨁ (i : ι), M i) = sum fun i => Module.rank R (M i) [PROOFSTEP] simp [← b.mk_eq_rank'', fun i => (B i).mk_eq_rank''] [GOAL] R : Type u M : Type v N : Type w inst✝⁹ : Ring R inst✝⁸ : StrongRankCondition R inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : Module.Free R M inst✝⁴ : AddCommGroup N inst✝³ : Module R N inst✝² : Module.Free R N m : Type v n : Type w inst✝¹ : Finite m inst✝ : Finite n ⊢ Module.rank R (Matrix m n R) = Cardinal.lift #m * Cardinal.lift #n [PROOFSTEP] cases nonempty_fintype m [GOAL] case intro R : Type u M : Type v N : Type w inst✝⁹ : Ring R inst✝⁸ : StrongRankCondition R inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : Module.Free R M inst✝⁴ : AddCommGroup N inst✝³ : Module R N inst✝² : Module.Free R N m : Type v n : Type w inst✝¹ : Finite m inst✝ : Finite n val✝ : Fintype m ⊢ Module.rank R (Matrix m n R) = Cardinal.lift #m * Cardinal.lift #n [PROOFSTEP] cases nonempty_fintype n [GOAL] case intro.intro R : Type u M : Type v N : Type w inst✝⁹ : Ring R inst✝⁸ : StrongRankCondition R inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : Module.Free R M inst✝⁴ : AddCommGroup N inst✝³ : Module R N inst✝² : Module.Free R N m : Type v n : Type w inst✝¹ : Finite m inst✝ : Finite n val✝¹ : Fintype m val✝ : Fintype n ⊢ Module.rank R (Matrix m n R) = Cardinal.lift #m * Cardinal.lift #n [PROOFSTEP] have h := (Matrix.stdBasis R m n).mk_eq_rank [GOAL] case intro.intro R : Type u M : Type v N : Type w inst✝⁹ : Ring R inst✝⁸ : StrongRankCondition R inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : Module.Free R M inst✝⁴ : AddCommGroup N inst✝³ : Module R N inst✝² : Module.Free R N m : Type v n : Type w inst✝¹ : Finite m inst✝ : Finite n val✝¹ : Fintype m val✝ : Fintype n h : Cardinal.lift #(m × n) = Cardinal.lift (Module.rank R (Matrix m n R)) ⊢ Module.rank R (Matrix m n R) = Cardinal.lift #m * Cardinal.lift #n [PROOFSTEP] rw [← lift_lift.{max v w u, max v w}, lift_inj] at h [GOAL] case intro.intro R : Type u M : Type v N : Type w inst✝⁹ : Ring R inst✝⁸ : StrongRankCondition R inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : Module.Free R M inst✝⁴ : AddCommGroup N inst✝³ : Module R N inst✝² : Module.Free R N m : Type v n : Type w inst✝¹ : Finite m inst✝ : Finite n val✝¹ : Fintype m val✝ : Fintype n h : Cardinal.lift #(m × n) = Module.rank R (Matrix m n R) ⊢ Module.rank R (Matrix m n R) = Cardinal.lift #m * Cardinal.lift #n [PROOFSTEP] simpa using h.symm [GOAL] R : Type u M : Type v N : Type w inst✝⁹ : Ring R inst✝⁸ : StrongRankCondition R inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : Module.Free R M inst✝⁴ : AddCommGroup N inst✝³ : Module R N inst✝² : Module.Free R N m n : Type v inst✝¹ : Finite m inst✝ : Finite n ⊢ Module.rank R (Matrix m n R) = Cardinal.lift (#m * #n) [PROOFSTEP] rw [rank_matrix, lift_mul, lift_umax.{v, u}] [GOAL] R : Type u M : Type v N : Type w inst✝⁹ : Ring R inst✝⁸ : StrongRankCondition R inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : Module.Free R M inst✝⁴ : AddCommGroup N inst✝³ : Module R N inst✝² : Module.Free R N m n : Type u inst✝¹ : Finite m inst✝ : Finite n ⊢ Module.rank R (Matrix m n R) = #m * #n [PROOFSTEP] simp [GOAL] R : Type u M : Type v N : Type w inst✝⁷ : CommRing R inst✝⁶ : StrongRankCondition R inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : Module.Free R M inst✝² : AddCommGroup N inst✝¹ : Module R N inst✝ : Module.Free R N ⊢ Module.rank R (M ⊗[R] N) = Cardinal.lift (Module.rank R M) * Cardinal.lift (Module.rank R N) [PROOFSTEP] obtain ⟨⟨_, bM⟩⟩ := Module.Free.exists_basis (R := R) (M := M) [GOAL] case intro.mk R : Type u M : Type v N : Type w inst✝⁷ : CommRing R inst✝⁶ : StrongRankCondition R inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : Module.Free R M inst✝² : AddCommGroup N inst✝¹ : Module R N inst✝ : Module.Free R N fst✝ : Type v bM : Basis fst✝ R M ⊢ Module.rank R (M ⊗[R] N) = Cardinal.lift (Module.rank R M) * Cardinal.lift (Module.rank R N) [PROOFSTEP] obtain ⟨⟨_, bN⟩⟩ := Module.Free.exists_basis (R := R) (M := N) [GOAL] case intro.mk.intro.mk R : Type u M : Type v N : Type w inst✝⁷ : CommRing R inst✝⁶ : StrongRankCondition R inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : Module.Free R M inst✝² : AddCommGroup N inst✝¹ : Module R N inst✝ : Module.Free R N fst✝¹ : Type v bM : Basis fst✝¹ R M fst✝ : Type w bN : Basis fst✝ R N ⊢ Module.rank R (M ⊗[R] N) = Cardinal.lift (Module.rank R M) * Cardinal.lift (Module.rank R N) [PROOFSTEP] rw [← bM.mk_eq_rank'', ← bN.mk_eq_rank'', ← (bM.tensorProduct bN).mk_eq_rank'', Cardinal.mk_prod] [GOAL] R : Type u M : Type v N✝ : Type w inst✝¹⁰ : CommRing R inst✝⁹ : StrongRankCondition R inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M inst✝⁶ : Module.Free R M inst✝⁵ : AddCommGroup N✝ inst✝⁴ : Module R N✝ inst✝³ : Module.Free R N✝ N : Type v inst✝² : AddCommGroup N inst✝¹ : Module R N inst✝ : Module.Free R N ⊢ Module.rank R (M ⊗[R] N) = Module.rank R M * Module.rank R N [PROOFSTEP] simp
{"mathlib_filename": "Mathlib.LinearAlgebra.FreeModule.Rank", "llama_tokens": 4033}
[GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M ⊢ LinearIndependent R v ↔ ∀ (l : ι →₀ R), ↑(Finsupp.total ι M R v) l = 0 → l = 0 [PROOFSTEP] simp [LinearIndependent, LinearMap.ker_eq_bot'] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hf : ∀ (l : ι →₀ R), ↑(Finsupp.total ι M R v) l = 0 → l = 0 s : Finset ι g : ι → R hg : ∑ i in s, g i • v i = 0 i : ι his : i ∈ s ⊢ ↑(Finsupp.total ι M R v) (∑ i in s, Finsupp.single i (g i)) = 0 [PROOFSTEP] simpa only [LinearMap.map_sum, Finsupp.total_single] using hg [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hf : ∀ (l : ι →₀ R), ↑(Finsupp.total ι M R v) l = 0 → l = 0 s : Finset ι g : ι → R hg : ∑ i in s, g i • v i = 0 i : ι his : i ∈ s h : ∑ i in s, Finsupp.single i (g i) = 0 ⊢ g i = ↑(Finsupp.lapply i) (Finsupp.single i (g i)) [PROOFSTEP] {rw [Finsupp.lapply_apply, Finsupp.single_eq_same] } [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hf : ∀ (l : ι →₀ R), ↑(Finsupp.total ι M R v) l = 0 → l = 0 s : Finset ι g : ι → R hg : ∑ i in s, g i • v i = 0 i : ι his : i ∈ s h : ∑ i in s, Finsupp.single i (g i) = 0 ⊢ g i = ↑(Finsupp.lapply i) (Finsupp.single i (g i)) [PROOFSTEP] rw [Finsupp.lapply_apply, Finsupp.single_eq_same] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hf : ∀ (l : ι →₀ R), ↑(Finsupp.total ι M R v) l = 0 → l = 0 s : Finset ι g : ι → R hg : ∑ i in s, g i • v i = 0 i : ι his : i ∈ s h : ∑ i in s, Finsupp.single i (g i) = 0 j : ι _hjs : j ∈ s hji : j ≠ i ⊢ ↑(Finsupp.lapply i) (Finsupp.single j (g j)) = 0 [PROOFSTEP] rw [Finsupp.lapply_apply, Finsupp.single_eq_of_ne hji] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M ⊢ LinearIndependent R v ↔ ∀ (s : Finset ι) (g : ι → R), (∀ (i : ι), ¬i ∈ s → g i = 0) → ∑ i in s, g i • v i = 0 → ∀ (i : ι), g i = 0 [PROOFSTEP] classical exact linearIndependent_iff'.trans ⟨fun H s g hg hv i => if his : i ∈ s then H s g hv i his else hg i his, fun H s g hg i hi => by convert H s (fun j => if j ∈ s then g j else 0) (fun j hj => if_neg hj) (by simp_rw [ite_smul, zero_smul, Finset.sum_extend_by_zero, hg]) i exact (if_pos hi).symm⟩ [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M ⊢ LinearIndependent R v ↔ ∀ (s : Finset ι) (g : ι → R), (∀ (i : ι), ¬i ∈ s → g i = 0) → ∑ i in s, g i • v i = 0 → ∀ (i : ι), g i = 0 [PROOFSTEP] exact linearIndependent_iff'.trans ⟨fun H s g hg hv i => if his : i ∈ s then H s g hv i his else hg i his, fun H s g hg i hi => by convert H s (fun j => if j ∈ s then g j else 0) (fun j hj => if_neg hj) (by simp_rw [ite_smul, zero_smul, Finset.sum_extend_by_zero, hg]) i exact (if_pos hi).symm⟩ [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M H : ∀ (s : Finset ι) (g : ι → R), (∀ (i : ι), ¬i ∈ s → g i = 0) → ∑ i in s, g i • v i = 0 → ∀ (i : ι), g i = 0 s : Finset ι g : ι → R hg : ∑ i in s, g i • v i = 0 i : ι hi : i ∈ s ⊢ g i = 0 [PROOFSTEP] convert H s (fun j => if j ∈ s then g j else 0) (fun j hj => if_neg hj) (by simp_rw [ite_smul, zero_smul, Finset.sum_extend_by_zero, hg]) i [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M H : ∀ (s : Finset ι) (g : ι → R), (∀ (i : ι), ¬i ∈ s → g i = 0) → ∑ i in s, g i • v i = 0 → ∀ (i : ι), g i = 0 s : Finset ι g : ι → R hg : ∑ i in s, g i • v i = 0 i : ι hi : i ∈ s ⊢ ∑ i in s, (fun j => if j ∈ s then g j else 0) i • v i = 0 [PROOFSTEP] simp_rw [ite_smul, zero_smul, Finset.sum_extend_by_zero, hg] [GOAL] case h.e'_2 ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M H : ∀ (s : Finset ι) (g : ι → R), (∀ (i : ι), ¬i ∈ s → g i = 0) → ∑ i in s, g i • v i = 0 → ∀ (i : ι), g i = 0 s : Finset ι g : ι → R hg : ∑ i in s, g i • v i = 0 i : ι hi : i ∈ s ⊢ g i = if i ∈ s then g i else 0 [PROOFSTEP] exact (if_pos hi).symm [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M ⊢ ¬LinearIndependent R v ↔ ∃ s g, ∑ i in s, g i • v i = 0 ∧ ∃ i, i ∈ s ∧ g i ≠ 0 [PROOFSTEP] rw [linearIndependent_iff'] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M ⊢ (¬∀ (s : Finset ι) (g : ι → R), ∑ i in s, g i • v i = 0 → ∀ (i : ι), i ∈ s → g i = 0) ↔ ∃ s g, ∑ i in s, g i • v i = 0 ∧ ∃ i, i ∈ s ∧ g i ≠ 0 [PROOFSTEP] simp only [exists_prop, not_forall] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁷ : Semiring R inst✝⁶ : AddCommMonoid M inst✝⁵ : AddCommMonoid M' inst✝⁴ : AddCommMonoid M'' inst✝³ : Module R M inst✝² : Module R M' inst✝¹ : Module R M'' a b : R x y : M inst✝ : Fintype ι ⊢ LinearIndependent R v ↔ ∀ (g : ι → R), ∑ i : ι, g i • v i = 0 → ∀ (i : ι), g i = 0 [PROOFSTEP] refine' ⟨fun H g => by simpa using linearIndependent_iff'.1 H Finset.univ g, fun H => linearIndependent_iff''.2 fun s g hg hs i => H _ _ _⟩ [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁷ : Semiring R inst✝⁶ : AddCommMonoid M inst✝⁵ : AddCommMonoid M' inst✝⁴ : AddCommMonoid M'' inst✝³ : Module R M inst✝² : Module R M' inst✝¹ : Module R M'' a b : R x y : M inst✝ : Fintype ι H : LinearIndependent R v g : ι → R ⊢ ∑ i : ι, g i • v i = 0 → ∀ (i : ι), g i = 0 [PROOFSTEP] simpa using linearIndependent_iff'.1 H Finset.univ g [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁷ : Semiring R inst✝⁶ : AddCommMonoid M inst✝⁵ : AddCommMonoid M' inst✝⁴ : AddCommMonoid M'' inst✝³ : Module R M inst✝² : Module R M' inst✝¹ : Module R M'' a b : R x y : M inst✝ : Fintype ι H : ∀ (g : ι → R), ∑ i : ι, g i • v i = 0 → ∀ (i : ι), g i = 0 s : Finset ι g : ι → R hg : ∀ (i : ι), ¬i ∈ s → g i = 0 hs : ∑ i in s, g i • v i = 0 i : ι ⊢ ∑ i : ι, g i • v i = 0 [PROOFSTEP] rw [← hs] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁷ : Semiring R inst✝⁶ : AddCommMonoid M inst✝⁵ : AddCommMonoid M' inst✝⁴ : AddCommMonoid M'' inst✝³ : Module R M inst✝² : Module R M' inst✝¹ : Module R M'' a b : R x y : M inst✝ : Fintype ι H : ∀ (g : ι → R), ∑ i : ι, g i • v i = 0 → ∀ (i : ι), g i = 0 s : Finset ι g : ι → R hg : ∀ (i : ι), ¬i ∈ s → g i = 0 hs : ∑ i in s, g i • v i = 0 i : ι ⊢ ∑ i : ι, g i • v i = ∑ i in s, g i • v i [PROOFSTEP] refine' (Finset.sum_subset (Finset.subset_univ _) fun i _ hi => _).symm [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁷ : Semiring R inst✝⁶ : AddCommMonoid M inst✝⁵ : AddCommMonoid M' inst✝⁴ : AddCommMonoid M'' inst✝³ : Module R M inst✝² : Module R M' inst✝¹ : Module R M'' a b : R x y : M inst✝ : Fintype ι H : ∀ (g : ι → R), ∑ i : ι, g i • v i = 0 → ∀ (i : ι), g i = 0 s : Finset ι g : ι → R hg : ∀ (i : ι), ¬i ∈ s → g i = 0 hs : ∑ i in s, g i • v i = 0 i✝ i : ι x✝ : i ∈ Finset.univ hi : ¬i ∈ s ⊢ g i • v i = 0 [PROOFSTEP] rw [hg i hi, zero_smul] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁸ : Semiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M' inst✝⁵ : AddCommMonoid M'' inst✝⁴ : Module R M inst✝³ : Module R M' inst✝² : Module R M'' a b : R x y : M inst✝¹ : Fintype ι inst✝ : DecidableEq ι ⊢ LinearIndependent R v ↔ LinearMap.ker (↑(LinearMap.lsum R (fun x => R) ℕ) fun i => LinearMap.smulRight LinearMap.id (v i)) = ⊥ [PROOFSTEP] simp [Fintype.linearIndependent_iff, LinearMap.ker_eq_bot', funext_iff] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁷ : Semiring R inst✝⁶ : AddCommMonoid M inst✝⁵ : AddCommMonoid M' inst✝⁴ : AddCommMonoid M'' inst✝³ : Module R M inst✝² : Module R M' inst✝¹ : Module R M'' a b : R x y : M inst✝ : Fintype ι ⊢ ¬LinearIndependent R v ↔ ∃ g, ∑ i : ι, g i • v i = 0 ∧ ∃ i, g i ≠ 0 [PROOFSTEP] simpa using not_iff_not.2 Fintype.linearIndependent_iff [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁷ : Semiring R inst✝⁶ : AddCommMonoid M inst✝⁵ : AddCommMonoid M' inst✝⁴ : AddCommMonoid M'' inst✝³ : Module R M inst✝² : Module R M' inst✝¹ : Module R M'' a b : R x y : M inst✝ : Nontrivial R i : ι hv : LinearIndependent R v h : v i = 0 ⊢ 1 = 0 [PROOFSTEP] suffices (Finsupp.single i 1 : ι →₀ R) i = 0 by simpa [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁷ : Semiring R inst✝⁶ : AddCommMonoid M inst✝⁵ : AddCommMonoid M' inst✝⁴ : AddCommMonoid M'' inst✝³ : Module R M inst✝² : Module R M' inst✝¹ : Module R M'' a b : R x y : M inst✝ : Nontrivial R i : ι hv : LinearIndependent R v h : v i = 0 this : ↑(Finsupp.single i 1) i = 0 ⊢ 1 = 0 [PROOFSTEP] simpa [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁷ : Semiring R inst✝⁶ : AddCommMonoid M inst✝⁵ : AddCommMonoid M' inst✝⁴ : AddCommMonoid M'' inst✝³ : Module R M inst✝² : Module R M' inst✝¹ : Module R M'' a b : R x y : M inst✝ : Nontrivial R i : ι hv : LinearIndependent R v h : v i = 0 ⊢ ↑(Finsupp.single i 1) i = 0 [PROOFSTEP] rw [linearIndependent_iff.1 hv (Finsupp.single i 1)] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁷ : Semiring R inst✝⁶ : AddCommMonoid M inst✝⁵ : AddCommMonoid M' inst✝⁴ : AddCommMonoid M'' inst✝³ : Module R M inst✝² : Module R M' inst✝¹ : Module R M'' a b : R x y : M inst✝ : Nontrivial R i : ι hv : LinearIndependent R v h : v i = 0 ⊢ ↑0 i = 0 [PROOFSTEP] simp [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁷ : Semiring R inst✝⁶ : AddCommMonoid M inst✝⁵ : AddCommMonoid M' inst✝⁴ : AddCommMonoid M'' inst✝³ : Module R M inst✝² : Module R M' inst✝¹ : Module R M'' a b : R x y : M inst✝ : Nontrivial R i : ι hv : LinearIndependent R v h : v i = 0 ⊢ ↑(Finsupp.total ι M R v) (Finsupp.single i 1) = 0 [PROOFSTEP] simp [h] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x✝ y✝ x y : M h : LinearIndependent R ![x, y] s t : R h' : s • x + t • y = 0 ⊢ s = 0 ∧ t = 0 [PROOFSTEP] have := linearIndependent_iff'.1 h Finset.univ ![s, t] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x✝ y✝ x y : M h : LinearIndependent R ![x, y] s t : R h' : s • x + t • y = 0 this : ∑ i : Fin (Nat.succ (Nat.succ 0)), Matrix.vecCons s ![t] i • Matrix.vecCons x ![y] i = 0 → ∀ (i : Fin (Nat.succ (Nat.succ 0))), i ∈ Finset.univ → Matrix.vecCons s ![t] i = 0 ⊢ s = 0 ∧ t = 0 [PROOFSTEP] simp only [Fin.sum_univ_two, Matrix.cons_val_zero, Matrix.cons_val_one, Matrix.head_cons, h', Finset.mem_univ, forall_true_left] at this [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x✝ y✝ x y : M h : LinearIndependent R ![x, y] s t : R h' : s • x + t • y = 0 this : ∀ (i : Fin (Nat.succ (Nat.succ 0))), Matrix.vecCons s ![t] i = 0 ⊢ s = 0 ∧ t = 0 [PROOFSTEP] exact ⟨this 0, this 1⟩ [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M h : LinearIndependent R v f : ι' → ι hf : Injective f ⊢ LinearIndependent R (v ∘ f) [PROOFSTEP] rw [linearIndependent_iff, Finsupp.total_comp] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M h : LinearIndependent R v f : ι' → ι hf : Injective f ⊢ ∀ (l : ι' →₀ R), ↑(LinearMap.comp (Finsupp.total ι M R v) (Finsupp.lmapDomain R R f)) l = 0 → l = 0 [PROOFSTEP] intro l hl [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M h : LinearIndependent R v f : ι' → ι hf : Injective f l : ι' →₀ R hl : ↑(LinearMap.comp (Finsupp.total ι M R v) (Finsupp.lmapDomain R R f)) l = 0 ⊢ l = 0 [PROOFSTEP] have h_map_domain : ∀ x, (Finsupp.mapDomain f l) (f x) = 0 := by rw [linearIndependent_iff.1 h (Finsupp.mapDomain f l) hl]; simp [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M h : LinearIndependent R v f : ι' → ι hf : Injective f l : ι' →₀ R hl : ↑(LinearMap.comp (Finsupp.total ι M R v) (Finsupp.lmapDomain R R f)) l = 0 ⊢ ∀ (x : ι'), ↑(Finsupp.mapDomain f l) (f x) = 0 [PROOFSTEP] rw [linearIndependent_iff.1 h (Finsupp.mapDomain f l) hl] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M h : LinearIndependent R v f : ι' → ι hf : Injective f l : ι' →₀ R hl : ↑(LinearMap.comp (Finsupp.total ι M R v) (Finsupp.lmapDomain R R f)) l = 0 ⊢ ∀ (x : ι'), ↑0 (f x) = 0 [PROOFSTEP] simp [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M h : LinearIndependent R v f : ι' → ι hf : Injective f l : ι' →₀ R hl : ↑(LinearMap.comp (Finsupp.total ι M R v) (Finsupp.lmapDomain R R f)) l = 0 h_map_domain : ∀ (x : ι'), ↑(Finsupp.mapDomain f l) (f x) = 0 ⊢ l = 0 [PROOFSTEP] ext x [GOAL] case h ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x✝ y : M h : LinearIndependent R v f : ι' → ι hf : Injective f l : ι' →₀ R hl : ↑(LinearMap.comp (Finsupp.total ι M R v) (Finsupp.lmapDomain R R f)) l = 0 h_map_domain : ∀ (x : ι'), ↑(Finsupp.mapDomain f l) (f x) = 0 x : ι' ⊢ ↑l x = ↑0 x [PROOFSTEP] convert h_map_domain x [GOAL] case h.e'_2 ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x✝ y : M h : LinearIndependent R v f : ι' → ι hf : Injective f l : ι' →₀ R hl : ↑(LinearMap.comp (Finsupp.total ι M R v) (Finsupp.lmapDomain R R f)) l = 0 h_map_domain : ∀ (x : ι'), ↑(Finsupp.mapDomain f l) (f x) = 0 x : ι' ⊢ ↑l x = ↑(Finsupp.mapDomain f l) (f x) [PROOFSTEP] rw [Finsupp.mapDomain_apply hf] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M i : LinearIndependent R v ⊢ LinearIndependent R Subtype.val [PROOFSTEP] simpa using i.comp _ (rangeSplitting_injective v) [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv : LinearIndependent R v f : M →ₗ[R] M' hf_inj : Disjoint (span R (range v)) (LinearMap.ker f) ⊢ LinearIndependent R (↑f ∘ v) [PROOFSTEP] rw [disjoint_iff_inf_le, ← Set.image_univ, Finsupp.span_image_eq_map_total, map_inf_eq_map_inf_comap, map_le_iff_le_comap, comap_bot, Finsupp.supported_univ, top_inf_eq] at hf_inj [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv : LinearIndependent R v f : M →ₗ[R] M' hf_inj : comap (Finsupp.total ι M R v) (LinearMap.ker f) ≤ LinearMap.ker (Finsupp.total ι M R v) ⊢ LinearIndependent R (↑f ∘ v) [PROOFSTEP] unfold LinearIndependent at hv ⊢ [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv : LinearMap.ker (Finsupp.total ι M R v) = ⊥ f : M →ₗ[R] M' hf_inj : comap (Finsupp.total ι M R v) (LinearMap.ker f) ≤ LinearMap.ker (Finsupp.total ι M R v) ⊢ LinearMap.ker (Finsupp.total ι M' R (↑f ∘ v)) = ⊥ [PROOFSTEP] rw [hv, le_bot_iff] at hf_inj [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv : LinearMap.ker (Finsupp.total ι M R v) = ⊥ f : M →ₗ[R] M' hf_inj : comap (Finsupp.total ι M R v) (LinearMap.ker f) = ⊥ ⊢ LinearMap.ker (Finsupp.total ι M' R (↑f ∘ v)) = ⊥ [PROOFSTEP] haveI : Inhabited M := ⟨0⟩ [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv : LinearMap.ker (Finsupp.total ι M R v) = ⊥ f : M →ₗ[R] M' hf_inj : comap (Finsupp.total ι M R v) (LinearMap.ker f) = ⊥ this : Inhabited M ⊢ LinearMap.ker (Finsupp.total ι M' R (↑f ∘ v)) = ⊥ [PROOFSTEP] rw [Finsupp.total_comp, @Finsupp.lmapDomain_total _ _ R _ _ _ _ _ _ _ _ _ _ f, LinearMap.ker_comp, hf_inj] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv : LinearMap.ker (Finsupp.total ι M R v) = ⊥ f : M →ₗ[R] M' hf_inj : comap (Finsupp.total ι M R v) (LinearMap.ker f) = ⊥ this : Inhabited M ⊢ ∀ (i : ι), ↑f (v i) = ↑f (v i) [PROOFSTEP] exact fun _ => rfl [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M f : M →ₗ[R] M' hv : LinearIndependent R (↑f ∘ v) ⊢ Disjoint (span R (range v)) (LinearMap.ker f) [PROOFSTEP] rw [LinearIndependent, Finsupp.total_comp, Finsupp.lmapDomain_total R _ f (fun _ ↦ rfl), LinearMap.ker_comp] at hv [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M f : M →ₗ[R] M' hv : comap (Finsupp.total ι M R fun x => v x) (LinearMap.ker f) = ⊥ ⊢ Disjoint (span R (range v)) (LinearMap.ker f) [PROOFSTEP] rw [disjoint_iff_inf_le, ← Set.image_univ, Finsupp.span_image_eq_map_total, map_inf_eq_map_inf_comap, hv, inf_bot_eq, map_bot] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv : LinearIndependent R v f : M →ₗ[R] M' hf_inj : LinearMap.ker f = ⊥ ⊢ Disjoint (span R (range v)) (LinearMap.ker f) [PROOFSTEP] simp [hf_inj] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M f : M →ₗ[R] M' hfv : LinearIndependent R (↑f ∘ v) s : Finset ι g : ι → R hg : ∑ i in s, g i • v i = 0 i : ι his : i ∈ s ⊢ ∑ i in s, g i • ↑f (v i) = 0 [PROOFSTEP] simp_rw [← f.map_smul, ← f.map_sum, hg, f.map_zero] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M f : M →ₗ[R] M' hf_inj : ker f = ⊥ h : LinearIndependent R v ⊢ Disjoint (span R (Set.range v)) (ker f) [PROOFSTEP] simp only [hf_inj, disjoint_bot_right] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v✝ : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x✝ y : M m : ℕ x : M v : Fin m → M hli : LinearIndependent R v x_ortho : ∀ (c : R) (y : { x // x ∈ span R (range v) }), c • x + ↑y = 0 → c = 0 ⊢ LinearIndependent R (Fin.cons x v) [PROOFSTEP] rw [Fintype.linearIndependent_iff] at hli ⊢ [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v✝ : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x✝ y : M m : ℕ x : M v : Fin m → M hli✝ : LinearIndependent R v hli : ∀ (g : Fin m → R), ∑ i : Fin m, g i • v i = 0 → ∀ (i : Fin m), g i = 0 x_ortho : ∀ (c : R) (y : { x // x ∈ span R (range v) }), c • x + ↑y = 0 → c = 0 ⊢ ∀ (g : Fin (m + 1) → R), ∑ i : Fin (m + 1), g i • Fin.cons x v i = 0 → ∀ (i : Fin (m + 1)), g i = 0 [PROOFSTEP] rintro g total_eq j [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v✝ : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x✝ y : M m : ℕ x : M v : Fin m → M hli✝ : LinearIndependent R v hli : ∀ (g : Fin m → R), ∑ i : Fin m, g i • v i = 0 → ∀ (i : Fin m), g i = 0 x_ortho : ∀ (c : R) (y : { x // x ∈ span R (range v) }), c • x + ↑y = 0 → c = 0 g : Fin (m + 1) → R total_eq : ∑ i : Fin (m + 1), g i • Fin.cons x v i = 0 j : Fin (m + 1) ⊢ g j = 0 [PROOFSTEP] simp_rw [Fin.sum_univ_succ, Fin.cons_zero, Fin.cons_succ] at total_eq [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v✝ : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x✝ y : M m : ℕ x : M v : Fin m → M hli✝ : LinearIndependent R v hli : ∀ (g : Fin m → R), ∑ i : Fin m, g i • v i = 0 → ∀ (i : Fin m), g i = 0 x_ortho : ∀ (c : R) (y : { x // x ∈ span R (range v) }), c • x + ↑y = 0 → c = 0 g : Fin (m + 1) → R j : Fin (m + 1) total_eq : g 0 • x + ∑ x : Fin m, g (Fin.succ x) • v x = 0 ⊢ g j = 0 [PROOFSTEP] have : g 0 = 0 := by refine' x_ortho (g 0) ⟨∑ i : Fin m, g i.succ • v i, _⟩ total_eq exact sum_mem fun i _ => smul_mem _ _ (subset_span ⟨i, rfl⟩) [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v✝ : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x✝ y : M m : ℕ x : M v : Fin m → M hli✝ : LinearIndependent R v hli : ∀ (g : Fin m → R), ∑ i : Fin m, g i • v i = 0 → ∀ (i : Fin m), g i = 0 x_ortho : ∀ (c : R) (y : { x // x ∈ span R (range v) }), c • x + ↑y = 0 → c = 0 g : Fin (m + 1) → R j : Fin (m + 1) total_eq : g 0 • x + ∑ x : Fin m, g (Fin.succ x) • v x = 0 ⊢ g 0 = 0 [PROOFSTEP] refine' x_ortho (g 0) ⟨∑ i : Fin m, g i.succ • v i, _⟩ total_eq [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v✝ : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x✝ y : M m : ℕ x : M v : Fin m → M hli✝ : LinearIndependent R v hli : ∀ (g : Fin m → R), ∑ i : Fin m, g i • v i = 0 → ∀ (i : Fin m), g i = 0 x_ortho : ∀ (c : R) (y : { x // x ∈ span R (range v) }), c • x + ↑y = 0 → c = 0 g : Fin (m + 1) → R j : Fin (m + 1) total_eq : g 0 • x + ∑ x : Fin m, g (Fin.succ x) • v x = 0 ⊢ ∑ i : Fin m, g (Fin.succ i) • v i ∈ span R (range v) [PROOFSTEP] exact sum_mem fun i _ => smul_mem _ _ (subset_span ⟨i, rfl⟩) [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v✝ : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x✝ y : M m : ℕ x : M v : Fin m → M hli✝ : LinearIndependent R v hli : ∀ (g : Fin m → R), ∑ i : Fin m, g i • v i = 0 → ∀ (i : Fin m), g i = 0 x_ortho : ∀ (c : R) (y : { x // x ∈ span R (range v) }), c • x + ↑y = 0 → c = 0 g : Fin (m + 1) → R j : Fin (m + 1) total_eq : g 0 • x + ∑ x : Fin m, g (Fin.succ x) • v x = 0 this : g 0 = 0 ⊢ g j = 0 [PROOFSTEP] rw [this, zero_smul, zero_add] at total_eq [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v✝ : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x✝ y : M m : ℕ x : M v : Fin m → M hli✝ : LinearIndependent R v hli : ∀ (g : Fin m → R), ∑ i : Fin m, g i • v i = 0 → ∀ (i : Fin m), g i = 0 x_ortho : ∀ (c : R) (y : { x // x ∈ span R (range v) }), c • x + ↑y = 0 → c = 0 g : Fin (m + 1) → R j : Fin (m + 1) total_eq : ∑ x : Fin m, g (Fin.succ x) • v x = 0 this : g 0 = 0 ⊢ g j = 0 [PROOFSTEP] exact Fin.cases this (hli _ total_eq) j [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝¹⁰ : Semiring R inst✝⁹ : AddCommMonoid M inst✝⁸ : AddCommMonoid M' inst✝⁷ : AddCommMonoid M'' inst✝⁶ : Module R M inst✝⁵ : Module R M' inst✝⁴ : Module R M'' a b : R x y : M inst✝³ : Semiring K inst✝² : SMulWithZero R K inst✝¹ : Module K M inst✝ : IsScalarTower R K M hinj : Injective fun r => r • 1 li : LinearIndependent K v ⊢ LinearIndependent R v [PROOFSTEP] refine' linearIndependent_iff'.mpr fun s g hg i hi => hinj _ [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝¹⁰ : Semiring R inst✝⁹ : AddCommMonoid M inst✝⁸ : AddCommMonoid M' inst✝⁷ : AddCommMonoid M'' inst✝⁶ : Module R M inst✝⁵ : Module R M' inst✝⁴ : Module R M'' a b : R x y : M inst✝³ : Semiring K inst✝² : SMulWithZero R K inst✝¹ : Module K M inst✝ : IsScalarTower R K M hinj : Injective fun r => r • 1 li : LinearIndependent K v s : Finset ι g : ι → R hg : ∑ i in s, g i • v i = 0 i : ι hi : i ∈ s ⊢ (fun r => r • 1) (g i) = (fun r => r • 1) 0 [PROOFSTEP] dsimp only [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝¹⁰ : Semiring R inst✝⁹ : AddCommMonoid M inst✝⁸ : AddCommMonoid M' inst✝⁷ : AddCommMonoid M'' inst✝⁶ : Module R M inst✝⁵ : Module R M' inst✝⁴ : Module R M'' a b : R x y : M inst✝³ : Semiring K inst✝² : SMulWithZero R K inst✝¹ : Module K M inst✝ : IsScalarTower R K M hinj : Injective fun r => r • 1 li : LinearIndependent K v s : Finset ι g : ι → R hg : ∑ i in s, g i • v i = 0 i : ι hi : i ∈ s ⊢ g i • 1 = 0 • 1 [PROOFSTEP] rw [zero_smul] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝¹⁰ : Semiring R inst✝⁹ : AddCommMonoid M inst✝⁸ : AddCommMonoid M' inst✝⁷ : AddCommMonoid M'' inst✝⁶ : Module R M inst✝⁵ : Module R M' inst✝⁴ : Module R M'' a b : R x y : M inst✝³ : Semiring K inst✝² : SMulWithZero R K inst✝¹ : Module K M inst✝ : IsScalarTower R K M hinj : Injective fun r => r • 1 li : LinearIndependent K v s : Finset ι g : ι → R hg : ∑ i in s, g i • v i = 0 i : ι hi : i ∈ s ⊢ g i • 1 = 0 [PROOFSTEP] refine' (linearIndependent_iff'.mp li : _) _ (g · • (1 : K)) _ i hi [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝¹⁰ : Semiring R inst✝⁹ : AddCommMonoid M inst✝⁸ : AddCommMonoid M' inst✝⁷ : AddCommMonoid M'' inst✝⁶ : Module R M inst✝⁵ : Module R M' inst✝⁴ : Module R M'' a b : R x y : M inst✝³ : Semiring K inst✝² : SMulWithZero R K inst✝¹ : Module K M inst✝ : IsScalarTower R K M hinj : Injective fun r => r • 1 li : LinearIndependent K v s : Finset ι g : ι → R hg : ∑ i in s, g i • v i = 0 i : ι hi : i ∈ s ⊢ ∑ i in s, (fun x => g x • 1) i • v i = 0 [PROOFSTEP] simp_rw [smul_assoc, one_smul] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝¹⁰ : Semiring R inst✝⁹ : AddCommMonoid M inst✝⁸ : AddCommMonoid M' inst✝⁷ : AddCommMonoid M'' inst✝⁶ : Module R M inst✝⁵ : Module R M' inst✝⁴ : Module R M'' a b : R x y : M inst✝³ : Semiring K inst✝² : SMulWithZero R K inst✝¹ : Module K M inst✝ : IsScalarTower R K M hinj : Injective fun r => r • 1 li : LinearIndependent K v s : Finset ι g : ι → R hg : ∑ i in s, g i • v i = 0 i : ι hi : i ∈ s ⊢ ∑ x in s, g x • v x = 0 [PROOFSTEP] exact hg [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M s : Set M li : LinearIndependent R Subtype.val t : Finset ↑s ⊢ LinearIndependent R Subtype.val [PROOFSTEP] let f : t.map (Embedding.subtype s) → s := fun x => ⟨x.1, by obtain ⟨x, h⟩ := x rw [Finset.mem_map] at h obtain ⟨a, _ha, rfl⟩ := h simp only [Subtype.coe_prop, Embedding.coe_subtype]⟩ [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x✝ y : M s : Set M li : LinearIndependent R Subtype.val t : Finset ↑s x : { x // x ∈ Finset.map (Embedding.subtype s) t } ⊢ ↑x ∈ s [PROOFSTEP] obtain ⟨x, h⟩ := x [GOAL] case mk ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x✝ y : M s : Set M li : LinearIndependent R Subtype.val t : Finset ↑s x : M h : x ∈ Finset.map (Embedding.subtype s) t ⊢ ↑{ val := x, property := h } ∈ s [PROOFSTEP] rw [Finset.mem_map] at h [GOAL] case mk ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x✝ y : M s : Set M li : LinearIndependent R Subtype.val t : Finset ↑s x : M h✝ : x ∈ Finset.map (Embedding.subtype s) t h : ∃ a, a ∈ t ∧ ↑(Embedding.subtype s) a = x ⊢ ↑{ val := x, property := h✝ } ∈ s [PROOFSTEP] obtain ⟨a, _ha, rfl⟩ := h [GOAL] case mk.intro.intro ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a✝ b : R x y : M s : Set M li : LinearIndependent R Subtype.val t : Finset ↑s a : Subtype s _ha : a ∈ t h : ↑(Embedding.subtype s) a ∈ Finset.map (Embedding.subtype s) t ⊢ ↑{ val := ↑(Embedding.subtype s) a, property := h } ∈ s [PROOFSTEP] simp only [Subtype.coe_prop, Embedding.coe_subtype] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M s : Set M li : LinearIndependent R Subtype.val t : Finset ↑s f : { x // x ∈ Finset.map (Embedding.subtype s) t } → ↑s := fun x => { val := ↑x, property := (_ : ↑x ∈ s) } ⊢ LinearIndependent R Subtype.val [PROOFSTEP] convert LinearIndependent.comp li f ?_ [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M s : Set M li : LinearIndependent R Subtype.val t : Finset ↑s f : { x // x ∈ Finset.map (Embedding.subtype s) t } → ↑s := fun x => { val := ↑x, property := (_ : ↑x ∈ s) } ⊢ Injective f [PROOFSTEP] rintro ⟨x, hx⟩ ⟨y, hy⟩ [GOAL] case mk.mk ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x✝ y✝ : M s : Set M li : LinearIndependent R Subtype.val t : Finset ↑s f : { x // x ∈ Finset.map (Embedding.subtype s) t } → ↑s := fun x => { val := ↑x, property := (_ : ↑x ∈ s) } x : M hx : x ∈ Finset.map (Embedding.subtype s) t y : M hy : y ∈ Finset.map (Embedding.subtype s) t ⊢ f { val := x, property := hx } = f { val := y, property := hy } → { val := x, property := hx } = { val := y, property := hy } [PROOFSTEP] rw [Finset.mem_map] at hx hy [GOAL] case mk.mk ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x✝ y✝ : M s : Set M li : LinearIndependent R Subtype.val t : Finset ↑s f : { x // x ∈ Finset.map (Embedding.subtype s) t } → ↑s := fun x => { val := ↑x, property := (_ : ↑x ∈ s) } x : M hx✝ : x ∈ Finset.map (Embedding.subtype s) t hx : ∃ a, a ∈ t ∧ ↑(Embedding.subtype s) a = x y : M hy✝ : y ∈ Finset.map (Embedding.subtype s) t hy : ∃ a, a ∈ t ∧ ↑(Embedding.subtype s) a = y ⊢ f { val := x, property := hx✝ } = f { val := y, property := hy✝ } → { val := x, property := hx✝ } = { val := y, property := hy✝ } [PROOFSTEP] obtain ⟨a, _ha, rfl⟩ := hx [GOAL] case mk.mk.intro.intro ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a✝ b : R x y✝ : M s : Set M li : LinearIndependent R Subtype.val t : Finset ↑s f : { x // x ∈ Finset.map (Embedding.subtype s) t } → ↑s := fun x => { val := ↑x, property := (_ : ↑x ∈ s) } y : M hy✝ : y ∈ Finset.map (Embedding.subtype s) t hy : ∃ a, a ∈ t ∧ ↑(Embedding.subtype s) a = y a : Subtype s _ha : a ∈ t hx : ↑(Embedding.subtype s) a ∈ Finset.map (Embedding.subtype s) t ⊢ f { val := ↑(Embedding.subtype s) a, property := hx } = f { val := y, property := hy✝ } → { val := ↑(Embedding.subtype s) a, property := hx } = { val := y, property := hy✝ } [PROOFSTEP] obtain ⟨b, _hb, rfl⟩ := hy [GOAL] case mk.mk.intro.intro.intro.intro ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a✝ b✝ : R x y : M s : Set M li : LinearIndependent R Subtype.val t : Finset ↑s f : { x // x ∈ Finset.map (Embedding.subtype s) t } → ↑s := fun x => { val := ↑x, property := (_ : ↑x ∈ s) } a : Subtype s _ha : a ∈ t hx : ↑(Embedding.subtype s) a ∈ Finset.map (Embedding.subtype s) t b : Subtype s _hb : b ∈ t hy : ↑(Embedding.subtype s) b ∈ Finset.map (Embedding.subtype s) t ⊢ f { val := ↑(Embedding.subtype s) a, property := hx } = f { val := ↑(Embedding.subtype s) b, property := hy } → { val := ↑(Embedding.subtype s) a, property := hx } = { val := ↑(Embedding.subtype s) b, property := hy } [PROOFSTEP] simp only [imp_self, Subtype.mk_eq_mk] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M n : ℕ H : ∀ (s : Finset M), (LinearIndependent R fun i => ↑i) → Finset.card s ≤ n ⊢ ∀ (s : Set M), LinearIndependent R Subtype.val → #↑s ≤ ↑n [PROOFSTEP] intro s li [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M n : ℕ H : ∀ (s : Finset M), (LinearIndependent R fun i => ↑i) → Finset.card s ≤ n s : Set M li : LinearIndependent R Subtype.val ⊢ #↑s ≤ ↑n [PROOFSTEP] apply Cardinal.card_le_of [GOAL] case H ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M n : ℕ H : ∀ (s : Finset M), (LinearIndependent R fun i => ↑i) → Finset.card s ≤ n s : Set M li : LinearIndependent R Subtype.val ⊢ ∀ (s_1 : Finset ↑s), Finset.card s_1 ≤ n [PROOFSTEP] intro t [GOAL] case H ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M n : ℕ H : ∀ (s : Finset M), (LinearIndependent R fun i => ↑i) → Finset.card s ≤ n s : Set M li : LinearIndependent R Subtype.val t : Finset ↑s ⊢ Finset.card t ≤ n [PROOFSTEP] rw [← Finset.card_map (Embedding.subtype s)] [GOAL] case H ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M n : ℕ H : ∀ (s : Finset M), (LinearIndependent R fun i => ↑i) → Finset.card s ≤ n s : Set M li : LinearIndependent R Subtype.val t : Finset ↑s ⊢ Finset.card (Finset.map (Embedding.subtype s) t) ≤ n [PROOFSTEP] apply H [GOAL] case H.a ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M n : ℕ H : ∀ (s : Finset M), (LinearIndependent R fun i => ↑i) → Finset.card s ≤ n s : Set M li : LinearIndependent R Subtype.val t : Finset ↑s ⊢ LinearIndependent R fun i => ↑i [PROOFSTEP] apply linearIndependent_finset_map_embedding_subtype _ li [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M s : Set ι ⊢ LinearIndependent R (v ∘ Subtype.val) ↔ ∀ (l : ι →₀ R), l ∈ Finsupp.supported R R s → ↑(Finsupp.total ι M R v) l = 0 → l = 0 [PROOFSTEP] simp only [linearIndependent_iff, (· ∘ ·), Finsupp.mem_supported, Finsupp.total_apply, Set.subset_def, Finset.mem_coe] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M s : Set ι ⊢ (∀ (l : ↑s →₀ R), (Finsupp.sum l fun i a => a • v ↑i) = 0 → l = 0) ↔ ∀ (l : ι →₀ R), (∀ (x : ι), x ∈ l.support → x ∈ s) → (Finsupp.sum l fun i a => a • v i) = 0 → l = 0 [PROOFSTEP] constructor [GOAL] case mp ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M s : Set ι ⊢ (∀ (l : ↑s →₀ R), (Finsupp.sum l fun i a => a • v ↑i) = 0 → l = 0) → ∀ (l : ι →₀ R), (∀ (x : ι), x ∈ l.support → x ∈ s) → (Finsupp.sum l fun i a => a • v i) = 0 → l = 0 [PROOFSTEP] intro h l hl₁ hl₂ [GOAL] case mp ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M s : Set ι h : ∀ (l : ↑s →₀ R), (Finsupp.sum l fun i a => a • v ↑i) = 0 → l = 0 l : ι →₀ R hl₁ : ∀ (x : ι), x ∈ l.support → x ∈ s hl₂ : (Finsupp.sum l fun i a => a • v i) = 0 ⊢ l = 0 [PROOFSTEP] have := h (l.subtypeDomain s) ((Finsupp.sum_subtypeDomain_index hl₁).trans hl₂) [GOAL] case mp ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M s : Set ι h : ∀ (l : ↑s →₀ R), (Finsupp.sum l fun i a => a • v ↑i) = 0 → l = 0 l : ι →₀ R hl₁ : ∀ (x : ι), x ∈ l.support → x ∈ s hl₂ : (Finsupp.sum l fun i a => a • v i) = 0 this : Finsupp.subtypeDomain s l = 0 ⊢ l = 0 [PROOFSTEP] exact (Finsupp.subtypeDomain_eq_zero_iff hl₁).1 this [GOAL] case mpr ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M s : Set ι ⊢ (∀ (l : ι →₀ R), (∀ (x : ι), x ∈ l.support → x ∈ s) → (Finsupp.sum l fun i a => a • v i) = 0 → l = 0) → ∀ (l : ↑s →₀ R), (Finsupp.sum l fun i a => a • v ↑i) = 0 → l = 0 [PROOFSTEP] intro h l hl [GOAL] case mpr ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M s : Set ι h : ∀ (l : ι →₀ R), (∀ (x : ι), x ∈ l.support → x ∈ s) → (Finsupp.sum l fun i a => a • v i) = 0 → l = 0 l : ↑s →₀ R hl : (Finsupp.sum l fun i a => a • v ↑i) = 0 ⊢ l = 0 [PROOFSTEP] refine' Finsupp.embDomain_eq_zero.1 (h (l.embDomain <| Function.Embedding.subtype s) _ _) [GOAL] case mpr.refine'_1 ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M s : Set ι h : ∀ (l : ι →₀ R), (∀ (x : ι), x ∈ l.support → x ∈ s) → (Finsupp.sum l fun i a => a • v i) = 0 → l = 0 l : ↑s →₀ R hl : (Finsupp.sum l fun i a => a • v ↑i) = 0 ⊢ ∀ (x : ι), x ∈ (Finsupp.embDomain (Embedding.subtype s) l).support → x ∈ s [PROOFSTEP] suffices ∀ i hi, ¬l ⟨i, hi⟩ = 0 → i ∈ s by simpa [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M s : Set ι h : ∀ (l : ι →₀ R), (∀ (x : ι), x ∈ l.support → x ∈ s) → (Finsupp.sum l fun i a => a • v i) = 0 → l = 0 l : ↑s →₀ R hl : (Finsupp.sum l fun i a => a • v ↑i) = 0 this : ∀ (i : ι) (hi : i ∈ s), ¬↑l { val := i, property := hi } = 0 → i ∈ s ⊢ ∀ (x : ι), x ∈ (Finsupp.embDomain (Embedding.subtype s) l).support → x ∈ s [PROOFSTEP] simpa [GOAL] case mpr.refine'_1 ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M s : Set ι h : ∀ (l : ι →₀ R), (∀ (x : ι), x ∈ l.support → x ∈ s) → (Finsupp.sum l fun i a => a • v i) = 0 → l = 0 l : ↑s →₀ R hl : (Finsupp.sum l fun i a => a • v ↑i) = 0 ⊢ ∀ (i : ι) (hi : i ∈ s), ¬↑l { val := i, property := hi } = 0 → i ∈ s [PROOFSTEP] intros [GOAL] case mpr.refine'_1 ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M s : Set ι h : ∀ (l : ι →₀ R), (∀ (x : ι), x ∈ l.support → x ∈ s) → (Finsupp.sum l fun i a => a • v i) = 0 → l = 0 l : ↑s →₀ R hl : (Finsupp.sum l fun i a => a • v ↑i) = 0 i✝ : ι hi✝ : i✝ ∈ s a✝ : ¬↑l { val := i✝, property := hi✝ } = 0 ⊢ i✝ ∈ s [PROOFSTEP] assumption [GOAL] case mpr.refine'_2 ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M s : Set ι h : ∀ (l : ι →₀ R), (∀ (x : ι), x ∈ l.support → x ∈ s) → (Finsupp.sum l fun i a => a • v i) = 0 → l = 0 l : ↑s →₀ R hl : (Finsupp.sum l fun i a => a • v ↑i) = 0 ⊢ (Finsupp.sum (Finsupp.embDomain (Embedding.subtype s) l) fun i a => a • v i) = 0 [PROOFSTEP] rwa [Finsupp.embDomain_eq_mapDomain, Finsupp.sum_mapDomain_index] [GOAL] case mpr.refine'_2.h_zero ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M s : Set ι h : ∀ (l : ι →₀ R), (∀ (x : ι), x ∈ l.support → x ∈ s) → (Finsupp.sum l fun i a => a • v i) = 0 → l = 0 l : ↑s →₀ R hl : (Finsupp.sum l fun i a => a • v ↑i) = 0 ⊢ ∀ (b : ι), 0 • v b = 0 case mpr.refine'_2.h_add ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M s : Set ι h : ∀ (l : ι →₀ R), (∀ (x : ι), x ∈ l.support → x ∈ s) → (Finsupp.sum l fun i a => a • v i) = 0 → l = 0 l : ↑s →₀ R hl : (Finsupp.sum l fun i a => a • v ↑i) = 0 ⊢ ∀ (b : ι) (m₁ m₂ : R), (m₁ + m₂) • v b = m₁ • v b + m₂ • v b [PROOFSTEP] exacts [fun _ => zero_smul _ _, fun _ _ _ => add_smul _ _ _] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M s : Set ι ⊢ ¬LinearIndependent R (v ∘ Subtype.val) ↔ ∃ f, f ∈ Finsupp.supported R R s ∧ ↑(Finsupp.total ι M R v) f = 0 ∧ f ≠ 0 [PROOFSTEP] simp [linearIndependent_comp_subtype, and_left_comm] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M s : Set M ⊢ (LinearIndependent R fun x => ↑x) ↔ ∀ (l : M →₀ R), l ∈ Finsupp.supported R R s → ↑(Finsupp.total M M R id) l = 0 → l = 0 [PROOFSTEP] apply @linearIndependent_comp_subtype _ _ _ id [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M s : Set ι ⊢ LinearIndependent R (v ∘ Subtype.val) ↔ Disjoint (Finsupp.supported R R s) (LinearMap.ker (Finsupp.total ι M R v)) [PROOFSTEP] rw [linearIndependent_comp_subtype, LinearMap.disjoint_ker] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M s : Set M ⊢ (LinearIndependent R fun x => ↑x) ↔ Disjoint (Finsupp.supported R R s) (LinearMap.ker (Finsupp.total M M R id)) [PROOFSTEP] apply @linearIndependent_comp_subtype_disjoint _ _ _ id [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M s : Set M ⊢ (LinearIndependent R fun x => ↑x) ↔ LinearMap.ker (Finsupp.totalOn M M R id s) = ⊥ [PROOFSTEP] rw [Finsupp.totalOn, LinearMap.ker, LinearMap.comap_codRestrict, Submodule.map_bot, comap_bot, LinearMap.ker_comp, linearIndependent_subtype_disjoint, disjoint_iff_inf_le, ← map_comap_subtype, map_le_iff_le_comap, comap_bot, ker_subtype, le_bot_iff] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M ⊢ LinearIndependent R fun x => ↑x [PROOFSTEP] simp [linearIndependent_subtype_disjoint] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M t s : Set M h : t ⊆ s ⊢ (LinearIndependent R fun x => ↑x) → LinearIndependent R fun x => ↑x [PROOFSTEP] simp only [linearIndependent_subtype_disjoint] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M t s : Set M h : t ⊆ s ⊢ Disjoint (Finsupp.supported R R s) (LinearMap.ker (Finsupp.total M M R id)) → Disjoint (Finsupp.supported R R t) (LinearMap.ker (Finsupp.total M M R id)) [PROOFSTEP] exact Disjoint.mono_left (Finsupp.supported_mono h) [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M η : Type u_8 s : η → Set M hs : Directed (fun x x_1 => x ⊆ x_1) s h : ∀ (i : η), LinearIndependent R fun x => ↑x ⊢ LinearIndependent R fun x => ↑x [PROOFSTEP] by_cases hη : Nonempty η [GOAL] case pos ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M η : Type u_8 s : η → Set M hs : Directed (fun x x_1 => x ⊆ x_1) s h : ∀ (i : η), LinearIndependent R fun x => ↑x hη : Nonempty η ⊢ LinearIndependent R fun x => ↑x [PROOFSTEP] skip [GOAL] case pos ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M η : Type u_8 s : η → Set M hs : Directed (fun x x_1 => x ⊆ x_1) s h : ∀ (i : η), LinearIndependent R fun x => ↑x hη : Nonempty η ⊢ LinearIndependent R fun x => ↑x [PROOFSTEP] refine' linearIndependent_of_finite (⋃ i, s i) fun t ht ft => _ [GOAL] case pos ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M η : Type u_8 s : η → Set M hs : Directed (fun x x_1 => x ⊆ x_1) s h : ∀ (i : η), LinearIndependent R fun x => ↑x hη : Nonempty η t : Set M ht : t ⊆ ⋃ (i : η), s i ft : Set.Finite t ⊢ LinearIndependent R fun x => ↑x [PROOFSTEP] rcases finite_subset_iUnion ft ht with ⟨I, fi, hI⟩ [GOAL] case pos.intro.intro ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M η : Type u_8 s : η → Set M hs : Directed (fun x x_1 => x ⊆ x_1) s h : ∀ (i : η), LinearIndependent R fun x => ↑x hη : Nonempty η t : Set M ht : t ⊆ ⋃ (i : η), s i ft : Set.Finite t I : Set η fi : Set.Finite I hI : t ⊆ ⋃ (i : η) (_ : i ∈ I), s i ⊢ LinearIndependent R fun x => ↑x [PROOFSTEP] rcases hs.finset_le fi.toFinset with ⟨i, hi⟩ [GOAL] case pos.intro.intro.intro ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M η : Type u_8 s : η → Set M hs : Directed (fun x x_1 => x ⊆ x_1) s h : ∀ (i : η), LinearIndependent R fun x => ↑x hη : Nonempty η t : Set M ht : t ⊆ ⋃ (i : η), s i ft : Set.Finite t I : Set η fi : Set.Finite I hI : t ⊆ ⋃ (i : η) (_ : i ∈ I), s i i : η hi : ∀ (i_1 : η), i_1 ∈ Finite.toFinset fi → s i_1 ⊆ s i ⊢ LinearIndependent R fun x => ↑x [PROOFSTEP] exact (h i).mono (Subset.trans hI <| iUnion₂_subset fun j hj => hi j (fi.mem_toFinset.2 hj)) [GOAL] case neg ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M η : Type u_8 s : η → Set M hs : Directed (fun x x_1 => x ⊆ x_1) s h : ∀ (i : η), LinearIndependent R fun x => ↑x hη : ¬Nonempty η ⊢ LinearIndependent R fun x => ↑x [PROOFSTEP] refine (linearIndependent_empty R M).mono (t := iUnion (s ·)) ?_ [GOAL] case neg ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M η : Type u_8 s : η → Set M hs : Directed (fun x x_1 => x ⊆ x_1) s h : ∀ (i : η), LinearIndependent R fun x => ↑x hη : ¬Nonempty η ⊢ ⋃ (x : η), s x ⊆ ∅ [PROOFSTEP] rintro _ ⟨_, ⟨i, _⟩, _⟩ [GOAL] case neg.intro.intro.intro ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M η : Type u_8 s : η → Set M hs : Directed (fun x x_1 => x ⊆ x_1) s h : ∀ (i : η), LinearIndependent R fun x => ↑x hη : ¬Nonempty η a✝ : M w✝ : Set M right✝ : a✝ ∈ w✝ i : η h✝ : (fun x => s x) i = w✝ ⊢ a✝ ∈ ∅ [PROOFSTEP] exact hη ⟨i⟩ [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M s : Set (Set M) hs : DirectedOn (fun x x_1 => x ⊆ x_1) s h : ∀ (a : Set M), a ∈ s → LinearIndependent R Subtype.val ⊢ LinearIndependent R fun x => ↑x [PROOFSTEP] rw [sUnion_eq_iUnion] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M s : Set (Set M) hs : DirectedOn (fun x x_1 => x ⊆ x_1) s h : ∀ (a : Set M), a ∈ s → LinearIndependent R Subtype.val ⊢ LinearIndependent R fun x => ↑x [PROOFSTEP] exact linearIndependent_iUnion_of_directed hs.directed_val (by simpa using h) [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M s : Set (Set M) hs : DirectedOn (fun x x_1 => x ⊆ x_1) s h : ∀ (a : Set M), a ∈ s → LinearIndependent R Subtype.val ⊢ ∀ (i : ↑s), LinearIndependent R fun x => ↑x [PROOFSTEP] simpa using h [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M η : Type u_8 s : Set η t : η → Set M hs : DirectedOn (t ⁻¹'o fun x x_1 => x ⊆ x_1) s h : ∀ (a : η), a ∈ s → LinearIndependent R fun x => ↑x ⊢ LinearIndependent R fun x => ↑x [PROOFSTEP] rw [biUnion_eq_iUnion] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M η : Type u_8 s : Set η t : η → Set M hs : DirectedOn (t ⁻¹'o fun x x_1 => x ⊆ x_1) s h : ∀ (a : η), a ∈ s → LinearIndependent R fun x => ↑x ⊢ LinearIndependent R fun x => ↑x [PROOFSTEP] exact linearIndependent_iUnion_of_directed (directed_comp.2 <| hs.directed_val) (by simpa using h) [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M η : Type u_8 s : Set η t : η → Set M hs : DirectedOn (t ⁻¹'o fun x x_1 => x ⊆ x_1) s h : ∀ (a : η), a ∈ s → LinearIndependent R fun x => ↑x ⊢ ∀ (i : ↑s), LinearIndependent R fun x => ↑x [PROOFSTEP] simpa using h [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁷ : Ring R inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R M' inst✝¹ : Module R M'' a b : R x y : M inst✝ : Nontrivial R hv : LinearIndependent R v ⊢ Injective v [PROOFSTEP] intro i j hij [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁷ : Ring R inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R M' inst✝¹ : Module R M'' a b : R x y : M inst✝ : Nontrivial R hv : LinearIndependent R v i j : ι hij : v i = v j ⊢ i = j [PROOFSTEP] let l : ι →₀ R := Finsupp.single i (1 : R) - Finsupp.single j 1 [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁷ : Ring R inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R M' inst✝¹ : Module R M'' a b : R x y : M inst✝ : Nontrivial R hv : LinearIndependent R v i j : ι hij : v i = v j l : ι →₀ R := Finsupp.single i 1 - Finsupp.single j 1 ⊢ i = j [PROOFSTEP] have h_total : Finsupp.total ι M R v l = 0 := by simp_rw [LinearMap.map_sub, Finsupp.total_apply] simp [hij] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁷ : Ring R inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R M' inst✝¹ : Module R M'' a b : R x y : M inst✝ : Nontrivial R hv : LinearIndependent R v i j : ι hij : v i = v j l : ι →₀ R := Finsupp.single i 1 - Finsupp.single j 1 ⊢ ↑(Finsupp.total ι M R v) l = 0 [PROOFSTEP] simp_rw [LinearMap.map_sub, Finsupp.total_apply] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁷ : Ring R inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R M' inst✝¹ : Module R M'' a b : R x y : M inst✝ : Nontrivial R hv : LinearIndependent R v i j : ι hij : v i = v j l : ι →₀ R := Finsupp.single i 1 - Finsupp.single j 1 ⊢ ((Finsupp.sum (Finsupp.single i 1) fun i a => a • v i) - Finsupp.sum (Finsupp.single j 1) fun i a => a • v i) = 0 [PROOFSTEP] simp [hij] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁷ : Ring R inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R M' inst✝¹ : Module R M'' a b : R x y : M inst✝ : Nontrivial R hv : LinearIndependent R v i j : ι hij : v i = v j l : ι →₀ R := Finsupp.single i 1 - Finsupp.single j 1 h_total : ↑(Finsupp.total ι M R v) l = 0 ⊢ i = j [PROOFSTEP] have h_single_eq : Finsupp.single i (1 : R) = Finsupp.single j 1 := by rw [linearIndependent_iff] at hv simp [eq_add_of_sub_eq' (hv l h_total)] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁷ : Ring R inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R M' inst✝¹ : Module R M'' a b : R x y : M inst✝ : Nontrivial R hv : LinearIndependent R v i j : ι hij : v i = v j l : ι →₀ R := Finsupp.single i 1 - Finsupp.single j 1 h_total : ↑(Finsupp.total ι M R v) l = 0 ⊢ Finsupp.single i 1 = Finsupp.single j 1 [PROOFSTEP] rw [linearIndependent_iff] at hv [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁷ : Ring R inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R M' inst✝¹ : Module R M'' a b : R x y : M inst✝ : Nontrivial R hv : ∀ (l : ι →₀ R), ↑(Finsupp.total ι M R v) l = 0 → l = 0 i j : ι hij : v i = v j l : ι →₀ R := Finsupp.single i 1 - Finsupp.single j 1 h_total : ↑(Finsupp.total ι M R v) l = 0 ⊢ Finsupp.single i 1 = Finsupp.single j 1 [PROOFSTEP] simp [eq_add_of_sub_eq' (hv l h_total)] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁷ : Ring R inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R M' inst✝¹ : Module R M'' a b : R x y : M inst✝ : Nontrivial R hv : LinearIndependent R v i j : ι hij : v i = v j l : ι →₀ R := Finsupp.single i 1 - Finsupp.single j 1 h_total : ↑(Finsupp.total ι M R v) l = 0 h_single_eq : Finsupp.single i 1 = Finsupp.single j 1 ⊢ i = j [PROOFSTEP] simpa [Finsupp.single_eq_single_iff] using h_single_eq [GOAL] ι✝ : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι✝ → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M ι : Type u_8 f : ι → M hf : LinearIndependent R f ⊢ LinearIndependent R Subtype.val [PROOFSTEP] nontriviality R [GOAL] ι✝ : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι✝ → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M ι : Type u_8 f : ι → M hf : LinearIndependent R f ✝ : Nontrivial R ⊢ LinearIndependent R Subtype.val [PROOFSTEP] exact (linearIndependent_subtype_range hf.injective).2 hf [GOAL] ι✝ : Type u' ι'✝ : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι✝ → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M ι : Type u_8 ι' : Type u_9 s : Set ι f : ι → ι' g : ι' → M hs : LinearIndependent R fun x => g (f ↑x) ⊢ LinearIndependent R fun x => g ↑x [PROOFSTEP] nontriviality R [GOAL] ι✝ : Type u' ι'✝ : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι✝ → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M ι : Type u_8 ι' : Type u_9 s : Set ι f : ι → ι' g : ι' → M hs : LinearIndependent R fun x => g (f ↑x) ✝ : Nontrivial R ⊢ LinearIndependent R fun x => g ↑x [PROOFSTEP] have : InjOn f s := injOn_iff_injective.2 hs.injective.of_comp [GOAL] ι✝ : Type u' ι'✝ : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι✝ → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M ι : Type u_8 ι' : Type u_9 s : Set ι f : ι → ι' g : ι' → M hs : LinearIndependent R fun x => g (f ↑x) ✝ : Nontrivial R this : InjOn f s ⊢ LinearIndependent R fun x => g ↑x [PROOFSTEP] exact (linearIndependent_equiv' (Equiv.Set.imageOfInjOn f s this) rfl).1 hs [GOAL] ι✝ : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι✝ → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M ι : Type u_8 s : Set ι f : ι → M hs : LinearIndependent R fun x => f ↑x ⊢ LinearIndependent R fun x => ↑x [PROOFSTEP] convert LinearIndependent.image_of_comp s f id hs [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v✝ : ι → M inst✝¹⁰ : Ring R inst✝⁹ : AddCommGroup M inst✝⁸ : AddCommGroup M' inst✝⁷ : AddCommGroup M'' inst✝⁶ : Module R M inst✝⁵ : Module R M' inst✝⁴ : Module R M'' a b : R x y : M G : Type u_8 hG : Group G inst✝³ : DistribMulAction G R inst✝² : DistribMulAction G M inst✝¹ : IsScalarTower G R M inst✝ : SMulCommClass G R M v : ι → M hv : LinearIndependent R v w : ι → G ⊢ LinearIndependent R (w • v) [PROOFSTEP] rw [linearIndependent_iff''] at hv ⊢ [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v✝ : ι → M inst✝¹⁰ : Ring R inst✝⁹ : AddCommGroup M inst✝⁸ : AddCommGroup M' inst✝⁷ : AddCommGroup M'' inst✝⁶ : Module R M inst✝⁵ : Module R M' inst✝⁴ : Module R M'' a b : R x y : M G : Type u_8 hG : Group G inst✝³ : DistribMulAction G R inst✝² : DistribMulAction G M inst✝¹ : IsScalarTower G R M inst✝ : SMulCommClass G R M v : ι → M hv : ∀ (s : Finset ι) (g : ι → R), (∀ (i : ι), ¬i ∈ s → g i = 0) → ∑ i in s, g i • v i = 0 → ∀ (i : ι), g i = 0 w : ι → G ⊢ ∀ (s : Finset ι) (g : ι → R), (∀ (i : ι), ¬i ∈ s → g i = 0) → ∑ i in s, g i • (w • v) i = 0 → ∀ (i : ι), g i = 0 [PROOFSTEP] intro s g hgs hsum i [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v✝ : ι → M inst✝¹⁰ : Ring R inst✝⁹ : AddCommGroup M inst✝⁸ : AddCommGroup M' inst✝⁷ : AddCommGroup M'' inst✝⁶ : Module R M inst✝⁵ : Module R M' inst✝⁴ : Module R M'' a b : R x y : M G : Type u_8 hG : Group G inst✝³ : DistribMulAction G R inst✝² : DistribMulAction G M inst✝¹ : IsScalarTower G R M inst✝ : SMulCommClass G R M v : ι → M hv : ∀ (s : Finset ι) (g : ι → R), (∀ (i : ι), ¬i ∈ s → g i = 0) → ∑ i in s, g i • v i = 0 → ∀ (i : ι), g i = 0 w : ι → G s : Finset ι g : ι → R hgs : ∀ (i : ι), ¬i ∈ s → g i = 0 hsum : ∑ i in s, g i • (w • v) i = 0 i : ι ⊢ g i = 0 [PROOFSTEP] refine' (smul_eq_zero_iff_eq (w i)).1 _ [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v✝ : ι → M inst✝¹⁰ : Ring R inst✝⁹ : AddCommGroup M inst✝⁸ : AddCommGroup M' inst✝⁷ : AddCommGroup M'' inst✝⁶ : Module R M inst✝⁵ : Module R M' inst✝⁴ : Module R M'' a b : R x y : M G : Type u_8 hG : Group G inst✝³ : DistribMulAction G R inst✝² : DistribMulAction G M inst✝¹ : IsScalarTower G R M inst✝ : SMulCommClass G R M v : ι → M hv : ∀ (s : Finset ι) (g : ι → R), (∀ (i : ι), ¬i ∈ s → g i = 0) → ∑ i in s, g i • v i = 0 → ∀ (i : ι), g i = 0 w : ι → G s : Finset ι g : ι → R hgs : ∀ (i : ι), ¬i ∈ s → g i = 0 hsum : ∑ i in s, g i • (w • v) i = 0 i : ι ⊢ w i • g i = 0 [PROOFSTEP] refine' hv s (fun i => w i • g i) (fun i hi => _) _ i [GOAL] case refine'_1 ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v✝ : ι → M inst✝¹⁰ : Ring R inst✝⁹ : AddCommGroup M inst✝⁸ : AddCommGroup M' inst✝⁷ : AddCommGroup M'' inst✝⁶ : Module R M inst✝⁵ : Module R M' inst✝⁴ : Module R M'' a b : R x y : M G : Type u_8 hG : Group G inst✝³ : DistribMulAction G R inst✝² : DistribMulAction G M inst✝¹ : IsScalarTower G R M inst✝ : SMulCommClass G R M v : ι → M hv : ∀ (s : Finset ι) (g : ι → R), (∀ (i : ι), ¬i ∈ s → g i = 0) → ∑ i in s, g i • v i = 0 → ∀ (i : ι), g i = 0 w : ι → G s : Finset ι g : ι → R hgs : ∀ (i : ι), ¬i ∈ s → g i = 0 hsum : ∑ i in s, g i • (w • v) i = 0 i✝ i : ι hi : ¬i ∈ s ⊢ (fun i => w i • g i) i = 0 [PROOFSTEP] dsimp only [GOAL] case refine'_1 ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v✝ : ι → M inst✝¹⁰ : Ring R inst✝⁹ : AddCommGroup M inst✝⁸ : AddCommGroup M' inst✝⁷ : AddCommGroup M'' inst✝⁶ : Module R M inst✝⁵ : Module R M' inst✝⁴ : Module R M'' a b : R x y : M G : Type u_8 hG : Group G inst✝³ : DistribMulAction G R inst✝² : DistribMulAction G M inst✝¹ : IsScalarTower G R M inst✝ : SMulCommClass G R M v : ι → M hv : ∀ (s : Finset ι) (g : ι → R), (∀ (i : ι), ¬i ∈ s → g i = 0) → ∑ i in s, g i • v i = 0 → ∀ (i : ι), g i = 0 w : ι → G s : Finset ι g : ι → R hgs : ∀ (i : ι), ¬i ∈ s → g i = 0 hsum : ∑ i in s, g i • (w • v) i = 0 i✝ i : ι hi : ¬i ∈ s ⊢ w i • g i = 0 [PROOFSTEP] exact (hgs i hi).symm ▸ smul_zero _ [GOAL] case refine'_2 ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v✝ : ι → M inst✝¹⁰ : Ring R inst✝⁹ : AddCommGroup M inst✝⁸ : AddCommGroup M' inst✝⁷ : AddCommGroup M'' inst✝⁶ : Module R M inst✝⁵ : Module R M' inst✝⁴ : Module R M'' a b : R x y : M G : Type u_8 hG : Group G inst✝³ : DistribMulAction G R inst✝² : DistribMulAction G M inst✝¹ : IsScalarTower G R M inst✝ : SMulCommClass G R M v : ι → M hv : ∀ (s : Finset ι) (g : ι → R), (∀ (i : ι), ¬i ∈ s → g i = 0) → ∑ i in s, g i • v i = 0 → ∀ (i : ι), g i = 0 w : ι → G s : Finset ι g : ι → R hgs : ∀ (i : ι), ¬i ∈ s → g i = 0 hsum : ∑ i in s, g i • (w • v) i = 0 i : ι ⊢ ∑ i in s, (fun i => w i • g i) i • v i = 0 [PROOFSTEP] rw [← hsum, Finset.sum_congr rfl _] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v✝ : ι → M inst✝¹⁰ : Ring R inst✝⁹ : AddCommGroup M inst✝⁸ : AddCommGroup M' inst✝⁷ : AddCommGroup M'' inst✝⁶ : Module R M inst✝⁵ : Module R M' inst✝⁴ : Module R M'' a b : R x y : M G : Type u_8 hG : Group G inst✝³ : DistribMulAction G R inst✝² : DistribMulAction G M inst✝¹ : IsScalarTower G R M inst✝ : SMulCommClass G R M v : ι → M hv : ∀ (s : Finset ι) (g : ι → R), (∀ (i : ι), ¬i ∈ s → g i = 0) → ∑ i in s, g i • v i = 0 → ∀ (i : ι), g i = 0 w : ι → G s : Finset ι g : ι → R hgs : ∀ (i : ι), ¬i ∈ s → g i = 0 hsum : ∑ i in s, g i • (w • v) i = 0 i : ι ⊢ ∀ (x : ι), x ∈ s → (fun i => w i • g i) x • v x = g x • (w • v) x [PROOFSTEP] intros [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v✝ : ι → M inst✝¹⁰ : Ring R inst✝⁹ : AddCommGroup M inst✝⁸ : AddCommGroup M' inst✝⁷ : AddCommGroup M'' inst✝⁶ : Module R M inst✝⁵ : Module R M' inst✝⁴ : Module R M'' a b : R x y : M G : Type u_8 hG : Group G inst✝³ : DistribMulAction G R inst✝² : DistribMulAction G M inst✝¹ : IsScalarTower G R M inst✝ : SMulCommClass G R M v : ι → M hv : ∀ (s : Finset ι) (g : ι → R), (∀ (i : ι), ¬i ∈ s → g i = 0) → ∑ i in s, g i • v i = 0 → ∀ (i : ι), g i = 0 w : ι → G s : Finset ι g : ι → R hgs : ∀ (i : ι), ¬i ∈ s → g i = 0 hsum : ∑ i in s, g i • (w • v) i = 0 i x✝ : ι a✝ : x✝ ∈ s ⊢ (fun i => w i • g i) x✝ • v x✝ = g x✝ • (w • v) x✝ [PROOFSTEP] erw [Pi.smul_apply, smul_assoc, smul_comm] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v✝ : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M v : ι → M hv : LinearIndependent R v w : ι → Rˣ ⊢ LinearIndependent R (w • v) [PROOFSTEP] rw [linearIndependent_iff''] at hv ⊢ [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v✝ : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M v : ι → M hv : ∀ (s : Finset ι) (g : ι → R), (∀ (i : ι), ¬i ∈ s → g i = 0) → ∑ i in s, g i • v i = 0 → ∀ (i : ι), g i = 0 w : ι → Rˣ ⊢ ∀ (s : Finset ι) (g : ι → R), (∀ (i : ι), ¬i ∈ s → g i = 0) → ∑ i in s, g i • (w • v) i = 0 → ∀ (i : ι), g i = 0 [PROOFSTEP] intro s g hgs hsum i [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v✝ : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M v : ι → M hv : ∀ (s : Finset ι) (g : ι → R), (∀ (i : ι), ¬i ∈ s → g i = 0) → ∑ i in s, g i • v i = 0 → ∀ (i : ι), g i = 0 w : ι → Rˣ s : Finset ι g : ι → R hgs : ∀ (i : ι), ¬i ∈ s → g i = 0 hsum : ∑ i in s, g i • (w • v) i = 0 i : ι ⊢ g i = 0 [PROOFSTEP] rw [← (w i).mul_left_eq_zero] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v✝ : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M v : ι → M hv : ∀ (s : Finset ι) (g : ι → R), (∀ (i : ι), ¬i ∈ s → g i = 0) → ∑ i in s, g i • v i = 0 → ∀ (i : ι), g i = 0 w : ι → Rˣ s : Finset ι g : ι → R hgs : ∀ (i : ι), ¬i ∈ s → g i = 0 hsum : ∑ i in s, g i • (w • v) i = 0 i : ι ⊢ g i * ↑(w i) = 0 [PROOFSTEP] refine' hv s (fun i => g i • (w i : R)) (fun i hi => _) _ i [GOAL] case refine'_1 ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v✝ : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M v : ι → M hv : ∀ (s : Finset ι) (g : ι → R), (∀ (i : ι), ¬i ∈ s → g i = 0) → ∑ i in s, g i • v i = 0 → ∀ (i : ι), g i = 0 w : ι → Rˣ s : Finset ι g : ι → R hgs : ∀ (i : ι), ¬i ∈ s → g i = 0 hsum : ∑ i in s, g i • (w • v) i = 0 i✝ i : ι hi : ¬i ∈ s ⊢ (fun i => g i • ↑(w i)) i = 0 [PROOFSTEP] dsimp only [GOAL] case refine'_1 ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v✝ : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M v : ι → M hv : ∀ (s : Finset ι) (g : ι → R), (∀ (i : ι), ¬i ∈ s → g i = 0) → ∑ i in s, g i • v i = 0 → ∀ (i : ι), g i = 0 w : ι → Rˣ s : Finset ι g : ι → R hgs : ∀ (i : ι), ¬i ∈ s → g i = 0 hsum : ∑ i in s, g i • (w • v) i = 0 i✝ i : ι hi : ¬i ∈ s ⊢ g i • ↑(w i) = 0 [PROOFSTEP] exact (hgs i hi).symm ▸ zero_smul _ _ [GOAL] case refine'_2 ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v✝ : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M v : ι → M hv : ∀ (s : Finset ι) (g : ι → R), (∀ (i : ι), ¬i ∈ s → g i = 0) → ∑ i in s, g i • v i = 0 → ∀ (i : ι), g i = 0 w : ι → Rˣ s : Finset ι g : ι → R hgs : ∀ (i : ι), ¬i ∈ s → g i = 0 hsum : ∑ i in s, g i • (w • v) i = 0 i : ι ⊢ ∑ i in s, (fun i => g i • ↑(w i)) i • v i = 0 [PROOFSTEP] rw [← hsum, Finset.sum_congr rfl _] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v✝ : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M v : ι → M hv : ∀ (s : Finset ι) (g : ι → R), (∀ (i : ι), ¬i ∈ s → g i = 0) → ∑ i in s, g i • v i = 0 → ∀ (i : ι), g i = 0 w : ι → Rˣ s : Finset ι g : ι → R hgs : ∀ (i : ι), ¬i ∈ s → g i = 0 hsum : ∑ i in s, g i • (w • v) i = 0 i : ι ⊢ ∀ (x : ι), x ∈ s → (fun i => g i • ↑(w i)) x • v x = g x • (w • v) x [PROOFSTEP] intros [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v✝ : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M v : ι → M hv : ∀ (s : Finset ι) (g : ι → R), (∀ (i : ι), ¬i ∈ s → g i = 0) → ∑ i in s, g i • v i = 0 → ∀ (i : ι), g i = 0 w : ι → Rˣ s : Finset ι g : ι → R hgs : ∀ (i : ι), ¬i ∈ s → g i = 0 hsum : ∑ i in s, g i • (w • v) i = 0 i x✝ : ι a✝ : x✝ ∈ s ⊢ (fun i => g i • ↑(w i)) x✝ • v x✝ = g x✝ • (w • v) x✝ [PROOFSTEP] erw [Pi.smul_apply, smul_assoc] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v✝ : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M v : ι → M hv : ∀ (s : Finset ι) (g : ι → R), (∀ (i : ι), ¬i ∈ s → g i = 0) → ∑ i in s, g i • v i = 0 → ∀ (i : ι), g i = 0 w : ι → Rˣ s : Finset ι g : ι → R hgs : ∀ (i : ι), ¬i ∈ s → g i = 0 hsum : ∑ i in s, g i • (w • v) i = 0 i x✝ : ι a✝ : x✝ ∈ s ⊢ g x✝ • ↑(w x✝) • v x✝ = g x✝ • w x✝ • v x✝ [PROOFSTEP] rfl [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x✝ y✝ x y : M h : LinearIndependent R ![x, y] s t s' t' : R h' : s • x + t • y = s' • x + t' • y ⊢ s = s' ∧ t = t' [PROOFSTEP] have : (s - s') • x + (t - t') • y = 0 := by rw [← sub_eq_zero_of_eq h', ← sub_eq_zero] simp only [sub_smul] abel [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x✝ y✝ x y : M h : LinearIndependent R ![x, y] s t s' t' : R h' : s • x + t • y = s' • x + t' • y ⊢ (s - s') • x + (t - t') • y = 0 [PROOFSTEP] rw [← sub_eq_zero_of_eq h', ← sub_eq_zero] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x✝ y✝ x y : M h : LinearIndependent R ![x, y] s t s' t' : R h' : s • x + t • y = s' • x + t' • y ⊢ (s - s') • x + (t - t') • y - (s • x + t • y - (s' • x + t' • y)) = 0 [PROOFSTEP] simp only [sub_smul] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x✝ y✝ x y : M h : LinearIndependent R ![x, y] s t s' t' : R h' : s • x + t • y = s' • x + t' • y ⊢ s • x - s' • x + (t • y - t' • y) - (s • x + t • y - (s' • x + t' • y)) = 0 [PROOFSTEP] abel [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x✝ y✝ x y : M h : LinearIndependent R ![x, y] s t s' t' : R h' : s • x + t • y = s' • x + t' • y ⊢ s • x - s' • x + (t • y - t' • y) - (s • x + t • y - (s' • x + t' • y)) = 0 [PROOFSTEP] abel [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x✝ y✝ x y : M h : LinearIndependent R ![x, y] s t s' t' : R h' : s • x + t • y = s' • x + t' • y this : (s - s') • x + (t - t') • y = 0 ⊢ s = s' ∧ t = t' [PROOFSTEP] simpa [sub_eq_zero] using h.eq_zero_of_pair this [GOAL] ι✝ : Type u' ι' : Type u_1 R✝ : Type u_2 K : Type u_3 M✝ : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v✝ : ι✝ → M✝ inst✝¹⁰ : Ring R✝ inst✝⁹ : AddCommGroup M✝ inst✝⁸ : AddCommGroup M' inst✝⁷ : AddCommGroup M'' inst✝⁶ : Module R✝ M✝ inst✝⁵ : Module R✝ M' inst✝⁴ : Module R✝ M'' a b : R✝ x y : M✝ ι : Type w R : Type u inst✝³ : Ring R inst✝² : Nontrivial R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M v : ι → M i : LinearIndependent R v ⊢ Maximal i ↔ ∀ (κ : Type v) (w : κ → M), LinearIndependent R w → ∀ (j : ι → κ), w ∘ j = v → Surjective j [PROOFSTEP] constructor [GOAL] case mp ι✝ : Type u' ι' : Type u_1 R✝ : Type u_2 K : Type u_3 M✝ : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v✝ : ι✝ → M✝ inst✝¹⁰ : Ring R✝ inst✝⁹ : AddCommGroup M✝ inst✝⁸ : AddCommGroup M' inst✝⁷ : AddCommGroup M'' inst✝⁶ : Module R✝ M✝ inst✝⁵ : Module R✝ M' inst✝⁴ : Module R✝ M'' a b : R✝ x y : M✝ ι : Type w R : Type u inst✝³ : Ring R inst✝² : Nontrivial R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M v : ι → M i : LinearIndependent R v ⊢ Maximal i → ∀ (κ : Type v) (w : κ → M), LinearIndependent R w → ∀ (j : ι → κ), w ∘ j = v → Surjective j [PROOFSTEP] rintro p κ w i' j rfl [GOAL] case mp ι✝ : Type u' ι' : Type u_1 R✝ : Type u_2 K : Type u_3 M✝ : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι✝ → M✝ inst✝¹⁰ : Ring R✝ inst✝⁹ : AddCommGroup M✝ inst✝⁸ : AddCommGroup M' inst✝⁷ : AddCommGroup M'' inst✝⁶ : Module R✝ M✝ inst✝⁵ : Module R✝ M' inst✝⁴ : Module R✝ M'' a b : R✝ x y : M✝ ι : Type w R : Type u inst✝³ : Ring R inst✝² : Nontrivial R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M κ : Type v w : κ → M i' : LinearIndependent R w j : ι → κ i : LinearIndependent R (w ∘ j) p : Maximal i ⊢ Surjective j [PROOFSTEP] specialize p (range w) i'.coe_range (range_comp_subset_range _ _) [GOAL] case mp ι✝ : Type u' ι' : Type u_1 R✝ : Type u_2 K : Type u_3 M✝ : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι✝ → M✝ inst✝¹⁰ : Ring R✝ inst✝⁹ : AddCommGroup M✝ inst✝⁸ : AddCommGroup M' inst✝⁷ : AddCommGroup M'' inst✝⁶ : Module R✝ M✝ inst✝⁵ : Module R✝ M' inst✝⁴ : Module R✝ M'' a b : R✝ x y : M✝ ι : Type w R : Type u inst✝³ : Ring R inst✝² : Nontrivial R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M κ : Type v w : κ → M i' : LinearIndependent R w j : ι → κ i : LinearIndependent R (w ∘ j) p : range (w ∘ j) = range w ⊢ Surjective j [PROOFSTEP] rw [range_comp, ← @image_univ _ _ w] at p [GOAL] case mp ι✝ : Type u' ι' : Type u_1 R✝ : Type u_2 K : Type u_3 M✝ : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι✝ → M✝ inst✝¹⁰ : Ring R✝ inst✝⁹ : AddCommGroup M✝ inst✝⁸ : AddCommGroup M' inst✝⁷ : AddCommGroup M'' inst✝⁶ : Module R✝ M✝ inst✝⁵ : Module R✝ M' inst✝⁴ : Module R✝ M'' a b : R✝ x y : M✝ ι : Type w R : Type u inst✝³ : Ring R inst✝² : Nontrivial R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M κ : Type v w : κ → M i' : LinearIndependent R w j : ι → κ i : LinearIndependent R (w ∘ j) p : w '' range j = w '' univ ⊢ Surjective j [PROOFSTEP] exact range_iff_surjective.mp (image_injective.mpr i'.injective p) [GOAL] case mpr ι✝ : Type u' ι' : Type u_1 R✝ : Type u_2 K : Type u_3 M✝ : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v✝ : ι✝ → M✝ inst✝¹⁰ : Ring R✝ inst✝⁹ : AddCommGroup M✝ inst✝⁸ : AddCommGroup M' inst✝⁷ : AddCommGroup M'' inst✝⁶ : Module R✝ M✝ inst✝⁵ : Module R✝ M' inst✝⁴ : Module R✝ M'' a b : R✝ x y : M✝ ι : Type w R : Type u inst✝³ : Ring R inst✝² : Nontrivial R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M v : ι → M i : LinearIndependent R v ⊢ (∀ (κ : Type v) (w : κ → M), LinearIndependent R w → ∀ (j : ι → κ), w ∘ j = v → Surjective j) → Maximal i [PROOFSTEP] intro p w i' h [GOAL] case mpr ι✝ : Type u' ι' : Type u_1 R✝ : Type u_2 K : Type u_3 M✝ : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v✝ : ι✝ → M✝ inst✝¹⁰ : Ring R✝ inst✝⁹ : AddCommGroup M✝ inst✝⁸ : AddCommGroup M' inst✝⁷ : AddCommGroup M'' inst✝⁶ : Module R✝ M✝ inst✝⁵ : Module R✝ M' inst✝⁴ : Module R✝ M'' a b : R✝ x y : M✝ ι : Type w R : Type u inst✝³ : Ring R inst✝² : Nontrivial R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M v : ι → M i : LinearIndependent R v p : ∀ (κ : Type v) (w : κ → M), LinearIndependent R w → ∀ (j : ι → κ), w ∘ j = v → Surjective j w : Set M i' : LinearIndependent R Subtype.val h : range v ≤ w ⊢ range v = w [PROOFSTEP] specialize p w ((↑) : w → M) i' (fun i => ⟨v i, range_subset_iff.mp h i⟩) (by ext simp) [GOAL] ι✝ : Type u' ι' : Type u_1 R✝ : Type u_2 K : Type u_3 M✝ : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v✝ : ι✝ → M✝ inst✝¹⁰ : Ring R✝ inst✝⁹ : AddCommGroup M✝ inst✝⁸ : AddCommGroup M' inst✝⁷ : AddCommGroup M'' inst✝⁶ : Module R✝ M✝ inst✝⁵ : Module R✝ M' inst✝⁴ : Module R✝ M'' a b : R✝ x y : M✝ ι : Type w R : Type u inst✝³ : Ring R inst✝² : Nontrivial R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M v : ι → M i : LinearIndependent R v p : ∀ (κ : Type v) (w : κ → M), LinearIndependent R w → ∀ (j : ι → κ), w ∘ j = v → Surjective j w : Set M i' : LinearIndependent R Subtype.val h : range v ≤ w ⊢ (Subtype.val ∘ fun i => { val := v i, property := (_ : v i ∈ w) }) = v [PROOFSTEP] ext [GOAL] case h ι✝ : Type u' ι' : Type u_1 R✝ : Type u_2 K : Type u_3 M✝ : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v✝ : ι✝ → M✝ inst✝¹⁰ : Ring R✝ inst✝⁹ : AddCommGroup M✝ inst✝⁸ : AddCommGroup M' inst✝⁷ : AddCommGroup M'' inst✝⁶ : Module R✝ M✝ inst✝⁵ : Module R✝ M' inst✝⁴ : Module R✝ M'' a b : R✝ x y : M✝ ι : Type w R : Type u inst✝³ : Ring R inst✝² : Nontrivial R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M v : ι → M i : LinearIndependent R v p : ∀ (κ : Type v) (w : κ → M), LinearIndependent R w → ∀ (j : ι → κ), w ∘ j = v → Surjective j w : Set M i' : LinearIndependent R Subtype.val h : range v ≤ w x✝ : ι ⊢ (Subtype.val ∘ fun i => { val := v i, property := (_ : v i ∈ w) }) x✝ = v x✝ [PROOFSTEP] simp [GOAL] case mpr ι✝ : Type u' ι' : Type u_1 R✝ : Type u_2 K : Type u_3 M✝ : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v✝ : ι✝ → M✝ inst✝¹⁰ : Ring R✝ inst✝⁹ : AddCommGroup M✝ inst✝⁸ : AddCommGroup M' inst✝⁷ : AddCommGroup M'' inst✝⁶ : Module R✝ M✝ inst✝⁵ : Module R✝ M' inst✝⁴ : Module R✝ M'' a b : R✝ x y : M✝ ι : Type w R : Type u inst✝³ : Ring R inst✝² : Nontrivial R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M v : ι → M i : LinearIndependent R v w : Set M i' : LinearIndependent R Subtype.val h : range v ≤ w p : Surjective fun i => { val := v i, property := (_ : v i ∈ w) } ⊢ range v = w [PROOFSTEP] have q := congr_arg (fun s => ((↑) : w → M) '' s) p.range_eq [GOAL] case mpr ι✝ : Type u' ι' : Type u_1 R✝ : Type u_2 K : Type u_3 M✝ : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v✝ : ι✝ → M✝ inst✝¹⁰ : Ring R✝ inst✝⁹ : AddCommGroup M✝ inst✝⁸ : AddCommGroup M' inst✝⁷ : AddCommGroup M'' inst✝⁶ : Module R✝ M✝ inst✝⁵ : Module R✝ M' inst✝⁴ : Module R✝ M'' a b : R✝ x y : M✝ ι : Type w R : Type u inst✝³ : Ring R inst✝² : Nontrivial R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M v : ι → M i : LinearIndependent R v w : Set M i' : LinearIndependent R Subtype.val h : range v ≤ w p : Surjective fun i => { val := v i, property := (_ : v i ∈ w) } q : (fun s => Subtype.val '' s) (range fun i => { val := v i, property := (_ : v i ∈ w) }) = (fun s => Subtype.val '' s) univ ⊢ range v = w [PROOFSTEP] dsimp at q [GOAL] case mpr ι✝ : Type u' ι' : Type u_1 R✝ : Type u_2 K : Type u_3 M✝ : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v✝ : ι✝ → M✝ inst✝¹⁰ : Ring R✝ inst✝⁹ : AddCommGroup M✝ inst✝⁸ : AddCommGroup M' inst✝⁷ : AddCommGroup M'' inst✝⁶ : Module R✝ M✝ inst✝⁵ : Module R✝ M' inst✝⁴ : Module R✝ M'' a b : R✝ x y : M✝ ι : Type w R : Type u inst✝³ : Ring R inst✝² : Nontrivial R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M v : ι → M i : LinearIndependent R v w : Set M i' : LinearIndependent R Subtype.val h : range v ≤ w p : Surjective fun i => { val := v i, property := (_ : v i ∈ w) } q : (Subtype.val '' range fun i => { val := v i, property := (_ : v i ∈ w) }) = Subtype.val '' univ ⊢ range v = w [PROOFSTEP] rw [← image_univ, image_image] at q [GOAL] case mpr ι✝ : Type u' ι' : Type u_1 R✝ : Type u_2 K : Type u_3 M✝ : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v✝ : ι✝ → M✝ inst✝¹⁰ : Ring R✝ inst✝⁹ : AddCommGroup M✝ inst✝⁸ : AddCommGroup M' inst✝⁷ : AddCommGroup M'' inst✝⁶ : Module R✝ M✝ inst✝⁵ : Module R✝ M' inst✝⁴ : Module R✝ M'' a b : R✝ x y : M✝ ι : Type w R : Type u inst✝³ : Ring R inst✝² : Nontrivial R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M v : ι → M i : LinearIndependent R v w : Set M i' : LinearIndependent R Subtype.val h : range v ≤ w p : Surjective fun i => { val := v i, property := (_ : v i ∈ w) } q : (fun x => ↑{ val := v x, property := (_ : v x ∈ w) }) '' univ = Subtype.val '' univ ⊢ range v = w [PROOFSTEP] simpa using q [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M✝ : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v✝ : ι → M✝ inst✝⁸ : Ring R inst✝⁷ : AddCommGroup M✝ inst✝⁶ : AddCommGroup M' inst✝⁵ : AddCommGroup M'' inst✝⁴ : Module R M✝ inst✝³ : Module R M' inst✝² : Module R M'' a b : R x y : M✝ M : Type u_8 inst✝¹ : AddCommGroup M inst✝ : Module R M v : ι → M li : LinearIndependent R v c d : R i j : ι hc : c ≠ 0 h : c • v i = d • v j ⊢ i = j [PROOFSTEP] let l : ι →₀ R := Finsupp.single i c - Finsupp.single j d [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M✝ : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v✝ : ι → M✝ inst✝⁸ : Ring R inst✝⁷ : AddCommGroup M✝ inst✝⁶ : AddCommGroup M' inst✝⁵ : AddCommGroup M'' inst✝⁴ : Module R M✝ inst✝³ : Module R M' inst✝² : Module R M'' a b : R x y : M✝ M : Type u_8 inst✝¹ : AddCommGroup M inst✝ : Module R M v : ι → M li : LinearIndependent R v c d : R i j : ι hc : c ≠ 0 h : c • v i = d • v j l : ι →₀ R := Finsupp.single i c - Finsupp.single j d ⊢ i = j [PROOFSTEP] have h_total : Finsupp.total ι M R v l = 0 := by simp_rw [LinearMap.map_sub, Finsupp.total_apply] simp [h] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M✝ : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v✝ : ι → M✝ inst✝⁸ : Ring R inst✝⁷ : AddCommGroup M✝ inst✝⁶ : AddCommGroup M' inst✝⁵ : AddCommGroup M'' inst✝⁴ : Module R M✝ inst✝³ : Module R M' inst✝² : Module R M'' a b : R x y : M✝ M : Type u_8 inst✝¹ : AddCommGroup M inst✝ : Module R M v : ι → M li : LinearIndependent R v c d : R i j : ι hc : c ≠ 0 h : c • v i = d • v j l : ι →₀ R := Finsupp.single i c - Finsupp.single j d ⊢ ↑(Finsupp.total ι M R v) l = 0 [PROOFSTEP] simp_rw [LinearMap.map_sub, Finsupp.total_apply] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M✝ : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v✝ : ι → M✝ inst✝⁸ : Ring R inst✝⁷ : AddCommGroup M✝ inst✝⁶ : AddCommGroup M' inst✝⁵ : AddCommGroup M'' inst✝⁴ : Module R M✝ inst✝³ : Module R M' inst✝² : Module R M'' a b : R x y : M✝ M : Type u_8 inst✝¹ : AddCommGroup M inst✝ : Module R M v : ι → M li : LinearIndependent R v c d : R i j : ι hc : c ≠ 0 h : c • v i = d • v j l : ι →₀ R := Finsupp.single i c - Finsupp.single j d ⊢ ((Finsupp.sum (Finsupp.single i c) fun i a => a • v i) - Finsupp.sum (Finsupp.single j d) fun i a => a • v i) = 0 [PROOFSTEP] simp [h] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M✝ : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v✝ : ι → M✝ inst✝⁸ : Ring R inst✝⁷ : AddCommGroup M✝ inst✝⁶ : AddCommGroup M' inst✝⁵ : AddCommGroup M'' inst✝⁴ : Module R M✝ inst✝³ : Module R M' inst✝² : Module R M'' a b : R x y : M✝ M : Type u_8 inst✝¹ : AddCommGroup M inst✝ : Module R M v : ι → M li : LinearIndependent R v c d : R i j : ι hc : c ≠ 0 h : c • v i = d • v j l : ι →₀ R := Finsupp.single i c - Finsupp.single j d h_total : ↑(Finsupp.total ι M R v) l = 0 ⊢ i = j [PROOFSTEP] have h_single_eq : Finsupp.single i c = Finsupp.single j d := by rw [linearIndependent_iff] at li simp [eq_add_of_sub_eq' (li l h_total)] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M✝ : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v✝ : ι → M✝ inst✝⁸ : Ring R inst✝⁷ : AddCommGroup M✝ inst✝⁶ : AddCommGroup M' inst✝⁵ : AddCommGroup M'' inst✝⁴ : Module R M✝ inst✝³ : Module R M' inst✝² : Module R M'' a b : R x y : M✝ M : Type u_8 inst✝¹ : AddCommGroup M inst✝ : Module R M v : ι → M li : LinearIndependent R v c d : R i j : ι hc : c ≠ 0 h : c • v i = d • v j l : ι →₀ R := Finsupp.single i c - Finsupp.single j d h_total : ↑(Finsupp.total ι M R v) l = 0 ⊢ Finsupp.single i c = Finsupp.single j d [PROOFSTEP] rw [linearIndependent_iff] at li [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M✝ : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v✝ : ι → M✝ inst✝⁸ : Ring R inst✝⁷ : AddCommGroup M✝ inst✝⁶ : AddCommGroup M' inst✝⁵ : AddCommGroup M'' inst✝⁴ : Module R M✝ inst✝³ : Module R M' inst✝² : Module R M'' a b : R x y : M✝ M : Type u_8 inst✝¹ : AddCommGroup M inst✝ : Module R M v : ι → M li : ∀ (l : ι →₀ R), ↑(Finsupp.total ι M R v) l = 0 → l = 0 c d : R i j : ι hc : c ≠ 0 h : c • v i = d • v j l : ι →₀ R := Finsupp.single i c - Finsupp.single j d h_total : ↑(Finsupp.total ι M R v) l = 0 ⊢ Finsupp.single i c = Finsupp.single j d [PROOFSTEP] simp [eq_add_of_sub_eq' (li l h_total)] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M✝ : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v✝ : ι → M✝ inst✝⁸ : Ring R inst✝⁷ : AddCommGroup M✝ inst✝⁶ : AddCommGroup M' inst✝⁵ : AddCommGroup M'' inst✝⁴ : Module R M✝ inst✝³ : Module R M' inst✝² : Module R M'' a b : R x y : M✝ M : Type u_8 inst✝¹ : AddCommGroup M inst✝ : Module R M v : ι → M li : LinearIndependent R v c d : R i j : ι hc : c ≠ 0 h : c • v i = d • v j l : ι →₀ R := Finsupp.single i c - Finsupp.single j d h_total : ↑(Finsupp.total ι M R v) l = 0 h_single_eq : Finsupp.single i c = Finsupp.single j d ⊢ i = j [PROOFSTEP] rcases(Finsupp.single_eq_single_iff _ _ _ _).mp h_single_eq with (⟨H, _⟩ | ⟨hc, _⟩) [GOAL] case inl.intro ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M✝ : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v✝ : ι → M✝ inst✝⁸ : Ring R inst✝⁷ : AddCommGroup M✝ inst✝⁶ : AddCommGroup M' inst✝⁵ : AddCommGroup M'' inst✝⁴ : Module R M✝ inst✝³ : Module R M' inst✝² : Module R M'' a b : R x y : M✝ M : Type u_8 inst✝¹ : AddCommGroup M inst✝ : Module R M v : ι → M li : LinearIndependent R v c d : R i j : ι hc : c ≠ 0 h : c • v i = d • v j l : ι →₀ R := Finsupp.single i c - Finsupp.single j d h_total : ↑(Finsupp.total ι M R v) l = 0 h_single_eq : Finsupp.single i c = Finsupp.single j d H : i = j right✝ : c = d ⊢ i = j [PROOFSTEP] exact H [GOAL] case inr.intro ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M✝ : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v✝ : ι → M✝ inst✝⁸ : Ring R inst✝⁷ : AddCommGroup M✝ inst✝⁶ : AddCommGroup M' inst✝⁵ : AddCommGroup M'' inst✝⁴ : Module R M✝ inst✝³ : Module R M' inst✝² : Module R M'' a b : R x y : M✝ M : Type u_8 inst✝¹ : AddCommGroup M inst✝ : Module R M v : ι → M li : LinearIndependent R v c d : R i j : ι hc✝ : c ≠ 0 h : c • v i = d • v j l : ι →₀ R := Finsupp.single i c - Finsupp.single j d h_total : ↑(Finsupp.total ι M R v) l = 0 h_single_eq : Finsupp.single i c = Finsupp.single j d hc : c = 0 right✝ : d = 0 ⊢ i = j [PROOFSTEP] contradiction [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv : LinearIndependent R v s t : Set ι hs : Disjoint s t ⊢ Disjoint (span R (v '' s)) (span R (v '' t)) [PROOFSTEP] simp only [disjoint_def, Finsupp.mem_span_image_iff_total] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv : LinearIndependent R v s t : Set ι hs : Disjoint s t ⊢ ∀ (x : M), (∃ l, l ∈ Finsupp.supported R R s ∧ ↑(Finsupp.total ι M R v) l = x) → (∃ l, l ∈ Finsupp.supported R R t ∧ ↑(Finsupp.total ι M R v) l = x) → x = 0 [PROOFSTEP] rintro _ ⟨l₁, hl₁, rfl⟩ ⟨l₂, hl₂, H⟩ [GOAL] case intro.intro.intro.intro ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv : LinearIndependent R v s t : Set ι hs : Disjoint s t l₁ : ι →₀ R hl₁ : l₁ ∈ Finsupp.supported R R s l₂ : ι →₀ R hl₂ : l₂ ∈ Finsupp.supported R R t H : ↑(Finsupp.total ι M R v) l₂ = ↑(Finsupp.total ι M R v) l₁ ⊢ ↑(Finsupp.total ι M R v) l₁ = 0 [PROOFSTEP] rw [hv.injective_total.eq_iff] at H [GOAL] case intro.intro.intro.intro ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv : LinearIndependent R v s t : Set ι hs : Disjoint s t l₁ : ι →₀ R hl₁ : l₁ ∈ Finsupp.supported R R s l₂ : ι →₀ R hl₂ : l₂ ∈ Finsupp.supported R R t H : l₂ = l₁ ⊢ ↑(Finsupp.total ι M R v) l₁ = 0 [PROOFSTEP] subst l₂ [GOAL] case intro.intro.intro.intro ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv : LinearIndependent R v s t : Set ι hs : Disjoint s t l₁ : ι →₀ R hl₁ : l₁ ∈ Finsupp.supported R R s hl₂ : l₁ ∈ Finsupp.supported R R t ⊢ ↑(Finsupp.total ι M R v) l₁ = 0 [PROOFSTEP] have : l₁ = 0 := Submodule.disjoint_def.mp (Finsupp.disjoint_supported_supported hs) _ hl₁ hl₂ [GOAL] case intro.intro.intro.intro ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv : LinearIndependent R v s t : Set ι hs : Disjoint s t l₁ : ι →₀ R hl₁ : l₁ ∈ Finsupp.supported R R s hl₂ : l₁ ∈ Finsupp.supported R R t this : l₁ = 0 ⊢ ↑(Finsupp.total ι M R v) l₁ = 0 [PROOFSTEP] simp [this] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁷ : Ring R inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R M' inst✝¹ : Module R M'' a b : R x✝ y : M inst✝ : Nontrivial R hv : LinearIndependent R v s : Set ι x : ι h : ¬x ∈ s ⊢ ¬v x ∈ span R (v '' s) [PROOFSTEP] have h' : v x ∈ Submodule.span R (v '' { x }) := by rw [Set.image_singleton] exact mem_span_singleton_self (v x) [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁷ : Ring R inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R M' inst✝¹ : Module R M'' a b : R x✝ y : M inst✝ : Nontrivial R hv : LinearIndependent R v s : Set ι x : ι h : ¬x ∈ s ⊢ v x ∈ span R (v '' {x}) [PROOFSTEP] rw [Set.image_singleton] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁷ : Ring R inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R M' inst✝¹ : Module R M'' a b : R x✝ y : M inst✝ : Nontrivial R hv : LinearIndependent R v s : Set ι x : ι h : ¬x ∈ s ⊢ v x ∈ span R {v x} [PROOFSTEP] exact mem_span_singleton_self (v x) [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁷ : Ring R inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R M' inst✝¹ : Module R M'' a b : R x✝ y : M inst✝ : Nontrivial R hv : LinearIndependent R v s : Set ι x : ι h : ¬x ∈ s h' : v x ∈ span R (v '' {x}) ⊢ ¬v x ∈ span R (v '' s) [PROOFSTEP] intro w [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁷ : Ring R inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R M' inst✝¹ : Module R M'' a b : R x✝ y : M inst✝ : Nontrivial R hv : LinearIndependent R v s : Set ι x : ι h : ¬x ∈ s h' : v x ∈ span R (v '' {x}) w : v x ∈ span R (v '' s) ⊢ False [PROOFSTEP] apply LinearIndependent.ne_zero x hv [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁷ : Ring R inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R M' inst✝¹ : Module R M'' a b : R x✝ y : M inst✝ : Nontrivial R hv : LinearIndependent R v s : Set ι x : ι h : ¬x ∈ s h' : v x ∈ span R (v '' {x}) w : v x ∈ span R (v '' s) ⊢ v x = 0 [PROOFSTEP] refine' disjoint_def.1 (hv.disjoint_span_image _) (v x) h' w [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁷ : Ring R inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R M' inst✝¹ : Module R M'' a b : R x✝ y : M inst✝ : Nontrivial R hv : LinearIndependent R v s : Set ι x : ι h : ¬x ∈ s h' : v x ∈ span R (v '' {x}) w : v x ∈ span R (v '' s) ⊢ Disjoint {x} s [PROOFSTEP] simpa using h [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁷ : Ring R inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R M' inst✝¹ : Module R M'' a b : R x✝ y : M inst✝ : Nontrivial R hv : LinearIndependent R v x : ι f : ι →₀ R h : ¬x ∈ f.support ⊢ ↑(Finsupp.total ι M R v) f ≠ v x [PROOFSTEP] replace h : x ∉ (f.support : Set ι) := h [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁷ : Ring R inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R M' inst✝¹ : Module R M'' a b : R x✝ y : M inst✝ : Nontrivial R hv : LinearIndependent R v x : ι f : ι →₀ R h : ¬x ∈ ↑f.support ⊢ ↑(Finsupp.total ι M R v) f ≠ v x [PROOFSTEP] have p := hv.not_mem_span_image h [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁷ : Ring R inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R M' inst✝¹ : Module R M'' a b : R x✝ y : M inst✝ : Nontrivial R hv : LinearIndependent R v x : ι f : ι →₀ R h : ¬x ∈ ↑f.support p : ¬v x ∈ span R (v '' ↑f.support) ⊢ ↑(Finsupp.total ι M R v) f ≠ v x [PROOFSTEP] intro w [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁷ : Ring R inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R M' inst✝¹ : Module R M'' a b : R x✝ y : M inst✝ : Nontrivial R hv : LinearIndependent R v x : ι f : ι →₀ R h : ¬x ∈ ↑f.support p : ¬v x ∈ span R (v '' ↑f.support) w : ↑(Finsupp.total ι M R v) f = v x ⊢ False [PROOFSTEP] rw [← w] at p [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁷ : Ring R inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R M' inst✝¹ : Module R M'' a b : R x✝ y : M inst✝ : Nontrivial R hv : LinearIndependent R v x : ι f : ι →₀ R h : ¬x ∈ ↑f.support p : ¬↑(Finsupp.total ι M R v) f ∈ span R (v '' ↑f.support) w : ↑(Finsupp.total ι M R v) f = v x ⊢ False [PROOFSTEP] rw [Finsupp.span_image_eq_map_total] at p [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁷ : Ring R inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R M' inst✝¹ : Module R M'' a b : R x✝ y : M inst✝ : Nontrivial R hv : LinearIndependent R v x : ι f : ι →₀ R h : ¬x ∈ ↑f.support p : ¬↑(Finsupp.total ι M R v) f ∈ Submodule.map (Finsupp.total ι M R v) (Finsupp.supported R R ↑f.support) w : ↑(Finsupp.total ι M R v) f = v x ⊢ False [PROOFSTEP] simp only [not_exists, not_and, mem_map] at p [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁷ : Ring R inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R M' inst✝¹ : Module R M'' a b : R x✝ y : M inst✝ : Nontrivial R hv : LinearIndependent R v x : ι f : ι →₀ R h : ¬x ∈ ↑f.support w : ↑(Finsupp.total ι M R v) f = v x p : ∀ (x : ι →₀ R), x ∈ Finsupp.supported R R ↑f.support → ¬↑(Finsupp.total ι M R v) x = ↑(Finsupp.total ι M R v) f ⊢ False [PROOFSTEP] exact p f (f.mem_supported_support R) rfl [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v✝ : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M v : ι ⊕ ι' → M ⊢ LinearIndependent R v ↔ LinearIndependent R (v ∘ Sum.inl) ∧ LinearIndependent R (v ∘ Sum.inr) ∧ Disjoint (span R (range (v ∘ Sum.inl))) (span R (range (v ∘ Sum.inr))) [PROOFSTEP] classical rw [range_comp v, range_comp v] refine' ⟨_, _⟩ · intro h refine' ⟨h.comp _ Sum.inl_injective, h.comp _ Sum.inr_injective, _⟩ refine' h.disjoint_span_image _ -- Porting note: `isCompl_range_inl_range_inr.1` timeouts. exact IsCompl.disjoint isCompl_range_inl_range_inr rintro ⟨hl, hr, hlr⟩ rw [linearIndependent_iff'] at * intro s g hg i hi have : ((∑ i in s.preimage Sum.inl (Sum.inl_injective.injOn _), (fun x => g x • v x) (Sum.inl i)) + ∑ i in s.preimage Sum.inr (Sum.inr_injective.injOn _), (fun x => g x • v x) (Sum.inr i)) = 0 := by -- Porting note: `g` must be specified. rw [Finset.sum_preimage' (g := fun x => g x • v x), Finset.sum_preimage' (g := fun x => g x • v x), ← Finset.sum_union, ← Finset.filter_or] · simpa only [← mem_union, range_inl_union_range_inr, mem_univ, Finset.filter_True] · -- Porting note: Here was one `exact`, but timeouted. refine Finset.disjoint_filter.2 fun x _ hx => disjoint_left.1 ?_ hx exact IsCompl.disjoint isCompl_range_inl_range_inr · rw [← eq_neg_iff_add_eq_zero] at this rw [disjoint_def'] at hlr have A := by refine hlr _ (sum_mem fun i _ => ?_) _ (neg_mem <| sum_mem fun i _ => ?_) this · exact smul_mem _ _ (subset_span ⟨Sum.inl i, mem_range_self _, rfl⟩) · exact smul_mem _ _ (subset_span ⟨Sum.inr i, mem_range_self _, rfl⟩) cases' i with i i · exact hl _ _ A i (Finset.mem_preimage.2 hi) · rw [this, neg_eq_zero] at A exact hr _ _ A i (Finset.mem_preimage.2 hi) [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v✝ : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M v : ι ⊕ ι' → M ⊢ LinearIndependent R v ↔ LinearIndependent R (v ∘ Sum.inl) ∧ LinearIndependent R (v ∘ Sum.inr) ∧ Disjoint (span R (range (v ∘ Sum.inl))) (span R (range (v ∘ Sum.inr))) [PROOFSTEP] rw [range_comp v, range_comp v] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v✝ : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M v : ι ⊕ ι' → M ⊢ LinearIndependent R v ↔ LinearIndependent R (v ∘ Sum.inl) ∧ LinearIndependent R (v ∘ Sum.inr) ∧ Disjoint (span R (v '' range Sum.inl)) (span R (v '' range Sum.inr)) [PROOFSTEP] refine' ⟨_, _⟩ [GOAL] case refine'_1 ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v✝ : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M v : ι ⊕ ι' → M ⊢ LinearIndependent R v → LinearIndependent R (v ∘ Sum.inl) ∧ LinearIndependent R (v ∘ Sum.inr) ∧ Disjoint (span R (v '' range Sum.inl)) (span R (v '' range Sum.inr)) [PROOFSTEP] intro h [GOAL] case refine'_1 ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v✝ : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M v : ι ⊕ ι' → M h : LinearIndependent R v ⊢ LinearIndependent R (v ∘ Sum.inl) ∧ LinearIndependent R (v ∘ Sum.inr) ∧ Disjoint (span R (v '' range Sum.inl)) (span R (v '' range Sum.inr)) [PROOFSTEP] refine' ⟨h.comp _ Sum.inl_injective, h.comp _ Sum.inr_injective, _⟩ [GOAL] case refine'_1 ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v✝ : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M v : ι ⊕ ι' → M h : LinearIndependent R v ⊢ Disjoint (span R (v '' range Sum.inl)) (span R (v '' range Sum.inr)) [PROOFSTEP] refine' h.disjoint_span_image _ -- Porting note: `isCompl_range_inl_range_inr.1` timeouts. [GOAL] case refine'_1 ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v✝ : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M v : ι ⊕ ι' → M h : LinearIndependent R v ⊢ Disjoint (range Sum.inl) (range Sum.inr) [PROOFSTEP] exact IsCompl.disjoint isCompl_range_inl_range_inr [GOAL] case refine'_2 ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v✝ : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M v : ι ⊕ ι' → M ⊢ LinearIndependent R (v ∘ Sum.inl) ∧ LinearIndependent R (v ∘ Sum.inr) ∧ Disjoint (span R (v '' range Sum.inl)) (span R (v '' range Sum.inr)) → LinearIndependent R v [PROOFSTEP] rintro ⟨hl, hr, hlr⟩ [GOAL] case refine'_2.intro.intro ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v✝ : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M v : ι ⊕ ι' → M hl : LinearIndependent R (v ∘ Sum.inl) hr : LinearIndependent R (v ∘ Sum.inr) hlr : Disjoint (span R (v '' range Sum.inl)) (span R (v '' range Sum.inr)) ⊢ LinearIndependent R v [PROOFSTEP] rw [linearIndependent_iff'] at * [GOAL] case refine'_2.intro.intro ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v✝ : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M v : ι ⊕ ι' → M hl : ∀ (s : Finset ι) (g : ι → R), ∑ i in s, g i • (v ∘ Sum.inl) i = 0 → ∀ (i : ι), i ∈ s → g i = 0 hr : ∀ (s : Finset ι') (g : ι' → R), ∑ i in s, g i • (v ∘ Sum.inr) i = 0 → ∀ (i : ι'), i ∈ s → g i = 0 hlr : Disjoint (span R (v '' range Sum.inl)) (span R (v '' range Sum.inr)) ⊢ ∀ (s : Finset (ι ⊕ ι')) (g : ι ⊕ ι' → R), ∑ i in s, g i • v i = 0 → ∀ (i : ι ⊕ ι'), i ∈ s → g i = 0 [PROOFSTEP] intro s g hg i hi [GOAL] case refine'_2.intro.intro ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v✝ : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M v : ι ⊕ ι' → M hl : ∀ (s : Finset ι) (g : ι → R), ∑ i in s, g i • (v ∘ Sum.inl) i = 0 → ∀ (i : ι), i ∈ s → g i = 0 hr : ∀ (s : Finset ι') (g : ι' → R), ∑ i in s, g i • (v ∘ Sum.inr) i = 0 → ∀ (i : ι'), i ∈ s → g i = 0 hlr : Disjoint (span R (v '' range Sum.inl)) (span R (v '' range Sum.inr)) s : Finset (ι ⊕ ι') g : ι ⊕ ι' → R hg : ∑ i in s, g i • v i = 0 i : ι ⊕ ι' hi : i ∈ s ⊢ g i = 0 [PROOFSTEP] have : ((∑ i in s.preimage Sum.inl (Sum.inl_injective.injOn _), (fun x => g x • v x) (Sum.inl i)) + ∑ i in s.preimage Sum.inr (Sum.inr_injective.injOn _), (fun x => g x • v x) (Sum.inr i)) = 0 := by -- Porting note: `g` must be specified. rw [Finset.sum_preimage' (g := fun x => g x • v x), Finset.sum_preimage' (g := fun x => g x • v x), ← Finset.sum_union, ← Finset.filter_or] · simpa only [← mem_union, range_inl_union_range_inr, mem_univ, Finset.filter_True] · -- Porting note: Here was one `exact`, but timeouted. refine Finset.disjoint_filter.2 fun x _ hx => disjoint_left.1 ?_ hx exact IsCompl.disjoint isCompl_range_inl_range_inr [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v✝ : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M v : ι ⊕ ι' → M hl : ∀ (s : Finset ι) (g : ι → R), ∑ i in s, g i • (v ∘ Sum.inl) i = 0 → ∀ (i : ι), i ∈ s → g i = 0 hr : ∀ (s : Finset ι') (g : ι' → R), ∑ i in s, g i • (v ∘ Sum.inr) i = 0 → ∀ (i : ι'), i ∈ s → g i = 0 hlr : Disjoint (span R (v '' range Sum.inl)) (span R (v '' range Sum.inr)) s : Finset (ι ⊕ ι') g : ι ⊕ ι' → R hg : ∑ i in s, g i • v i = 0 i : ι ⊕ ι' hi : i ∈ s ⊢ ∑ i in Finset.preimage s Sum.inl (_ : InjOn Sum.inl (Sum.inl ⁻¹' ↑s)), (fun x => g x • v x) (Sum.inl i) + ∑ i in Finset.preimage s Sum.inr (_ : InjOn Sum.inr (Sum.inr ⁻¹' ↑s)), (fun x => g x • v x) (Sum.inr i) = 0 [PROOFSTEP] rw [Finset.sum_preimage' (g := fun x => g x • v x), Finset.sum_preimage' (g := fun x => g x • v x), ← Finset.sum_union, ← Finset.filter_or] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v✝ : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M v : ι ⊕ ι' → M hl : ∀ (s : Finset ι) (g : ι → R), ∑ i in s, g i • (v ∘ Sum.inl) i = 0 → ∀ (i : ι), i ∈ s → g i = 0 hr : ∀ (s : Finset ι') (g : ι' → R), ∑ i in s, g i • (v ∘ Sum.inr) i = 0 → ∀ (i : ι'), i ∈ s → g i = 0 hlr : Disjoint (span R (v '' range Sum.inl)) (span R (v '' range Sum.inr)) s : Finset (ι ⊕ ι') g : ι ⊕ ι' → R hg : ∑ i in s, g i • v i = 0 i : ι ⊕ ι' hi : i ∈ s ⊢ ∑ x in Finset.filter (fun a => a ∈ range Sum.inl ∨ a ∈ range Sum.inr) s, g x • v x = 0 [PROOFSTEP] simpa only [← mem_union, range_inl_union_range_inr, mem_univ, Finset.filter_True] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v✝ : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M v : ι ⊕ ι' → M hl : ∀ (s : Finset ι) (g : ι → R), ∑ i in s, g i • (v ∘ Sum.inl) i = 0 → ∀ (i : ι), i ∈ s → g i = 0 hr : ∀ (s : Finset ι') (g : ι' → R), ∑ i in s, g i • (v ∘ Sum.inr) i = 0 → ∀ (i : ι'), i ∈ s → g i = 0 hlr : Disjoint (span R (v '' range Sum.inl)) (span R (v '' range Sum.inr)) s : Finset (ι ⊕ ι') g : ι ⊕ ι' → R hg : ∑ i in s, g i • v i = 0 i : ι ⊕ ι' hi : i ∈ s ⊢ Disjoint (Finset.filter (fun x => x ∈ range Sum.inl) s) (Finset.filter (fun x => x ∈ range Sum.inr) s) [PROOFSTEP] refine Finset.disjoint_filter.2 fun x _ hx => disjoint_left.1 ?_ hx [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v✝ : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x✝¹ y : M v : ι ⊕ ι' → M hl : ∀ (s : Finset ι) (g : ι → R), ∑ i in s, g i • (v ∘ Sum.inl) i = 0 → ∀ (i : ι), i ∈ s → g i = 0 hr : ∀ (s : Finset ι') (g : ι' → R), ∑ i in s, g i • (v ∘ Sum.inr) i = 0 → ∀ (i : ι'), i ∈ s → g i = 0 hlr : Disjoint (span R (v '' range Sum.inl)) (span R (v '' range Sum.inr)) s : Finset (ι ⊕ ι') g : ι ⊕ ι' → R hg : ∑ i in s, g i • v i = 0 i : ι ⊕ ι' hi : i ∈ s x : ι ⊕ ι' x✝ : x ∈ s hx : x ∈ range Sum.inl ⊢ Disjoint (range Sum.inl) (range Sum.inr) [PROOFSTEP] exact IsCompl.disjoint isCompl_range_inl_range_inr [GOAL] case refine'_2.intro.intro ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v✝ : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M v : ι ⊕ ι' → M hl : ∀ (s : Finset ι) (g : ι → R), ∑ i in s, g i • (v ∘ Sum.inl) i = 0 → ∀ (i : ι), i ∈ s → g i = 0 hr : ∀ (s : Finset ι') (g : ι' → R), ∑ i in s, g i • (v ∘ Sum.inr) i = 0 → ∀ (i : ι'), i ∈ s → g i = 0 hlr : Disjoint (span R (v '' range Sum.inl)) (span R (v '' range Sum.inr)) s : Finset (ι ⊕ ι') g : ι ⊕ ι' → R hg : ∑ i in s, g i • v i = 0 i : ι ⊕ ι' hi : i ∈ s this : ∑ i in Finset.preimage s Sum.inl (_ : InjOn Sum.inl (Sum.inl ⁻¹' ↑s)), (fun x => g x • v x) (Sum.inl i) + ∑ i in Finset.preimage s Sum.inr (_ : InjOn Sum.inr (Sum.inr ⁻¹' ↑s)), (fun x => g x • v x) (Sum.inr i) = 0 ⊢ g i = 0 [PROOFSTEP] rw [← eq_neg_iff_add_eq_zero] at this [GOAL] case refine'_2.intro.intro ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v✝ : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M v : ι ⊕ ι' → M hl : ∀ (s : Finset ι) (g : ι → R), ∑ i in s, g i • (v ∘ Sum.inl) i = 0 → ∀ (i : ι), i ∈ s → g i = 0 hr : ∀ (s : Finset ι') (g : ι' → R), ∑ i in s, g i • (v ∘ Sum.inr) i = 0 → ∀ (i : ι'), i ∈ s → g i = 0 hlr : Disjoint (span R (v '' range Sum.inl)) (span R (v '' range Sum.inr)) s : Finset (ι ⊕ ι') g : ι ⊕ ι' → R hg : ∑ i in s, g i • v i = 0 i : ι ⊕ ι' hi : i ∈ s this : ∑ i in Finset.preimage s Sum.inl (_ : InjOn Sum.inl (Sum.inl ⁻¹' ↑s)), (fun x => g x • v x) (Sum.inl i) = -∑ i in Finset.preimage s Sum.inr (_ : InjOn Sum.inr (Sum.inr ⁻¹' ↑s)), (fun x => g x • v x) (Sum.inr i) ⊢ g i = 0 [PROOFSTEP] rw [disjoint_def'] at hlr [GOAL] case refine'_2.intro.intro ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v✝ : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M v : ι ⊕ ι' → M hl : ∀ (s : Finset ι) (g : ι → R), ∑ i in s, g i • (v ∘ Sum.inl) i = 0 → ∀ (i : ι), i ∈ s → g i = 0 hr : ∀ (s : Finset ι') (g : ι' → R), ∑ i in s, g i • (v ∘ Sum.inr) i = 0 → ∀ (i : ι'), i ∈ s → g i = 0 hlr : ∀ (x : M), x ∈ span R (v '' range Sum.inl) → ∀ (y : M), y ∈ span R (v '' range Sum.inr) → x = y → x = 0 s : Finset (ι ⊕ ι') g : ι ⊕ ι' → R hg : ∑ i in s, g i • v i = 0 i : ι ⊕ ι' hi : i ∈ s this : ∑ i in Finset.preimage s Sum.inl (_ : InjOn Sum.inl (Sum.inl ⁻¹' ↑s)), (fun x => g x • v x) (Sum.inl i) = -∑ i in Finset.preimage s Sum.inr (_ : InjOn Sum.inr (Sum.inr ⁻¹' ↑s)), (fun x => g x • v x) (Sum.inr i) ⊢ g i = 0 [PROOFSTEP] have A := by refine hlr _ (sum_mem fun i _ => ?_) _ (neg_mem <| sum_mem fun i _ => ?_) this · exact smul_mem _ _ (subset_span ⟨Sum.inl i, mem_range_self _, rfl⟩) · exact smul_mem _ _ (subset_span ⟨Sum.inr i, mem_range_self _, rfl⟩) [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v✝ : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M v : ι ⊕ ι' → M hl : ∀ (s : Finset ι) (g : ι → R), ∑ i in s, g i • (v ∘ Sum.inl) i = 0 → ∀ (i : ι), i ∈ s → g i = 0 hr : ∀ (s : Finset ι') (g : ι' → R), ∑ i in s, g i • (v ∘ Sum.inr) i = 0 → ∀ (i : ι'), i ∈ s → g i = 0 hlr : ∀ (x : M), x ∈ span R (v '' range Sum.inl) → ∀ (y : M), y ∈ span R (v '' range Sum.inr) → x = y → x = 0 s : Finset (ι ⊕ ι') g : ι ⊕ ι' → R hg : ∑ i in s, g i • v i = 0 i : ι ⊕ ι' hi : i ∈ s this : ∑ i in Finset.preimage s Sum.inl (_ : InjOn Sum.inl (Sum.inl ⁻¹' ↑s)), (fun x => g x • v x) (Sum.inl i) = -∑ i in Finset.preimage s Sum.inr (_ : InjOn Sum.inr (Sum.inr ⁻¹' ↑s)), (fun x => g x • v x) (Sum.inr i) ⊢ ?m.395655 [PROOFSTEP] refine hlr _ (sum_mem fun i _ => ?_) _ (neg_mem <| sum_mem fun i _ => ?_) this [GOAL] case refine_1 ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v✝ : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M v : ι ⊕ ι' → M hl : ∀ (s : Finset ι) (g : ι → R), ∑ i in s, g i • (v ∘ Sum.inl) i = 0 → ∀ (i : ι), i ∈ s → g i = 0 hr : ∀ (s : Finset ι') (g : ι' → R), ∑ i in s, g i • (v ∘ Sum.inr) i = 0 → ∀ (i : ι'), i ∈ s → g i = 0 hlr : ∀ (x : M), x ∈ span R (v '' range Sum.inl) → ∀ (y : M), y ∈ span R (v '' range Sum.inr) → x = y → x = 0 s : Finset (ι ⊕ ι') g : ι ⊕ ι' → R hg : ∑ i in s, g i • v i = 0 i✝ : ι ⊕ ι' hi : i✝ ∈ s this : ∑ i in Finset.preimage s Sum.inl (_ : InjOn Sum.inl (Sum.inl ⁻¹' ↑s)), (fun x => g x • v x) (Sum.inl i) = -∑ i in Finset.preimage s Sum.inr (_ : InjOn Sum.inr (Sum.inr ⁻¹' ↑s)), (fun x => g x • v x) (Sum.inr i) i : ι x✝ : i ∈ Finset.preimage s Sum.inl (_ : InjOn Sum.inl (Sum.inl ⁻¹' ↑s)) ⊢ (fun x => g x • v x) (Sum.inl i) ∈ span R (v '' range Sum.inl) [PROOFSTEP] exact smul_mem _ _ (subset_span ⟨Sum.inl i, mem_range_self _, rfl⟩) [GOAL] case refine_2 ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v✝ : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M v : ι ⊕ ι' → M hl : ∀ (s : Finset ι) (g : ι → R), ∑ i in s, g i • (v ∘ Sum.inl) i = 0 → ∀ (i : ι), i ∈ s → g i = 0 hr : ∀ (s : Finset ι') (g : ι' → R), ∑ i in s, g i • (v ∘ Sum.inr) i = 0 → ∀ (i : ι'), i ∈ s → g i = 0 hlr : ∀ (x : M), x ∈ span R (v '' range Sum.inl) → ∀ (y : M), y ∈ span R (v '' range Sum.inr) → x = y → x = 0 s : Finset (ι ⊕ ι') g : ι ⊕ ι' → R hg : ∑ i in s, g i • v i = 0 i✝ : ι ⊕ ι' hi : i✝ ∈ s this : ∑ i in Finset.preimage s Sum.inl (_ : InjOn Sum.inl (Sum.inl ⁻¹' ↑s)), (fun x => g x • v x) (Sum.inl i) = -∑ i in Finset.preimage s Sum.inr (_ : InjOn Sum.inr (Sum.inr ⁻¹' ↑s)), (fun x => g x • v x) (Sum.inr i) i : ι' x✝ : i ∈ Finset.preimage s Sum.inr (_ : InjOn Sum.inr (Sum.inr ⁻¹' ↑s)) ⊢ (fun x => g x • v x) (Sum.inr i) ∈ span R (v '' range Sum.inr) [PROOFSTEP] exact smul_mem _ _ (subset_span ⟨Sum.inr i, mem_range_self _, rfl⟩) [GOAL] case refine'_2.intro.intro ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v✝ : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M v : ι ⊕ ι' → M hl : ∀ (s : Finset ι) (g : ι → R), ∑ i in s, g i • (v ∘ Sum.inl) i = 0 → ∀ (i : ι), i ∈ s → g i = 0 hr : ∀ (s : Finset ι') (g : ι' → R), ∑ i in s, g i • (v ∘ Sum.inr) i = 0 → ∀ (i : ι'), i ∈ s → g i = 0 hlr : ∀ (x : M), x ∈ span R (v '' range Sum.inl) → ∀ (y : M), y ∈ span R (v '' range Sum.inr) → x = y → x = 0 s : Finset (ι ⊕ ι') g : ι ⊕ ι' → R hg : ∑ i in s, g i • v i = 0 i : ι ⊕ ι' hi : i ∈ s this : ∑ i in Finset.preimage s Sum.inl (_ : InjOn Sum.inl (Sum.inl ⁻¹' ↑s)), (fun x => g x • v x) (Sum.inl i) = -∑ i in Finset.preimage s Sum.inr (_ : InjOn Sum.inr (Sum.inr ⁻¹' ↑s)), (fun x => g x • v x) (Sum.inr i) A : ∑ c in Finset.preimage s Sum.inl (_ : InjOn Sum.inl (Sum.inl ⁻¹' ↑s)), (fun x => g x • v x) (Sum.inl c) = 0 ⊢ g i = 0 [PROOFSTEP] cases' i with i i [GOAL] case refine'_2.intro.intro.inl ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v✝ : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M v : ι ⊕ ι' → M hl : ∀ (s : Finset ι) (g : ι → R), ∑ i in s, g i • (v ∘ Sum.inl) i = 0 → ∀ (i : ι), i ∈ s → g i = 0 hr : ∀ (s : Finset ι') (g : ι' → R), ∑ i in s, g i • (v ∘ Sum.inr) i = 0 → ∀ (i : ι'), i ∈ s → g i = 0 hlr : ∀ (x : M), x ∈ span R (v '' range Sum.inl) → ∀ (y : M), y ∈ span R (v '' range Sum.inr) → x = y → x = 0 s : Finset (ι ⊕ ι') g : ι ⊕ ι' → R hg : ∑ i in s, g i • v i = 0 this : ∑ i in Finset.preimage s Sum.inl (_ : InjOn Sum.inl (Sum.inl ⁻¹' ↑s)), (fun x => g x • v x) (Sum.inl i) = -∑ i in Finset.preimage s Sum.inr (_ : InjOn Sum.inr (Sum.inr ⁻¹' ↑s)), (fun x => g x • v x) (Sum.inr i) A : ∑ c in Finset.preimage s Sum.inl (_ : InjOn Sum.inl (Sum.inl ⁻¹' ↑s)), (fun x => g x • v x) (Sum.inl c) = 0 i : ι hi : Sum.inl i ∈ s ⊢ g (Sum.inl i) = 0 [PROOFSTEP] exact hl _ _ A i (Finset.mem_preimage.2 hi) [GOAL] case refine'_2.intro.intro.inr ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v✝ : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M v : ι ⊕ ι' → M hl : ∀ (s : Finset ι) (g : ι → R), ∑ i in s, g i • (v ∘ Sum.inl) i = 0 → ∀ (i : ι), i ∈ s → g i = 0 hr : ∀ (s : Finset ι') (g : ι' → R), ∑ i in s, g i • (v ∘ Sum.inr) i = 0 → ∀ (i : ι'), i ∈ s → g i = 0 hlr : ∀ (x : M), x ∈ span R (v '' range Sum.inl) → ∀ (y : M), y ∈ span R (v '' range Sum.inr) → x = y → x = 0 s : Finset (ι ⊕ ι') g : ι ⊕ ι' → R hg : ∑ i in s, g i • v i = 0 this : ∑ i in Finset.preimage s Sum.inl (_ : InjOn Sum.inl (Sum.inl ⁻¹' ↑s)), (fun x => g x • v x) (Sum.inl i) = -∑ i in Finset.preimage s Sum.inr (_ : InjOn Sum.inr (Sum.inr ⁻¹' ↑s)), (fun x => g x • v x) (Sum.inr i) A : ∑ c in Finset.preimage s Sum.inl (_ : InjOn Sum.inl (Sum.inl ⁻¹' ↑s)), (fun x => g x • v x) (Sum.inl c) = 0 i : ι' hi : Sum.inr i ∈ s ⊢ g (Sum.inr i) = 0 [PROOFSTEP] rw [this, neg_eq_zero] at A [GOAL] case refine'_2.intro.intro.inr ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v✝ : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M v : ι ⊕ ι' → M hl : ∀ (s : Finset ι) (g : ι → R), ∑ i in s, g i • (v ∘ Sum.inl) i = 0 → ∀ (i : ι), i ∈ s → g i = 0 hr : ∀ (s : Finset ι') (g : ι' → R), ∑ i in s, g i • (v ∘ Sum.inr) i = 0 → ∀ (i : ι'), i ∈ s → g i = 0 hlr : ∀ (x : M), x ∈ span R (v '' range Sum.inl) → ∀ (y : M), y ∈ span R (v '' range Sum.inr) → x = y → x = 0 s : Finset (ι ⊕ ι') g : ι ⊕ ι' → R hg : ∑ i in s, g i • v i = 0 this : ∑ i in Finset.preimage s Sum.inl (_ : InjOn Sum.inl (Sum.inl ⁻¹' ↑s)), (fun x => g x • v x) (Sum.inl i) = -∑ i in Finset.preimage s Sum.inr (_ : InjOn Sum.inr (Sum.inr ⁻¹' ↑s)), (fun x => g x • v x) (Sum.inr i) A : ∑ i in Finset.preimage s Sum.inr (_ : InjOn Sum.inr (Sum.inr ⁻¹' ↑s)), (fun x => g x • v x) (Sum.inr i) = 0 i : ι' hi : Sum.inr i ∈ s ⊢ g (Sum.inr i) = 0 [PROOFSTEP] exact hr _ _ A i (Finset.mem_preimage.2 hi) [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M s t : Set M hs : LinearIndependent R fun x => ↑x ht : LinearIndependent R fun x => ↑x hst : Disjoint (span R s) (span R t) ⊢ Disjoint (span R (range fun x => ↑x)) (span R (range fun x => ↑x)) [PROOFSTEP] simpa [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M s t : Set M hs : LinearIndependent R fun x => ↑x ht : LinearIndependent R fun x => ↑x hst : Disjoint (span R s) (span R t) ⊢ range (Sum.elim (fun x => ↑x) fun x => ↑x) = s ∪ t [PROOFSTEP] simp [GOAL] ι✝ : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι✝ → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M ι : Type u_8 f : ι → Set M hl : ∀ (i : ι), LinearIndependent R fun x => ↑x hd : ∀ (i : ι) (t : Set ι), Set.Finite t → ¬i ∈ t → Disjoint (span R (f i)) (⨆ (i : ι) (_ : i ∈ t), span R (f i)) ⊢ LinearIndependent R fun x => ↑x [PROOFSTEP] classical rw [iUnion_eq_iUnion_finset f] apply linearIndependent_iUnion_of_directed · apply directed_of_sup exact fun t₁ t₂ ht => iUnion_mono fun i => iUnion_subset_iUnion_const fun h => ht h intro t induction' t using Finset.induction_on with i s his ih · refine' (linearIndependent_empty R M).mono _ simp · rw [Finset.set_biUnion_insert] refine' (hl _).union ih _ rw [span_iUnion₂] exact hd i s s.finite_toSet his [GOAL] ι✝ : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι✝ → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M ι : Type u_8 f : ι → Set M hl : ∀ (i : ι), LinearIndependent R fun x => ↑x hd : ∀ (i : ι) (t : Set ι), Set.Finite t → ¬i ∈ t → Disjoint (span R (f i)) (⨆ (i : ι) (_ : i ∈ t), span R (f i)) ⊢ LinearIndependent R fun x => ↑x [PROOFSTEP] rw [iUnion_eq_iUnion_finset f] [GOAL] ι✝ : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι✝ → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M ι : Type u_8 f : ι → Set M hl : ∀ (i : ι), LinearIndependent R fun x => ↑x hd : ∀ (i : ι) (t : Set ι), Set.Finite t → ¬i ∈ t → Disjoint (span R (f i)) (⨆ (i : ι) (_ : i ∈ t), span R (f i)) ⊢ LinearIndependent R fun x => ↑x [PROOFSTEP] apply linearIndependent_iUnion_of_directed [GOAL] case hs ι✝ : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι✝ → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M ι : Type u_8 f : ι → Set M hl : ∀ (i : ι), LinearIndependent R fun x => ↑x hd : ∀ (i : ι) (t : Set ι), Set.Finite t → ¬i ∈ t → Disjoint (span R (f i)) (⨆ (i : ι) (_ : i ∈ t), span R (f i)) ⊢ Directed (fun x x_1 => x ⊆ x_1) fun i => ⋃ (i_1 : ι) (_ : i_1 ∈ i), f i_1 [PROOFSTEP] apply directed_of_sup [GOAL] case hs.H ι✝ : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι✝ → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M ι : Type u_8 f : ι → Set M hl : ∀ (i : ι), LinearIndependent R fun x => ↑x hd : ∀ (i : ι) (t : Set ι), Set.Finite t → ¬i ∈ t → Disjoint (span R (f i)) (⨆ (i : ι) (_ : i ∈ t), span R (f i)) ⊢ ∀ ⦃i j : Finset ι⦄, i ≤ j → ⋃ (i_1 : ι) (_ : i_1 ∈ i), f i_1 ⊆ ⋃ (i : ι) (_ : i ∈ j), f i [PROOFSTEP] exact fun t₁ t₂ ht => iUnion_mono fun i => iUnion_subset_iUnion_const fun h => ht h [GOAL] case h ι✝ : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι✝ → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M ι : Type u_8 f : ι → Set M hl : ∀ (i : ι), LinearIndependent R fun x => ↑x hd : ∀ (i : ι) (t : Set ι), Set.Finite t → ¬i ∈ t → Disjoint (span R (f i)) (⨆ (i : ι) (_ : i ∈ t), span R (f i)) ⊢ ∀ (i : Finset ι), LinearIndependent R fun x => ↑x [PROOFSTEP] intro t [GOAL] case h ι✝ : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι✝ → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M ι : Type u_8 f : ι → Set M hl : ∀ (i : ι), LinearIndependent R fun x => ↑x hd : ∀ (i : ι) (t : Set ι), Set.Finite t → ¬i ∈ t → Disjoint (span R (f i)) (⨆ (i : ι) (_ : i ∈ t), span R (f i)) t : Finset ι ⊢ LinearIndependent R fun x => ↑x [PROOFSTEP] induction' t using Finset.induction_on with i s his ih [GOAL] case h.empty ι✝ : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι✝ → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M ι : Type u_8 f : ι → Set M hl : ∀ (i : ι), LinearIndependent R fun x => ↑x hd : ∀ (i : ι) (t : Set ι), Set.Finite t → ¬i ∈ t → Disjoint (span R (f i)) (⨆ (i : ι) (_ : i ∈ t), span R (f i)) ⊢ LinearIndependent R fun x => ↑x [PROOFSTEP] refine' (linearIndependent_empty R M).mono _ [GOAL] case h.empty ι✝ : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι✝ → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M ι : Type u_8 f : ι → Set M hl : ∀ (i : ι), LinearIndependent R fun x => ↑x hd : ∀ (i : ι) (t : Set ι), Set.Finite t → ¬i ∈ t → Disjoint (span R (f i)) (⨆ (i : ι) (_ : i ∈ t), span R (f i)) ⊢ ⋃ (i : ι) (_ : i ∈ ∅), f i ⊆ ∅ [PROOFSTEP] simp [GOAL] case h.insert ι✝ : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι✝ → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M ι : Type u_8 f : ι → Set M hl : ∀ (i : ι), LinearIndependent R fun x => ↑x hd : ∀ (i : ι) (t : Set ι), Set.Finite t → ¬i ∈ t → Disjoint (span R (f i)) (⨆ (i : ι) (_ : i ∈ t), span R (f i)) i : ι s : Finset ι his : ¬i ∈ s ih : LinearIndependent R fun x => ↑x ⊢ LinearIndependent R fun x => ↑x [PROOFSTEP] rw [Finset.set_biUnion_insert] [GOAL] case h.insert ι✝ : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι✝ → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M ι : Type u_8 f : ι → Set M hl : ∀ (i : ι), LinearIndependent R fun x => ↑x hd : ∀ (i : ι) (t : Set ι), Set.Finite t → ¬i ∈ t → Disjoint (span R (f i)) (⨆ (i : ι) (_ : i ∈ t), span R (f i)) i : ι s : Finset ι his : ¬i ∈ s ih : LinearIndependent R fun x => ↑x ⊢ LinearIndependent R fun x => ↑x [PROOFSTEP] refine' (hl _).union ih _ [GOAL] case h.insert ι✝ : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι✝ → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M ι : Type u_8 f : ι → Set M hl : ∀ (i : ι), LinearIndependent R fun x => ↑x hd : ∀ (i : ι) (t : Set ι), Set.Finite t → ¬i ∈ t → Disjoint (span R (f i)) (⨆ (i : ι) (_ : i ∈ t), span R (f i)) i : ι s : Finset ι his : ¬i ∈ s ih : LinearIndependent R fun x => ↑x ⊢ Disjoint (span R (f i)) (span R (⋃ (x : ι) (_ : x ∈ s), f x)) [PROOFSTEP] rw [span_iUnion₂] [GOAL] case h.insert ι✝ : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι✝ → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M ι : Type u_8 f : ι → Set M hl : ∀ (i : ι), LinearIndependent R fun x => ↑x hd : ∀ (i : ι) (t : Set ι), Set.Finite t → ¬i ∈ t → Disjoint (span R (f i)) (⨆ (i : ι) (_ : i ∈ t), span R (f i)) i : ι s : Finset ι his : ¬i ∈ s ih : LinearIndependent R fun x => ↑x ⊢ Disjoint (span R (f i)) (⨆ (i : ι) (_ : i ∈ s), span R (f i)) [PROOFSTEP] exact hd i s s.finite_toSet his [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M η : Type u_8 ιs : η → Type u_9 f : (j : η) → ιs j → M hindep : ∀ (j : η), LinearIndependent R (f j) hd : ∀ (i : η) (t : Set η), Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i))) ⊢ LinearIndependent R fun ji => f ji.fst ji.snd [PROOFSTEP] nontriviality R [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M η : Type u_8 ιs : η → Type u_9 f : (j : η) → ιs j → M hindep : ∀ (j : η), LinearIndependent R (f j) hd : ∀ (i : η) (t : Set η), Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i))) ✝ : Nontrivial R ⊢ LinearIndependent R fun ji => f ji.fst ji.snd [PROOFSTEP] apply LinearIndependent.of_subtype_range [GOAL] case hf ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M η : Type u_8 ιs : η → Type u_9 f : (j : η) → ιs j → M hindep : ∀ (j : η), LinearIndependent R (f j) hd : ∀ (i : η) (t : Set η), Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i))) ✝ : Nontrivial R ⊢ Injective fun ji => f ji.fst ji.snd [PROOFSTEP] rintro ⟨x₁, x₂⟩ ⟨y₁, y₂⟩ hxy [GOAL] case hf.mk.mk ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M η : Type u_8 ιs : η → Type u_9 f : (j : η) → ιs j → M hindep : ∀ (j : η), LinearIndependent R (f j) hd : ∀ (i : η) (t : Set η), Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i))) ✝ : Nontrivial R x₁ : η x₂ : ιs x₁ y₁ : η y₂ : ιs y₁ hxy : (fun ji => f ji.fst ji.snd) { fst := x₁, snd := x₂ } = (fun ji => f ji.fst ji.snd) { fst := y₁, snd := y₂ } ⊢ { fst := x₁, snd := x₂ } = { fst := y₁, snd := y₂ } [PROOFSTEP] by_cases h_cases : x₁ = y₁ [GOAL] case pos ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M η : Type u_8 ιs : η → Type u_9 f : (j : η) → ιs j → M hindep : ∀ (j : η), LinearIndependent R (f j) hd : ∀ (i : η) (t : Set η), Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i))) ✝ : Nontrivial R x₁ : η x₂ : ιs x₁ y₁ : η y₂ : ιs y₁ hxy : (fun ji => f ji.fst ji.snd) { fst := x₁, snd := x₂ } = (fun ji => f ji.fst ji.snd) { fst := y₁, snd := y₂ } h_cases : x₁ = y₁ ⊢ { fst := x₁, snd := x₂ } = { fst := y₁, snd := y₂ } case neg ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M η : Type u_8 ιs : η → Type u_9 f : (j : η) → ιs j → M hindep : ∀ (j : η), LinearIndependent R (f j) hd : ∀ (i : η) (t : Set η), Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i))) ✝ : Nontrivial R x₁ : η x₂ : ιs x₁ y₁ : η y₂ : ιs y₁ hxy : (fun ji => f ji.fst ji.snd) { fst := x₁, snd := x₂ } = (fun ji => f ji.fst ji.snd) { fst := y₁, snd := y₂ } h_cases : ¬x₁ = y₁ ⊢ { fst := x₁, snd := x₂ } = { fst := y₁, snd := y₂ } [PROOFSTEP] subst h_cases [GOAL] case pos ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M η : Type u_8 ιs : η → Type u_9 f : (j : η) → ιs j → M hindep : ∀ (j : η), LinearIndependent R (f j) hd : ∀ (i : η) (t : Set η), Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i))) ✝ : Nontrivial R x₁ : η x₂ y₂ : ιs x₁ hxy : (fun ji => f ji.fst ji.snd) { fst := x₁, snd := x₂ } = (fun ji => f ji.fst ji.snd) { fst := x₁, snd := y₂ } ⊢ { fst := x₁, snd := x₂ } = { fst := x₁, snd := y₂ } [PROOFSTEP] apply Sigma.eq [GOAL] case pos.a ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M η : Type u_8 ιs : η → Type u_9 f : (j : η) → ιs j → M hindep : ∀ (j : η), LinearIndependent R (f j) hd : ∀ (i : η) (t : Set η), Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i))) ✝ : Nontrivial R x₁ : η x₂ y₂ : ιs x₁ hxy : (fun ji => f ji.fst ji.snd) { fst := x₁, snd := x₂ } = (fun ji => f ji.fst ji.snd) { fst := x₁, snd := y₂ } ⊢ Eq.recOn ?pos.h₁✝ { fst := x₁, snd := x₂ }.snd = { fst := x₁, snd := y₂ }.snd case pos.h₁ ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M η : Type u_8 ιs : η → Type u_9 f : (j : η) → ιs j → M hindep : ∀ (j : η), LinearIndependent R (f j) hd : ∀ (i : η) (t : Set η), Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i))) ✝ : Nontrivial R x₁ : η x₂ y₂ : ιs x₁ hxy : (fun ji => f ji.fst ji.snd) { fst := x₁, snd := x₂ } = (fun ji => f ji.fst ji.snd) { fst := x₁, snd := y₂ } ⊢ { fst := x₁, snd := x₂ }.fst = { fst := x₁, snd := y₂ }.fst [PROOFSTEP] rw [LinearIndependent.injective (hindep _) hxy] [GOAL] case pos.h₁ ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M η : Type u_8 ιs : η → Type u_9 f : (j : η) → ιs j → M hindep : ∀ (j : η), LinearIndependent R (f j) hd : ∀ (i : η) (t : Set η), Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i))) ✝ : Nontrivial R x₁ : η x₂ y₂ : ιs x₁ hxy : (fun ji => f ji.fst ji.snd) { fst := x₁, snd := x₂ } = (fun ji => f ji.fst ji.snd) { fst := x₁, snd := y₂ } ⊢ { fst := x₁, snd := x₂ }.fst = { fst := x₁, snd := y₂ }.fst case pos.h₁ ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M η : Type u_8 ιs : η → Type u_9 f : (j : η) → ιs j → M hindep : ∀ (j : η), LinearIndependent R (f j) hd : ∀ (i : η) (t : Set η), Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i))) ✝ : Nontrivial R x₁ : η x₂ y₂ : ιs x₁ hxy : (fun ji => f ji.fst ji.snd) { fst := x₁, snd := x₂ } = (fun ji => f ji.fst ji.snd) { fst := x₁, snd := y₂ } ⊢ { fst := x₁, snd := x₂ }.fst = { fst := x₁, snd := y₂ }.fst [PROOFSTEP] rfl [GOAL] case neg ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M η : Type u_8 ιs : η → Type u_9 f : (j : η) → ιs j → M hindep : ∀ (j : η), LinearIndependent R (f j) hd : ∀ (i : η) (t : Set η), Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i))) ✝ : Nontrivial R x₁ : η x₂ : ιs x₁ y₁ : η y₂ : ιs y₁ hxy : (fun ji => f ji.fst ji.snd) { fst := x₁, snd := x₂ } = (fun ji => f ji.fst ji.snd) { fst := y₁, snd := y₂ } h_cases : ¬x₁ = y₁ ⊢ { fst := x₁, snd := x₂ } = { fst := y₁, snd := y₂ } [PROOFSTEP] have h0 : f x₁ x₂ = 0 := by apply disjoint_def.1 (hd x₁ { y₁ } (finite_singleton y₁) fun h => h_cases (eq_of_mem_singleton h)) (f x₁ x₂) (subset_span (mem_range_self _)) rw [iSup_singleton] simp only at hxy rw [hxy] exact subset_span (mem_range_self y₂) [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M η : Type u_8 ιs : η → Type u_9 f : (j : η) → ιs j → M hindep : ∀ (j : η), LinearIndependent R (f j) hd : ∀ (i : η) (t : Set η), Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i))) ✝ : Nontrivial R x₁ : η x₂ : ιs x₁ y₁ : η y₂ : ιs y₁ hxy : (fun ji => f ji.fst ji.snd) { fst := x₁, snd := x₂ } = (fun ji => f ji.fst ji.snd) { fst := y₁, snd := y₂ } h_cases : ¬x₁ = y₁ ⊢ f x₁ x₂ = 0 [PROOFSTEP] apply disjoint_def.1 (hd x₁ { y₁ } (finite_singleton y₁) fun h => h_cases (eq_of_mem_singleton h)) (f x₁ x₂) (subset_span (mem_range_self _)) [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M η : Type u_8 ιs : η → Type u_9 f : (j : η) → ιs j → M hindep : ∀ (j : η), LinearIndependent R (f j) hd : ∀ (i : η) (t : Set η), Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i))) ✝ : Nontrivial R x₁ : η x₂ : ιs x₁ y₁ : η y₂ : ιs y₁ hxy : (fun ji => f ji.fst ji.snd) { fst := x₁, snd := x₂ } = (fun ji => f ji.fst ji.snd) { fst := y₁, snd := y₂ } h_cases : ¬x₁ = y₁ ⊢ f x₁ x₂ ∈ ⨆ (i : η) (_ : i ∈ {y₁}), span R (range (f i)) [PROOFSTEP] rw [iSup_singleton] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M η : Type u_8 ιs : η → Type u_9 f : (j : η) → ιs j → M hindep : ∀ (j : η), LinearIndependent R (f j) hd : ∀ (i : η) (t : Set η), Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i))) ✝ : Nontrivial R x₁ : η x₂ : ιs x₁ y₁ : η y₂ : ιs y₁ hxy : (fun ji => f ji.fst ji.snd) { fst := x₁, snd := x₂ } = (fun ji => f ji.fst ji.snd) { fst := y₁, snd := y₂ } h_cases : ¬x₁ = y₁ ⊢ f x₁ x₂ ∈ span R (range (f y₁)) [PROOFSTEP] simp only at hxy [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M η : Type u_8 ιs : η → Type u_9 f : (j : η) → ιs j → M hindep : ∀ (j : η), LinearIndependent R (f j) hd : ∀ (i : η) (t : Set η), Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i))) ✝ : Nontrivial R x₁ : η x₂ : ιs x₁ y₁ : η y₂ : ιs y₁ hxy : f x₁ x₂ = f y₁ y₂ h_cases : ¬x₁ = y₁ ⊢ f x₁ x₂ ∈ span R (range (f y₁)) [PROOFSTEP] rw [hxy] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M η : Type u_8 ιs : η → Type u_9 f : (j : η) → ιs j → M hindep : ∀ (j : η), LinearIndependent R (f j) hd : ∀ (i : η) (t : Set η), Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i))) ✝ : Nontrivial R x₁ : η x₂ : ιs x₁ y₁ : η y₂ : ιs y₁ hxy : f x₁ x₂ = f y₁ y₂ h_cases : ¬x₁ = y₁ ⊢ f y₁ y₂ ∈ span R (range (f y₁)) [PROOFSTEP] exact subset_span (mem_range_self y₂) [GOAL] case neg ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M η : Type u_8 ιs : η → Type u_9 f : (j : η) → ιs j → M hindep : ∀ (j : η), LinearIndependent R (f j) hd : ∀ (i : η) (t : Set η), Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i))) ✝ : Nontrivial R x₁ : η x₂ : ιs x₁ y₁ : η y₂ : ιs y₁ hxy : (fun ji => f ji.fst ji.snd) { fst := x₁, snd := x₂ } = (fun ji => f ji.fst ji.snd) { fst := y₁, snd := y₂ } h_cases : ¬x₁ = y₁ h0 : f x₁ x₂ = 0 ⊢ { fst := x₁, snd := x₂ } = { fst := y₁, snd := y₂ } [PROOFSTEP] exact False.elim ((hindep x₁).ne_zero _ h0) [GOAL] case a ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M η : Type u_8 ιs : η → Type u_9 f : (j : η) → ιs j → M hindep : ∀ (j : η), LinearIndependent R (f j) hd : ∀ (i : η) (t : Set η), Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i))) ✝ : Nontrivial R ⊢ LinearIndependent R Subtype.val [PROOFSTEP] rw [range_sigma_eq_iUnion_range] [GOAL] case a ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M η : Type u_8 ιs : η → Type u_9 f : (j : η) → ιs j → M hindep : ∀ (j : η), LinearIndependent R (f j) hd : ∀ (i : η) (t : Set η), Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i))) ✝ : Nontrivial R ⊢ LinearIndependent R Subtype.val [PROOFSTEP] apply linearIndependent_iUnion_finite_subtype (fun j => (hindep j).to_subtype_range) hd [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv✝ hv : LinearIndependent R v ⊢ (ι →₀ R) ≃ₗ[R] { x // x ∈ span R (range v) } [PROOFSTEP] apply LinearEquiv.ofBijective (LinearMap.codRestrict (span R (range v)) (Finsupp.total ι M R v) _) [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv✝ hv : LinearIndependent R v ⊢ Bijective ↑(LinearMap.codRestrict (span R (range v)) (Finsupp.total ι M R v) ?m.425197) ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv✝ hv : LinearIndependent R v ⊢ ∀ (c : ι →₀ R), ↑(Finsupp.total ι M R v) c ∈ span R (range v) [PROOFSTEP] constructor [GOAL] case left ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv✝ hv : LinearIndependent R v ⊢ Injective ↑(LinearMap.codRestrict (span R (range v)) (Finsupp.total ι M R v) ?m.425197) [PROOFSTEP] rw [← LinearMap.ker_eq_bot, LinearMap.ker_codRestrict] [GOAL] case left ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv✝ hv : LinearIndependent R v ⊢ LinearMap.ker (Finsupp.total ι M R v) = ⊥ case left.hf ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv✝ hv : LinearIndependent R v ⊢ ∀ (c : ι →₀ R), ↑(Finsupp.total ι M R v) c ∈ span R (range v) [PROOFSTEP] apply hv [GOAL] case left.hf ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv✝ hv : LinearIndependent R v ⊢ ∀ (c : ι →₀ R), ↑(Finsupp.total ι M R v) c ∈ span R (range v) [PROOFSTEP] intro l [GOAL] case left.hf ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv✝ hv : LinearIndependent R v l : ι →₀ R ⊢ ↑(Finsupp.total ι M R v) l ∈ span R (range v) [PROOFSTEP] rw [← Finsupp.range_total] [GOAL] case left.hf ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv✝ hv : LinearIndependent R v l : ι →₀ R ⊢ ↑(Finsupp.total ι M R v) l ∈ LinearMap.range (Finsupp.total ι M R v) [PROOFSTEP] rw [LinearMap.mem_range] [GOAL] case left.hf ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv✝ hv : LinearIndependent R v l : ι →₀ R ⊢ ∃ y, ↑(Finsupp.total ι M R v) y = ↑(Finsupp.total ι M R v) l [PROOFSTEP] apply mem_range_self l [GOAL] case right ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv✝ hv : LinearIndependent R v ⊢ Surjective ↑(LinearMap.codRestrict (span R (range v)) (Finsupp.total ι M R v) (_ : ∀ (l : ι →₀ R), ↑(Finsupp.total ι M R v) l ∈ span R (range v))) [PROOFSTEP] rw [← LinearMap.range_eq_top, LinearMap.range_eq_map, LinearMap.map_codRestrict, ← LinearMap.range_le_iff_comap, range_subtype, Submodule.map_top] [GOAL] case right ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv✝ hv : LinearIndependent R v ⊢ span R (range v) ≤ LinearMap.range (Finsupp.total ι M R v) [PROOFSTEP] rw [Finsupp.range_total] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv : LinearIndependent R v ⊢ LinearMap.ker (repr hv) = ⊥ [PROOFSTEP] rw [LinearIndependent.repr, LinearEquiv.ker] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv : LinearIndependent R v ⊢ LinearMap.range (repr hv) = ⊤ [PROOFSTEP] rw [LinearIndependent.repr, LinearEquiv.range] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x✝ y : M hv : LinearIndependent R v l : ι →₀ R x : { x // x ∈ span R (range v) } eq : ↑(Finsupp.total ι M R v) l = ↑x ⊢ ↑(repr hv) x = l [PROOFSTEP] have : ↑((LinearIndependent.totalEquiv hv : (ι →₀ R) →ₗ[R] span R (range v)) l) = Finsupp.total ι M R v l := rfl [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x✝ y : M hv : LinearIndependent R v l : ι →₀ R x : { x // x ∈ span R (range v) } eq : ↑(Finsupp.total ι M R v) l = ↑x this : ↑(↑↑(totalEquiv hv) l) = ↑(Finsupp.total ι M R v) l ⊢ ↑(repr hv) x = l [PROOFSTEP] have : (LinearIndependent.totalEquiv hv : (ι →₀ R) →ₗ[R] span R (range v)) l = x := by rw [eq] at this exact Subtype.ext_iff.2 this [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x✝ y : M hv : LinearIndependent R v l : ι →₀ R x : { x // x ∈ span R (range v) } eq : ↑(Finsupp.total ι M R v) l = ↑x this : ↑(↑↑(totalEquiv hv) l) = ↑(Finsupp.total ι M R v) l ⊢ ↑↑(totalEquiv hv) l = x [PROOFSTEP] rw [eq] at this [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x✝ y : M hv : LinearIndependent R v l : ι →₀ R x : { x // x ∈ span R (range v) } eq : ↑(Finsupp.total ι M R v) l = ↑x this : ↑(↑↑(totalEquiv hv) l) = ↑x ⊢ ↑↑(totalEquiv hv) l = x [PROOFSTEP] exact Subtype.ext_iff.2 this [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x✝ y : M hv : LinearIndependent R v l : ι →₀ R x : { x // x ∈ span R (range v) } eq : ↑(Finsupp.total ι M R v) l = ↑x this✝ : ↑(↑↑(totalEquiv hv) l) = ↑(Finsupp.total ι M R v) l this : ↑↑(totalEquiv hv) l = x ⊢ ↑(repr hv) x = l [PROOFSTEP] rw [← LinearEquiv.symm_apply_apply hv.totalEquiv l] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x✝ y : M hv : LinearIndependent R v l : ι →₀ R x : { x // x ∈ span R (range v) } eq : ↑(Finsupp.total ι M R v) l = ↑x this✝ : ↑(↑↑(totalEquiv hv) l) = ↑(Finsupp.total ι M R v) l this : ↑↑(totalEquiv hv) l = x ⊢ ↑(repr hv) x = ↑(LinearEquiv.symm (totalEquiv hv)) (↑(totalEquiv hv) l) [PROOFSTEP] rw [← this] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x✝ y : M hv : LinearIndependent R v l : ι →₀ R x : { x // x ∈ span R (range v) } eq : ↑(Finsupp.total ι M R v) l = ↑x this✝ : ↑(↑↑(totalEquiv hv) l) = ↑(Finsupp.total ι M R v) l this : ↑↑(totalEquiv hv) l = x ⊢ ↑(repr hv) (↑↑(totalEquiv hv) l) = ↑(LinearEquiv.symm (totalEquiv hv)) (↑(totalEquiv hv) l) [PROOFSTEP] rfl [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x✝ y : M hv : LinearIndependent R v i : ι x : { x // x ∈ span R (range v) } hx : ↑x = v i ⊢ ↑(repr hv) x = Finsupp.single i 1 [PROOFSTEP] apply hv.repr_eq [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x✝ y : M hv : LinearIndependent R v i : ι x : { x // x ∈ span R (range v) } hx : ↑x = v i ⊢ ↑(Finsupp.total ι M R v) (Finsupp.single i 1) = ↑x [PROOFSTEP] simp [Finsupp.total_single, hx] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁷ : Ring R inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R M' inst✝¹ : Module R M'' a b : R x✝ y : M hv : LinearIndependent R v inst✝ : Nontrivial R x : { x // x ∈ span R (range v) } ⊢ Span.repr R (range v) x = Finsupp.equivMapDomain (Equiv.ofInjective v (_ : Injective v)) (↑(repr hv) x) [PROOFSTEP] have p : (Span.repr R (Set.range v) x).equivMapDomain (Equiv.ofInjective _ hv.injective).symm = hv.repr x := by apply (LinearIndependent.totalEquiv hv).injective ext simp only [LinearIndependent.totalEquiv_apply_coe, Equiv.self_comp_ofInjective_symm, LinearIndependent.total_repr, Finsupp.total_equivMapDomain, Span.finsupp_total_repr] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁷ : Ring R inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R M' inst✝¹ : Module R M'' a b : R x✝ y : M hv : LinearIndependent R v inst✝ : Nontrivial R x : { x // x ∈ span R (range v) } ⊢ Finsupp.equivMapDomain (Equiv.ofInjective v (_ : Injective v)).symm (Span.repr R (range v) x) = ↑(repr hv) x [PROOFSTEP] apply (LinearIndependent.totalEquiv hv).injective [GOAL] case a ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁷ : Ring R inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R M' inst✝¹ : Module R M'' a b : R x✝ y : M hv : LinearIndependent R v inst✝ : Nontrivial R x : { x // x ∈ span R (range v) } ⊢ ↑(totalEquiv hv) (Finsupp.equivMapDomain (Equiv.ofInjective v (_ : Injective v)).symm (Span.repr R (range v) x)) = ↑(totalEquiv hv) (↑(repr hv) x) [PROOFSTEP] ext [GOAL] case a.a ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁷ : Ring R inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R M' inst✝¹ : Module R M'' a b : R x✝ y : M hv : LinearIndependent R v inst✝ : Nontrivial R x : { x // x ∈ span R (range v) } ⊢ ↑(↑(totalEquiv hv) (Finsupp.equivMapDomain (Equiv.ofInjective v (_ : Injective v)).symm (Span.repr R (range v) x))) = ↑(↑(totalEquiv hv) (↑(repr hv) x)) [PROOFSTEP] simp only [LinearIndependent.totalEquiv_apply_coe, Equiv.self_comp_ofInjective_symm, LinearIndependent.total_repr, Finsupp.total_equivMapDomain, Span.finsupp_total_repr] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁷ : Ring R inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R M' inst✝¹ : Module R M'' a b : R x✝ y : M hv : LinearIndependent R v inst✝ : Nontrivial R x : { x // x ∈ span R (range v) } p : Finsupp.equivMapDomain (Equiv.ofInjective v (_ : Injective v)).symm (Span.repr R (range v) x) = ↑(repr hv) x ⊢ Span.repr R (range v) x = Finsupp.equivMapDomain (Equiv.ofInjective v (_ : Injective v)) (↑(repr hv) x) [PROOFSTEP] ext ⟨_, ⟨i, rfl⟩⟩ [GOAL] case h.mk.intro ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁷ : Ring R inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R M' inst✝¹ : Module R M'' a b : R x✝ y : M hv : LinearIndependent R v inst✝ : Nontrivial R x : { x // x ∈ span R (range v) } p : Finsupp.equivMapDomain (Equiv.ofInjective v (_ : Injective v)).symm (Span.repr R (range v) x) = ↑(repr hv) x i : ι ⊢ ↑(Span.repr R (range v) x) { val := v i, property := (_ : ∃ y, v y = v i) } = ↑(Finsupp.equivMapDomain (Equiv.ofInjective v (_ : Injective v)) (↑(repr hv) x)) { val := v i, property := (_ : ∃ y, v y = v i) } [PROOFSTEP] simp [← p] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a✝ b : R x y : M hv✝ hv : LinearIndependent R v i : ι a : R ha : a • v i ∈ span R (v '' (univ \ {i})) ⊢ a = 0 [PROOFSTEP] rw [Finsupp.span_image_eq_map_total, mem_map] at ha [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a✝ b : R x y : M hv✝ hv : LinearIndependent R v i : ι a : R ha : ∃ y, y ∈ Finsupp.supported R R (univ \ {i}) ∧ ↑(Finsupp.total ι M R v) y = a • v i ⊢ a = 0 [PROOFSTEP] rcases ha with ⟨l, hl, e⟩ [GOAL] case intro.intro ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a✝ b : R x y : M hv✝ hv : LinearIndependent R v i : ι a : R l : ι →₀ R hl : l ∈ Finsupp.supported R R (univ \ {i}) e : ↑(Finsupp.total ι M R v) l = a • v i ⊢ a = 0 [PROOFSTEP] rw [sub_eq_zero.1 (linearIndependent_iff.1 hv (l - Finsupp.single i a) (by simp [e]))] at hl [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a✝ b : R x y : M hv✝ hv : LinearIndependent R v i : ι a : R l : ι →₀ R hl : l ∈ Finsupp.supported R R (univ \ {i}) e : ↑(Finsupp.total ι M R v) l = a • v i ⊢ ↑(Finsupp.total ι M R v) (l - Finsupp.single i a) = 0 [PROOFSTEP] simp [e] [GOAL] case intro.intro ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a✝ b : R x y : M hv✝ hv : LinearIndependent R v i : ι a : R l : ι →₀ R hl : Finsupp.single i a ∈ Finsupp.supported R R (univ \ {i}) e : ↑(Finsupp.total ι M R v) l = a • v i ⊢ a = 0 [PROOFSTEP] by_contra hn [GOAL] case intro.intro ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a✝ b : R x y : M hv✝ hv : LinearIndependent R v i : ι a : R l : ι →₀ R hl : Finsupp.single i a ∈ Finsupp.supported R R (univ \ {i}) e : ↑(Finsupp.total ι M R v) l = a • v i hn : ¬a = 0 ⊢ False [PROOFSTEP] exact (not_mem_of_mem_diff (hl <| by simp [hn])) (mem_singleton _) [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a✝ b : R x y : M hv✝ hv : LinearIndependent R v i : ι a : R l : ι →₀ R hl : Finsupp.single i a ∈ Finsupp.supported R R (univ \ {i}) e : ↑(Finsupp.total ι M R v) l = a • v i hn : ¬a = 0 ⊢ i ∈ ↑(Finsupp.single i a).support [PROOFSTEP] simp [hn] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv : LinearIndependent R v H : ∀ (i : ι) (a : R), a • v i ∈ span R (v '' (univ \ {i})) → a = 0 l : ι →₀ R hl : ↑(Finsupp.total ι M R v) l = 0 ⊢ l = 0 [PROOFSTEP] ext i [GOAL] case h ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv : LinearIndependent R v H : ∀ (i : ι) (a : R), a • v i ∈ span R (v '' (univ \ {i})) → a = 0 l : ι →₀ R hl : ↑(Finsupp.total ι M R v) l = 0 i : ι ⊢ ↑l i = ↑0 i [PROOFSTEP] simp only [Finsupp.zero_apply] [GOAL] case h ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv : LinearIndependent R v H : ∀ (i : ι) (a : R), a • v i ∈ span R (v '' (univ \ {i})) → a = 0 l : ι →₀ R hl : ↑(Finsupp.total ι M R v) l = 0 i : ι ⊢ ↑l i = 0 [PROOFSTEP] by_contra hn [GOAL] case h ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv : LinearIndependent R v H : ∀ (i : ι) (a : R), a • v i ∈ span R (v '' (univ \ {i})) → a = 0 l : ι →₀ R hl : ↑(Finsupp.total ι M R v) l = 0 i : ι hn : ¬↑l i = 0 ⊢ False [PROOFSTEP] refine' hn (H i _ _) [GOAL] case h ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv : LinearIndependent R v H : ∀ (i : ι) (a : R), a • v i ∈ span R (v '' (univ \ {i})) → a = 0 l : ι →₀ R hl : ↑(Finsupp.total ι M R v) l = 0 i : ι hn : ¬↑l i = 0 ⊢ ↑l i • v i ∈ span R (v '' (univ \ {i})) [PROOFSTEP] refine' (Finsupp.mem_span_image_iff_total R).2 ⟨Finsupp.single i (l i) - l, _, _⟩ [GOAL] case h.refine'_1 ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv : LinearIndependent R v H : ∀ (i : ι) (a : R), a • v i ∈ span R (v '' (univ \ {i})) → a = 0 l : ι →₀ R hl : ↑(Finsupp.total ι M R v) l = 0 i : ι hn : ¬↑l i = 0 ⊢ Finsupp.single i (↑l i) - l ∈ Finsupp.supported R R (univ \ {i}) [PROOFSTEP] rw [Finsupp.mem_supported'] [GOAL] case h.refine'_1 ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv : LinearIndependent R v H : ∀ (i : ι) (a : R), a • v i ∈ span R (v '' (univ \ {i})) → a = 0 l : ι →₀ R hl : ↑(Finsupp.total ι M R v) l = 0 i : ι hn : ¬↑l i = 0 ⊢ ∀ (x : ι), ¬x ∈ univ \ {i} → ↑(Finsupp.single i (↑l i) - l) x = 0 [PROOFSTEP] intro j hj [GOAL] case h.refine'_1 ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv : LinearIndependent R v H : ∀ (i : ι) (a : R), a • v i ∈ span R (v '' (univ \ {i})) → a = 0 l : ι →₀ R hl : ↑(Finsupp.total ι M R v) l = 0 i : ι hn : ¬↑l i = 0 j : ι hj : ¬j ∈ univ \ {i} ⊢ ↑(Finsupp.single i (↑l i) - l) j = 0 [PROOFSTEP] have hij : j = i := Classical.not_not.1 fun hij : j ≠ i => hj ((mem_diff _).2 ⟨mem_univ _, fun h => hij (eq_of_mem_singleton h)⟩) [GOAL] case h.refine'_1 ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv : LinearIndependent R v H : ∀ (i : ι) (a : R), a • v i ∈ span R (v '' (univ \ {i})) → a = 0 l : ι →₀ R hl : ↑(Finsupp.total ι M R v) l = 0 i : ι hn : ¬↑l i = 0 j : ι hj : ¬j ∈ univ \ {i} hij : j = i ⊢ ↑(Finsupp.single i (↑l i) - l) j = 0 [PROOFSTEP] simp [hij] [GOAL] case h.refine'_2 ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv : LinearIndependent R v H : ∀ (i : ι) (a : R), a • v i ∈ span R (v '' (univ \ {i})) → a = 0 l : ι →₀ R hl : ↑(Finsupp.total ι M R v) l = 0 i : ι hn : ¬↑l i = 0 ⊢ ↑(Finsupp.total ι M R v) (Finsupp.single i (↑l i) - l) = ↑l i • v i [PROOFSTEP] simp [hl] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv✝ hv : LinearIndependent R v ⊢ CompleteLattice.Independent fun i => span R {v i} [PROOFSTEP] refine' CompleteLattice.independent_def.mp fun i => _ [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv✝ hv : LinearIndependent R v i : ι ⊢ Disjoint ((fun i => span R {v i}) i) (⨆ (j : ι) (_ : j ≠ i), (fun i => span R {v i}) j) [PROOFSTEP] rw [disjoint_iff_inf_le] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv✝ hv : LinearIndependent R v i : ι ⊢ (fun i => span R {v i}) i ⊓ ⨆ (j : ι) (_ : j ≠ i), (fun i => span R {v i}) j ≤ ⊥ [PROOFSTEP] intro m hm [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv✝ hv : LinearIndependent R v i : ι m : M hm : m ∈ (fun i => span R {v i}) i ⊓ ⨆ (j : ι) (_ : j ≠ i), (fun i => span R {v i}) j ⊢ m ∈ ⊥ [PROOFSTEP] simp only [mem_inf, mem_span_singleton, iSup_subtype', ← span_range_eq_iSup] at hm [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv✝ hv : LinearIndependent R v i : ι m : M hm : (∃ a, a • v i = m) ∧ m ∈ span R (range fun i_1 => v ↑i_1) ⊢ m ∈ ⊥ [PROOFSTEP] obtain ⟨⟨r, rfl⟩, hm⟩ := hm [GOAL] case intro.intro ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv✝ hv : LinearIndependent R v i : ι r : R hm : r • v i ∈ span R (range fun i_1 => v ↑i_1) ⊢ r • v i ∈ ⊥ [PROOFSTEP] suffices r = 0 by simp [this] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv✝ hv : LinearIndependent R v i : ι r : R hm : r • v i ∈ span R (range fun i_1 => v ↑i_1) this : r = 0 ⊢ r • v i ∈ ⊥ [PROOFSTEP] simp [this] [GOAL] case intro.intro ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv✝ hv : LinearIndependent R v i : ι r : R hm : r • v i ∈ span R (range fun i_1 => v ↑i_1) ⊢ r = 0 [PROOFSTEP] apply linearIndependent_iff_not_smul_mem_span.mp hv i [GOAL] case intro.intro.a ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv✝ hv : LinearIndependent R v i : ι r : R hm : r • v i ∈ span R (range fun i_1 => v ↑i_1) ⊢ r • v i ∈ span R (v '' (univ \ {i})) [PROOFSTEP] suffices v '' (univ \ { i }) = range fun j : { j // j ≠ i } => v j by rwa [this] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv✝ hv : LinearIndependent R v i : ι r : R hm : r • v i ∈ span R (range fun i_1 => v ↑i_1) this : v '' (univ \ {i}) = range fun j => v ↑j ⊢ r • v i ∈ span R (v '' (univ \ {i})) [PROOFSTEP] rwa [this] [GOAL] case intro.intro.a ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv✝ hv : LinearIndependent R v i : ι r : R hm : r • v i ∈ span R (range fun i_1 => v ↑i_1) ⊢ v '' (univ \ {i}) = range fun j => v ↑j [PROOFSTEP] ext [GOAL] case intro.intro.a.h ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv✝ hv : LinearIndependent R v i : ι r : R hm : r • v i ∈ span R (range fun i_1 => v ↑i_1) x✝ : M ⊢ x✝ ∈ v '' (univ \ {i}) ↔ x✝ ∈ range fun j => v ↑j [PROOFSTEP] simp [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv : LinearIndependent R v s : ι → M ⊢ ∃ I, (LinearIndependent R fun x => s ↑x) ∧ ∀ (J : Set ι), I ⊆ J → (LinearIndependent R fun x => s ↑x) → I = J [PROOFSTEP] let indep : Set ι → Prop := fun I => LinearIndependent R (s ∘ (↑) : I → M) [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv : LinearIndependent R v s : ι → M indep : Set ι → Prop := fun I => LinearIndependent R (s ∘ Subtype.val) ⊢ ∃ I, (LinearIndependent R fun x => s ↑x) ∧ ∀ (J : Set ι), I ⊆ J → (LinearIndependent R fun x => s ↑x) → I = J [PROOFSTEP] let X := { I : Set ι // indep I } [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv : LinearIndependent R v s : ι → M indep : Set ι → Prop := fun I => LinearIndependent R (s ∘ Subtype.val) X : Type u' := { I // indep I } ⊢ ∃ I, (LinearIndependent R fun x => s ↑x) ∧ ∀ (J : Set ι), I ⊆ J → (LinearIndependent R fun x => s ↑x) → I = J [PROOFSTEP] let r : X → X → Prop := fun I J => I.1 ⊆ J.1 [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv : LinearIndependent R v s : ι → M indep : Set ι → Prop := fun I => LinearIndependent R (s ∘ Subtype.val) X : Type u' := { I // indep I } r : X → X → Prop := fun I J => ↑I ⊆ ↑J ⊢ ∃ I, (LinearIndependent R fun x => s ↑x) ∧ ∀ (J : Set ι), I ⊆ J → (LinearIndependent R fun x => s ↑x) → I = J [PROOFSTEP] have key : ∀ c : Set X, IsChain r c → indep (⋃ (I : X) (_ : I ∈ c), I) := by intro c hc dsimp rw [linearIndependent_comp_subtype] intro f hsupport hsum rcases eq_empty_or_nonempty c with (rfl | hn) · simpa using hsupport haveI : IsRefl X r := ⟨fun _ => Set.Subset.refl _⟩ obtain ⟨I, _I_mem, hI⟩ : ∃ I ∈ c, (f.support : Set ι) ⊆ I := hc.directedOn.exists_mem_subset_of_finset_subset_biUnion hn hsupport exact linearIndependent_comp_subtype.mp I.2 f hI hsum [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv : LinearIndependent R v s : ι → M indep : Set ι → Prop := fun I => LinearIndependent R (s ∘ Subtype.val) X : Type u' := { I // indep I } r : X → X → Prop := fun I J => ↑I ⊆ ↑J ⊢ ∀ (c : Set X), IsChain r c → indep (⋃ (I : X) (_ : I ∈ c), ↑I) [PROOFSTEP] intro c hc [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv : LinearIndependent R v s : ι → M indep : Set ι → Prop := fun I => LinearIndependent R (s ∘ Subtype.val) X : Type u' := { I // indep I } r : X → X → Prop := fun I J => ↑I ⊆ ↑J c : Set X hc : IsChain r c ⊢ indep (⋃ (I : X) (_ : I ∈ c), ↑I) [PROOFSTEP] dsimp [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv : LinearIndependent R v s : ι → M indep : Set ι → Prop := fun I => LinearIndependent R (s ∘ Subtype.val) X : Type u' := { I // indep I } r : X → X → Prop := fun I J => ↑I ⊆ ↑J c : Set X hc : IsChain r c ⊢ LinearIndependent R (s ∘ Subtype.val) [PROOFSTEP] rw [linearIndependent_comp_subtype] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv : LinearIndependent R v s : ι → M indep : Set ι → Prop := fun I => LinearIndependent R (s ∘ Subtype.val) X : Type u' := { I // indep I } r : X → X → Prop := fun I J => ↑I ⊆ ↑J c : Set X hc : IsChain r c ⊢ ∀ (l : ι →₀ R), l ∈ Finsupp.supported R R (⋃ (I : { I // LinearIndependent R (s ∘ Subtype.val) }) (_ : I ∈ c), ↑I) → ↑(Finsupp.total ι M R s) l = 0 → l = 0 [PROOFSTEP] intro f hsupport hsum [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv : LinearIndependent R v s : ι → M indep : Set ι → Prop := fun I => LinearIndependent R (s ∘ Subtype.val) X : Type u' := { I // indep I } r : X → X → Prop := fun I J => ↑I ⊆ ↑J c : Set X hc : IsChain r c f : ι →₀ R hsupport : f ∈ Finsupp.supported R R (⋃ (I : { I // LinearIndependent R (s ∘ Subtype.val) }) (_ : I ∈ c), ↑I) hsum : ↑(Finsupp.total ι M R s) f = 0 ⊢ f = 0 [PROOFSTEP] rcases eq_empty_or_nonempty c with (rfl | hn) [GOAL] case inl ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv : LinearIndependent R v s : ι → M indep : Set ι → Prop := fun I => LinearIndependent R (s ∘ Subtype.val) X : Type u' := { I // indep I } r : X → X → Prop := fun I J => ↑I ⊆ ↑J f : ι →₀ R hsum : ↑(Finsupp.total ι M R s) f = 0 hc : IsChain r ∅ hsupport : f ∈ Finsupp.supported R R (⋃ (I : { I // LinearIndependent R (s ∘ Subtype.val) }) (_ : I ∈ ∅), ↑I) ⊢ f = 0 [PROOFSTEP] simpa using hsupport [GOAL] case inr ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv : LinearIndependent R v s : ι → M indep : Set ι → Prop := fun I => LinearIndependent R (s ∘ Subtype.val) X : Type u' := { I // indep I } r : X → X → Prop := fun I J => ↑I ⊆ ↑J c : Set X hc : IsChain r c f : ι →₀ R hsupport : f ∈ Finsupp.supported R R (⋃ (I : { I // LinearIndependent R (s ∘ Subtype.val) }) (_ : I ∈ c), ↑I) hsum : ↑(Finsupp.total ι M R s) f = 0 hn : Set.Nonempty c ⊢ f = 0 [PROOFSTEP] haveI : IsRefl X r := ⟨fun _ => Set.Subset.refl _⟩ [GOAL] case inr ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv : LinearIndependent R v s : ι → M indep : Set ι → Prop := fun I => LinearIndependent R (s ∘ Subtype.val) X : Type u' := { I // indep I } r : X → X → Prop := fun I J => ↑I ⊆ ↑J c : Set X hc : IsChain r c f : ι →₀ R hsupport : f ∈ Finsupp.supported R R (⋃ (I : { I // LinearIndependent R (s ∘ Subtype.val) }) (_ : I ∈ c), ↑I) hsum : ↑(Finsupp.total ι M R s) f = 0 hn : Set.Nonempty c this : IsRefl X r ⊢ f = 0 [PROOFSTEP] obtain ⟨I, _I_mem, hI⟩ : ∃ I ∈ c, (f.support : Set ι) ⊆ I := hc.directedOn.exists_mem_subset_of_finset_subset_biUnion hn hsupport [GOAL] case inr.intro.intro ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv : LinearIndependent R v s : ι → M indep : Set ι → Prop := fun I => LinearIndependent R (s ∘ Subtype.val) X : Type u' := { I // indep I } r : X → X → Prop := fun I J => ↑I ⊆ ↑J c : Set X hc : IsChain r c f : ι →₀ R hsupport : f ∈ Finsupp.supported R R (⋃ (I : { I // LinearIndependent R (s ∘ Subtype.val) }) (_ : I ∈ c), ↑I) hsum : ↑(Finsupp.total ι M R s) f = 0 hn : Set.Nonempty c this : IsRefl X r I : X _I_mem : I ∈ c hI : ↑f.support ⊆ ↑I ⊢ f = 0 [PROOFSTEP] exact linearIndependent_comp_subtype.mp I.2 f hI hsum [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv : LinearIndependent R v s : ι → M indep : Set ι → Prop := fun I => LinearIndependent R (s ∘ Subtype.val) X : Type u' := { I // indep I } r : X → X → Prop := fun I J => ↑I ⊆ ↑J key : ∀ (c : Set X), IsChain r c → indep (⋃ (I : X) (_ : I ∈ c), ↑I) ⊢ ∃ I, (LinearIndependent R fun x => s ↑x) ∧ ∀ (J : Set ι), I ⊆ J → (LinearIndependent R fun x => s ↑x) → I = J [PROOFSTEP] have trans : Transitive r := fun I J K => Set.Subset.trans [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv : LinearIndependent R v s : ι → M indep : Set ι → Prop := fun I => LinearIndependent R (s ∘ Subtype.val) X : Type u' := { I // indep I } r : X → X → Prop := fun I J => ↑I ⊆ ↑J key : ∀ (c : Set X), IsChain r c → indep (⋃ (I : X) (_ : I ∈ c), ↑I) trans : Transitive r ⊢ ∃ I, (LinearIndependent R fun x => s ↑x) ∧ ∀ (J : Set ι), I ⊆ J → (LinearIndependent R fun x => s ↑x) → I = J [PROOFSTEP] obtain ⟨⟨I, hli : indep I⟩, hmax : ∀ a, r ⟨I, hli⟩ a → r a ⟨I, hli⟩⟩ := @exists_maximal_of_chains_bounded _ r (fun c hc => ⟨⟨⋃ I ∈ c, (I : Set ι), key c hc⟩, fun I => Set.subset_biUnion_of_mem⟩) @trans [GOAL] case intro.mk ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv : LinearIndependent R v s : ι → M indep : Set ι → Prop := fun I => LinearIndependent R (s ∘ Subtype.val) X : Type u' := { I // indep I } r : X → X → Prop := fun I J => ↑I ⊆ ↑J key : ∀ (c : Set X), IsChain r c → indep (⋃ (I : X) (_ : I ∈ c), ↑I) trans : Transitive r I : Set ι hli : indep I hmax : ∀ (a : X), r { val := I, property := hli } a → r a { val := I, property := hli } ⊢ ∃ I, (LinearIndependent R fun x => s ↑x) ∧ ∀ (J : Set ι), I ⊆ J → (LinearIndependent R fun x => s ↑x) → I = J [PROOFSTEP] exact ⟨I, hli, fun J hsub hli => Set.Subset.antisymm hsub (hmax ⟨J, hli⟩ hsub)⟩ [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv : LinearIndependent R v s : ι → M ⊢ ∃ I, (LinearIndependent R fun x => s ↑x) ∧ ∀ (i : ι), ¬i ∈ I → ∃ a, a ≠ 0 ∧ a • s i ∈ span R (s '' I) [PROOFSTEP] classical rcases exists_maximal_independent' R s with ⟨I, hIlinind, hImaximal⟩ use I, hIlinind intro i hi specialize hImaximal (I ∪ { i }) (by simp) set J := I ∪ { i } with hJ have memJ : ∀ {x}, x ∈ J ↔ x = i ∨ x ∈ I := by simp [hJ] have hiJ : i ∈ J := by simp have h := by refine mt hImaximal ?_ · intro h2 rw [h2] at hi exact absurd hiJ hi obtain ⟨f, supp_f, sum_f, f_ne⟩ := linearDependent_comp_subtype.mp h have hfi : f i ≠ 0 := by contrapose hIlinind refine' linearDependent_comp_subtype.mpr ⟨f, _, sum_f, f_ne⟩ simp only [Finsupp.mem_supported, hJ] at supp_f ⊢ rintro x hx refine' (memJ.mp (supp_f hx)).resolve_left _ rintro rfl exact hIlinind (Finsupp.mem_support_iff.mp hx) use f i, hfi have hfi' : i ∈ f.support := Finsupp.mem_support_iff.mpr hfi rw [← Finset.insert_erase hfi', Finset.sum_insert (Finset.not_mem_erase _ _), add_eq_zero_iff_eq_neg] at sum_f rw [sum_f] refine' neg_mem (sum_mem fun c hc => smul_mem _ _ (subset_span ⟨c, _, rfl⟩)) exact (memJ.mp (supp_f (Finset.erase_subset _ _ hc))).resolve_left (Finset.ne_of_mem_erase hc) [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv : LinearIndependent R v s : ι → M ⊢ ∃ I, (LinearIndependent R fun x => s ↑x) ∧ ∀ (i : ι), ¬i ∈ I → ∃ a, a ≠ 0 ∧ a • s i ∈ span R (s '' I) [PROOFSTEP] rcases exists_maximal_independent' R s with ⟨I, hIlinind, hImaximal⟩ [GOAL] case intro.intro ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv : LinearIndependent R v s : ι → M I : Set ι hIlinind : LinearIndependent R fun x => s ↑x hImaximal : ∀ (J : Set ι), I ⊆ J → (LinearIndependent R fun x => s ↑x) → I = J ⊢ ∃ I, (LinearIndependent R fun x => s ↑x) ∧ ∀ (i : ι), ¬i ∈ I → ∃ a, a ≠ 0 ∧ a • s i ∈ span R (s '' I) [PROOFSTEP] use I, hIlinind [GOAL] case right ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv : LinearIndependent R v s : ι → M I : Set ι hIlinind : LinearIndependent R fun x => s ↑x hImaximal : ∀ (J : Set ι), I ⊆ J → (LinearIndependent R fun x => s ↑x) → I = J ⊢ ∀ (i : ι), ¬i ∈ I → ∃ a, a ≠ 0 ∧ a • s i ∈ span R (s '' I) [PROOFSTEP] intro i hi [GOAL] case right ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv : LinearIndependent R v s : ι → M I : Set ι hIlinind : LinearIndependent R fun x => s ↑x hImaximal : ∀ (J : Set ι), I ⊆ J → (LinearIndependent R fun x => s ↑x) → I = J i : ι hi : ¬i ∈ I ⊢ ∃ a, a ≠ 0 ∧ a • s i ∈ span R (s '' I) [PROOFSTEP] specialize hImaximal (I ∪ { i }) (by simp) [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv : LinearIndependent R v s : ι → M I : Set ι hIlinind : LinearIndependent R fun x => s ↑x hImaximal : ∀ (J : Set ι), I ⊆ J → (LinearIndependent R fun x => s ↑x) → I = J i : ι hi : ¬i ∈ I ⊢ I ⊆ I ∪ {i} [PROOFSTEP] simp [GOAL] case right ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv : LinearIndependent R v s : ι → M I : Set ι hIlinind : LinearIndependent R fun x => s ↑x i : ι hi : ¬i ∈ I hImaximal : (LinearIndependent R fun x => s ↑x) → I = I ∪ {i} ⊢ ∃ a, a ≠ 0 ∧ a • s i ∈ span R (s '' I) [PROOFSTEP] set J := I ∪ { i } with hJ [GOAL] case right ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv : LinearIndependent R v s : ι → M I : Set ι hIlinind : LinearIndependent R fun x => s ↑x i : ι hi : ¬i ∈ I J : Set ι := I ∪ {i} hImaximal : (LinearIndependent R fun x => s ↑x) → I = J hJ : J = I ∪ {i} ⊢ ∃ a, a ≠ 0 ∧ a • s i ∈ span R (s '' I) [PROOFSTEP] have memJ : ∀ {x}, x ∈ J ↔ x = i ∨ x ∈ I := by simp [hJ] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv : LinearIndependent R v s : ι → M I : Set ι hIlinind : LinearIndependent R fun x => s ↑x i : ι hi : ¬i ∈ I J : Set ι := I ∪ {i} hImaximal : (LinearIndependent R fun x => s ↑x) → I = J hJ : J = I ∪ {i} ⊢ ∀ {x : ι}, x ∈ J ↔ x = i ∨ x ∈ I [PROOFSTEP] simp [hJ] [GOAL] case right ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv : LinearIndependent R v s : ι → M I : Set ι hIlinind : LinearIndependent R fun x => s ↑x i : ι hi : ¬i ∈ I J : Set ι := I ∪ {i} hImaximal : (LinearIndependent R fun x => s ↑x) → I = J hJ : J = I ∪ {i} memJ : ∀ {x : ι}, x ∈ J ↔ x = i ∨ x ∈ I ⊢ ∃ a, a ≠ 0 ∧ a • s i ∈ span R (s '' I) [PROOFSTEP] have hiJ : i ∈ J := by simp [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv : LinearIndependent R v s : ι → M I : Set ι hIlinind : LinearIndependent R fun x => s ↑x i : ι hi : ¬i ∈ I J : Set ι := I ∪ {i} hImaximal : (LinearIndependent R fun x => s ↑x) → I = J hJ : J = I ∪ {i} memJ : ∀ {x : ι}, x ∈ J ↔ x = i ∨ x ∈ I ⊢ i ∈ J [PROOFSTEP] simp [GOAL] case right ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv : LinearIndependent R v s : ι → M I : Set ι hIlinind : LinearIndependent R fun x => s ↑x i : ι hi : ¬i ∈ I J : Set ι := I ∪ {i} hImaximal : (LinearIndependent R fun x => s ↑x) → I = J hJ : J = I ∪ {i} memJ : ∀ {x : ι}, x ∈ J ↔ x = i ∨ x ∈ I hiJ : i ∈ J ⊢ ∃ a, a ≠ 0 ∧ a • s i ∈ span R (s '' I) [PROOFSTEP] have h := by refine mt hImaximal ?_ · intro h2 rw [h2] at hi exact absurd hiJ hi [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv : LinearIndependent R v s : ι → M I : Set ι hIlinind : LinearIndependent R fun x => s ↑x i : ι hi : ¬i ∈ I J : Set ι := I ∪ {i} hImaximal : (LinearIndependent R fun x => s ↑x) → I = J hJ : J = I ∪ {i} memJ : ∀ {x : ι}, x ∈ J ↔ x = i ∨ x ∈ I hiJ : i ∈ J ⊢ ?m.535465 [PROOFSTEP] refine mt hImaximal ?_ [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv : LinearIndependent R v s : ι → M I : Set ι hIlinind : LinearIndependent R fun x => s ↑x i : ι hi : ¬i ∈ I J : Set ι := I ∪ {i} hImaximal : (LinearIndependent R fun x => s ↑x) → I = J hJ : J = I ∪ {i} memJ : ∀ {x : ι}, x ∈ J ↔ x = i ∨ x ∈ I hiJ : i ∈ J ⊢ ¬I = J [PROOFSTEP] intro h2 [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv : LinearIndependent R v s : ι → M I : Set ι hIlinind : LinearIndependent R fun x => s ↑x i : ι hi : ¬i ∈ I J : Set ι := I ∪ {i} hImaximal : (LinearIndependent R fun x => s ↑x) → I = J hJ : J = I ∪ {i} memJ : ∀ {x : ι}, x ∈ J ↔ x = i ∨ x ∈ I hiJ : i ∈ J h2 : I = J ⊢ False [PROOFSTEP] rw [h2] at hi [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv : LinearIndependent R v s : ι → M I : Set ι hIlinind : LinearIndependent R fun x => s ↑x i : ι J : Set ι := I ∪ {i} hi : ¬i ∈ J hImaximal : (LinearIndependent R fun x => s ↑x) → I = J hJ : J = I ∪ {i} memJ : ∀ {x : ι}, x ∈ J ↔ x = i ∨ x ∈ I hiJ : i ∈ J h2 : I = J ⊢ False [PROOFSTEP] exact absurd hiJ hi [GOAL] case right ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv : LinearIndependent R v s : ι → M I : Set ι hIlinind : LinearIndependent R fun x => s ↑x i : ι hi : ¬i ∈ I J : Set ι := I ∪ {i} hImaximal : (LinearIndependent R fun x => s ↑x) → I = J hJ : J = I ∪ {i} memJ : ∀ {x : ι}, x ∈ J ↔ x = i ∨ x ∈ I hiJ : i ∈ J h : ¬LinearIndependent R fun x => s ↑x ⊢ ∃ a, a ≠ 0 ∧ a • s i ∈ span R (s '' I) [PROOFSTEP] obtain ⟨f, supp_f, sum_f, f_ne⟩ := linearDependent_comp_subtype.mp h [GOAL] case right.intro.intro.intro ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv : LinearIndependent R v s : ι → M I : Set ι hIlinind : LinearIndependent R fun x => s ↑x i : ι hi : ¬i ∈ I J : Set ι := I ∪ {i} hImaximal : (LinearIndependent R fun x => s ↑x) → I = J hJ : J = I ∪ {i} memJ : ∀ {x : ι}, x ∈ J ↔ x = i ∨ x ∈ I hiJ : i ∈ J h : ¬LinearIndependent R fun x => s ↑x f : ι →₀ R supp_f : f ∈ Finsupp.supported R R J sum_f : ∑ i in f.support, ↑f i • s i = 0 f_ne : f ≠ 0 ⊢ ∃ a, a ≠ 0 ∧ a • s i ∈ span R (s '' I) [PROOFSTEP] have hfi : f i ≠ 0 := by contrapose hIlinind refine' linearDependent_comp_subtype.mpr ⟨f, _, sum_f, f_ne⟩ simp only [Finsupp.mem_supported, hJ] at supp_f ⊢ rintro x hx refine' (memJ.mp (supp_f hx)).resolve_left _ rintro rfl exact hIlinind (Finsupp.mem_support_iff.mp hx) [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv : LinearIndependent R v s : ι → M I : Set ι hIlinind : LinearIndependent R fun x => s ↑x i : ι hi : ¬i ∈ I J : Set ι := I ∪ {i} hImaximal : (LinearIndependent R fun x => s ↑x) → I = J hJ : J = I ∪ {i} memJ : ∀ {x : ι}, x ∈ J ↔ x = i ∨ x ∈ I hiJ : i ∈ J h : ¬LinearIndependent R fun x => s ↑x f : ι →₀ R supp_f : f ∈ Finsupp.supported R R J sum_f : ∑ i in f.support, ↑f i • s i = 0 f_ne : f ≠ 0 ⊢ ↑f i ≠ 0 [PROOFSTEP] contrapose hIlinind [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv : LinearIndependent R v s : ι → M I : Set ι i : ι hi : ¬i ∈ I J : Set ι := I ∪ {i} hImaximal : (LinearIndependent R fun x => s ↑x) → I = J hJ : J = I ∪ {i} memJ : ∀ {x : ι}, x ∈ J ↔ x = i ∨ x ∈ I hiJ : i ∈ J h : ¬LinearIndependent R fun x => s ↑x f : ι →₀ R supp_f : f ∈ Finsupp.supported R R J sum_f : ∑ i in f.support, ↑f i • s i = 0 f_ne : f ≠ 0 hIlinind : ¬↑f i ≠ 0 ⊢ ¬LinearIndependent R fun x => s ↑x [PROOFSTEP] refine' linearDependent_comp_subtype.mpr ⟨f, _, sum_f, f_ne⟩ [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv : LinearIndependent R v s : ι → M I : Set ι i : ι hi : ¬i ∈ I J : Set ι := I ∪ {i} hImaximal : (LinearIndependent R fun x => s ↑x) → I = J hJ : J = I ∪ {i} memJ : ∀ {x : ι}, x ∈ J ↔ x = i ∨ x ∈ I hiJ : i ∈ J h : ¬LinearIndependent R fun x => s ↑x f : ι →₀ R supp_f : f ∈ Finsupp.supported R R J sum_f : ∑ i in f.support, ↑f i • s i = 0 f_ne : f ≠ 0 hIlinind : ¬↑f i ≠ 0 ⊢ f ∈ Finsupp.supported R R I [PROOFSTEP] simp only [Finsupp.mem_supported, hJ] at supp_f ⊢ [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv : LinearIndependent R v s : ι → M I : Set ι i : ι hi : ¬i ∈ I J : Set ι := I ∪ {i} hImaximal : (LinearIndependent R fun x => s ↑x) → I = J hJ : J = I ∪ {i} memJ : ∀ {x : ι}, x ∈ J ↔ x = i ∨ x ∈ I hiJ : i ∈ J h : ¬LinearIndependent R fun x => s ↑x f : ι →₀ R sum_f : ∑ i in f.support, ↑f i • s i = 0 f_ne : f ≠ 0 hIlinind : ¬↑f i ≠ 0 supp_f : ↑f.support ⊆ I ∪ {i} ⊢ ↑f.support ⊆ I [PROOFSTEP] rintro x hx [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x✝ y : M hv : LinearIndependent R v s : ι → M I : Set ι i : ι hi : ¬i ∈ I J : Set ι := I ∪ {i} hImaximal : (LinearIndependent R fun x => s ↑x) → I = J hJ : J = I ∪ {i} memJ : ∀ {x : ι}, x ∈ J ↔ x = i ∨ x ∈ I hiJ : i ∈ J h : ¬LinearIndependent R fun x => s ↑x f : ι →₀ R sum_f : ∑ i in f.support, ↑f i • s i = 0 f_ne : f ≠ 0 hIlinind : ¬↑f i ≠ 0 supp_f : ↑f.support ⊆ I ∪ {i} x : ι hx : x ∈ ↑f.support ⊢ x ∈ I [PROOFSTEP] refine' (memJ.mp (supp_f hx)).resolve_left _ [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x✝ y : M hv : LinearIndependent R v s : ι → M I : Set ι i : ι hi : ¬i ∈ I J : Set ι := I ∪ {i} hImaximal : (LinearIndependent R fun x => s ↑x) → I = J hJ : J = I ∪ {i} memJ : ∀ {x : ι}, x ∈ J ↔ x = i ∨ x ∈ I hiJ : i ∈ J h : ¬LinearIndependent R fun x => s ↑x f : ι →₀ R sum_f : ∑ i in f.support, ↑f i • s i = 0 f_ne : f ≠ 0 hIlinind : ¬↑f i ≠ 0 supp_f : ↑f.support ⊆ I ∪ {i} x : ι hx : x ∈ ↑f.support ⊢ ¬x = i [PROOFSTEP] rintro rfl [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x✝ y : M hv : LinearIndependent R v s : ι → M I : Set ι f : ι →₀ R sum_f : ∑ i in f.support, ↑f i • s i = 0 f_ne : f ≠ 0 x : ι hx : x ∈ ↑f.support hi : ¬x ∈ I J : Set ι := I ∪ {x} hImaximal : (LinearIndependent R fun x => s ↑x) → I = J hJ : J = I ∪ {x} memJ : ∀ {x_1 : ι}, x_1 ∈ J ↔ x_1 = x ∨ x_1 ∈ I hiJ : x ∈ J h : ¬LinearIndependent R fun x => s ↑x hIlinind : ¬↑f x ≠ 0 supp_f : ↑f.support ⊆ I ∪ {x} ⊢ False [PROOFSTEP] exact hIlinind (Finsupp.mem_support_iff.mp hx) [GOAL] case right.intro.intro.intro ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv : LinearIndependent R v s : ι → M I : Set ι hIlinind : LinearIndependent R fun x => s ↑x i : ι hi : ¬i ∈ I J : Set ι := I ∪ {i} hImaximal : (LinearIndependent R fun x => s ↑x) → I = J hJ : J = I ∪ {i} memJ : ∀ {x : ι}, x ∈ J ↔ x = i ∨ x ∈ I hiJ : i ∈ J h : ¬LinearIndependent R fun x => s ↑x f : ι →₀ R supp_f : f ∈ Finsupp.supported R R J sum_f : ∑ i in f.support, ↑f i • s i = 0 f_ne : f ≠ 0 hfi : ↑f i ≠ 0 ⊢ ∃ a, a ≠ 0 ∧ a • s i ∈ span R (s '' I) [PROOFSTEP] use f i, hfi [GOAL] case right ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv : LinearIndependent R v s : ι → M I : Set ι hIlinind : LinearIndependent R fun x => s ↑x i : ι hi : ¬i ∈ I J : Set ι := I ∪ {i} hImaximal : (LinearIndependent R fun x => s ↑x) → I = J hJ : J = I ∪ {i} memJ : ∀ {x : ι}, x ∈ J ↔ x = i ∨ x ∈ I hiJ : i ∈ J h : ¬LinearIndependent R fun x => s ↑x f : ι →₀ R supp_f : f ∈ Finsupp.supported R R J sum_f : ∑ i in f.support, ↑f i • s i = 0 f_ne : f ≠ 0 hfi : ↑f i ≠ 0 ⊢ ↑f i • s i ∈ span R (s '' I) [PROOFSTEP] have hfi' : i ∈ f.support := Finsupp.mem_support_iff.mpr hfi [GOAL] case right ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv : LinearIndependent R v s : ι → M I : Set ι hIlinind : LinearIndependent R fun x => s ↑x i : ι hi : ¬i ∈ I J : Set ι := I ∪ {i} hImaximal : (LinearIndependent R fun x => s ↑x) → I = J hJ : J = I ∪ {i} memJ : ∀ {x : ι}, x ∈ J ↔ x = i ∨ x ∈ I hiJ : i ∈ J h : ¬LinearIndependent R fun x => s ↑x f : ι →₀ R supp_f : f ∈ Finsupp.supported R R J sum_f : ∑ i in f.support, ↑f i • s i = 0 f_ne : f ≠ 0 hfi : ↑f i ≠ 0 hfi' : i ∈ f.support ⊢ ↑f i • s i ∈ span R (s '' I) [PROOFSTEP] rw [← Finset.insert_erase hfi', Finset.sum_insert (Finset.not_mem_erase _ _), add_eq_zero_iff_eq_neg] at sum_f [GOAL] case right ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv : LinearIndependent R v s : ι → M I : Set ι hIlinind : LinearIndependent R fun x => s ↑x i : ι hi : ¬i ∈ I J : Set ι := I ∪ {i} hImaximal : (LinearIndependent R fun x => s ↑x) → I = J hJ : J = I ∪ {i} memJ : ∀ {x : ι}, x ∈ J ↔ x = i ∨ x ∈ I hiJ : i ∈ J h : ¬LinearIndependent R fun x => s ↑x f : ι →₀ R supp_f : f ∈ Finsupp.supported R R J sum_f : ↑f i • s i = -∑ x in Finset.erase f.support i, ↑f x • s x f_ne : f ≠ 0 hfi : ↑f i ≠ 0 hfi' : i ∈ f.support ⊢ ↑f i • s i ∈ span R (s '' I) [PROOFSTEP] rw [sum_f] [GOAL] case right ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv : LinearIndependent R v s : ι → M I : Set ι hIlinind : LinearIndependent R fun x => s ↑x i : ι hi : ¬i ∈ I J : Set ι := I ∪ {i} hImaximal : (LinearIndependent R fun x => s ↑x) → I = J hJ : J = I ∪ {i} memJ : ∀ {x : ι}, x ∈ J ↔ x = i ∨ x ∈ I hiJ : i ∈ J h : ¬LinearIndependent R fun x => s ↑x f : ι →₀ R supp_f : f ∈ Finsupp.supported R R J sum_f : ↑f i • s i = -∑ x in Finset.erase f.support i, ↑f x • s x f_ne : f ≠ 0 hfi : ↑f i ≠ 0 hfi' : i ∈ f.support ⊢ -∑ x in Finset.erase f.support i, ↑f x • s x ∈ span R (s '' I) [PROOFSTEP] refine' neg_mem (sum_mem fun c hc => smul_mem _ _ (subset_span ⟨c, _, rfl⟩)) [GOAL] case right ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M hv : LinearIndependent R v s : ι → M I : Set ι hIlinind : LinearIndependent R fun x => s ↑x i : ι hi : ¬i ∈ I J : Set ι := I ∪ {i} hImaximal : (LinearIndependent R fun x => s ↑x) → I = J hJ : J = I ∪ {i} memJ : ∀ {x : ι}, x ∈ J ↔ x = i ∨ x ∈ I hiJ : i ∈ J h : ¬LinearIndependent R fun x => s ↑x f : ι →₀ R supp_f : f ∈ Finsupp.supported R R J sum_f : ↑f i • s i = -∑ x in Finset.erase f.support i, ↑f x • s x f_ne : f ≠ 0 hfi : ↑f i ≠ 0 hfi' : i ∈ f.support c : ι hc : c ∈ Finset.erase f.support i ⊢ c ∈ I [PROOFSTEP] exact (memJ.mp (supp_f (Finset.erase_subset _ _ hc))).resolve_left (Finset.ne_of_mem_erase hc) [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁷ : Ring R inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R M' inst✝¹ : Module R M'' a b : R x y : M inst✝ : Nontrivial R hv : LinearIndependent R v f : ι' ↪ ι hss : range v ⊆ ↑(span R (range (v ∘ ↑f))) ⊢ Surjective ↑f [PROOFSTEP] intro i [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁷ : Ring R inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R M' inst✝¹ : Module R M'' a b : R x y : M inst✝ : Nontrivial R hv : LinearIndependent R v f : ι' ↪ ι hss : range v ⊆ ↑(span R (range (v ∘ ↑f))) i : ι ⊢ ∃ a, ↑f a = i [PROOFSTEP] let repr : (span R (range (v ∘ f)) : Type _) → ι' →₀ R := (hv.comp f f.injective).repr [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁷ : Ring R inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R M' inst✝¹ : Module R M'' a b : R x y : M inst✝ : Nontrivial R hv : LinearIndependent R v f : ι' ↪ ι hss : range v ⊆ ↑(span R (range (v ∘ ↑f))) i : ι repr : { x // x ∈ span R (range (v ∘ ↑f)) } → ι' →₀ R := ↑(LinearIndependent.repr (_ : LinearIndependent R (v ∘ ↑f))) ⊢ ∃ a, ↑f a = i [PROOFSTEP] let l := (repr ⟨v i, hss (mem_range_self i)⟩).mapDomain f [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁷ : Ring R inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R M' inst✝¹ : Module R M'' a b : R x y : M inst✝ : Nontrivial R hv : LinearIndependent R v f : ι' ↪ ι hss : range v ⊆ ↑(span R (range (v ∘ ↑f))) i : ι repr : { x // x ∈ span R (range (v ∘ ↑f)) } → ι' →₀ R := ↑(LinearIndependent.repr (_ : LinearIndependent R (v ∘ ↑f))) l : ι →₀ R := Finsupp.mapDomain (↑f) (repr { val := v i, property := (_ : v i ∈ ↑(span R (range (v ∘ ↑f)))) }) ⊢ ∃ a, ↑f a = i [PROOFSTEP] have h_total_l : Finsupp.total ι M R v l = v i := by dsimp only [] rw [Finsupp.total_mapDomain] rw [(hv.comp f f.injective).total_repr] -- Porting note: `rfl` isn't necessary. [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁷ : Ring R inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R M' inst✝¹ : Module R M'' a b : R x y : M inst✝ : Nontrivial R hv : LinearIndependent R v f : ι' ↪ ι hss : range v ⊆ ↑(span R (range (v ∘ ↑f))) i : ι repr : { x // x ∈ span R (range (v ∘ ↑f)) } → ι' →₀ R := ↑(LinearIndependent.repr (_ : LinearIndependent R (v ∘ ↑f))) l : ι →₀ R := Finsupp.mapDomain (↑f) (repr { val := v i, property := (_ : v i ∈ ↑(span R (range (v ∘ ↑f)))) }) ⊢ ↑(Finsupp.total ι M R v) l = v i [PROOFSTEP] dsimp only [] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁷ : Ring R inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R M' inst✝¹ : Module R M'' a b : R x y : M inst✝ : Nontrivial R hv : LinearIndependent R v f : ι' ↪ ι hss : range v ⊆ ↑(span R (range (v ∘ ↑f))) i : ι repr : { x // x ∈ span R (range (v ∘ ↑f)) } → ι' →₀ R := ↑(LinearIndependent.repr (_ : LinearIndependent R (v ∘ ↑f))) l : ι →₀ R := Finsupp.mapDomain (↑f) (repr { val := v i, property := (_ : v i ∈ ↑(span R (range (v ∘ ↑f)))) }) ⊢ ↑(Finsupp.total ι M R v) (Finsupp.mapDomain (↑f) (↑(LinearIndependent.repr (_ : LinearIndependent R (v ∘ ↑f))) { val := v i, property := (_ : v i ∈ ↑(span R (range (v ∘ ↑f)))) })) = v i [PROOFSTEP] rw [Finsupp.total_mapDomain] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁷ : Ring R inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R M' inst✝¹ : Module R M'' a b : R x y : M inst✝ : Nontrivial R hv : LinearIndependent R v f : ι' ↪ ι hss : range v ⊆ ↑(span R (range (v ∘ ↑f))) i : ι repr : { x // x ∈ span R (range (v ∘ ↑f)) } → ι' →₀ R := ↑(LinearIndependent.repr (_ : LinearIndependent R (v ∘ ↑f))) l : ι →₀ R := Finsupp.mapDomain (↑f) (repr { val := v i, property := (_ : v i ∈ ↑(span R (range (v ∘ ↑f)))) }) ⊢ ↑(Finsupp.total ι' M R (v ∘ ↑f)) (↑(LinearIndependent.repr (_ : LinearIndependent R (v ∘ ↑f))) { val := v i, property := (_ : v i ∈ ↑(span R (range (v ∘ ↑f)))) }) = v i [PROOFSTEP] rw [(hv.comp f f.injective).total_repr] -- Porting note: `rfl` isn't necessary. [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁷ : Ring R inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R M' inst✝¹ : Module R M'' a b : R x y : M inst✝ : Nontrivial R hv : LinearIndependent R v f : ι' ↪ ι hss : range v ⊆ ↑(span R (range (v ∘ ↑f))) i : ι repr : { x // x ∈ span R (range (v ∘ ↑f)) } → ι' →₀ R := ↑(LinearIndependent.repr (_ : LinearIndependent R (v ∘ ↑f))) l : ι →₀ R := Finsupp.mapDomain (↑f) (repr { val := v i, property := (_ : v i ∈ ↑(span R (range (v ∘ ↑f)))) }) h_total_l : ↑(Finsupp.total ι M R v) l = v i ⊢ ∃ a, ↑f a = i [PROOFSTEP] have h_total_eq : (Finsupp.total ι M R v) l = (Finsupp.total ι M R v) (Finsupp.single i 1) := by rw [h_total_l, Finsupp.total_single, one_smul] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁷ : Ring R inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R M' inst✝¹ : Module R M'' a b : R x y : M inst✝ : Nontrivial R hv : LinearIndependent R v f : ι' ↪ ι hss : range v ⊆ ↑(span R (range (v ∘ ↑f))) i : ι repr : { x // x ∈ span R (range (v ∘ ↑f)) } → ι' →₀ R := ↑(LinearIndependent.repr (_ : LinearIndependent R (v ∘ ↑f))) l : ι →₀ R := Finsupp.mapDomain (↑f) (repr { val := v i, property := (_ : v i ∈ ↑(span R (range (v ∘ ↑f)))) }) h_total_l : ↑(Finsupp.total ι M R v) l = v i ⊢ ↑(Finsupp.total ι M R v) l = ↑(Finsupp.total ι M R v) (Finsupp.single i 1) [PROOFSTEP] rw [h_total_l, Finsupp.total_single, one_smul] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁷ : Ring R inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R M' inst✝¹ : Module R M'' a b : R x y : M inst✝ : Nontrivial R hv : LinearIndependent R v f : ι' ↪ ι hss : range v ⊆ ↑(span R (range (v ∘ ↑f))) i : ι repr : { x // x ∈ span R (range (v ∘ ↑f)) } → ι' →₀ R := ↑(LinearIndependent.repr (_ : LinearIndependent R (v ∘ ↑f))) l : ι →₀ R := Finsupp.mapDomain (↑f) (repr { val := v i, property := (_ : v i ∈ ↑(span R (range (v ∘ ↑f)))) }) h_total_l : ↑(Finsupp.total ι M R v) l = v i h_total_eq : ↑(Finsupp.total ι M R v) l = ↑(Finsupp.total ι M R v) (Finsupp.single i 1) ⊢ ∃ a, ↑f a = i [PROOFSTEP] have l_eq : l = _ := LinearMap.ker_eq_bot.1 hv h_total_eq [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁷ : Ring R inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R M' inst✝¹ : Module R M'' a b : R x y : M inst✝ : Nontrivial R hv : LinearIndependent R v f : ι' ↪ ι hss : range v ⊆ ↑(span R (range (v ∘ ↑f))) i : ι repr : { x // x ∈ span R (range (v ∘ ↑f)) } → ι' →₀ R := ↑(LinearIndependent.repr (_ : LinearIndependent R (v ∘ ↑f))) l : ι →₀ R := Finsupp.mapDomain (↑f) (repr { val := v i, property := (_ : v i ∈ ↑(span R (range (v ∘ ↑f)))) }) h_total_l : ↑(Finsupp.total ι M R v) l = v i h_total_eq : ↑(Finsupp.total ι M R v) l = ↑(Finsupp.total ι M R v) (Finsupp.single i 1) l_eq : l = Finsupp.single i 1 ⊢ ∃ a, ↑f a = i [PROOFSTEP] dsimp only [] at l_eq [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁷ : Ring R inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R M' inst✝¹ : Module R M'' a b : R x y : M inst✝ : Nontrivial R hv : LinearIndependent R v f : ι' ↪ ι hss : range v ⊆ ↑(span R (range (v ∘ ↑f))) i : ι repr : { x // x ∈ span R (range (v ∘ ↑f)) } → ι' →₀ R := ↑(LinearIndependent.repr (_ : LinearIndependent R (v ∘ ↑f))) l : ι →₀ R := Finsupp.mapDomain (↑f) (repr { val := v i, property := (_ : v i ∈ ↑(span R (range (v ∘ ↑f)))) }) h_total_l : ↑(Finsupp.total ι M R v) l = v i h_total_eq : ↑(Finsupp.total ι M R v) l = ↑(Finsupp.total ι M R v) (Finsupp.single i 1) l_eq : Finsupp.mapDomain (↑f) (↑(LinearIndependent.repr (_ : LinearIndependent R (v ∘ ↑f))) { val := v i, property := (_ : v i ∈ ↑(span R (range (v ∘ ↑f)))) }) = Finsupp.single i 1 ⊢ ∃ a, ↑f a = i [PROOFSTEP] rw [← Finsupp.embDomain_eq_mapDomain] at l_eq [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁷ : Ring R inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R M' inst✝¹ : Module R M'' a b : R x y : M inst✝ : Nontrivial R hv : LinearIndependent R v f : ι' ↪ ι hss : range v ⊆ ↑(span R (range (v ∘ ↑f))) i : ι repr : { x // x ∈ span R (range (v ∘ ↑f)) } → ι' →₀ R := ↑(LinearIndependent.repr (_ : LinearIndependent R (v ∘ ↑f))) l : ι →₀ R := Finsupp.mapDomain (↑f) (repr { val := v i, property := (_ : v i ∈ ↑(span R (range (v ∘ ↑f)))) }) h_total_l : ↑(Finsupp.total ι M R v) l = v i h_total_eq : ↑(Finsupp.total ι M R v) l = ↑(Finsupp.total ι M R v) (Finsupp.single i 1) l_eq : Finsupp.embDomain f (↑(LinearIndependent.repr (_ : LinearIndependent R (v ∘ ↑f))) { val := v i, property := (_ : v i ∈ ↑(span R (range (v ∘ ↑f)))) }) = Finsupp.single i 1 ⊢ ∃ a, ↑f a = i [PROOFSTEP] rcases Finsupp.single_of_embDomain_single (repr ⟨v i, _⟩) f i (1 : R) zero_ne_one.symm l_eq with ⟨i', hi'⟩ [GOAL] case intro ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁷ : Ring R inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R M' inst✝¹ : Module R M'' a b : R x y : M inst✝ : Nontrivial R hv : LinearIndependent R v f : ι' ↪ ι hss : range v ⊆ ↑(span R (range (v ∘ ↑f))) i : ι repr : { x // x ∈ span R (range (v ∘ ↑f)) } → ι' →₀ R := ↑(LinearIndependent.repr (_ : LinearIndependent R (v ∘ ↑f))) l : ι →₀ R := Finsupp.mapDomain (↑f) (repr { val := v i, property := (_ : v i ∈ ↑(span R (range (v ∘ ↑f)))) }) h_total_l : ↑(Finsupp.total ι M R v) l = v i h_total_eq : ↑(Finsupp.total ι M R v) l = ↑(Finsupp.total ι M R v) (Finsupp.single i 1) l_eq : Finsupp.embDomain f (↑(LinearIndependent.repr (_ : LinearIndependent R (v ∘ ↑f))) { val := v i, property := (_ : v i ∈ ↑(span R (range (v ∘ ↑f)))) }) = Finsupp.single i 1 i' : ι' hi' : repr { val := v i, property := (_ : v i ∈ ↑(span R (range (v ∘ ↑f)))) } = Finsupp.single i' 1 ∧ ↑f i' = i ⊢ ∃ a, ↑f a = i [PROOFSTEP] use i' [GOAL] case h ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁷ : Ring R inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R M' inst✝¹ : Module R M'' a b : R x y : M inst✝ : Nontrivial R hv : LinearIndependent R v f : ι' ↪ ι hss : range v ⊆ ↑(span R (range (v ∘ ↑f))) i : ι repr : { x // x ∈ span R (range (v ∘ ↑f)) } → ι' →₀ R := ↑(LinearIndependent.repr (_ : LinearIndependent R (v ∘ ↑f))) l : ι →₀ R := Finsupp.mapDomain (↑f) (repr { val := v i, property := (_ : v i ∈ ↑(span R (range (v ∘ ↑f)))) }) h_total_l : ↑(Finsupp.total ι M R v) l = v i h_total_eq : ↑(Finsupp.total ι M R v) l = ↑(Finsupp.total ι M R v) (Finsupp.single i 1) l_eq : Finsupp.embDomain f (↑(LinearIndependent.repr (_ : LinearIndependent R (v ∘ ↑f))) { val := v i, property := (_ : v i ∈ ↑(span R (range (v ∘ ↑f)))) }) = Finsupp.single i 1 i' : ι' hi' : repr { val := v i, property := (_ : v i ∈ ↑(span R (range (v ∘ ↑f)))) } = Finsupp.single i' 1 ∧ ↑f i' = i ⊢ ↑f i' = i [PROOFSTEP] exact hi'.2 [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁷ : Ring R inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R M' inst✝¹ : Module R M'' a b : R x y : M inst✝ : Nontrivial R s t : Set M hs : LinearIndependent R fun x => ↑x h : t ⊆ s hst : s ⊆ ↑(span R t) ⊢ s = t [PROOFSTEP] let f : t ↪ s := ⟨fun x => ⟨x.1, h x.2⟩, fun a b hab => Subtype.coe_injective (Subtype.mk.inj hab)⟩ [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁷ : Ring R inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R M' inst✝¹ : Module R M'' a b : R x y : M inst✝ : Nontrivial R s t : Set M hs : LinearIndependent R fun x => ↑x h : t ⊆ s hst : s ⊆ ↑(span R t) f : ↑t ↪ ↑s := { toFun := fun x => { val := ↑x, property := (_ : ↑x ∈ s) }, inj' := (_ : ∀ (a b : ↑t), (fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) a = (fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) b → a = b) } ⊢ s = t [PROOFSTEP] have h_surj : Surjective f := by apply surjective_of_linearIndependent_of_span hs f _ convert hst <;> simp [comp] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁷ : Ring R inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R M' inst✝¹ : Module R M'' a b : R x y : M inst✝ : Nontrivial R s t : Set M hs : LinearIndependent R fun x => ↑x h : t ⊆ s hst : s ⊆ ↑(span R t) f : ↑t ↪ ↑s := { toFun := fun x => { val := ↑x, property := (_ : ↑x ∈ s) }, inj' := (_ : ∀ (a b : ↑t), (fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) a = (fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) b → a = b) } ⊢ Surjective ↑f [PROOFSTEP] apply surjective_of_linearIndependent_of_span hs f _ [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁷ : Ring R inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R M' inst✝¹ : Module R M'' a b : R x y : M inst✝ : Nontrivial R s t : Set M hs : LinearIndependent R fun x => ↑x h : t ⊆ s hst : s ⊆ ↑(span R t) f : ↑t ↪ ↑s := { toFun := fun x => { val := ↑x, property := (_ : ↑x ∈ s) }, inj' := (_ : ∀ (a b : ↑t), (fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) a = (fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) b → a = b) } ⊢ (range fun x => ↑x) ⊆ ↑(span R (range ((fun x => ↑x) ∘ ↑f))) [PROOFSTEP] convert hst [GOAL] case h.e'_3 ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁷ : Ring R inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R M' inst✝¹ : Module R M'' a b : R x y : M inst✝ : Nontrivial R s t : Set M hs : LinearIndependent R fun x => ↑x h : t ⊆ s hst : s ⊆ ↑(span R t) f : ↑t ↪ ↑s := { toFun := fun x => { val := ↑x, property := (_ : ↑x ∈ s) }, inj' := (_ : ∀ (a b : ↑t), (fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) a = (fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) b → a = b) } ⊢ (range fun x => ↑x) = s [PROOFSTEP] simp [comp] [GOAL] case h.e'_4.h.e'_4.h.e'_6 ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁷ : Ring R inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R M' inst✝¹ : Module R M'' a b : R x y : M inst✝ : Nontrivial R s t : Set M hs : LinearIndependent R fun x => ↑x h : t ⊆ s hst : s ⊆ ↑(span R t) f : ↑t ↪ ↑s := { toFun := fun x => { val := ↑x, property := (_ : ↑x ∈ s) }, inj' := (_ : ∀ (a b : ↑t), (fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) a = (fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) b → a = b) } ⊢ range ((fun x => ↑x) ∘ ↑f) = t [PROOFSTEP] simp [comp] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁷ : Ring R inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R M' inst✝¹ : Module R M'' a b : R x y : M inst✝ : Nontrivial R s t : Set M hs : LinearIndependent R fun x => ↑x h : t ⊆ s hst : s ⊆ ↑(span R t) f : ↑t ↪ ↑s := { toFun := fun x => { val := ↑x, property := (_ : ↑x ∈ s) }, inj' := (_ : ∀ (a b : ↑t), (fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) a = (fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) b → a = b) } h_surj : Surjective ↑f ⊢ s = t [PROOFSTEP] show s = t [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁷ : Ring R inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R M' inst✝¹ : Module R M'' a b : R x y : M inst✝ : Nontrivial R s t : Set M hs : LinearIndependent R fun x => ↑x h : t ⊆ s hst : s ⊆ ↑(span R t) f : ↑t ↪ ↑s := { toFun := fun x => { val := ↑x, property := (_ : ↑x ∈ s) }, inj' := (_ : ∀ (a b : ↑t), (fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) a = (fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) b → a = b) } h_surj : Surjective ↑f ⊢ s = t [PROOFSTEP] apply Subset.antisymm _ h [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁷ : Ring R inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R M' inst✝¹ : Module R M'' a b : R x y : M inst✝ : Nontrivial R s t : Set M hs : LinearIndependent R fun x => ↑x h : t ⊆ s hst : s ⊆ ↑(span R t) f : ↑t ↪ ↑s := { toFun := fun x => { val := ↑x, property := (_ : ↑x ∈ s) }, inj' := (_ : ∀ (a b : ↑t), (fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) a = (fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) b → a = b) } h_surj : Surjective ↑f ⊢ s ⊆ t [PROOFSTEP] intro x hx [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁷ : Ring R inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R M' inst✝¹ : Module R M'' a b : R x✝ y : M inst✝ : Nontrivial R s t : Set M hs : LinearIndependent R fun x => ↑x h : t ⊆ s hst : s ⊆ ↑(span R t) f : ↑t ↪ ↑s := { toFun := fun x => { val := ↑x, property := (_ : ↑x ∈ s) }, inj' := (_ : ∀ (a b : ↑t), (fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) a = (fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) b → a = b) } h_surj : Surjective ↑f x : M hx : x ∈ s ⊢ x ∈ t [PROOFSTEP] rcases h_surj ⟨x, hx⟩ with ⟨y, hy⟩ [GOAL] case intro ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁷ : Ring R inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R M' inst✝¹ : Module R M'' a b : R x✝ y✝ : M inst✝ : Nontrivial R s t : Set M hs : LinearIndependent R fun x => ↑x h : t ⊆ s hst : s ⊆ ↑(span R t) f : ↑t ↪ ↑s := { toFun := fun x => { val := ↑x, property := (_ : ↑x ∈ s) }, inj' := (_ : ∀ (a b : ↑t), (fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) a = (fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) b → a = b) } h_surj : Surjective ↑f x : M hx : x ∈ s y : ↑t hy : ↑f y = { val := x, property := hx } ⊢ x ∈ t [PROOFSTEP] convert y.mem [GOAL] case h.e'_4 ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁷ : Ring R inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R M' inst✝¹ : Module R M'' a b : R x✝ y✝ : M inst✝ : Nontrivial R s t : Set M hs : LinearIndependent R fun x => ↑x h : t ⊆ s hst : s ⊆ ↑(span R t) f : ↑t ↪ ↑s := { toFun := fun x => { val := ↑x, property := (_ : ↑x ∈ s) }, inj' := (_ : ∀ (a b : ↑t), (fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) a = (fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) b → a = b) } h_surj : Surjective ↑f x : M hx : x ∈ s y : ↑t hy : ↑f y = { val := x, property := hx } ⊢ x = ↑y [PROOFSTEP] rw [← Subtype.mk.inj hy] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M s : Set M f : M →ₗ[R] M' hs : LinearIndependent R fun x => ↑x hf_inj : Disjoint (span R s) (ker f) ⊢ LinearIndependent R fun x => ↑x [PROOFSTEP] rw [← @Subtype.range_coe _ s] at hf_inj [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M s : Set M f : M →ₗ[R] M' hs : LinearIndependent R fun x => ↑x hf_inj : Disjoint (span R (Set.range Subtype.val)) (ker f) ⊢ LinearIndependent R fun x => ↑x [PROOFSTEP] refine' (hs.map hf_inj).to_subtype_range' _ [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M s : Set M f : M →ₗ[R] M' hs : LinearIndependent R fun x => ↑x hf_inj : Disjoint (span R (Set.range Subtype.val)) (ker f) ⊢ Set.range (↑f ∘ fun x => ↑x) = ↑f '' s [PROOFSTEP] simp [Set.range_comp f] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M s : Set M t : Set M' hs : LinearIndependent R fun x => ↑x ht : LinearIndependent R fun x => ↑x ⊢ LinearIndependent R fun x => ↑x [PROOFSTEP] refine' (hs.image_subtype _).union (ht.image_subtype _) _ <;> [simp; simp; skip] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M s : Set M t : Set M' hs : LinearIndependent R fun x => ↑x ht : LinearIndependent R fun x => ↑x ⊢ LinearIndependent R fun x => ↑x [PROOFSTEP] refine' (hs.image_subtype _).union (ht.image_subtype _) _ [GOAL] case refine'_1 ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M s : Set M t : Set M' hs : LinearIndependent R fun x => ↑x ht : LinearIndependent R fun x => ↑x ⊢ Disjoint (span R s) (ker (inl R M M')) [PROOFSTEP] simp [GOAL] case refine'_2 ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M s : Set M t : Set M' hs : LinearIndependent R fun x => ↑x ht : LinearIndependent R fun x => ↑x ⊢ Disjoint (span R t) (ker (inr R M M')) [PROOFSTEP] simp [GOAL] case refine'_3 ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M s : Set M t : Set M' hs : LinearIndependent R fun x => ↑x ht : LinearIndependent R fun x => ↑x ⊢ Disjoint (span R (↑(inl R M M') '' s)) (span R (↑(inr R M M') '' t)) [PROOFSTEP] skip [GOAL] case refine'_3 ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M s : Set M t : Set M' hs : LinearIndependent R fun x => ↑x ht : LinearIndependent R fun x => ↑x ⊢ Disjoint (span R (↑(inl R M M') '' s)) (span R (↑(inr R M M') '' t)) [PROOFSTEP] simp only [span_image] [GOAL] case refine'_3 ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M s : Set M t : Set M' hs : LinearIndependent R fun x => ↑x ht : LinearIndependent R fun x => ↑x ⊢ Disjoint (Submodule.map (inl R M M') (span R s)) (Submodule.map (inr R M M') (span R t)) [PROOFSTEP] simp [disjoint_iff, prod_inf_prod] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v✝ : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M v : ι → M v' : ι' → M' hv : LinearIndependent R v hv' : LinearIndependent R v' ⊢ Disjoint (span R (Set.range (↑(inl R M M') ∘ v))) (span R (Set.range (↑(inr R M M') ∘ v'))) [PROOFSTEP] refine' isCompl_range_inl_inr.disjoint.mono _ _ [GOAL] case refine'_1 ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v✝ : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M v : ι → M v' : ι' → M' hv : LinearIndependent R v hv' : LinearIndependent R v' ⊢ span R (Set.range (↑(inl R M M') ∘ v)) ≤ LinearMap.range (inl R M M') [PROOFSTEP] simp only [span_le, range_coe, range_comp_subset_range] [GOAL] case refine'_2 ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v✝ : ι → M inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : AddCommGroup M'' inst✝² : Module R M inst✝¹ : Module R M' inst✝ : Module R M'' a b : R x y : M v : ι → M v' : ι' → M' hv : LinearIndependent R v hv' : LinearIndependent R v' ⊢ span R (Set.range (↑(inr R M M') ∘ v')) ≤ LinearMap.range (inr R M M') [PROOFSTEP] simp only [span_le, range_coe, range_comp_subset_range] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁹ : Ring R inst✝⁸ : AddCommGroup M inst✝⁷ : AddCommGroup M' inst✝⁶ : AddCommGroup M'' inst✝⁵ : Module R M inst✝⁴ : Module R M' inst✝³ : Module R M'' a b : R x y : M G : Type u_8 inst✝² : Monoid G L : Type u_9 inst✝¹ : CommRing L inst✝ : NoZeroDivisors L ⊢ LinearIndependent L fun f => ↑f [PROOFSTEP] letI := Classical.decEq (G →* L) [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁹ : Ring R inst✝⁸ : AddCommGroup M inst✝⁷ : AddCommGroup M' inst✝⁶ : AddCommGroup M'' inst✝⁵ : Module R M inst✝⁴ : Module R M' inst✝³ : Module R M'' a b : R x y : M G : Type u_8 inst✝² : Monoid G L : Type u_9 inst✝¹ : CommRing L inst✝ : NoZeroDivisors L this : DecidableEq (G →* L) := Classical.decEq (G →* L) ⊢ LinearIndependent L fun f => ↑f [PROOFSTEP] letI : MulAction L L := DistribMulAction.toMulAction [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁹ : Ring R inst✝⁸ : AddCommGroup M inst✝⁷ : AddCommGroup M' inst✝⁶ : AddCommGroup M'' inst✝⁵ : Module R M inst✝⁴ : Module R M' inst✝³ : Module R M'' a b : R x y : M G : Type u_8 inst✝² : Monoid G L : Type u_9 inst✝¹ : CommRing L inst✝ : NoZeroDivisors L this✝ : DecidableEq (G →* L) := Classical.decEq (G →* L) this : MulAction L L := DistribMulAction.toMulAction ⊢ LinearIndependent L fun f => ↑f [PROOFSTEP] exact linearIndependent_iff'.2 -- To do this, we use `Finset` induction, -- Porting note: `False.elim` → `fun h => False.elim <| Finset.not_mem_empty _ h` fun s => Finset.induction_on s (fun g _hg i h => False.elim <| Finset.not_mem_empty _ h) fun a s has ih g hg => -- Here -- * `a` is a new character we will insert into the `Finset` of characters `s`, -- * `ih` is the fact that only the trivial linear combination of characters in `s` is zero -- * `hg` is the fact that `g` are the coefficients of a linear combination summing to zero -- and it remains to prove that `g` vanishes on `insert a s`. -- We now make the key calculation: -- For any character `i` in the original `Finset`, we have `g i • i = g i • a` as functions -- on the monoid `G`. have h1 : ∀ i ∈ s, (g i • (i : G → L)) = g i • (a : G → L) := fun i his => funext fun x : G => -- We prove these expressions are equal by showing -- the differences of their values on each monoid element `x` is zero eq_of_sub_eq_zero <| ih (fun j => g j * j x - g j * a x) (funext fun y : G => calc -- After that, it's just a chase scene. (∑ i in s, ((g i * i x - g i * a x) • (i : G → L))) y = ∑ i in s, (g i * i x - g i * a x) * i y := Finset.sum_apply _ _ _ _ = ∑ i in s, (g i * i x * i y - g i * a x * i y) := (Finset.sum_congr rfl fun _ _ => sub_mul _ _ _) _ = (∑ i in s, g i * i x * i y) - ∑ i in s, g i * a x * i y := Finset.sum_sub_distrib _ = (g a * a x * a y + ∑ i in s, g i * i x * i y) - (g a * a x * a y + ∑ i in s, g i * a x * i y) := by rw [add_sub_add_left_eq_sub] _ = (∑ i in insert a s, g i * i x * i y) - ∑ i in insert a s, g i * a x * i y := by rw [Finset.sum_insert has, Finset.sum_insert has] _ = (∑ i in insert a s, g i * i (x * y)) - ∑ i in insert a s, a x * (g i * i y) := (congr (congr_arg Sub.sub (Finset.sum_congr rfl fun i _ => by rw [i.map_mul, mul_assoc])) (Finset.sum_congr rfl fun _ _ => by rw [mul_assoc, mul_left_comm])) _ = (∑ i in insert a s, (g i • (i : G → L))) (x * y) - a x * (∑ i in insert a s, (g i • (i : G → L))) y := by rw [Finset.sum_apply, Finset.sum_apply, Finset.mul_sum]; rfl _ = 0 - a x * 0 := by rw [hg]; rfl _ = 0 := by rw [mul_zero, sub_zero]) i his have h2 : ∀ i : G →* L, i ∈ s → ∃ y, i y ≠ a y := fun i his => Classical.by_contradiction fun h => have hia : i = a := MonoidHom.ext fun y => Classical.by_contradiction fun hy => h ⟨y, hy⟩ has <| hia ▸ his have h3 : ∀ i ∈ s, g i = 0 := fun i his => let ⟨y, hy⟩ := h2 i his have h : g i • i y = g i • a y := congr_fun (h1 i his) y Or.resolve_right (mul_eq_zero.1 <| by rw [mul_sub, sub_eq_zero]; exact h) (sub_ne_zero_of_ne hy) -- And so, using the fact that the linear combination over `s` and over `insert a s` both -- vanish, we deduce that `g a = 0`. have h4 : g a = 0 := calc g a = g a * 1 := (mul_one _).symm _ = (g a • (a : G → L)) 1 := by rw [← a.map_one]; rfl _ = (∑ i in insert a s, (g i • (i : G → L))) 1 := by rw [Finset.sum_eq_single a] · intro i his hia rw [Finset.mem_insert] at his rw [h3 i (his.resolve_left hia), zero_smul] · intro haas exfalso apply haas exact Finset.mem_insert_self a s _ = 0 := by rw [hg]; rfl -- Now we're done; the last two facts together imply that `g` vanishes on every element -- of `insert a s`. (Finset.forall_mem_insert _ _ _).2 ⟨h4, h3⟩ [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁹ : Ring R inst✝⁸ : AddCommGroup M inst✝⁷ : AddCommGroup M' inst✝⁶ : AddCommGroup M'' inst✝⁵ : Module R M inst✝⁴ : Module R M' inst✝³ : Module R M'' a✝ b : R x✝ y✝ : M G : Type u_8 inst✝² : Monoid G L : Type u_9 inst✝¹ : CommRing L inst✝ : NoZeroDivisors L this✝ : DecidableEq (G →* L) := Classical.decEq (G →* L) this : MulAction L L := DistribMulAction.toMulAction s✝ : Finset (G →* L) a : G →* L s : Finset (G →* L) has : ¬a ∈ s ih : ∀ (g : (G →* L) → L), ∑ i in s, g i • ↑i = 0 → ∀ (i : G →* L), i ∈ s → g i = 0 g : (G →* L) → L hg : ∑ i in insert a s, g i • ↑i = 0 i : G →* L his : i ∈ s x y : G ⊢ ∑ i in s, g i * ↑i x * ↑i y - ∑ i in s, g i * ↑a x * ↑i y = g a * ↑a x * ↑a y + ∑ i in s, g i * ↑i x * ↑i y - (g a * ↑a x * ↑a y + ∑ i in s, g i * ↑a x * ↑i y) [PROOFSTEP] rw [add_sub_add_left_eq_sub] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁹ : Ring R inst✝⁸ : AddCommGroup M inst✝⁷ : AddCommGroup M' inst✝⁶ : AddCommGroup M'' inst✝⁵ : Module R M inst✝⁴ : Module R M' inst✝³ : Module R M'' a✝ b : R x✝ y✝ : M G : Type u_8 inst✝² : Monoid G L : Type u_9 inst✝¹ : CommRing L inst✝ : NoZeroDivisors L this✝ : DecidableEq (G →* L) := Classical.decEq (G →* L) this : MulAction L L := DistribMulAction.toMulAction s✝ : Finset (G →* L) a : G →* L s : Finset (G →* L) has : ¬a ∈ s ih : ∀ (g : (G →* L) → L), ∑ i in s, g i • ↑i = 0 → ∀ (i : G →* L), i ∈ s → g i = 0 g : (G →* L) → L hg : ∑ i in insert a s, g i • ↑i = 0 i : G →* L his : i ∈ s x y : G ⊢ g a * ↑a x * ↑a y + ∑ i in s, g i * ↑i x * ↑i y - (g a * ↑a x * ↑a y + ∑ i in s, g i * ↑a x * ↑i y) = ∑ i in insert a s, g i * ↑i x * ↑i y - ∑ i in insert a s, g i * ↑a x * ↑i y [PROOFSTEP] rw [Finset.sum_insert has, Finset.sum_insert has] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁹ : Ring R inst✝⁸ : AddCommGroup M inst✝⁷ : AddCommGroup M' inst✝⁶ : AddCommGroup M'' inst✝⁵ : Module R M inst✝⁴ : Module R M' inst✝³ : Module R M'' a✝ b : R x✝¹ y✝ : M G : Type u_8 inst✝² : Monoid G L : Type u_9 inst✝¹ : CommRing L inst✝ : NoZeroDivisors L this✝ : DecidableEq (G →* L) := Classical.decEq (G →* L) this : MulAction L L := DistribMulAction.toMulAction s✝ : Finset (G →* L) a : G →* L s : Finset (G →* L) has : ¬a ∈ s ih : ∀ (g : (G →* L) → L), ∑ i in s, g i • ↑i = 0 → ∀ (i : G →* L), i ∈ s → g i = 0 g : (G →* L) → L hg : ∑ i in insert a s, g i • ↑i = 0 i✝ : G →* L his : i✝ ∈ s x y : G i : G →* L x✝ : i ∈ insert a s ⊢ g i * ↑i x * ↑i y = g i * ↑i (x * y) [PROOFSTEP] rw [i.map_mul, mul_assoc] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁹ : Ring R inst✝⁸ : AddCommGroup M inst✝⁷ : AddCommGroup M' inst✝⁶ : AddCommGroup M'' inst✝⁵ : Module R M inst✝⁴ : Module R M' inst✝³ : Module R M'' a✝ b : R x✝² y✝ : M G : Type u_8 inst✝² : Monoid G L : Type u_9 inst✝¹ : CommRing L inst✝ : NoZeroDivisors L this✝ : DecidableEq (G →* L) := Classical.decEq (G →* L) this : MulAction L L := DistribMulAction.toMulAction s✝ : Finset (G →* L) a : G →* L s : Finset (G →* L) has : ¬a ∈ s ih : ∀ (g : (G →* L) → L), ∑ i in s, g i • ↑i = 0 → ∀ (i : G →* L), i ∈ s → g i = 0 g : (G →* L) → L hg : ∑ i in insert a s, g i • ↑i = 0 i : G →* L his : i ∈ s x y : G x✝¹ : G →* L x✝ : x✝¹ ∈ insert a s ⊢ g x✝¹ * ↑a x * ↑x✝¹ y = ↑a x * (g x✝¹ * ↑x✝¹ y) [PROOFSTEP] rw [mul_assoc, mul_left_comm] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁹ : Ring R inst✝⁸ : AddCommGroup M inst✝⁷ : AddCommGroup M' inst✝⁶ : AddCommGroup M'' inst✝⁵ : Module R M inst✝⁴ : Module R M' inst✝³ : Module R M'' a✝ b : R x✝ y✝ : M G : Type u_8 inst✝² : Monoid G L : Type u_9 inst✝¹ : CommRing L inst✝ : NoZeroDivisors L this✝ : DecidableEq (G →* L) := Classical.decEq (G →* L) this : MulAction L L := DistribMulAction.toMulAction s✝ : Finset (G →* L) a : G →* L s : Finset (G →* L) has : ¬a ∈ s ih : ∀ (g : (G →* L) → L), ∑ i in s, g i • ↑i = 0 → ∀ (i : G →* L), i ∈ s → g i = 0 g : (G →* L) → L hg : ∑ i in insert a s, g i • ↑i = 0 i : G →* L his : i ∈ s x y : G ⊢ ∑ i in insert a s, g i * ↑i (x * y) - ∑ i in insert a s, ↑a x * (g i * ↑i y) = Finset.sum (insert a s) (fun i => g i • ↑i) (x * y) - ↑a x * Finset.sum (insert a s) (fun i => g i • ↑i) y [PROOFSTEP] rw [Finset.sum_apply, Finset.sum_apply, Finset.mul_sum] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁹ : Ring R inst✝⁸ : AddCommGroup M inst✝⁷ : AddCommGroup M' inst✝⁶ : AddCommGroup M'' inst✝⁵ : Module R M inst✝⁴ : Module R M' inst✝³ : Module R M'' a✝ b : R x✝ y✝ : M G : Type u_8 inst✝² : Monoid G L : Type u_9 inst✝¹ : CommRing L inst✝ : NoZeroDivisors L this✝ : DecidableEq (G →* L) := Classical.decEq (G →* L) this : MulAction L L := DistribMulAction.toMulAction s✝ : Finset (G →* L) a : G →* L s : Finset (G →* L) has : ¬a ∈ s ih : ∀ (g : (G →* L) → L), ∑ i in s, g i • ↑i = 0 → ∀ (i : G →* L), i ∈ s → g i = 0 g : (G →* L) → L hg : ∑ i in insert a s, g i • ↑i = 0 i : G →* L his : i ∈ s x y : G ⊢ ∑ i in insert a s, g i * ↑i (x * y) - ∑ i in insert a s, ↑a x * (g i * ↑i y) = ∑ c in insert a s, (g c • ↑c) (x * y) - ∑ x_1 in insert a s, ↑a x * (g x_1 • ↑x_1) y [PROOFSTEP] rfl [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁹ : Ring R inst✝⁸ : AddCommGroup M inst✝⁷ : AddCommGroup M' inst✝⁶ : AddCommGroup M'' inst✝⁵ : Module R M inst✝⁴ : Module R M' inst✝³ : Module R M'' a✝ b : R x✝ y✝ : M G : Type u_8 inst✝² : Monoid G L : Type u_9 inst✝¹ : CommRing L inst✝ : NoZeroDivisors L this✝ : DecidableEq (G →* L) := Classical.decEq (G →* L) this : MulAction L L := DistribMulAction.toMulAction s✝ : Finset (G →* L) a : G →* L s : Finset (G →* L) has : ¬a ∈ s ih : ∀ (g : (G →* L) → L), ∑ i in s, g i • ↑i = 0 → ∀ (i : G →* L), i ∈ s → g i = 0 g : (G →* L) → L hg : ∑ i in insert a s, g i • ↑i = 0 i : G →* L his : i ∈ s x y : G ⊢ Finset.sum (insert a s) (fun i => g i • ↑i) (x * y) - ↑a x * Finset.sum (insert a s) (fun i => g i • ↑i) y = 0 - ↑a x * 0 [PROOFSTEP] rw [hg] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁹ : Ring R inst✝⁸ : AddCommGroup M inst✝⁷ : AddCommGroup M' inst✝⁶ : AddCommGroup M'' inst✝⁵ : Module R M inst✝⁴ : Module R M' inst✝³ : Module R M'' a✝ b : R x✝ y✝ : M G : Type u_8 inst✝² : Monoid G L : Type u_9 inst✝¹ : CommRing L inst✝ : NoZeroDivisors L this✝ : DecidableEq (G →* L) := Classical.decEq (G →* L) this : MulAction L L := DistribMulAction.toMulAction s✝ : Finset (G →* L) a : G →* L s : Finset (G →* L) has : ¬a ∈ s ih : ∀ (g : (G →* L) → L), ∑ i in s, g i • ↑i = 0 → ∀ (i : G →* L), i ∈ s → g i = 0 g : (G →* L) → L hg : ∑ i in insert a s, g i • ↑i = 0 i : G →* L his : i ∈ s x y : G ⊢ OfNat.ofNat 0 (x * y) - ↑a x * OfNat.ofNat 0 y = 0 - ↑a x * 0 [PROOFSTEP] rfl [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁹ : Ring R inst✝⁸ : AddCommGroup M inst✝⁷ : AddCommGroup M' inst✝⁶ : AddCommGroup M'' inst✝⁵ : Module R M inst✝⁴ : Module R M' inst✝³ : Module R M'' a✝ b : R x✝ y✝ : M G : Type u_8 inst✝² : Monoid G L : Type u_9 inst✝¹ : CommRing L inst✝ : NoZeroDivisors L this✝ : DecidableEq (G →* L) := Classical.decEq (G →* L) this : MulAction L L := DistribMulAction.toMulAction s✝ : Finset (G →* L) a : G →* L s : Finset (G →* L) has : ¬a ∈ s ih : ∀ (g : (G →* L) → L), ∑ i in s, g i • ↑i = 0 → ∀ (i : G →* L), i ∈ s → g i = 0 g : (G →* L) → L hg : ∑ i in insert a s, g i • ↑i = 0 i : G →* L his : i ∈ s x y : G ⊢ 0 - ↑a x * 0 = 0 [PROOFSTEP] rw [mul_zero, sub_zero] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁹ : Ring R inst✝⁸ : AddCommGroup M inst✝⁷ : AddCommGroup M' inst✝⁶ : AddCommGroup M'' inst✝⁵ : Module R M inst✝⁴ : Module R M' inst✝³ : Module R M'' a✝ b : R x y✝ : M G : Type u_8 inst✝² : Monoid G L : Type u_9 inst✝¹ : CommRing L inst✝ : NoZeroDivisors L this✝ : DecidableEq (G →* L) := Classical.decEq (G →* L) this : MulAction L L := DistribMulAction.toMulAction s✝ : Finset (G →* L) a : G →* L s : Finset (G →* L) has : ¬a ∈ s ih : ∀ (g : (G →* L) → L), ∑ i in s, g i • ↑i = 0 → ∀ (i : G →* L), i ∈ s → g i = 0 g : (G →* L) → L hg : ∑ i in insert a s, g i • ↑i = 0 h1 : ∀ (i : G →* L), i ∈ s → g i • ↑i = g i • ↑a h2 : ∀ (i : G →* L), i ∈ s → ∃ y, ↑i y ≠ ↑a y i : G →* L his : i ∈ s y : G hy : ↑i y ≠ ↑a y h : g i • ↑i y = g i • ↑a y ⊢ g i * (↑i y - ↑a y) = 0 [PROOFSTEP] rw [mul_sub, sub_eq_zero] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁹ : Ring R inst✝⁸ : AddCommGroup M inst✝⁷ : AddCommGroup M' inst✝⁶ : AddCommGroup M'' inst✝⁵ : Module R M inst✝⁴ : Module R M' inst✝³ : Module R M'' a✝ b : R x y✝ : M G : Type u_8 inst✝² : Monoid G L : Type u_9 inst✝¹ : CommRing L inst✝ : NoZeroDivisors L this✝ : DecidableEq (G →* L) := Classical.decEq (G →* L) this : MulAction L L := DistribMulAction.toMulAction s✝ : Finset (G →* L) a : G →* L s : Finset (G →* L) has : ¬a ∈ s ih : ∀ (g : (G →* L) → L), ∑ i in s, g i • ↑i = 0 → ∀ (i : G →* L), i ∈ s → g i = 0 g : (G →* L) → L hg : ∑ i in insert a s, g i • ↑i = 0 h1 : ∀ (i : G →* L), i ∈ s → g i • ↑i = g i • ↑a h2 : ∀ (i : G →* L), i ∈ s → ∃ y, ↑i y ≠ ↑a y i : G →* L his : i ∈ s y : G hy : ↑i y ≠ ↑a y h : g i • ↑i y = g i • ↑a y ⊢ g i * ↑i y = g i * ↑a y [PROOFSTEP] exact h [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁹ : Ring R inst✝⁸ : AddCommGroup M inst✝⁷ : AddCommGroup M' inst✝⁶ : AddCommGroup M'' inst✝⁵ : Module R M inst✝⁴ : Module R M' inst✝³ : Module R M'' a✝ b : R x y : M G : Type u_8 inst✝² : Monoid G L : Type u_9 inst✝¹ : CommRing L inst✝ : NoZeroDivisors L this✝ : DecidableEq (G →* L) := Classical.decEq (G →* L) this : MulAction L L := DistribMulAction.toMulAction s✝ : Finset (G →* L) a : G →* L s : Finset (G →* L) has : ¬a ∈ s ih : ∀ (g : (G →* L) → L), ∑ i in s, g i • ↑i = 0 → ∀ (i : G →* L), i ∈ s → g i = 0 g : (G →* L) → L hg : ∑ i in insert a s, g i • ↑i = 0 h1 : ∀ (i : G →* L), i ∈ s → g i • ↑i = g i • ↑a h2 : ∀ (i : G →* L), i ∈ s → ∃ y, ↑i y ≠ ↑a y h3 : ∀ (i : G →* L), i ∈ s → g i = 0 ⊢ g a * 1 = (g a • ↑a) 1 [PROOFSTEP] rw [← a.map_one] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁹ : Ring R inst✝⁸ : AddCommGroup M inst✝⁷ : AddCommGroup M' inst✝⁶ : AddCommGroup M'' inst✝⁵ : Module R M inst✝⁴ : Module R M' inst✝³ : Module R M'' a✝ b : R x y : M G : Type u_8 inst✝² : Monoid G L : Type u_9 inst✝¹ : CommRing L inst✝ : NoZeroDivisors L this✝ : DecidableEq (G →* L) := Classical.decEq (G →* L) this : MulAction L L := DistribMulAction.toMulAction s✝ : Finset (G →* L) a : G →* L s : Finset (G →* L) has : ¬a ∈ s ih : ∀ (g : (G →* L) → L), ∑ i in s, g i • ↑i = 0 → ∀ (i : G →* L), i ∈ s → g i = 0 g : (G →* L) → L hg : ∑ i in insert a s, g i • ↑i = 0 h1 : ∀ (i : G →* L), i ∈ s → g i • ↑i = g i • ↑a h2 : ∀ (i : G →* L), i ∈ s → ∃ y, ↑i y ≠ ↑a y h3 : ∀ (i : G →* L), i ∈ s → g i = 0 ⊢ g a * ↑a 1 = (g a • ↑a) 1 [PROOFSTEP] rfl [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁹ : Ring R inst✝⁸ : AddCommGroup M inst✝⁷ : AddCommGroup M' inst✝⁶ : AddCommGroup M'' inst✝⁵ : Module R M inst✝⁴ : Module R M' inst✝³ : Module R M'' a✝ b : R x y : M G : Type u_8 inst✝² : Monoid G L : Type u_9 inst✝¹ : CommRing L inst✝ : NoZeroDivisors L this✝ : DecidableEq (G →* L) := Classical.decEq (G →* L) this : MulAction L L := DistribMulAction.toMulAction s✝ : Finset (G →* L) a : G →* L s : Finset (G →* L) has : ¬a ∈ s ih : ∀ (g : (G →* L) → L), ∑ i in s, g i • ↑i = 0 → ∀ (i : G →* L), i ∈ s → g i = 0 g : (G →* L) → L hg : ∑ i in insert a s, g i • ↑i = 0 h1 : ∀ (i : G →* L), i ∈ s → g i • ↑i = g i • ↑a h2 : ∀ (i : G →* L), i ∈ s → ∃ y, ↑i y ≠ ↑a y h3 : ∀ (i : G →* L), i ∈ s → g i = 0 ⊢ (g a • ↑a) 1 = Finset.sum (insert a s) (fun i => g i • ↑i) 1 [PROOFSTEP] rw [Finset.sum_eq_single a] [GOAL] case h₀ ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁹ : Ring R inst✝⁸ : AddCommGroup M inst✝⁷ : AddCommGroup M' inst✝⁶ : AddCommGroup M'' inst✝⁵ : Module R M inst✝⁴ : Module R M' inst✝³ : Module R M'' a✝ b : R x y : M G : Type u_8 inst✝² : Monoid G L : Type u_9 inst✝¹ : CommRing L inst✝ : NoZeroDivisors L this✝ : DecidableEq (G →* L) := Classical.decEq (G →* L) this : MulAction L L := DistribMulAction.toMulAction s✝ : Finset (G →* L) a : G →* L s : Finset (G →* L) has : ¬a ∈ s ih : ∀ (g : (G →* L) → L), ∑ i in s, g i • ↑i = 0 → ∀ (i : G →* L), i ∈ s → g i = 0 g : (G →* L) → L hg : ∑ i in insert a s, g i • ↑i = 0 h1 : ∀ (i : G →* L), i ∈ s → g i • ↑i = g i • ↑a h2 : ∀ (i : G →* L), i ∈ s → ∃ y, ↑i y ≠ ↑a y h3 : ∀ (i : G →* L), i ∈ s → g i = 0 ⊢ ∀ (b : G →* L), b ∈ insert a s → b ≠ a → g b • ↑b = 0 [PROOFSTEP] intro i his hia [GOAL] case h₀ ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁹ : Ring R inst✝⁸ : AddCommGroup M inst✝⁷ : AddCommGroup M' inst✝⁶ : AddCommGroup M'' inst✝⁵ : Module R M inst✝⁴ : Module R M' inst✝³ : Module R M'' a✝ b : R x y : M G : Type u_8 inst✝² : Monoid G L : Type u_9 inst✝¹ : CommRing L inst✝ : NoZeroDivisors L this✝ : DecidableEq (G →* L) := Classical.decEq (G →* L) this : MulAction L L := DistribMulAction.toMulAction s✝ : Finset (G →* L) a : G →* L s : Finset (G →* L) has : ¬a ∈ s ih : ∀ (g : (G →* L) → L), ∑ i in s, g i • ↑i = 0 → ∀ (i : G →* L), i ∈ s → g i = 0 g : (G →* L) → L hg : ∑ i in insert a s, g i • ↑i = 0 h1 : ∀ (i : G →* L), i ∈ s → g i • ↑i = g i • ↑a h2 : ∀ (i : G →* L), i ∈ s → ∃ y, ↑i y ≠ ↑a y h3 : ∀ (i : G →* L), i ∈ s → g i = 0 i : G →* L his : i ∈ insert a s hia : i ≠ a ⊢ g i • ↑i = 0 [PROOFSTEP] rw [Finset.mem_insert] at his [GOAL] case h₀ ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁹ : Ring R inst✝⁸ : AddCommGroup M inst✝⁷ : AddCommGroup M' inst✝⁶ : AddCommGroup M'' inst✝⁵ : Module R M inst✝⁴ : Module R M' inst✝³ : Module R M'' a✝ b : R x y : M G : Type u_8 inst✝² : Monoid G L : Type u_9 inst✝¹ : CommRing L inst✝ : NoZeroDivisors L this✝ : DecidableEq (G →* L) := Classical.decEq (G →* L) this : MulAction L L := DistribMulAction.toMulAction s✝ : Finset (G →* L) a : G →* L s : Finset (G →* L) has : ¬a ∈ s ih : ∀ (g : (G →* L) → L), ∑ i in s, g i • ↑i = 0 → ∀ (i : G →* L), i ∈ s → g i = 0 g : (G →* L) → L hg : ∑ i in insert a s, g i • ↑i = 0 h1 : ∀ (i : G →* L), i ∈ s → g i • ↑i = g i • ↑a h2 : ∀ (i : G →* L), i ∈ s → ∃ y, ↑i y ≠ ↑a y h3 : ∀ (i : G →* L), i ∈ s → g i = 0 i : G →* L his : i = a ∨ i ∈ s hia : i ≠ a ⊢ g i • ↑i = 0 [PROOFSTEP] rw [h3 i (his.resolve_left hia), zero_smul] [GOAL] case h₁ ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁹ : Ring R inst✝⁸ : AddCommGroup M inst✝⁷ : AddCommGroup M' inst✝⁶ : AddCommGroup M'' inst✝⁵ : Module R M inst✝⁴ : Module R M' inst✝³ : Module R M'' a✝ b : R x y : M G : Type u_8 inst✝² : Monoid G L : Type u_9 inst✝¹ : CommRing L inst✝ : NoZeroDivisors L this✝ : DecidableEq (G →* L) := Classical.decEq (G →* L) this : MulAction L L := DistribMulAction.toMulAction s✝ : Finset (G →* L) a : G →* L s : Finset (G →* L) has : ¬a ∈ s ih : ∀ (g : (G →* L) → L), ∑ i in s, g i • ↑i = 0 → ∀ (i : G →* L), i ∈ s → g i = 0 g : (G →* L) → L hg : ∑ i in insert a s, g i • ↑i = 0 h1 : ∀ (i : G →* L), i ∈ s → g i • ↑i = g i • ↑a h2 : ∀ (i : G →* L), i ∈ s → ∃ y, ↑i y ≠ ↑a y h3 : ∀ (i : G →* L), i ∈ s → g i = 0 ⊢ ¬a ∈ insert a s → g a • ↑a = 0 [PROOFSTEP] intro haas [GOAL] case h₁ ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁹ : Ring R inst✝⁸ : AddCommGroup M inst✝⁷ : AddCommGroup M' inst✝⁶ : AddCommGroup M'' inst✝⁵ : Module R M inst✝⁴ : Module R M' inst✝³ : Module R M'' a✝ b : R x y : M G : Type u_8 inst✝² : Monoid G L : Type u_9 inst✝¹ : CommRing L inst✝ : NoZeroDivisors L this✝ : DecidableEq (G →* L) := Classical.decEq (G →* L) this : MulAction L L := DistribMulAction.toMulAction s✝ : Finset (G →* L) a : G →* L s : Finset (G →* L) has : ¬a ∈ s ih : ∀ (g : (G →* L) → L), ∑ i in s, g i • ↑i = 0 → ∀ (i : G →* L), i ∈ s → g i = 0 g : (G →* L) → L hg : ∑ i in insert a s, g i • ↑i = 0 h1 : ∀ (i : G →* L), i ∈ s → g i • ↑i = g i • ↑a h2 : ∀ (i : G →* L), i ∈ s → ∃ y, ↑i y ≠ ↑a y h3 : ∀ (i : G →* L), i ∈ s → g i = 0 haas : ¬a ∈ insert a s ⊢ g a • ↑a = 0 [PROOFSTEP] exfalso [GOAL] case h₁.h ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁹ : Ring R inst✝⁸ : AddCommGroup M inst✝⁷ : AddCommGroup M' inst✝⁶ : AddCommGroup M'' inst✝⁵ : Module R M inst✝⁴ : Module R M' inst✝³ : Module R M'' a✝ b : R x y : M G : Type u_8 inst✝² : Monoid G L : Type u_9 inst✝¹ : CommRing L inst✝ : NoZeroDivisors L this✝ : DecidableEq (G →* L) := Classical.decEq (G →* L) this : MulAction L L := DistribMulAction.toMulAction s✝ : Finset (G →* L) a : G →* L s : Finset (G →* L) has : ¬a ∈ s ih : ∀ (g : (G →* L) → L), ∑ i in s, g i • ↑i = 0 → ∀ (i : G →* L), i ∈ s → g i = 0 g : (G →* L) → L hg : ∑ i in insert a s, g i • ↑i = 0 h1 : ∀ (i : G →* L), i ∈ s → g i • ↑i = g i • ↑a h2 : ∀ (i : G →* L), i ∈ s → ∃ y, ↑i y ≠ ↑a y h3 : ∀ (i : G →* L), i ∈ s → g i = 0 haas : ¬a ∈ insert a s ⊢ False [PROOFSTEP] apply haas [GOAL] case h₁.h ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁹ : Ring R inst✝⁸ : AddCommGroup M inst✝⁷ : AddCommGroup M' inst✝⁶ : AddCommGroup M'' inst✝⁵ : Module R M inst✝⁴ : Module R M' inst✝³ : Module R M'' a✝ b : R x y : M G : Type u_8 inst✝² : Monoid G L : Type u_9 inst✝¹ : CommRing L inst✝ : NoZeroDivisors L this✝ : DecidableEq (G →* L) := Classical.decEq (G →* L) this : MulAction L L := DistribMulAction.toMulAction s✝ : Finset (G →* L) a : G →* L s : Finset (G →* L) has : ¬a ∈ s ih : ∀ (g : (G →* L) → L), ∑ i in s, g i • ↑i = 0 → ∀ (i : G →* L), i ∈ s → g i = 0 g : (G →* L) → L hg : ∑ i in insert a s, g i • ↑i = 0 h1 : ∀ (i : G →* L), i ∈ s → g i • ↑i = g i • ↑a h2 : ∀ (i : G →* L), i ∈ s → ∃ y, ↑i y ≠ ↑a y h3 : ∀ (i : G →* L), i ∈ s → g i = 0 haas : ¬a ∈ insert a s ⊢ a ∈ insert a s [PROOFSTEP] exact Finset.mem_insert_self a s [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁹ : Ring R inst✝⁸ : AddCommGroup M inst✝⁷ : AddCommGroup M' inst✝⁶ : AddCommGroup M'' inst✝⁵ : Module R M inst✝⁴ : Module R M' inst✝³ : Module R M'' a✝ b : R x y : M G : Type u_8 inst✝² : Monoid G L : Type u_9 inst✝¹ : CommRing L inst✝ : NoZeroDivisors L this✝ : DecidableEq (G →* L) := Classical.decEq (G →* L) this : MulAction L L := DistribMulAction.toMulAction s✝ : Finset (G →* L) a : G →* L s : Finset (G →* L) has : ¬a ∈ s ih : ∀ (g : (G →* L) → L), ∑ i in s, g i • ↑i = 0 → ∀ (i : G →* L), i ∈ s → g i = 0 g : (G →* L) → L hg : ∑ i in insert a s, g i • ↑i = 0 h1 : ∀ (i : G →* L), i ∈ s → g i • ↑i = g i • ↑a h2 : ∀ (i : G →* L), i ∈ s → ∃ y, ↑i y ≠ ↑a y h3 : ∀ (i : G →* L), i ∈ s → g i = 0 ⊢ Finset.sum (insert a s) (fun i => g i • ↑i) 1 = 0 [PROOFSTEP] rw [hg] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁹ : Ring R inst✝⁸ : AddCommGroup M inst✝⁷ : AddCommGroup M' inst✝⁶ : AddCommGroup M'' inst✝⁵ : Module R M inst✝⁴ : Module R M' inst✝³ : Module R M'' a✝ b : R x y : M G : Type u_8 inst✝² : Monoid G L : Type u_9 inst✝¹ : CommRing L inst✝ : NoZeroDivisors L this✝ : DecidableEq (G →* L) := Classical.decEq (G →* L) this : MulAction L L := DistribMulAction.toMulAction s✝ : Finset (G →* L) a : G →* L s : Finset (G →* L) has : ¬a ∈ s ih : ∀ (g : (G →* L) → L), ∑ i in s, g i • ↑i = 0 → ∀ (i : G →* L), i ∈ s → g i = 0 g : (G →* L) → L hg : ∑ i in insert a s, g i • ↑i = 0 h1 : ∀ (i : G →* L), i ∈ s → g i • ↑i = g i • ↑a h2 : ∀ (i : G →* L), i ∈ s → ∃ y, ↑i y ≠ ↑a y h3 : ∀ (i : G →* L), i ∈ s → g i = 0 ⊢ OfNat.ofNat 0 1 = 0 [PROOFSTEP] rfl -- Now we're done; the last two facts together imply that `g` vanishes on every element -- of `insert a s`. [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁷ : Ring R inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R M' inst✝¹ : Module R M'' a b : R x y : M inst✝ : Nontrivial R s t u : Set M hl : LinearIndependent R Subtype.val hsu : s ⊆ u htu : t ⊆ u hst : span R s ≤ span R t ⊢ s ⊆ t [PROOFSTEP] have := eq_of_linearIndependent_of_span_subtype (hl.mono (Set.union_subset hsu htu)) (Set.subset_union_right _ _) (Set.union_subset (Set.Subset.trans subset_span hst) subset_span) [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁷ : Ring R inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R M' inst✝¹ : Module R M'' a b : R x y : M inst✝ : Nontrivial R s t u : Set M hl : LinearIndependent R Subtype.val hsu : s ⊆ u htu : t ⊆ u hst : span R s ≤ span R t this : s ∪ t = t ⊢ s ⊆ t [PROOFSTEP] rw [← this] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 v : ι → M inst✝⁷ : Ring R inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M' inst✝⁴ : AddCommGroup M'' inst✝³ : Module R M inst✝² : Module R M' inst✝¹ : Module R M'' a b : R x y : M inst✝ : Nontrivial R s t u : Set M hl : LinearIndependent R Subtype.val hsu : s ⊆ u htu : t ⊆ u hst : span R s ≤ span R t this : s ∪ t = t ⊢ s ⊆ s ∪ t [PROOFSTEP] apply Set.subset_union_left [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁷ : Ring R inst✝⁶ : Nontrivial R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : Module R M inst✝² : NoZeroSMulDivisors R M inst✝¹ : Module R M' v✝ : ι → M s t : Set M x y z : M v : ι → M inst✝ : Unique ι ⊢ LinearIndependent R v ↔ v default ≠ 0 [PROOFSTEP] simp only [linearIndependent_iff, Finsupp.total_unique, smul_eq_zero] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁷ : Ring R inst✝⁶ : Nontrivial R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : Module R M inst✝² : NoZeroSMulDivisors R M inst✝¹ : Module R M' v✝ : ι → M s t : Set M x y z : M v : ι → M inst✝ : Unique ι ⊢ (∀ (l : ι →₀ R), ↑l default = 0 ∨ v default = 0 → l = 0) ↔ v default ≠ 0 [PROOFSTEP] refine' ⟨fun h hv => _, fun hv l hl => Finsupp.unique_ext <| hl.resolve_right hv⟩ [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁷ : Ring R inst✝⁶ : Nontrivial R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : Module R M inst✝² : NoZeroSMulDivisors R M inst✝¹ : Module R M' v✝ : ι → M s t : Set M x y z : M v : ι → M inst✝ : Unique ι h : ∀ (l : ι →₀ R), ↑l default = 0 ∨ v default = 0 → l = 0 hv : v default = 0 ⊢ False [PROOFSTEP] have := h (Finsupp.single default 1) (Or.inr hv) [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁷ : Ring R inst✝⁶ : Nontrivial R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup M' inst✝³ : Module R M inst✝² : NoZeroSMulDivisors R M inst✝¹ : Module R M' v✝ : ι → M s t : Set M x y z : M v : ι → M inst✝ : Unique ι h : ∀ (l : ι →₀ R), ↑l default = 0 ∨ v default = 0 → l = 0 hv : v default = 0 this : Finsupp.single default 1 = 0 ⊢ False [PROOFSTEP] exact one_ne_zero (Finsupp.single_eq_zero.1 this) [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t : Set V x y z : V ⊢ x ∈ span K (insert y s) → ¬x ∈ span K s → y ∈ span K (insert x s) [PROOFSTEP] simp [mem_span_insert] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t : Set V x y z : V ⊢ ∀ (x_1 : K) (x_2 : V), x_2 ∈ span K s → x = x_1 • y + x_2 → ¬x ∈ span K s → ∃ a z, z ∈ span K s ∧ y = a • x + z [PROOFSTEP] rintro a z hz rfl h [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t : Set V y z✝ : V a : K z : V hz : z ∈ span K s h : ¬a • y + z ∈ span K s ⊢ ∃ a_1 z_1, z_1 ∈ span K s ∧ y = a_1 • (a • y + z) + z_1 [PROOFSTEP] refine' ⟨a⁻¹, -a⁻¹ • z, smul_mem _ _ hz, _⟩ [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t : Set V y z✝ : V a : K z : V hz : z ∈ span K s h : ¬a • y + z ∈ span K s ⊢ y = a⁻¹ • (a • y + z) + -a⁻¹ • z [PROOFSTEP] have a0 : a ≠ 0 := by rintro rfl simp_all [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t : Set V y z✝ : V a : K z : V hz : z ∈ span K s h : ¬a • y + z ∈ span K s ⊢ a ≠ 0 [PROOFSTEP] rintro rfl [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t : Set V y z✝ z : V hz : z ∈ span K s h : ¬0 • y + z ∈ span K s ⊢ False [PROOFSTEP] simp_all [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t : Set V y z✝ : V a : K z : V hz : z ∈ span K s h : ¬a • y + z ∈ span K s a0 : a ≠ 0 ⊢ y = a⁻¹ • (a • y + z) + -a⁻¹ • z [PROOFSTEP] simp [a0, smul_add, smul_smul] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t : Set V x y z : V ⊢ LinearIndependent K v ↔ ∀ (i : ι), ¬v i ∈ span K (v '' (univ \ {i})) [PROOFSTEP] apply linearIndependent_iff_not_smul_mem_span.trans [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t : Set V x y z : V ⊢ (∀ (i : ι) (a : K), a • v i ∈ span K (v '' (univ \ {i})) → a = 0) ↔ ∀ (i : ι), ¬v i ∈ span K (v '' (univ \ {i})) [PROOFSTEP] constructor [GOAL] case mp ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t : Set V x y z : V ⊢ (∀ (i : ι) (a : K), a • v i ∈ span K (v '' (univ \ {i})) → a = 0) → ∀ (i : ι), ¬v i ∈ span K (v '' (univ \ {i})) [PROOFSTEP] intro h i h_in_span [GOAL] case mp ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t : Set V x y z : V h : ∀ (i : ι) (a : K), a • v i ∈ span K (v '' (univ \ {i})) → a = 0 i : ι h_in_span : v i ∈ span K (v '' (univ \ {i})) ⊢ False [PROOFSTEP] apply one_ne_zero (h i 1 (by simp [h_in_span])) [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t : Set V x y z : V h : ∀ (i : ι) (a : K), a • v i ∈ span K (v '' (univ \ {i})) → a = 0 i : ι h_in_span : v i ∈ span K (v '' (univ \ {i})) ⊢ 1 • v i ∈ span K (v '' (univ \ {i})) [PROOFSTEP] simp [h_in_span] [GOAL] case mpr ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t : Set V x y z : V ⊢ (∀ (i : ι), ¬v i ∈ span K (v '' (univ \ {i}))) → ∀ (i : ι) (a : K), a • v i ∈ span K (v '' (univ \ {i})) → a = 0 [PROOFSTEP] intro h i a ha [GOAL] case mpr ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t : Set V x y z : V h : ∀ (i : ι), ¬v i ∈ span K (v '' (univ \ {i})) i : ι a : K ha : a • v i ∈ span K (v '' (univ \ {i})) ⊢ a = 0 [PROOFSTEP] by_contra ha' [GOAL] case mpr ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t : Set V x y z : V h : ∀ (i : ι), ¬v i ∈ span K (v '' (univ \ {i})) i : ι a : K ha : a • v i ∈ span K (v '' (univ \ {i})) ha' : ¬a = 0 ⊢ False [PROOFSTEP] exact False.elim (h _ ((smul_mem_iff _ ha').1 ha)) [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t : Set V x y z : V hs : LinearIndependent K fun b => ↑b hx : ¬x ∈ span K s ⊢ LinearIndependent K fun b => ↑b [PROOFSTEP] rw [← union_singleton] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t : Set V x y z : V hs : LinearIndependent K fun b => ↑b hx : ¬x ∈ span K s ⊢ LinearIndependent K fun b => ↑b [PROOFSTEP] have x0 : x ≠ 0 := mt (by rintro rfl; apply zero_mem (span K s)) hx [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t : Set V x y z : V hs : LinearIndependent K fun b => ↑b hx : ¬x ∈ span K s ⊢ x = 0 → x ∈ span K s [PROOFSTEP] rintro rfl [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t : Set V y z : V hs : LinearIndependent K fun b => ↑b hx : ¬0 ∈ span K s ⊢ 0 ∈ span K s [PROOFSTEP] apply zero_mem (span K s) [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t : Set V x y z : V hs : LinearIndependent K fun b => ↑b hx : ¬x ∈ span K s x0 : x ≠ 0 ⊢ LinearIndependent K fun b => ↑b [PROOFSTEP] apply hs.union (linearIndependent_singleton x0) [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t : Set V x y z : V hs : LinearIndependent K fun b => ↑b hx : ¬x ∈ span K s x0 : x ≠ 0 ⊢ Disjoint (span K s) (span K {x}) [PROOFSTEP] rwa [disjoint_span_singleton' x0] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t : Set V x y z : V ⊢ (LinearIndependent K fun o => Option.casesOn' o x v) ↔ LinearIndependent K v ∧ ¬x ∈ span K (range v) [PROOFSTEP] rw [← linearIndependent_equiv (Equiv.optionEquivSumPUnit.{_, u'} ι).symm, linearIndependent_sum, @range_unique _ PUnit, @linearIndependent_unique_iff PUnit, disjoint_span_singleton] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t : Set V x y z : V ⊢ LinearIndependent K (((fun o => Option.casesOn' o x v) ∘ ↑(Equiv.optionEquivSumPUnit ι).symm) ∘ Sum.inl) ∧ (((fun o => Option.casesOn' o x v) ∘ ↑(Equiv.optionEquivSumPUnit ι).symm) ∘ Sum.inr) default ≠ 0 ∧ ((((fun o => Option.casesOn' o x v) ∘ ↑(Equiv.optionEquivSumPUnit ι).symm) ∘ Sum.inr) default ∈ span K (range (((fun o => Option.casesOn' o x v) ∘ ↑(Equiv.optionEquivSumPUnit ι).symm) ∘ Sum.inl)) → (((fun o => Option.casesOn' o x v) ∘ ↑(Equiv.optionEquivSumPUnit ι).symm) ∘ Sum.inr) default = 0) ↔ LinearIndependent K v ∧ ¬x ∈ span K (range v) [PROOFSTEP] dsimp [(· ∘ ·)] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t : Set V x y z : V ⊢ (LinearIndependent K fun x => v x) ∧ ¬x = 0 ∧ (x ∈ span K (range fun x => v x) → x = 0) ↔ LinearIndependent K v ∧ ¬x ∈ span K (range v) [PROOFSTEP] refine' ⟨fun h => ⟨h.1, fun hx => h.2.1 <| h.2.2 hx⟩, fun h => ⟨h.1, _, fun hx => (h.2 hx).elim⟩⟩ [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t : Set V x y z : V h : LinearIndependent K v ∧ ¬x ∈ span K (range v) ⊢ ¬x = 0 [PROOFSTEP] rintro rfl [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t : Set V y z : V h : LinearIndependent K v ∧ ¬0 ∈ span K (range v) ⊢ False [PROOFSTEP] exact h.2 (zero_mem _) [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v✝ : ι → V s t : Set V x y z : V v : Option ι → V ⊢ LinearIndependent K v ↔ LinearIndependent K (v ∘ some) ∧ ¬v none ∈ span K (range (v ∘ some)) [PROOFSTEP] simp only [← linearIndependent_option', Option.casesOn'_none_coe] [GOAL] ι✝ : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι✝ → V s✝ t : Set V x y z : V ι : Type u_8 s : Set ι a : ι f : ι → V has : ¬a ∈ s ⊢ (LinearIndependent K fun x => f ↑x) ↔ (LinearIndependent K fun x => f ↑x) ∧ ¬f a ∈ span K (f '' s) [PROOFSTEP] classical rw [← linearIndependent_equiv ((Equiv.optionEquivSumPUnit _).trans (Equiv.Set.insert has).symm), linearIndependent_option] -- Porting note: `simp [(· ∘ ·), range_comp f]` → `simp [(· ∘ ·)]; erw [range_comp f ..]; simp` -- https://github.com/leanprover-community/mathlib4/issues/5164 simp only [(· ∘ ·)] erw [range_comp f ((↑) : s → ι)] simp [GOAL] ι✝ : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι✝ → V s✝ t : Set V x y z : V ι : Type u_8 s : Set ι a : ι f : ι → V has : ¬a ∈ s ⊢ (LinearIndependent K fun x => f ↑x) ↔ (LinearIndependent K fun x => f ↑x) ∧ ¬f a ∈ span K (f '' s) [PROOFSTEP] rw [← linearIndependent_equiv ((Equiv.optionEquivSumPUnit _).trans (Equiv.Set.insert has).symm), linearIndependent_option] -- Porting note: `simp [(· ∘ ·), range_comp f]` → `simp [(· ∘ ·)]; erw [range_comp f ..]; simp` -- https://github.com/leanprover-community/mathlib4/issues/5164 [GOAL] ι✝ : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι✝ → V s✝ t : Set V x y z : V ι : Type u_8 s : Set ι a : ι f : ι → V has : ¬a ∈ s ⊢ LinearIndependent K (((fun x => f ↑x) ∘ ↑((Equiv.optionEquivSumPUnit ↑s).trans (Equiv.Set.insert has).symm)) ∘ some) ∧ ¬((fun x => f ↑x) ∘ ↑((Equiv.optionEquivSumPUnit ↑s).trans (Equiv.Set.insert has).symm)) none ∈ span K (range (((fun x => f ↑x) ∘ ↑((Equiv.optionEquivSumPUnit ↑s).trans (Equiv.Set.insert has).symm)) ∘ some)) ↔ (LinearIndependent K fun x => f ↑x) ∧ ¬f a ∈ span K (f '' s) [PROOFSTEP] simp only [(· ∘ ·)] [GOAL] ι✝ : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι✝ → V s✝ t : Set V x y z : V ι : Type u_8 s : Set ι a : ι f : ι → V has : ¬a ∈ s ⊢ (LinearIndependent K fun x => f ↑(↑((Equiv.optionEquivSumPUnit ↑s).trans (Equiv.Set.insert has).symm) (some x))) ∧ ¬f ↑(↑((Equiv.optionEquivSumPUnit ↑s).trans (Equiv.Set.insert has).symm) none) ∈ span K (range fun x => f ↑(↑((Equiv.optionEquivSumPUnit ↑s).trans (Equiv.Set.insert has).symm) (some x))) ↔ (LinearIndependent K fun x => f ↑x) ∧ ¬f a ∈ span K (f '' s) [PROOFSTEP] erw [range_comp f ((↑) : s → ι)] [GOAL] ι✝ : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι✝ → V s✝ t : Set V x y z : V ι : Type u_8 s : Set ι a : ι f : ι → V has : ¬a ∈ s ⊢ (LinearIndependent K fun x => f ↑(↑((Equiv.optionEquivSumPUnit ↑s).trans (Equiv.Set.insert has).symm) (some x))) ∧ ¬f ↑(↑((Equiv.optionEquivSumPUnit ↑s).trans (Equiv.Set.insert has).symm) none) ∈ span K (f '' range Subtype.val) ↔ (LinearIndependent K fun x => f ↑x) ∧ ¬f a ∈ span K (f '' s) [PROOFSTEP] simp [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t : Set V x y z : V hxs : ¬x ∈ s ⊢ (LinearIndependent K fun x => id ↑x) ∧ ¬id x ∈ span K (id '' s) ↔ (LinearIndependent K fun b => ↑b) ∧ ¬x ∈ span K s [PROOFSTEP] simp [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v✝ : ι → V s t : Set V x y z : V n : ℕ v : Fin n → V ⊢ LinearIndependent K (Fin.cons x v) ↔ LinearIndependent K v ∧ ¬x ∈ span K (range v) [PROOFSTEP] rw [← linearIndependent_equiv (finSuccEquiv n).symm, linearIndependent_option] -- Porting note: `convert Iff.rfl; ...` → `exact Iff.rfl` [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v✝ : ι → V s t : Set V x y z : V n : ℕ v : Fin n → V ⊢ LinearIndependent K ((Fin.cons x v ∘ ↑(finSuccEquiv n).symm) ∘ some) ∧ ¬(Fin.cons x v ∘ ↑(finSuccEquiv n).symm) none ∈ span K (range ((Fin.cons x v ∘ ↑(finSuccEquiv n).symm) ∘ some)) ↔ LinearIndependent K v ∧ ¬x ∈ span K (range v) [PROOFSTEP] exact Iff.rfl [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v✝ : ι → V s t : Set V x y z : V n : ℕ v : Fin n → V ⊢ LinearIndependent K (Fin.snoc v x) ↔ LinearIndependent K v ∧ ¬x ∈ span K (range v) [PROOFSTEP] erw [Fin.snoc_eq_cons_rotate, linearIndependent_equiv, linearIndependent_fin_cons] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v✝ : ι → V s t : Set V x y z : V n : ℕ v : Fin (n + 1) → V ⊢ LinearIndependent K v ↔ LinearIndependent K (Fin.tail v) ∧ ¬v 0 ∈ span K (range (Fin.tail v)) [PROOFSTEP] rw [← linearIndependent_fin_cons, Fin.cons_self_tail] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v✝ : ι → V s t : Set V x y z : V n : ℕ v : Fin (n + 1) → V ⊢ LinearIndependent K v ↔ LinearIndependent K (Fin.init v) ∧ ¬v (Fin.last n) ∈ span K (range (Fin.init v)) [PROOFSTEP] rw [← linearIndependent_fin_snoc, Fin.snoc_init_self] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t : Set V x y z : V f : Fin 2 → V ⊢ LinearIndependent K f ↔ f 1 ≠ 0 ∧ ∀ (a : K), a • f 1 ≠ f 0 [PROOFSTEP] rw [linearIndependent_fin_succ, linearIndependent_unique_iff, range_unique, mem_span_singleton, not_exists, show Fin.tail f default = f 1 by rw [← Fin.succ_zero_eq_one]; rfl] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t : Set V x y z : V f : Fin 2 → V ⊢ Fin.tail f default = f 1 [PROOFSTEP] rw [← Fin.succ_zero_eq_one] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t : Set V x y z : V f : Fin 2 → V ⊢ Fin.tail f default = f (Fin.succ 0) [PROOFSTEP] rfl [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t : Set V x y z : V hs : LinearIndependent K Subtype.val hst : s ⊆ t ⊢ ∃ b x, s ⊆ b ∧ t ⊆ ↑(span K b) ∧ LinearIndependent K Subtype.val [PROOFSTEP] have := by refine zorn_subset_nonempty {b | b ⊆ t ∧ LinearIndependent K ((↑) : b → V)} ?_ _ ⟨hst, hs⟩ · refine' fun c hc cc _c0 => ⟨⋃₀ c, ⟨_, _⟩, fun x => _⟩ · exact sUnion_subset fun x xc => (hc xc).1 · exact linearIndependent_sUnion_of_directed cc.directedOn fun x xc => (hc xc).2 · exact subset_sUnion_of_mem [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t : Set V x y z : V hs : LinearIndependent K Subtype.val hst : s ⊆ t ⊢ ?m.1310755 [PROOFSTEP] refine zorn_subset_nonempty {b | b ⊆ t ∧ LinearIndependent K ((↑) : b → V)} ?_ _ ⟨hst, hs⟩ [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t : Set V x y z : V hs : LinearIndependent K Subtype.val hst : s ⊆ t ⊢ ∀ (c : Set (Set V)), c ⊆ {b | b ⊆ t ∧ LinearIndependent K Subtype.val} → IsChain (fun x x_1 => x ⊆ x_1) c → Set.Nonempty c → ∃ ub, ub ∈ {b | b ⊆ t ∧ LinearIndependent K Subtype.val} ∧ ∀ (s : Set V), s ∈ c → s ⊆ ub [PROOFSTEP] refine' fun c hc cc _c0 => ⟨⋃₀ c, ⟨_, _⟩, fun x => _⟩ [GOAL] case refine'_1 ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t : Set V x y z : V hs : LinearIndependent K Subtype.val hst : s ⊆ t c : Set (Set V) hc : c ⊆ {b | b ⊆ t ∧ LinearIndependent K Subtype.val} cc : IsChain (fun x x_1 => x ⊆ x_1) c _c0 : Set.Nonempty c ⊢ ⋃₀ c ⊆ t [PROOFSTEP] exact sUnion_subset fun x xc => (hc xc).1 [GOAL] case refine'_2 ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t : Set V x y z : V hs : LinearIndependent K Subtype.val hst : s ⊆ t c : Set (Set V) hc : c ⊆ {b | b ⊆ t ∧ LinearIndependent K Subtype.val} cc : IsChain (fun x x_1 => x ⊆ x_1) c _c0 : Set.Nonempty c ⊢ LinearIndependent K Subtype.val [PROOFSTEP] exact linearIndependent_sUnion_of_directed cc.directedOn fun x xc => (hc xc).2 [GOAL] case refine'_3 ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t : Set V x✝ y z : V hs : LinearIndependent K Subtype.val hst : s ⊆ t c : Set (Set V) hc : c ⊆ {b | b ⊆ t ∧ LinearIndependent K Subtype.val} cc : IsChain (fun x x_1 => x ⊆ x_1) c _c0 : Set.Nonempty c x : Set V ⊢ x ∈ c → x ⊆ ⋃₀ c [PROOFSTEP] exact subset_sUnion_of_mem [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t : Set V x y z : V hs : LinearIndependent K Subtype.val hst : s ⊆ t this : ∃ m, m ∈ {b | b ⊆ t ∧ LinearIndependent K Subtype.val} ∧ s ⊆ m ∧ ∀ (a : Set V), a ∈ {b | b ⊆ t ∧ LinearIndependent K Subtype.val} → m ⊆ a → a = m ⊢ ∃ b x, s ⊆ b ∧ t ⊆ ↑(span K b) ∧ LinearIndependent K Subtype.val [PROOFSTEP] rcases this with ⟨b, ⟨bt, bi⟩, sb, h⟩ [GOAL] case intro.intro.intro.intro ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t : Set V x y z : V hs : LinearIndependent K Subtype.val hst : s ⊆ t b : Set V bt : b ⊆ t bi : LinearIndependent K Subtype.val sb : s ⊆ b h : ∀ (a : Set V), a ∈ {b | b ⊆ t ∧ LinearIndependent K Subtype.val} → b ⊆ a → a = b ⊢ ∃ b x, s ⊆ b ∧ t ⊆ ↑(span K b) ∧ LinearIndependent K Subtype.val [PROOFSTEP] refine' ⟨b, bt, sb, fun x xt => _, bi⟩ [GOAL] case intro.intro.intro.intro ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t : Set V x✝ y z : V hs : LinearIndependent K Subtype.val hst : s ⊆ t b : Set V bt : b ⊆ t bi : LinearIndependent K Subtype.val sb : s ⊆ b h : ∀ (a : Set V), a ∈ {b | b ⊆ t ∧ LinearIndependent K Subtype.val} → b ⊆ a → a = b x : V xt : x ∈ t ⊢ x ∈ ↑(span K b) [PROOFSTEP] by_contra hn [GOAL] case intro.intro.intro.intro ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t : Set V x✝ y z : V hs : LinearIndependent K Subtype.val hst : s ⊆ t b : Set V bt : b ⊆ t bi : LinearIndependent K Subtype.val sb : s ⊆ b h : ∀ (a : Set V), a ∈ {b | b ⊆ t ∧ LinearIndependent K Subtype.val} → b ⊆ a → a = b x : V xt : x ∈ t hn : ¬x ∈ ↑(span K b) ⊢ False [PROOFSTEP] apply hn [GOAL] case intro.intro.intro.intro ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t : Set V x✝ y z : V hs : LinearIndependent K Subtype.val hst : s ⊆ t b : Set V bt : b ⊆ t bi : LinearIndependent K Subtype.val sb : s ⊆ b h : ∀ (a : Set V), a ∈ {b | b ⊆ t ∧ LinearIndependent K Subtype.val} → b ⊆ a → a = b x : V xt : x ∈ t hn : ¬x ∈ ↑(span K b) ⊢ x ∈ ↑(span K b) [PROOFSTEP] rw [← h _ ⟨insert_subset_iff.2 ⟨xt, bt⟩, bi.insert hn⟩ (subset_insert _ _)] [GOAL] case intro.intro.intro.intro ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t : Set V x✝ y z : V hs : LinearIndependent K Subtype.val hst : s ⊆ t b : Set V bt : b ⊆ t bi : LinearIndependent K Subtype.val sb : s ⊆ b h : ∀ (a : Set V), a ∈ {b | b ⊆ t ∧ LinearIndependent K Subtype.val} → b ⊆ a → a = b x : V xt : x ∈ t hn : ¬x ∈ ↑(span K b) ⊢ x ∈ ↑(span K (insert x b)) [PROOFSTEP] exact subset_span (mem_insert _ _) [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t : Set V x y z : V ⊢ ∃ b x, span K b = span K t ∧ LinearIndependent K Subtype.val [PROOFSTEP] obtain ⟨b, hb₁, -, hb₂, hb₃⟩ := exists_linearIndependent_extension (linearIndependent_empty K V) (Set.empty_subset t) [GOAL] case intro.intro.intro.intro ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t : Set V x y z : V b : Set V hb₁ : b ⊆ t hb₂ : t ⊆ ↑(span K b) hb₃ : LinearIndependent K Subtype.val ⊢ ∃ b x, span K b = span K t ∧ LinearIndependent K Subtype.val [PROOFSTEP] exact ⟨b, hb₁, (span_eq_of_le _ hb₂ (Submodule.span_mono hb₁)).symm, hb₃⟩ [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t✝ : Set V x y z : V t : Finset V hs : LinearIndependent K fun x => ↑x hst : s ⊆ ↑(span K ↑t) ⊢ ∃ t', ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ Finset.card t' = Finset.card t [PROOFSTEP] classical have : ∀ t : Finset V, ∀ s' : Finset V, ↑s' ⊆ s → s ∩ ↑t = ∅ → s ⊆ (span K ↑(s' ∪ t) : Submodule K V) → ∃ t' : Finset V, ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ t'.card = (s' ∪ t).card := fun t => Finset.induction_on t (fun s' hs' _ hss' => have : s = ↑s' := eq_of_linearIndependent_of_span_subtype hs hs' <| by simpa using hss' ⟨s', by simp [this]⟩) fun b₁ t hb₁t ih s' hs' hst hss' => have hb₁s : b₁ ∉ s := fun h => by have : b₁ ∈ s ∩ ↑(insert b₁ t) := ⟨h, Finset.mem_insert_self _ _⟩ rwa [hst] at this have hb₁s' : b₁ ∉ s' := fun h => hb₁s <| hs' h have hst : s ∩ ↑t = ∅ := eq_empty_of_subset_empty <| -- Porting note: `-inter_subset_left, -subset_inter_iff` required.Subset.trans (by simp [inter_subset_inter, Subset.refl, -inter_subset_left, -subset_inter_iff]) (le_of_eq hst) Classical.by_cases (p := s ⊆ (span K ↑(s' ∪ t) : Submodule K V)) (fun this => let ⟨u, hust, hsu, Eq⟩ := ih _ hs' hst this have hb₁u : b₁ ∉ u := fun h => (hust h).elim hb₁s hb₁t ⟨insert b₁ u, by simp [insert_subset_insert hust], Subset.trans hsu (by simp), by simp [Eq, hb₁t, hb₁s', hb₁u]⟩) fun this => let ⟨b₂, hb₂s, hb₂t⟩ := not_subset.mp this have hb₂t' : b₂ ∉ s' ∪ t := fun h => hb₂t <| subset_span h have : s ⊆ (span K ↑(insert b₂ s' ∪ t) : Submodule K V) := fun b₃ hb₃ => by have : ↑(s' ∪ insert b₁ t) ⊆ insert b₁ (insert b₂ ↑(s' ∪ t) : Set V) := by -- Porting note: Too many theorems to be excluded, so -- `simp only` is shorter.simp only [insert_eq, union_subset_union, Subset.refl, subset_union_right, Finset.union_insert, Finset.coe_insert] have hb₃ : b₃ ∈ span K (insert b₁ (insert b₂ ↑(s' ∪ t) : Set V)) := span_mono this (hss' hb₃) have : s ⊆ (span K (insert b₁ ↑(s' ∪ t)) : Submodule K V) := by simpa [insert_eq, -singleton_union, -union_singleton] using hss' have hb₁ : b₁ ∈ span K (insert b₂ ↑(s' ∪ t)) := by exact mem_span_insert_exchange (this hb₂s) hb₂t rw [span_insert_eq_span hb₁] at hb₃ ; simpa using hb₃ let ⟨u, hust, hsu, eq⟩ := ih _ (by simp [insert_subset_iff, hb₂s, hs']) hst this ⟨u, Subset.trans hust <| union_subset_union (Subset.refl _) (by simp [subset_insert]), hsu, by simp [eq, Finset.card_insert_of_not_mem hb₂t', hb₁t, hb₁s']⟩ have eq : ((t.filter fun x => x ∈ s) ∪ t.filter fun x => x ∉ s) = t := by ext1 x by_cases x ∈ s <;> simp [*] apply Exists.elim (this (t.filter fun x => x ∉ s) (t.filter fun x => x ∈ s) (by simp [Set.subset_def]) (by simp (config := { contextual := true }) [Set.ext_iff]) (by rwa [eq])) intro u h exact ⟨u, Subset.trans h.1 (by simp (config := { contextual := true }) [subset_def, and_imp, or_imp]), h.2.1, by simp only [h.2.2, eq]⟩ [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t✝ : Set V x y z : V t : Finset V hs : LinearIndependent K fun x => ↑x hst : s ⊆ ↑(span K ↑t) ⊢ ∃ t', ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ Finset.card t' = Finset.card t [PROOFSTEP] have : ∀ t : Finset V, ∀ s' : Finset V, ↑s' ⊆ s → s ∩ ↑t = ∅ → s ⊆ (span K ↑(s' ∪ t) : Submodule K V) → ∃ t' : Finset V, ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ t'.card = (s' ∪ t).card := fun t => Finset.induction_on t (fun s' hs' _ hss' => have : s = ↑s' := eq_of_linearIndependent_of_span_subtype hs hs' <| by simpa using hss' ⟨s', by simp [this]⟩) fun b₁ t hb₁t ih s' hs' hst hss' => have hb₁s : b₁ ∉ s := fun h => by have : b₁ ∈ s ∩ ↑(insert b₁ t) := ⟨h, Finset.mem_insert_self _ _⟩ rwa [hst] at this have hb₁s' : b₁ ∉ s' := fun h => hb₁s <| hs' h have hst : s ∩ ↑t = ∅ := eq_empty_of_subset_empty <| -- Porting note: `-inter_subset_left, -subset_inter_iff` required.Subset.trans (by simp [inter_subset_inter, Subset.refl, -inter_subset_left, -subset_inter_iff]) (le_of_eq hst) Classical.by_cases (p := s ⊆ (span K ↑(s' ∪ t) : Submodule K V)) (fun this => let ⟨u, hust, hsu, Eq⟩ := ih _ hs' hst this have hb₁u : b₁ ∉ u := fun h => (hust h).elim hb₁s hb₁t ⟨insert b₁ u, by simp [insert_subset_insert hust], Subset.trans hsu (by simp), by simp [Eq, hb₁t, hb₁s', hb₁u]⟩) fun this => let ⟨b₂, hb₂s, hb₂t⟩ := not_subset.mp this have hb₂t' : b₂ ∉ s' ∪ t := fun h => hb₂t <| subset_span h have : s ⊆ (span K ↑(insert b₂ s' ∪ t) : Submodule K V) := fun b₃ hb₃ => by have : ↑(s' ∪ insert b₁ t) ⊆ insert b₁ (insert b₂ ↑(s' ∪ t) : Set V) := by -- Porting note: Too many theorems to be excluded, so -- `simp only` is shorter.simp only [insert_eq, union_subset_union, Subset.refl, subset_union_right, Finset.union_insert, Finset.coe_insert] have hb₃ : b₃ ∈ span K (insert b₁ (insert b₂ ↑(s' ∪ t) : Set V)) := span_mono this (hss' hb₃) have : s ⊆ (span K (insert b₁ ↑(s' ∪ t)) : Submodule K V) := by simpa [insert_eq, -singleton_union, -union_singleton] using hss' have hb₁ : b₁ ∈ span K (insert b₂ ↑(s' ∪ t)) := by exact mem_span_insert_exchange (this hb₂s) hb₂t rw [span_insert_eq_span hb₁] at hb₃ ; simpa using hb₃ let ⟨u, hust, hsu, eq⟩ := ih _ (by simp [insert_subset_iff, hb₂s, hs']) hst this ⟨u, Subset.trans hust <| union_subset_union (Subset.refl _) (by simp [subset_insert]), hsu, by simp [eq, Finset.card_insert_of_not_mem hb₂t', hb₁t, hb₁s']⟩ [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t✝¹ : Set V x y z : V t✝ : Finset V hs : LinearIndependent K fun x => ↑x hst : s ⊆ ↑(span K ↑t✝) t s' : Finset V hs' : ↑s' ⊆ s x✝ : s ∩ ↑∅ = ∅ hss' : s ⊆ ↑(span K ↑(s' ∪ ∅)) ⊢ s ⊆ ↑(span K ↑s') [PROOFSTEP] simpa using hss' [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t✝¹ : Set V x y z : V t✝ : Finset V hs : LinearIndependent K fun x => ↑x hst : s ⊆ ↑(span K ↑t✝) t s' : Finset V hs' : ↑s' ⊆ s x✝ : s ∩ ↑∅ = ∅ hss' : s ⊆ ↑(span K ↑(s' ∪ ∅)) this : s = ↑s' ⊢ ↑s' ⊆ s ∪ ↑∅ ∧ s ⊆ ↑s' ∧ Finset.card s' = Finset.card (s' ∪ ∅) [PROOFSTEP] simp [this] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t✝² : Set V x y z : V t✝¹ : Finset V hs : LinearIndependent K fun x => ↑x hst✝ : s ⊆ ↑(span K ↑t✝¹) t✝ : Finset V b₁ : V t : Finset V hb₁t : ¬b₁ ∈ t ih : ∀ (s' : Finset V), ↑s' ⊆ s → s ∩ ↑t = ∅ → s ⊆ ↑(span K ↑(s' ∪ t)) → ∃ t', ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ Finset.card t' = Finset.card (s' ∪ t) s' : Finset V hs' : ↑s' ⊆ s hst : s ∩ ↑(insert b₁ t) = ∅ hss' : s ⊆ ↑(span K ↑(s' ∪ insert b₁ t)) h : b₁ ∈ s ⊢ False [PROOFSTEP] have : b₁ ∈ s ∩ ↑(insert b₁ t) := ⟨h, Finset.mem_insert_self _ _⟩ [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t✝² : Set V x y z : V t✝¹ : Finset V hs : LinearIndependent K fun x => ↑x hst✝ : s ⊆ ↑(span K ↑t✝¹) t✝ : Finset V b₁ : V t : Finset V hb₁t : ¬b₁ ∈ t ih : ∀ (s' : Finset V), ↑s' ⊆ s → s ∩ ↑t = ∅ → s ⊆ ↑(span K ↑(s' ∪ t)) → ∃ t', ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ Finset.card t' = Finset.card (s' ∪ t) s' : Finset V hs' : ↑s' ⊆ s hst : s ∩ ↑(insert b₁ t) = ∅ hss' : s ⊆ ↑(span K ↑(s' ∪ insert b₁ t)) h : b₁ ∈ s this : b₁ ∈ s ∩ ↑(insert b₁ t) ⊢ False [PROOFSTEP] rwa [hst] at this [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t✝² : Set V x y z : V t✝¹ : Finset V hs : LinearIndependent K fun x => ↑x hst✝ : s ⊆ ↑(span K ↑t✝¹) t✝ : Finset V b₁ : V t : Finset V hb₁t : ¬b₁ ∈ t ih : ∀ (s' : Finset V), ↑s' ⊆ s → s ∩ ↑t = ∅ → s ⊆ ↑(span K ↑(s' ∪ t)) → ∃ t', ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ Finset.card t' = Finset.card (s' ∪ t) s' : Finset V hs' : ↑s' ⊆ s hst : s ∩ ↑(insert b₁ t) = ∅ hss' : s ⊆ ↑(span K ↑(s' ∪ insert b₁ t)) hb₁s : ¬b₁ ∈ s hb₁s' : ¬b₁ ∈ s' ⊢ s ∩ ↑t ⊆ s ∩ ↑(insert b₁ t) [PROOFSTEP] simp [inter_subset_inter, Subset.refl, -inter_subset_left, -subset_inter_iff] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t✝² : Set V x y z : V t✝¹ : Finset V hs : LinearIndependent K fun x => ↑x hst✝¹ : s ⊆ ↑(span K ↑t✝¹) t✝ : Finset V b₁ : V t : Finset V hb₁t : ¬b₁ ∈ t ih : ∀ (s' : Finset V), ↑s' ⊆ s → s ∩ ↑t = ∅ → s ⊆ ↑(span K ↑(s' ∪ t)) → ∃ t', ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ Finset.card t' = Finset.card (s' ∪ t) s' : Finset V hs' : ↑s' ⊆ s hst✝ : s ∩ ↑(insert b₁ t) = ∅ hss' : s ⊆ ↑(span K ↑(s' ∪ insert b₁ t)) hb₁s : ¬b₁ ∈ s hb₁s' : ¬b₁ ∈ s' hst : s ∩ ↑t = ∅ this : s ⊆ ↑(span K ↑(s' ∪ t)) u : Finset V hust : ↑u ⊆ s ∪ ↑t hsu : s ⊆ ↑u Eq : Finset.card u = Finset.card (s' ∪ t) hb₁u : ¬b₁ ∈ u ⊢ ↑(insert b₁ u) ⊆ s ∪ ↑(insert b₁ t) [PROOFSTEP] simp [insert_subset_insert hust] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t✝² : Set V x y z : V t✝¹ : Finset V hs : LinearIndependent K fun x => ↑x hst✝¹ : s ⊆ ↑(span K ↑t✝¹) t✝ : Finset V b₁ : V t : Finset V hb₁t : ¬b₁ ∈ t ih : ∀ (s' : Finset V), ↑s' ⊆ s → s ∩ ↑t = ∅ → s ⊆ ↑(span K ↑(s' ∪ t)) → ∃ t', ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ Finset.card t' = Finset.card (s' ∪ t) s' : Finset V hs' : ↑s' ⊆ s hst✝ : s ∩ ↑(insert b₁ t) = ∅ hss' : s ⊆ ↑(span K ↑(s' ∪ insert b₁ t)) hb₁s : ¬b₁ ∈ s hb₁s' : ¬b₁ ∈ s' hst : s ∩ ↑t = ∅ this : s ⊆ ↑(span K ↑(s' ∪ t)) u : Finset V hust : ↑u ⊆ s ∪ ↑t hsu : s ⊆ ↑u Eq : Finset.card u = Finset.card (s' ∪ t) hb₁u : ¬b₁ ∈ u ⊢ ↑u ⊆ ↑(insert b₁ u) [PROOFSTEP] simp [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t✝² : Set V x y z : V t✝¹ : Finset V hs : LinearIndependent K fun x => ↑x hst✝¹ : s ⊆ ↑(span K ↑t✝¹) t✝ : Finset V b₁ : V t : Finset V hb₁t : ¬b₁ ∈ t ih : ∀ (s' : Finset V), ↑s' ⊆ s → s ∩ ↑t = ∅ → s ⊆ ↑(span K ↑(s' ∪ t)) → ∃ t', ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ Finset.card t' = Finset.card (s' ∪ t) s' : Finset V hs' : ↑s' ⊆ s hst✝ : s ∩ ↑(insert b₁ t) = ∅ hss' : s ⊆ ↑(span K ↑(s' ∪ insert b₁ t)) hb₁s : ¬b₁ ∈ s hb₁s' : ¬b₁ ∈ s' hst : s ∩ ↑t = ∅ this : s ⊆ ↑(span K ↑(s' ∪ t)) u : Finset V hust : ↑u ⊆ s ∪ ↑t hsu : s ⊆ ↑u Eq : Finset.card u = Finset.card (s' ∪ t) hb₁u : ¬b₁ ∈ u ⊢ Finset.card (insert b₁ u) = Finset.card (s' ∪ insert b₁ t) [PROOFSTEP] simp [Eq, hb₁t, hb₁s', hb₁u] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t✝² : Set V x y z : V t✝¹ : Finset V hs : LinearIndependent K fun x => ↑x hst✝¹ : s ⊆ ↑(span K ↑t✝¹) t✝ : Finset V b₁ : V t : Finset V hb₁t : ¬b₁ ∈ t ih : ∀ (s' : Finset V), ↑s' ⊆ s → s ∩ ↑t = ∅ → s ⊆ ↑(span K ↑(s' ∪ t)) → ∃ t', ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ Finset.card t' = Finset.card (s' ∪ t) s' : Finset V hs' : ↑s' ⊆ s hst✝ : s ∩ ↑(insert b₁ t) = ∅ hss' : s ⊆ ↑(span K ↑(s' ∪ insert b₁ t)) hb₁s : ¬b₁ ∈ s hb₁s' : ¬b₁ ∈ s' hst : s ∩ ↑t = ∅ this : ¬s ⊆ ↑(span K ↑(s' ∪ t)) b₂ : V hb₂s : b₂ ∈ s hb₂t : ¬b₂ ∈ ↑(span K ↑(s' ∪ t)) hb₂t' : ¬b₂ ∈ s' ∪ t b₃ : V hb₃ : b₃ ∈ s ⊢ b₃ ∈ ↑(span K ↑(insert b₂ s' ∪ t)) [PROOFSTEP] have : ↑(s' ∪ insert b₁ t) ⊆ insert b₁ (insert b₂ ↑(s' ∪ t) : Set V) := by -- Porting note: Too many theorems to be excluded, so -- `simp only` is shorter.simp only [insert_eq, union_subset_union, Subset.refl, subset_union_right, Finset.union_insert, Finset.coe_insert] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t✝² : Set V x y z : V t✝¹ : Finset V hs : LinearIndependent K fun x => ↑x hst✝¹ : s ⊆ ↑(span K ↑t✝¹) t✝ : Finset V b₁ : V t : Finset V hb₁t : ¬b₁ ∈ t ih : ∀ (s' : Finset V), ↑s' ⊆ s → s ∩ ↑t = ∅ → s ⊆ ↑(span K ↑(s' ∪ t)) → ∃ t', ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ Finset.card t' = Finset.card (s' ∪ t) s' : Finset V hs' : ↑s' ⊆ s hst✝ : s ∩ ↑(insert b₁ t) = ∅ hss' : s ⊆ ↑(span K ↑(s' ∪ insert b₁ t)) hb₁s : ¬b₁ ∈ s hb₁s' : ¬b₁ ∈ s' hst : s ∩ ↑t = ∅ this : ¬s ⊆ ↑(span K ↑(s' ∪ t)) b₂ : V hb₂s : b₂ ∈ s hb₂t : ¬b₂ ∈ ↑(span K ↑(s' ∪ t)) hb₂t' : ¬b₂ ∈ s' ∪ t b₃ : V hb₃ : b₃ ∈ s ⊢ ↑(s' ∪ insert b₁ t) ⊆ insert b₁ (insert b₂ ↑(s' ∪ t)) [PROOFSTEP] simp only [insert_eq, union_subset_union, Subset.refl, subset_union_right, Finset.union_insert, Finset.coe_insert] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t✝² : Set V x y z : V t✝¹ : Finset V hs : LinearIndependent K fun x => ↑x hst✝¹ : s ⊆ ↑(span K ↑t✝¹) t✝ : Finset V b₁ : V t : Finset V hb₁t : ¬b₁ ∈ t ih : ∀ (s' : Finset V), ↑s' ⊆ s → s ∩ ↑t = ∅ → s ⊆ ↑(span K ↑(s' ∪ t)) → ∃ t', ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ Finset.card t' = Finset.card (s' ∪ t) s' : Finset V hs' : ↑s' ⊆ s hst✝ : s ∩ ↑(insert b₁ t) = ∅ hss' : s ⊆ ↑(span K ↑(s' ∪ insert b₁ t)) hb₁s : ¬b₁ ∈ s hb₁s' : ¬b₁ ∈ s' hst : s ∩ ↑t = ∅ this✝ : ¬s ⊆ ↑(span K ↑(s' ∪ t)) b₂ : V hb₂s : b₂ ∈ s hb₂t : ¬b₂ ∈ ↑(span K ↑(s' ∪ t)) hb₂t' : ¬b₂ ∈ s' ∪ t b₃ : V hb₃ : b₃ ∈ s this : ↑(s' ∪ insert b₁ t) ⊆ insert b₁ (insert b₂ ↑(s' ∪ t)) ⊢ b₃ ∈ ↑(span K ↑(insert b₂ s' ∪ t)) [PROOFSTEP] have hb₃ : b₃ ∈ span K (insert b₁ (insert b₂ ↑(s' ∪ t) : Set V)) := span_mono this (hss' hb₃) [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t✝² : Set V x y z : V t✝¹ : Finset V hs : LinearIndependent K fun x => ↑x hst✝¹ : s ⊆ ↑(span K ↑t✝¹) t✝ : Finset V b₁ : V t : Finset V hb₁t : ¬b₁ ∈ t ih : ∀ (s' : Finset V), ↑s' ⊆ s → s ∩ ↑t = ∅ → s ⊆ ↑(span K ↑(s' ∪ t)) → ∃ t', ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ Finset.card t' = Finset.card (s' ∪ t) s' : Finset V hs' : ↑s' ⊆ s hst✝ : s ∩ ↑(insert b₁ t) = ∅ hss' : s ⊆ ↑(span K ↑(s' ∪ insert b₁ t)) hb₁s : ¬b₁ ∈ s hb₁s' : ¬b₁ ∈ s' hst : s ∩ ↑t = ∅ this✝ : ¬s ⊆ ↑(span K ↑(s' ∪ t)) b₂ : V hb₂s : b₂ ∈ s hb₂t : ¬b₂ ∈ ↑(span K ↑(s' ∪ t)) hb₂t' : ¬b₂ ∈ s' ∪ t b₃ : V hb₃✝ : b₃ ∈ s this : ↑(s' ∪ insert b₁ t) ⊆ insert b₁ (insert b₂ ↑(s' ∪ t)) hb₃ : b₃ ∈ span K (insert b₁ (insert b₂ ↑(s' ∪ t))) ⊢ b₃ ∈ ↑(span K ↑(insert b₂ s' ∪ t)) [PROOFSTEP] have : s ⊆ (span K (insert b₁ ↑(s' ∪ t)) : Submodule K V) := by simpa [insert_eq, -singleton_union, -union_singleton] using hss' [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t✝² : Set V x y z : V t✝¹ : Finset V hs : LinearIndependent K fun x => ↑x hst✝¹ : s ⊆ ↑(span K ↑t✝¹) t✝ : Finset V b₁ : V t : Finset V hb₁t : ¬b₁ ∈ t ih : ∀ (s' : Finset V), ↑s' ⊆ s → s ∩ ↑t = ∅ → s ⊆ ↑(span K ↑(s' ∪ t)) → ∃ t', ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ Finset.card t' = Finset.card (s' ∪ t) s' : Finset V hs' : ↑s' ⊆ s hst✝ : s ∩ ↑(insert b₁ t) = ∅ hss' : s ⊆ ↑(span K ↑(s' ∪ insert b₁ t)) hb₁s : ¬b₁ ∈ s hb₁s' : ¬b₁ ∈ s' hst : s ∩ ↑t = ∅ this✝ : ¬s ⊆ ↑(span K ↑(s' ∪ t)) b₂ : V hb₂s : b₂ ∈ s hb₂t : ¬b₂ ∈ ↑(span K ↑(s' ∪ t)) hb₂t' : ¬b₂ ∈ s' ∪ t b₃ : V hb₃✝ : b₃ ∈ s this : ↑(s' ∪ insert b₁ t) ⊆ insert b₁ (insert b₂ ↑(s' ∪ t)) hb₃ : b₃ ∈ span K (insert b₁ (insert b₂ ↑(s' ∪ t))) ⊢ s ⊆ ↑(span K (insert b₁ ↑(s' ∪ t))) [PROOFSTEP] simpa [insert_eq, -singleton_union, -union_singleton] using hss' [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t✝² : Set V x y z : V t✝¹ : Finset V hs : LinearIndependent K fun x => ↑x hst✝¹ : s ⊆ ↑(span K ↑t✝¹) t✝ : Finset V b₁ : V t : Finset V hb₁t : ¬b₁ ∈ t ih : ∀ (s' : Finset V), ↑s' ⊆ s → s ∩ ↑t = ∅ → s ⊆ ↑(span K ↑(s' ∪ t)) → ∃ t', ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ Finset.card t' = Finset.card (s' ∪ t) s' : Finset V hs' : ↑s' ⊆ s hst✝ : s ∩ ↑(insert b₁ t) = ∅ hss' : s ⊆ ↑(span K ↑(s' ∪ insert b₁ t)) hb₁s : ¬b₁ ∈ s hb₁s' : ¬b₁ ∈ s' hst : s ∩ ↑t = ∅ this✝¹ : ¬s ⊆ ↑(span K ↑(s' ∪ t)) b₂ : V hb₂s : b₂ ∈ s hb₂t : ¬b₂ ∈ ↑(span K ↑(s' ∪ t)) hb₂t' : ¬b₂ ∈ s' ∪ t b₃ : V hb₃✝ : b₃ ∈ s this✝ : ↑(s' ∪ insert b₁ t) ⊆ insert b₁ (insert b₂ ↑(s' ∪ t)) hb₃ : b₃ ∈ span K (insert b₁ (insert b₂ ↑(s' ∪ t))) this : s ⊆ ↑(span K (insert b₁ ↑(s' ∪ t))) ⊢ b₃ ∈ ↑(span K ↑(insert b₂ s' ∪ t)) [PROOFSTEP] have hb₁ : b₁ ∈ span K (insert b₂ ↑(s' ∪ t)) := by exact mem_span_insert_exchange (this hb₂s) hb₂t [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t✝² : Set V x y z : V t✝¹ : Finset V hs : LinearIndependent K fun x => ↑x hst✝¹ : s ⊆ ↑(span K ↑t✝¹) t✝ : Finset V b₁ : V t : Finset V hb₁t : ¬b₁ ∈ t ih : ∀ (s' : Finset V), ↑s' ⊆ s → s ∩ ↑t = ∅ → s ⊆ ↑(span K ↑(s' ∪ t)) → ∃ t', ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ Finset.card t' = Finset.card (s' ∪ t) s' : Finset V hs' : ↑s' ⊆ s hst✝ : s ∩ ↑(insert b₁ t) = ∅ hss' : s ⊆ ↑(span K ↑(s' ∪ insert b₁ t)) hb₁s : ¬b₁ ∈ s hb₁s' : ¬b₁ ∈ s' hst : s ∩ ↑t = ∅ this✝¹ : ¬s ⊆ ↑(span K ↑(s' ∪ t)) b₂ : V hb₂s : b₂ ∈ s hb₂t : ¬b₂ ∈ ↑(span K ↑(s' ∪ t)) hb₂t' : ¬b₂ ∈ s' ∪ t b₃ : V hb₃✝ : b₃ ∈ s this✝ : ↑(s' ∪ insert b₁ t) ⊆ insert b₁ (insert b₂ ↑(s' ∪ t)) hb₃ : b₃ ∈ span K (insert b₁ (insert b₂ ↑(s' ∪ t))) this : s ⊆ ↑(span K (insert b₁ ↑(s' ∪ t))) ⊢ b₁ ∈ span K (insert b₂ ↑(s' ∪ t)) [PROOFSTEP] exact mem_span_insert_exchange (this hb₂s) hb₂t [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t✝² : Set V x y z : V t✝¹ : Finset V hs : LinearIndependent K fun x => ↑x hst✝¹ : s ⊆ ↑(span K ↑t✝¹) t✝ : Finset V b₁ : V t : Finset V hb₁t : ¬b₁ ∈ t ih : ∀ (s' : Finset V), ↑s' ⊆ s → s ∩ ↑t = ∅ → s ⊆ ↑(span K ↑(s' ∪ t)) → ∃ t', ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ Finset.card t' = Finset.card (s' ∪ t) s' : Finset V hs' : ↑s' ⊆ s hst✝ : s ∩ ↑(insert b₁ t) = ∅ hss' : s ⊆ ↑(span K ↑(s' ∪ insert b₁ t)) hb₁s : ¬b₁ ∈ s hb₁s' : ¬b₁ ∈ s' hst : s ∩ ↑t = ∅ this✝¹ : ¬s ⊆ ↑(span K ↑(s' ∪ t)) b₂ : V hb₂s : b₂ ∈ s hb₂t : ¬b₂ ∈ ↑(span K ↑(s' ∪ t)) hb₂t' : ¬b₂ ∈ s' ∪ t b₃ : V hb₃✝ : b₃ ∈ s this✝ : ↑(s' ∪ insert b₁ t) ⊆ insert b₁ (insert b₂ ↑(s' ∪ t)) hb₃ : b₃ ∈ span K (insert b₁ (insert b₂ ↑(s' ∪ t))) this : s ⊆ ↑(span K (insert b₁ ↑(s' ∪ t))) hb₁ : b₁ ∈ span K (insert b₂ ↑(s' ∪ t)) ⊢ b₃ ∈ ↑(span K ↑(insert b₂ s' ∪ t)) [PROOFSTEP] rw [span_insert_eq_span hb₁] at hb₃ [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t✝² : Set V x y z : V t✝¹ : Finset V hs : LinearIndependent K fun x => ↑x hst✝¹ : s ⊆ ↑(span K ↑t✝¹) t✝ : Finset V b₁ : V t : Finset V hb₁t : ¬b₁ ∈ t ih : ∀ (s' : Finset V), ↑s' ⊆ s → s ∩ ↑t = ∅ → s ⊆ ↑(span K ↑(s' ∪ t)) → ∃ t', ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ Finset.card t' = Finset.card (s' ∪ t) s' : Finset V hs' : ↑s' ⊆ s hst✝ : s ∩ ↑(insert b₁ t) = ∅ hss' : s ⊆ ↑(span K ↑(s' ∪ insert b₁ t)) hb₁s : ¬b₁ ∈ s hb₁s' : ¬b₁ ∈ s' hst : s ∩ ↑t = ∅ this✝¹ : ¬s ⊆ ↑(span K ↑(s' ∪ t)) b₂ : V hb₂s : b₂ ∈ s hb₂t : ¬b₂ ∈ ↑(span K ↑(s' ∪ t)) hb₂t' : ¬b₂ ∈ s' ∪ t b₃ : V hb₃✝ : b₃ ∈ s this✝ : ↑(s' ∪ insert b₁ t) ⊆ insert b₁ (insert b₂ ↑(s' ∪ t)) hb₃ : b₃ ∈ span K (insert b₂ ↑(s' ∪ t)) this : s ⊆ ↑(span K (insert b₁ ↑(s' ∪ t))) hb₁ : b₁ ∈ span K (insert b₂ ↑(s' ∪ t)) ⊢ b₃ ∈ ↑(span K ↑(insert b₂ s' ∪ t)) [PROOFSTEP] simpa using hb₃ [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t✝² : Set V x y z : V t✝¹ : Finset V hs : LinearIndependent K fun x => ↑x hst✝¹ : s ⊆ ↑(span K ↑t✝¹) t✝ : Finset V b₁ : V t : Finset V hb₁t : ¬b₁ ∈ t ih : ∀ (s' : Finset V), ↑s' ⊆ s → s ∩ ↑t = ∅ → s ⊆ ↑(span K ↑(s' ∪ t)) → ∃ t', ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ Finset.card t' = Finset.card (s' ∪ t) s' : Finset V hs' : ↑s' ⊆ s hst✝ : s ∩ ↑(insert b₁ t) = ∅ hss' : s ⊆ ↑(span K ↑(s' ∪ insert b₁ t)) hb₁s : ¬b₁ ∈ s hb₁s' : ¬b₁ ∈ s' hst : s ∩ ↑t = ∅ this✝ : ¬s ⊆ ↑(span K ↑(s' ∪ t)) b₂ : V hb₂s : b₂ ∈ s hb₂t : ¬b₂ ∈ ↑(span K ↑(s' ∪ t)) hb₂t' : ¬b₂ ∈ s' ∪ t this : s ⊆ ↑(span K ↑(insert b₂ s' ∪ t)) ⊢ ↑(insert b₂ s') ⊆ s [PROOFSTEP] simp [insert_subset_iff, hb₂s, hs'] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t✝² : Set V x y z : V t✝¹ : Finset V hs : LinearIndependent K fun x => ↑x hst✝¹ : s ⊆ ↑(span K ↑t✝¹) t✝ : Finset V b₁ : V t : Finset V hb₁t : ¬b₁ ∈ t ih : ∀ (s' : Finset V), ↑s' ⊆ s → s ∩ ↑t = ∅ → s ⊆ ↑(span K ↑(s' ∪ t)) → ∃ t', ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ Finset.card t' = Finset.card (s' ∪ t) s' : Finset V hs' : ↑s' ⊆ s hst✝ : s ∩ ↑(insert b₁ t) = ∅ hss' : s ⊆ ↑(span K ↑(s' ∪ insert b₁ t)) hb₁s : ¬b₁ ∈ s hb₁s' : ¬b₁ ∈ s' hst : s ∩ ↑t = ∅ this✝ : ¬s ⊆ ↑(span K ↑(s' ∪ t)) b₂ : V hb₂s : b₂ ∈ s hb₂t : ¬b₂ ∈ ↑(span K ↑(s' ∪ t)) hb₂t' : ¬b₂ ∈ s' ∪ t this : s ⊆ ↑(span K ↑(insert b₂ s' ∪ t)) u : Finset V hust : ↑u ⊆ s ∪ ↑t hsu : s ⊆ ↑u eq : Finset.card u = Finset.card (insert b₂ s' ∪ t) ⊢ ↑t ⊆ ↑(insert b₁ t) [PROOFSTEP] simp [subset_insert] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t✝² : Set V x y z : V t✝¹ : Finset V hs : LinearIndependent K fun x => ↑x hst✝¹ : s ⊆ ↑(span K ↑t✝¹) t✝ : Finset V b₁ : V t : Finset V hb₁t : ¬b₁ ∈ t ih : ∀ (s' : Finset V), ↑s' ⊆ s → s ∩ ↑t = ∅ → s ⊆ ↑(span K ↑(s' ∪ t)) → ∃ t', ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ Finset.card t' = Finset.card (s' ∪ t) s' : Finset V hs' : ↑s' ⊆ s hst✝ : s ∩ ↑(insert b₁ t) = ∅ hss' : s ⊆ ↑(span K ↑(s' ∪ insert b₁ t)) hb₁s : ¬b₁ ∈ s hb₁s' : ¬b₁ ∈ s' hst : s ∩ ↑t = ∅ this✝ : ¬s ⊆ ↑(span K ↑(s' ∪ t)) b₂ : V hb₂s : b₂ ∈ s hb₂t : ¬b₂ ∈ ↑(span K ↑(s' ∪ t)) hb₂t' : ¬b₂ ∈ s' ∪ t this : s ⊆ ↑(span K ↑(insert b₂ s' ∪ t)) u : Finset V hust : ↑u ⊆ s ∪ ↑t hsu : s ⊆ ↑u eq : Finset.card u = Finset.card (insert b₂ s' ∪ t) ⊢ Finset.card u = Finset.card (s' ∪ insert b₁ t) [PROOFSTEP] simp [eq, Finset.card_insert_of_not_mem hb₂t', hb₁t, hb₁s'] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t✝ : Set V x y z : V t : Finset V hs : LinearIndependent K fun x => ↑x hst : s ⊆ ↑(span K ↑t) this : ∀ (t s' : Finset V), ↑s' ⊆ s → s ∩ ↑t = ∅ → s ⊆ ↑(span K ↑(s' ∪ t)) → ∃ t', ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ Finset.card t' = Finset.card (s' ∪ t) ⊢ ∃ t', ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ Finset.card t' = Finset.card t [PROOFSTEP] have eq : ((t.filter fun x => x ∈ s) ∪ t.filter fun x => x ∉ s) = t := by ext1 x by_cases x ∈ s <;> simp [*] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t✝ : Set V x y z : V t : Finset V hs : LinearIndependent K fun x => ↑x hst : s ⊆ ↑(span K ↑t) this : ∀ (t s' : Finset V), ↑s' ⊆ s → s ∩ ↑t = ∅ → s ⊆ ↑(span K ↑(s' ∪ t)) → ∃ t', ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ Finset.card t' = Finset.card (s' ∪ t) ⊢ Finset.filter (fun x => x ∈ s) t ∪ Finset.filter (fun x => ¬x ∈ s) t = t [PROOFSTEP] ext1 x [GOAL] case a ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t✝ : Set V x✝ y z : V t : Finset V hs : LinearIndependent K fun x => ↑x hst : s ⊆ ↑(span K ↑t) this : ∀ (t s' : Finset V), ↑s' ⊆ s → s ∩ ↑t = ∅ → s ⊆ ↑(span K ↑(s' ∪ t)) → ∃ t', ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ Finset.card t' = Finset.card (s' ∪ t) x : V ⊢ x ∈ Finset.filter (fun x => x ∈ s) t ∪ Finset.filter (fun x => ¬x ∈ s) t ↔ x ∈ t [PROOFSTEP] by_cases x ∈ s [GOAL] case a ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t✝ : Set V x✝ y z : V t : Finset V hs : LinearIndependent K fun x => ↑x hst : s ⊆ ↑(span K ↑t) this : ∀ (t s' : Finset V), ↑s' ⊆ s → s ∩ ↑t = ∅ → s ⊆ ↑(span K ↑(s' ∪ t)) → ∃ t', ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ Finset.card t' = Finset.card (s' ∪ t) x : V ⊢ x ∈ Finset.filter (fun x => x ∈ s) t ∪ Finset.filter (fun x => ¬x ∈ s) t ↔ x ∈ t [PROOFSTEP] by_cases x ∈ s [GOAL] case pos ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t✝ : Set V x✝ y z : V t : Finset V hs : LinearIndependent K fun x => ↑x hst : s ⊆ ↑(span K ↑t) this : ∀ (t s' : Finset V), ↑s' ⊆ s → s ∩ ↑t = ∅ → s ⊆ ↑(span K ↑(s' ∪ t)) → ∃ t', ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ Finset.card t' = Finset.card (s' ∪ t) x : V h : x ∈ s ⊢ x ∈ Finset.filter (fun x => x ∈ s) t ∪ Finset.filter (fun x => ¬x ∈ s) t ↔ x ∈ t [PROOFSTEP] simp [*] [GOAL] case neg ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t✝ : Set V x✝ y z : V t : Finset V hs : LinearIndependent K fun x => ↑x hst : s ⊆ ↑(span K ↑t) this : ∀ (t s' : Finset V), ↑s' ⊆ s → s ∩ ↑t = ∅ → s ⊆ ↑(span K ↑(s' ∪ t)) → ∃ t', ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ Finset.card t' = Finset.card (s' ∪ t) x : V h : ¬x ∈ s ⊢ x ∈ Finset.filter (fun x => x ∈ s) t ∪ Finset.filter (fun x => ¬x ∈ s) t ↔ x ∈ t [PROOFSTEP] simp [*] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t✝ : Set V x y z : V t : Finset V hs : LinearIndependent K fun x => ↑x hst : s ⊆ ↑(span K ↑t) this : ∀ (t s' : Finset V), ↑s' ⊆ s → s ∩ ↑t = ∅ → s ⊆ ↑(span K ↑(s' ∪ t)) → ∃ t', ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ Finset.card t' = Finset.card (s' ∪ t) eq : Finset.filter (fun x => x ∈ s) t ∪ Finset.filter (fun x => ¬x ∈ s) t = t ⊢ ∃ t', ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ Finset.card t' = Finset.card t [PROOFSTEP] apply Exists.elim (this (t.filter fun x => x ∉ s) (t.filter fun x => x ∈ s) (by simp [Set.subset_def]) (by simp (config := { contextual := true }) [Set.ext_iff]) (by rwa [eq])) [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t✝ : Set V x y z : V t : Finset V hs : LinearIndependent K fun x => ↑x hst : s ⊆ ↑(span K ↑t) this : ∀ (t s' : Finset V), ↑s' ⊆ s → s ∩ ↑t = ∅ → s ⊆ ↑(span K ↑(s' ∪ t)) → ∃ t', ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ Finset.card t' = Finset.card (s' ∪ t) eq : Finset.filter (fun x => x ∈ s) t ∪ Finset.filter (fun x => ¬x ∈ s) t = t ⊢ ↑(Finset.filter (fun x => x ∈ s) t) ⊆ s [PROOFSTEP] simp [Set.subset_def] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t✝ : Set V x y z : V t : Finset V hs : LinearIndependent K fun x => ↑x hst : s ⊆ ↑(span K ↑t) this : ∀ (t s' : Finset V), ↑s' ⊆ s → s ∩ ↑t = ∅ → s ⊆ ↑(span K ↑(s' ∪ t)) → ∃ t', ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ Finset.card t' = Finset.card (s' ∪ t) eq : Finset.filter (fun x => x ∈ s) t ∪ Finset.filter (fun x => ¬x ∈ s) t = t ⊢ s ∩ ↑(Finset.filter (fun x => ¬x ∈ s) t) = ∅ [PROOFSTEP] simp (config := { contextual := true }) [Set.ext_iff] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t✝ : Set V x y z : V t : Finset V hs : LinearIndependent K fun x => ↑x hst : s ⊆ ↑(span K ↑t) this : ∀ (t s' : Finset V), ↑s' ⊆ s → s ∩ ↑t = ∅ → s ⊆ ↑(span K ↑(s' ∪ t)) → ∃ t', ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ Finset.card t' = Finset.card (s' ∪ t) eq : Finset.filter (fun x => x ∈ s) t ∪ Finset.filter (fun x => ¬x ∈ s) t = t ⊢ s ⊆ ↑(span K ↑(Finset.filter (fun x => x ∈ s) t ∪ Finset.filter (fun x => ¬x ∈ s) t)) [PROOFSTEP] rwa [eq] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t✝ : Set V x y z : V t : Finset V hs : LinearIndependent K fun x => ↑x hst : s ⊆ ↑(span K ↑t) this : ∀ (t s' : Finset V), ↑s' ⊆ s → s ∩ ↑t = ∅ → s ⊆ ↑(span K ↑(s' ∪ t)) → ∃ t', ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ Finset.card t' = Finset.card (s' ∪ t) eq : Finset.filter (fun x => x ∈ s) t ∪ Finset.filter (fun x => ¬x ∈ s) t = t ⊢ ∀ (a : Finset V), ↑a ⊆ s ∪ ↑(Finset.filter (fun x => ¬x ∈ s) t) ∧ s ⊆ ↑a ∧ Finset.card a = Finset.card (Finset.filter (fun x => x ∈ s) t ∪ Finset.filter (fun x => ¬x ∈ s) t) → ∃ t', ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ Finset.card t' = Finset.card t [PROOFSTEP] intro u h [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t✝ : Set V x y z : V t : Finset V hs : LinearIndependent K fun x => ↑x hst : s ⊆ ↑(span K ↑t) this : ∀ (t s' : Finset V), ↑s' ⊆ s → s ∩ ↑t = ∅ → s ⊆ ↑(span K ↑(s' ∪ t)) → ∃ t', ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ Finset.card t' = Finset.card (s' ∪ t) eq : Finset.filter (fun x => x ∈ s) t ∪ Finset.filter (fun x => ¬x ∈ s) t = t u : Finset V h : ↑u ⊆ s ∪ ↑(Finset.filter (fun x => ¬x ∈ s) t) ∧ s ⊆ ↑u ∧ Finset.card u = Finset.card (Finset.filter (fun x => x ∈ s) t ∪ Finset.filter (fun x => ¬x ∈ s) t) ⊢ ∃ t', ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ Finset.card t' = Finset.card t [PROOFSTEP] exact ⟨u, Subset.trans h.1 (by simp (config := { contextual := true }) [subset_def, and_imp, or_imp]), h.2.1, by simp only [h.2.2, eq]⟩ [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t✝ : Set V x y z : V t : Finset V hs : LinearIndependent K fun x => ↑x hst : s ⊆ ↑(span K ↑t) this : ∀ (t s' : Finset V), ↑s' ⊆ s → s ∩ ↑t = ∅ → s ⊆ ↑(span K ↑(s' ∪ t)) → ∃ t', ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ Finset.card t' = Finset.card (s' ∪ t) eq : Finset.filter (fun x => x ∈ s) t ∪ Finset.filter (fun x => ¬x ∈ s) t = t u : Finset V h : ↑u ⊆ s ∪ ↑(Finset.filter (fun x => ¬x ∈ s) t) ∧ s ⊆ ↑u ∧ Finset.card u = Finset.card (Finset.filter (fun x => x ∈ s) t ∪ Finset.filter (fun x => ¬x ∈ s) t) ⊢ s ∪ ↑(Finset.filter (fun x => ¬x ∈ s) t) ⊆ s ∪ ↑t [PROOFSTEP] simp (config := { contextual := true }) [subset_def, and_imp, or_imp] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t✝ : Set V x y z : V t : Finset V hs : LinearIndependent K fun x => ↑x hst : s ⊆ ↑(span K ↑t) this : ∀ (t s' : Finset V), ↑s' ⊆ s → s ∩ ↑t = ∅ → s ⊆ ↑(span K ↑(s' ∪ t)) → ∃ t', ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ Finset.card t' = Finset.card (s' ∪ t) eq : Finset.filter (fun x => x ∈ s) t ∪ Finset.filter (fun x => ¬x ∈ s) t = t u : Finset V h : ↑u ⊆ s ∪ ↑(Finset.filter (fun x => ¬x ∈ s) t) ∧ s ⊆ ↑u ∧ Finset.card u = Finset.card (Finset.filter (fun x => x ∈ s) t ∪ Finset.filter (fun x => ¬x ∈ s) t) ⊢ Finset.card u = Finset.card t [PROOFSTEP] simp only [h.2.2, eq] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t : Set V x y z : V ht : Set.Finite t hs : LinearIndependent K fun x => ↑x hst : s ⊆ ↑(span K t) ⊢ s ⊆ ↑(span K ↑(Finite.toFinset ht)) [PROOFSTEP] simp [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t : Set V x y z : V ht : Set.Finite t hs : LinearIndependent K fun x => ↑x hst : s ⊆ ↑(span K t) ⊢ s ⊆ ↑(span K t) [PROOFSTEP] assumption [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t : Set V x y z : V ht : Set.Finite t hs : LinearIndependent K fun x => ↑x hst : s ⊆ ↑(span K t) this✝ : s ⊆ ↑(span K ↑(Finite.toFinset ht)) u : Finset V _hust : ↑u ⊆ s ∪ ↑(Finite.toFinset ht) hsu : s ⊆ ↑u Eq : Finset.card u = Finset.card (Finite.toFinset ht) this : Set.Finite s ⊢ Finset.card (Finite.toFinset this) ≤ Finset.card (Finite.toFinset ht) [PROOFSTEP] rw [← Eq] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t : Set V x y z : V ht : Set.Finite t hs : LinearIndependent K fun x => ↑x hst : s ⊆ ↑(span K t) this✝ : s ⊆ ↑(span K ↑(Finite.toFinset ht)) u : Finset V _hust : ↑u ⊆ s ∪ ↑(Finite.toFinset ht) hsu : s ⊆ ↑u Eq : Finset.card u = Finset.card (Finite.toFinset ht) this : Set.Finite s ⊢ Finset.card (Finite.toFinset this) ≤ Finset.card u [PROOFSTEP] exact Finset.card_le_of_subset <| Finset.coe_subset.mp <| by simp [hsu] [GOAL] ι : Type u' ι' : Type u_1 R : Type u_2 K : Type u_3 M : Type u_4 M' : Type u_5 M'' : Type u_6 V : Type u V' : Type u_7 inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : AddCommGroup V' inst✝¹ : Module K V inst✝ : Module K V' v : ι → V s t : Set V x y z : V ht : Set.Finite t hs : LinearIndependent K fun x => ↑x hst : s ⊆ ↑(span K t) this✝ : s ⊆ ↑(span K ↑(Finite.toFinset ht)) u : Finset V _hust : ↑u ⊆ s ∪ ↑(Finite.toFinset ht) hsu : s ⊆ ↑u Eq : Finset.card u = Finset.card (Finite.toFinset ht) this : Set.Finite s ⊢ ↑(Finite.toFinset this) ⊆ ↑u [PROOFSTEP] simp [hsu]
{"mathlib_filename": "Mathlib.LinearAlgebra.LinearIndependent", "llama_tokens": 186254}
[GOAL] R : Type u_1 M : Type u_2 N : Type u_3 N' : Type u_4 inst✝⁶ : CommRing R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup N inst✝³ : AddCommGroup N' inst✝² : Module R M inst✝¹ : Module R N inst✝ : Module R N' ι : Type u_5 ⊢ Module R (AlternatingMap R M N ι) [PROOFSTEP] infer_instance [GOAL] R : Type u_1 M : Type u_2 N : Type u_3 N' : Type u_4 inst✝⁶ : CommRing R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup N inst✝³ : AddCommGroup N' inst✝² : Module R M inst✝¹ : Module R N inst✝ : Module R N' ⊢ ((i : ℕ) → AlternatingMap R M N (Fin i)) →ₗ[R] ExteriorAlgebra R M →ₗ[R] N [PROOFSTEP] suffices (∀ i, AlternatingMap R M N (Fin i)) →ₗ[R] ExteriorAlgebra R M →ₗ[R] ∀ i, AlternatingMap R M N (Fin i) by refine' LinearMap.compr₂ this _ refine' (LinearEquiv.toLinearMap _).comp (LinearMap.proj 0) exact AlternatingMap.constLinearEquivOfIsEmpty.symm [GOAL] R : Type u_1 M : Type u_2 N : Type u_3 N' : Type u_4 inst✝⁶ : CommRing R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup N inst✝³ : AddCommGroup N' inst✝² : Module R M inst✝¹ : Module R N inst✝ : Module R N' this : ((i : ℕ) → AlternatingMap R M N (Fin i)) →ₗ[R] ExteriorAlgebra R M →ₗ[R] (i : ℕ) → AlternatingMap R M N (Fin i) ⊢ ((i : ℕ) → AlternatingMap R M N (Fin i)) →ₗ[R] ExteriorAlgebra R M →ₗ[R] N [PROOFSTEP] refine' LinearMap.compr₂ this _ [GOAL] R : Type u_1 M : Type u_2 N : Type u_3 N' : Type u_4 inst✝⁶ : CommRing R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup N inst✝³ : AddCommGroup N' inst✝² : Module R M inst✝¹ : Module R N inst✝ : Module R N' this : ((i : ℕ) → AlternatingMap R M N (Fin i)) →ₗ[R] ExteriorAlgebra R M →ₗ[R] (i : ℕ) → AlternatingMap R M N (Fin i) ⊢ ((i : ℕ) → AlternatingMap R M N (Fin i)) →ₗ[R] N [PROOFSTEP] refine' (LinearEquiv.toLinearMap _).comp (LinearMap.proj 0) [GOAL] R : Type u_1 M : Type u_2 N : Type u_3 N' : Type u_4 inst✝⁶ : CommRing R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup N inst✝³ : AddCommGroup N' inst✝² : Module R M inst✝¹ : Module R N inst✝ : Module R N' this : ((i : ℕ) → AlternatingMap R M N (Fin i)) →ₗ[R] ExteriorAlgebra R M →ₗ[R] (i : ℕ) → AlternatingMap R M N (Fin i) ⊢ AlternatingMap R M N (Fin 0) ≃ₗ[R] N [PROOFSTEP] exact AlternatingMap.constLinearEquivOfIsEmpty.symm [GOAL] R : Type u_1 M : Type u_2 N : Type u_3 N' : Type u_4 inst✝⁶ : CommRing R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup N inst✝³ : AddCommGroup N' inst✝² : Module R M inst✝¹ : Module R N inst✝ : Module R N' ⊢ ((i : ℕ) → AlternatingMap R M N (Fin i)) →ₗ[R] ExteriorAlgebra R M →ₗ[R] (i : ℕ) → AlternatingMap R M N (Fin i) [PROOFSTEP] refine' CliffordAlgebra.foldl _ _ _ [GOAL] case refine'_1 R : Type u_1 M : Type u_2 N : Type u_3 N' : Type u_4 inst✝⁶ : CommRing R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup N inst✝³ : AddCommGroup N' inst✝² : Module R M inst✝¹ : Module R N inst✝ : Module R N' ⊢ M →ₗ[R] ((i : ℕ) → AlternatingMap R M N (Fin i)) →ₗ[R] (i : ℕ) → AlternatingMap R M N (Fin i) [PROOFSTEP] refine' LinearMap.mk₂ R (fun m f i => (f i.succ).curryLeft m) (fun m₁ m₂ f => _) (fun c m f => _) (fun m f₁ f₂ => _) fun c m f => _ [GOAL] case refine'_1.refine'_1 R : Type u_1 M : Type u_2 N : Type u_3 N' : Type u_4 inst✝⁶ : CommRing R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup N inst✝³ : AddCommGroup N' inst✝² : Module R M inst✝¹ : Module R N inst✝ : Module R N' m₁ m₂ : M f : (i : ℕ) → AlternatingMap R M N (Fin i) ⊢ (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (m₁ + m₂) f = (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₁ f + (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₂ f case refine'_1.refine'_2 R : Type u_1 M : Type u_2 N : Type u_3 N' : Type u_4 inst✝⁶ : CommRing R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup N inst✝³ : AddCommGroup N' inst✝² : Module R M inst✝¹ : Module R N inst✝ : Module R N' c : R m : M f : (i : ℕ) → AlternatingMap R M N (Fin i) ⊢ (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (c • m) f = c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f case refine'_1.refine'_3 R : Type u_1 M : Type u_2 N : Type u_3 N' : Type u_4 inst✝⁶ : CommRing R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup N inst✝³ : AddCommGroup N' inst✝² : Module R M inst✝¹ : Module R N inst✝ : Module R N' m : M f₁ f₂ : (i : ℕ) → AlternatingMap R M N (Fin i) ⊢ (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (f₁ + f₂) = (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₁ + (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₂ case refine'_1.refine'_4 R : Type u_1 M : Type u_2 N : Type u_3 N' : Type u_4 inst✝⁶ : CommRing R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup N inst✝³ : AddCommGroup N' inst✝² : Module R M inst✝¹ : Module R N inst✝ : Module R N' c : R m : M f : (i : ℕ) → AlternatingMap R M N (Fin i) ⊢ (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (c • f) = c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f [PROOFSTEP] all_goals ext i : 1 simp only [map_smul, map_add, Pi.add_apply, Pi.smul_apply, AlternatingMap.curryLeft_add, AlternatingMap.curryLeft_smul, map_add, map_smul, LinearMap.add_apply, LinearMap.smul_apply] [GOAL] case refine'_1.refine'_1 R : Type u_1 M : Type u_2 N : Type u_3 N' : Type u_4 inst✝⁶ : CommRing R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup N inst✝³ : AddCommGroup N' inst✝² : Module R M inst✝¹ : Module R N inst✝ : Module R N' m₁ m₂ : M f : (i : ℕ) → AlternatingMap R M N (Fin i) ⊢ (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (m₁ + m₂) f = (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₁ f + (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₂ f [PROOFSTEP] ext i : 1 [GOAL] case refine'_1.refine'_1.h R : Type u_1 M : Type u_2 N : Type u_3 N' : Type u_4 inst✝⁶ : CommRing R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup N inst✝³ : AddCommGroup N' inst✝² : Module R M inst✝¹ : Module R N inst✝ : Module R N' m₁ m₂ : M f : (i : ℕ) → AlternatingMap R M N (Fin i) i : ℕ ⊢ (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (m₁ + m₂) f i = ((fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₁ f + (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₂ f) i [PROOFSTEP] simp only [map_smul, map_add, Pi.add_apply, Pi.smul_apply, AlternatingMap.curryLeft_add, AlternatingMap.curryLeft_smul, map_add, map_smul, LinearMap.add_apply, LinearMap.smul_apply] [GOAL] case refine'_1.refine'_2 R : Type u_1 M : Type u_2 N : Type u_3 N' : Type u_4 inst✝⁶ : CommRing R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup N inst✝³ : AddCommGroup N' inst✝² : Module R M inst✝¹ : Module R N inst✝ : Module R N' c : R m : M f : (i : ℕ) → AlternatingMap R M N (Fin i) ⊢ (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (c • m) f = c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f [PROOFSTEP] ext i : 1 [GOAL] case refine'_1.refine'_2.h R : Type u_1 M : Type u_2 N : Type u_3 N' : Type u_4 inst✝⁶ : CommRing R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup N inst✝³ : AddCommGroup N' inst✝² : Module R M inst✝¹ : Module R N inst✝ : Module R N' c : R m : M f : (i : ℕ) → AlternatingMap R M N (Fin i) i : ℕ ⊢ (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (c • m) f i = (c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f) i [PROOFSTEP] simp only [map_smul, map_add, Pi.add_apply, Pi.smul_apply, AlternatingMap.curryLeft_add, AlternatingMap.curryLeft_smul, map_add, map_smul, LinearMap.add_apply, LinearMap.smul_apply] [GOAL] case refine'_1.refine'_3 R : Type u_1 M : Type u_2 N : Type u_3 N' : Type u_4 inst✝⁶ : CommRing R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup N inst✝³ : AddCommGroup N' inst✝² : Module R M inst✝¹ : Module R N inst✝ : Module R N' m : M f₁ f₂ : (i : ℕ) → AlternatingMap R M N (Fin i) ⊢ (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (f₁ + f₂) = (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₁ + (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₂ [PROOFSTEP] ext i : 1 [GOAL] case refine'_1.refine'_3.h R : Type u_1 M : Type u_2 N : Type u_3 N' : Type u_4 inst✝⁶ : CommRing R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup N inst✝³ : AddCommGroup N' inst✝² : Module R M inst✝¹ : Module R N inst✝ : Module R N' m : M f₁ f₂ : (i : ℕ) → AlternatingMap R M N (Fin i) i : ℕ ⊢ (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (f₁ + f₂) i = ((fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₁ + (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₂) i [PROOFSTEP] simp only [map_smul, map_add, Pi.add_apply, Pi.smul_apply, AlternatingMap.curryLeft_add, AlternatingMap.curryLeft_smul, map_add, map_smul, LinearMap.add_apply, LinearMap.smul_apply] [GOAL] case refine'_1.refine'_4 R : Type u_1 M : Type u_2 N : Type u_3 N' : Type u_4 inst✝⁶ : CommRing R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup N inst✝³ : AddCommGroup N' inst✝² : Module R M inst✝¹ : Module R N inst✝ : Module R N' c : R m : M f : (i : ℕ) → AlternatingMap R M N (Fin i) ⊢ (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (c • f) = c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f [PROOFSTEP] ext i : 1 [GOAL] case refine'_1.refine'_4.h R : Type u_1 M : Type u_2 N : Type u_3 N' : Type u_4 inst✝⁶ : CommRing R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup N inst✝³ : AddCommGroup N' inst✝² : Module R M inst✝¹ : Module R N inst✝ : Module R N' c : R m : M f : (i : ℕ) → AlternatingMap R M N (Fin i) i : ℕ ⊢ (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (c • f) i = (c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f) i [PROOFSTEP] simp only [map_smul, map_add, Pi.add_apply, Pi.smul_apply, AlternatingMap.curryLeft_add, AlternatingMap.curryLeft_smul, map_add, map_smul, LinearMap.add_apply, LinearMap.smul_apply] [GOAL] case refine'_2 R : Type u_1 M : Type u_2 N : Type u_3 N' : Type u_4 inst✝⁶ : CommRing R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup N inst✝³ : AddCommGroup N' inst✝² : Module R M inst✝¹ : Module R N inst✝ : Module R N' ⊢ ∀ (m : M) (x : (i : ℕ) → AlternatingMap R M N (Fin i)), ↑(↑(LinearMap.mk₂ R (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (_ : ∀ (m₁ m₂ : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (m₁ + m₂) f = (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₁ f + (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₂ f) (_ : ∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (c • m) f = c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f) (_ : ∀ (m : M) (f₁ f₂ : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (f₁ + f₂) = (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₁ + (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₂) (_ : ∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (c • f) = c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f)) m) (↑(↑(LinearMap.mk₂ R (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (_ : ∀ (m₁ m₂ : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (m₁ + m₂) f = (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₁ f + (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₂ f) (_ : ∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (c • m) f = c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f) (_ : ∀ (m : M) (f₁ f₂ : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (f₁ + f₂) = (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₁ + (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₂) (_ : ∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (c • f) = c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f)) m) x) = ↑0 m • x [PROOFSTEP] intro m x [GOAL] case refine'_2 R : Type u_1 M : Type u_2 N : Type u_3 N' : Type u_4 inst✝⁶ : CommRing R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup N inst✝³ : AddCommGroup N' inst✝² : Module R M inst✝¹ : Module R N inst✝ : Module R N' m : M x : (i : ℕ) → AlternatingMap R M N (Fin i) ⊢ ↑(↑(LinearMap.mk₂ R (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (_ : ∀ (m₁ m₂ : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (m₁ + m₂) f = (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₁ f + (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₂ f) (_ : ∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (c • m) f = c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f) (_ : ∀ (m : M) (f₁ f₂ : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (f₁ + f₂) = (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₁ + (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₂) (_ : ∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (c • f) = c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f)) m) (↑(↑(LinearMap.mk₂ R (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (_ : ∀ (m₁ m₂ : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (m₁ + m₂) f = (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₁ f + (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₂ f) (_ : ∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (c • m) f = c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f) (_ : ∀ (m : M) (f₁ f₂ : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (f₁ + f₂) = (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₁ + (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₂) (_ : ∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (c • f) = c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f)) m) x) = ↑0 m • x [PROOFSTEP] dsimp only [LinearMap.mk₂_apply, QuadraticForm.coeFn_zero, Pi.zero_apply] [GOAL] case refine'_2 R : Type u_1 M : Type u_2 N : Type u_3 N' : Type u_4 inst✝⁶ : CommRing R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup N inst✝³ : AddCommGroup N' inst✝² : Module R M inst✝¹ : Module R N inst✝ : Module R N' m : M x : (i : ℕ) → AlternatingMap R M N (Fin i) ⊢ (fun i => ↑(AlternatingMap.curryLeft (↑(AlternatingMap.curryLeft (x (Nat.succ (Nat.succ i)))) m)) m) = 0 • x [PROOFSTEP] simp_rw [zero_smul] [GOAL] case refine'_2 R : Type u_1 M : Type u_2 N : Type u_3 N' : Type u_4 inst✝⁶ : CommRing R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup N inst✝³ : AddCommGroup N' inst✝² : Module R M inst✝¹ : Module R N inst✝ : Module R N' m : M x : (i : ℕ) → AlternatingMap R M N (Fin i) ⊢ (fun i => ↑(AlternatingMap.curryLeft (↑(AlternatingMap.curryLeft (x (Nat.succ (Nat.succ i)))) m)) m) = 0 [PROOFSTEP] ext i : 1 [GOAL] case refine'_2.h R : Type u_1 M : Type u_2 N : Type u_3 N' : Type u_4 inst✝⁶ : CommRing R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup N inst✝³ : AddCommGroup N' inst✝² : Module R M inst✝¹ : Module R N inst✝ : Module R N' m : M x : (i : ℕ) → AlternatingMap R M N (Fin i) i : ℕ ⊢ ↑(AlternatingMap.curryLeft (↑(AlternatingMap.curryLeft (x (Nat.succ (Nat.succ i)))) m)) m = OfNat.ofNat 0 i [PROOFSTEP] exact AlternatingMap.curryLeft_same _ _ [GOAL] R : Type u_1 M : Type u_2 N : Type u_3 N' : Type u_4 inst✝⁶ : CommRing R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup N inst✝³ : AddCommGroup N' inst✝² : Module R M inst✝¹ : Module R N inst✝ : Module R N' f : (i : ℕ) → AlternatingMap R M N (Fin i) m : M ⊢ ↑(↑liftAlternating f) (↑(ι R) m) = ↑(f 1) ![m] [PROOFSTEP] dsimp [liftAlternating] [GOAL] R : Type u_1 M : Type u_2 N : Type u_3 N' : Type u_4 inst✝⁶ : CommRing R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup N inst✝³ : AddCommGroup N' inst✝² : Module R M inst✝¹ : Module R N inst✝ : Module R N' f : (i : ℕ) → AlternatingMap R M N (Fin i) m : M ⊢ ↑(↑(↑(foldl 0 (LinearMap.mk₂ R (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (_ : ∀ (m₁ m₂ : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (m₁ + m₂) f = (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₁ f + (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₂ f) (_ : ∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (c • m) f = c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f) (_ : ∀ (m : M) (f₁ f₂ : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (f₁ + f₂) = (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₁ + (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₂) (_ : ∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (c • f) = c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f)) (_ : ∀ (m : M) (x : (i : ℕ) → AlternatingMap R M N (Fin i)), ↑(↑(LinearMap.mk₂ R (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (_ : ∀ (m₁ m₂ : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (m₁ + m₂) f = (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₁ f + (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₂ f) (_ : ∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (c • m) f = c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f) (_ : ∀ (m : M) (f₁ f₂ : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (f₁ + f₂) = (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₁ + (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₂) (_ : ∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (c • f) = c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f)) m) (↑(↑(LinearMap.mk₂ R (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (_ : ∀ (m₁ m₂ : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (m₁ + m₂) f = (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₁ f + (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₂ f) (_ : ∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (c • m) f = c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f) (_ : ∀ (m : M) (f₁ f₂ : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (f₁ + f₂) = (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₁ + (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₂) (_ : ∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (c • f) = c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f)) m) x) = ↑0 m • x)) f) (↑(ι R) m) 0) 0 = ↑(f 1) ![m] [PROOFSTEP] rw [foldl_ι, LinearMap.mk₂_apply, AlternatingMap.curryLeft_apply_apply] [GOAL] R : Type u_1 M : Type u_2 N : Type u_3 N' : Type u_4 inst✝⁶ : CommRing R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup N inst✝³ : AddCommGroup N' inst✝² : Module R M inst✝¹ : Module R N inst✝ : Module R N' f : (i : ℕ) → AlternatingMap R M N (Fin i) m : M ⊢ ↑(f (Nat.succ 0)) (Matrix.vecCons m 0) = ↑(f 1) ![m] [PROOFSTEP] congr -- porting note: In Lean 3, `congr` could use the `[Subsingleton (Fin 0 → M)]` instance to finish -- the proof. Here, the instance can be synthesized but `congr` does not use it so the following -- line is provided. [GOAL] case h.e_6.h R : Type u_1 M : Type u_2 N : Type u_3 N' : Type u_4 inst✝⁶ : CommRing R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup N inst✝³ : AddCommGroup N' inst✝² : Module R M inst✝¹ : Module R N inst✝ : Module R N' f : (i : ℕ) → AlternatingMap R M N (Fin i) m : M ⊢ Matrix.vecCons m 0 = ![m] [PROOFSTEP] rw [Matrix.zero_empty] [GOAL] R : Type u_1 M : Type u_2 N : Type u_3 N' : Type u_4 inst✝⁶ : CommRing R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup N inst✝³ : AddCommGroup N' inst✝² : Module R M inst✝¹ : Module R N inst✝ : Module R N' f : (i : ℕ) → AlternatingMap R M N (Fin i) m : M x : ExteriorAlgebra R M ⊢ ↑(↑liftAlternating f) (↑(ι R) m * x) = ↑(↑liftAlternating fun i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) x [PROOFSTEP] dsimp [liftAlternating] [GOAL] R : Type u_1 M : Type u_2 N : Type u_3 N' : Type u_4 inst✝⁶ : CommRing R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup N inst✝³ : AddCommGroup N' inst✝² : Module R M inst✝¹ : Module R N inst✝ : Module R N' f : (i : ℕ) → AlternatingMap R M N (Fin i) m : M x : ExteriorAlgebra R M ⊢ ↑(↑(↑(foldl 0 (LinearMap.mk₂ R (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (_ : ∀ (m₁ m₂ : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (m₁ + m₂) f = (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₁ f + (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₂ f) (_ : ∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (c • m) f = c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f) (_ : ∀ (m : M) (f₁ f₂ : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (f₁ + f₂) = (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₁ + (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₂) (_ : ∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (c • f) = c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f)) (_ : ∀ (m : M) (x : (i : ℕ) → AlternatingMap R M N (Fin i)), ↑(↑(LinearMap.mk₂ R (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (_ : ∀ (m₁ m₂ : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (m₁ + m₂) f = (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₁ f + (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₂ f) (_ : ∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (c • m) f = c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f) (_ : ∀ (m : M) (f₁ f₂ : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (f₁ + f₂) = (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₁ + (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₂) (_ : ∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (c • f) = c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f)) m) (↑(↑(LinearMap.mk₂ R (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (_ : ∀ (m₁ m₂ : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (m₁ + m₂) f = (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₁ f + (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₂ f) (_ : ∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (c • m) f = c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f) (_ : ∀ (m : M) (f₁ f₂ : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (f₁ + f₂) = (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₁ + (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₂) (_ : ∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (c • f) = c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f)) m) x) = ↑0 m • x)) f) (↑(ι R) m * x) 0) 0 = ↑(↑(↑(foldl 0 (LinearMap.mk₂ R (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (_ : ∀ (m₁ m₂ : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (m₁ + m₂) f = (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₁ f + (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₂ f) (_ : ∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (c • m) f = c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f) (_ : ∀ (m : M) (f₁ f₂ : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (f₁ + f₂) = (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₁ + (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₂) (_ : ∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (c • f) = c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f)) (_ : ∀ (m : M) (x : (i : ℕ) → AlternatingMap R M N (Fin i)), ↑(↑(LinearMap.mk₂ R (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (_ : ∀ (m₁ m₂ : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (m₁ + m₂) f = (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₁ f + (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₂ f) (_ : ∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (c • m) f = c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f) (_ : ∀ (m : M) (f₁ f₂ : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (f₁ + f₂) = (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₁ + (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₂) (_ : ∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (c • f) = c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f)) m) (↑(↑(LinearMap.mk₂ R (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (_ : ∀ (m₁ m₂ : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (m₁ + m₂) f = (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₁ f + (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₂ f) (_ : ∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (c • m) f = c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f) (_ : ∀ (m : M) (f₁ f₂ : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (f₁ + f₂) = (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₁ + (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₂) (_ : ∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (c • f) = c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f)) m) x) = ↑0 m • x)) fun i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) x 0) 0 [PROOFSTEP] rw [foldl_mul, foldl_ι] [GOAL] R : Type u_1 M : Type u_2 N : Type u_3 N' : Type u_4 inst✝⁶ : CommRing R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup N inst✝³ : AddCommGroup N' inst✝² : Module R M inst✝¹ : Module R N inst✝ : Module R N' f : (i : ℕ) → AlternatingMap R M N (Fin i) m : M x : ExteriorAlgebra R M ⊢ ↑(↑(↑(foldl 0 (LinearMap.mk₂ R (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (_ : ∀ (m₁ m₂ : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (m₁ + m₂) f = (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₁ f + (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₂ f) (_ : ∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (c • m) f = c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f) (_ : ∀ (m : M) (f₁ f₂ : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (f₁ + f₂) = (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₁ + (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₂) (_ : ∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (c • f) = c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f)) (_ : ∀ (m : M) (x : (i : ℕ) → AlternatingMap R M N (Fin i)), ↑(↑(LinearMap.mk₂ R (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (_ : ∀ (m₁ m₂ : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (m₁ + m₂) f = (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₁ f + (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₂ f) (_ : ∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (c • m) f = c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f) (_ : ∀ (m : M) (f₁ f₂ : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (f₁ + f₂) = (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₁ + (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₂) (_ : ∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (c • f) = c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f)) m) (↑(↑(LinearMap.mk₂ R (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (_ : ∀ (m₁ m₂ : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (m₁ + m₂) f = (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₁ f + (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₂ f) (_ : ∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (c • m) f = c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f) (_ : ∀ (m : M) (f₁ f₂ : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (f₁ + f₂) = (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₁ + (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₂) (_ : ∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (c • f) = c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f)) m) x) = ↑0 m • x)) (↑(↑(LinearMap.mk₂ R (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (_ : ∀ (m₁ m₂ : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (m₁ + m₂) f = (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₁ f + (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₂ f) (_ : ∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (c • m) f = c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f) (_ : ∀ (m : M) (f₁ f₂ : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (f₁ + f₂) = (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₁ + (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₂) (_ : ∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (c • f) = c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f)) m) f)) x 0) 0 = ↑(↑(↑(foldl 0 (LinearMap.mk₂ R (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (_ : ∀ (m₁ m₂ : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (m₁ + m₂) f = (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₁ f + (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₂ f) (_ : ∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (c • m) f = c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f) (_ : ∀ (m : M) (f₁ f₂ : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (f₁ + f₂) = (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₁ + (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₂) (_ : ∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (c • f) = c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f)) (_ : ∀ (m : M) (x : (i : ℕ) → AlternatingMap R M N (Fin i)), ↑(↑(LinearMap.mk₂ R (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (_ : ∀ (m₁ m₂ : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (m₁ + m₂) f = (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₁ f + (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₂ f) (_ : ∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (c • m) f = c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f) (_ : ∀ (m : M) (f₁ f₂ : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (f₁ + f₂) = (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₁ + (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₂) (_ : ∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (c • f) = c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f)) m) (↑(↑(LinearMap.mk₂ R (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (_ : ∀ (m₁ m₂ : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (m₁ + m₂) f = (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₁ f + (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₂ f) (_ : ∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (c • m) f = c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f) (_ : ∀ (m : M) (f₁ f₂ : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (f₁ + f₂) = (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₁ + (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₂) (_ : ∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (c • f) = c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f)) m) x) = ↑0 m • x)) fun i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) x 0) 0 [PROOFSTEP] rfl [GOAL] R : Type u_1 M : Type u_2 N : Type u_3 N' : Type u_4 inst✝⁶ : CommRing R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup N inst✝³ : AddCommGroup N' inst✝² : Module R M inst✝¹ : Module R N inst✝ : Module R N' f : (i : ℕ) → AlternatingMap R M N (Fin i) ⊢ ↑(↑liftAlternating f) 1 = ↑(f 0) 0 [PROOFSTEP] dsimp [liftAlternating] [GOAL] R : Type u_1 M : Type u_2 N : Type u_3 N' : Type u_4 inst✝⁶ : CommRing R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup N inst✝³ : AddCommGroup N' inst✝² : Module R M inst✝¹ : Module R N inst✝ : Module R N' f : (i : ℕ) → AlternatingMap R M N (Fin i) ⊢ ↑(↑(↑(foldl 0 (LinearMap.mk₂ R (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (_ : ∀ (m₁ m₂ : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (m₁ + m₂) f = (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₁ f + (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₂ f) (_ : ∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (c • m) f = c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f) (_ : ∀ (m : M) (f₁ f₂ : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (f₁ + f₂) = (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₁ + (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₂) (_ : ∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (c • f) = c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f)) (_ : ∀ (m : M) (x : (i : ℕ) → AlternatingMap R M N (Fin i)), ↑(↑(LinearMap.mk₂ R (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (_ : ∀ (m₁ m₂ : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (m₁ + m₂) f = (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₁ f + (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₂ f) (_ : ∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (c • m) f = c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f) (_ : ∀ (m : M) (f₁ f₂ : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (f₁ + f₂) = (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₁ + (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₂) (_ : ∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (c • f) = c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f)) m) (↑(↑(LinearMap.mk₂ R (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (_ : ∀ (m₁ m₂ : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (m₁ + m₂) f = (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₁ f + (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m₂ f) (_ : ∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) (c • m) f = c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f) (_ : ∀ (m : M) (f₁ f₂ : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (f₁ + f₂) = (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₁ + (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f₂) (_ : ∀ (c : R) (m : M) (f : (i : ℕ) → AlternatingMap R M N (Fin i)), (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m (c • f) = c • (fun m f i => ↑(AlternatingMap.curryLeft (f (Nat.succ i))) m) m f)) m) x) = ↑0 m • x)) f) 1 0) 0 = ↑(f 0) 0 [PROOFSTEP] rw [foldl_one] [GOAL] R : Type u_1 M : Type u_2 N : Type u_3 N' : Type u_4 inst✝⁶ : CommRing R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup N inst✝³ : AddCommGroup N' inst✝² : Module R M inst✝¹ : Module R N inst✝ : Module R N' f : (i : ℕ) → AlternatingMap R M N (Fin i) r : R ⊢ ↑(↑liftAlternating f) (↑(algebraMap R (ExteriorAlgebra R M)) r) = r • ↑(f 0) 0 [PROOFSTEP] rw [Algebra.algebraMap_eq_smul_one, map_smul, liftAlternating_one] [GOAL] R : Type u_1 M : Type u_2 N : Type u_3 N' : Type u_4 inst✝⁶ : CommRing R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup N inst✝³ : AddCommGroup N' inst✝² : Module R M inst✝¹ : Module R N inst✝ : Module R N' n : ℕ f : (i : ℕ) → AlternatingMap R M N (Fin i) v : Fin n → M ⊢ ↑(↑liftAlternating f) (↑(ιMulti R n) v) = ↑(f n) v [PROOFSTEP] rw [ιMulti_apply] -- porting note: `v` is generalized automatically so it was removed from the next line [GOAL] R : Type u_1 M : Type u_2 N : Type u_3 N' : Type u_4 inst✝⁶ : CommRing R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup N inst✝³ : AddCommGroup N' inst✝² : Module R M inst✝¹ : Module R N inst✝ : Module R N' n : ℕ f : (i : ℕ) → AlternatingMap R M N (Fin i) v : Fin n → M ⊢ ↑(↑liftAlternating f) (List.prod (List.ofFn fun i => ↑(ι R) (v i))) = ↑(f n) v [PROOFSTEP] induction' n with n ih generalizing f [GOAL] case zero R : Type u_1 M : Type u_2 N : Type u_3 N' : Type u_4 inst✝⁶ : CommRing R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup N inst✝³ : AddCommGroup N' inst✝² : Module R M inst✝¹ : Module R N inst✝ : Module R N' n : ℕ f✝ : (i : ℕ) → AlternatingMap R M N (Fin i) v✝ : Fin n → M f : (i : ℕ) → AlternatingMap R M N (Fin i) v : Fin Nat.zero → M ⊢ ↑(↑liftAlternating f) (List.prod (List.ofFn fun i => ↑(ι R) (v i))) = ↑(f Nat.zero) v [PROOFSTEP] letI : Subsingleton (Fin 0 → M) := by infer_instance [GOAL] R : Type u_1 M : Type u_2 N : Type u_3 N' : Type u_4 inst✝⁶ : CommRing R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup N inst✝³ : AddCommGroup N' inst✝² : Module R M inst✝¹ : Module R N inst✝ : Module R N' n : ℕ f✝ : (i : ℕ) → AlternatingMap R M N (Fin i) v✝ : Fin n → M f : (i : ℕ) → AlternatingMap R M N (Fin i) v : Fin Nat.zero → M ⊢ Subsingleton (Fin 0 → M) [PROOFSTEP] infer_instance [GOAL] case zero R : Type u_1 M : Type u_2 N : Type u_3 N' : Type u_4 inst✝⁶ : CommRing R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup N inst✝³ : AddCommGroup N' inst✝² : Module R M inst✝¹ : Module R N inst✝ : Module R N' n : ℕ f✝ : (i : ℕ) → AlternatingMap R M N (Fin i) v✝ : Fin n → M f : (i : ℕ) → AlternatingMap R M N (Fin i) v : Fin Nat.zero → M this : Subsingleton (Fin 0 → M) := inferInstance ⊢ ↑(↑liftAlternating f) (List.prod (List.ofFn fun i => ↑(ι R) (v i))) = ↑(f Nat.zero) v [PROOFSTEP] rw [List.ofFn_zero, List.prod_nil, liftAlternating_one, Subsingleton.elim 0 v] [GOAL] case succ R : Type u_1 M : Type u_2 N : Type u_3 N' : Type u_4 inst✝⁶ : CommRing R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup N inst✝³ : AddCommGroup N' inst✝² : Module R M inst✝¹ : Module R N inst✝ : Module R N' n✝ : ℕ f✝ : (i : ℕ) → AlternatingMap R M N (Fin i) v✝ : Fin n✝ → M n : ℕ ih : ∀ (f : (i : ℕ) → AlternatingMap R M N (Fin i)) (v : Fin n → M), ↑(↑liftAlternating f) (List.prod (List.ofFn fun i => ↑(ι R) (v i))) = ↑(f n) v f : (i : ℕ) → AlternatingMap R M N (Fin i) v : Fin (Nat.succ n) → M ⊢ ↑(↑liftAlternating f) (List.prod (List.ofFn fun i => ↑(ι R) (v i))) = ↑(f (Nat.succ n)) v [PROOFSTEP] rw [List.ofFn_succ, List.prod_cons, liftAlternating_ι_mul, ih, AlternatingMap.curryLeft_apply_apply] [GOAL] case succ R : Type u_1 M : Type u_2 N : Type u_3 N' : Type u_4 inst✝⁶ : CommRing R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup N inst✝³ : AddCommGroup N' inst✝² : Module R M inst✝¹ : Module R N inst✝ : Module R N' n✝ : ℕ f✝ : (i : ℕ) → AlternatingMap R M N (Fin i) v✝ : Fin n✝ → M n : ℕ ih : ∀ (f : (i : ℕ) → AlternatingMap R M N (Fin i)) (v : Fin n → M), ↑(↑liftAlternating f) (List.prod (List.ofFn fun i => ↑(ι R) (v i))) = ↑(f n) v f : (i : ℕ) → AlternatingMap R M N (Fin i) v : Fin (Nat.succ n) → M ⊢ ↑(f (Nat.succ n)) (Matrix.vecCons (v 0) fun i => v (Fin.succ i)) = ↑(f (Nat.succ n)) v [PROOFSTEP] congr [GOAL] case succ.h.e_6.h R : Type u_1 M : Type u_2 N : Type u_3 N' : Type u_4 inst✝⁶ : CommRing R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup N inst✝³ : AddCommGroup N' inst✝² : Module R M inst✝¹ : Module R N inst✝ : Module R N' n✝ : ℕ f✝ : (i : ℕ) → AlternatingMap R M N (Fin i) v✝ : Fin n✝ → M n : ℕ ih : ∀ (f : (i : ℕ) → AlternatingMap R M N (Fin i)) (v : Fin n → M), ↑(↑liftAlternating f) (List.prod (List.ofFn fun i => ↑(ι R) (v i))) = ↑(f n) v f : (i : ℕ) → AlternatingMap R M N (Fin i) v : Fin (Nat.succ n) → M ⊢ (Matrix.vecCons (v 0) fun i => v (Fin.succ i)) = v [PROOFSTEP] exact Matrix.cons_head_tail _ [GOAL] R : Type u_1 M : Type u_2 N : Type u_3 N' : Type u_4 inst✝⁶ : CommRing R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup N inst✝³ : AddCommGroup N' inst✝² : Module R M inst✝¹ : Module R N inst✝ : Module R N' g : N →ₗ[R] N' f : (i : ℕ) → AlternatingMap R M N (Fin i) ⊢ (↑liftAlternating fun i => ↑(LinearMap.compAlternatingMap g) (f i)) = LinearMap.comp g (↑liftAlternating f) [PROOFSTEP] ext v [GOAL] case h R : Type u_1 M : Type u_2 N : Type u_3 N' : Type u_4 inst✝⁶ : CommRing R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup N inst✝³ : AddCommGroup N' inst✝² : Module R M inst✝¹ : Module R N inst✝ : Module R N' g : N →ₗ[R] N' f : (i : ℕ) → AlternatingMap R M N (Fin i) v : ExteriorAlgebra R M ⊢ ↑(↑liftAlternating fun i => ↑(LinearMap.compAlternatingMap g) (f i)) v = ↑(LinearMap.comp g (↑liftAlternating f)) v [PROOFSTEP] rw [LinearMap.comp_apply] [GOAL] case h R : Type u_1 M : Type u_2 N : Type u_3 N' : Type u_4 inst✝⁶ : CommRing R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup N inst✝³ : AddCommGroup N' inst✝² : Module R M inst✝¹ : Module R N inst✝ : Module R N' g : N →ₗ[R] N' f : (i : ℕ) → AlternatingMap R M N (Fin i) v : ExteriorAlgebra R M ⊢ ↑(↑liftAlternating fun i => ↑(LinearMap.compAlternatingMap g) (f i)) v = ↑g (↑(↑liftAlternating f) v) [PROOFSTEP] induction' v using CliffordAlgebra.left_induction with r x y hx hy x m hx generalizing f [GOAL] case h.hr R : Type u_1 M : Type u_2 N : Type u_3 N' : Type u_4 inst✝⁶ : CommRing R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup N inst✝³ : AddCommGroup N' inst✝² : Module R M inst✝¹ : Module R N inst✝ : Module R N' g : N →ₗ[R] N' f✝ : (i : ℕ) → AlternatingMap R M N (Fin i) r : R f : (i : ℕ) → AlternatingMap R M N (Fin i) ⊢ ↑(↑liftAlternating fun i => ↑(LinearMap.compAlternatingMap g) (f i)) (↑(algebraMap R (CliffordAlgebra 0)) r) = ↑g (↑(↑liftAlternating f) (↑(algebraMap R (CliffordAlgebra 0)) r)) [PROOFSTEP] rw [liftAlternating_algebraMap, liftAlternating_algebraMap, map_smul, LinearMap.compAlternatingMap_apply] [GOAL] case h.h_add R : Type u_1 M : Type u_2 N : Type u_3 N' : Type u_4 inst✝⁶ : CommRing R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup N inst✝³ : AddCommGroup N' inst✝² : Module R M inst✝¹ : Module R N inst✝ : Module R N' g : N →ₗ[R] N' f✝ : (i : ℕ) → AlternatingMap R M N (Fin i) x y : CliffordAlgebra 0 hx : ∀ (f : (i : ℕ) → AlternatingMap R M N (Fin i)), ↑(↑liftAlternating fun i => ↑(LinearMap.compAlternatingMap g) (f i)) x = ↑g (↑(↑liftAlternating f) x) hy : ∀ (f : (i : ℕ) → AlternatingMap R M N (Fin i)), ↑(↑liftAlternating fun i => ↑(LinearMap.compAlternatingMap g) (f i)) y = ↑g (↑(↑liftAlternating f) y) f : (i : ℕ) → AlternatingMap R M N (Fin i) ⊢ ↑(↑liftAlternating fun i => ↑(LinearMap.compAlternatingMap g) (f i)) (x + y) = ↑g (↑(↑liftAlternating f) (x + y)) [PROOFSTEP] rw [map_add, map_add, map_add, hx, hy] [GOAL] case h.h_mul_ι R : Type u_1 M : Type u_2 N : Type u_3 N' : Type u_4 inst✝⁶ : CommRing R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup N inst✝³ : AddCommGroup N' inst✝² : Module R M inst✝¹ : Module R N inst✝ : Module R N' g : N →ₗ[R] N' f✝ : (i : ℕ) → AlternatingMap R M N (Fin i) x : CliffordAlgebra 0 m : M hx : ∀ (f : (i : ℕ) → AlternatingMap R M N (Fin i)), ↑(↑liftAlternating fun i => ↑(LinearMap.compAlternatingMap g) (f i)) x = ↑g (↑(↑liftAlternating f) x) f : (i : ℕ) → AlternatingMap R M N (Fin i) ⊢ ↑(↑liftAlternating fun i => ↑(LinearMap.compAlternatingMap g) (f i)) (↑(CliffordAlgebra.ι 0) m * x) = ↑g (↑(↑liftAlternating f) (↑(CliffordAlgebra.ι 0) m * x)) [PROOFSTEP] rw [liftAlternating_ι_mul, liftAlternating_ι_mul, ← hx] [GOAL] case h.h_mul_ι R : Type u_1 M : Type u_2 N : Type u_3 N' : Type u_4 inst✝⁶ : CommRing R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup N inst✝³ : AddCommGroup N' inst✝² : Module R M inst✝¹ : Module R N inst✝ : Module R N' g : N →ₗ[R] N' f✝ : (i : ℕ) → AlternatingMap R M N (Fin i) x : CliffordAlgebra 0 m : M hx : ∀ (f : (i : ℕ) → AlternatingMap R M N (Fin i)), ↑(↑liftAlternating fun i => ↑(LinearMap.compAlternatingMap g) (f i)) x = ↑g (↑(↑liftAlternating f) x) f : (i : ℕ) → AlternatingMap R M N (Fin i) ⊢ ↑(↑liftAlternating fun i => ↑(AlternatingMap.curryLeft (↑(LinearMap.compAlternatingMap g) (f (Nat.succ i)))) m) x = ↑(↑liftAlternating fun i => ↑(LinearMap.compAlternatingMap g) (↑(AlternatingMap.curryLeft (f (Nat.succ i))) m)) x [PROOFSTEP] simp_rw [AlternatingMap.curryLeft_compAlternatingMap] [GOAL] R : Type u_1 M : Type u_2 N : Type u_3 N' : Type u_4 inst✝⁶ : CommRing R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup N inst✝³ : AddCommGroup N' inst✝² : Module R M inst✝¹ : Module R N inst✝ : Module R N' ⊢ ↑liftAlternating (ιMulti R) = LinearMap.id [PROOFSTEP] ext v [GOAL] case h R : Type u_1 M : Type u_2 N : Type u_3 N' : Type u_4 inst✝⁶ : CommRing R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup N inst✝³ : AddCommGroup N' inst✝² : Module R M inst✝¹ : Module R N inst✝ : Module R N' v : ExteriorAlgebra R M ⊢ ↑(↑liftAlternating (ιMulti R)) v = ↑LinearMap.id v [PROOFSTEP] dsimp [GOAL] case h R : Type u_1 M : Type u_2 N : Type u_3 N' : Type u_4 inst✝⁶ : CommRing R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup N inst✝³ : AddCommGroup N' inst✝² : Module R M inst✝¹ : Module R N inst✝ : Module R N' v : ExteriorAlgebra R M ⊢ ↑(↑liftAlternating (ιMulti R)) v = v [PROOFSTEP] induction' v using CliffordAlgebra.left_induction with r x y hx hy x m hx [GOAL] case h.hr R : Type u_1 M : Type u_2 N : Type u_3 N' : Type u_4 inst✝⁶ : CommRing R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup N inst✝³ : AddCommGroup N' inst✝² : Module R M inst✝¹ : Module R N inst✝ : Module R N' r : R ⊢ ↑(↑liftAlternating (ιMulti R)) (↑(algebraMap R (CliffordAlgebra 0)) r) = ↑(algebraMap R (CliffordAlgebra 0)) r [PROOFSTEP] rw [liftAlternating_algebraMap, ιMulti_zero_apply, Algebra.algebraMap_eq_smul_one] [GOAL] case h.h_add R : Type u_1 M : Type u_2 N : Type u_3 N' : Type u_4 inst✝⁶ : CommRing R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup N inst✝³ : AddCommGroup N' inst✝² : Module R M inst✝¹ : Module R N inst✝ : Module R N' x y : CliffordAlgebra 0 hx : ↑(↑liftAlternating (ιMulti R)) x = x hy : ↑(↑liftAlternating (ιMulti R)) y = y ⊢ ↑(↑liftAlternating (ιMulti R)) (x + y) = x + y [PROOFSTEP] rw [map_add, hx, hy] [GOAL] case h.h_mul_ι R : Type u_1 M : Type u_2 N : Type u_3 N' : Type u_4 inst✝⁶ : CommRing R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup N inst✝³ : AddCommGroup N' inst✝² : Module R M inst✝¹ : Module R N inst✝ : Module R N' x : CliffordAlgebra 0 m : M hx : ↑(↑liftAlternating (ιMulti R)) x = x ⊢ ↑(↑liftAlternating (ιMulti R)) (↑(CliffordAlgebra.ι 0) m * x) = ↑(CliffordAlgebra.ι 0) m * x [PROOFSTEP] simp_rw [liftAlternating_ι_mul, ιMulti_succ_curryLeft, liftAlternating_comp, LinearMap.comp_apply, LinearMap.mulLeft_apply, hx] [GOAL] R : Type u_1 M : Type u_2 N : Type u_3 N' : Type u_4 inst✝⁶ : CommRing R inst✝⁵ : AddCommGroup M inst✝⁴ : AddCommGroup N inst✝³ : AddCommGroup N' inst✝² : Module R M inst✝¹ : Module R N inst✝ : Module R N' F : ExteriorAlgebra R M →ₗ[R] N ⊢ LinearMap.comp F (↑liftAlternating fun i => ιMulti R i) = F [PROOFSTEP] rw [liftAlternating_ιMulti, LinearMap.comp_id]
{"mathlib_filename": "Mathlib.LinearAlgebra.ExteriorAlgebra.OfAlternating", "llama_tokens": 27203}
[GOAL] k G : Type u inst✝¹ : CommRing k inst✝ : Monoid G ⊢ Linear k (Rep k G) [PROOFSTEP] infer_instance [GOAL] k G : Type u inst✝¹ : CommRing k inst✝ : Monoid G V : Rep k G ⊢ AddCommGroup (CoeSort.coe V) [PROOFSTEP] change AddCommGroup ((forget₂ (Rep k G) (ModuleCat k)).obj V) [GOAL] k G : Type u inst✝¹ : CommRing k inst✝ : Monoid G V : Rep k G ⊢ AddCommGroup ↑((forget₂ (Rep k G) (ModuleCat k)).obj V) [PROOFSTEP] infer_instance [GOAL] k G : Type u inst✝¹ : CommRing k inst✝ : Monoid G V : Rep k G ⊢ Module k (CoeSort.coe V) [PROOFSTEP] change Module k ((forget₂ (Rep k G) (ModuleCat k)).obj V) [GOAL] k G : Type u inst✝¹ : CommRing k inst✝ : Monoid G V : Rep k G ⊢ Module k ↑((forget₂ (Rep k G) (ModuleCat k)).obj V) [PROOFSTEP] infer_instance [GOAL] k G✝ : Type u inst✝² : CommRing k inst✝¹ : Monoid G✝ G : Type u inst✝ : Group G A : Rep k G g : G x : CoeSort.coe A ⊢ ↑(↑(ρ A) g⁻¹ * ↑(ρ A) g) x = x [PROOFSTEP] rw [← map_mul, inv_mul_self, map_one, LinearMap.one_apply] [GOAL] k G✝ : Type u inst✝² : CommRing k inst✝¹ : Monoid G✝ G : Type u inst✝ : Group G A : Rep k G g : G x : CoeSort.coe A ⊢ ↑(↑(ρ A) g * ↑(ρ A) g⁻¹) x = x [PROOFSTEP] rw [← map_mul, mul_inv_self, map_one, LinearMap.one_apply] [GOAL] k G : Type u inst✝¹ : CommRing k inst✝ : Monoid G X : Action (Type u) (MonCat.of G) g : G x : X.V ⊢ ↑(↑(ρ ((linearization k G).toLaxMonoidalFunctor.toFunctor.obj X)) g) (Finsupp.single x 1) = Finsupp.single (↑X.ρ g x) 1 [PROOFSTEP] rw [linearization_obj_ρ, Finsupp.lmapDomain_apply, Finsupp.mapDomain_single] [GOAL] k G : Type u inst✝¹ : CommRing k inst✝ : Monoid G X : Action (Type u) (MonCat.of G) g : G x : X.V r : k ⊢ ↑(↑(ρ ((linearization k G).toLaxMonoidalFunctor.toFunctor.obj X)) g) (Finsupp.single x r) = Finsupp.single (↑X.ρ g x) r [PROOFSTEP] rw [linearization_obj_ρ, Finsupp.lmapDomain_apply, Finsupp.mapDomain_single] [GOAL] k G : Type u inst✝¹ : CommRing k inst✝ : Monoid G X✝ Y✝ : Action (Type u) (MonCat.of G) f : X✝ ⟶ Y✝ X Y : Action (Type u) (MonCat.of G) ⊢ (inv (LaxMonoidalFunctor.μ (linearization k G).toLaxMonoidalFunctor X Y)).hom = ↑(LinearEquiv.symm (finsuppTensorFinsupp' k X.V Y.V)) [PROOFSTEP] rw [← Action.forget_map, Functor.map_inv] [GOAL] k G : Type u inst✝¹ : CommRing k inst✝ : Monoid G X✝ Y✝ : Action (Type u) (MonCat.of G) f : X✝ ⟶ Y✝ X Y : Action (Type u) (MonCat.of G) ⊢ inv ((Action.forget (ModuleCat k) (MonCat.of G)).map (LaxMonoidalFunctor.μ (linearization k G).toLaxMonoidalFunctor X Y)) = ↑(LinearEquiv.symm (finsuppTensorFinsupp' k X.V Y.V)) [PROOFSTEP] apply IsIso.inv_eq_of_hom_inv_id [GOAL] case hom_inv_id k G : Type u inst✝¹ : CommRing k inst✝ : Monoid G X✝ Y✝ : Action (Type u) (MonCat.of G) f : X✝ ⟶ Y✝ X Y : Action (Type u) (MonCat.of G) ⊢ (Action.forget (ModuleCat k) (MonCat.of G)).map (LaxMonoidalFunctor.μ (linearization k G).toLaxMonoidalFunctor X Y) ≫ ↑(LinearEquiv.symm (finsuppTensorFinsupp' k X.V Y.V)) = 𝟙 ((Action.forget (ModuleCat k) (MonCat.of G)).obj (MonoidalCategory.tensorObj ((linearization k G).toLaxMonoidalFunctor.toFunctor.obj X) ((linearization k G).toLaxMonoidalFunctor.toFunctor.obj Y))) [PROOFSTEP] exact LinearMap.ext fun x => LinearEquiv.symm_apply_apply (finsuppTensorFinsupp' k X.V Y.V) x [GOAL] k G : Type u inst✝¹ : CommRing k inst✝ : Monoid G X Y : Action (Type u) (MonCat.of G) f : X ⟶ Y A : Rep k G x : CoeSort.coe A g : ↑(MonCat.of G) ⊢ (↑(ofMulAction k G G).ρ g ≫ ↑(Finsupp.lift ((fun x => CoeSort.coe A) x) k G) fun g => ↑(↑(ρ A) g) x) = (↑(Finsupp.lift ((fun x => CoeSort.coe A) x) k G) fun g => ↑(↑(ρ A) g) x) ≫ ↑A.ρ g [PROOFSTEP] refine' Finsupp.lhom_ext' fun y => LinearMap.ext_ring _ /- Porting note: rest of broken proof was simpa only [LinearMap.comp_apply, ModuleCat.comp_def, Finsupp.lsingle_apply, Finsupp.lift_apply, Action_ρ_eq_ρ, of_ρ_apply, Representation.ofMulAction_single, Finsupp.sum_single_index, zero_smul, one_smul, smul_eq_mul, A.ρ.map_mul] -/ [GOAL] k G : Type u inst✝¹ : CommRing k inst✝ : Monoid G X Y : Action (Type u) (MonCat.of G) f : X ⟶ Y A : Rep k G x : CoeSort.coe A g : ↑(MonCat.of G) y : G ⊢ ↑(LinearMap.comp (↑(ofMulAction k G G).ρ g ≫ ↑(Finsupp.lift ((fun x => CoeSort.coe A) x) k G) fun g => ↑(↑(ρ A) g) x) (Finsupp.lsingle y)) 1 = ↑(LinearMap.comp ((↑(Finsupp.lift ((fun x => CoeSort.coe A) x) k G) fun g => ↑(↑(ρ A) g) x) ≫ ↑A.ρ g) (Finsupp.lsingle y)) 1 [PROOFSTEP] simp only [LinearMap.comp_apply, ModuleCat.comp_def, Finsupp.lsingle_apply] [GOAL] k G : Type u inst✝¹ : CommRing k inst✝ : Monoid G X Y : Action (Type u) (MonCat.of G) f : X ⟶ Y A : Rep k G x : CoeSort.coe A g : ↑(MonCat.of G) y : G ⊢ ↑(↑(Finsupp.lift (CoeSort.coe A) k G) fun g => ↑(↑(ρ A) g) x) (↑(↑(ofMulAction k G G).ρ g) (Finsupp.single y 1)) = ↑(↑A.ρ g) (↑(↑(Finsupp.lift (CoeSort.coe A) k G) fun g => ↑(↑(ρ A) g) x) (Finsupp.single y 1)) [PROOFSTEP] erw [Finsupp.lift_apply, Finsupp.lift_apply, Representation.ofMulAction_single (G := G)] [GOAL] k G : Type u inst✝¹ : CommRing k inst✝ : Monoid G X Y : Action (Type u) (MonCat.of G) f : X ⟶ Y A : Rep k G x : CoeSort.coe A g : ↑(MonCat.of G) y : G ⊢ (Finsupp.sum (Finsupp.single (g • y) 1) fun x_1 r => r • ↑(↑(ρ A) x_1) x) = ↑(↑A.ρ g) (Finsupp.sum (Finsupp.single y 1) fun x_1 r => r • ↑(↑(ρ A) x_1) x) [PROOFSTEP] simp only [Finsupp.sum_single_index, zero_smul, one_smul, smul_eq_mul, A.ρ.map_mul, of_ρ] [GOAL] k G : Type u inst✝¹ : CommRing k inst✝ : Monoid G X Y : Action (Type u) (MonCat.of G) f : X ⟶ Y A : Rep k G x : CoeSort.coe A g : ↑(MonCat.of G) y : G ⊢ ↑(↑(ρ A) g * ↑(ρ A) y) x = ↑(↑A.ρ g) (↑(↑(ρ A) y) x) [PROOFSTEP] rfl [GOAL] k G : Type u inst✝¹ : CommRing k inst✝ : Monoid G X Y : Action (Type u) (MonCat.of G) f : X ⟶ Y A : Rep k G x : CoeSort.coe A ⊢ ↑(leftRegularHom A x).hom (Finsupp.single 1 1) = x [PROOFSTEP] rw [leftRegularHom_hom, Finsupp.lift_apply, Finsupp.sum_single_index, one_smul, A.ρ.map_one, LinearMap.one_apply] [GOAL] k G : Type u inst✝¹ : CommRing k inst✝ : Monoid G X Y : Action (Type u) (MonCat.of G) f : X ⟶ Y A : Rep k G x : CoeSort.coe A ⊢ 0 • ↑(↑(ρ A) 1) x = 0 [PROOFSTEP] rw [zero_smul] [GOAL] k G : Type u inst✝¹ : CommRing k inst✝ : Monoid G X Y : Action (Type u) (MonCat.of G) f✝ : X ⟶ Y A : Rep k G f : ofMulAction k G G ⟶ A ⊢ (fun x => leftRegularHom A x) (AddHom.toFun { toAddHom := { toFun := fun f => ↑f.hom (Finsupp.single 1 1), map_add' := (_ : ∀ (x y : ofMulAction k G G ⟶ A), (fun f => ↑f.hom (Finsupp.single 1 1)) (x + y) = (fun f => ↑f.hom (Finsupp.single 1 1)) (x + y)) }, map_smul' := (_ : ∀ (r : k) (x : ofMulAction k G G ⟶ A), AddHom.toFun { toFun := fun f => ↑f.hom (Finsupp.single 1 1), map_add' := (_ : ∀ (x y : ofMulAction k G G ⟶ A), (fun f => ↑f.hom (Finsupp.single 1 1)) (x + y) = (fun f => ↑f.hom (Finsupp.single 1 1)) (x + y)) } (r • x) = AddHom.toFun { toFun := fun f => ↑f.hom (Finsupp.single 1 1), map_add' := (_ : ∀ (x y : ofMulAction k G G ⟶ A), (fun f => ↑f.hom (Finsupp.single 1 1)) (x + y) = (fun f => ↑f.hom (Finsupp.single 1 1)) (x + y)) } (r • x)) }.toAddHom f) = f [PROOFSTEP] refine' Action.Hom.ext _ _ (Finsupp.lhom_ext' fun x : G => LinearMap.ext_ring _) [GOAL] k G : Type u inst✝¹ : CommRing k inst✝ : Monoid G X Y : Action (Type u) (MonCat.of G) f✝ : X ⟶ Y A : Rep k G f : ofMulAction k G G ⟶ A x : G ⊢ ↑(LinearMap.comp ((fun x => leftRegularHom A x) (AddHom.toFun { toAddHom := { toFun := fun f => ↑f.hom (Finsupp.single 1 1), map_add' := (_ : ∀ (x y : ofMulAction k G G ⟶ A), (fun f => ↑f.hom (Finsupp.single 1 1)) (x + y) = (fun f => ↑f.hom (Finsupp.single 1 1)) (x + y)) }, map_smul' := (_ : ∀ (r : k) (x : ofMulAction k G G ⟶ A), AddHom.toFun { toFun := fun f => ↑f.hom (Finsupp.single 1 1), map_add' := (_ : ∀ (x y : ofMulAction k G G ⟶ A), (fun f => ↑f.hom (Finsupp.single 1 1)) (x + y) = (fun f => ↑f.hom (Finsupp.single 1 1)) (x + y)) } (r • x) = AddHom.toFun { toFun := fun f => ↑f.hom (Finsupp.single 1 1), map_add' := (_ : ∀ (x y : ofMulAction k G G ⟶ A), (fun f => ↑f.hom (Finsupp.single 1 1)) (x + y) = (fun f => ↑f.hom (Finsupp.single 1 1)) (x + y)) } (r • x)) }.toAddHom f)).hom (Finsupp.lsingle x)) 1 = ↑(LinearMap.comp f.hom (Finsupp.lsingle x)) 1 [PROOFSTEP] have : f.hom ((ofMulAction k G G).ρ x (Finsupp.single (1 : G) (1 : k))) = A.ρ x (f.hom (Finsupp.single (1 : G) (1 : k))) := LinearMap.ext_iff.1 (f.comm x) (Finsupp.single 1 1) /- Porting note: rest of broken proof was simp only [LinearMap.comp_apply, Finsupp.lsingle_apply, left_regular_hom_hom, Finsupp.lift_apply, Finsupp.sum_single_index, one_smul, ← this, zero_smul, of_ρ_apply, Representation.ofMulAction_single x (1 : G) (1 : k), smul_eq_mul, mul_one] -/ [GOAL] k G : Type u inst✝¹ : CommRing k inst✝ : Monoid G X Y : Action (Type u) (MonCat.of G) f✝ : X ⟶ Y A : Rep k G f : ofMulAction k G G ⟶ A x : G this : ↑f.hom (↑(↑(ρ (ofMulAction k G G)) x) (Finsupp.single 1 1)) = ↑(↑(ρ A) x) (↑f.hom (Finsupp.single 1 1)) ⊢ ↑(LinearMap.comp ((fun x => leftRegularHom A x) (AddHom.toFun { toAddHom := { toFun := fun f => ↑f.hom (Finsupp.single 1 1), map_add' := (_ : ∀ (x y : ofMulAction k G G ⟶ A), (fun f => ↑f.hom (Finsupp.single 1 1)) (x + y) = (fun f => ↑f.hom (Finsupp.single 1 1)) (x + y)) }, map_smul' := (_ : ∀ (r : k) (x : ofMulAction k G G ⟶ A), AddHom.toFun { toFun := fun f => ↑f.hom (Finsupp.single 1 1), map_add' := (_ : ∀ (x y : ofMulAction k G G ⟶ A), (fun f => ↑f.hom (Finsupp.single 1 1)) (x + y) = (fun f => ↑f.hom (Finsupp.single 1 1)) (x + y)) } (r • x) = AddHom.toFun { toFun := fun f => ↑f.hom (Finsupp.single 1 1), map_add' := (_ : ∀ (x y : ofMulAction k G G ⟶ A), (fun f => ↑f.hom (Finsupp.single 1 1)) (x + y) = (fun f => ↑f.hom (Finsupp.single 1 1)) (x + y)) } (r • x)) }.toAddHom f)).hom (Finsupp.lsingle x)) 1 = ↑(LinearMap.comp f.hom (Finsupp.lsingle x)) 1 [PROOFSTEP] simp only [LinearMap.comp_apply, Finsupp.lsingle_apply, leftRegularHom_hom] [GOAL] k G : Type u inst✝¹ : CommRing k inst✝ : Monoid G X Y : Action (Type u) (MonCat.of G) f✝ : X ⟶ Y A : Rep k G f : ofMulAction k G G ⟶ A x : G this : ↑f.hom (↑(↑(ρ (ofMulAction k G G)) x) (Finsupp.single 1 1)) = ↑(↑(ρ A) x) (↑f.hom (Finsupp.single 1 1)) ⊢ ↑(↑(Finsupp.lift (CoeSort.coe A) k G) fun g => ↑(↑(ρ A) g) (↑f.hom (Finsupp.single 1 1))) (Finsupp.single x 1) = ↑f.hom (Finsupp.single x 1) [PROOFSTEP] erw [Finsupp.lift_apply] [GOAL] k G : Type u inst✝¹ : CommRing k inst✝ : Monoid G X Y : Action (Type u) (MonCat.of G) f✝ : X ⟶ Y A : Rep k G f : ofMulAction k G G ⟶ A x : G this : ↑f.hom (↑(↑(ρ (ofMulAction k G G)) x) (Finsupp.single 1 1)) = ↑(↑(ρ A) x) (↑f.hom (Finsupp.single 1 1)) ⊢ (Finsupp.sum (Finsupp.single x 1) fun x r => r • ↑(↑(ρ A) x) (↑f.hom (Finsupp.single 1 1))) = ↑f.hom (Finsupp.single x 1) [PROOFSTEP] rw [Finsupp.sum_single_index, ← this, of_ρ_apply] [GOAL] k G : Type u inst✝¹ : CommRing k inst✝ : Monoid G X Y : Action (Type u) (MonCat.of G) f✝ : X ⟶ Y A : Rep k G f : ofMulAction k G G ⟶ A x : G this : ↑f.hom (↑(↑(ρ (ofMulAction k G G)) x) (Finsupp.single 1 1)) = ↑(↑(ρ A) x) (↑f.hom (Finsupp.single 1 1)) ⊢ 1 • ↑f.hom (↑(↑(Representation.ofMulAction k G G) x) (Finsupp.single 1 1)) = ↑f.hom (Finsupp.single x 1) k G : Type u inst✝¹ : CommRing k inst✝ : Monoid G X Y : Action (Type u) (MonCat.of G) f✝ : X ⟶ Y A : Rep k G f : ofMulAction k G G ⟶ A x : G this : ↑f.hom (↑(↑(ρ (ofMulAction k G G)) x) (Finsupp.single 1 1)) = ↑(↑(ρ A) x) (↑f.hom (Finsupp.single 1 1)) ⊢ 0 • ↑(↑(ρ A) x) (↑f.hom (Finsupp.single 1 1)) = 0 [PROOFSTEP] erw [Representation.ofMulAction_single x (1 : G) (1 : k)] [GOAL] k G : Type u inst✝¹ : CommRing k inst✝ : Monoid G X Y : Action (Type u) (MonCat.of G) f✝ : X ⟶ Y A : Rep k G f : ofMulAction k G G ⟶ A x : G this : ↑f.hom (↑(↑(ρ (ofMulAction k G G)) x) (Finsupp.single 1 1)) = ↑(↑(ρ A) x) (↑f.hom (Finsupp.single 1 1)) ⊢ 1 • ↑f.hom (Finsupp.single (x • 1) 1) = ↑f.hom (Finsupp.single x 1) k G : Type u inst✝¹ : CommRing k inst✝ : Monoid G X Y : Action (Type u) (MonCat.of G) f✝ : X ⟶ Y A : Rep k G f : ofMulAction k G G ⟶ A x : G this : ↑f.hom (↑(↑(ρ (ofMulAction k G G)) x) (Finsupp.single 1 1)) = ↑(↑(ρ A) x) (↑f.hom (Finsupp.single 1 1)) ⊢ 0 • ↑(↑(ρ A) x) (↑f.hom (Finsupp.single 1 1)) = 0 [PROOFSTEP] simp only [one_smul, smul_eq_mul, mul_one] [GOAL] k G : Type u inst✝¹ : CommRing k inst✝ : Monoid G X Y : Action (Type u) (MonCat.of G) f✝ : X ⟶ Y A : Rep k G f : ofMulAction k G G ⟶ A x : G this : ↑f.hom (↑(↑(ρ (ofMulAction k G G)) x) (Finsupp.single 1 1)) = ↑(↑(ρ A) x) (↑f.hom (Finsupp.single 1 1)) ⊢ 0 • ↑(↑(ρ A) x) (↑f.hom (Finsupp.single 1 1)) = 0 [PROOFSTEP] rw [zero_smul] [GOAL] k G : Type u inst✝¹ : CommRing k inst✝ : Monoid G X Y : Action (Type u) (MonCat.of G) f : X ⟶ Y A : Rep k G x : CoeSort.coe A g : G ⊢ ↑(↑(LinearEquiv.symm (leftRegularHomEquiv A)) x).hom (Finsupp.single g 1) = ↑(↑(ρ A) g) x [PROOFSTEP] rw [leftRegularHomEquiv_symm_apply, leftRegularHom_hom, Finsupp.lift_apply, Finsupp.sum_single_index, one_smul] [GOAL] k G : Type u inst✝¹ : CommRing k inst✝ : Monoid G X Y : Action (Type u) (MonCat.of G) f : X ⟶ Y A : Rep k G x : CoeSort.coe A g : G ⊢ 0 • ↑(↑(ρ A) g) x = 0 [PROOFSTEP] rw [zero_smul] [GOAL] k G : Type u inst✝¹ : CommRing k inst✝ : Group G A✝ B C A X Y : Rep k G f : X ⟶ Y g : ↑(MonCat.of G) x : ↑((fun B => of (Representation.linHom (ρ A) (ρ B))) X).V y : CoeSort.coe A ⊢ ↑(↑(↑((fun B => of (Representation.linHom (ρ A) (ρ B))) X).ρ g ≫ ModuleCat.ofHom (↑(LinearMap.llcomp k (CoeSort.coe A) ↑X.V ↑Y.V) f.hom)) x) y = ↑(↑(ModuleCat.ofHom (↑(LinearMap.llcomp k (CoeSort.coe A) ↑X.V ↑Y.V) f.hom) ≫ ↑((fun B => of (Representation.linHom (ρ A) (ρ B))) Y).ρ g) x) y [PROOFSTEP] show f.hom (X.ρ g _) = _ [GOAL] k G : Type u inst✝¹ : CommRing k inst✝ : Group G A✝ B C A X Y : Rep k G f : X ⟶ Y g : ↑(MonCat.of G) x : ↑((fun B => of (Representation.linHom (ρ A) (ρ B))) X).V y : CoeSort.coe A ⊢ ↑f.hom (↑(↑(ρ X) g) (↑(LinearMap.comp x (↑(ρ A) g⁻¹)) y)) = ↑(↑(ModuleCat.ofHom (↑(LinearMap.llcomp k (CoeSort.coe A) ↑X.V ↑Y.V) f.hom) ≫ ↑((fun B => of (Representation.linHom (ρ A) (ρ B))) Y).ρ g) x) y [PROOFSTEP] simp only [hom_comm_apply] [GOAL] k G : Type u inst✝¹ : CommRing k inst✝ : Group G A✝ B C A X Y : Rep k G f : X ⟶ Y g : ↑(MonCat.of G) x : ↑((fun B => of (Representation.linHom (ρ A) (ρ B))) X).V y : CoeSort.coe A ⊢ ↑(↑(ρ Y) g) (↑f.hom (↑(LinearMap.comp x (↑(ρ A) g⁻¹)) y)) = ↑(↑(ModuleCat.ofHom (↑(LinearMap.llcomp k (CoeSort.coe A) ↑X.V ↑Y.V) f.hom) ≫ ↑(of (Representation.linHom (ρ A) (ρ Y))).ρ g) x) y [PROOFSTEP] rfl [GOAL] k G : Type u inst✝¹ : CommRing k inst✝ : Group G A✝ B C A x✝ : Rep k G ⊢ { obj := fun B => of (Representation.linHom (ρ A) (ρ B)), map := fun {X Y} f => Hom.mk (ModuleCat.ofHom (↑(LinearMap.llcomp k (CoeSort.coe A) ↑X.V ↑Y.V) f.hom)) }.map (𝟙 x✝) = 𝟙 ({ obj := fun B => of (Representation.linHom (ρ A) (ρ B)), map := fun {X Y} f => Hom.mk (ModuleCat.ofHom (↑(LinearMap.llcomp k (CoeSort.coe A) ↑X.V ↑Y.V) f.hom)) }.obj x✝) [PROOFSTEP] ext [GOAL] case h.h k G : Type u inst✝¹ : CommRing k inst✝ : Group G A✝ B C A x✝¹ : Rep k G x✝ : ↑({ obj := fun B => of (Representation.linHom (ρ A) (ρ B)), map := fun {X Y} f => Hom.mk (ModuleCat.ofHom (↑(LinearMap.llcomp k (CoeSort.coe A) ↑X.V ↑Y.V) f.hom)) }.obj x✝¹).V ⊢ ↑({ obj := fun B => of (Representation.linHom (ρ A) (ρ B)), map := fun {X Y} f => Hom.mk (ModuleCat.ofHom (↑(LinearMap.llcomp k (CoeSort.coe A) ↑X.V ↑Y.V) f.hom)) }.map (𝟙 x✝¹)).hom x✝ = ↑(𝟙 ({ obj := fun B => of (Representation.linHom (ρ A) (ρ B)), map := fun {X Y} f => Hom.mk (ModuleCat.ofHom (↑(LinearMap.llcomp k (CoeSort.coe A) ↑X.V ↑Y.V) f.hom)) }.obj x✝¹)).hom x✝ [PROOFSTEP] rfl [GOAL] k G : Type u inst✝¹ : CommRing k inst✝ : Group G A✝ B C A X✝ Y✝ Z✝ : Rep k G x✝¹ : X✝ ⟶ Y✝ x✝ : Y✝ ⟶ Z✝ ⊢ { obj := fun B => of (Representation.linHom (ρ A) (ρ B)), map := fun {X Y} f => Hom.mk (ModuleCat.ofHom (↑(LinearMap.llcomp k (CoeSort.coe A) ↑X.V ↑Y.V) f.hom)) }.map (x✝¹ ≫ x✝) = { obj := fun B => of (Representation.linHom (ρ A) (ρ B)), map := fun {X Y} f => Hom.mk (ModuleCat.ofHom (↑(LinearMap.llcomp k (CoeSort.coe A) ↑X.V ↑Y.V) f.hom)) }.map x✝¹ ≫ { obj := fun B => of (Representation.linHom (ρ A) (ρ B)), map := fun {X Y} f => Hom.mk (ModuleCat.ofHom (↑(LinearMap.llcomp k (CoeSort.coe A) ↑X.V ↑Y.V) f.hom)) }.map x✝ [PROOFSTEP] ext [GOAL] case h.h k G : Type u inst✝¹ : CommRing k inst✝ : Group G A✝ B C A X✝ Y✝ Z✝ : Rep k G x✝² : X✝ ⟶ Y✝ x✝¹ : Y✝ ⟶ Z✝ x✝ : ↑({ obj := fun B => of (Representation.linHom (ρ A) (ρ B)), map := fun {X Y} f => Hom.mk (ModuleCat.ofHom (↑(LinearMap.llcomp k (CoeSort.coe A) ↑X.V ↑Y.V) f.hom)) }.obj X✝).V ⊢ ↑({ obj := fun B => of (Representation.linHom (ρ A) (ρ B)), map := fun {X Y} f => Hom.mk (ModuleCat.ofHom (↑(LinearMap.llcomp k (CoeSort.coe A) ↑X.V ↑Y.V) f.hom)) }.map (x✝² ≫ x✝¹)).hom x✝ = ↑({ obj := fun B => of (Representation.linHom (ρ A) (ρ B)), map := fun {X Y} f => Hom.mk (ModuleCat.ofHom (↑(LinearMap.llcomp k (CoeSort.coe A) ↑X.V ↑Y.V) f.hom)) }.map x✝² ≫ { obj := fun B => of (Representation.linHom (ρ A) (ρ B)), map := fun {X Y} f => Hom.mk (ModuleCat.ofHom (↑(LinearMap.llcomp k (CoeSort.coe A) ↑X.V ↑Y.V) f.hom)) }.map x✝¹).hom x✝ [PROOFSTEP] rfl [GOAL] k G : Type u inst✝¹ : CommRing k inst✝ : Group G A✝ B✝ C✝ A B C : Rep k G f : A ⊗ B ⟶ C g : ↑(MonCat.of G) ⊢ ↑B.ρ g ≫ LinearMap.flip (TensorProduct.curry f.hom) = LinearMap.flip (TensorProduct.curry f.hom) ≫ ↑((Rep.ihom A).obj C).ρ g [PROOFSTEP] refine' LinearMap.ext fun x => LinearMap.ext fun y => _ [GOAL] k G : Type u inst✝¹ : CommRing k inst✝ : Group G A✝ B✝ C✝ A B C : Rep k G f : A ⊗ B ⟶ C g : ↑(MonCat.of G) x : ↑B.V y : CoeSort.coe A ⊢ ↑(↑(↑B.ρ g ≫ LinearMap.flip (TensorProduct.curry f.hom)) x) y = ↑(↑(LinearMap.flip (TensorProduct.curry f.hom) ≫ ↑((Rep.ihom A).obj C).ρ g) x) y [PROOFSTEP] change f.hom (_ ⊗ₜ[k] _) = C.ρ g (f.hom (_ ⊗ₜ[k] _)) [GOAL] k G : Type u inst✝¹ : CommRing k inst✝ : Group G A✝ B✝ C✝ A B C : Rep k G f : A ⊗ B ⟶ C g : ↑(MonCat.of G) x : ↑B.V y : CoeSort.coe A ⊢ ↑f.hom (y ⊗ₜ[k] ↑(↑B.ρ g) x) = ↑(↑(ρ C) g) (↑f.hom (↑(↑(ρ A) g⁻¹) y ⊗ₜ[k] x)) [PROOFSTEP] rw [← hom_comm_apply] [GOAL] k G : Type u inst✝¹ : CommRing k inst✝ : Group G A✝ B✝ C✝ A B C : Rep k G f : A ⊗ B ⟶ C g : ↑(MonCat.of G) x : ↑B.V y : CoeSort.coe A ⊢ ↑f.hom (y ⊗ₜ[k] ↑(↑B.ρ g) x) = ↑f.hom (↑(↑(ρ (A ⊗ B)) g) (↑(↑(ρ A) g⁻¹) y ⊗ₜ[k] x)) [PROOFSTEP] change _ = f.hom ((A.ρ g * A.ρ g⁻¹) y ⊗ₜ[k] _) [GOAL] k G : Type u inst✝¹ : CommRing k inst✝ : Group G A✝ B✝ C✝ A B C : Rep k G f : A ⊗ B ⟶ C g : ↑(MonCat.of G) x : ↑B.V y : CoeSort.coe A ⊢ ↑f.hom (y ⊗ₜ[k] ↑(↑B.ρ g) x) = ↑f.hom (↑(↑(ρ A) g * ↑(ρ A) g⁻¹) y ⊗ₜ[k] ↑(((CategoryTheory.Equivalence.symm (functorCategoryEquivalence (ModuleCat k) (MonCat.of G))).inverse.obj B).map g) (↑(↑(ρ A) g⁻¹) y, x).snd) [PROOFSTEP] simp only [← map_mul, mul_inv_self, map_one] [GOAL] k G : Type u inst✝¹ : CommRing k inst✝ : Group G A✝ B✝ C✝ A B C : Rep k G f : A ⊗ B ⟶ C g : ↑(MonCat.of G) x : ↑B.V y : CoeSort.coe A ⊢ ↑f.hom (y ⊗ₜ[k] ↑(↑B.ρ g) x) = ↑f.hom (↑1 y ⊗ₜ[k] ↑(((CategoryTheory.Equivalence.symm (functorCategoryEquivalence (ModuleCat k) (MonCat.of G))).inverse.obj B).map g) x) [PROOFSTEP] rfl [GOAL] k G : Type u inst✝¹ : CommRing k inst✝ : Group G A✝ B✝ C✝ A B C : Rep k G f : B ⟶ (Rep.ihom A).obj C g : ↑(MonCat.of G) x : ↑(((CategoryTheory.Equivalence.symm (functorCategoryEquivalence (ModuleCat k) (MonCat.of G))).inverse.obj A).obj PUnit.unit) y : ↑(((CategoryTheory.Equivalence.symm (functorCategoryEquivalence (ModuleCat k) (MonCat.of G))).inverse.obj B).obj PUnit.unit) ⊢ ↑(↑(A ⊗ B).ρ g ≫ ↑(TensorProduct.uncurry k (CoeSort.coe A) (↑B.V) (CoeSort.coe C)) (LinearMap.flip f.hom)) (x ⊗ₜ[k] y) = ↑(↑(TensorProduct.uncurry k (CoeSort.coe A) (↑B.V) (CoeSort.coe C)) (LinearMap.flip f.hom) ≫ ↑C.ρ g) (x ⊗ₜ[k] y) [PROOFSTEP] change TensorProduct.uncurry k _ _ _ f.hom.flip (A.ρ g x ⊗ₜ[k] B.ρ g y) = C.ρ g (TensorProduct.uncurry k _ _ _ f.hom.flip (x ⊗ₜ[k] y)) [GOAL] k G : Type u inst✝¹ : CommRing k inst✝ : Group G A✝ B✝ C✝ A B C : Rep k G f : B ⟶ (Rep.ihom A).obj C g : ↑(MonCat.of G) x : ↑(((CategoryTheory.Equivalence.symm (functorCategoryEquivalence (ModuleCat k) (MonCat.of G))).inverse.obj A).obj PUnit.unit) y : ↑(((CategoryTheory.Equivalence.symm (functorCategoryEquivalence (ModuleCat k) (MonCat.of G))).inverse.obj B).obj PUnit.unit) ⊢ ↑(↑(TensorProduct.uncurry k (CoeSort.coe A) (↑B.V) (CoeSort.coe C)) (LinearMap.flip f.hom)) (↑(↑(ρ A) g) x ⊗ₜ[k] ↑(↑(ρ B) g) y) = ↑(↑(ρ C) g) (↑(↑(TensorProduct.uncurry k (CoeSort.coe A) (↑B.V) (CoeSort.coe C)) (LinearMap.flip f.hom)) (x ⊗ₜ[k] y)) [PROOFSTEP] rw [TensorProduct.uncurry_apply, LinearMap.flip_apply, hom_comm_apply, Rep.ihom_obj_ρ_apply, LinearMap.comp_apply, LinearMap.comp_apply, ρ_inv_self_apply] [GOAL] k G : Type u inst✝¹ : CommRing k inst✝ : Group G A✝ B✝ C✝ A B C : Rep k G f : B ⟶ (Rep.ihom A).obj C g : ↑(MonCat.of G) x : ↑(((CategoryTheory.Equivalence.symm (functorCategoryEquivalence (ModuleCat k) (MonCat.of G))).inverse.obj A).obj PUnit.unit) y : ↑(((CategoryTheory.Equivalence.symm (functorCategoryEquivalence (ModuleCat k) (MonCat.of G))).inverse.obj B).obj PUnit.unit) ⊢ ↑(↑(ρ C) g) (↑(↑f.hom y) x) = ↑(↑(ρ C) g) (↑(↑(TensorProduct.uncurry k (CoeSort.coe A) (↑B.V) (CoeSort.coe C)) (LinearMap.flip f.hom)) (x ⊗ₜ[k] y)) [PROOFSTEP] rfl [GOAL] k G : Type u inst✝¹ : CommRing k inst✝ : Group G A✝ B✝ C✝ A B C : Rep k G f : B ⟶ (Rep.ihom A).obj C ⊢ (fun f => Hom.mk (LinearMap.flip (TensorProduct.curry f.hom))) ((fun f => Hom.mk (↑(TensorProduct.uncurry k (CoeSort.coe A) (↑B.V) (CoeSort.coe C)) (LinearMap.flip f.hom))) f) = f [PROOFSTEP] ext [GOAL] case h.h k G : Type u inst✝¹ : CommRing k inst✝ : Group G A✝ B✝ C✝ A B C : Rep k G f : B ⟶ (Rep.ihom A).obj C x✝ : ↑B.V ⊢ ↑((fun f => Hom.mk (LinearMap.flip (TensorProduct.curry f.hom))) ((fun f => Hom.mk (↑(TensorProduct.uncurry k (CoeSort.coe A) (↑B.V) (CoeSort.coe C)) (LinearMap.flip f.hom))) f)).hom x✝ = ↑f.hom x✝ [PROOFSTEP] rfl [GOAL] k G : Type u inst✝¹ : CommRing k inst✝ : Group G A✝ B✝ C A B : Rep k G ⊢ (NatTrans.app (ihom.ev A) B).hom = ↑(TensorProduct.uncurry k (CoeSort.coe A) (CoeSort.coe A →ₗ[k] CoeSort.coe B) (CoeSort.coe B)) (LinearMap.flip LinearMap.id) [PROOFSTEP] ext [GOAL] case h k G : Type u inst✝¹ : CommRing k inst✝ : Group G A✝ B✝ C A B : Rep k G x✝ : ↑((ihom A ⋙ tensorLeft A).obj B).V ⊢ ↑(NatTrans.app (ihom.ev A) B).hom x✝ = ↑(↑(TensorProduct.uncurry k (CoeSort.coe A) (CoeSort.coe A →ₗ[k] CoeSort.coe B) (CoeSort.coe B)) (LinearMap.flip LinearMap.id)) x✝ [PROOFSTEP] rfl [GOAL] k G : Type u inst✝¹ : CommRing k inst✝ : Monoid G ⊢ SymmetricCategory (Rep k G) [PROOFSTEP] infer_instance [GOAL] k G : Type u inst✝¹ : CommRing k inst✝ : Monoid G ⊢ MonoidalPreadditive (Rep k G) [PROOFSTEP] infer_instance [GOAL] k G : Type u inst✝¹ : CommRing k inst✝ : Monoid G ⊢ MonoidalLinear k (Rep k G) [PROOFSTEP] infer_instance [GOAL] k✝ G✝ : Type u inst✝⁷ : CommRing k✝ inst✝⁶ : Monoid G✝ k : Type u_1 G : Type u_2 inst✝⁵ : CommRing k inst✝⁴ : Monoid G V : Type u_3 W : Type u_4 inst✝³ : AddCommGroup V inst✝² : AddCommGroup W inst✝¹ : Module k V inst✝ : Module k W ρ : G →* V →ₗ[k] V σ : G →* W →ₗ[k] W f : V →ₗ[k] W w : ∀ (g : G), LinearMap.comp f (↑ρ g) = LinearMap.comp (↑σ g) f r : MonoidAlgebra k G x : V ⊢ ↑f (↑(↑(↑(MonoidAlgebra.lift k G (V →ₗ[k] V)) ρ) r) x) = ↑(↑(↑(MonoidAlgebra.lift k G (W →ₗ[k] W)) σ) r) (↑f x) [PROOFSTEP] apply MonoidAlgebra.induction_on r [GOAL] case hM k✝ G✝ : Type u inst✝⁷ : CommRing k✝ inst✝⁶ : Monoid G✝ k : Type u_1 G : Type u_2 inst✝⁵ : CommRing k inst✝⁴ : Monoid G V : Type u_3 W : Type u_4 inst✝³ : AddCommGroup V inst✝² : AddCommGroup W inst✝¹ : Module k V inst✝ : Module k W ρ : G →* V →ₗ[k] V σ : G →* W →ₗ[k] W f : V →ₗ[k] W w : ∀ (g : G), LinearMap.comp f (↑ρ g) = LinearMap.comp (↑σ g) f r : MonoidAlgebra k G x : V ⊢ ∀ (g : G), ↑f (↑(↑(↑(MonoidAlgebra.lift k G (V →ₗ[k] V)) ρ) (↑(MonoidAlgebra.of k G) g)) x) = ↑(↑(↑(MonoidAlgebra.lift k G (W →ₗ[k] W)) σ) (↑(MonoidAlgebra.of k G) g)) (↑f x) [PROOFSTEP] intro g [GOAL] case hM k✝ G✝ : Type u inst✝⁷ : CommRing k✝ inst✝⁶ : Monoid G✝ k : Type u_1 G : Type u_2 inst✝⁵ : CommRing k inst✝⁴ : Monoid G V : Type u_3 W : Type u_4 inst✝³ : AddCommGroup V inst✝² : AddCommGroup W inst✝¹ : Module k V inst✝ : Module k W ρ : G →* V →ₗ[k] V σ : G →* W →ₗ[k] W f : V →ₗ[k] W w : ∀ (g : G), LinearMap.comp f (↑ρ g) = LinearMap.comp (↑σ g) f r : MonoidAlgebra k G x : V g : G ⊢ ↑f (↑(↑(↑(MonoidAlgebra.lift k G (V →ₗ[k] V)) ρ) (↑(MonoidAlgebra.of k G) g)) x) = ↑(↑(↑(MonoidAlgebra.lift k G (W →ₗ[k] W)) σ) (↑(MonoidAlgebra.of k G) g)) (↑f x) [PROOFSTEP] simp only [one_smul, MonoidAlgebra.lift_single, MonoidAlgebra.of_apply] [GOAL] case hM k✝ G✝ : Type u inst✝⁷ : CommRing k✝ inst✝⁶ : Monoid G✝ k : Type u_1 G : Type u_2 inst✝⁵ : CommRing k inst✝⁴ : Monoid G V : Type u_3 W : Type u_4 inst✝³ : AddCommGroup V inst✝² : AddCommGroup W inst✝¹ : Module k V inst✝ : Module k W ρ : G →* V →ₗ[k] V σ : G →* W →ₗ[k] W f : V →ₗ[k] W w : ∀ (g : G), LinearMap.comp f (↑ρ g) = LinearMap.comp (↑σ g) f r : MonoidAlgebra k G x : V g : G ⊢ ↑f (↑(↑ρ g) x) = ↑(↑σ g) (↑f x) [PROOFSTEP] exact LinearMap.congr_fun (w g) x [GOAL] case hadd k✝ G✝ : Type u inst✝⁷ : CommRing k✝ inst✝⁶ : Monoid G✝ k : Type u_1 G : Type u_2 inst✝⁵ : CommRing k inst✝⁴ : Monoid G V : Type u_3 W : Type u_4 inst✝³ : AddCommGroup V inst✝² : AddCommGroup W inst✝¹ : Module k V inst✝ : Module k W ρ : G →* V →ₗ[k] V σ : G →* W →ₗ[k] W f : V →ₗ[k] W w : ∀ (g : G), LinearMap.comp f (↑ρ g) = LinearMap.comp (↑σ g) f r : MonoidAlgebra k G x : V ⊢ ∀ (f_1 g : MonoidAlgebra k G), ↑f (↑(↑(↑(MonoidAlgebra.lift k G (V →ₗ[k] V)) ρ) f_1) x) = ↑(↑(↑(MonoidAlgebra.lift k G (W →ₗ[k] W)) σ) f_1) (↑f x) → ↑f (↑(↑(↑(MonoidAlgebra.lift k G (V →ₗ[k] V)) ρ) g) x) = ↑(↑(↑(MonoidAlgebra.lift k G (W →ₗ[k] W)) σ) g) (↑f x) → ↑f (↑(↑(↑(MonoidAlgebra.lift k G (V →ₗ[k] V)) ρ) (f_1 + g)) x) = ↑(↑(↑(MonoidAlgebra.lift k G (W →ₗ[k] W)) σ) (f_1 + g)) (↑f x) [PROOFSTEP] intro g h gw hw [GOAL] case hadd k✝ G✝ : Type u inst✝⁷ : CommRing k✝ inst✝⁶ : Monoid G✝ k : Type u_1 G : Type u_2 inst✝⁵ : CommRing k inst✝⁴ : Monoid G V : Type u_3 W : Type u_4 inst✝³ : AddCommGroup V inst✝² : AddCommGroup W inst✝¹ : Module k V inst✝ : Module k W ρ : G →* V →ₗ[k] V σ : G →* W →ₗ[k] W f : V →ₗ[k] W w : ∀ (g : G), LinearMap.comp f (↑ρ g) = LinearMap.comp (↑σ g) f r : MonoidAlgebra k G x : V g h : MonoidAlgebra k G gw : ↑f (↑(↑(↑(MonoidAlgebra.lift k G (V →ₗ[k] V)) ρ) g) x) = ↑(↑(↑(MonoidAlgebra.lift k G (W →ₗ[k] W)) σ) g) (↑f x) hw : ↑f (↑(↑(↑(MonoidAlgebra.lift k G (V →ₗ[k] V)) ρ) h) x) = ↑(↑(↑(MonoidAlgebra.lift k G (W →ₗ[k] W)) σ) h) (↑f x) ⊢ ↑f (↑(↑(↑(MonoidAlgebra.lift k G (V →ₗ[k] V)) ρ) (g + h)) x) = ↑(↑(↑(MonoidAlgebra.lift k G (W →ₗ[k] W)) σ) (g + h)) (↑f x) [PROOFSTEP] simp only [map_add, add_left_inj, LinearMap.add_apply, hw, gw] [GOAL] case hsmul k✝ G✝ : Type u inst✝⁷ : CommRing k✝ inst✝⁶ : Monoid G✝ k : Type u_1 G : Type u_2 inst✝⁵ : CommRing k inst✝⁴ : Monoid G V : Type u_3 W : Type u_4 inst✝³ : AddCommGroup V inst✝² : AddCommGroup W inst✝¹ : Module k V inst✝ : Module k W ρ : G →* V →ₗ[k] V σ : G →* W →ₗ[k] W f : V →ₗ[k] W w : ∀ (g : G), LinearMap.comp f (↑ρ g) = LinearMap.comp (↑σ g) f r : MonoidAlgebra k G x : V ⊢ ∀ (r : k) (f_1 : MonoidAlgebra k G), ↑f (↑(↑(↑(MonoidAlgebra.lift k G (V →ₗ[k] V)) ρ) f_1) x) = ↑(↑(↑(MonoidAlgebra.lift k G (W →ₗ[k] W)) σ) f_1) (↑f x) → ↑f (↑(↑(↑(MonoidAlgebra.lift k G (V →ₗ[k] V)) ρ) (r • f_1)) x) = ↑(↑(↑(MonoidAlgebra.lift k G (W →ₗ[k] W)) σ) (r • f_1)) (↑f x) [PROOFSTEP] intro r g w [GOAL] case hsmul k✝ G✝ : Type u inst✝⁷ : CommRing k✝ inst✝⁶ : Monoid G✝ k : Type u_1 G : Type u_2 inst✝⁵ : CommRing k inst✝⁴ : Monoid G V : Type u_3 W : Type u_4 inst✝³ : AddCommGroup V inst✝² : AddCommGroup W inst✝¹ : Module k V inst✝ : Module k W ρ : G →* V →ₗ[k] V σ : G →* W →ₗ[k] W f : V →ₗ[k] W w✝ : ∀ (g : G), LinearMap.comp f (↑ρ g) = LinearMap.comp (↑σ g) f r✝ : MonoidAlgebra k G x : V r : k g : MonoidAlgebra k G w : ↑f (↑(↑(↑(MonoidAlgebra.lift k G (V →ₗ[k] V)) ρ) g) x) = ↑(↑(↑(MonoidAlgebra.lift k G (W →ₗ[k] W)) σ) g) (↑f x) ⊢ ↑f (↑(↑(↑(MonoidAlgebra.lift k G (V →ₗ[k] V)) ρ) (r • g)) x) = ↑(↑(↑(MonoidAlgebra.lift k G (W →ₗ[k] W)) σ) (r • g)) (↑f x) [PROOFSTEP] simp only [AlgHom.map_smul, w, RingHom.id_apply, LinearMap.smul_apply, LinearMap.map_smulₛₗ] [GOAL] k G : Type u inst✝¹ : CommRing k inst✝ : Monoid G X✝ Y✝ : ModuleCat (MonoidAlgebra k G) f : X✝ ⟶ Y✝ g : ↑(MonCat.of G) ⊢ ↑((fun M => of (Representation.ofModule ↑M)) X✝).ρ g ≫ { toAddHom := f.toAddHom, map_smul' := (_ : ∀ (r : k) (x : ↑((fun M => of (Representation.ofModule ↑M)) X✝).V), ↑f (↑(algebraMap k (MonoidAlgebra k G)) r • x) = ↑(algebraMap k (MonoidAlgebra k G)) r • ↑f x) } = { toAddHom := f.toAddHom, map_smul' := (_ : ∀ (r : k) (x : ↑((fun M => of (Representation.ofModule ↑M)) X✝).V), ↑f (↑(algebraMap k (MonoidAlgebra k G)) r • x) = ↑(algebraMap k (MonoidAlgebra k G)) r • ↑f x) } ≫ ↑((fun M => of (Representation.ofModule ↑M)) Y✝).ρ g [PROOFSTEP] ext [GOAL] case h k G : Type u inst✝¹ : CommRing k inst✝ : Monoid G X✝ Y✝ : ModuleCat (MonoidAlgebra k G) f : X✝ ⟶ Y✝ g : ↑(MonCat.of G) x✝ : ↑((fun M => of (Representation.ofModule ↑M)) X✝).V ⊢ ↑(↑((fun M => of (Representation.ofModule ↑M)) X✝).ρ g ≫ { toAddHom := f.toAddHom, map_smul' := (_ : ∀ (r : k) (x : ↑((fun M => of (Representation.ofModule ↑M)) X✝).V), ↑f (↑(algebraMap k (MonoidAlgebra k G)) r • x) = ↑(algebraMap k (MonoidAlgebra k G)) r • ↑f x) }) x✝ = ↑({ toAddHom := f.toAddHom, map_smul' := (_ : ∀ (r : k) (x : ↑((fun M => of (Representation.ofModule ↑M)) X✝).V), ↑f (↑(algebraMap k (MonoidAlgebra k G)) r • x) = ↑(algebraMap k (MonoidAlgebra k G)) r • ↑f x) } ≫ ↑((fun M => of (Representation.ofModule ↑M)) Y✝).ρ g) x✝ [PROOFSTEP] apply f.map_smul [GOAL] k G : Type u inst✝¹ : CommRing k inst✝ : Monoid G M : ModuleCat (MonoidAlgebra k G) ⊢ ↑((ofModuleMonoidAlgebra ⋙ toModuleMonoidAlgebra).obj M) ≃+ ↑M [PROOFSTEP] dsimp [ofModuleMonoidAlgebra, toModuleMonoidAlgebra] [GOAL] k G : Type u inst✝¹ : CommRing k inst✝ : Monoid G M : ModuleCat (MonoidAlgebra k G) ⊢ ↑(ModuleCat.of (MonoidAlgebra k G) (Representation.asModule (Representation.ofModule ↑M))) ≃+ ↑M [PROOFSTEP] refine' (Representation.ofModule M).asModuleEquiv.trans (RestrictScalars.addEquiv k (MonoidAlgebra k G) _) [GOAL] k G : Type u inst✝¹ : CommRing k inst✝ : Monoid G V : Rep k G ⊢ CoeSort.coe V ≃+ CoeSort.coe ((toModuleMonoidAlgebra ⋙ ofModuleMonoidAlgebra).obj V) [PROOFSTEP] dsimp [ofModuleMonoidAlgebra, toModuleMonoidAlgebra] [GOAL] k G : Type u inst✝¹ : CommRing k inst✝ : Monoid G V : Rep k G ⊢ CoeSort.coe V ≃+ RestrictScalars k (MonoidAlgebra k G) ↑(ModuleCat.of (MonoidAlgebra k G) (Representation.asModule (ρ V))) [PROOFSTEP] refine' V.ρ.asModuleEquiv.symm.trans _ [GOAL] k G : Type u inst✝¹ : CommRing k inst✝ : Monoid G V : Rep k G ⊢ Representation.asModule (ρ V) ≃+ RestrictScalars k (MonoidAlgebra k G) ↑(ModuleCat.of (MonoidAlgebra k G) (Representation.asModule (ρ V))) [PROOFSTEP] exact (RestrictScalars.addEquiv _ _ _).symm [GOAL] k G : Type u inst✝¹ : CommRing k inst✝ : Monoid G M : ModuleCat (MonoidAlgebra k G) src✝ : ↑((ofModuleMonoidAlgebra ⋙ toModuleMonoidAlgebra).obj M) ≃+ ↑M := counitIsoAddEquiv r : MonoidAlgebra k G x : ↑((ofModuleMonoidAlgebra ⋙ toModuleMonoidAlgebra).obj M) ⊢ AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (x y : ↑((ofModuleMonoidAlgebra ⋙ toModuleMonoidAlgebra).obj M)), Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) } (r • x) = ↑(RingHom.id (MonoidAlgebra k G)) r • AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (x y : ↑((ofModuleMonoidAlgebra ⋙ toModuleMonoidAlgebra).obj M)), Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) } x [PROOFSTEP] dsimp [counitIsoAddEquiv] /- Porting note: rest of broken proof was `simp`. -/ [GOAL] k G : Type u inst✝¹ : CommRing k inst✝ : Monoid G M : ModuleCat (MonoidAlgebra k G) src✝ : ↑((ofModuleMonoidAlgebra ⋙ toModuleMonoidAlgebra).obj M) ≃+ ↑M := counitIsoAddEquiv r : MonoidAlgebra k G x : ↑((ofModuleMonoidAlgebra ⋙ toModuleMonoidAlgebra).obj M) ⊢ ↑↑(AddEquiv.trans (Representation.asModuleEquiv (Representation.ofModule ↑M)) (RestrictScalars.addEquiv k (MonoidAlgebra k G) ↑M)) (r • x) = r • ↑↑(AddEquiv.trans (Representation.asModuleEquiv (Representation.ofModule ↑M)) (RestrictScalars.addEquiv k (MonoidAlgebra k G) ↑M)) x [PROOFSTEP] rw [AddEquiv.coe_toEquiv, AddEquiv.trans_apply] [GOAL] k G : Type u inst✝¹ : CommRing k inst✝ : Monoid G M : ModuleCat (MonoidAlgebra k G) src✝ : ↑((ofModuleMonoidAlgebra ⋙ toModuleMonoidAlgebra).obj M) ≃+ ↑M := counitIsoAddEquiv r : MonoidAlgebra k G x : ↑((ofModuleMonoidAlgebra ⋙ toModuleMonoidAlgebra).obj M) ⊢ ↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) ↑M) (↑(Representation.asModuleEquiv (Representation.ofModule ↑M)) (r • x)) = r • ↑(AddEquiv.trans (Representation.asModuleEquiv (Representation.ofModule ↑M)) (RestrictScalars.addEquiv k (MonoidAlgebra k G) ↑M)) x [PROOFSTEP] erw [Representation.ofModule_asAlgebraHom_apply_apply] [GOAL] k G : Type u inst✝¹ : CommRing k inst✝ : Monoid G M : ModuleCat (MonoidAlgebra k G) src✝ : ↑((ofModuleMonoidAlgebra ⋙ toModuleMonoidAlgebra).obj M) ≃+ ↑M := counitIsoAddEquiv r : MonoidAlgebra k G x : ↑((ofModuleMonoidAlgebra ⋙ toModuleMonoidAlgebra).obj M) ⊢ ↑(AddEquiv.symm (RestrictScalars.addEquiv k (MonoidAlgebra k G) ((fun x => ↑M) x))) (r • ↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) ↑M) x) = r • ↑(AddEquiv.trans (Representation.asModuleEquiv (Representation.ofModule ↑M)) (RestrictScalars.addEquiv k (MonoidAlgebra k G) ↑M)) x [PROOFSTEP] exact AddEquiv.symm_apply_apply _ _ [GOAL] k G : Type u inst✝¹ : CommRing k inst✝ : Monoid G V : Rep k G g : G x : CoeSort.coe V ⊢ ↑unitIsoAddEquiv (AddHom.toFun (↑(ρ V) g).toAddHom x) = AddHom.toFun (↑(ρ (ofModuleMonoidAlgebra.obj (toModuleMonoidAlgebra.obj V))) g).toAddHom (↑unitIsoAddEquiv x) [PROOFSTEP] dsimp [unitIsoAddEquiv, ofModuleMonoidAlgebra, toModuleMonoidAlgebra] /- Porting note: rest of broken proof was simp only [AddEquiv.apply_eq_iff_eq, AddEquiv.apply_symm_apply, Representation.asModuleEquiv_symm_map_rho, Representation.ofModule_asModule_act] -/ [GOAL] k G : Type u inst✝¹ : CommRing k inst✝ : Monoid G V : Rep k G g : G x : CoeSort.coe V ⊢ ↑(AddEquiv.trans (AddEquiv.symm (Representation.asModuleEquiv (ρ V))) (AddEquiv.symm (RestrictScalars.addEquiv k (MonoidAlgebra k G) (Representation.asModule (ρ V))))) (↑(↑(ρ V) g) x) = AddHom.toFun (↑(Representation.ofModule ↑(ModuleCat.of (MonoidAlgebra k G) (Representation.asModule (ρ V)))) g).toAddHom (↑(AddEquiv.trans (AddEquiv.symm (Representation.asModuleEquiv (ρ V))) (AddEquiv.symm (RestrictScalars.addEquiv k (MonoidAlgebra k G) (Representation.asModule (ρ V))))) x) [PROOFSTEP] erw [Representation.asModuleEquiv_symm_map_rho] [GOAL] k G : Type u inst✝¹ : CommRing k inst✝ : Monoid G V : Rep k G g : G x : CoeSort.coe V ⊢ ↑(MonoidAlgebra.of k G) g • ↑(AddEquiv.symm (Representation.asModuleEquiv (ρ V))) x = AddHom.toFun (↑(Representation.ofModule ↑(ModuleCat.of (MonoidAlgebra k G) (Representation.asModule (ρ V)))) g).toAddHom (↑(AddEquiv.trans (AddEquiv.symm (Representation.asModuleEquiv (ρ V))) (AddEquiv.symm (RestrictScalars.addEquiv k (MonoidAlgebra k G) (Representation.asModule (ρ V))))) x) [PROOFSTEP] rfl [GOAL] k G : Type u inst✝¹ : CommRing k inst✝ : Monoid G V : Rep k G src✝ : CoeSort.coe V ≃+ CoeSort.coe ((toModuleMonoidAlgebra ⋙ ofModuleMonoidAlgebra).obj V) := unitIsoAddEquiv r : k x : ↑V.V ⊢ AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (x y : CoeSort.coe V), Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) } (r • x) = ↑(RingHom.id k) r • AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (x y : CoeSort.coe V), Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) } x [PROOFSTEP] dsimp [unitIsoAddEquiv] /- Porting note: rest of broken proof was simp only [Representation.asModuleEquiv_symm_map_smul, RestrictScalars.addEquiv_symm_map_algebraMap_smul] -/ [GOAL] k G : Type u inst✝¹ : CommRing k inst✝ : Monoid G V : Rep k G src✝ : CoeSort.coe V ≃+ CoeSort.coe ((toModuleMonoidAlgebra ⋙ ofModuleMonoidAlgebra).obj V) := unitIsoAddEquiv r : k x : ↑V.V ⊢ ↑↑(AddEquiv.trans (AddEquiv.symm (Representation.asModuleEquiv (ρ V))) (AddEquiv.symm (RestrictScalars.addEquiv k (MonoidAlgebra k G) (Representation.asModule (ρ V))))) (r • x) = r • ↑↑(AddEquiv.trans (AddEquiv.symm (Representation.asModuleEquiv (ρ V))) (AddEquiv.symm (RestrictScalars.addEquiv k (MonoidAlgebra k G) (Representation.asModule (ρ V))))) x [PROOFSTEP] rw [AddEquiv.coe_toEquiv, AddEquiv.trans_apply, Representation.asModuleEquiv_symm_map_smul, RestrictScalars.addEquiv_symm_map_algebraMap_smul] [GOAL] k G : Type u inst✝¹ : CommRing k inst✝ : Monoid G V : Rep k G src✝ : CoeSort.coe V ≃+ CoeSort.coe ((toModuleMonoidAlgebra ⋙ ofModuleMonoidAlgebra).obj V) := unitIsoAddEquiv r : k x : ↑V.V ⊢ r • ↑(AddEquiv.symm (RestrictScalars.addEquiv k (MonoidAlgebra k G) (Representation.asModule (ρ V)))) (↑(AddEquiv.symm (Representation.asModuleEquiv (ρ V))) x) = r • ↑(AddEquiv.trans (AddEquiv.symm (Representation.asModuleEquiv (ρ V))) (AddEquiv.symm (RestrictScalars.addEquiv k (MonoidAlgebra k G) (Representation.asModule (ρ V))))) x [PROOFSTEP] rfl [GOAL] k G : Type u inst✝¹ : CommRing k inst✝ : Monoid G V : Rep k G g : ↑(MonCat.of G) ⊢ ↑V.ρ g ≫ (LinearEquiv.toModuleIso' (let src := unitIsoAddEquiv; { toLinearMap := { toAddHom := { toFun := src.toFun, map_add' := (_ : ∀ (x y : CoeSort.coe V), Equiv.toFun src.toEquiv (x + y) = Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y) }, map_smul' := (_ : ∀ (r : k) (x : ↑V.V), AddHom.toFun { toFun := src.toFun, map_add' := (_ : ∀ (x y : CoeSort.coe V), Equiv.toFun src.toEquiv (x + y) = Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y) } (r • x) = ↑(RingHom.id k) r • AddHom.toFun { toFun := src.toFun, map_add' := (_ : ∀ (x y : CoeSort.coe V), Equiv.toFun src.toEquiv (x + y) = Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y) } x) }, invFun := src.invFun, left_inv := (_ : Function.LeftInverse src.invFun src.toFun), right_inv := (_ : Function.RightInverse src.invFun src.toFun) })).hom = (LinearEquiv.toModuleIso' (let src := unitIsoAddEquiv; { toLinearMap := { toAddHom := { toFun := src.toFun, map_add' := (_ : ∀ (x y : CoeSort.coe V), Equiv.toFun src.toEquiv (x + y) = Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y) }, map_smul' := (_ : ∀ (r : k) (x : ↑V.V), AddHom.toFun { toFun := src.toFun, map_add' := (_ : ∀ (x y : CoeSort.coe V), Equiv.toFun src.toEquiv (x + y) = Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y) } (r • x) = ↑(RingHom.id k) r • AddHom.toFun { toFun := src.toFun, map_add' := (_ : ∀ (x y : CoeSort.coe V), Equiv.toFun src.toEquiv (x + y) = Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y) } x) }, invFun := src.invFun, left_inv := (_ : Function.LeftInverse src.invFun src.toFun), right_inv := (_ : Function.RightInverse src.invFun src.toFun) })).hom ≫ ↑((toModuleMonoidAlgebra ⋙ ofModuleMonoidAlgebra).obj V).ρ g [PROOFSTEP] ext [GOAL] case h k G : Type u inst✝¹ : CommRing k inst✝ : Monoid G V : Rep k G g : ↑(MonCat.of G) x✝ : ↑V.V ⊢ ↑(↑V.ρ g ≫ (LinearEquiv.toModuleIso' (let src := unitIsoAddEquiv; { toLinearMap := { toAddHom := { toFun := src.toFun, map_add' := (_ : ∀ (x y : CoeSort.coe V), Equiv.toFun src.toEquiv (x + y) = Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y) }, map_smul' := (_ : ∀ (r : k) (x : ↑V.V), AddHom.toFun { toFun := src.toFun, map_add' := (_ : ∀ (x y : CoeSort.coe V), Equiv.toFun src.toEquiv (x + y) = Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y) } (r • x) = ↑(RingHom.id k) r • AddHom.toFun { toFun := src.toFun, map_add' := (_ : ∀ (x y : CoeSort.coe V), Equiv.toFun src.toEquiv (x + y) = Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y) } x) }, invFun := src.invFun, left_inv := (_ : Function.LeftInverse src.invFun src.toFun), right_inv := (_ : Function.RightInverse src.invFun src.toFun) })).hom) x✝ = ↑((LinearEquiv.toModuleIso' (let src := unitIsoAddEquiv; { toLinearMap := { toAddHom := { toFun := src.toFun, map_add' := (_ : ∀ (x y : CoeSort.coe V), Equiv.toFun src.toEquiv (x + y) = Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y) }, map_smul' := (_ : ∀ (r : k) (x : ↑V.V), AddHom.toFun { toFun := src.toFun, map_add' := (_ : ∀ (x y : CoeSort.coe V), Equiv.toFun src.toEquiv (x + y) = Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y) } (r • x) = ↑(RingHom.id k) r • AddHom.toFun { toFun := src.toFun, map_add' := (_ : ∀ (x y : CoeSort.coe V), Equiv.toFun src.toEquiv (x + y) = Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y) } x) }, invFun := src.invFun, left_inv := (_ : Function.LeftInverse src.invFun src.toFun), right_inv := (_ : Function.RightInverse src.invFun src.toFun) })).hom ≫ ↑((toModuleMonoidAlgebra ⋙ ofModuleMonoidAlgebra).obj V).ρ g) x✝ [PROOFSTEP] apply unit_iso_comm [GOAL] k G : Type u inst✝¹ : CommRing k inst✝ : Monoid G ⊢ ∀ {X Y : Rep k G} (f : X ⟶ Y), (𝟭 (Rep k G)).map f ≫ ((fun V => unitIso V) Y).hom = ((fun V => unitIso V) X).hom ≫ (toModuleMonoidAlgebra ⋙ ofModuleMonoidAlgebra).map f [PROOFSTEP] aesop_cat [GOAL] k G : Type u inst✝¹ : CommRing k inst✝ : Monoid G ⊢ ∀ {X Y : ModuleCat (MonoidAlgebra k G)} (f : X ⟶ Y), (ofModuleMonoidAlgebra ⋙ toModuleMonoidAlgebra).map f ≫ ((fun M => counitIso M) Y).hom = ((fun M => counitIso M) X).hom ≫ (𝟭 (ModuleCat (MonoidAlgebra k G))).map f [PROOFSTEP] aesop_cat
{"mathlib_filename": "Mathlib.RepresentationTheory.Rep", "llama_tokens": 21932}
[GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing S inst✝⁴ : Algebra R S inst✝³ : IsDomain R inst✝² : IsPrincipalIdealRing R inst✝¹ : IsDomain S inst✝ : Finite ι I : Ideal S b : Basis ι R S hI : I ≠ ⊥ ⊢ (S ⧸ I) ≃ₗ[R] (i : ι) → R ⧸ span {smithCoeffs b I hI i} [PROOFSTEP] haveI := Fintype.ofFinite ι [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing S inst✝⁴ : Algebra R S inst✝³ : IsDomain R inst✝² : IsPrincipalIdealRing R inst✝¹ : IsDomain S inst✝ : Finite ι I : Ideal S b : Basis ι R S hI : I ≠ ⊥ this : Fintype ι ⊢ (S ⧸ I) ≃ₗ[R] (i : ι) → R ⧸ span {smithCoeffs b I hI i} [PROOFSTEP] let a := I.smithCoeffs b hI [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing S inst✝⁴ : Algebra R S inst✝³ : IsDomain R inst✝² : IsPrincipalIdealRing R inst✝¹ : IsDomain S inst✝ : Finite ι I : Ideal S b : Basis ι R S hI : I ≠ ⊥ this : Fintype ι a : ι → R := smithCoeffs b I hI ⊢ (S ⧸ I) ≃ₗ[R] (i : ι) → R ⧸ span {smithCoeffs b I hI i} [PROOFSTEP] let b' := I.ringBasis b hI [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing S inst✝⁴ : Algebra R S inst✝³ : IsDomain R inst✝² : IsPrincipalIdealRing R inst✝¹ : IsDomain S inst✝ : Finite ι I : Ideal S b : Basis ι R S hI : I ≠ ⊥ this : Fintype ι a : ι → R := smithCoeffs b I hI b' : Basis ι R S := ringBasis b I hI ⊢ (S ⧸ I) ≃ₗ[R] (i : ι) → R ⧸ span {smithCoeffs b I hI i} [PROOFSTEP] let ab := I.selfBasis b hI [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing S inst✝⁴ : Algebra R S inst✝³ : IsDomain R inst✝² : IsPrincipalIdealRing R inst✝¹ : IsDomain S inst✝ : Finite ι I : Ideal S b : Basis ι R S hI : I ≠ ⊥ this : Fintype ι a : ι → R := smithCoeffs b I hI b' : Basis ι R S := ringBasis b I hI ab : Basis ι R { x // x ∈ I } := selfBasis b I hI ⊢ (S ⧸ I) ≃ₗ[R] (i : ι) → R ⧸ span {smithCoeffs b I hI i} [PROOFSTEP] have ab_eq := I.selfBasis_def b hI [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing S inst✝⁴ : Algebra R S inst✝³ : IsDomain R inst✝² : IsPrincipalIdealRing R inst✝¹ : IsDomain S inst✝ : Finite ι I : Ideal S b : Basis ι R S hI : I ≠ ⊥ this : Fintype ι a : ι → R := smithCoeffs b I hI b' : Basis ι R S := ringBasis b I hI ab : Basis ι R { x // x ∈ I } := selfBasis b I hI ab_eq : ∀ (i : ι), ↑(↑(selfBasis b I hI) i) = smithCoeffs b I hI i • ↑(ringBasis b I hI) i ⊢ (S ⧸ I) ≃ₗ[R] (i : ι) → R ⧸ span {smithCoeffs b I hI i} [PROOFSTEP] have mem_I_iff : ∀ x, x ∈ I ↔ ∀ i, a i ∣ b'.repr x i := by intro x rw [ab.mem_ideal_iff'] simp_rw [ab_eq] have : ∀ (c : ι → R) (i), b'.repr (∑ j : ι, c j • a j • b' j) i = a i * c i := by intro c i simp only [← MulAction.mul_smul, b'.repr_sum_self, mul_comm] constructor · rintro ⟨c, rfl⟩ i exact ⟨c i, this c i⟩ · rintro ha choose c hc using ha exact ⟨c, b'.ext_elem fun i => Eq.trans (hc i) (this c i).symm⟩ -- Now we map everything through the linear equiv `S ≃ₗ (ι → R)`, -- which maps `I` to `I' := Π i, a i ℤ`. [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing S inst✝⁴ : Algebra R S inst✝³ : IsDomain R inst✝² : IsPrincipalIdealRing R inst✝¹ : IsDomain S inst✝ : Finite ι I : Ideal S b : Basis ι R S hI : I ≠ ⊥ this : Fintype ι a : ι → R := smithCoeffs b I hI b' : Basis ι R S := ringBasis b I hI ab : Basis ι R { x // x ∈ I } := selfBasis b I hI ab_eq : ∀ (i : ι), ↑(↑(selfBasis b I hI) i) = smithCoeffs b I hI i • ↑(ringBasis b I hI) i ⊢ ∀ (x : S), x ∈ I ↔ ∀ (i : ι), a i ∣ ↑(↑b'.repr x) i [PROOFSTEP] intro x [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing S inst✝⁴ : Algebra R S inst✝³ : IsDomain R inst✝² : IsPrincipalIdealRing R inst✝¹ : IsDomain S inst✝ : Finite ι I : Ideal S b : Basis ι R S hI : I ≠ ⊥ this : Fintype ι a : ι → R := smithCoeffs b I hI b' : Basis ι R S := ringBasis b I hI ab : Basis ι R { x // x ∈ I } := selfBasis b I hI ab_eq : ∀ (i : ι), ↑(↑(selfBasis b I hI) i) = smithCoeffs b I hI i • ↑(ringBasis b I hI) i x : S ⊢ x ∈ I ↔ ∀ (i : ι), a i ∣ ↑(↑b'.repr x) i [PROOFSTEP] rw [ab.mem_ideal_iff'] [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing S inst✝⁴ : Algebra R S inst✝³ : IsDomain R inst✝² : IsPrincipalIdealRing R inst✝¹ : IsDomain S inst✝ : Finite ι I : Ideal S b : Basis ι R S hI : I ≠ ⊥ this : Fintype ι a : ι → R := smithCoeffs b I hI b' : Basis ι R S := ringBasis b I hI ab : Basis ι R { x // x ∈ I } := selfBasis b I hI ab_eq : ∀ (i : ι), ↑(↑(selfBasis b I hI) i) = smithCoeffs b I hI i • ↑(ringBasis b I hI) i x : S ⊢ (∃ c, x = ∑ i : ι, c i • ↑(↑ab i)) ↔ ∀ (i : ι), a i ∣ ↑(↑b'.repr x) i [PROOFSTEP] simp_rw [ab_eq] [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing S inst✝⁴ : Algebra R S inst✝³ : IsDomain R inst✝² : IsPrincipalIdealRing R inst✝¹ : IsDomain S inst✝ : Finite ι I : Ideal S b : Basis ι R S hI : I ≠ ⊥ this : Fintype ι a : ι → R := smithCoeffs b I hI b' : Basis ι R S := ringBasis b I hI ab : Basis ι R { x // x ∈ I } := selfBasis b I hI ab_eq : ∀ (i : ι), ↑(↑(selfBasis b I hI) i) = smithCoeffs b I hI i • ↑(ringBasis b I hI) i x : S ⊢ (∃ c, x = ∑ x : ι, c x • smithCoeffs b I hI x • ↑(ringBasis b I hI) x) ↔ ∀ (i : ι), smithCoeffs b I hI i ∣ ↑(↑(ringBasis b I hI).repr x) i [PROOFSTEP] have : ∀ (c : ι → R) (i), b'.repr (∑ j : ι, c j • a j • b' j) i = a i * c i := by intro c i simp only [← MulAction.mul_smul, b'.repr_sum_self, mul_comm] [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing S inst✝⁴ : Algebra R S inst✝³ : IsDomain R inst✝² : IsPrincipalIdealRing R inst✝¹ : IsDomain S inst✝ : Finite ι I : Ideal S b : Basis ι R S hI : I ≠ ⊥ this : Fintype ι a : ι → R := smithCoeffs b I hI b' : Basis ι R S := ringBasis b I hI ab : Basis ι R { x // x ∈ I } := selfBasis b I hI ab_eq : ∀ (i : ι), ↑(↑(selfBasis b I hI) i) = smithCoeffs b I hI i • ↑(ringBasis b I hI) i x : S ⊢ ∀ (c : ι → R) (i : ι), ↑(↑b'.repr (∑ j : ι, c j • a j • ↑b' j)) i = a i * c i [PROOFSTEP] intro c i [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing S inst✝⁴ : Algebra R S inst✝³ : IsDomain R inst✝² : IsPrincipalIdealRing R inst✝¹ : IsDomain S inst✝ : Finite ι I : Ideal S b : Basis ι R S hI : I ≠ ⊥ this : Fintype ι a : ι → R := smithCoeffs b I hI b' : Basis ι R S := ringBasis b I hI ab : Basis ι R { x // x ∈ I } := selfBasis b I hI ab_eq : ∀ (i : ι), ↑(↑(selfBasis b I hI) i) = smithCoeffs b I hI i • ↑(ringBasis b I hI) i x : S c : ι → R i : ι ⊢ ↑(↑b'.repr (∑ j : ι, c j • a j • ↑b' j)) i = a i * c i [PROOFSTEP] simp only [← MulAction.mul_smul, b'.repr_sum_self, mul_comm] [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing S inst✝⁴ : Algebra R S inst✝³ : IsDomain R inst✝² : IsPrincipalIdealRing R inst✝¹ : IsDomain S inst✝ : Finite ι I : Ideal S b : Basis ι R S hI : I ≠ ⊥ this✝ : Fintype ι a : ι → R := smithCoeffs b I hI b' : Basis ι R S := ringBasis b I hI ab : Basis ι R { x // x ∈ I } := selfBasis b I hI ab_eq : ∀ (i : ι), ↑(↑(selfBasis b I hI) i) = smithCoeffs b I hI i • ↑(ringBasis b I hI) i x : S this : ∀ (c : ι → R) (i : ι), ↑(↑b'.repr (∑ j : ι, c j • a j • ↑b' j)) i = a i * c i ⊢ (∃ c, x = ∑ x : ι, c x • smithCoeffs b I hI x • ↑(ringBasis b I hI) x) ↔ ∀ (i : ι), smithCoeffs b I hI i ∣ ↑(↑(ringBasis b I hI).repr x) i [PROOFSTEP] constructor [GOAL] case mp ι : Type u_1 R : Type u_2 S : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing S inst✝⁴ : Algebra R S inst✝³ : IsDomain R inst✝² : IsPrincipalIdealRing R inst✝¹ : IsDomain S inst✝ : Finite ι I : Ideal S b : Basis ι R S hI : I ≠ ⊥ this✝ : Fintype ι a : ι → R := smithCoeffs b I hI b' : Basis ι R S := ringBasis b I hI ab : Basis ι R { x // x ∈ I } := selfBasis b I hI ab_eq : ∀ (i : ι), ↑(↑(selfBasis b I hI) i) = smithCoeffs b I hI i • ↑(ringBasis b I hI) i x : S this : ∀ (c : ι → R) (i : ι), ↑(↑b'.repr (∑ j : ι, c j • a j • ↑b' j)) i = a i * c i ⊢ (∃ c, x = ∑ x : ι, c x • smithCoeffs b I hI x • ↑(ringBasis b I hI) x) → ∀ (i : ι), smithCoeffs b I hI i ∣ ↑(↑(ringBasis b I hI).repr x) i [PROOFSTEP] rintro ⟨c, rfl⟩ i [GOAL] case mp.intro ι : Type u_1 R : Type u_2 S : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing S inst✝⁴ : Algebra R S inst✝³ : IsDomain R inst✝² : IsPrincipalIdealRing R inst✝¹ : IsDomain S inst✝ : Finite ι I : Ideal S b : Basis ι R S hI : I ≠ ⊥ this✝ : Fintype ι a : ι → R := smithCoeffs b I hI b' : Basis ι R S := ringBasis b I hI ab : Basis ι R { x // x ∈ I } := selfBasis b I hI ab_eq : ∀ (i : ι), ↑(↑(selfBasis b I hI) i) = smithCoeffs b I hI i • ↑(ringBasis b I hI) i this : ∀ (c : ι → R) (i : ι), ↑(↑b'.repr (∑ j : ι, c j • a j • ↑b' j)) i = a i * c i c : ι → R i : ι ⊢ smithCoeffs b I hI i ∣ ↑(↑(ringBasis b I hI).repr (∑ x : ι, c x • smithCoeffs b I hI x • ↑(ringBasis b I hI) x)) i [PROOFSTEP] exact ⟨c i, this c i⟩ [GOAL] case mpr ι : Type u_1 R : Type u_2 S : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing S inst✝⁴ : Algebra R S inst✝³ : IsDomain R inst✝² : IsPrincipalIdealRing R inst✝¹ : IsDomain S inst✝ : Finite ι I : Ideal S b : Basis ι R S hI : I ≠ ⊥ this✝ : Fintype ι a : ι → R := smithCoeffs b I hI b' : Basis ι R S := ringBasis b I hI ab : Basis ι R { x // x ∈ I } := selfBasis b I hI ab_eq : ∀ (i : ι), ↑(↑(selfBasis b I hI) i) = smithCoeffs b I hI i • ↑(ringBasis b I hI) i x : S this : ∀ (c : ι → R) (i : ι), ↑(↑b'.repr (∑ j : ι, c j • a j • ↑b' j)) i = a i * c i ⊢ (∀ (i : ι), smithCoeffs b I hI i ∣ ↑(↑(ringBasis b I hI).repr x) i) → ∃ c, x = ∑ x : ι, c x • smithCoeffs b I hI x • ↑(ringBasis b I hI) x [PROOFSTEP] rintro ha [GOAL] case mpr ι : Type u_1 R : Type u_2 S : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing S inst✝⁴ : Algebra R S inst✝³ : IsDomain R inst✝² : IsPrincipalIdealRing R inst✝¹ : IsDomain S inst✝ : Finite ι I : Ideal S b : Basis ι R S hI : I ≠ ⊥ this✝ : Fintype ι a : ι → R := smithCoeffs b I hI b' : Basis ι R S := ringBasis b I hI ab : Basis ι R { x // x ∈ I } := selfBasis b I hI ab_eq : ∀ (i : ι), ↑(↑(selfBasis b I hI) i) = smithCoeffs b I hI i • ↑(ringBasis b I hI) i x : S this : ∀ (c : ι → R) (i : ι), ↑(↑b'.repr (∑ j : ι, c j • a j • ↑b' j)) i = a i * c i ha : ∀ (i : ι), smithCoeffs b I hI i ∣ ↑(↑(ringBasis b I hI).repr x) i ⊢ ∃ c, x = ∑ x : ι, c x • smithCoeffs b I hI x • ↑(ringBasis b I hI) x [PROOFSTEP] choose c hc using ha [GOAL] case mpr ι : Type u_1 R : Type u_2 S : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing S inst✝⁴ : Algebra R S inst✝³ : IsDomain R inst✝² : IsPrincipalIdealRing R inst✝¹ : IsDomain S inst✝ : Finite ι I : Ideal S b : Basis ι R S hI : I ≠ ⊥ this✝ : Fintype ι a : ι → R := smithCoeffs b I hI b' : Basis ι R S := ringBasis b I hI ab : Basis ι R { x // x ∈ I } := selfBasis b I hI ab_eq : ∀ (i : ι), ↑(↑(selfBasis b I hI) i) = smithCoeffs b I hI i • ↑(ringBasis b I hI) i x : S this : ∀ (c : ι → R) (i : ι), ↑(↑b'.repr (∑ j : ι, c j • a j • ↑b' j)) i = a i * c i c : ι → R hc : ∀ (i : ι), ↑(↑(ringBasis b I hI).repr x) i = smithCoeffs b I hI i * c i ⊢ ∃ c, x = ∑ x : ι, c x • smithCoeffs b I hI x • ↑(ringBasis b I hI) x [PROOFSTEP] exact ⟨c, b'.ext_elem fun i => Eq.trans (hc i) (this c i).symm⟩ -- Now we map everything through the linear equiv `S ≃ₗ (ι → R)`, -- which maps `I` to `I' := Π i, a i ℤ`. [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing S inst✝⁴ : Algebra R S inst✝³ : IsDomain R inst✝² : IsPrincipalIdealRing R inst✝¹ : IsDomain S inst✝ : Finite ι I : Ideal S b : Basis ι R S hI : I ≠ ⊥ this : Fintype ι a : ι → R := smithCoeffs b I hI b' : Basis ι R S := ringBasis b I hI ab : Basis ι R { x // x ∈ I } := selfBasis b I hI ab_eq : ∀ (i : ι), ↑(↑(selfBasis b I hI) i) = smithCoeffs b I hI i • ↑(ringBasis b I hI) i mem_I_iff : ∀ (x : S), x ∈ I ↔ ∀ (i : ι), a i ∣ ↑(↑b'.repr x) i ⊢ (S ⧸ I) ≃ₗ[R] (i : ι) → R ⧸ span {smithCoeffs b I hI i} [PROOFSTEP] let I' : Submodule R (ι → R) := Submodule.pi Set.univ fun i => span ({a i} : Set R) [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing S inst✝⁴ : Algebra R S inst✝³ : IsDomain R inst✝² : IsPrincipalIdealRing R inst✝¹ : IsDomain S inst✝ : Finite ι I : Ideal S b : Basis ι R S hI : I ≠ ⊥ this : Fintype ι a : ι → R := smithCoeffs b I hI b' : Basis ι R S := ringBasis b I hI ab : Basis ι R { x // x ∈ I } := selfBasis b I hI ab_eq : ∀ (i : ι), ↑(↑(selfBasis b I hI) i) = smithCoeffs b I hI i • ↑(ringBasis b I hI) i mem_I_iff : ∀ (x : S), x ∈ I ↔ ∀ (i : ι), a i ∣ ↑(↑b'.repr x) i I' : Submodule R (ι → R) := Submodule.pi Set.univ fun i => span {a i} ⊢ (S ⧸ I) ≃ₗ[R] (i : ι) → R ⧸ span {smithCoeffs b I hI i} [PROOFSTEP] have : Submodule.map (b'.equivFun : S →ₗ[R] ι → R) (I.restrictScalars R) = I' := by ext x simp only [Submodule.mem_map, Submodule.mem_pi, mem_span_singleton, Set.mem_univ, Submodule.restrictScalars_mem, mem_I_iff, smul_eq_mul, forall_true_left, LinearEquiv.coe_coe, Basis.equivFun_apply] constructor · rintro ⟨y, hy, rfl⟩ i exact hy i · rintro hdvd refine' ⟨∑ i, x i • b' i, fun i => _, _⟩ <;> rw [b'.repr_sum_self] · exact hdvd i [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing S inst✝⁴ : Algebra R S inst✝³ : IsDomain R inst✝² : IsPrincipalIdealRing R inst✝¹ : IsDomain S inst✝ : Finite ι I : Ideal S b : Basis ι R S hI : I ≠ ⊥ this : Fintype ι a : ι → R := smithCoeffs b I hI b' : Basis ι R S := ringBasis b I hI ab : Basis ι R { x // x ∈ I } := selfBasis b I hI ab_eq : ∀ (i : ι), ↑(↑(selfBasis b I hI) i) = smithCoeffs b I hI i • ↑(ringBasis b I hI) i mem_I_iff : ∀ (x : S), x ∈ I ↔ ∀ (i : ι), a i ∣ ↑(↑b'.repr x) i I' : Submodule R (ι → R) := Submodule.pi Set.univ fun i => span {a i} ⊢ Submodule.map (↑(Basis.equivFun b')) (Submodule.restrictScalars R I) = I' [PROOFSTEP] ext x [GOAL] case h ι : Type u_1 R : Type u_2 S : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing S inst✝⁴ : Algebra R S inst✝³ : IsDomain R inst✝² : IsPrincipalIdealRing R inst✝¹ : IsDomain S inst✝ : Finite ι I : Ideal S b : Basis ι R S hI : I ≠ ⊥ this : Fintype ι a : ι → R := smithCoeffs b I hI b' : Basis ι R S := ringBasis b I hI ab : Basis ι R { x // x ∈ I } := selfBasis b I hI ab_eq : ∀ (i : ι), ↑(↑(selfBasis b I hI) i) = smithCoeffs b I hI i • ↑(ringBasis b I hI) i mem_I_iff : ∀ (x : S), x ∈ I ↔ ∀ (i : ι), a i ∣ ↑(↑b'.repr x) i I' : Submodule R (ι → R) := Submodule.pi Set.univ fun i => span {a i} x : ι → R ⊢ x ∈ Submodule.map (↑(Basis.equivFun b')) (Submodule.restrictScalars R I) ↔ x ∈ I' [PROOFSTEP] simp only [Submodule.mem_map, Submodule.mem_pi, mem_span_singleton, Set.mem_univ, Submodule.restrictScalars_mem, mem_I_iff, smul_eq_mul, forall_true_left, LinearEquiv.coe_coe, Basis.equivFun_apply] [GOAL] case h ι : Type u_1 R : Type u_2 S : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing S inst✝⁴ : Algebra R S inst✝³ : IsDomain R inst✝² : IsPrincipalIdealRing R inst✝¹ : IsDomain S inst✝ : Finite ι I : Ideal S b : Basis ι R S hI : I ≠ ⊥ this : Fintype ι a : ι → R := smithCoeffs b I hI b' : Basis ι R S := ringBasis b I hI ab : Basis ι R { x // x ∈ I } := selfBasis b I hI ab_eq : ∀ (i : ι), ↑(↑(selfBasis b I hI) i) = smithCoeffs b I hI i • ↑(ringBasis b I hI) i mem_I_iff : ∀ (x : S), x ∈ I ↔ ∀ (i : ι), a i ∣ ↑(↑b'.repr x) i I' : Submodule R (ι → R) := Submodule.pi Set.univ fun i => span {a i} x : ι → R ⊢ (∃ y, (∀ (i : ι), smithCoeffs b I hI i ∣ ↑(↑(ringBasis b I hI).repr y) i) ∧ ↑(↑(ringBasis b I hI).repr y) = x) ↔ ∀ (i : ι), smithCoeffs b I hI i ∣ x i [PROOFSTEP] constructor [GOAL] case h.mp ι : Type u_1 R : Type u_2 S : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing S inst✝⁴ : Algebra R S inst✝³ : IsDomain R inst✝² : IsPrincipalIdealRing R inst✝¹ : IsDomain S inst✝ : Finite ι I : Ideal S b : Basis ι R S hI : I ≠ ⊥ this : Fintype ι a : ι → R := smithCoeffs b I hI b' : Basis ι R S := ringBasis b I hI ab : Basis ι R { x // x ∈ I } := selfBasis b I hI ab_eq : ∀ (i : ι), ↑(↑(selfBasis b I hI) i) = smithCoeffs b I hI i • ↑(ringBasis b I hI) i mem_I_iff : ∀ (x : S), x ∈ I ↔ ∀ (i : ι), a i ∣ ↑(↑b'.repr x) i I' : Submodule R (ι → R) := Submodule.pi Set.univ fun i => span {a i} x : ι → R ⊢ (∃ y, (∀ (i : ι), smithCoeffs b I hI i ∣ ↑(↑(ringBasis b I hI).repr y) i) ∧ ↑(↑(ringBasis b I hI).repr y) = x) → ∀ (i : ι), smithCoeffs b I hI i ∣ x i [PROOFSTEP] rintro ⟨y, hy, rfl⟩ i [GOAL] case h.mp.intro.intro ι : Type u_1 R : Type u_2 S : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing S inst✝⁴ : Algebra R S inst✝³ : IsDomain R inst✝² : IsPrincipalIdealRing R inst✝¹ : IsDomain S inst✝ : Finite ι I : Ideal S b : Basis ι R S hI : I ≠ ⊥ this : Fintype ι a : ι → R := smithCoeffs b I hI b' : Basis ι R S := ringBasis b I hI ab : Basis ι R { x // x ∈ I } := selfBasis b I hI ab_eq : ∀ (i : ι), ↑(↑(selfBasis b I hI) i) = smithCoeffs b I hI i • ↑(ringBasis b I hI) i mem_I_iff : ∀ (x : S), x ∈ I ↔ ∀ (i : ι), a i ∣ ↑(↑b'.repr x) i I' : Submodule R (ι → R) := Submodule.pi Set.univ fun i => span {a i} y : S hy : ∀ (i : ι), smithCoeffs b I hI i ∣ ↑(↑(ringBasis b I hI).repr y) i i : ι ⊢ smithCoeffs b I hI i ∣ ↑(↑(ringBasis b I hI).repr y) i [PROOFSTEP] exact hy i [GOAL] case h.mpr ι : Type u_1 R : Type u_2 S : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing S inst✝⁴ : Algebra R S inst✝³ : IsDomain R inst✝² : IsPrincipalIdealRing R inst✝¹ : IsDomain S inst✝ : Finite ι I : Ideal S b : Basis ι R S hI : I ≠ ⊥ this : Fintype ι a : ι → R := smithCoeffs b I hI b' : Basis ι R S := ringBasis b I hI ab : Basis ι R { x // x ∈ I } := selfBasis b I hI ab_eq : ∀ (i : ι), ↑(↑(selfBasis b I hI) i) = smithCoeffs b I hI i • ↑(ringBasis b I hI) i mem_I_iff : ∀ (x : S), x ∈ I ↔ ∀ (i : ι), a i ∣ ↑(↑b'.repr x) i I' : Submodule R (ι → R) := Submodule.pi Set.univ fun i => span {a i} x : ι → R ⊢ (∀ (i : ι), smithCoeffs b I hI i ∣ x i) → ∃ y, (∀ (i : ι), smithCoeffs b I hI i ∣ ↑(↑(ringBasis b I hI).repr y) i) ∧ ↑(↑(ringBasis b I hI).repr y) = x [PROOFSTEP] rintro hdvd [GOAL] case h.mpr ι : Type u_1 R : Type u_2 S : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing S inst✝⁴ : Algebra R S inst✝³ : IsDomain R inst✝² : IsPrincipalIdealRing R inst✝¹ : IsDomain S inst✝ : Finite ι I : Ideal S b : Basis ι R S hI : I ≠ ⊥ this : Fintype ι a : ι → R := smithCoeffs b I hI b' : Basis ι R S := ringBasis b I hI ab : Basis ι R { x // x ∈ I } := selfBasis b I hI ab_eq : ∀ (i : ι), ↑(↑(selfBasis b I hI) i) = smithCoeffs b I hI i • ↑(ringBasis b I hI) i mem_I_iff : ∀ (x : S), x ∈ I ↔ ∀ (i : ι), a i ∣ ↑(↑b'.repr x) i I' : Submodule R (ι → R) := Submodule.pi Set.univ fun i => span {a i} x : ι → R hdvd : ∀ (i : ι), smithCoeffs b I hI i ∣ x i ⊢ ∃ y, (∀ (i : ι), smithCoeffs b I hI i ∣ ↑(↑(ringBasis b I hI).repr y) i) ∧ ↑(↑(ringBasis b I hI).repr y) = x [PROOFSTEP] refine' ⟨∑ i, x i • b' i, fun i => _, _⟩ [GOAL] case h.mpr.refine'_1 ι : Type u_1 R : Type u_2 S : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing S inst✝⁴ : Algebra R S inst✝³ : IsDomain R inst✝² : IsPrincipalIdealRing R inst✝¹ : IsDomain S inst✝ : Finite ι I : Ideal S b : Basis ι R S hI : I ≠ ⊥ this : Fintype ι a : ι → R := smithCoeffs b I hI b' : Basis ι R S := ringBasis b I hI ab : Basis ι R { x // x ∈ I } := selfBasis b I hI ab_eq : ∀ (i : ι), ↑(↑(selfBasis b I hI) i) = smithCoeffs b I hI i • ↑(ringBasis b I hI) i mem_I_iff : ∀ (x : S), x ∈ I ↔ ∀ (i : ι), a i ∣ ↑(↑b'.repr x) i I' : Submodule R (ι → R) := Submodule.pi Set.univ fun i => span {a i} x : ι → R hdvd : ∀ (i : ι), smithCoeffs b I hI i ∣ x i i : ι ⊢ smithCoeffs b I hI i ∣ ↑(↑(ringBasis b I hI).repr (∑ i : ι, x i • ↑b' i)) i [PROOFSTEP] rw [b'.repr_sum_self] [GOAL] case h.mpr.refine'_2 ι : Type u_1 R : Type u_2 S : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing S inst✝⁴ : Algebra R S inst✝³ : IsDomain R inst✝² : IsPrincipalIdealRing R inst✝¹ : IsDomain S inst✝ : Finite ι I : Ideal S b : Basis ι R S hI : I ≠ ⊥ this : Fintype ι a : ι → R := smithCoeffs b I hI b' : Basis ι R S := ringBasis b I hI ab : Basis ι R { x // x ∈ I } := selfBasis b I hI ab_eq : ∀ (i : ι), ↑(↑(selfBasis b I hI) i) = smithCoeffs b I hI i • ↑(ringBasis b I hI) i mem_I_iff : ∀ (x : S), x ∈ I ↔ ∀ (i : ι), a i ∣ ↑(↑b'.repr x) i I' : Submodule R (ι → R) := Submodule.pi Set.univ fun i => span {a i} x : ι → R hdvd : ∀ (i : ι), smithCoeffs b I hI i ∣ x i ⊢ ↑(↑(ringBasis b I hI).repr (∑ i : ι, x i • ↑b' i)) = x [PROOFSTEP] rw [b'.repr_sum_self] [GOAL] case h.mpr.refine'_1 ι : Type u_1 R : Type u_2 S : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing S inst✝⁴ : Algebra R S inst✝³ : IsDomain R inst✝² : IsPrincipalIdealRing R inst✝¹ : IsDomain S inst✝ : Finite ι I : Ideal S b : Basis ι R S hI : I ≠ ⊥ this : Fintype ι a : ι → R := smithCoeffs b I hI b' : Basis ι R S := ringBasis b I hI ab : Basis ι R { x // x ∈ I } := selfBasis b I hI ab_eq : ∀ (i : ι), ↑(↑(selfBasis b I hI) i) = smithCoeffs b I hI i • ↑(ringBasis b I hI) i mem_I_iff : ∀ (x : S), x ∈ I ↔ ∀ (i : ι), a i ∣ ↑(↑b'.repr x) i I' : Submodule R (ι → R) := Submodule.pi Set.univ fun i => span {a i} x : ι → R hdvd : ∀ (i : ι), smithCoeffs b I hI i ∣ x i i : ι ⊢ smithCoeffs b I hI i ∣ x i [PROOFSTEP] exact hdvd i [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing S inst✝⁴ : Algebra R S inst✝³ : IsDomain R inst✝² : IsPrincipalIdealRing R inst✝¹ : IsDomain S inst✝ : Finite ι I : Ideal S b : Basis ι R S hI : I ≠ ⊥ this✝ : Fintype ι a : ι → R := smithCoeffs b I hI b' : Basis ι R S := ringBasis b I hI ab : Basis ι R { x // x ∈ I } := selfBasis b I hI ab_eq : ∀ (i : ι), ↑(↑(selfBasis b I hI) i) = smithCoeffs b I hI i • ↑(ringBasis b I hI) i mem_I_iff : ∀ (x : S), x ∈ I ↔ ∀ (i : ι), a i ∣ ↑(↑b'.repr x) i I' : Submodule R (ι → R) := Submodule.pi Set.univ fun i => span {a i} this : Submodule.map (↑(Basis.equivFun b')) (Submodule.restrictScalars R I) = I' ⊢ (S ⧸ I) ≃ₗ[R] (i : ι) → R ⧸ span {smithCoeffs b I hI i} [PROOFSTEP] refine' ((Submodule.Quotient.restrictScalarsEquiv R I).restrictScalars R).symm.trans (σ₁₂ := RingHom.id R) (σ₃₂ := RingHom.id R) _ [GOAL] case refine'_1 ι : Type u_1 R : Type u_2 S : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing S inst✝⁴ : Algebra R S inst✝³ : IsDomain R inst✝² : IsPrincipalIdealRing R inst✝¹ : IsDomain S inst✝ : Finite ι I : Ideal S b : Basis ι R S hI : I ≠ ⊥ this✝ : Fintype ι a : ι → R := smithCoeffs b I hI b' : Basis ι R S := ringBasis b I hI ab : Basis ι R { x // x ∈ I } := selfBasis b I hI ab_eq : ∀ (i : ι), ↑(↑(selfBasis b I hI) i) = smithCoeffs b I hI i • ↑(ringBasis b I hI) i mem_I_iff : ∀ (x : S), x ∈ I ↔ ∀ (i : ι), a i ∣ ↑(↑b'.repr x) i I' : Submodule R (ι → R) := Submodule.pi Set.univ fun i => span {a i} this : Submodule.map (↑(Basis.equivFun b')) (Submodule.restrictScalars R I) = I' ⊢ RingHomInvPair (RingHom.id R) (RingHom.id R) [PROOFSTEP] infer_instance [GOAL] case refine'_2 ι : Type u_1 R : Type u_2 S : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing S inst✝⁴ : Algebra R S inst✝³ : IsDomain R inst✝² : IsPrincipalIdealRing R inst✝¹ : IsDomain S inst✝ : Finite ι I : Ideal S b : Basis ι R S hI : I ≠ ⊥ this✝ : Fintype ι a : ι → R := smithCoeffs b I hI b' : Basis ι R S := ringBasis b I hI ab : Basis ι R { x // x ∈ I } := selfBasis b I hI ab_eq : ∀ (i : ι), ↑(↑(selfBasis b I hI) i) = smithCoeffs b I hI i • ↑(ringBasis b I hI) i mem_I_iff : ∀ (x : S), x ∈ I ↔ ∀ (i : ι), a i ∣ ↑(↑b'.repr x) i I' : Submodule R (ι → R) := Submodule.pi Set.univ fun i => span {a i} this : Submodule.map (↑(Basis.equivFun b')) (Submodule.restrictScalars R I) = I' ⊢ RingHomInvPair (RingHom.id R) (RingHom.id R) [PROOFSTEP] infer_instance [GOAL] case refine'_3 ι : Type u_1 R : Type u_2 S : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing S inst✝⁴ : Algebra R S inst✝³ : IsDomain R inst✝² : IsPrincipalIdealRing R inst✝¹ : IsDomain S inst✝ : Finite ι I : Ideal S b : Basis ι R S hI : I ≠ ⊥ this✝ : Fintype ι a : ι → R := smithCoeffs b I hI b' : Basis ι R S := ringBasis b I hI ab : Basis ι R { x // x ∈ I } := selfBasis b I hI ab_eq : ∀ (i : ι), ↑(↑(selfBasis b I hI) i) = smithCoeffs b I hI i • ↑(ringBasis b I hI) i mem_I_iff : ∀ (x : S), x ∈ I ↔ ∀ (i : ι), a i ∣ ↑(↑b'.repr x) i I' : Submodule R (ι → R) := Submodule.pi Set.univ fun i => span {a i} this : Submodule.map (↑(Basis.equivFun b')) (Submodule.restrictScalars R I) = I' ⊢ (S ⧸ Submodule.restrictScalars R I) ≃ₗ[R] (i : ι) → R ⧸ span {smithCoeffs b I hI i} [PROOFSTEP] refine' (Submodule.Quotient.equiv (I.restrictScalars R) I' b'.equivFun this).trans (σ₁₂ := RingHom.id R) (σ₃₂ := RingHom.id R) _ [GOAL] case refine'_3.refine'_1 ι : Type u_1 R : Type u_2 S : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing S inst✝⁴ : Algebra R S inst✝³ : IsDomain R inst✝² : IsPrincipalIdealRing R inst✝¹ : IsDomain S inst✝ : Finite ι I : Ideal S b : Basis ι R S hI : I ≠ ⊥ this✝ : Fintype ι a : ι → R := smithCoeffs b I hI b' : Basis ι R S := ringBasis b I hI ab : Basis ι R { x // x ∈ I } := selfBasis b I hI ab_eq : ∀ (i : ι), ↑(↑(selfBasis b I hI) i) = smithCoeffs b I hI i • ↑(ringBasis b I hI) i mem_I_iff : ∀ (x : S), x ∈ I ↔ ∀ (i : ι), a i ∣ ↑(↑b'.repr x) i I' : Submodule R (ι → R) := Submodule.pi Set.univ fun i => span {a i} this : Submodule.map (↑(Basis.equivFun b')) (Submodule.restrictScalars R I) = I' ⊢ RingHomInvPair (RingHom.id R) (RingHom.id R) [PROOFSTEP] infer_instance [GOAL] case refine'_3.refine'_2 ι : Type u_1 R : Type u_2 S : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing S inst✝⁴ : Algebra R S inst✝³ : IsDomain R inst✝² : IsPrincipalIdealRing R inst✝¹ : IsDomain S inst✝ : Finite ι I : Ideal S b : Basis ι R S hI : I ≠ ⊥ this✝ : Fintype ι a : ι → R := smithCoeffs b I hI b' : Basis ι R S := ringBasis b I hI ab : Basis ι R { x // x ∈ I } := selfBasis b I hI ab_eq : ∀ (i : ι), ↑(↑(selfBasis b I hI) i) = smithCoeffs b I hI i • ↑(ringBasis b I hI) i mem_I_iff : ∀ (x : S), x ∈ I ↔ ∀ (i : ι), a i ∣ ↑(↑b'.repr x) i I' : Submodule R (ι → R) := Submodule.pi Set.univ fun i => span {a i} this : Submodule.map (↑(Basis.equivFun b')) (Submodule.restrictScalars R I) = I' ⊢ RingHomInvPair (RingHom.id R) (RingHom.id R) [PROOFSTEP] infer_instance [GOAL] case refine'_3.refine'_3 ι : Type u_1 R : Type u_2 S : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing S inst✝⁴ : Algebra R S inst✝³ : IsDomain R inst✝² : IsPrincipalIdealRing R inst✝¹ : IsDomain S inst✝ : Finite ι I : Ideal S b : Basis ι R S hI : I ≠ ⊥ this✝ : Fintype ι a : ι → R := smithCoeffs b I hI b' : Basis ι R S := ringBasis b I hI ab : Basis ι R { x // x ∈ I } := selfBasis b I hI ab_eq : ∀ (i : ι), ↑(↑(selfBasis b I hI) i) = smithCoeffs b I hI i • ↑(ringBasis b I hI) i mem_I_iff : ∀ (x : S), x ∈ I ↔ ∀ (i : ι), a i ∣ ↑(↑b'.repr x) i I' : Submodule R (ι → R) := Submodule.pi Set.univ fun i => span {a i} this : Submodule.map (↑(Basis.equivFun b')) (Submodule.restrictScalars R I) = I' ⊢ ((ι → R) ⧸ I') ≃ₗ[R] (i : ι) → R ⧸ span {smithCoeffs b I hI i} [PROOFSTEP] classical let this := Submodule.quotientPi (show ∀ _, Submodule R R from fun i => span ({a i} : Set R)) exact this [GOAL] case refine'_3.refine'_3 ι : Type u_1 R : Type u_2 S : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing S inst✝⁴ : Algebra R S inst✝³ : IsDomain R inst✝² : IsPrincipalIdealRing R inst✝¹ : IsDomain S inst✝ : Finite ι I : Ideal S b : Basis ι R S hI : I ≠ ⊥ this✝ : Fintype ι a : ι → R := smithCoeffs b I hI b' : Basis ι R S := ringBasis b I hI ab : Basis ι R { x // x ∈ I } := selfBasis b I hI ab_eq : ∀ (i : ι), ↑(↑(selfBasis b I hI) i) = smithCoeffs b I hI i • ↑(ringBasis b I hI) i mem_I_iff : ∀ (x : S), x ∈ I ↔ ∀ (i : ι), a i ∣ ↑(↑b'.repr x) i I' : Submodule R (ι → R) := Submodule.pi Set.univ fun i => span {a i} this : Submodule.map (↑(Basis.equivFun b')) (Submodule.restrictScalars R I) = I' ⊢ ((ι → R) ⧸ I') ≃ₗ[R] (i : ι) → R ⧸ span {smithCoeffs b I hI i} [PROOFSTEP] let this := Submodule.quotientPi (show ∀ _, Submodule R R from fun i => span ({a i} : Set R)) [GOAL] case refine'_3.refine'_3 ι : Type u_1 R : Type u_2 S : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : CommRing S inst✝⁴ : Algebra R S inst✝³ : IsDomain R inst✝² : IsPrincipalIdealRing R inst✝¹ : IsDomain S inst✝ : Finite ι I : Ideal S b : Basis ι R S hI : I ≠ ⊥ this✝¹ : Fintype ι a : ι → R := smithCoeffs b I hI b' : Basis ι R S := ringBasis b I hI ab : Basis ι R { x // x ∈ I } := selfBasis b I hI ab_eq : ∀ (i : ι), ↑(↑(selfBasis b I hI) i) = smithCoeffs b I hI i • ↑(ringBasis b I hI) i mem_I_iff : ∀ (x : S), x ∈ I ↔ ∀ (i : ι), a i ∣ ↑(↑b'.repr x) i I' : Submodule R (ι → R) := Submodule.pi Set.univ fun i => span {a i} this✝ : Submodule.map (↑(Basis.equivFun b')) (Submodule.restrictScalars R I) = I' this : ((ι → R) ⧸ Submodule.pi Set.univ (let_fun this := fun i => span {a i}; this)) ≃ₗ[R] (i : ι) → R ⧸ (fun this => this) (fun i => span {a i}) i := Submodule.quotientPi (let_fun this := fun i => span {a i}; this) ⊢ ((ι → R) ⧸ I') ≃ₗ[R] (i : ι) → R ⧸ span {smithCoeffs b I hI i} [PROOFSTEP] exact this [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 inst✝⁸ : CommRing R inst✝⁷ : CommRing S inst✝⁶ : Algebra R S inst✝⁵ : IsDomain R inst✝⁴ : IsPrincipalIdealRing R inst✝³ : IsDomain S inst✝² : Finite ι inst✝¹ : Module.Free ℤ S inst✝ : Module.Finite ℤ S I : Ideal S hI : I ≠ ⊥ ⊢ Fintype (S ⧸ I) [PROOFSTEP] let b := Module.Free.chooseBasis ℤ S [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 inst✝⁸ : CommRing R inst✝⁷ : CommRing S inst✝⁶ : Algebra R S inst✝⁵ : IsDomain R inst✝⁴ : IsPrincipalIdealRing R inst✝³ : IsDomain S inst✝² : Finite ι inst✝¹ : Module.Free ℤ S inst✝ : Module.Finite ℤ S I : Ideal S hI : I ≠ ⊥ b : Basis (Module.Free.ChooseBasisIndex ℤ S) ℤ S := Module.Free.chooseBasis ℤ S ⊢ Fintype (S ⧸ I) [PROOFSTEP] let a := I.smithCoeffs b hI [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 inst✝⁸ : CommRing R inst✝⁷ : CommRing S inst✝⁶ : Algebra R S inst✝⁵ : IsDomain R inst✝⁴ : IsPrincipalIdealRing R inst✝³ : IsDomain S inst✝² : Finite ι inst✝¹ : Module.Free ℤ S inst✝ : Module.Finite ℤ S I : Ideal S hI : I ≠ ⊥ b : Basis (Module.Free.ChooseBasisIndex ℤ S) ℤ S := Module.Free.chooseBasis ℤ S a : Module.Free.ChooseBasisIndex ℤ S → ℤ := smithCoeffs b I hI ⊢ Fintype (S ⧸ I) [PROOFSTEP] let e := I.quotientEquivPiZMod b hI [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 inst✝⁸ : CommRing R inst✝⁷ : CommRing S inst✝⁶ : Algebra R S inst✝⁵ : IsDomain R inst✝⁴ : IsPrincipalIdealRing R inst✝³ : IsDomain S inst✝² : Finite ι inst✝¹ : Module.Free ℤ S inst✝ : Module.Finite ℤ S I : Ideal S hI : I ≠ ⊥ b : Basis (Module.Free.ChooseBasisIndex ℤ S) ℤ S := Module.Free.chooseBasis ℤ S a : Module.Free.ChooseBasisIndex ℤ S → ℤ := smithCoeffs b I hI e : S ⧸ I ≃+ ((i : Module.Free.ChooseBasisIndex ℤ S) → ZMod (Int.natAbs (smithCoeffs b I hI i))) := quotientEquivPiZMod I b hI ⊢ Fintype (S ⧸ I) [PROOFSTEP] haveI : ∀ i, NeZero (a i).natAbs := fun i => ⟨Int.natAbs_ne_zero.mpr (smithCoeffs_ne_zero b I hI i)⟩ [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 inst✝⁸ : CommRing R inst✝⁷ : CommRing S inst✝⁶ : Algebra R S inst✝⁵ : IsDomain R inst✝⁴ : IsPrincipalIdealRing R inst✝³ : IsDomain S inst✝² : Finite ι inst✝¹ : Module.Free ℤ S inst✝ : Module.Finite ℤ S I : Ideal S hI : I ≠ ⊥ b : Basis (Module.Free.ChooseBasisIndex ℤ S) ℤ S := Module.Free.chooseBasis ℤ S a : Module.Free.ChooseBasisIndex ℤ S → ℤ := smithCoeffs b I hI e : S ⧸ I ≃+ ((i : Module.Free.ChooseBasisIndex ℤ S) → ZMod (Int.natAbs (smithCoeffs b I hI i))) := quotientEquivPiZMod I b hI this : ∀ (i : Module.Free.ChooseBasisIndex ℤ S), NeZero (Int.natAbs (a i)) ⊢ Fintype (S ⧸ I) [PROOFSTEP] classical exact Fintype.ofEquiv (∀ i, ZMod (a i).natAbs) e.symm [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 inst✝⁸ : CommRing R inst✝⁷ : CommRing S inst✝⁶ : Algebra R S inst✝⁵ : IsDomain R inst✝⁴ : IsPrincipalIdealRing R inst✝³ : IsDomain S inst✝² : Finite ι inst✝¹ : Module.Free ℤ S inst✝ : Module.Finite ℤ S I : Ideal S hI : I ≠ ⊥ b : Basis (Module.Free.ChooseBasisIndex ℤ S) ℤ S := Module.Free.chooseBasis ℤ S a : Module.Free.ChooseBasisIndex ℤ S → ℤ := smithCoeffs b I hI e : S ⧸ I ≃+ ((i : Module.Free.ChooseBasisIndex ℤ S) → ZMod (Int.natAbs (smithCoeffs b I hI i))) := quotientEquivPiZMod I b hI this : ∀ (i : Module.Free.ChooseBasisIndex ℤ S), NeZero (Int.natAbs (a i)) ⊢ Fintype (S ⧸ I) [PROOFSTEP] exact Fintype.ofEquiv (∀ i, ZMod (a i).natAbs) e.symm [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 inst✝¹⁰ : CommRing R inst✝⁹ : CommRing S inst✝⁸ : Algebra R S inst✝⁷ : IsDomain R inst✝⁶ : IsPrincipalIdealRing R inst✝⁵ : IsDomain S inst✝⁴ : Finite ι F : Type u_4 inst✝³ : CommRing F inst✝² : Algebra F R inst✝¹ : Algebra F S inst✝ : IsScalarTower F R S b : Basis ι R S I : Ideal S hI : I ≠ ⊥ ⊢ (S ⧸ I) ≃ₗ[F] ⨁ (i : ι), R ⧸ span {smithCoeffs b I hI i} [PROOFSTEP] haveI := Fintype.ofFinite ι [GOAL] ι : Type u_1 R : Type u_2 S : Type u_3 inst✝¹⁰ : CommRing R inst✝⁹ : CommRing S inst✝⁸ : Algebra R S inst✝⁷ : IsDomain R inst✝⁶ : IsPrincipalIdealRing R inst✝⁵ : IsDomain S inst✝⁴ : Finite ι F : Type u_4 inst✝³ : CommRing F inst✝² : Algebra F R inst✝¹ : Algebra F S inst✝ : IsScalarTower F R S b : Basis ι R S I : Ideal S hI : I ≠ ⊥ this : Fintype ι ⊢ (S ⧸ I) ≃ₗ[F] ⨁ (i : ι), R ⧸ span {smithCoeffs b I hI i} [PROOFSTEP] exact ((I.quotientEquivPiSpan b _).restrictScalars F).trans (DirectSum.linearEquivFunOnFintype _ _ _).symm [GOAL] ι✝ : Type u_1 R : Type u_2 S : Type u_3 inst✝¹⁴ : CommRing R inst✝¹³ : CommRing S inst✝¹² : Algebra R S inst✝¹¹ : IsDomain R inst✝¹⁰ : IsPrincipalIdealRing R inst✝⁹ : IsDomain S inst✝⁸ : Finite ι✝ F : Type u_4 inst✝⁷ : CommRing F inst✝⁶ : Algebra F R inst✝⁵ : Algebra F S inst✝⁴ : IsScalarTower F R S b✝ : Basis ι✝ R S I : Ideal S hI : I ≠ ⊥ ι : Type u_5 inst✝³ : Fintype ι b : Basis ι R S inst✝² : Nontrivial F inst✝¹ : ∀ (i : ι), Module.Free F (R ⧸ span {smithCoeffs b I hI i}) inst✝ : ∀ (i : ι), Module.Finite F (R ⧸ span {smithCoeffs b I hI i}) ⊢ FiniteDimensional.finrank F (S ⧸ I) = ∑ i : ι, FiniteDimensional.finrank F (R ⧸ span {smithCoeffs b I hI i}) [PROOFSTEP] rw [LinearEquiv.finrank_eq <| quotientEquivDirectSum F b hI, FiniteDimensional.finrank_directSum]
{"mathlib_filename": "Mathlib.LinearAlgebra.FreeModule.IdealQuotient", "llama_tokens": 18066}
[GOAL] R : Type u M : Type v N : Type w inst✝⁸ : CommRing R inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : Free R M inst✝⁴ : AddCommGroup N inst✝³ : Module R N inst✝² : Free R N inst✝¹ : Finite R M inst✝ : Finite R N ⊢ Free R (M →ₗ[R] N) [PROOFSTEP] cases subsingleton_or_nontrivial R [GOAL] case inl R : Type u M : Type v N : Type w inst✝⁸ : CommRing R inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : Free R M inst✝⁴ : AddCommGroup N inst✝³ : Module R N inst✝² : Free R N inst✝¹ : Finite R M inst✝ : Finite R N h✝ : Subsingleton R ⊢ Free R (M →ₗ[R] N) [PROOFSTEP] apply Module.Free.of_subsingleton' [GOAL] case inr R : Type u M : Type v N : Type w inst✝⁸ : CommRing R inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : Free R M inst✝⁴ : AddCommGroup N inst✝³ : Module R N inst✝² : Free R N inst✝¹ : Finite R M inst✝ : Finite R N h✝ : Nontrivial R ⊢ Free R (M →ₗ[R] N) [PROOFSTEP] classical exact Module.Free.of_equiv (LinearMap.toMatrix (chooseBasis R M) (chooseBasis R N)).symm [GOAL] case inr R : Type u M : Type v N : Type w inst✝⁸ : CommRing R inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : Free R M inst✝⁴ : AddCommGroup N inst✝³ : Module R N inst✝² : Free R N inst✝¹ : Finite R M inst✝ : Finite R N h✝ : Nontrivial R ⊢ Free R (M →ₗ[R] N) [PROOFSTEP] exact Module.Free.of_equiv (LinearMap.toMatrix (chooseBasis R M) (chooseBasis R N)).symm [GOAL] R : Type u M : Type v N : Type w inst✝⁸ : CommRing R inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : Free R M inst✝⁴ : AddCommGroup N inst✝³ : Module R N inst✝² : Free R N inst✝¹ : Finite R M inst✝ : Finite R N ⊢ Finite R (M →ₗ[R] N) [PROOFSTEP] cases subsingleton_or_nontrivial R [GOAL] case inl R : Type u M : Type v N : Type w inst✝⁸ : CommRing R inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : Free R M inst✝⁴ : AddCommGroup N inst✝³ : Module R N inst✝² : Free R N inst✝¹ : Finite R M inst✝ : Finite R N h✝ : Subsingleton R ⊢ Finite R (M →ₗ[R] N) [PROOFSTEP] infer_instance [GOAL] case inr R : Type u M : Type v N : Type w inst✝⁸ : CommRing R inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : Free R M inst✝⁴ : AddCommGroup N inst✝³ : Module R N inst✝² : Free R N inst✝¹ : Finite R M inst✝ : Finite R N h✝ : Nontrivial R ⊢ Finite R (M →ₗ[R] N) [PROOFSTEP] classical have f := (LinearMap.toMatrix (chooseBasis R M) (chooseBasis R N)).symm exact Module.Finite.of_surjective f.toLinearMap (LinearEquiv.surjective f) [GOAL] case inr R : Type u M : Type v N : Type w inst✝⁸ : CommRing R inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : Free R M inst✝⁴ : AddCommGroup N inst✝³ : Module R N inst✝² : Free R N inst✝¹ : Finite R M inst✝ : Finite R N h✝ : Nontrivial R ⊢ Finite R (M →ₗ[R] N) [PROOFSTEP] have f := (LinearMap.toMatrix (chooseBasis R M) (chooseBasis R N)).symm [GOAL] case inr R : Type u M : Type v N : Type w inst✝⁸ : CommRing R inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : Free R M inst✝⁴ : AddCommGroup N inst✝³ : Module R N inst✝² : Free R N inst✝¹ : Finite R M inst✝ : Finite R N h✝ : Nontrivial R f : Matrix (Free.ChooseBasisIndex R N) (Free.ChooseBasisIndex R M) R ≃ₗ[R] M →ₗ[R] N ⊢ Finite R (M →ₗ[R] N) [PROOFSTEP] exact Module.Finite.of_surjective f.toLinearMap (LinearEquiv.surjective f) [GOAL] R : Type u M : Type v N : Type w inst✝⁹ : CommRing R inst✝⁸ : StrongRankCondition R inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : Module.Free R M inst✝⁴ : Module.Finite R M inst✝³ : AddCommGroup N inst✝² : Module R N inst✝¹ : Module.Free R N inst✝ : Module.Finite R N ⊢ finrank R (M →ₗ[R] N) = finrank R M * finrank R N [PROOFSTEP] classical letI := nontrivial_of_invariantBasisNumber R have h := LinearMap.toMatrix (chooseBasis R M) (chooseBasis R N) simp_rw [h.finrank_eq, FiniteDimensional.finrank_matrix, FiniteDimensional.finrank_eq_card_chooseBasisIndex, mul_comm] [GOAL] R : Type u M : Type v N : Type w inst✝⁹ : CommRing R inst✝⁸ : StrongRankCondition R inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : Module.Free R M inst✝⁴ : Module.Finite R M inst✝³ : AddCommGroup N inst✝² : Module R N inst✝¹ : Module.Free R N inst✝ : Module.Finite R N ⊢ finrank R (M →ₗ[R] N) = finrank R M * finrank R N [PROOFSTEP] letI := nontrivial_of_invariantBasisNumber R [GOAL] R : Type u M : Type v N : Type w inst✝⁹ : CommRing R inst✝⁸ : StrongRankCondition R inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : Module.Free R M inst✝⁴ : Module.Finite R M inst✝³ : AddCommGroup N inst✝² : Module R N inst✝¹ : Module.Free R N inst✝ : Module.Finite R N this : Nontrivial R := nontrivial_of_invariantBasisNumber R ⊢ finrank R (M →ₗ[R] N) = finrank R M * finrank R N [PROOFSTEP] have h := LinearMap.toMatrix (chooseBasis R M) (chooseBasis R N) [GOAL] R : Type u M : Type v N : Type w inst✝⁹ : CommRing R inst✝⁸ : StrongRankCondition R inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : Module.Free R M inst✝⁴ : Module.Finite R M inst✝³ : AddCommGroup N inst✝² : Module R N inst✝¹ : Module.Free R N inst✝ : Module.Finite R N this : Nontrivial R := nontrivial_of_invariantBasisNumber R h : (M →ₗ[R] N) ≃ₗ[R] Matrix (Module.Free.ChooseBasisIndex R N) (Module.Free.ChooseBasisIndex R M) R ⊢ finrank R (M →ₗ[R] N) = finrank R M * finrank R N [PROOFSTEP] simp_rw [h.finrank_eq, FiniteDimensional.finrank_matrix, FiniteDimensional.finrank_eq_card_chooseBasisIndex, mul_comm] [GOAL] R : Type u M : Type v N : Type w K m n : Type u inst✝³ : CommRing K inst✝² : StrongRankCondition K inst✝¹ : Fintype n inst✝ : DecidableEq n w : m → K v : n → K ⊢ LinearMap.rank (↑toLin' (vecMulVec w v)) ≤ 1 [PROOFSTEP] rw [Matrix.vecMulVec_eq, Matrix.toLin'_mul] [GOAL] R : Type u M : Type v N : Type w K m n : Type u inst✝³ : CommRing K inst✝² : StrongRankCondition K inst✝¹ : Fintype n inst✝ : DecidableEq n w : m → K v : n → K ⊢ LinearMap.rank (LinearMap.comp (↑toLin' (col w)) (↑toLin' (row v))) ≤ 1 [PROOFSTEP] refine' le_trans (LinearMap.rank_comp_le_left _ _) _ [GOAL] R : Type u M : Type v N : Type w K m n : Type u inst✝³ : CommRing K inst✝² : StrongRankCondition K inst✝¹ : Fintype n inst✝ : DecidableEq n w : m → K v : n → K ⊢ LinearMap.rank (↑toLin' (col w)) ≤ 1 [PROOFSTEP] refine' (LinearMap.rank_le_domain _).trans_eq _ [GOAL] R : Type u M : Type v N : Type w K m n : Type u inst✝³ : CommRing K inst✝² : StrongRankCondition K inst✝¹ : Fintype n inst✝ : DecidableEq n w : m → K v : n → K ⊢ Module.rank K (Unit → K) = 1 [PROOFSTEP] rw [rank_fun', Fintype.card_unit, Nat.cast_one]
{"mathlib_filename": "Mathlib.LinearAlgebra.FreeModule.Finite.Matrix", "llama_tokens": 3016}
[GOAL] R : Type u_1 inst✝¹ : CommRing R inst✝ : Nontrivial R ⊢ StrongRankCondition R [PROOFSTEP] suffices ∀ n, ∀ f : (Fin (n + 1) → R) →ₗ[R] Fin n → R, ¬Injective f by rwa [strongRankCondition_iff_succ R] [GOAL] R : Type u_1 inst✝¹ : CommRing R inst✝ : Nontrivial R this : ∀ (n : ℕ) (f : (Fin (n + 1) → R) →ₗ[R] Fin n → R), ¬Injective ↑f ⊢ StrongRankCondition R [PROOFSTEP] rwa [strongRankCondition_iff_succ R] [GOAL] R : Type u_1 inst✝¹ : CommRing R inst✝ : Nontrivial R ⊢ ∀ (n : ℕ) (f : (Fin (n + 1) → R) →ₗ[R] Fin n → R), ¬Injective ↑f [PROOFSTEP] intro n f [GOAL] R : Type u_1 inst✝¹ : CommRing R inst✝ : Nontrivial R n : ℕ f : (Fin (n + 1) → R) →ₗ[R] Fin n → R ⊢ ¬Injective ↑f [PROOFSTEP] by_contra hf [GOAL] R : Type u_1 inst✝¹ : CommRing R inst✝ : Nontrivial R n : ℕ f : (Fin (n + 1) → R) →ₗ[R] Fin n → R hf : Injective ↑f ⊢ False [PROOFSTEP] let g : (Fin (n + 1) → R) →ₗ[R] Fin (n + 1) → R := (ExtendByZero.linearMap R castSucc).comp f [GOAL] R : Type u_1 inst✝¹ : CommRing R inst✝ : Nontrivial R n : ℕ f : (Fin (n + 1) → R) →ₗ[R] Fin n → R hf : Injective ↑f g : (Fin (n + 1) → R) →ₗ[R] Fin (n + 1) → R := LinearMap.comp (ExtendByZero.linearMap R castSucc) f ⊢ False [PROOFSTEP] have hg : Injective g := (extend_injective Fin.strictMono_castSucc.injective _).comp hf [GOAL] R : Type u_1 inst✝¹ : CommRing R inst✝ : Nontrivial R n : ℕ f : (Fin (n + 1) → R) →ₗ[R] Fin n → R hf : Injective ↑f g : (Fin (n + 1) → R) →ₗ[R] Fin (n + 1) → R := LinearMap.comp (ExtendByZero.linearMap R castSucc) f hg : Injective ↑g ⊢ False [PROOFSTEP] have hnex : ¬∃ i : Fin n, castSucc i = last n := fun ⟨i, hi⟩ => ne_of_lt (castSucc_lt_last i) hi [GOAL] R : Type u_1 inst✝¹ : CommRing R inst✝ : Nontrivial R n : ℕ f : (Fin (n + 1) → R) →ₗ[R] Fin n → R hf : Injective ↑f g : (Fin (n + 1) → R) →ₗ[R] Fin (n + 1) → R := LinearMap.comp (ExtendByZero.linearMap R castSucc) f hg : Injective ↑g hnex : ¬∃ i, castSucc i = last n ⊢ False [PROOFSTEP] let a₀ := (minpoly R g).coeff 0 [GOAL] R : Type u_1 inst✝¹ : CommRing R inst✝ : Nontrivial R n : ℕ f : (Fin (n + 1) → R) →ₗ[R] Fin n → R hf : Injective ↑f g : (Fin (n + 1) → R) →ₗ[R] Fin (n + 1) → R := LinearMap.comp (ExtendByZero.linearMap R castSucc) f hg : Injective ↑g hnex : ¬∃ i, castSucc i = last n a₀ : R := coeff (minpoly R g) 0 ⊢ False [PROOFSTEP] have : a₀ ≠ 0 := minpoly_coeff_zero_of_injective hg [GOAL] R : Type u_1 inst✝¹ : CommRing R inst✝ : Nontrivial R n : ℕ f : (Fin (n + 1) → R) →ₗ[R] Fin n → R hf : Injective ↑f g : (Fin (n + 1) → R) →ₗ[R] Fin (n + 1) → R := LinearMap.comp (ExtendByZero.linearMap R castSucc) f hg : Injective ↑g hnex : ¬∃ i, castSucc i = last n a₀ : R := coeff (minpoly R g) 0 this : a₀ ≠ 0 ⊢ False [PROOFSTEP] have : a₀ = 0 := by -- Evaluate `(minpoly R g) g` at the vector `(0,...,0,1)` have heval := LinearMap.congr_fun (minpoly.aeval R g) (Pi.single (Fin.last n) 1) obtain ⟨P, hP⟩ := X_dvd_iff.2 (erase_same (minpoly R g) 0) rw [← monomial_add_erase (minpoly R g) 0, hP] at heval replace heval := congr_fun heval (Fin.last n) -- Porting note: ...it's just that this line gives a timeout without slightly raising heartbeats simpa [hnex] using heval [GOAL] R : Type u_1 inst✝¹ : CommRing R inst✝ : Nontrivial R n : ℕ f : (Fin (n + 1) → R) →ₗ[R] Fin n → R hf : Injective ↑f g : (Fin (n + 1) → R) →ₗ[R] Fin (n + 1) → R := LinearMap.comp (ExtendByZero.linearMap R castSucc) f hg : Injective ↑g hnex : ¬∃ i, castSucc i = last n a₀ : R := coeff (minpoly R g) 0 this : a₀ ≠ 0 ⊢ a₀ = 0 [PROOFSTEP] have heval := LinearMap.congr_fun (minpoly.aeval R g) (Pi.single (Fin.last n) 1) [GOAL] R : Type u_1 inst✝¹ : CommRing R inst✝ : Nontrivial R n : ℕ f : (Fin (n + 1) → R) →ₗ[R] Fin n → R hf : Injective ↑f g : (Fin (n + 1) → R) →ₗ[R] Fin (n + 1) → R := LinearMap.comp (ExtendByZero.linearMap R castSucc) f hg : Injective ↑g hnex : ¬∃ i, castSucc i = last n a₀ : R := coeff (minpoly R g) 0 this : a₀ ≠ 0 heval : ↑(↑(aeval g) (minpoly R g)) (Pi.single (last n) 1) = ↑0 (Pi.single (last n) 1) ⊢ a₀ = 0 [PROOFSTEP] obtain ⟨P, hP⟩ := X_dvd_iff.2 (erase_same (minpoly R g) 0) [GOAL] case intro R : Type u_1 inst✝¹ : CommRing R inst✝ : Nontrivial R n : ℕ f : (Fin (n + 1) → R) →ₗ[R] Fin n → R hf : Injective ↑f g : (Fin (n + 1) → R) →ₗ[R] Fin (n + 1) → R := LinearMap.comp (ExtendByZero.linearMap R castSucc) f hg : Injective ↑g hnex : ¬∃ i, castSucc i = last n a₀ : R := coeff (minpoly R g) 0 this : a₀ ≠ 0 heval : ↑(↑(aeval g) (minpoly R g)) (Pi.single (last n) 1) = ↑0 (Pi.single (last n) 1) P : R[X] hP : erase 0 (minpoly R g) = X * P ⊢ a₀ = 0 [PROOFSTEP] rw [← monomial_add_erase (minpoly R g) 0, hP] at heval [GOAL] case intro R : Type u_1 inst✝¹ : CommRing R inst✝ : Nontrivial R n : ℕ f : (Fin (n + 1) → R) →ₗ[R] Fin n → R hf : Injective ↑f g : (Fin (n + 1) → R) →ₗ[R] Fin (n + 1) → R := LinearMap.comp (ExtendByZero.linearMap R castSucc) f hg : Injective ↑g hnex : ¬∃ i, castSucc i = last n a₀ : R := coeff (minpoly R g) 0 this : a₀ ≠ 0 P : R[X] heval : ↑(↑(aeval g) (↑(monomial 0) (coeff (minpoly R g) 0) + X * P)) (Pi.single (last n) 1) = ↑0 (Pi.single (last n) 1) hP : erase 0 (minpoly R g) = X * P ⊢ a₀ = 0 [PROOFSTEP] replace heval := congr_fun heval (Fin.last n) -- Porting note: ...it's just that this line gives a timeout without slightly raising heartbeats [GOAL] case intro R : Type u_1 inst✝¹ : CommRing R inst✝ : Nontrivial R n : ℕ f : (Fin (n + 1) → R) →ₗ[R] Fin n → R hf : Injective ↑f g : (Fin (n + 1) → R) →ₗ[R] Fin (n + 1) → R := LinearMap.comp (ExtendByZero.linearMap R castSucc) f hg : Injective ↑g hnex : ¬∃ i, castSucc i = last n a₀ : R := coeff (minpoly R g) 0 this : a₀ ≠ 0 P : R[X] hP : erase 0 (minpoly R g) = X * P heval : ↑(↑(aeval g) (↑(monomial 0) (coeff (minpoly R g) 0) + X * P)) (Pi.single (last n) 1) (last n) = ↑0 (Pi.single (last n) 1) (last n) ⊢ a₀ = 0 [PROOFSTEP] simpa [hnex] using heval [GOAL] R : Type u_1 inst✝¹ : CommRing R inst✝ : Nontrivial R n : ℕ f : (Fin (n + 1) → R) →ₗ[R] Fin n → R hf : Injective ↑f g : (Fin (n + 1) → R) →ₗ[R] Fin (n + 1) → R := LinearMap.comp (ExtendByZero.linearMap R castSucc) f hg : Injective ↑g hnex : ¬∃ i, castSucc i = last n a₀ : R := coeff (minpoly R g) 0 this✝ : a₀ ≠ 0 this : a₀ = 0 ⊢ False [PROOFSTEP] contradiction
{"mathlib_filename": "Mathlib.LinearAlgebra.FreeModule.StrongRankCondition", "llama_tokens": 3121}
[GOAL] R : Type u M : Type v N : Type w inst✝⁷ : Ring R inst✝⁶ : StrongRankCondition R inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : Module.Finite R M inst✝² : AddCommGroup N inst✝¹ : Module R N inst✝ : Module.Finite R N ⊢ Module.rank R M < ℵ₀ [PROOFSTEP] simp only [Module.rank_def] [GOAL] R : Type u M : Type v N : Type w inst✝⁷ : Ring R inst✝⁶ : StrongRankCondition R inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : Module.Finite R M inst✝² : AddCommGroup N inst✝¹ : Module R N inst✝ : Module.Finite R N ⊢ ⨆ (ι : { s // LinearIndependent R Subtype.val }), #↑↑ι < ℵ₀ [PROOFSTEP] letI := nontrivial_of_invariantBasisNumber R [GOAL] R : Type u M : Type v N : Type w inst✝⁷ : Ring R inst✝⁶ : StrongRankCondition R inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : Module.Finite R M inst✝² : AddCommGroup N inst✝¹ : Module R N inst✝ : Module.Finite R N this : Nontrivial R := nontrivial_of_invariantBasisNumber R ⊢ ⨆ (ι : { s // LinearIndependent R Subtype.val }), #↑↑ι < ℵ₀ [PROOFSTEP] obtain ⟨S, hS⟩ := Module.finite_def.mp ‹Module.Finite R M› [GOAL] case intro R : Type u M : Type v N : Type w inst✝⁷ : Ring R inst✝⁶ : StrongRankCondition R inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : Module.Finite R M inst✝² : AddCommGroup N inst✝¹ : Module R N inst✝ : Module.Finite R N this : Nontrivial R := nontrivial_of_invariantBasisNumber R S : Finset M hS : Submodule.span R ↑S = ⊤ ⊢ ⨆ (ι : { s // LinearIndependent R Subtype.val }), #↑↑ι < ℵ₀ [PROOFSTEP] refine' (ciSup_le' fun i => _).trans_lt (nat_lt_aleph0 S.card) [GOAL] case intro R : Type u M : Type v N : Type w inst✝⁷ : Ring R inst✝⁶ : StrongRankCondition R inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : Module.Finite R M inst✝² : AddCommGroup N inst✝¹ : Module R N inst✝ : Module.Finite R N this : Nontrivial R := nontrivial_of_invariantBasisNumber R S : Finset M hS : Submodule.span R ↑S = ⊤ i : { s // LinearIndependent R Subtype.val } ⊢ #↑↑i ≤ ↑(Finset.card S) [PROOFSTEP] exact linearIndependent_le_span_finset _ i.prop S hS [GOAL] R : Type u M : Type v N : Type w inst✝⁷ : Ring R inst✝⁶ : StrongRankCondition R inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : Module.Finite R M inst✝² : AddCommGroup N inst✝¹ : Module R N inst✝ : Module.Finite R N ⊢ ↑(finrank R M) = Module.rank R M [PROOFSTEP] rw [finrank, cast_toNat_of_lt_aleph0 (rank_lt_aleph0 R M)] [GOAL] R : Type u M : Type v N : Type w inst✝⁹ : Ring R inst✝⁸ : StrongRankCondition R inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : Module.Free R M inst✝⁴ : Module.Finite R M inst✝³ : AddCommGroup N inst✝² : Module R N inst✝¹ : Module.Free R N inst✝ : Module.Finite R N ⊢ finrank R M = card (ChooseBasisIndex R M) [PROOFSTEP] simp [finrank, rank_eq_card_chooseBasisIndex] [GOAL] R : Type u M : Type v N : Type w inst✝¹⁰ : Ring R inst✝⁹ : StrongRankCondition R inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M inst✝⁶ : Module.Free R M inst✝⁵ : Module.Finite R M inst✝⁴ : AddCommGroup N inst✝³ : Module R N inst✝² : Module.Free R N inst✝¹ : Module.Finite R N ι : Type v inst✝ : Fintype ι ⊢ finrank R (ι →₀ R) = card ι [PROOFSTEP] rw [finrank, rank_finsupp_self, ← mk_toNat_eq_card, toNat_lift] [GOAL] R : Type u M : Type v N : Type w inst✝¹⁰ : Ring R inst✝⁹ : StrongRankCondition R inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M inst✝⁶ : Module.Free R M inst✝⁵ : Module.Finite R M inst✝⁴ : AddCommGroup N inst✝³ : Module R N inst✝² : Module.Free R N inst✝¹ : Module.Finite R N ι : Type v inst✝ : Fintype ι ⊢ finrank R (ι → R) = card ι [PROOFSTEP] simp [finrank] [GOAL] R : Type u M✝ : Type v N : Type w inst✝¹⁴ : Ring R inst✝¹³ : StrongRankCondition R inst✝¹² : AddCommGroup M✝ inst✝¹¹ : Module R M✝ inst✝¹⁰ : Module.Free R M✝ inst✝⁹ : Module.Finite R M✝ inst✝⁸ : AddCommGroup N inst✝⁷ : Module R N inst✝⁶ : Module.Free R N inst✝⁵ : Module.Finite R N ι : Type v inst✝⁴ : Fintype ι M : ι → Type w inst✝³ : (i : ι) → AddCommGroup (M i) inst✝² : (i : ι) → Module R (M i) inst✝¹ : ∀ (i : ι), Module.Free R (M i) inst✝ : ∀ (i : ι), Module.Finite R (M i) ⊢ finrank R (⨁ (i : ι), M i) = ∑ i : ι, finrank R (M i) [PROOFSTEP] letI := nontrivial_of_invariantBasisNumber R [GOAL] R : Type u M✝ : Type v N : Type w inst✝¹⁴ : Ring R inst✝¹³ : StrongRankCondition R inst✝¹² : AddCommGroup M✝ inst✝¹¹ : Module R M✝ inst✝¹⁰ : Module.Free R M✝ inst✝⁹ : Module.Finite R M✝ inst✝⁸ : AddCommGroup N inst✝⁷ : Module R N inst✝⁶ : Module.Free R N inst✝⁵ : Module.Finite R N ι : Type v inst✝⁴ : Fintype ι M : ι → Type w inst✝³ : (i : ι) → AddCommGroup (M i) inst✝² : (i : ι) → Module R (M i) inst✝¹ : ∀ (i : ι), Module.Free R (M i) inst✝ : ∀ (i : ι), Module.Finite R (M i) this : Nontrivial R := nontrivial_of_invariantBasisNumber R ⊢ finrank R (⨁ (i : ι), M i) = ∑ i : ι, finrank R (M i) [PROOFSTEP] simp only [finrank, fun i => rank_eq_card_chooseBasisIndex R (M i), rank_directSum, ← mk_sigma, mk_toNat_eq_card, card_sigma] [GOAL] R : Type u M : Type v N : Type w inst✝⁹ : Ring R inst✝⁸ : StrongRankCondition R inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : Module.Free R M inst✝⁴ : Module.Finite R M inst✝³ : AddCommGroup N inst✝² : Module R N inst✝¹ : Module.Free R N inst✝ : Module.Finite R N ⊢ finrank R (M × N) = finrank R M + finrank R N [PROOFSTEP] simp [finrank, rank_lt_aleph0 R M, rank_lt_aleph0 R N] [GOAL] R : Type u M✝ : Type v N : Type w inst✝¹⁴ : Ring R inst✝¹³ : StrongRankCondition R inst✝¹² : AddCommGroup M✝ inst✝¹¹ : Module R M✝ inst✝¹⁰ : Module.Free R M✝ inst✝⁹ : Module.Finite R M✝ inst✝⁸ : AddCommGroup N inst✝⁷ : Module R N inst✝⁶ : Module.Free R N inst✝⁵ : Module.Finite R N ι : Type v inst✝⁴ : Fintype ι M : ι → Type w inst✝³ : (i : ι) → AddCommGroup (M i) inst✝² : (i : ι) → Module R (M i) inst✝¹ : ∀ (i : ι), Module.Free R (M i) inst✝ : ∀ (i : ι), Module.Finite R (M i) ⊢ finrank R ((i : ι) → M i) = ∑ i : ι, finrank R (M i) [PROOFSTEP] letI := nontrivial_of_invariantBasisNumber R [GOAL] R : Type u M✝ : Type v N : Type w inst✝¹⁴ : Ring R inst✝¹³ : StrongRankCondition R inst✝¹² : AddCommGroup M✝ inst✝¹¹ : Module R M✝ inst✝¹⁰ : Module.Free R M✝ inst✝⁹ : Module.Finite R M✝ inst✝⁸ : AddCommGroup N inst✝⁷ : Module R N inst✝⁶ : Module.Free R N inst✝⁵ : Module.Finite R N ι : Type v inst✝⁴ : Fintype ι M : ι → Type w inst✝³ : (i : ι) → AddCommGroup (M i) inst✝² : (i : ι) → Module R (M i) inst✝¹ : ∀ (i : ι), Module.Free R (M i) inst✝ : ∀ (i : ι), Module.Finite R (M i) this : Nontrivial R := nontrivial_of_invariantBasisNumber R ⊢ finrank R ((i : ι) → M i) = ∑ i : ι, finrank R (M i) [PROOFSTEP] simp only [finrank, fun i => rank_eq_card_chooseBasisIndex R (M i), rank_pi, ← mk_sigma, mk_toNat_eq_card, card_sigma] [GOAL] R : Type u M : Type v N : Type w inst✝¹¹ : Ring R inst✝¹⁰ : StrongRankCondition R inst✝⁹ : AddCommGroup M inst✝⁸ : Module R M inst✝⁷ : Module.Free R M inst✝⁶ : Module.Finite R M inst✝⁵ : AddCommGroup N inst✝⁴ : Module R N inst✝³ : Module.Free R N inst✝² : Module.Finite R N m : Type u_1 n : Type u_2 inst✝¹ : Fintype m inst✝ : Fintype n ⊢ finrank R (Matrix m n R) = card m * card n [PROOFSTEP] simp [finrank] [GOAL] R : Type u M : Type v N : Type w inst✝⁹ : Ring R inst✝⁸ : StrongRankCondition R inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : Module.Free R M inst✝⁴ : Module.Finite R M inst✝³ : AddCommGroup N inst✝² : Module R N inst✝¹ : Module.Free R N inst✝ : Module.Finite R N cond : finrank R M = finrank R N ⊢ Cardinal.lift (Module.rank R M) = Cardinal.lift (Module.rank R N) [PROOFSTEP] simp only [← finrank_eq_rank, cond, lift_natCast] [GOAL] R : Type u M✝ : Type v N✝ : Type w inst✝¹⁵ : CommRing R inst✝¹⁴ : StrongRankCondition R inst✝¹³ : AddCommGroup M✝ inst✝¹² : Module R M✝ inst✝¹¹ : Module.Free R M✝ inst✝¹⁰ : Module.Finite R M✝ inst✝⁹ : AddCommGroup N✝ inst✝⁸ : Module R N✝ inst✝⁷ : Module.Free R N✝ inst✝⁶ : Module.Finite R N✝ M : Type v N : Type w inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : Module.Free R M inst✝² : AddCommGroup N inst✝¹ : Module R N inst✝ : Module.Free R N ⊢ finrank R (M ⊗[R] N) = finrank R M * finrank R N [PROOFSTEP] simp [finrank] [GOAL] R : Type u M : Type v N : Type w inst✝⁶ : Ring R inst✝⁵ : StrongRankCondition R inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : AddCommGroup N inst✝¹ : Module R N inst✝ : Module.Finite R M s : Submodule R M ⊢ finrank R { x // x ∈ s } ≤ finrank R M [PROOFSTEP] simpa only [Cardinal.toNat_lift] using toNat_le_of_le_of_lt_aleph0 (rank_lt_aleph0 _ _) (rank_submodule_le s) [GOAL] R : Type u M : Type v N : Type w inst✝⁶ : Ring R inst✝⁵ : StrongRankCondition R inst✝⁴ : AddCommGroup M inst✝³ : Module R M inst✝² : AddCommGroup N inst✝¹ : Module R N inst✝ : Module.Finite R M s : Submodule R M ⊢ finrank R (M ⧸ s) ≤ finrank R M [PROOFSTEP] simpa only [Cardinal.toNat_lift] using toNat_le_of_le_of_lt_aleph0 (rank_lt_aleph0 _ _) ((Submodule.mkQ s).rank_le_of_surjective (surjective_quot_mk _))
{"mathlib_filename": "Mathlib.LinearAlgebra.FreeModule.Finite.Rank", "llama_tokens": 4298}
[GOAL] ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹⁰ : CommSemiring R inst✝⁹ : AddCommMonoid M inst✝⁸ : AddCommMonoid N inst✝⁷ : AddCommMonoid P inst✝⁶ : AddCommMonoid Q inst✝⁵ : Module R M inst✝⁴ : Module R N inst✝³ : Module R P inst✝² : Module R Q inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M f : Dual R M m : M ⊢ ↑Dual.transpose (↑(dualTensorHom R M M) (f ⊗ₜ[R] m)) = ↑(dualTensorHom R (Dual R M) (Dual R M)) (↑(Dual.eval R M) m ⊗ₜ[R] f) [PROOFSTEP] ext f' m' [GOAL] case h.h ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹⁰ : CommSemiring R inst✝⁹ : AddCommMonoid M inst✝⁸ : AddCommMonoid N inst✝⁷ : AddCommMonoid P inst✝⁶ : AddCommMonoid Q inst✝⁵ : Module R M inst✝⁴ : Module R N inst✝³ : Module R P inst✝² : Module R Q inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M f : Dual R M m : M f' : Dual R M m' : M ⊢ ↑(↑(↑Dual.transpose (↑(dualTensorHom R M M) (f ⊗ₜ[R] m))) f') m' = ↑(↑(↑(dualTensorHom R (Dual R M) (Dual R M)) (↑(Dual.eval R M) m ⊗ₜ[R] f)) f') m' [PROOFSTEP] simp only [Dual.transpose_apply, coe_comp, Function.comp_apply, dualTensorHom_apply, LinearMap.map_smulₛₗ, RingHom.id_apply, Algebra.id.smul_eq_mul, Dual.eval_apply, LinearMap.smul_apply] [GOAL] case h.h ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹⁰ : CommSemiring R inst✝⁹ : AddCommMonoid M inst✝⁸ : AddCommMonoid N inst✝⁷ : AddCommMonoid P inst✝⁶ : AddCommMonoid Q inst✝⁵ : Module R M inst✝⁴ : Module R N inst✝³ : Module R P inst✝² : Module R Q inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M f : Dual R M m : M f' : Dual R M m' : M ⊢ ↑f m' * ↑f' m = ↑f' m * ↑f m' [PROOFSTEP] exact mul_comm _ _ [GOAL] ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹⁰ : CommSemiring R inst✝⁹ : AddCommMonoid M inst✝⁸ : AddCommMonoid N inst✝⁷ : AddCommMonoid P inst✝⁶ : AddCommMonoid Q inst✝⁵ : Module R M inst✝⁴ : Module R N inst✝³ : Module R P inst✝² : Module R Q inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M f : Dual R M p : P ⊢ prodMap (↑(dualTensorHom R M P) (f ⊗ₜ[R] p)) 0 = ↑(dualTensorHom R (M × N) (P × Q)) (comp f (fst R M N) ⊗ₜ[R] ↑(inl R P Q) p) [PROOFSTEP] ext [GOAL] case hl.h.h₁ ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹⁰ : CommSemiring R inst✝⁹ : AddCommMonoid M inst✝⁸ : AddCommMonoid N inst✝⁷ : AddCommMonoid P inst✝⁶ : AddCommMonoid Q inst✝⁵ : Module R M inst✝⁴ : Module R N inst✝³ : Module R P inst✝² : Module R Q inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M f : Dual R M p : P x✝ : M ⊢ (↑(comp (prodMap (↑(dualTensorHom R M P) (f ⊗ₜ[R] p)) 0) (inl R M N)) x✝).fst = (↑(comp (↑(dualTensorHom R (M × N) (P × Q)) (comp f (fst R M N) ⊗ₜ[R] ↑(inl R P Q) p)) (inl R M N)) x✝).fst [PROOFSTEP] simp only [coe_comp, coe_inl, Function.comp_apply, prodMap_apply, dualTensorHom_apply, fst_apply, Prod.smul_mk, LinearMap.zero_apply, smul_zero] [GOAL] case hl.h.h₂ ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹⁰ : CommSemiring R inst✝⁹ : AddCommMonoid M inst✝⁸ : AddCommMonoid N inst✝⁷ : AddCommMonoid P inst✝⁶ : AddCommMonoid Q inst✝⁵ : Module R M inst✝⁴ : Module R N inst✝³ : Module R P inst✝² : Module R Q inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M f : Dual R M p : P x✝ : M ⊢ (↑(comp (prodMap (↑(dualTensorHom R M P) (f ⊗ₜ[R] p)) 0) (inl R M N)) x✝).snd = (↑(comp (↑(dualTensorHom R (M × N) (P × Q)) (comp f (fst R M N) ⊗ₜ[R] ↑(inl R P Q) p)) (inl R M N)) x✝).snd [PROOFSTEP] simp only [coe_comp, coe_inl, Function.comp_apply, prodMap_apply, dualTensorHom_apply, fst_apply, Prod.smul_mk, LinearMap.zero_apply, smul_zero] [GOAL] case hr.h.h₁ ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹⁰ : CommSemiring R inst✝⁹ : AddCommMonoid M inst✝⁸ : AddCommMonoid N inst✝⁷ : AddCommMonoid P inst✝⁶ : AddCommMonoid Q inst✝⁵ : Module R M inst✝⁴ : Module R N inst✝³ : Module R P inst✝² : Module R Q inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M f : Dual R M p : P x✝ : N ⊢ (↑(comp (prodMap (↑(dualTensorHom R M P) (f ⊗ₜ[R] p)) 0) (inr R M N)) x✝).fst = (↑(comp (↑(dualTensorHom R (M × N) (P × Q)) (comp f (fst R M N) ⊗ₜ[R] ↑(inl R P Q) p)) (inr R M N)) x✝).fst [PROOFSTEP] simp only [coe_comp, coe_inl, Function.comp_apply, prodMap_apply, dualTensorHom_apply, fst_apply, Prod.smul_mk, LinearMap.zero_apply, smul_zero] [GOAL] case hr.h.h₂ ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹⁰ : CommSemiring R inst✝⁹ : AddCommMonoid M inst✝⁸ : AddCommMonoid N inst✝⁷ : AddCommMonoid P inst✝⁶ : AddCommMonoid Q inst✝⁵ : Module R M inst✝⁴ : Module R N inst✝³ : Module R P inst✝² : Module R Q inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M f : Dual R M p : P x✝ : N ⊢ (↑(comp (prodMap (↑(dualTensorHom R M P) (f ⊗ₜ[R] p)) 0) (inr R M N)) x✝).snd = (↑(comp (↑(dualTensorHom R (M × N) (P × Q)) (comp f (fst R M N) ⊗ₜ[R] ↑(inl R P Q) p)) (inr R M N)) x✝).snd [PROOFSTEP] simp only [coe_comp, coe_inl, Function.comp_apply, prodMap_apply, dualTensorHom_apply, fst_apply, Prod.smul_mk, LinearMap.zero_apply, smul_zero] [GOAL] ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹⁰ : CommSemiring R inst✝⁹ : AddCommMonoid M inst✝⁸ : AddCommMonoid N inst✝⁷ : AddCommMonoid P inst✝⁶ : AddCommMonoid Q inst✝⁵ : Module R M inst✝⁴ : Module R N inst✝³ : Module R P inst✝² : Module R Q inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M g : Dual R N q : Q ⊢ prodMap 0 (↑(dualTensorHom R N Q) (g ⊗ₜ[R] q)) = ↑(dualTensorHom R (M × N) (P × Q)) (comp g (snd R M N) ⊗ₜ[R] ↑(inr R P Q) q) [PROOFSTEP] ext [GOAL] case hl.h.h₁ ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹⁰ : CommSemiring R inst✝⁹ : AddCommMonoid M inst✝⁸ : AddCommMonoid N inst✝⁷ : AddCommMonoid P inst✝⁶ : AddCommMonoid Q inst✝⁵ : Module R M inst✝⁴ : Module R N inst✝³ : Module R P inst✝² : Module R Q inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M g : Dual R N q : Q x✝ : M ⊢ (↑(comp (prodMap 0 (↑(dualTensorHom R N Q) (g ⊗ₜ[R] q))) (inl R M N)) x✝).fst = (↑(comp (↑(dualTensorHom R (M × N) (P × Q)) (comp g (snd R M N) ⊗ₜ[R] ↑(inr R P Q) q)) (inl R M N)) x✝).fst [PROOFSTEP] simp only [coe_comp, coe_inr, Function.comp_apply, prodMap_apply, dualTensorHom_apply, snd_apply, Prod.smul_mk, LinearMap.zero_apply, smul_zero] [GOAL] case hl.h.h₂ ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹⁰ : CommSemiring R inst✝⁹ : AddCommMonoid M inst✝⁸ : AddCommMonoid N inst✝⁷ : AddCommMonoid P inst✝⁶ : AddCommMonoid Q inst✝⁵ : Module R M inst✝⁴ : Module R N inst✝³ : Module R P inst✝² : Module R Q inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M g : Dual R N q : Q x✝ : M ⊢ (↑(comp (prodMap 0 (↑(dualTensorHom R N Q) (g ⊗ₜ[R] q))) (inl R M N)) x✝).snd = (↑(comp (↑(dualTensorHom R (M × N) (P × Q)) (comp g (snd R M N) ⊗ₜ[R] ↑(inr R P Q) q)) (inl R M N)) x✝).snd [PROOFSTEP] simp only [coe_comp, coe_inr, Function.comp_apply, prodMap_apply, dualTensorHom_apply, snd_apply, Prod.smul_mk, LinearMap.zero_apply, smul_zero] [GOAL] case hr.h.h₁ ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹⁰ : CommSemiring R inst✝⁹ : AddCommMonoid M inst✝⁸ : AddCommMonoid N inst✝⁷ : AddCommMonoid P inst✝⁶ : AddCommMonoid Q inst✝⁵ : Module R M inst✝⁴ : Module R N inst✝³ : Module R P inst✝² : Module R Q inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M g : Dual R N q : Q x✝ : N ⊢ (↑(comp (prodMap 0 (↑(dualTensorHom R N Q) (g ⊗ₜ[R] q))) (inr R M N)) x✝).fst = (↑(comp (↑(dualTensorHom R (M × N) (P × Q)) (comp g (snd R M N) ⊗ₜ[R] ↑(inr R P Q) q)) (inr R M N)) x✝).fst [PROOFSTEP] simp only [coe_comp, coe_inr, Function.comp_apply, prodMap_apply, dualTensorHom_apply, snd_apply, Prod.smul_mk, LinearMap.zero_apply, smul_zero] [GOAL] case hr.h.h₂ ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹⁰ : CommSemiring R inst✝⁹ : AddCommMonoid M inst✝⁸ : AddCommMonoid N inst✝⁷ : AddCommMonoid P inst✝⁶ : AddCommMonoid Q inst✝⁵ : Module R M inst✝⁴ : Module R N inst✝³ : Module R P inst✝² : Module R Q inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M g : Dual R N q : Q x✝ : N ⊢ (↑(comp (prodMap 0 (↑(dualTensorHom R N Q) (g ⊗ₜ[R] q))) (inr R M N)) x✝).snd = (↑(comp (↑(dualTensorHom R (M × N) (P × Q)) (comp g (snd R M N) ⊗ₜ[R] ↑(inr R P Q) q)) (inr R M N)) x✝).snd [PROOFSTEP] simp only [coe_comp, coe_inr, Function.comp_apply, prodMap_apply, dualTensorHom_apply, snd_apply, Prod.smul_mk, LinearMap.zero_apply, smul_zero] [GOAL] ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹⁰ : CommSemiring R inst✝⁹ : AddCommMonoid M inst✝⁸ : AddCommMonoid N inst✝⁷ : AddCommMonoid P inst✝⁶ : AddCommMonoid Q inst✝⁵ : Module R M inst✝⁴ : Module R N inst✝³ : Module R P inst✝² : Module R Q inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M f : Dual R M p : P g : Dual R N q : Q ⊢ TensorProduct.map (↑(dualTensorHom R M P) (f ⊗ₜ[R] p)) (↑(dualTensorHom R N Q) (g ⊗ₜ[R] q)) = ↑(dualTensorHom R (M ⊗[R] N) (P ⊗[R] Q)) (↑(dualDistrib R M N) (f ⊗ₜ[R] g) ⊗ₜ[R] p ⊗ₜ[R] q) [PROOFSTEP] ext m n [GOAL] case H.h.h ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹⁰ : CommSemiring R inst✝⁹ : AddCommMonoid M inst✝⁸ : AddCommMonoid N inst✝⁷ : AddCommMonoid P inst✝⁶ : AddCommMonoid Q inst✝⁵ : Module R M inst✝⁴ : Module R N inst✝³ : Module R P inst✝² : Module R Q inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M f : Dual R M p : P g : Dual R N q : Q m : M n : N ⊢ ↑(↑(compr₂ (TensorProduct.mk R M N) (TensorProduct.map (↑(dualTensorHom R M P) (f ⊗ₜ[R] p)) (↑(dualTensorHom R N Q) (g ⊗ₜ[R] q)))) m) n = ↑(↑(compr₂ (TensorProduct.mk R M N) (↑(dualTensorHom R (M ⊗[R] N) (P ⊗[R] Q)) (↑(dualDistrib R M N) (f ⊗ₜ[R] g) ⊗ₜ[R] p ⊗ₜ[R] q))) m) n [PROOFSTEP] simp only [compr₂_apply, mk_apply, map_tmul, dualTensorHom_apply, dualDistrib_apply, ← smul_tmul_smul] [GOAL] ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹⁰ : CommSemiring R inst✝⁹ : AddCommMonoid M inst✝⁸ : AddCommMonoid N inst✝⁷ : AddCommMonoid P inst✝⁶ : AddCommMonoid Q inst✝⁵ : Module R M inst✝⁴ : Module R N inst✝³ : Module R P inst✝² : Module R Q inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M f : Dual R M n : N g : Dual R N p : P ⊢ comp (↑(dualTensorHom R N P) (g ⊗ₜ[R] p)) (↑(dualTensorHom R M N) (f ⊗ₜ[R] n)) = ↑g n • ↑(dualTensorHom R M P) (f ⊗ₜ[R] p) [PROOFSTEP] ext m [GOAL] case h ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹⁰ : CommSemiring R inst✝⁹ : AddCommMonoid M inst✝⁸ : AddCommMonoid N inst✝⁷ : AddCommMonoid P inst✝⁶ : AddCommMonoid Q inst✝⁵ : Module R M inst✝⁴ : Module R N inst✝³ : Module R P inst✝² : Module R Q inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M f : Dual R M n : N g : Dual R N p : P m : M ⊢ ↑(comp (↑(dualTensorHom R N P) (g ⊗ₜ[R] p)) (↑(dualTensorHom R M N) (f ⊗ₜ[R] n))) m = ↑(↑g n • ↑(dualTensorHom R M P) (f ⊗ₜ[R] p)) m [PROOFSTEP] simp only [coe_comp, Function.comp_apply, dualTensorHom_apply, LinearMap.map_smul, RingHom.id_apply, LinearMap.smul_apply] [GOAL] case h ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹⁰ : CommSemiring R inst✝⁹ : AddCommMonoid M inst✝⁸ : AddCommMonoid N inst✝⁷ : AddCommMonoid P inst✝⁶ : AddCommMonoid Q inst✝⁵ : Module R M inst✝⁴ : Module R N inst✝³ : Module R P inst✝² : Module R Q inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M f : Dual R M n : N g : Dual R N p : P m : M ⊢ ↑f m • ↑g n • p = ↑g n • ↑f m • p [PROOFSTEP] rw [smul_comm] [GOAL] ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹⁴ : CommSemiring R inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid N inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : AddCommMonoid Q inst✝⁹ : Module R M inst✝⁸ : Module R N inst✝⁷ : Module R P inst✝⁶ : Module R Q inst✝⁵ : DecidableEq ι inst✝⁴ : Fintype ι b : Basis ι R M m : Type u_1 n : Type u_2 inst✝³ : Fintype m inst✝² : Fintype n inst✝¹ : DecidableEq m inst✝ : DecidableEq n bM : Basis m R M bN : Basis n R N j : m i : n ⊢ ↑(toMatrix bM bN) (↑(dualTensorHom R M N) (Basis.coord bM j ⊗ₜ[R] ↑bN i)) = stdBasisMatrix i j 1 [PROOFSTEP] ext i' j' [GOAL] case a.h ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹⁴ : CommSemiring R inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid N inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : AddCommMonoid Q inst✝⁹ : Module R M inst✝⁸ : Module R N inst✝⁷ : Module R P inst✝⁶ : Module R Q inst✝⁵ : DecidableEq ι inst✝⁴ : Fintype ι b : Basis ι R M m : Type u_1 n : Type u_2 inst✝³ : Fintype m inst✝² : Fintype n inst✝¹ : DecidableEq m inst✝ : DecidableEq n bM : Basis m R M bN : Basis n R N j : m i i' : n j' : m ⊢ ↑(toMatrix bM bN) (↑(dualTensorHom R M N) (Basis.coord bM j ⊗ₜ[R] ↑bN i)) i' j' = stdBasisMatrix i j 1 i' j' [PROOFSTEP] by_cases hij : i = i' ∧ j = j' [GOAL] case pos ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹⁴ : CommSemiring R inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid N inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : AddCommMonoid Q inst✝⁹ : Module R M inst✝⁸ : Module R N inst✝⁷ : Module R P inst✝⁶ : Module R Q inst✝⁵ : DecidableEq ι inst✝⁴ : Fintype ι b : Basis ι R M m : Type u_1 n : Type u_2 inst✝³ : Fintype m inst✝² : Fintype n inst✝¹ : DecidableEq m inst✝ : DecidableEq n bM : Basis m R M bN : Basis n R N j : m i i' : n j' : m hij : i = i' ∧ j = j' ⊢ ↑(toMatrix bM bN) (↑(dualTensorHom R M N) (Basis.coord bM j ⊗ₜ[R] ↑bN i)) i' j' = stdBasisMatrix i j 1 i' j' [PROOFSTEP] simp [LinearMap.toMatrix_apply, Finsupp.single_eq_pi_single, hij] [GOAL] case neg ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹⁴ : CommSemiring R inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid N inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : AddCommMonoid Q inst✝⁹ : Module R M inst✝⁸ : Module R N inst✝⁷ : Module R P inst✝⁶ : Module R Q inst✝⁵ : DecidableEq ι inst✝⁴ : Fintype ι b : Basis ι R M m : Type u_1 n : Type u_2 inst✝³ : Fintype m inst✝² : Fintype n inst✝¹ : DecidableEq m inst✝ : DecidableEq n bM : Basis m R M bN : Basis n R N j : m i i' : n j' : m hij : ¬(i = i' ∧ j = j') ⊢ ↑(toMatrix bM bN) (↑(dualTensorHom R M N) (Basis.coord bM j ⊗ₜ[R] ↑bN i)) i' j' = stdBasisMatrix i j 1 i' j' [PROOFSTEP] simp [LinearMap.toMatrix_apply, Finsupp.single_eq_pi_single, hij] [GOAL] case neg ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹⁴ : CommSemiring R inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid N inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : AddCommMonoid Q inst✝⁹ : Module R M inst✝⁸ : Module R N inst✝⁷ : Module R P inst✝⁶ : Module R Q inst✝⁵ : DecidableEq ι inst✝⁴ : Fintype ι b : Basis ι R M m : Type u_1 n : Type u_2 inst✝³ : Fintype m inst✝² : Fintype n inst✝¹ : DecidableEq m inst✝ : DecidableEq n bM : Basis m R M bN : Basis n R N j : m i i' : n j' : m hij : ¬(i = i' ∧ j = j') ⊢ Pi.single i (Pi.single j' 1 j) i' = 0 [PROOFSTEP] rw [and_iff_not_or_not, Classical.not_not] at hij [GOAL] case neg ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹⁴ : CommSemiring R inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid N inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : AddCommMonoid Q inst✝⁹ : Module R M inst✝⁸ : Module R N inst✝⁷ : Module R P inst✝⁶ : Module R Q inst✝⁵ : DecidableEq ι inst✝⁴ : Fintype ι b : Basis ι R M m : Type u_1 n : Type u_2 inst✝³ : Fintype m inst✝² : Fintype n inst✝¹ : DecidableEq m inst✝ : DecidableEq n bM : Basis m R M bN : Basis n R N j : m i i' : n j' : m hij : ¬i = i' ∨ ¬j = j' ⊢ Pi.single i (Pi.single j' 1 j) i' = 0 [PROOFSTEP] cases' hij with hij hij [GOAL] case neg.inl ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹⁴ : CommSemiring R inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid N inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : AddCommMonoid Q inst✝⁹ : Module R M inst✝⁸ : Module R N inst✝⁷ : Module R P inst✝⁶ : Module R Q inst✝⁵ : DecidableEq ι inst✝⁴ : Fintype ι b : Basis ι R M m : Type u_1 n : Type u_2 inst✝³ : Fintype m inst✝² : Fintype n inst✝¹ : DecidableEq m inst✝ : DecidableEq n bM : Basis m R M bN : Basis n R N j : m i i' : n j' : m hij : ¬i = i' ⊢ Pi.single i (Pi.single j' 1 j) i' = 0 [PROOFSTEP] simp [hij] [GOAL] case neg.inr ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹⁴ : CommSemiring R inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid N inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : AddCommMonoid Q inst✝⁹ : Module R M inst✝⁸ : Module R N inst✝⁷ : Module R P inst✝⁶ : Module R Q inst✝⁵ : DecidableEq ι inst✝⁴ : Fintype ι b : Basis ι R M m : Type u_1 n : Type u_2 inst✝³ : Fintype m inst✝² : Fintype n inst✝¹ : DecidableEq m inst✝ : DecidableEq n bM : Basis m R M bN : Basis n R N j : m i i' : n j' : m hij : ¬j = j' ⊢ Pi.single i (Pi.single j' 1 j) i' = 0 [PROOFSTEP] simp [hij] [GOAL] ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹⁰ : CommRing R inst✝⁹ : AddCommGroup M inst✝⁸ : AddCommGroup N inst✝⁷ : AddCommGroup P inst✝⁶ : AddCommGroup Q inst✝⁵ : Module R M inst✝⁴ : Module R N inst✝³ : Module R P inst✝² : Module R Q inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M ⊢ comp (dualTensorHom R M N) (∑ i : ι, comp (↑(TensorProduct.mk R ((fun x => Dual R M) i) N) (↑(Basis.dualBasis b) i)) (↑applyₗ (↑b i))) = LinearMap.id [PROOFSTEP] ext f m [GOAL] case h.h ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹⁰ : CommRing R inst✝⁹ : AddCommGroup M inst✝⁸ : AddCommGroup N inst✝⁷ : AddCommGroup P inst✝⁶ : AddCommGroup Q inst✝⁵ : Module R M inst✝⁴ : Module R N inst✝³ : Module R P inst✝² : Module R Q inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M f : M →ₗ[R] N m : M ⊢ ↑(↑(comp (dualTensorHom R M N) (∑ i : ι, comp (↑(TensorProduct.mk R ((fun x => Dual R M) i) N) (↑(Basis.dualBasis b) i)) (↑applyₗ (↑b i)))) f) m = ↑(↑LinearMap.id f) m [PROOFSTEP] simp only [applyₗ_apply_apply, coeFn_sum, dualTensorHom_apply, mk_apply, id_coe, id.def, Fintype.sum_apply, Function.comp_apply, Basis.coe_dualBasis, coe_comp, Basis.coord_apply, ← f.map_smul, (dualTensorHom R M N).map_sum, ← f.map_sum, b.sum_repr] [GOAL] ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹⁰ : CommRing R inst✝⁹ : AddCommGroup M inst✝⁸ : AddCommGroup N inst✝⁷ : AddCommGroup P inst✝⁶ : AddCommGroup Q inst✝⁵ : Module R M inst✝⁴ : Module R N inst✝³ : Module R P inst✝² : Module R Q inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M ⊢ comp (∑ i : ι, comp (↑(TensorProduct.mk R ((fun x => Dual R M) i) N) (↑(Basis.dualBasis b) i)) (↑applyₗ (↑b i))) (dualTensorHom R M N) = LinearMap.id [PROOFSTEP] ext f m [GOAL] case H.h.h ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹⁰ : CommRing R inst✝⁹ : AddCommGroup M inst✝⁸ : AddCommGroup N inst✝⁷ : AddCommGroup P inst✝⁶ : AddCommGroup Q inst✝⁵ : Module R M inst✝⁴ : Module R N inst✝³ : Module R P inst✝² : Module R Q inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M f : Dual R M m : N ⊢ ↑(↑(compr₂ (TensorProduct.mk R (Dual R M) N) (comp (∑ i : ι, comp (↑(TensorProduct.mk R ((fun x => Dual R M) i) N) (↑(Basis.dualBasis b) i)) (↑applyₗ (↑b i))) (dualTensorHom R M N))) f) m = ↑(↑(compr₂ (TensorProduct.mk R (Dual R M) N) LinearMap.id) f) m [PROOFSTEP] simp only [applyₗ_apply_apply, coeFn_sum, dualTensorHom_apply, mk_apply, id_coe, id.def, Fintype.sum_apply, Function.comp_apply, Basis.coe_dualBasis, coe_comp, compr₂_apply, tmul_smul, smul_tmul', ← sum_tmul, Basis.sum_dual_apply_smul_coord] [GOAL] ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹⁰ : CommRing R inst✝⁹ : AddCommGroup M inst✝⁸ : AddCommGroup N inst✝⁷ : AddCommGroup P inst✝⁶ : AddCommGroup Q inst✝⁵ : Module R M inst✝⁴ : Module R N inst✝³ : Module R P inst✝² : Module R Q inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M x : Dual R M ⊗[R] N ⊢ ↑(dualTensorHomEquivOfBasis b) x = ↑(dualTensorHom R M N) x [PROOFSTEP] ext [GOAL] case h ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹⁰ : CommRing R inst✝⁹ : AddCommGroup M inst✝⁸ : AddCommGroup N inst✝⁷ : AddCommGroup P inst✝⁶ : AddCommGroup Q inst✝⁵ : Module R M inst✝⁴ : Module R N inst✝³ : Module R P inst✝² : Module R Q inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M x : Dual R M ⊗[R] N x✝ : M ⊢ ↑(↑(dualTensorHomEquivOfBasis b) x) x✝ = ↑(↑(dualTensorHom R M N) x) x✝ [PROOFSTEP] rfl [GOAL] ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹⁰ : CommRing R inst✝⁹ : AddCommGroup M inst✝⁸ : AddCommGroup N inst✝⁷ : AddCommGroup P inst✝⁶ : AddCommGroup Q inst✝⁵ : Module R M inst✝⁴ : Module R N inst✝³ : Module R P inst✝² : Module R Q inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M x : Dual R M ⊗[R] N ⊢ ↑(LinearEquiv.symm (dualTensorHomEquivOfBasis b)) (↑(dualTensorHom R M N) x) = x [PROOFSTEP] rw [← dualTensorHomEquivOfBasis_apply b, LinearEquiv.symm_apply_apply <| dualTensorHomEquivOfBasis (N := N) b] [GOAL] ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹⁰ : CommRing R inst✝⁹ : AddCommGroup M inst✝⁸ : AddCommGroup N inst✝⁷ : AddCommGroup P inst✝⁶ : AddCommGroup Q inst✝⁵ : Module R M inst✝⁴ : Module R N inst✝³ : Module R P inst✝² : Module R Q inst✝¹ : DecidableEq ι inst✝ : Fintype ι b : Basis ι R M x : M →ₗ[R] N ⊢ ↑(dualTensorHom R M N) (↑(LinearEquiv.symm (dualTensorHomEquivOfBasis b)) x) = x [PROOFSTEP] rw [← dualTensorHomEquivOfBasis_apply b, LinearEquiv.apply_symm_apply] [GOAL] ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹³ : CommRing R inst✝¹² : AddCommGroup M inst✝¹¹ : AddCommGroup N inst✝¹⁰ : AddCommGroup P inst✝⁹ : AddCommGroup Q inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Free R M inst✝³ : Module.Finite R M inst✝² : Free R N inst✝¹ : Module.Finite R N inst✝ : Nontrivial R ⊢ ↑(lTensorHomEquivHomLTensor R M P Q) = lTensorHomToHomLTensor R M P Q [PROOFSTEP] classical -- Porting note: missing decidable for choosing basis let e := congr (LinearEquiv.refl R P) (dualTensorHomEquiv R M Q) have h : Function.Surjective e.toLinearMap := e.surjective refine' (cancel_right h).1 _ ext f q m dsimp [lTensorHomEquivHomLTensor] simp only [lTensorHomEquivHomLTensor, dualTensorHomEquiv, compr₂_apply, mk_apply, coe_comp, LinearEquiv.coe_toLinearMap, Function.comp_apply, map_tmul, LinearEquiv.coe_coe, dualTensorHomEquivOfBasis_apply, LinearEquiv.trans_apply, congr_tmul, LinearEquiv.refl_apply, dualTensorHomEquivOfBasis_symm_cancel_left, leftComm_tmul, dualTensorHom_apply, tmul_smul] [GOAL] ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹³ : CommRing R inst✝¹² : AddCommGroup M inst✝¹¹ : AddCommGroup N inst✝¹⁰ : AddCommGroup P inst✝⁹ : AddCommGroup Q inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Free R M inst✝³ : Module.Finite R M inst✝² : Free R N inst✝¹ : Module.Finite R N inst✝ : Nontrivial R ⊢ ↑(lTensorHomEquivHomLTensor R M P Q) = lTensorHomToHomLTensor R M P Q [PROOFSTEP] let e := congr (LinearEquiv.refl R P) (dualTensorHomEquiv R M Q) [GOAL] ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹³ : CommRing R inst✝¹² : AddCommGroup M inst✝¹¹ : AddCommGroup N inst✝¹⁰ : AddCommGroup P inst✝⁹ : AddCommGroup Q inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Free R M inst✝³ : Module.Finite R M inst✝² : Free R N inst✝¹ : Module.Finite R N inst✝ : Nontrivial R e : P ⊗[R] Dual R M ⊗[R] Q ≃ₗ[R] P ⊗[R] (M →ₗ[R] Q) := TensorProduct.congr (LinearEquiv.refl R P) (dualTensorHomEquiv R M Q) ⊢ ↑(lTensorHomEquivHomLTensor R M P Q) = lTensorHomToHomLTensor R M P Q [PROOFSTEP] have h : Function.Surjective e.toLinearMap := e.surjective [GOAL] ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹³ : CommRing R inst✝¹² : AddCommGroup M inst✝¹¹ : AddCommGroup N inst✝¹⁰ : AddCommGroup P inst✝⁹ : AddCommGroup Q inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Free R M inst✝³ : Module.Finite R M inst✝² : Free R N inst✝¹ : Module.Finite R N inst✝ : Nontrivial R e : P ⊗[R] Dual R M ⊗[R] Q ≃ₗ[R] P ⊗[R] (M →ₗ[R] Q) := TensorProduct.congr (LinearEquiv.refl R P) (dualTensorHomEquiv R M Q) h : Function.Surjective ↑↑e ⊢ ↑(lTensorHomEquivHomLTensor R M P Q) = lTensorHomToHomLTensor R M P Q [PROOFSTEP] refine' (cancel_right h).1 _ [GOAL] ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹³ : CommRing R inst✝¹² : AddCommGroup M inst✝¹¹ : AddCommGroup N inst✝¹⁰ : AddCommGroup P inst✝⁹ : AddCommGroup Q inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Free R M inst✝³ : Module.Finite R M inst✝² : Free R N inst✝¹ : Module.Finite R N inst✝ : Nontrivial R e : P ⊗[R] Dual R M ⊗[R] Q ≃ₗ[R] P ⊗[R] (M →ₗ[R] Q) := TensorProduct.congr (LinearEquiv.refl R P) (dualTensorHomEquiv R M Q) h : Function.Surjective ↑↑e ⊢ comp ↑(lTensorHomEquivHomLTensor R M P Q) ↑e = comp (lTensorHomToHomLTensor R M P Q) ↑e [PROOFSTEP] ext f q m [GOAL] case H.h.H.h.h.h ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹³ : CommRing R inst✝¹² : AddCommGroup M inst✝¹¹ : AddCommGroup N inst✝¹⁰ : AddCommGroup P inst✝⁹ : AddCommGroup Q inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Free R M inst✝³ : Module.Finite R M inst✝² : Free R N inst✝¹ : Module.Finite R N inst✝ : Nontrivial R e : P ⊗[R] Dual R M ⊗[R] Q ≃ₗ[R] P ⊗[R] (M →ₗ[R] Q) := TensorProduct.congr (LinearEquiv.refl R P) (dualTensorHomEquiv R M Q) h : Function.Surjective ↑↑e f : P q : Dual R M m : Q x✝ : M ⊢ ↑(↑(↑(compr₂ (TensorProduct.mk R (Dual R M) Q) (↑(compr₂ (TensorProduct.mk R P (Dual R M ⊗[R] Q)) (comp ↑(lTensorHomEquivHomLTensor R M P Q) ↑e)) f)) q) m) x✝ = ↑(↑(↑(compr₂ (TensorProduct.mk R (Dual R M) Q) (↑(compr₂ (TensorProduct.mk R P (Dual R M ⊗[R] Q)) (comp (lTensorHomToHomLTensor R M P Q) ↑e)) f)) q) m) x✝ [PROOFSTEP] dsimp [lTensorHomEquivHomLTensor] [GOAL] case H.h.H.h.h.h ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹³ : CommRing R inst✝¹² : AddCommGroup M inst✝¹¹ : AddCommGroup N inst✝¹⁰ : AddCommGroup P inst✝⁹ : AddCommGroup Q inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Free R M inst✝³ : Module.Finite R M inst✝² : Free R N inst✝¹ : Module.Finite R N inst✝ : Nontrivial R e : P ⊗[R] Dual R M ⊗[R] Q ≃ₗ[R] P ⊗[R] (M →ₗ[R] Q) := TensorProduct.congr (LinearEquiv.refl R P) (dualTensorHomEquiv R M Q) h : Function.Surjective ↑↑e f : P q : Dual R M m : Q x✝ : M ⊢ ↑(↑(dualTensorHomEquivOfBasis (Free.chooseBasis R M)) (↑(leftComm R P (Dual R M) Q) (f ⊗ₜ[R] ↑(LinearEquiv.symm (dualTensorHomEquivOfBasis (Free.chooseBasis R M))) (↑(dualTensorHomEquivOfBasis (Free.chooseBasis R M)) (q ⊗ₜ[R] m))))) x✝ = f ⊗ₜ[R] ↑(↑(dualTensorHomEquivOfBasis (Free.chooseBasis R M)) (q ⊗ₜ[R] m)) x✝ [PROOFSTEP] simp only [lTensorHomEquivHomLTensor, dualTensorHomEquiv, compr₂_apply, mk_apply, coe_comp, LinearEquiv.coe_toLinearMap, Function.comp_apply, map_tmul, LinearEquiv.coe_coe, dualTensorHomEquivOfBasis_apply, LinearEquiv.trans_apply, congr_tmul, LinearEquiv.refl_apply, dualTensorHomEquivOfBasis_symm_cancel_left, leftComm_tmul, dualTensorHom_apply, tmul_smul] [GOAL] ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹³ : CommRing R inst✝¹² : AddCommGroup M inst✝¹¹ : AddCommGroup N inst✝¹⁰ : AddCommGroup P inst✝⁹ : AddCommGroup Q inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Free R M inst✝³ : Module.Finite R M inst✝² : Free R N inst✝¹ : Module.Finite R N inst✝ : Nontrivial R ⊢ ↑(rTensorHomEquivHomRTensor R M P Q) = rTensorHomToHomRTensor R M P Q [PROOFSTEP] classical -- Porting note: missing decidable for choosing basis let e := congr (dualTensorHomEquiv R M P) (LinearEquiv.refl R Q) have h : Function.Surjective e.toLinearMap := e.surjective refine' (cancel_right h).1 _ ext f p q m simp only [rTensorHomEquivHomRTensor, dualTensorHomEquiv, compr₂_apply, mk_apply, coe_comp, LinearEquiv.coe_toLinearMap, Function.comp_apply, map_tmul, LinearEquiv.coe_coe, dualTensorHomEquivOfBasis_apply, LinearEquiv.trans_apply, congr_tmul, dualTensorHomEquivOfBasis_symm_cancel_left, LinearEquiv.refl_apply, assoc_tmul, dualTensorHom_apply, rTensorHomToHomRTensor_apply, smul_tmul'] [GOAL] ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹³ : CommRing R inst✝¹² : AddCommGroup M inst✝¹¹ : AddCommGroup N inst✝¹⁰ : AddCommGroup P inst✝⁹ : AddCommGroup Q inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Free R M inst✝³ : Module.Finite R M inst✝² : Free R N inst✝¹ : Module.Finite R N inst✝ : Nontrivial R ⊢ ↑(rTensorHomEquivHomRTensor R M P Q) = rTensorHomToHomRTensor R M P Q [PROOFSTEP] let e := congr (dualTensorHomEquiv R M P) (LinearEquiv.refl R Q) [GOAL] ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹³ : CommRing R inst✝¹² : AddCommGroup M inst✝¹¹ : AddCommGroup N inst✝¹⁰ : AddCommGroup P inst✝⁹ : AddCommGroup Q inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Free R M inst✝³ : Module.Finite R M inst✝² : Free R N inst✝¹ : Module.Finite R N inst✝ : Nontrivial R e : (Dual R M ⊗[R] P) ⊗[R] Q ≃ₗ[R] (M →ₗ[R] P) ⊗[R] Q := TensorProduct.congr (dualTensorHomEquiv R M P) (LinearEquiv.refl R Q) ⊢ ↑(rTensorHomEquivHomRTensor R M P Q) = rTensorHomToHomRTensor R M P Q [PROOFSTEP] have h : Function.Surjective e.toLinearMap := e.surjective [GOAL] ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹³ : CommRing R inst✝¹² : AddCommGroup M inst✝¹¹ : AddCommGroup N inst✝¹⁰ : AddCommGroup P inst✝⁹ : AddCommGroup Q inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Free R M inst✝³ : Module.Finite R M inst✝² : Free R N inst✝¹ : Module.Finite R N inst✝ : Nontrivial R e : (Dual R M ⊗[R] P) ⊗[R] Q ≃ₗ[R] (M →ₗ[R] P) ⊗[R] Q := TensorProduct.congr (dualTensorHomEquiv R M P) (LinearEquiv.refl R Q) h : Function.Surjective ↑↑e ⊢ ↑(rTensorHomEquivHomRTensor R M P Q) = rTensorHomToHomRTensor R M P Q [PROOFSTEP] refine' (cancel_right h).1 _ [GOAL] ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹³ : CommRing R inst✝¹² : AddCommGroup M inst✝¹¹ : AddCommGroup N inst✝¹⁰ : AddCommGroup P inst✝⁹ : AddCommGroup Q inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Free R M inst✝³ : Module.Finite R M inst✝² : Free R N inst✝¹ : Module.Finite R N inst✝ : Nontrivial R e : (Dual R M ⊗[R] P) ⊗[R] Q ≃ₗ[R] (M →ₗ[R] P) ⊗[R] Q := TensorProduct.congr (dualTensorHomEquiv R M P) (LinearEquiv.refl R Q) h : Function.Surjective ↑↑e ⊢ comp ↑(rTensorHomEquivHomRTensor R M P Q) ↑e = comp (rTensorHomToHomRTensor R M P Q) ↑e [PROOFSTEP] ext f p q m [GOAL] case H.H.h.h.h.h ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹³ : CommRing R inst✝¹² : AddCommGroup M inst✝¹¹ : AddCommGroup N inst✝¹⁰ : AddCommGroup P inst✝⁹ : AddCommGroup Q inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Free R M inst✝³ : Module.Finite R M inst✝² : Free R N inst✝¹ : Module.Finite R N inst✝ : Nontrivial R e : (Dual R M ⊗[R] P) ⊗[R] Q ≃ₗ[R] (M →ₗ[R] P) ⊗[R] Q := TensorProduct.congr (dualTensorHomEquiv R M P) (LinearEquiv.refl R Q) h : Function.Surjective ↑↑e f : Dual R M p : P q : Q m : M ⊢ ↑(↑(↑(↑(compr₂ (TensorProduct.mk R (Dual R M) P) (compr₂ (TensorProduct.mk R (Dual R M ⊗[R] P) Q) (comp ↑(rTensorHomEquivHomRTensor R M P Q) ↑e))) f) p) q) m = ↑(↑(↑(↑(compr₂ (TensorProduct.mk R (Dual R M) P) (compr₂ (TensorProduct.mk R (Dual R M ⊗[R] P) Q) (comp (rTensorHomToHomRTensor R M P Q) ↑e))) f) p) q) m [PROOFSTEP] simp only [rTensorHomEquivHomRTensor, dualTensorHomEquiv, compr₂_apply, mk_apply, coe_comp, LinearEquiv.coe_toLinearMap, Function.comp_apply, map_tmul, LinearEquiv.coe_coe, dualTensorHomEquivOfBasis_apply, LinearEquiv.trans_apply, congr_tmul, dualTensorHomEquivOfBasis_symm_cancel_left, LinearEquiv.refl_apply, assoc_tmul, dualTensorHom_apply, rTensorHomToHomRTensor_apply, smul_tmul'] [GOAL] ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹³ : CommRing R inst✝¹² : AddCommGroup M inst✝¹¹ : AddCommGroup N inst✝¹⁰ : AddCommGroup P inst✝⁹ : AddCommGroup Q inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Free R M inst✝³ : Module.Finite R M inst✝² : Free R N inst✝¹ : Module.Finite R N inst✝ : Nontrivial R x : P ⊗[R] (M →ₗ[R] Q) ⊢ ↑(lTensorHomEquivHomLTensor R M P Q) x = ↑(lTensorHomToHomLTensor R M P Q) x [PROOFSTEP] rw [← LinearEquiv.coe_toLinearMap, lTensorHomEquivHomLTensor_toLinearMap] [GOAL] ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹³ : CommRing R inst✝¹² : AddCommGroup M inst✝¹¹ : AddCommGroup N inst✝¹⁰ : AddCommGroup P inst✝⁹ : AddCommGroup Q inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Free R M inst✝³ : Module.Finite R M inst✝² : Free R N inst✝¹ : Module.Finite R N inst✝ : Nontrivial R x : (M →ₗ[R] P) ⊗[R] Q ⊢ ↑(rTensorHomEquivHomRTensor R M P Q) x = ↑(rTensorHomToHomRTensor R M P Q) x [PROOFSTEP] rw [← LinearEquiv.coe_toLinearMap, rTensorHomEquivHomRTensor_toLinearMap] [GOAL] ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹³ : CommRing R inst✝¹² : AddCommGroup M inst✝¹¹ : AddCommGroup N inst✝¹⁰ : AddCommGroup P inst✝⁹ : AddCommGroup Q inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Free R M inst✝³ : Module.Finite R M inst✝² : Free R N inst✝¹ : Module.Finite R N inst✝ : Nontrivial R ⊢ ↑(homTensorHomEquiv R M N P Q) = homTensorHomMap R M N P Q [PROOFSTEP] ext m n [GOAL] case H.h.h.H.h.h ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹³ : CommRing R inst✝¹² : AddCommGroup M inst✝¹¹ : AddCommGroup N inst✝¹⁰ : AddCommGroup P inst✝⁹ : AddCommGroup Q inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Free R M inst✝³ : Module.Finite R M inst✝² : Free R N inst✝¹ : Module.Finite R N inst✝ : Nontrivial R m : M →ₗ[R] P n : N →ₗ[R] Q x✝¹ : M x✝ : N ⊢ ↑(↑(compr₂ (TensorProduct.mk R M N) (↑(↑(compr₂ (TensorProduct.mk R (M →ₗ[R] P) (N →ₗ[R] Q)) ↑(homTensorHomEquiv R M N P Q)) m) n)) x✝¹) x✝ = ↑(↑(compr₂ (TensorProduct.mk R M N) (↑(↑(compr₂ (TensorProduct.mk R (M →ₗ[R] P) (N →ₗ[R] Q)) (homTensorHomMap R M N P Q)) m) n)) x✝¹) x✝ [PROOFSTEP] simp only [homTensorHomEquiv, compr₂_apply, mk_apply, LinearEquiv.coe_toLinearMap, LinearEquiv.trans_apply, lift.equiv_apply, LinearEquiv.arrowCongr_apply, LinearEquiv.refl_symm, LinearEquiv.refl_apply, rTensorHomEquivHomRTensor_apply, lTensorHomEquivHomLTensor_apply, lTensorHomToHomLTensor_apply, rTensorHomToHomRTensor_apply, homTensorHomMap_apply, map_tmul] [GOAL] ι : Type w R : Type u M : Type v₁ N : Type v₂ P : Type v₃ Q : Type v₄ inst✝¹³ : CommRing R inst✝¹² : AddCommGroup M inst✝¹¹ : AddCommGroup N inst✝¹⁰ : AddCommGroup P inst✝⁹ : AddCommGroup Q inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Free R M inst✝³ : Module.Finite R M inst✝² : Free R N inst✝¹ : Module.Finite R N inst✝ : Nontrivial R x : (M →ₗ[R] P) ⊗[R] (N →ₗ[R] Q) ⊢ ↑(homTensorHomEquiv R M N P Q) x = ↑(homTensorHomMap R M N P Q) x [PROOFSTEP] rw [← LinearEquiv.coe_toLinearMap, homTensorHomEquiv_toLinearMap]
{"mathlib_filename": "Mathlib.LinearAlgebra.Contraction", "llama_tokens": 18270}
[GOAL] K : Type u V : Type v inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V V₂ : Type v' inst✝³ : AddCommGroup V₂ inst✝² : Module K V₂ inst✝¹ : _root_.Finite K inst✝ : FiniteDimensional K V ⊢ _root_.Finite V [PROOFSTEP] cases nonempty_fintype K [GOAL] case intro K : Type u V : Type v inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V V₂ : Type v' inst✝³ : AddCommGroup V₂ inst✝² : Module K V₂ inst✝¹ : _root_.Finite K inst✝ : FiniteDimensional K V val✝ : Fintype K ⊢ _root_.Finite V [PROOFSTEP] haveI := fintypeOfFintype K V [GOAL] case intro K : Type u V : Type v inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V V₂ : Type v' inst✝³ : AddCommGroup V₂ inst✝² : Module K V₂ inst✝¹ : _root_.Finite K inst✝ : FiniteDimensional K V val✝ : Fintype K this : Fintype V ⊢ _root_.Finite V [PROOFSTEP] infer_instance [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ ι : Type w inst✝ : _root_.Finite ι h : Basis ι K V ⊢ FiniteDimensional K V [PROOFSTEP] classical cases nonempty_fintype ι exact ⟨⟨Finset.univ.image h, by convert h.span_eq simp⟩⟩ [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ ι : Type w inst✝ : _root_.Finite ι h : Basis ι K V ⊢ FiniteDimensional K V [PROOFSTEP] cases nonempty_fintype ι [GOAL] case intro K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ ι : Type w inst✝ : _root_.Finite ι h : Basis ι K V val✝ : Fintype ι ⊢ FiniteDimensional K V [PROOFSTEP] exact ⟨⟨Finset.univ.image h, by convert h.span_eq simp⟩⟩ [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ ι : Type w inst✝ : _root_.Finite ι h : Basis ι K V val✝ : Fintype ι ⊢ span K ↑(Finset.image (↑h) Finset.univ) = ⊤ [PROOFSTEP] convert h.span_eq [GOAL] case h.e'_2.h.e'_6 K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ ι : Type w inst✝ : _root_.Finite ι h : Basis ι K V val✝ : Fintype ι ⊢ ↑(Finset.image (↑h) Finset.univ) = Set.range ↑h [PROOFSTEP] simp [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V ⊢ Fintype ↑(Basis.ofVectorSpaceIndex K V) [PROOFSTEP] letI : IsNoetherian K V := IsNoetherian.iff_fg.2 inferInstance [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V this : IsNoetherian K V := Iff.mpr iff_fg inferInstance ⊢ Fintype ↑(Basis.ofVectorSpaceIndex K V) [PROOFSTEP] infer_instance [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V S : Submodule K V ⊢ FiniteDimensional K { x // x ∈ S } [PROOFSTEP] letI : IsNoetherian K V := iff_fg.2 ?_ [GOAL] case refine_2 K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V S : Submodule K V this : IsNoetherian K V := Iff.mpr iff_fg ?refine_1 ⊢ FiniteDimensional K { x // x ∈ S } case refine_1 K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V S : Submodule K V ⊢ Module.Finite K V [PROOFSTEP] exact iff_fg.1 (IsNoetherian.iff_rank_lt_aleph0.2 (lt_of_le_of_lt (rank_submodule_le _) (rank_lt_aleph0 K V))) [GOAL] case refine_1 K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V S : Submodule K V ⊢ Module.Finite K V [PROOFSTEP] infer_instance [GOAL] K : Type u V : Type v inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : Module K V V₂ : Type v' inst✝¹ : AddCommGroup V₂ inst✝ : Module K V₂ h : 0 < finrank K V ⊢ FiniteDimensional K V [PROOFSTEP] contrapose h [GOAL] K : Type u V : Type v inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : Module K V V₂ : Type v' inst✝¹ : AddCommGroup V₂ inst✝ : Module K V₂ h : ¬FiniteDimensional K V ⊢ ¬0 < finrank K V [PROOFSTEP] simp [finrank_of_infinite_dimensional h] [GOAL] K : Type u V : Type v inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : Module K V V₂ : Type v' inst✝¹ : AddCommGroup V₂ inst✝ : Module K V₂ n : ℕ hn : finrank K V = Nat.succ n ⊢ 0 < finrank K V [PROOFSTEP] rw [hn] [GOAL] K : Type u V : Type v inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : Module K V V₂ : Type v' inst✝¹ : AddCommGroup V₂ inst✝ : Module K V₂ n : ℕ hn : finrank K V = Nat.succ n ⊢ 0 < Nat.succ n [PROOFSTEP] exact n.succ_pos [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ n : ℕ inst✝ : Fact (finrank K V = n + 1) ⊢ 0 < finrank K V [PROOFSTEP] convert Nat.succ_pos n [GOAL] case h.e'_4 K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ n : ℕ inst✝ : Fact (finrank K V = n + 1) ⊢ finrank K V = Nat.succ n [PROOFSTEP] apply Fact.out [GOAL] K : Type u V : Type v inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V V₂ : Type v' inst✝³ : AddCommGroup V₂ inst✝² : Module K V₂ W : Type v inst✝¹ : AddCommGroup W inst✝ : Module K W n : ℕ hn : n ≠ 0 hVW : Module.rank K V = n • Module.rank K W ⊢ FiniteDimensional K V ↔ FiniteDimensional K W [PROOFSTEP] simp only [FiniteDimensional, ← IsNoetherian.iff_fg, IsNoetherian.iff_rank_lt_aleph0, hVW, Cardinal.nsmul_lt_aleph0_iff_of_ne_zero hn] [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V ι : Type w h : Basis ι K V ⊢ ↑(finrank K V) = #ι [PROOFSTEP] haveI : IsNoetherian K V := iff_fg.2 inferInstance [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V ι : Type w h : Basis ι K V this : IsNoetherian K V ⊢ ↑(finrank K V) = #ι [PROOFSTEP] haveI : Fintype ι := fintypeBasisIndex h [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V ι : Type w h : Basis ι K V this✝ : IsNoetherian K V this : Fintype ι ⊢ ↑(finrank K V) = #ι [PROOFSTEP] rw [Cardinal.mk_fintype, finrank_eq_card_basis h] [GOAL] K : Type u V : Type v inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : Module K V V₂ : Type v' inst✝¹ : AddCommGroup V₂ inst✝ : Module K V₂ ι : Type u_1 b : Basis ι K K ⊢ Unique ι [PROOFSTEP] have A : Cardinal.mk ι = ↑(FiniteDimensional.finrank K K) := (FiniteDimensional.finrank_eq_card_basis' b).symm [GOAL] K : Type u V : Type v inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : Module K V V₂ : Type v' inst✝¹ : AddCommGroup V₂ inst✝ : Module K V₂ ι : Type u_1 b : Basis ι K K A : #ι = ↑(finrank K K) ⊢ Unique ι [PROOFSTEP] simp only [Cardinal.eq_one_iff_unique, FiniteDimensional.finrank_self, Nat.cast_one] at A [GOAL] K : Type u V : Type v inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : Module K V V₂ : Type v' inst✝¹ : AddCommGroup V₂ inst✝ : Module K V₂ ι : Type u_1 b : Basis ι K K A : Subsingleton ι ∧ Nonempty ι ⊢ Unique ι [PROOFSTEP] exact Nonempty.some ((unique_iff_subsingleton_and_nonempty _).2 A) [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ ι : Type u_1 inst✝ : Unique ι h : finrank K V = 1 v : V i : ι hv : v = 0 ⊢ ↑(↑(basisUnique ι h).repr v) i = 0 [PROOFSTEP] rw [hv, LinearEquiv.map_zero, Finsupp.zero_apply] [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V ι : Type w b : ι → V h : LinearIndependent K b ⊢ #ι ≤ ↑(finrank K V) [PROOFSTEP] rw [← lift_le.{max v w}] [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V ι : Type w b : ι → V h : LinearIndependent K b ⊢ lift #ι ≤ lift ↑(finrank K V) [PROOFSTEP] simpa [← finrank_eq_rank', -finrank_eq_rank] using cardinal_lift_le_rank_of_linearIndependent h [GOAL] K : Type u V : Type v inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V V₂ : Type v' inst✝³ : AddCommGroup V₂ inst✝² : Module K V₂ inst✝¹ : FiniteDimensional K V ι : Type u_1 inst✝ : Fintype ι b : ι → V h : LinearIndependent K b ⊢ Fintype.card ι ≤ finrank K V [PROOFSTEP] simpa using cardinal_mk_le_finrank_of_linearIndependent h [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V b : Finset V h : LinearIndependent K fun x => ↑x ⊢ Finset.card b ≤ finrank K V [PROOFSTEP] rw [← Fintype.card_coe] [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V b : Finset V h : LinearIndependent K fun x => ↑x ⊢ Fintype.card { x // x ∈ b } ≤ finrank K V [PROOFSTEP] exact fintype_card_le_finrank_of_linearIndependent h [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ ι : Type w inst✝ : FiniteDimensional K V v : ι → V h : LinearIndependent K v ⊢ #ι < ℵ₀ [PROOFSTEP] apply Cardinal.lift_lt.1 [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ ι : Type w inst✝ : FiniteDimensional K V v : ι → V h : LinearIndependent K v ⊢ lift #ι < lift ℵ₀ [PROOFSTEP] apply lt_of_le_of_lt [GOAL] case a K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ ι : Type w inst✝ : FiniteDimensional K V v : ι → V h : LinearIndependent K v ⊢ lift #ι ≤ ?b case a K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ ι : Type w inst✝ : FiniteDimensional K V v : ι → V h : LinearIndependent K v ⊢ ?b < lift ℵ₀ case b K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ ι : Type w inst✝ : FiniteDimensional K V v : ι → V h : LinearIndependent K v ⊢ Cardinal.{max w ?u.252424} [PROOFSTEP] apply cardinal_lift_le_rank_of_linearIndependent h [GOAL] case a K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ ι : Type w inst✝ : FiniteDimensional K V v : ι → V h : LinearIndependent K v ⊢ lift (Module.rank K V) < lift ℵ₀ [PROOFSTEP] rw [← finrank_eq_rank, Cardinal.lift_aleph0, Cardinal.lift_natCast] [GOAL] case a K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ ι : Type w inst✝ : FiniteDimensional K V v : ι → V h : LinearIndependent K v ⊢ ↑(finrank K V) < ℵ₀ [PROOFSTEP] apply Cardinal.nat_lt_aleph0 [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ ι : Type w inf : Infinite ι inst✝ : FiniteDimensional K V v : ι → V ⊢ ¬LinearIndependent K v [PROOFSTEP] intro h_lin_indep [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ ι : Type w inf : Infinite ι inst✝ : FiniteDimensional K V v : ι → V h_lin_indep : LinearIndependent K v ⊢ False [PROOFSTEP] have : ¬ℵ₀ ≤ #ι := not_le.mpr (lt_aleph0_of_linearIndependent h_lin_indep) [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ ι : Type w inf : Infinite ι inst✝ : FiniteDimensional K V v : ι → V h_lin_indep : LinearIndependent K v this : ¬ℵ₀ ≤ #ι ⊢ False [PROOFSTEP] have : ℵ₀ ≤ #ι := infinite_iff.mp inf [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ ι : Type w inf : Infinite ι inst✝ : FiniteDimensional K V v : ι → V h_lin_indep : LinearIndependent K v this✝ : ¬ℵ₀ ≤ #ι this : ℵ₀ ≤ #ι ⊢ False [PROOFSTEP] contradiction [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V ⊢ 0 < finrank K V ↔ 0 < Module.rank K V [PROOFSTEP] rw [← finrank_eq_rank] [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V ⊢ 0 < finrank K V ↔ 0 < ↑(finrank K V) [PROOFSTEP] norm_cast [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V ⊢ 0 < finrank K V ↔ 0 < Module.rank K V [PROOFSTEP] rw [← finrank_eq_rank] [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V ⊢ 0 < finrank K V ↔ 0 < ↑(finrank K V) [PROOFSTEP] norm_cast [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V ⊢ finrank K V = 0 ↔ Module.rank K V = 0 [PROOFSTEP] rw [← finrank_eq_rank] [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V ⊢ finrank K V = 0 ↔ ↑(finrank K V) = 0 [PROOFSTEP] norm_cast [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V S : Submodule K V h : finrank K { x // x ∈ S } = finrank K V ⊢ S = ⊤ [PROOFSTEP] haveI : IsNoetherian K V := iff_fg.2 inferInstance [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V S : Submodule K V h : finrank K { x // x ∈ S } = finrank K V this : IsNoetherian K V ⊢ S = ⊤ [PROOFSTEP] set bS := Basis.ofVectorSpace K S with bS_eq [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V S : Submodule K V h : finrank K { x // x ∈ S } = finrank K V this : IsNoetherian K V bS : Basis (↑(Basis.ofVectorSpaceIndex K { x // x ∈ S })) K { x // x ∈ S } := Basis.ofVectorSpace K { x // x ∈ S } bS_eq : bS = Basis.ofVectorSpace K { x // x ∈ S } ⊢ S = ⊤ [PROOFSTEP] have : LinearIndependent K ((↑) : ((↑) '' Basis.ofVectorSpaceIndex K S : Set V) → V) := @LinearIndependent.image_subtype _ _ _ _ _ _ _ _ _ (Submodule.subtype S) (by simpa using bS.linearIndependent) (by simp) [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V S : Submodule K V h : finrank K { x // x ∈ S } = finrank K V this : IsNoetherian K V bS : Basis (↑(Basis.ofVectorSpaceIndex K { x // x ∈ S })) K { x // x ∈ S } := Basis.ofVectorSpace K { x // x ∈ S } bS_eq : bS = Basis.ofVectorSpace K { x // x ∈ S } ⊢ LinearIndependent K fun x => ↑x [PROOFSTEP] simpa using bS.linearIndependent [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V S : Submodule K V h : finrank K { x // x ∈ S } = finrank K V this : IsNoetherian K V bS : Basis (↑(Basis.ofVectorSpaceIndex K { x // x ∈ S })) K { x // x ∈ S } := Basis.ofVectorSpace K { x // x ∈ S } bS_eq : bS = Basis.ofVectorSpace K { x // x ∈ S } ⊢ Disjoint (span K (Basis.ofVectorSpaceIndex K { x // x ∈ S })) (LinearMap.ker (Submodule.subtype S)) [PROOFSTEP] simp [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V S : Submodule K V h : finrank K { x // x ∈ S } = finrank K V this✝ : IsNoetherian K V bS : Basis (↑(Basis.ofVectorSpaceIndex K { x // x ∈ S })) K { x // x ∈ S } := Basis.ofVectorSpace K { x // x ∈ S } bS_eq : bS = Basis.ofVectorSpace K { x // x ∈ S } this : LinearIndependent K Subtype.val ⊢ S = ⊤ [PROOFSTEP] set b := Basis.extend this with b_eq [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V S : Submodule K V h : finrank K { x // x ∈ S } = finrank K V this✝ : IsNoetherian K V bS : Basis (↑(Basis.ofVectorSpaceIndex K { x // x ∈ S })) K { x // x ∈ S } := Basis.ofVectorSpace K { x // x ∈ S } bS_eq : bS = Basis.ofVectorSpace K { x // x ∈ S } this : LinearIndependent K Subtype.val b : Basis (↑(LinearIndependent.extend this (_ : Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S } ⊆ Set.univ))) K V := Basis.extend this b_eq : b = Basis.extend this ⊢ S = ⊤ [PROOFSTEP] letI i1 : Fintype (this.extend _) := (finite_of_linearIndependent (by simpa using b.linearIndependent)).fintype [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V S : Submodule K V h : finrank K { x // x ∈ S } = finrank K V this✝ : IsNoetherian K V bS : Basis (↑(Basis.ofVectorSpaceIndex K { x // x ∈ S })) K { x // x ∈ S } := Basis.ofVectorSpace K { x // x ∈ S } bS_eq : bS = Basis.ofVectorSpace K { x // x ∈ S } this : LinearIndependent K Subtype.val b : Basis (↑(LinearIndependent.extend this (_ : Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S } ⊆ Set.univ))) K V := Basis.extend this b_eq : b = Basis.extend this ⊢ LinearIndependent ?m.281540 Subtype.val [PROOFSTEP] simpa using b.linearIndependent [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V S : Submodule K V h : finrank K { x // x ∈ S } = finrank K V this✝ : IsNoetherian K V bS : Basis (↑(Basis.ofVectorSpaceIndex K { x // x ∈ S })) K { x // x ∈ S } := Basis.ofVectorSpace K { x // x ∈ S } bS_eq : bS = Basis.ofVectorSpace K { x // x ∈ S } this : LinearIndependent K Subtype.val b : Basis (↑(LinearIndependent.extend this (_ : Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S } ⊆ Set.univ))) K V := Basis.extend this b_eq : b = Basis.extend this i1 : Fintype ↑(LinearIndependent.extend this (_ : Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S } ⊆ Set.univ)) := Set.Finite.fintype (_ : Set.Finite (LinearIndependent.extend this (_ : Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S } ⊆ Set.univ))) ⊢ S = ⊤ [PROOFSTEP] letI i2 : Fintype (((↑) : S → V) '' Basis.ofVectorSpaceIndex K S) := (finite_of_linearIndependent this).fintype [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V S : Submodule K V h : finrank K { x // x ∈ S } = finrank K V this✝ : IsNoetherian K V bS : Basis (↑(Basis.ofVectorSpaceIndex K { x // x ∈ S })) K { x // x ∈ S } := Basis.ofVectorSpace K { x // x ∈ S } bS_eq : bS = Basis.ofVectorSpace K { x // x ∈ S } this : LinearIndependent K Subtype.val b : Basis (↑(LinearIndependent.extend this (_ : Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S } ⊆ Set.univ))) K V := Basis.extend this b_eq : b = Basis.extend this i1 : Fintype ↑(LinearIndependent.extend this (_ : Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S } ⊆ Set.univ)) := Set.Finite.fintype (_ : Set.Finite (LinearIndependent.extend this (_ : Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S } ⊆ Set.univ))) i2 : Fintype ↑(Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S }) := Set.Finite.fintype (_ : Set.Finite (Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S })) ⊢ S = ⊤ [PROOFSTEP] letI i3 : Fintype (Basis.ofVectorSpaceIndex K S) := (finite_of_linearIndependent (by simpa using bS.linearIndependent)).fintype [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V S : Submodule K V h : finrank K { x // x ∈ S } = finrank K V this✝ : IsNoetherian K V bS : Basis (↑(Basis.ofVectorSpaceIndex K { x // x ∈ S })) K { x // x ∈ S } := Basis.ofVectorSpace K { x // x ∈ S } bS_eq : bS = Basis.ofVectorSpace K { x // x ∈ S } this : LinearIndependent K Subtype.val b : Basis (↑(LinearIndependent.extend this (_ : Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S } ⊆ Set.univ))) K V := Basis.extend this b_eq : b = Basis.extend this i1 : Fintype ↑(LinearIndependent.extend this (_ : Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S } ⊆ Set.univ)) := Set.Finite.fintype (_ : Set.Finite (LinearIndependent.extend this (_ : Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S } ⊆ Set.univ))) i2 : Fintype ↑(Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S }) := Set.Finite.fintype (_ : Set.Finite (Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S })) ⊢ LinearIndependent ?m.287044 Subtype.val [PROOFSTEP] simpa using bS.linearIndependent [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V S : Submodule K V h : finrank K { x // x ∈ S } = finrank K V this✝ : IsNoetherian K V bS : Basis (↑(Basis.ofVectorSpaceIndex K { x // x ∈ S })) K { x // x ∈ S } := Basis.ofVectorSpace K { x // x ∈ S } bS_eq : bS = Basis.ofVectorSpace K { x // x ∈ S } this : LinearIndependent K Subtype.val b : Basis (↑(LinearIndependent.extend this (_ : Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S } ⊆ Set.univ))) K V := Basis.extend this b_eq : b = Basis.extend this i1 : Fintype ↑(LinearIndependent.extend this (_ : Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S } ⊆ Set.univ)) := Set.Finite.fintype (_ : Set.Finite (LinearIndependent.extend this (_ : Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S } ⊆ Set.univ))) i2 : Fintype ↑(Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S }) := Set.Finite.fintype (_ : Set.Finite (Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S })) i3 : Fintype ↑(Basis.ofVectorSpaceIndex K { x // x ∈ S }) := Set.Finite.fintype (_ : Set.Finite (Basis.ofVectorSpaceIndex K { x // x ∈ S })) ⊢ S = ⊤ [PROOFSTEP] have : (↑) '' Basis.ofVectorSpaceIndex K S = this.extend (Set.subset_univ _) := Set.eq_of_subset_of_card_le (this.subset_extend _) (by rw [Set.card_image_of_injective _ Subtype.coe_injective, ← finrank_eq_card_basis bS, ← finrank_eq_card_basis b, h]) [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V S : Submodule K V h : finrank K { x // x ∈ S } = finrank K V this✝ : IsNoetherian K V bS : Basis (↑(Basis.ofVectorSpaceIndex K { x // x ∈ S })) K { x // x ∈ S } := Basis.ofVectorSpace K { x // x ∈ S } bS_eq : bS = Basis.ofVectorSpace K { x // x ∈ S } this : LinearIndependent K Subtype.val b : Basis (↑(LinearIndependent.extend this (_ : Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S } ⊆ Set.univ))) K V := Basis.extend this b_eq : b = Basis.extend this i1 : Fintype ↑(LinearIndependent.extend this (_ : Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S } ⊆ Set.univ)) := Set.Finite.fintype (_ : Set.Finite (LinearIndependent.extend this (_ : Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S } ⊆ Set.univ))) i2 : Fintype ↑(Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S }) := Set.Finite.fintype (_ : Set.Finite (Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S })) i3 : Fintype ↑(Basis.ofVectorSpaceIndex K { x // x ∈ S }) := Set.Finite.fintype (_ : Set.Finite (Basis.ofVectorSpaceIndex K { x // x ∈ S })) ⊢ Fintype.card ↑(LinearIndependent.extend this (_ : Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S } ⊆ Set.univ)) ≤ Fintype.card ↑(Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S }) [PROOFSTEP] rw [Set.card_image_of_injective _ Subtype.coe_injective, ← finrank_eq_card_basis bS, ← finrank_eq_card_basis b, h] [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V S : Submodule K V h : finrank K { x // x ∈ S } = finrank K V this✝¹ : IsNoetherian K V bS : Basis (↑(Basis.ofVectorSpaceIndex K { x // x ∈ S })) K { x // x ∈ S } := Basis.ofVectorSpace K { x // x ∈ S } bS_eq : bS = Basis.ofVectorSpace K { x // x ∈ S } this✝ : LinearIndependent K Subtype.val b : Basis (↑(LinearIndependent.extend this✝ (_ : Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S } ⊆ Set.univ))) K V := Basis.extend this✝ b_eq : b = Basis.extend this✝ i1 : Fintype ↑(LinearIndependent.extend this✝ (_ : Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S } ⊆ Set.univ)) := Set.Finite.fintype (_ : Set.Finite (LinearIndependent.extend this✝ (_ : Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S } ⊆ Set.univ))) i2 : Fintype ↑(Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S }) := Set.Finite.fintype (_ : Set.Finite (Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S })) i3 : Fintype ↑(Basis.ofVectorSpaceIndex K { x // x ∈ S }) := Set.Finite.fintype (_ : Set.Finite (Basis.ofVectorSpaceIndex K { x // x ∈ S })) this : Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S } = LinearIndependent.extend this✝ (_ : Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S } ⊆ Set.univ) ⊢ S = ⊤ [PROOFSTEP] rw [← b.span_eq, b_eq, Basis.coe_extend, Subtype.range_coe, ← this, ← Submodule.coeSubtype, span_image] [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V S : Submodule K V h : finrank K { x // x ∈ S } = finrank K V this✝¹ : IsNoetherian K V bS : Basis (↑(Basis.ofVectorSpaceIndex K { x // x ∈ S })) K { x // x ∈ S } := Basis.ofVectorSpace K { x // x ∈ S } bS_eq : bS = Basis.ofVectorSpace K { x // x ∈ S } this✝ : LinearIndependent K Subtype.val b : Basis (↑(LinearIndependent.extend this✝ (_ : Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S } ⊆ Set.univ))) K V := Basis.extend this✝ b_eq : b = Basis.extend this✝ i1 : Fintype ↑(LinearIndependent.extend this✝ (_ : Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S } ⊆ Set.univ)) := Set.Finite.fintype (_ : Set.Finite (LinearIndependent.extend this✝ (_ : Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S } ⊆ Set.univ))) i2 : Fintype ↑(Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S }) := Set.Finite.fintype (_ : Set.Finite (Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S })) i3 : Fintype ↑(Basis.ofVectorSpaceIndex K { x // x ∈ S }) := Set.Finite.fintype (_ : Set.Finite (Basis.ofVectorSpaceIndex K { x // x ∈ S })) this : Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S } = LinearIndependent.extend this✝ (_ : Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S } ⊆ Set.univ) ⊢ S = Submodule.map (Submodule.subtype S) (span K (Basis.ofVectorSpaceIndex K { x // x ∈ S })) [PROOFSTEP] have := bS.span_eq [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V S : Submodule K V h : finrank K { x // x ∈ S } = finrank K V this✝² : IsNoetherian K V bS : Basis (↑(Basis.ofVectorSpaceIndex K { x // x ∈ S })) K { x // x ∈ S } := Basis.ofVectorSpace K { x // x ∈ S } bS_eq : bS = Basis.ofVectorSpace K { x // x ∈ S } this✝¹ : LinearIndependent K Subtype.val b : Basis (↑(LinearIndependent.extend this✝¹ (_ : Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S } ⊆ Set.univ))) K V := Basis.extend this✝¹ b_eq : b = Basis.extend this✝¹ i1 : Fintype ↑(LinearIndependent.extend this✝¹ (_ : Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S } ⊆ Set.univ)) := Set.Finite.fintype (_ : Set.Finite (LinearIndependent.extend this✝¹ (_ : Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S } ⊆ Set.univ))) i2 : Fintype ↑(Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S }) := Set.Finite.fintype (_ : Set.Finite (Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S })) i3 : Fintype ↑(Basis.ofVectorSpaceIndex K { x // x ∈ S }) := Set.Finite.fintype (_ : Set.Finite (Basis.ofVectorSpaceIndex K { x // x ∈ S })) this✝ : Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S } = LinearIndependent.extend this✝¹ (_ : Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S } ⊆ Set.univ) this : span K (Set.range ↑bS) = ⊤ ⊢ S = Submodule.map (Submodule.subtype S) (span K (Basis.ofVectorSpaceIndex K { x // x ∈ S })) [PROOFSTEP] rw [bS_eq, Basis.coe_ofVectorSpace, Subtype.range_coe] at this [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V S : Submodule K V h : finrank K { x // x ∈ S } = finrank K V this✝² : IsNoetherian K V bS : Basis (↑(Basis.ofVectorSpaceIndex K { x // x ∈ S })) K { x // x ∈ S } := Basis.ofVectorSpace K { x // x ∈ S } bS_eq : bS = Basis.ofVectorSpace K { x // x ∈ S } this✝¹ : LinearIndependent K Subtype.val b : Basis (↑(LinearIndependent.extend this✝¹ (_ : Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S } ⊆ Set.univ))) K V := Basis.extend this✝¹ b_eq : b = Basis.extend this✝¹ i1 : Fintype ↑(LinearIndependent.extend this✝¹ (_ : Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S } ⊆ Set.univ)) := Set.Finite.fintype (_ : Set.Finite (LinearIndependent.extend this✝¹ (_ : Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S } ⊆ Set.univ))) i2 : Fintype ↑(Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S }) := Set.Finite.fintype (_ : Set.Finite (Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S })) i3 : Fintype ↑(Basis.ofVectorSpaceIndex K { x // x ∈ S }) := Set.Finite.fintype (_ : Set.Finite (Basis.ofVectorSpaceIndex K { x // x ∈ S })) this✝ : Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S } = LinearIndependent.extend this✝¹ (_ : Subtype.val '' Basis.ofVectorSpaceIndex K { x // x ∈ S } ⊆ Set.univ) this : span K (Basis.ofVectorSpaceIndex K { x // x ∈ S }) = ⊤ ⊢ S = Submodule.map (Submodule.subtype S) (span K (Basis.ofVectorSpaceIndex K { x // x ∈ S })) [PROOFSTEP] rw [this, map_top (Submodule.subtype S), range_subtype] [GOAL] K : Type u V : Type v inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : Module K V V₂ : Type v' inst✝¹ : AddCommGroup V₂ inst✝ : Module K V₂ ⊢ FiniteDimensional K K [PROOFSTEP] infer_instance [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V ι : Type w p : ι → Submodule K V hp : CompleteLattice.Independent p ⊢ #{ i // p i ≠ ⊥ } ≤ ↑(finrank K V) [PROOFSTEP] suffices Cardinal.lift.{v} #{ i // p i ≠ ⊥ } ≤ Cardinal.lift.{v} (finrank K V : Cardinal.{w}) by rwa [Cardinal.lift_le] at this [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V ι : Type w p : ι → Submodule K V hp : CompleteLattice.Independent p this : lift #{ i // p i ≠ ⊥ } ≤ lift ↑(finrank K V) ⊢ #{ i // p i ≠ ⊥ } ≤ ↑(finrank K V) [PROOFSTEP] rwa [Cardinal.lift_le] at this [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V ι : Type w p : ι → Submodule K V hp : CompleteLattice.Independent p ⊢ lift #{ i // p i ≠ ⊥ } ≤ lift ↑(finrank K V) [PROOFSTEP] calc Cardinal.lift.{v} #{ i // p i ≠ ⊥ } ≤ Cardinal.lift.{w} (Module.rank K V) := hp.subtype_ne_bot_le_rank _ = Cardinal.lift.{w} (finrank K V : Cardinal.{v}) := by rw [finrank_eq_rank] _ = Cardinal.lift.{v} (finrank K V : Cardinal.{w}) := by simp [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V ι : Type w p : ι → Submodule K V hp : CompleteLattice.Independent p ⊢ lift (Module.rank K V) = lift ↑(finrank K V) [PROOFSTEP] rw [finrank_eq_rank] [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V ι : Type w p : ι → Submodule K V hp : CompleteLattice.Independent p ⊢ lift ↑(finrank K V) = lift ↑(finrank K V) [PROOFSTEP] simp [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V ι : Type w p : ι → Submodule K V hp : CompleteLattice.Independent p ⊢ Fintype { i // p i ≠ ⊥ } [PROOFSTEP] suffices #{ i // p i ≠ ⊥ } < (ℵ₀ : Cardinal.{w}) by rw [Cardinal.lt_aleph0_iff_fintype] at this exact this.some [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V ι : Type w p : ι → Submodule K V hp : CompleteLattice.Independent p this : #{ i // p i ≠ ⊥ } < ℵ₀ ⊢ Fintype { i // p i ≠ ⊥ } [PROOFSTEP] rw [Cardinal.lt_aleph0_iff_fintype] at this [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V ι : Type w p : ι → Submodule K V hp : CompleteLattice.Independent p this : Nonempty (Fintype { i // p i ≠ ⊥ }) ⊢ Fintype { i // p i ≠ ⊥ } [PROOFSTEP] exact this.some [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V ι : Type w p : ι → Submodule K V hp : CompleteLattice.Independent p ⊢ #{ i // p i ≠ ⊥ } < ℵ₀ [PROOFSTEP] refine' lt_of_le_of_lt hp.subtype_ne_bot_le_finrank_aux _ [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V ι : Type w p : ι → Submodule K V hp : CompleteLattice.Independent p ⊢ ↑(finrank K V) < ℵ₀ [PROOFSTEP] simp [Cardinal.nat_lt_aleph0] [GOAL] K : Type u V : Type v inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V V₂ : Type v' inst✝³ : AddCommGroup V₂ inst✝² : Module K V₂ inst✝¹ : FiniteDimensional K V ι : Type w p : ι → Submodule K V hp : CompleteLattice.Independent p inst✝ : Fintype { i // p i ≠ ⊥ } ⊢ Fintype.card { i // p i ≠ ⊥ } ≤ finrank K V [PROOFSTEP] simpa using hp.subtype_ne_bot_le_finrank_aux [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V < card t ⊢ ∃ f, ∑ e in t, f e • e = 0 ∧ ∃ x, x ∈ t ∧ f x ≠ 0 [PROOFSTEP] classical have := mt finset_card_le_finrank_of_linearIndependent (by simpa using h) rw [not_linearIndependent_iff] at this obtain ⟨s, g, sum, z, zm, nonzero⟩ := this let f : V → K := fun x => if h : x ∈ t then if (⟨x, h⟩ : t) ∈ s then g ⟨x, h⟩ else 0 else 0 -- and finally clean up the mess caused by the extension. refine' ⟨f, _, _⟩ · dsimp rw [← (sum)] -- porting note: need parens to disambiguate fapply sum_bij_ne_zero fun v hvt _ => (⟨v, hvt⟩ : { v // v ∈ t }) · intro v hvt H dsimp rw [dif_pos hvt] at H contrapose! H rw [if_neg H, zero_smul] · intro _ _ _ _ _ _ exact Subtype.mk.inj · intro b hbs hb use b simpa only [hbs, exists_prop, dif_pos, Finset.mk_coe, and_true_iff, if_true, Finset.coe_mem, eq_self_iff_true, exists_prop_of_true, Ne.def] using hb · intro a h₁ dsimp rw [dif_pos h₁] intro h₂ rw [if_pos] contrapose! h₂ rw [if_neg h₂, zero_smul] · refine' ⟨z, z.2, _⟩ dsimp only erw [dif_pos z.2, if_pos] <;> rwa [Subtype.coe_eta] [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V < card t ⊢ ∃ f, ∑ e in t, f e • e = 0 ∧ ∃ x, x ∈ t ∧ f x ≠ 0 [PROOFSTEP] have := mt finset_card_le_finrank_of_linearIndependent (by simpa using h) [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V < card t ⊢ ¬card ?m.337366 ≤ finrank ?m.337360 ?m.337361 [PROOFSTEP] simpa using h [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V < card t this : ¬LinearIndependent K fun x => ↑x ⊢ ∃ f, ∑ e in t, f e • e = 0 ∧ ∃ x, x ∈ t ∧ f x ≠ 0 [PROOFSTEP] rw [not_linearIndependent_iff] at this [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V < card t this : ∃ s g, ∑ i in s, g i • ↑i = 0 ∧ ∃ i, i ∈ s ∧ g i ≠ 0 ⊢ ∃ f, ∑ e in t, f e • e = 0 ∧ ∃ x, x ∈ t ∧ f x ≠ 0 [PROOFSTEP] obtain ⟨s, g, sum, z, zm, nonzero⟩ := this [GOAL] case intro.intro.intro.intro.intro K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V < card t s : Finset { x // x ∈ t } g : { x // x ∈ t } → K sum : ∑ i in s, g i • ↑i = 0 z : { x // x ∈ t } zm : z ∈ s nonzero : g z ≠ 0 ⊢ ∃ f, ∑ e in t, f e • e = 0 ∧ ∃ x, x ∈ t ∧ f x ≠ 0 [PROOFSTEP] let f : V → K := fun x => if h : x ∈ t then if (⟨x, h⟩ : t) ∈ s then g ⟨x, h⟩ else 0 else 0 -- and finally clean up the mess caused by the extension. [GOAL] case intro.intro.intro.intro.intro K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V < card t s : Finset { x // x ∈ t } g : { x // x ∈ t } → K sum : ∑ i in s, g i • ↑i = 0 z : { x // x ∈ t } zm : z ∈ s nonzero : g z ≠ 0 f : V → K := fun x => if h : x ∈ t then if { val := x, property := h } ∈ s then g { val := x, property := h } else 0 else 0 ⊢ ∃ f, ∑ e in t, f e • e = 0 ∧ ∃ x, x ∈ t ∧ f x ≠ 0 [PROOFSTEP] refine' ⟨f, _, _⟩ [GOAL] case intro.intro.intro.intro.intro.refine'_1 K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V < card t s : Finset { x // x ∈ t } g : { x // x ∈ t } → K sum : ∑ i in s, g i • ↑i = 0 z : { x // x ∈ t } zm : z ∈ s nonzero : g z ≠ 0 f : V → K := fun x => if h : x ∈ t then if { val := x, property := h } ∈ s then g { val := x, property := h } else 0 else 0 ⊢ ∑ e in t, f e • e = 0 [PROOFSTEP] dsimp [GOAL] case intro.intro.intro.intro.intro.refine'_1 K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V < card t s : Finset { x // x ∈ t } g : { x // x ∈ t } → K sum : ∑ i in s, g i • ↑i = 0 z : { x // x ∈ t } zm : z ∈ s nonzero : g z ≠ 0 f : V → K := fun x => if h : x ∈ t then if { val := x, property := h } ∈ s then g { val := x, property := h } else 0 else 0 ⊢ ∑ e in t, (if h : e ∈ t then if { val := e, property := h } ∈ s then g { val := e, property := h } else 0 else 0) • e = 0 [PROOFSTEP] rw [← (sum)] -- porting note: need parens to disambiguate [GOAL] case intro.intro.intro.intro.intro.refine'_1 K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V < card t s : Finset { x // x ∈ t } g : { x // x ∈ t } → K sum : ∑ i in s, g i • ↑i = 0 z : { x // x ∈ t } zm : z ∈ s nonzero : g z ≠ 0 f : V → K := fun x => if h : x ∈ t then if { val := x, property := h } ∈ s then g { val := x, property := h } else 0 else 0 ⊢ ∑ e in t, (if h : e ∈ t then if { val := e, property := h } ∈ s then g { val := e, property := h } else 0 else 0) • e = ∑ i in s, g i • ↑i [PROOFSTEP] fapply sum_bij_ne_zero fun v hvt _ => (⟨v, hvt⟩ : { v // v ∈ t }) [GOAL] case intro.intro.intro.intro.intro.refine'_1.hi K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V < card t s : Finset { x // x ∈ t } g : { x // x ∈ t } → K sum : ∑ i in s, g i • ↑i = 0 z : { x // x ∈ t } zm : z ∈ s nonzero : g z ≠ 0 f : V → K := fun x => if h : x ∈ t then if { val := x, property := h } ∈ s then g { val := x, property := h } else 0 else 0 ⊢ ∀ (a : V) (h₁ : a ∈ t), (if h : a ∈ t then if { val := a, property := h } ∈ s then g { val := a, property := h } else 0 else 0) • a ≠ 0 → { val := a, property := h₁ } ∈ s [PROOFSTEP] intro v hvt H [GOAL] case intro.intro.intro.intro.intro.refine'_1.hi K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V < card t s : Finset { x // x ∈ t } g : { x // x ∈ t } → K sum : ∑ i in s, g i • ↑i = 0 z : { x // x ∈ t } zm : z ∈ s nonzero : g z ≠ 0 f : V → K := fun x => if h : x ∈ t then if { val := x, property := h } ∈ s then g { val := x, property := h } else 0 else 0 v : V hvt : v ∈ t H : (if h : v ∈ t then if { val := v, property := h } ∈ s then g { val := v, property := h } else 0 else 0) • v ≠ 0 ⊢ { val := v, property := hvt } ∈ s [PROOFSTEP] dsimp [GOAL] case intro.intro.intro.intro.intro.refine'_1.hi K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V < card t s : Finset { x // x ∈ t } g : { x // x ∈ t } → K sum : ∑ i in s, g i • ↑i = 0 z : { x // x ∈ t } zm : z ∈ s nonzero : g z ≠ 0 f : V → K := fun x => if h : x ∈ t then if { val := x, property := h } ∈ s then g { val := x, property := h } else 0 else 0 v : V hvt : v ∈ t H : (if h : v ∈ t then if { val := v, property := h } ∈ s then g { val := v, property := h } else 0 else 0) • v ≠ 0 ⊢ { val := v, property := hvt } ∈ s [PROOFSTEP] rw [dif_pos hvt] at H [GOAL] case intro.intro.intro.intro.intro.refine'_1.hi K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V < card t s : Finset { x // x ∈ t } g : { x // x ∈ t } → K sum : ∑ i in s, g i • ↑i = 0 z : { x // x ∈ t } zm : z ∈ s nonzero : g z ≠ 0 f : V → K := fun x => if h : x ∈ t then if { val := x, property := h } ∈ s then g { val := x, property := h } else 0 else 0 v : V hvt : v ∈ t H : (if { val := v, property := hvt } ∈ s then g { val := v, property := hvt } else 0) • v ≠ 0 ⊢ { val := v, property := hvt } ∈ s [PROOFSTEP] contrapose! H [GOAL] case intro.intro.intro.intro.intro.refine'_1.hi K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V < card t s : Finset { x // x ∈ t } g : { x // x ∈ t } → K sum : ∑ i in s, g i • ↑i = 0 z : { x // x ∈ t } zm : z ∈ s nonzero : g z ≠ 0 f : V → K := fun x => if h : x ∈ t then if { val := x, property := h } ∈ s then g { val := x, property := h } else 0 else 0 v : V hvt : v ∈ t H : ¬{ val := v, property := hvt } ∈ s ⊢ (if { val := v, property := hvt } ∈ s then g { val := v, property := hvt } else 0) • v = 0 [PROOFSTEP] rw [if_neg H, zero_smul] [GOAL] case intro.intro.intro.intro.intro.refine'_1.i_inj K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V < card t s : Finset { x // x ∈ t } g : { x // x ∈ t } → K sum : ∑ i in s, g i • ↑i = 0 z : { x // x ∈ t } zm : z ∈ s nonzero : g z ≠ 0 f : V → K := fun x => if h : x ∈ t then if { val := x, property := h } ∈ s then g { val := x, property := h } else 0 else 0 ⊢ ∀ (a₁ a₂ : V) (h₁₁ : a₁ ∈ t), (if h : a₁ ∈ t then if { val := a₁, property := h } ∈ s then g { val := a₁, property := h } else 0 else 0) • a₁ ≠ 0 → ∀ (h₂₁ : a₂ ∈ t), (if h : a₂ ∈ t then if { val := a₂, property := h } ∈ s then g { val := a₂, property := h } else 0 else 0) • a₂ ≠ 0 → { val := a₁, property := h₁₁ } = { val := a₂, property := h₂₁ } → a₁ = a₂ [PROOFSTEP] intro _ _ _ _ _ _ [GOAL] case intro.intro.intro.intro.intro.refine'_1.i_inj K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V < card t s : Finset { x // x ∈ t } g : { x // x ∈ t } → K sum : ∑ i in s, g i • ↑i = 0 z : { x // x ∈ t } zm : z ∈ s nonzero : g z ≠ 0 f : V → K := fun x => if h : x ∈ t then if { val := x, property := h } ∈ s then g { val := x, property := h } else 0 else 0 a₁✝ a₂✝ : V h₁₁✝ : a₁✝ ∈ t h₁₂✝ : (if h : a₁✝ ∈ t then if { val := a₁✝, property := h } ∈ s then g { val := a₁✝, property := h } else 0 else 0) • a₁✝ ≠ 0 h₂₁✝ : a₂✝ ∈ t h₂₂✝ : (if h : a₂✝ ∈ t then if { val := a₂✝, property := h } ∈ s then g { val := a₂✝, property := h } else 0 else 0) • a₂✝ ≠ 0 ⊢ { val := a₁✝, property := h₁₁✝ } = { val := a₂✝, property := h₂₁✝ } → a₁✝ = a₂✝ [PROOFSTEP] exact Subtype.mk.inj [GOAL] case intro.intro.intro.intro.intro.refine'_1.i_surj K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V < card t s : Finset { x // x ∈ t } g : { x // x ∈ t } → K sum : ∑ i in s, g i • ↑i = 0 z : { x // x ∈ t } zm : z ∈ s nonzero : g z ≠ 0 f : V → K := fun x => if h : x ∈ t then if { val := x, property := h } ∈ s then g { val := x, property := h } else 0 else 0 ⊢ ∀ (b : { v // v ∈ t }), b ∈ s → g b • ↑b ≠ 0 → ∃ a h₁ h₂, b = { val := a, property := h₁ } [PROOFSTEP] intro b hbs hb [GOAL] case intro.intro.intro.intro.intro.refine'_1.i_surj K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V < card t s : Finset { x // x ∈ t } g : { x // x ∈ t } → K sum : ∑ i in s, g i • ↑i = 0 z : { x // x ∈ t } zm : z ∈ s nonzero : g z ≠ 0 f : V → K := fun x => if h : x ∈ t then if { val := x, property := h } ∈ s then g { val := x, property := h } else 0 else 0 b : { v // v ∈ t } hbs : b ∈ s hb : g b • ↑b ≠ 0 ⊢ ∃ a h₁ h₂, b = { val := a, property := h₁ } [PROOFSTEP] use b [GOAL] case h K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V < card t s : Finset { x // x ∈ t } g : { x // x ∈ t } → K sum : ∑ i in s, g i • ↑i = 0 z : { x // x ∈ t } zm : z ∈ s nonzero : g z ≠ 0 f : V → K := fun x => if h : x ∈ t then if { val := x, property := h } ∈ s then g { val := x, property := h } else 0 else 0 b : { v // v ∈ t } hbs : b ∈ s hb : g b • ↑b ≠ 0 ⊢ ∃ h₁ h₂, b = { val := ↑b, property := h₁ } [PROOFSTEP] simpa only [hbs, exists_prop, dif_pos, Finset.mk_coe, and_true_iff, if_true, Finset.coe_mem, eq_self_iff_true, exists_prop_of_true, Ne.def] using hb [GOAL] case intro.intro.intro.intro.intro.refine'_1.h K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V < card t s : Finset { x // x ∈ t } g : { x // x ∈ t } → K sum : ∑ i in s, g i • ↑i = 0 z : { x // x ∈ t } zm : z ∈ s nonzero : g z ≠ 0 f : V → K := fun x => if h : x ∈ t then if { val := x, property := h } ∈ s then g { val := x, property := h } else 0 else 0 ⊢ ∀ (a : V) (h₁ : a ∈ t), (if h : a ∈ t then if { val := a, property := h } ∈ s then g { val := a, property := h } else 0 else 0) • a ≠ 0 → (if h : a ∈ t then if { val := a, property := h } ∈ s then g { val := a, property := h } else 0 else 0) • a = g { val := a, property := h₁ } • ↑{ val := a, property := h₁ } [PROOFSTEP] intro a h₁ [GOAL] case intro.intro.intro.intro.intro.refine'_1.h K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V < card t s : Finset { x // x ∈ t } g : { x // x ∈ t } → K sum : ∑ i in s, g i • ↑i = 0 z : { x // x ∈ t } zm : z ∈ s nonzero : g z ≠ 0 f : V → K := fun x => if h : x ∈ t then if { val := x, property := h } ∈ s then g { val := x, property := h } else 0 else 0 a : V h₁ : a ∈ t ⊢ (if h : a ∈ t then if { val := a, property := h } ∈ s then g { val := a, property := h } else 0 else 0) • a ≠ 0 → (if h : a ∈ t then if { val := a, property := h } ∈ s then g { val := a, property := h } else 0 else 0) • a = g { val := a, property := h₁ } • ↑{ val := a, property := h₁ } [PROOFSTEP] dsimp [GOAL] case intro.intro.intro.intro.intro.refine'_1.h K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V < card t s : Finset { x // x ∈ t } g : { x // x ∈ t } → K sum : ∑ i in s, g i • ↑i = 0 z : { x // x ∈ t } zm : z ∈ s nonzero : g z ≠ 0 f : V → K := fun x => if h : x ∈ t then if { val := x, property := h } ∈ s then g { val := x, property := h } else 0 else 0 a : V h₁ : a ∈ t ⊢ ¬(if h : a ∈ t then if { val := a, property := h } ∈ s then g { val := a, property := h } else 0 else 0) • a = 0 → (if h : a ∈ t then if { val := a, property := h } ∈ s then g { val := a, property := h } else 0 else 0) • a = g { val := a, property := h₁ } • a [PROOFSTEP] rw [dif_pos h₁] [GOAL] case intro.intro.intro.intro.intro.refine'_1.h K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V < card t s : Finset { x // x ∈ t } g : { x // x ∈ t } → K sum : ∑ i in s, g i • ↑i = 0 z : { x // x ∈ t } zm : z ∈ s nonzero : g z ≠ 0 f : V → K := fun x => if h : x ∈ t then if { val := x, property := h } ∈ s then g { val := x, property := h } else 0 else 0 a : V h₁ : a ∈ t ⊢ ¬(if { val := a, property := h₁ } ∈ s then g { val := a, property := h₁ } else 0) • a = 0 → (if { val := a, property := h₁ } ∈ s then g { val := a, property := h₁ } else 0) • a = g { val := a, property := h₁ } • a [PROOFSTEP] intro h₂ [GOAL] case intro.intro.intro.intro.intro.refine'_1.h K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V < card t s : Finset { x // x ∈ t } g : { x // x ∈ t } → K sum : ∑ i in s, g i • ↑i = 0 z : { x // x ∈ t } zm : z ∈ s nonzero : g z ≠ 0 f : V → K := fun x => if h : x ∈ t then if { val := x, property := h } ∈ s then g { val := x, property := h } else 0 else 0 a : V h₁ : a ∈ t h₂ : ¬(if { val := a, property := h₁ } ∈ s then g { val := a, property := h₁ } else 0) • a = 0 ⊢ (if { val := a, property := h₁ } ∈ s then g { val := a, property := h₁ } else 0) • a = g { val := a, property := h₁ } • a [PROOFSTEP] rw [if_pos] [GOAL] case intro.intro.intro.intro.intro.refine'_1.h.hc K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V < card t s : Finset { x // x ∈ t } g : { x // x ∈ t } → K sum : ∑ i in s, g i • ↑i = 0 z : { x // x ∈ t } zm : z ∈ s nonzero : g z ≠ 0 f : V → K := fun x => if h : x ∈ t then if { val := x, property := h } ∈ s then g { val := x, property := h } else 0 else 0 a : V h₁ : a ∈ t h₂ : ¬(if { val := a, property := h₁ } ∈ s then g { val := a, property := h₁ } else 0) • a = 0 ⊢ { val := a, property := h₁ } ∈ s [PROOFSTEP] contrapose! h₂ [GOAL] case intro.intro.intro.intro.intro.refine'_1.h.hc K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V < card t s : Finset { x // x ∈ t } g : { x // x ∈ t } → K sum : ∑ i in s, g i • ↑i = 0 z : { x // x ∈ t } zm : z ∈ s nonzero : g z ≠ 0 f : V → K := fun x => if h : x ∈ t then if { val := x, property := h } ∈ s then g { val := x, property := h } else 0 else 0 a : V h₁ : a ∈ t h₂ : ¬{ val := a, property := h₁ } ∈ s ⊢ (if { val := a, property := h₁ } ∈ s then g { val := a, property := h₁ } else 0) • a = 0 [PROOFSTEP] rw [if_neg h₂, zero_smul] [GOAL] case intro.intro.intro.intro.intro.refine'_2 K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V < card t s : Finset { x // x ∈ t } g : { x // x ∈ t } → K sum : ∑ i in s, g i • ↑i = 0 z : { x // x ∈ t } zm : z ∈ s nonzero : g z ≠ 0 f : V → K := fun x => if h : x ∈ t then if { val := x, property := h } ∈ s then g { val := x, property := h } else 0 else 0 ⊢ ∃ x, x ∈ t ∧ f x ≠ 0 [PROOFSTEP] refine' ⟨z, z.2, _⟩ [GOAL] case intro.intro.intro.intro.intro.refine'_2 K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V < card t s : Finset { x // x ∈ t } g : { x // x ∈ t } → K sum : ∑ i in s, g i • ↑i = 0 z : { x // x ∈ t } zm : z ∈ s nonzero : g z ≠ 0 f : V → K := fun x => if h : x ∈ t then if { val := x, property := h } ∈ s then g { val := x, property := h } else 0 else 0 ⊢ f ↑z ≠ 0 [PROOFSTEP] dsimp only [GOAL] case intro.intro.intro.intro.intro.refine'_2 K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V < card t s : Finset { x // x ∈ t } g : { x // x ∈ t } → K sum : ∑ i in s, g i • ↑i = 0 z : { x // x ∈ t } zm : z ∈ s nonzero : g z ≠ 0 f : V → K := fun x => if h : x ∈ t then if { val := x, property := h } ∈ s then g { val := x, property := h } else 0 else 0 ⊢ (if h : ↑z ∈ t then if { val := ↑z, property := h } ∈ s then g { val := ↑z, property := h } else 0 else 0) ≠ 0 [PROOFSTEP] erw [dif_pos z.2, if_pos] [GOAL] case intro.intro.intro.intro.intro.refine'_2 K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V < card t s : Finset { x // x ∈ t } g : { x // x ∈ t } → K sum : ∑ i in s, g i • ↑i = 0 z : { x // x ∈ t } zm : z ∈ s nonzero : g z ≠ 0 f : V → K := fun x => if h : x ∈ t then if { val := x, property := h } ∈ s then g { val := x, property := h } else 0 else 0 ⊢ g { val := ↑z, property := (_ : ↑z ∈ t) } ≠ 0 [PROOFSTEP] rwa [Subtype.coe_eta] [GOAL] case intro.intro.intro.intro.intro.refine'_2.hc K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V < card t s : Finset { x // x ∈ t } g : { x // x ∈ t } → K sum : ∑ i in s, g i • ↑i = 0 z : { x // x ∈ t } zm : z ∈ s nonzero : g z ≠ 0 f : V → K := fun x => if h : x ∈ t then if { val := x, property := h } ∈ s then g { val := x, property := h } else 0 else 0 ⊢ { val := ↑z, property := (_ : ↑z ∈ t) } ∈ s [PROOFSTEP] rwa [Subtype.coe_eta] [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t ⊢ ∃ f, ∑ e in t, f e • e = 0 ∧ ∑ e in t, f e = 0 ∧ ∃ x, x ∈ t ∧ f x ≠ 0 [PROOFSTEP] classical -- Pick an element x₀ ∈ t, have card_pos : 0 < t.card := lt_trans (Nat.succ_pos _) h obtain ⟨x₀, m⟩ := (Finset.card_pos.1 card_pos).bex let shift : V ↪ V := ⟨fun x => x - x₀, sub_left_injective⟩ let t' := (t.erase x₀).map shift have h' : finrank K V < t'.card := by simp only [card_map, Finset.card_erase_of_mem m] exact Nat.lt_pred_iff.mpr h obtain ⟨g, gsum, x₁, x₁_mem, nz⟩ := exists_nontrivial_relation_of_rank_lt_card h' let f : V → K := fun z => if z = x₀ then -∑ z in t.erase x₀, g (z - x₀) else g (z - x₀) refine' ⟨f, _, _, _⟩ -- After this, it's a matter of verifying the properties, -- based on the corresponding properties for `g`. · show (∑ e : V in t, f e • e) = 0 -- We prove this by splitting off the `x₀` term of the sum, -- which is itself a sum over `t.erase x₀`, -- combining the two sums, and -- observing that after reindexing we have exactly -- ∑ (x : V) in t', g x • x = 0. simp only conv_lhs => apply_congr rfl rw [ite_smul] rw [Finset.sum_ite] conv => congr congr apply_congr -- Porting note: the next two steps used to work by `simp [filter_eq', m]` erw [filter_eq'] simp [m] conv => congr congr rfl apply_congr simp [filter_ne'] rw [sum_singleton, neg_smul, add_comm, ← sub_eq_add_neg, sum_smul, ← sum_sub_distrib] simp only [← smul_sub] -- At the end we have to reindex the sum, so we use `change` to -- express the summand using `shift`. change (∑ x : V in t.erase x₀, (fun e => g e • e) (shift x)) = 0 -- porting note: last argument can't be inferred rw [← sum_map _ shift (fun e => g e • e)] exact gsum · show (∑ e : V in t, f e) = 0 -- Again we split off the `x₀` term, -- observing that it exactly cancels the other terms. rw [← insert_erase m, sum_insert (not_mem_erase x₀ t)] dsimp rw [if_pos rfl] conv_lhs => congr rfl apply_congr rfl rw [if_neg (show _ ≠ x₀ from (mem_erase.mp ‹_›).1)] exact neg_add_self _ · show ∃ (x : V), x ∈ t ∧ f x ≠ 0 -- We can use x₁ + x₀. refine' ⟨x₁ + x₀, _, _⟩ · rw [Finset.mem_map] at x₁_mem rcases x₁_mem with ⟨x₁, x₁_mem, rfl⟩ rw [mem_erase] at x₁_mem simp only [x₁_mem, sub_add_cancel, Function.Embedding.coeFn_mk] · dsimp only rwa [if_neg, add_sub_cancel] rw [add_left_eq_self] rintro rfl simp only [sub_eq_zero, exists_prop, Finset.mem_map, Embedding.coeFn_mk, eq_self_iff_true, mem_erase, not_true, exists_eq_right, Ne.def, false_and_iff] at x₁_mem [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t ⊢ ∃ f, ∑ e in t, f e • e = 0 ∧ ∑ e in t, f e = 0 ∧ ∃ x, x ∈ t ∧ f x ≠ 0 [PROOFSTEP] have card_pos : 0 < t.card := lt_trans (Nat.succ_pos _) h [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t ⊢ ∃ f, ∑ e in t, f e • e = 0 ∧ ∑ e in t, f e = 0 ∧ ∃ x, x ∈ t ∧ f x ≠ 0 [PROOFSTEP] obtain ⟨x₀, m⟩ := (Finset.card_pos.1 card_pos).bex [GOAL] case intro K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t ⊢ ∃ f, ∑ e in t, f e • e = 0 ∧ ∑ e in t, f e = 0 ∧ ∃ x, x ∈ t ∧ f x ≠ 0 [PROOFSTEP] let shift : V ↪ V := ⟨fun x => x - x₀, sub_left_injective⟩ [GOAL] case intro K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } ⊢ ∃ f, ∑ e in t, f e • e = 0 ∧ ∑ e in t, f e = 0 ∧ ∃ x, x ∈ t ∧ f x ≠ 0 [PROOFSTEP] let t' := (t.erase x₀).map shift [GOAL] case intro K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) ⊢ ∃ f, ∑ e in t, f e • e = 0 ∧ ∑ e in t, f e = 0 ∧ ∃ x, x ∈ t ∧ f x ≠ 0 [PROOFSTEP] have h' : finrank K V < t'.card := by simp only [card_map, Finset.card_erase_of_mem m] exact Nat.lt_pred_iff.mpr h [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) ⊢ finrank K V < card t' [PROOFSTEP] simp only [card_map, Finset.card_erase_of_mem m] [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) ⊢ finrank K V < card t - 1 [PROOFSTEP] exact Nat.lt_pred_iff.mpr h [GOAL] case intro K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) h' : finrank K V < card t' ⊢ ∃ f, ∑ e in t, f e • e = 0 ∧ ∑ e in t, f e = 0 ∧ ∃ x, x ∈ t ∧ f x ≠ 0 [PROOFSTEP] obtain ⟨g, gsum, x₁, x₁_mem, nz⟩ := exists_nontrivial_relation_of_rank_lt_card h' [GOAL] case intro.intro.intro.intro.intro K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) h' : finrank K V < card t' g : V → K gsum : ∑ e in t', g e • e = 0 x₁ : V x₁_mem : x₁ ∈ t' nz : g x₁ ≠ 0 ⊢ ∃ f, ∑ e in t, f e • e = 0 ∧ ∑ e in t, f e = 0 ∧ ∃ x, x ∈ t ∧ f x ≠ 0 [PROOFSTEP] let f : V → K := fun z => if z = x₀ then -∑ z in t.erase x₀, g (z - x₀) else g (z - x₀) [GOAL] case intro.intro.intro.intro.intro K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) h' : finrank K V < card t' g : V → K gsum : ∑ e in t', g e • e = 0 x₁ : V x₁_mem : x₁ ∈ t' nz : g x₁ ≠ 0 f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀) ⊢ ∃ f, ∑ e in t, f e • e = 0 ∧ ∑ e in t, f e = 0 ∧ ∃ x, x ∈ t ∧ f x ≠ 0 [PROOFSTEP] refine' ⟨f, _, _, _⟩ -- After this, it's a matter of verifying the properties, -- based on the corresponding properties for `g`. [GOAL] case intro.intro.intro.intro.intro.refine'_1 K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) h' : finrank K V < card t' g : V → K gsum : ∑ e in t', g e • e = 0 x₁ : V x₁_mem : x₁ ∈ t' nz : g x₁ ≠ 0 f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀) ⊢ ∑ e in t, f e • e = 0 [PROOFSTEP] show (∑ e : V in t, f e • e) = 0 -- We prove this by splitting off the `x₀` term of the sum, -- which is itself a sum over `t.erase x₀`, -- combining the two sums, and -- observing that after reindexing we have exactly -- ∑ (x : V) in t', g x • x = 0. [GOAL] case intro.intro.intro.intro.intro.refine'_1 K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) h' : finrank K V < card t' g : V → K gsum : ∑ e in t', g e • e = 0 x₁ : V x₁_mem : x₁ ∈ t' nz : g x₁ ≠ 0 f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀) ⊢ ∑ e in t, f e • e = 0 [PROOFSTEP] simp only [GOAL] case intro.intro.intro.intro.intro.refine'_1 K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) h' : finrank K V < card t' g : V → K gsum : ∑ e in t', g e • e = 0 x₁ : V x₁_mem : x₁ ∈ t' nz : g x₁ ≠ 0 f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀) ⊢ ∑ x in t, (if x = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (x - x₀)) • x = 0 [PROOFSTEP] conv_lhs => apply_congr rfl rw [ite_smul] [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) h' : finrank K V < card t' g : V → K gsum : ∑ e in t', g e • e = 0 x₁ : V x₁_mem : x₁ ∈ t' nz : g x₁ ≠ 0 f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀) | ∑ x in t, (if x = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (x - x₀)) • x [PROOFSTEP] apply_congr rfl rw [ite_smul] [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) h' : finrank K V < card t' g : V → K gsum : ∑ e in t', g e • e = 0 x₁ : V x₁_mem : x₁ ∈ t' nz : g x₁ ≠ 0 f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀) | ∑ x in t, (if x = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (x - x₀)) • x [PROOFSTEP] apply_congr rfl rw [ite_smul] [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) h' : finrank K V < card t' g : V → K gsum : ∑ e in t', g e • e = 0 x₁ : V x₁_mem : x₁ ∈ t' nz : g x₁ ≠ 0 f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀) | ∑ x in t, (if x = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (x - x₀)) • x [PROOFSTEP] apply_congr [GOAL] case h K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) h' : finrank K V < card t' g : V → K gsum : ∑ e in t', g e • e = 0 x₁ : V x₁_mem : x₁ ∈ t' nz : g x₁ ≠ 0 f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀) ⊢ t = ?s₂ case a K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) h' : finrank K V < card t' g : V → K gsum : ∑ e in t', g e • e = 0 x₁ : V x₁_mem : x₁ ∈ t' nz : g x₁ ≠ 0 f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀) x✝ : V a✝ : x✝ ∈ ?s₂ ⊢ (if x✝ = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (x✝ - x₀)) • x✝ = ?g x✝ [PROOFSTEP] rfl [GOAL] case a K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) h' : finrank K V < card t' g : V → K gsum : ∑ e in t', g e • e = 0 x₁ : V x₁_mem : x₁ ∈ t' nz : g x₁ ≠ 0 f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀) x✝ : V a✝ : x✝ ∈ t ⊢ (if x✝ = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (x✝ - x₀)) • x✝ = ?g x✝ [PROOFSTEP] rw [ite_smul] [GOAL] case intro.intro.intro.intro.intro.refine'_1 K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) h' : finrank K V < card t' g : V → K gsum : ∑ e in t', g e • e = 0 x₁ : V x₁_mem : x₁ ∈ t' nz : g x₁ ≠ 0 f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀) ⊢ (∑ x in t, if x = x₀ then (-∑ z in erase t x₀, g (z - x₀)) • x else g (x - x₀) • x) = 0 [PROOFSTEP] rw [Finset.sum_ite] [GOAL] case intro.intro.intro.intro.intro.refine'_1 K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) h' : finrank K V < card t' g : V → K gsum : ∑ e in t', g e • e = 0 x₁ : V x₁_mem : x₁ ∈ t' nz : g x₁ ≠ 0 f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀) ⊢ ∑ x in filter (fun x => x = x₀) t, (-∑ z in erase t x₀, g (z - x₀)) • x + ∑ x in filter (fun x => ¬x = x₀) t, g (x - x₀) • x = 0 [PROOFSTEP] conv => congr congr apply_congr -- Porting note: the next two steps used to work by `simp [filter_eq', m]` erw [filter_eq'] simp [m] [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) h' : finrank K V < card t' g : V → K gsum : ∑ e in t', g e • e = 0 x₁ : V x₁_mem : x₁ ∈ t' nz : g x₁ ≠ 0 f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀) | ∑ x in filter (fun x => x = x₀) t, (-∑ z in erase t x₀, g (z - x₀)) • x + ∑ x in filter (fun x => ¬x = x₀) t, g (x - x₀) • x = 0 [PROOFSTEP] congr congr apply_congr -- Porting note: the next two steps used to work by `simp [filter_eq', m]` erw [filter_eq'] simp [m] [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) h' : finrank K V < card t' g : V → K gsum : ∑ e in t', g e • e = 0 x₁ : V x₁_mem : x₁ ∈ t' nz : g x₁ ≠ 0 f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀) | ∑ x in filter (fun x => x = x₀) t, (-∑ z in erase t x₀, g (z - x₀)) • x + ∑ x in filter (fun x => ¬x = x₀) t, g (x - x₀) • x = 0 [PROOFSTEP] congr congr apply_congr -- Porting note: the next two steps used to work by `simp [filter_eq', m]` erw [filter_eq'] simp [m] [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) h' : finrank K V < card t' g : V → K gsum : ∑ e in t', g e • e = 0 x₁ : V x₁_mem : x₁ ∈ t' nz : g x₁ ≠ 0 f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀) | ∑ x in filter (fun x => x = x₀) t, (-∑ z in erase t x₀, g (z - x₀)) • x + ∑ x in filter (fun x => ¬x = x₀) t, g (x - x₀) • x = 0 [PROOFSTEP] congr [GOAL] case a K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) h' : finrank K V < card t' g : V → K gsum : ∑ e in t', g e • e = 0 x₁ : V x₁_mem : x₁ ∈ t' nz : g x₁ ≠ 0 f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀) | ∑ x in filter (fun x => x = x₀) t, (-∑ z in erase t x₀, g (z - x₀)) • x + ∑ x in filter (fun x => ¬x = x₀) t, g (x - x₀) • x case a K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) h' : finrank K V < card t' g : V → K gsum : ∑ e in t', g e • e = 0 x₁ : V x₁_mem : x₁ ∈ t' nz : g x₁ ≠ 0 f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀) | 0 [PROOFSTEP] congr [GOAL] case a.a K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) h' : finrank K V < card t' g : V → K gsum : ∑ e in t', g e • e = 0 x₁ : V x₁_mem : x₁ ∈ t' nz : g x₁ ≠ 0 f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀) | ∑ x in filter (fun x => x = x₀) t, (-∑ z in erase t x₀, g (z - x₀)) • x case a.a K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) h' : finrank K V < card t' g : V → K gsum : ∑ e in t', g e • e = 0 x₁ : V x₁_mem : x₁ ∈ t' nz : g x₁ ≠ 0 f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀) | ∑ x in filter (fun x => ¬x = x₀) t, g (x - x₀) • x case a K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) h' : finrank K V < card t' g : V → K gsum : ∑ e in t', g e • e = 0 x₁ : V x₁_mem : x₁ ∈ t' nz : g x₁ ≠ 0 f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀) | 0 [PROOFSTEP] apply_congr -- Porting note: the next two steps used to work by `simp [filter_eq', m]` [GOAL] case a.a.h K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) h' : finrank K V < card t' g : V → K gsum : ∑ e in t', g e • e = 0 x₁ : V x₁_mem : x₁ ∈ t' nz : g x₁ ≠ 0 f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀) ⊢ filter (fun x => x = x₀) t = ?a.a.s₂ case a.a.a K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) h' : finrank K V < card t' g : V → K gsum : ∑ e in t', g e • e = 0 x₁ : V x₁_mem : x₁ ∈ t' nz : g x₁ ≠ 0 f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀) x✝ : V a✝ : x✝ ∈ ?a.a.s₂ ⊢ (-∑ z in erase t x₀, g (z - x₀)) • x✝ = ?a.a.g x✝ case a.a K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) h' : finrank K V < card t' g : V → K gsum : ∑ e in t', g e • e = 0 x₁ : V x₁_mem : x₁ ∈ t' nz : g x₁ ≠ 0 f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀) | ∑ x in filter (fun x => ¬x = x₀) t, g (x - x₀) • x case a K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) h' : finrank K V < card t' g : V → K gsum : ∑ e in t', g e • e = 0 x₁ : V x₁_mem : x₁ ∈ t' nz : g x₁ ≠ 0 f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀) | 0 [PROOFSTEP] erw [filter_eq'] [GOAL] case a.a.h K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) h' : finrank K V < card t' g : V → K gsum : ∑ e in t', g e • e = 0 x₁ : V x₁_mem : x₁ ∈ t' nz : g x₁ ≠ 0 f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀) | if x₀ ∈ t then {x₀} else ∅ case a.a.a K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) h' : finrank K V < card t' g : V → K gsum : ∑ e in t', g e • e = 0 x₁ : V x₁_mem : x₁ ∈ t' nz : g x₁ ≠ 0 f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀) x✝ : V a✝ : x✝ ∈ ?a.a.s₂ ⊢ (-∑ z in erase t x₀, g (z - x₀)) • x✝ = ?a.a.g x✝ case a.a K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) h' : finrank K V < card t' g : V → K gsum : ∑ e in t', g e • e = 0 x₁ : V x₁_mem : x₁ ∈ t' nz : g x₁ ≠ 0 f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀) | ∑ x in filter (fun x => ¬x = x₀) t, g (x - x₀) • x case a K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) h' : finrank K V < card t' g : V → K gsum : ∑ e in t', g e • e = 0 x₁ : V x₁_mem : x₁ ∈ t' nz : g x₁ ≠ 0 f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀) | 0 [PROOFSTEP] simp [m] [GOAL] case intro.intro.intro.intro.intro.refine'_1 K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) h' : finrank K V < card t' g : V → K gsum : ∑ e in t', g e • e = 0 x₁ : V x₁_mem : x₁ ∈ t' nz : g x₁ ≠ 0 f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀) ⊢ ∑ x in {x₀}, (-∑ z in erase t x₀, g (z - x₀)) • x + ∑ x in filter (fun x => ¬x = x₀) t, g (x - x₀) • x = 0 [PROOFSTEP] conv => congr congr rfl apply_congr simp [filter_ne'] [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) h' : finrank K V < card t' g : V → K gsum : ∑ e in t', g e • e = 0 x₁ : V x₁_mem : x₁ ∈ t' nz : g x₁ ≠ 0 f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀) | ∑ x in {x₀}, (-∑ z in erase t x₀, g (z - x₀)) • x + ∑ x in filter (fun x => ¬x = x₀) t, g (x - x₀) • x = 0 [PROOFSTEP] congr congr rfl apply_congr simp [filter_ne'] [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) h' : finrank K V < card t' g : V → K gsum : ∑ e in t', g e • e = 0 x₁ : V x₁_mem : x₁ ∈ t' nz : g x₁ ≠ 0 f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀) | ∑ x in {x₀}, (-∑ z in erase t x₀, g (z - x₀)) • x + ∑ x in filter (fun x => ¬x = x₀) t, g (x - x₀) • x = 0 [PROOFSTEP] congr congr rfl apply_congr simp [filter_ne'] [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) h' : finrank K V < card t' g : V → K gsum : ∑ e in t', g e • e = 0 x₁ : V x₁_mem : x₁ ∈ t' nz : g x₁ ≠ 0 f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀) | ∑ x in {x₀}, (-∑ z in erase t x₀, g (z - x₀)) • x + ∑ x in filter (fun x => ¬x = x₀) t, g (x - x₀) • x = 0 [PROOFSTEP] congr [GOAL] case a K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) h' : finrank K V < card t' g : V → K gsum : ∑ e in t', g e • e = 0 x₁ : V x₁_mem : x₁ ∈ t' nz : g x₁ ≠ 0 f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀) | ∑ x in {x₀}, (-∑ z in erase t x₀, g (z - x₀)) • x + ∑ x in filter (fun x => ¬x = x₀) t, g (x - x₀) • x case a K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) h' : finrank K V < card t' g : V → K gsum : ∑ e in t', g e • e = 0 x₁ : V x₁_mem : x₁ ∈ t' nz : g x₁ ≠ 0 f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀) | 0 [PROOFSTEP] congr [GOAL] case a.a K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) h' : finrank K V < card t' g : V → K gsum : ∑ e in t', g e • e = 0 x₁ : V x₁_mem : x₁ ∈ t' nz : g x₁ ≠ 0 f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀) | ∑ x in {x₀}, (-∑ z in erase t x₀, g (z - x₀)) • x case a.a K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) h' : finrank K V < card t' g : V → K gsum : ∑ e in t', g e • e = 0 x₁ : V x₁_mem : x₁ ∈ t' nz : g x₁ ≠ 0 f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀) | ∑ x in filter (fun x => ¬x = x₀) t, g (x - x₀) • x case a K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) h' : finrank K V < card t' g : V → K gsum : ∑ e in t', g e • e = 0 x₁ : V x₁_mem : x₁ ∈ t' nz : g x₁ ≠ 0 f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀) | 0 [PROOFSTEP] rfl [GOAL] case a.a K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) h' : finrank K V < card t' g : V → K gsum : ∑ e in t', g e • e = 0 x₁ : V x₁_mem : x₁ ∈ t' nz : g x₁ ≠ 0 f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀) | ∑ x in filter (fun x => ¬x = x₀) t, g (x - x₀) • x case a K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) h' : finrank K V < card t' g : V → K gsum : ∑ e in t', g e • e = 0 x₁ : V x₁_mem : x₁ ∈ t' nz : g x₁ ≠ 0 f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀) | 0 [PROOFSTEP] apply_congr [GOAL] case a.a.h K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) h' : finrank K V < card t' g : V → K gsum : ∑ e in t', g e • e = 0 x₁ : V x₁_mem : x₁ ∈ t' nz : g x₁ ≠ 0 f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀) ⊢ filter (fun x => ¬x = x₀) t = ?a.a.s₂ case a.a.a K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) h' : finrank K V < card t' g : V → K gsum : ∑ e in t', g e • e = 0 x₁ : V x₁_mem : x₁ ∈ t' nz : g x₁ ≠ 0 f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀) x✝ : V a✝ : x✝ ∈ ?a.a.s₂ ⊢ g (x✝ - x₀) • x✝ = ?a.a.g x✝ case a K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) h' : finrank K V < card t' g : V → K gsum : ∑ e in t', g e • e = 0 x₁ : V x₁_mem : x₁ ∈ t' nz : g x₁ ≠ 0 f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀) | 0 [PROOFSTEP] simp [filter_ne'] [GOAL] case intro.intro.intro.intro.intro.refine'_1 K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) h' : finrank K V < card t' g : V → K gsum : ∑ e in t', g e • e = 0 x₁ : V x₁_mem : x₁ ∈ t' nz : g x₁ ≠ 0 f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀) ⊢ ∑ x in {x₀}, (-∑ z in erase t x₀, g (z - x₀)) • x + ∑ x in erase t x₀, g (x - x₀) • x = 0 [PROOFSTEP] rw [sum_singleton, neg_smul, add_comm, ← sub_eq_add_neg, sum_smul, ← sum_sub_distrib] [GOAL] case intro.intro.intro.intro.intro.refine'_1 K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) h' : finrank K V < card t' g : V → K gsum : ∑ e in t', g e • e = 0 x₁ : V x₁_mem : x₁ ∈ t' nz : g x₁ ≠ 0 f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀) ⊢ ∑ x in erase t x₀, (g (x - x₀) • x - g (x - x₀) • x₀) = 0 [PROOFSTEP] simp only [← smul_sub] -- At the end we have to reindex the sum, so we use `change` to -- express the summand using `shift`. [GOAL] case intro.intro.intro.intro.intro.refine'_1 K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) h' : finrank K V < card t' g : V → K gsum : ∑ e in t', g e • e = 0 x₁ : V x₁_mem : x₁ ∈ t' nz : g x₁ ≠ 0 f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀) ⊢ ∑ x in erase t x₀, g (x - x₀) • (x - x₀) = 0 [PROOFSTEP] change (∑ x : V in t.erase x₀, (fun e => g e • e) (shift x)) = 0 -- porting note: last argument can't be inferred [GOAL] case intro.intro.intro.intro.intro.refine'_1 K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) h' : finrank K V < card t' g : V → K gsum : ∑ e in t', g e • e = 0 x₁ : V x₁_mem : x₁ ∈ t' nz : g x₁ ≠ 0 f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀) ⊢ ∑ x in erase t x₀, (fun e => g e • e) (↑shift x) = 0 [PROOFSTEP] rw [← sum_map _ shift (fun e => g e • e)] [GOAL] case intro.intro.intro.intro.intro.refine'_1 K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) h' : finrank K V < card t' g : V → K gsum : ∑ e in t', g e • e = 0 x₁ : V x₁_mem : x₁ ∈ t' nz : g x₁ ≠ 0 f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀) ⊢ ∑ x in Finset.map shift (erase t x₀), g x • x = 0 [PROOFSTEP] exact gsum [GOAL] case intro.intro.intro.intro.intro.refine'_2 K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) h' : finrank K V < card t' g : V → K gsum : ∑ e in t', g e • e = 0 x₁ : V x₁_mem : x₁ ∈ t' nz : g x₁ ≠ 0 f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀) ⊢ ∑ e in t, f e = 0 [PROOFSTEP] show (∑ e : V in t, f e) = 0 -- Again we split off the `x₀` term, -- observing that it exactly cancels the other terms. [GOAL] case intro.intro.intro.intro.intro.refine'_2 K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) h' : finrank K V < card t' g : V → K gsum : ∑ e in t', g e • e = 0 x₁ : V x₁_mem : x₁ ∈ t' nz : g x₁ ≠ 0 f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀) ⊢ ∑ e in t, f e = 0 [PROOFSTEP] rw [← insert_erase m, sum_insert (not_mem_erase x₀ t)] [GOAL] case intro.intro.intro.intro.intro.refine'_2 K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) h' : finrank K V < card t' g : V → K gsum : ∑ e in t', g e • e = 0 x₁ : V x₁_mem : x₁ ∈ t' nz : g x₁ ≠ 0 f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀) ⊢ f x₀ + ∑ x in erase t x₀, f x = 0 [PROOFSTEP] dsimp [GOAL] case intro.intro.intro.intro.intro.refine'_2 K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) h' : finrank K V < card t' g : V → K gsum : ∑ e in t', g e • e = 0 x₁ : V x₁_mem : x₁ ∈ t' nz : g x₁ ≠ 0 f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀) ⊢ ((if x₀ = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (x₀ - x₀)) + ∑ x in erase t x₀, if x = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (x - x₀)) = 0 [PROOFSTEP] rw [if_pos rfl] [GOAL] case intro.intro.intro.intro.intro.refine'_2 K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) h' : finrank K V < card t' g : V → K gsum : ∑ e in t', g e • e = 0 x₁ : V x₁_mem : x₁ ∈ t' nz : g x₁ ≠ 0 f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀) ⊢ (-∑ z in erase t x₀, g (z - x₀) + ∑ x in erase t x₀, if x = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (x - x₀)) = 0 [PROOFSTEP] conv_lhs => congr rfl apply_congr rfl rw [if_neg (show _ ≠ x₀ from (mem_erase.mp ‹_›).1)] [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) h' : finrank K V < card t' g : V → K gsum : ∑ e in t', g e • e = 0 x₁ : V x₁_mem : x₁ ∈ t' nz : g x₁ ≠ 0 f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀) | -∑ z in erase t x₀, g (z - x₀) + ∑ x in erase t x₀, if x = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (x - x₀) [PROOFSTEP] congr rfl apply_congr rfl rw [if_neg (show _ ≠ x₀ from (mem_erase.mp ‹_›).1)] [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) h' : finrank K V < card t' g : V → K gsum : ∑ e in t', g e • e = 0 x₁ : V x₁_mem : x₁ ∈ t' nz : g x₁ ≠ 0 f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀) | -∑ z in erase t x₀, g (z - x₀) + ∑ x in erase t x₀, if x = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (x - x₀) [PROOFSTEP] congr rfl apply_congr rfl rw [if_neg (show _ ≠ x₀ from (mem_erase.mp ‹_›).1)] [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) h' : finrank K V < card t' g : V → K gsum : ∑ e in t', g e • e = 0 x₁ : V x₁_mem : x₁ ∈ t' nz : g x₁ ≠ 0 f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀) | -∑ z in erase t x₀, g (z - x₀) + ∑ x in erase t x₀, if x = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (x - x₀) [PROOFSTEP] congr [GOAL] case a K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) h' : finrank K V < card t' g : V → K gsum : ∑ e in t', g e • e = 0 x₁ : V x₁_mem : x₁ ∈ t' nz : g x₁ ≠ 0 f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀) | -∑ z in erase t x₀, g (z - x₀) case a K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) h' : finrank K V < card t' g : V → K gsum : ∑ e in t', g e • e = 0 x₁ : V x₁_mem : x₁ ∈ t' nz : g x₁ ≠ 0 f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀) | ∑ x in erase t x₀, if x = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (x - x₀) [PROOFSTEP] rfl [GOAL] case a K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) h' : finrank K V < card t' g : V → K gsum : ∑ e in t', g e • e = 0 x₁ : V x₁_mem : x₁ ∈ t' nz : g x₁ ≠ 0 f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀) | ∑ x in erase t x₀, if x = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (x - x₀) [PROOFSTEP] apply_congr [GOAL] case a.h K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) h' : finrank K V < card t' g : V → K gsum : ∑ e in t', g e • e = 0 x₁ : V x₁_mem : x₁ ∈ t' nz : g x₁ ≠ 0 f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀) ⊢ erase t x₀ = ?a.s₂ case a.a K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) h' : finrank K V < card t' g : V → K gsum : ∑ e in t', g e • e = 0 x₁ : V x₁_mem : x₁ ∈ t' nz : g x₁ ≠ 0 f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀) x✝ : V a✝ : x✝ ∈ ?a.s₂ ⊢ (if x✝ = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (x✝ - x₀)) = ?a.g x✝ [PROOFSTEP] rfl [GOAL] case a.a K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) h' : finrank K V < card t' g : V → K gsum : ∑ e in t', g e • e = 0 x₁ : V x₁_mem : x₁ ∈ t' nz : g x₁ ≠ 0 f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀) x✝ : V a✝ : x✝ ∈ erase t x₀ ⊢ (if x✝ = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (x✝ - x₀)) = ?a.g x✝ [PROOFSTEP] rw [if_neg (show _ ≠ x₀ from (mem_erase.mp ‹_›).1)] [GOAL] case intro.intro.intro.intro.intro.refine'_2 K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) h' : finrank K V < card t' g : V → K gsum : ∑ e in t', g e • e = 0 x₁ : V x₁_mem : x₁ ∈ t' nz : g x₁ ≠ 0 f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀) ⊢ -∑ z in erase t x₀, g (z - x₀) + ∑ x in erase t x₀, g (x - x₀) = 0 [PROOFSTEP] exact neg_add_self _ [GOAL] case intro.intro.intro.intro.intro.refine'_3 K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) h' : finrank K V < card t' g : V → K gsum : ∑ e in t', g e • e = 0 x₁ : V x₁_mem : x₁ ∈ t' nz : g x₁ ≠ 0 f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀) ⊢ ∃ x, x ∈ t ∧ f x ≠ 0 [PROOFSTEP] show ∃ (x : V), x ∈ t ∧ f x ≠ 0 -- We can use x₁ + x₀. [GOAL] case intro.intro.intro.intro.intro.refine'_3 K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) h' : finrank K V < card t' g : V → K gsum : ∑ e in t', g e • e = 0 x₁ : V x₁_mem : x₁ ∈ t' nz : g x₁ ≠ 0 f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀) ⊢ ∃ x, x ∈ t ∧ f x ≠ 0 [PROOFSTEP] refine' ⟨x₁ + x₀, _, _⟩ [GOAL] case intro.intro.intro.intro.intro.refine'_3.refine'_1 K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) h' : finrank K V < card t' g : V → K gsum : ∑ e in t', g e • e = 0 x₁ : V x₁_mem : x₁ ∈ t' nz : g x₁ ≠ 0 f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀) ⊢ x₁ + x₀ ∈ t [PROOFSTEP] rw [Finset.mem_map] at x₁_mem [GOAL] case intro.intro.intro.intro.intro.refine'_3.refine'_1 K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) h' : finrank K V < card t' g : V → K gsum : ∑ e in t', g e • e = 0 x₁ : V x₁_mem : ∃ a, a ∈ erase t x₀ ∧ ↑shift a = x₁ nz : g x₁ ≠ 0 f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀) ⊢ x₁ + x₀ ∈ t [PROOFSTEP] rcases x₁_mem with ⟨x₁, x₁_mem, rfl⟩ [GOAL] case intro.intro.intro.intro.intro.refine'_3.refine'_1.intro.intro K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) h' : finrank K V < card t' g : V → K gsum : ∑ e in t', g e • e = 0 f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀) x₁ : V x₁_mem : x₁ ∈ erase t x₀ nz : g (↑shift x₁) ≠ 0 ⊢ ↑shift x₁ + x₀ ∈ t [PROOFSTEP] rw [mem_erase] at x₁_mem [GOAL] case intro.intro.intro.intro.intro.refine'_3.refine'_1.intro.intro K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) h' : finrank K V < card t' g : V → K gsum : ∑ e in t', g e • e = 0 f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀) x₁ : V x₁_mem : x₁ ≠ x₀ ∧ x₁ ∈ t nz : g (↑shift x₁) ≠ 0 ⊢ ↑shift x₁ + x₀ ∈ t [PROOFSTEP] simp only [x₁_mem, sub_add_cancel, Function.Embedding.coeFn_mk] [GOAL] case intro.intro.intro.intro.intro.refine'_3.refine'_2 K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) h' : finrank K V < card t' g : V → K gsum : ∑ e in t', g e • e = 0 x₁ : V x₁_mem : x₁ ∈ t' nz : g x₁ ≠ 0 f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀) ⊢ f (x₁ + x₀) ≠ 0 [PROOFSTEP] dsimp only [GOAL] case intro.intro.intro.intro.intro.refine'_3.refine'_2 K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) h' : finrank K V < card t' g : V → K gsum : ∑ e in t', g e • e = 0 x₁ : V x₁_mem : x₁ ∈ t' nz : g x₁ ≠ 0 f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀) ⊢ (if x₁ + x₀ = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (x₁ + x₀ - x₀)) ≠ 0 [PROOFSTEP] rwa [if_neg, add_sub_cancel] [GOAL] case intro.intro.intro.intro.intro.refine'_3.refine'_2.hnc K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) h' : finrank K V < card t' g : V → K gsum : ∑ e in t', g e • e = 0 x₁ : V x₁_mem : x₁ ∈ t' nz : g x₁ ≠ 0 f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀) ⊢ ¬x₁ + x₀ = x₀ [PROOFSTEP] rw [add_left_eq_self] [GOAL] case intro.intro.intro.intro.intro.refine'_3.refine'_2.hnc K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) h' : finrank K V < card t' g : V → K gsum : ∑ e in t', g e • e = 0 x₁ : V x₁_mem : x₁ ∈ t' nz : g x₁ ≠ 0 f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀) ⊢ ¬x₁ = 0 [PROOFSTEP] rintro rfl [GOAL] case intro.intro.intro.intro.intro.refine'_3.refine'_2.hnc K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V t : Finset V h : finrank K V + 1 < card t card_pos : 0 < card t x₀ : V m : x₀ ∈ t shift : V ↪ V := { toFun := fun x => x - x₀, inj' := (_ : Injective fun a => a - x₀) } t' : Finset V := Finset.map shift (erase t x₀) h' : finrank K V < card t' g : V → K gsum : ∑ e in t', g e • e = 0 f : V → K := fun z => if z = x₀ then -∑ z in erase t x₀, g (z - x₀) else g (z - x₀) x₁_mem : 0 ∈ t' nz : g 0 ≠ 0 ⊢ False [PROOFSTEP] simp only [sub_eq_zero, exists_prop, Finset.mem_map, Embedding.coeFn_mk, eq_self_iff_true, mem_erase, not_true, exists_eq_right, Ne.def, false_and_iff] at x₁_mem [GOAL] K : Type u V : Type v inst✝⁸ : DivisionRing K inst✝⁷ : AddCommGroup V inst✝⁶ : Module K V V₂ : Type v' inst✝⁵ : AddCommGroup V₂ inst✝⁴ : Module K V₂ L : Type u_1 inst✝³ : LinearOrderedField L W : Type v inst✝² : AddCommGroup W inst✝¹ : Module L W inst✝ : FiniteDimensional L W t : Finset W h : finrank L W + 1 < card t ⊢ ∃ f, ∑ e in t, f e • e = 0 ∧ ∑ e in t, f e = 0 ∧ ∃ x, x ∈ t ∧ 0 < f x [PROOFSTEP] obtain ⟨f, sum, total, nonzero⟩ := exists_nontrivial_relation_sum_zero_of_rank_succ_lt_card h [GOAL] case intro.intro.intro K : Type u V : Type v inst✝⁸ : DivisionRing K inst✝⁷ : AddCommGroup V inst✝⁶ : Module K V V₂ : Type v' inst✝⁵ : AddCommGroup V₂ inst✝⁴ : Module K V₂ L : Type u_1 inst✝³ : LinearOrderedField L W : Type v inst✝² : AddCommGroup W inst✝¹ : Module L W inst✝ : FiniteDimensional L W t : Finset W h : finrank L W + 1 < card t f : W → L sum : ∑ e in t, f e • e = 0 total : ∑ e in t, f e = 0 nonzero : ∃ x, x ∈ t ∧ f x ≠ 0 ⊢ ∃ f, ∑ e in t, f e • e = 0 ∧ ∑ e in t, f e = 0 ∧ ∃ x, x ∈ t ∧ 0 < f x [PROOFSTEP] exact ⟨f, sum, total, exists_pos_of_sum_zero_of_exists_nonzero f total nonzero⟩ [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ ι : Type u_1 inst✝ : Unique ι h✝ : finrank K V = 1 v : V hv : v ≠ 0 b : Basis ι K V := basisUnique ι h✝ h : ↑(↑b.repr v) default ≠ 0 := mt basisUnique.repr_eq_zero_iff.mp hv ⊢ ∀ (x y : V), (fun w => Finsupp.single default (↑(↑b.repr w) default / ↑(↑b.repr v) default)) (x + y) = (fun w => Finsupp.single default (↑(↑b.repr w) default / ↑(↑b.repr v) default)) x + (fun w => Finsupp.single default (↑(↑b.repr w) default / ↑(↑b.repr v) default)) y [PROOFSTEP] simp [add_div] [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ ι : Type u_1 inst✝ : Unique ι h✝ : finrank K V = 1 v : V hv : v ≠ 0 b : Basis ι K V := basisUnique ι h✝ h : ↑(↑b.repr v) default ≠ 0 := mt basisUnique.repr_eq_zero_iff.mp hv ⊢ ∀ (r : K) (x : V), AddHom.toFun { toFun := fun w => Finsupp.single default (↑(↑b.repr w) default / ↑(↑b.repr v) default), map_add' := (_ : ∀ (a a_1 : V), Finsupp.single default (↑(↑(basisUnique ι h✝).repr (a + a_1)) default / ↑(↑(basisUnique ι h✝).repr v) default) = Finsupp.single default (↑(↑(basisUnique ι h✝).repr a) default / ↑(↑(basisUnique ι h✝).repr v) default) + Finsupp.single default (↑(↑(basisUnique ι h✝).repr a_1) default / ↑(↑(basisUnique ι h✝).repr v) default)) } (r • x) = ↑(RingHom.id K) r • AddHom.toFun { toFun := fun w => Finsupp.single default (↑(↑b.repr w) default / ↑(↑b.repr v) default), map_add' := (_ : ∀ (a a_1 : V), Finsupp.single default (↑(↑(basisUnique ι h✝).repr (a + a_1)) default / ↑(↑(basisUnique ι h✝).repr v) default) = Finsupp.single default (↑(↑(basisUnique ι h✝).repr a) default / ↑(↑(basisUnique ι h✝).repr v) default) + Finsupp.single default (↑(↑(basisUnique ι h✝).repr a_1) default / ↑(↑(basisUnique ι h✝).repr v) default)) } x [PROOFSTEP] simp [mul_div] [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ ι : Type u_1 inst✝ : Unique ι h✝ : finrank K V = 1 v : V hv : v ≠ 0 b : Basis ι K V := basisUnique ι h✝ h : ↑(↑b.repr v) default ≠ 0 := mt basisUnique.repr_eq_zero_iff.mp hv w : V ⊢ (fun f => ↑f default • v) (AddHom.toFun { toAddHom := { toFun := fun w => Finsupp.single default (↑(↑b.repr w) default / ↑(↑b.repr v) default), map_add' := (_ : ∀ (a a_1 : V), Finsupp.single default (↑(↑(basisUnique ι h✝).repr (a + a_1)) default / ↑(↑(basisUnique ι h✝).repr v) default) = Finsupp.single default (↑(↑(basisUnique ι h✝).repr a) default / ↑(↑(basisUnique ι h✝).repr v) default) + Finsupp.single default (↑(↑(basisUnique ι h✝).repr a_1) default / ↑(↑(basisUnique ι h✝).repr v) default)) }, map_smul' := (_ : ∀ (a : K) (a_1 : V), Finsupp.single default (↑(↑(basisUnique ι h✝).repr (a • a_1)) default / ↑(↑(basisUnique ι h✝).repr v) default) = a • Finsupp.single default (↑(↑(basisUnique ι h✝).repr a_1) default / ↑(↑(basisUnique ι h✝).repr v) default)) }.toAddHom w) = w [PROOFSTEP] apply_fun b.repr using b.repr.toEquiv.injective [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ ι : Type u_1 inst✝ : Unique ι h✝ : finrank K V = 1 v : V hv : v ≠ 0 b : Basis ι K V := basisUnique ι h✝ h : ↑(↑b.repr v) default ≠ 0 := mt basisUnique.repr_eq_zero_iff.mp hv w : V ⊢ ↑b.repr ((fun f => ↑f default • v) (AddHom.toFun { toAddHom := { toFun := fun w => Finsupp.single default (↑(↑b.repr w) default / ↑(↑b.repr v) default), map_add' := (_ : ∀ (a a_1 : V), Finsupp.single default (↑(↑(basisUnique ι h✝).repr (a + a_1)) default / ↑(↑(basisUnique ι h✝).repr v) default) = Finsupp.single default (↑(↑(basisUnique ι h✝).repr a) default / ↑(↑(basisUnique ι h✝).repr v) default) + Finsupp.single default (↑(↑(basisUnique ι h✝).repr a_1) default / ↑(↑(basisUnique ι h✝).repr v) default)) }, map_smul' := (_ : ∀ (a : K) (a_1 : V), Finsupp.single default (↑(↑(basisUnique ι h✝).repr (a • a_1)) default / ↑(↑(basisUnique ι h✝).repr v) default) = a • Finsupp.single default (↑(↑(basisUnique ι h✝).repr a_1) default / ↑(↑(basisUnique ι h✝).repr v) default)) }.toAddHom w)) = ↑b.repr w [PROOFSTEP] apply_fun Equiv.finsuppUnique [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ ι : Type u_1 inst✝ : Unique ι h✝ : finrank K V = 1 v : V hv : v ≠ 0 b : Basis ι K V := basisUnique ι h✝ h : ↑(↑b.repr v) default ≠ 0 := mt basisUnique.repr_eq_zero_iff.mp hv w : V ⊢ ↑Equiv.finsuppUnique (↑b.repr ((fun f => ↑f default • v) (AddHom.toFun { toAddHom := { toFun := fun w => Finsupp.single default (↑(↑b.repr w) default / ↑(↑b.repr v) default), map_add' := (_ : ∀ (a a_1 : V), Finsupp.single default (↑(↑(basisUnique ι h✝).repr (a + a_1)) default / ↑(↑(basisUnique ι h✝).repr v) default) = Finsupp.single default (↑(↑(basisUnique ι h✝).repr a) default / ↑(↑(basisUnique ι h✝).repr v) default) + Finsupp.single default (↑(↑(basisUnique ι h✝).repr a_1) default / ↑(↑(basisUnique ι h✝).repr v) default)) }, map_smul' := (_ : ∀ (a : K) (a_1 : V), Finsupp.single default (↑(↑(basisUnique ι h✝).repr (a • a_1)) default / ↑(↑(basisUnique ι h✝).repr v) default) = a • Finsupp.single default (↑(↑(basisUnique ι h✝).repr a_1) default / ↑(↑(basisUnique ι h✝).repr v) default)) }.toAddHom w))) = ↑Equiv.finsuppUnique (↑b.repr w) [PROOFSTEP] simp only [LinearEquiv.map_smulₛₗ, Finsupp.coe_smul, Finsupp.single_eq_same, RingHom.id_apply, smul_eq_mul, Pi.smul_apply, Equiv.finsuppUnique_apply] [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ ι : Type u_1 inst✝ : Unique ι h✝ : finrank K V = 1 v : V hv : v ≠ 0 b : Basis ι K V := basisUnique ι h✝ h : ↑(↑b.repr v) default ≠ 0 := mt basisUnique.repr_eq_zero_iff.mp hv w : V ⊢ ↑(↑(basisUnique ι h✝).repr w) default / ↑(↑(basisUnique ι h✝).repr v) default * ↑(↑(basisUnique ι h✝).repr v) default = ↑(↑(basisUnique ι h✝).repr w) default [PROOFSTEP] exact div_mul_cancel _ h [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ ι : Type u_1 inst✝ : Unique ι h✝ : finrank K V = 1 v : V hv : v ≠ 0 b : Basis ι K V := basisUnique ι h✝ h : ↑(↑b.repr v) default ≠ 0 := mt basisUnique.repr_eq_zero_iff.mp hv f : ι →₀ K ⊢ AddHom.toFun { toAddHom := { toFun := fun w => Finsupp.single default (↑(↑b.repr w) default / ↑(↑b.repr v) default), map_add' := (_ : ∀ (a a_1 : V), Finsupp.single default (↑(↑(basisUnique ι h✝).repr (a + a_1)) default / ↑(↑(basisUnique ι h✝).repr v) default) = Finsupp.single default (↑(↑(basisUnique ι h✝).repr a) default / ↑(↑(basisUnique ι h✝).repr v) default) + Finsupp.single default (↑(↑(basisUnique ι h✝).repr a_1) default / ↑(↑(basisUnique ι h✝).repr v) default)) }, map_smul' := (_ : ∀ (a : K) (a_1 : V), Finsupp.single default (↑(↑(basisUnique ι h✝).repr (a • a_1)) default / ↑(↑(basisUnique ι h✝).repr v) default) = a • Finsupp.single default (↑(↑(basisUnique ι h✝).repr a_1) default / ↑(↑(basisUnique ι h✝).repr v) default)) }.toAddHom ((fun f => ↑f default • v) f) = f [PROOFSTEP] ext [GOAL] case h K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ ι : Type u_1 inst✝ : Unique ι h✝ : finrank K V = 1 v : V hv : v ≠ 0 b : Basis ι K V := basisUnique ι h✝ h : ↑(↑b.repr v) default ≠ 0 := mt basisUnique.repr_eq_zero_iff.mp hv f : ι →₀ K ⊢ ↑(AddHom.toFun { toAddHom := { toFun := fun w => Finsupp.single default (↑(↑b.repr w) default / ↑(↑b.repr v) default), map_add' := (_ : ∀ (a a_1 : V), Finsupp.single default (↑(↑(basisUnique ι h✝).repr (a + a_1)) default / ↑(↑(basisUnique ι h✝).repr v) default) = Finsupp.single default (↑(↑(basisUnique ι h✝).repr a) default / ↑(↑(basisUnique ι h✝).repr v) default) + Finsupp.single default (↑(↑(basisUnique ι h✝).repr a_1) default / ↑(↑(basisUnique ι h✝).repr v) default)) }, map_smul' := (_ : ∀ (a : K) (a_1 : V), Finsupp.single default (↑(↑(basisUnique ι h✝).repr (a • a_1)) default / ↑(↑(basisUnique ι h✝).repr v) default) = a • Finsupp.single default (↑(↑(basisUnique ι h✝).repr a_1) default / ↑(↑(basisUnique ι h✝).repr v) default)) }.toAddHom ((fun f => ↑f default • v) f)) default = ↑f default [PROOFSTEP] simp only [LinearEquiv.map_smulₛₗ, Finsupp.coe_smul, Finsupp.single_eq_same, RingHom.id_apply, smul_eq_mul, Pi.smul_apply] [GOAL] case h K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ ι : Type u_1 inst✝ : Unique ι h✝ : finrank K V = 1 v : V hv : v ≠ 0 b : Basis ι K V := basisUnique ι h✝ h : ↑(↑b.repr v) default ≠ 0 := mt basisUnique.repr_eq_zero_iff.mp hv f : ι →₀ K ⊢ ↑f default * ↑(↑(basisUnique ι h✝).repr v) default / ↑(↑(basisUnique ι h✝).repr v) default = ↑f default [PROOFSTEP] exact mul_div_cancel _ h [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ ι : Type u_1 inst✝ : Unique ι h : finrank K V = 1 v : V hv : v ≠ 0 i : ι ⊢ ↑(basisSingleton ι h v hv) i = v [PROOFSTEP] cases Unique.uniq ‹Unique ι› i [GOAL] case refl K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ ι : Type u_1 inst✝ : Unique ι h : finrank K V = 1 v : V hv : v ≠ 0 ⊢ ↑(basisSingleton ι h v hv) default = v [PROOFSTEP] simp [basisSingleton] [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ ι : Type u_1 inst✝ : Unique ι h : finrank K V = 1 v : V hv : v ≠ 0 ⊢ Set.range ↑(basisSingleton ι h v hv) = {v} [PROOFSTEP] rw [Set.range_unique, basisSingleton_apply] [GOAL] K : Type u V : Type v inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V n : ℕ h : Module.rank K V = ↑n ⊢ FiniteDimensional K V [PROOFSTEP] rw [FiniteDimensional, ← IsNoetherian.iff_fg, IsNoetherian.iff_rank_lt_aleph0, h] [GOAL] K : Type u V : Type v inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V n : ℕ h : Module.rank K V = ↑n ⊢ ↑n < ℵ₀ [PROOFSTEP] exact nat_lt_aleph0 n [GOAL] K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V h : Module.rank K V = 0 ⊢ finrank K V = 0 [PROOFSTEP] convert finrank_eq_rank K V [GOAL] case a K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V h : Module.rank K V = 0 ⊢ finrank K V = 0 ↔ ↑(finrank K V) = Module.rank K V [PROOFSTEP] rw [h] [GOAL] case a K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V h : Module.rank K V = 0 ⊢ finrank K V = 0 ↔ ↑(finrank K V) = 0 [PROOFSTEP] norm_cast [GOAL] K : Type u V : Type v inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V ⊢ Module.rank K { x // x ∈ ⊥ } = 0 [PROOFSTEP] simp [GOAL] K : Type u V : Type v inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V h : Module.rank K V = 0 ⊢ ⊥ = ⊤ [PROOFSTEP] haveI : FiniteDimensional _ _ := finiteDimensional_of_rank_eq_zero h [GOAL] K : Type u V : Type v inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V h : Module.rank K V = 0 this : FiniteDimensional K V ⊢ ⊥ = ⊤ [PROOFSTEP] apply eq_top_of_finrank_eq [GOAL] case h K : Type u V : Type v inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V h : Module.rank K V = 0 this : FiniteDimensional K V ⊢ finrank K { x // x ∈ ⊥ } = finrank K V [PROOFSTEP] rw [finrank_bot, finrank_eq_zero_of_rank_eq_zero h] [GOAL] K : Type u V : Type v inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V S : Submodule K V h : S = ⊥ ⊢ Module.rank K { x // x ∈ S } = 0 [PROOFSTEP] rw [h, rank_bot] [GOAL] K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V S : Submodule K V inst✝ : FiniteDimensional K { x // x ∈ S } ⊢ finrank K { x // x ∈ S } = 0 ↔ S = ⊥ [PROOFSTEP] rw [← rank_eq_zero, ← finrank_eq_rank, ← @Nat.cast_zero Cardinal, Cardinal.natCast_inj] [GOAL] K : Type u V : Type v inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V S₁ S₂ : Submodule K V h₁ : FiniteDimensional K { x // x ∈ S₁ } h₂ : FiniteDimensional K { x // x ∈ S₂ } ⊢ FiniteDimensional K { x // x ∈ S₁ ⊔ S₂ } [PROOFSTEP] unfold FiniteDimensional at * [GOAL] K : Type u V : Type v inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V S₁ S₂ : Submodule K V h₁ : Module.Finite K { x // x ∈ S₁ } h₂ : Module.Finite K { x // x ∈ S₂ } ⊢ Module.Finite K { x // x ∈ S₁ ⊔ S₂ } [PROOFSTEP] rw [finite_def] at * [GOAL] K : Type u V : Type v inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V S₁ S₂ : Submodule K V h₁ : FG ⊤ h₂ : FG ⊤ ⊢ FG ⊤ [PROOFSTEP] exact (fg_top _).2 (((fg_top S₁).1 h₁).sup ((fg_top S₂).1 h₂)) [GOAL] K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V ι : Type u_1 s : Finset ι S : ι → Submodule K V inst✝ : ∀ (i : ι), FiniteDimensional K { x // x ∈ S i } ⊢ FiniteDimensional K { x // x ∈ Finset.sup s S } [PROOFSTEP] refine' @Finset.sup_induction _ _ _ _ s S (fun i => FiniteDimensional K ↑i) (finiteDimensional_bot K V) _ fun i _ => by infer_instance [GOAL] K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V ι : Type u_1 s : Finset ι S : ι → Submodule K V inst✝ : ∀ (i : ι), FiniteDimensional K { x // x ∈ S i } i : ι x✝ : i ∈ s ⊢ (fun i => FiniteDimensional K { x // x ∈ i }) (S i) [PROOFSTEP] infer_instance [GOAL] K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V ι : Type u_1 s : Finset ι S : ι → Submodule K V inst✝ : ∀ (i : ι), FiniteDimensional K { x // x ∈ S i } ⊢ ∀ (a₁ : Submodule K V), (fun i => FiniteDimensional K { x // x ∈ i }) a₁ → ∀ (a₂ : Submodule K V), (fun i => FiniteDimensional K { x // x ∈ i }) a₂ → (fun i => FiniteDimensional K { x // x ∈ i }) (a₁ ⊔ a₂) [PROOFSTEP] intro S₁ hS₁ S₂ hS₂ [GOAL] K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V ι : Type u_1 s : Finset ι S : ι → Submodule K V inst✝ : ∀ (i : ι), FiniteDimensional K { x // x ∈ S i } S₁ : Submodule K V hS₁ : FiniteDimensional K { x // x ∈ S₁ } S₂ : Submodule K V hS₂ : FiniteDimensional K { x // x ∈ S₂ } ⊢ FiniteDimensional K { x // x ∈ S₁ ⊔ S₂ } [PROOFSTEP] exact Submodule.finiteDimensional_sup S₁ S₂ [GOAL] K : Type u V : Type v inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : Module K V ι : Sort u_1 inst✝¹ : _root_.Finite ι S : ι → Submodule K V inst✝ : ∀ (i : ι), FiniteDimensional K { x // x ∈ S i } ⊢ FiniteDimensional K { x // x ∈ ⨆ (i : ι), S i } [PROOFSTEP] cases nonempty_fintype (PLift ι) [GOAL] case intro K : Type u V : Type v inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : Module K V ι : Sort u_1 inst✝¹ : _root_.Finite ι S : ι → Submodule K V inst✝ : ∀ (i : ι), FiniteDimensional K { x // x ∈ S i } val✝ : Fintype (PLift ι) ⊢ FiniteDimensional K { x // x ∈ ⨆ (i : ι), S i } [PROOFSTEP] rw [← iSup_plift_down, ← Finset.sup_univ_eq_iSup] [GOAL] case intro K : Type u V : Type v inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : Module K V ι : Sort u_1 inst✝¹ : _root_.Finite ι S : ι → Submodule K V inst✝ : ∀ (i : ι), FiniteDimensional K { x // x ∈ S i } val✝ : Fintype (PLift ι) ⊢ FiniteDimensional K { x // x ∈ Finset.sup Finset.univ fun i => S i.down } [PROOFSTEP] exact Submodule.finiteDimensional_finset_sup _ _ [GOAL] K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V s : Submodule K V ⊢ finrank K (V ⧸ s) + finrank K { x // x ∈ s } = finrank K V [PROOFSTEP] have := rank_quotient_add_rank s [GOAL] K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V s : Submodule K V this : Module.rank K (V ⧸ s) + Module.rank K { x // x ∈ s } = Module.rank K V ⊢ finrank K (V ⧸ s) + finrank K { x // x ∈ s } = finrank K V [PROOFSTEP] rw [← finrank_eq_rank, ← finrank_eq_rank, ← finrank_eq_rank] at this [GOAL] K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V s : Submodule K V this : ↑(finrank K (V ⧸ s)) + ↑(finrank K { x // x ∈ s }) = ↑(finrank K V) ⊢ finrank K (V ⧸ s) + finrank K { x // x ∈ s } = finrank K V [PROOFSTEP] exact_mod_cast this [GOAL] K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V s : Submodule K V h : s < ⊤ ⊢ finrank K { x // x ∈ s } < finrank K V [PROOFSTEP] rw [← s.finrank_quotient_add_finrank, add_comm] [GOAL] K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V s : Submodule K V h : s < ⊤ ⊢ finrank K { x // x ∈ s } < finrank K { x // x ∈ s } + finrank K (V ⧸ s) [PROOFSTEP] exact Nat.lt_add_of_pos_right (finrank_pos_iff.mpr (Quotient.nontrivial_of_lt_top _ h)) [GOAL] K : Type u V : Type v inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : Module K V s t : Submodule K V inst✝¹ : FiniteDimensional K { x // x ∈ s } inst✝ : FiniteDimensional K { x // x ∈ t } ⊢ finrank K { x // x ∈ s ⊔ t } + finrank K { x // x ∈ s ⊓ t } = finrank K { x // x ∈ s } + finrank K { x // x ∈ t } [PROOFSTEP] have key : Module.rank K ↑(s ⊔ t) + Module.rank K ↑(s ⊓ t) = Module.rank K s + Module.rank K t := rank_sup_add_rank_inf_eq s t [GOAL] K : Type u V : Type v inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : Module K V s t : Submodule K V inst✝¹ : FiniteDimensional K { x // x ∈ s } inst✝ : FiniteDimensional K { x // x ∈ t } key : Module.rank K { x // x ∈ s ⊔ t } + Module.rank K { x // x ∈ s ⊓ t } = Module.rank K { x // x ∈ s } + Module.rank K { x // x ∈ t } ⊢ finrank K { x // x ∈ s ⊔ t } + finrank K { x // x ∈ s ⊓ t } = finrank K { x // x ∈ s } + finrank K { x // x ∈ t } [PROOFSTEP] repeat' rw [← finrank_eq_rank] at key [GOAL] K : Type u V : Type v inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : Module K V s t : Submodule K V inst✝¹ : FiniteDimensional K { x // x ∈ s } inst✝ : FiniteDimensional K { x // x ∈ t } key : Module.rank K { x // x ∈ s ⊔ t } + Module.rank K { x // x ∈ s ⊓ t } = Module.rank K { x // x ∈ s } + Module.rank K { x // x ∈ t } ⊢ finrank K { x // x ∈ s ⊔ t } + finrank K { x // x ∈ s ⊓ t } = finrank K { x // x ∈ s } + finrank K { x // x ∈ t } [PROOFSTEP] rw [← finrank_eq_rank] at key [GOAL] K : Type u V : Type v inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : Module K V s t : Submodule K V inst✝¹ : FiniteDimensional K { x // x ∈ s } inst✝ : FiniteDimensional K { x // x ∈ t } key : ↑(finrank K { x // x ∈ s ⊔ t }) + Module.rank K { x // x ∈ s ⊓ t } = Module.rank K { x // x ∈ s } + Module.rank K { x // x ∈ t } ⊢ finrank K { x // x ∈ s ⊔ t } + finrank K { x // x ∈ s ⊓ t } = finrank K { x // x ∈ s } + finrank K { x // x ∈ t } [PROOFSTEP] rw [← finrank_eq_rank] at key [GOAL] K : Type u V : Type v inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : Module K V s t : Submodule K V inst✝¹ : FiniteDimensional K { x // x ∈ s } inst✝ : FiniteDimensional K { x // x ∈ t } key : ↑(finrank K { x // x ∈ s ⊔ t }) + ↑(finrank K { x // x ∈ s ⊓ t }) = Module.rank K { x // x ∈ s } + Module.rank K { x // x ∈ t } ⊢ finrank K { x // x ∈ s ⊔ t } + finrank K { x // x ∈ s ⊓ t } = finrank K { x // x ∈ s } + finrank K { x // x ∈ t } [PROOFSTEP] rw [← finrank_eq_rank] at key [GOAL] K : Type u V : Type v inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : Module K V s t : Submodule K V inst✝¹ : FiniteDimensional K { x // x ∈ s } inst✝ : FiniteDimensional K { x // x ∈ t } key : ↑(finrank K { x // x ∈ s ⊔ t }) + ↑(finrank K { x // x ∈ s ⊓ t }) = ↑(finrank K { x // x ∈ s }) + Module.rank K { x // x ∈ t } ⊢ finrank K { x // x ∈ s ⊔ t } + finrank K { x // x ∈ s ⊓ t } = finrank K { x // x ∈ s } + finrank K { x // x ∈ t } [PROOFSTEP] rw [← finrank_eq_rank] at key [GOAL] K : Type u V : Type v inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : Module K V s t : Submodule K V inst✝¹ : FiniteDimensional K { x // x ∈ s } inst✝ : FiniteDimensional K { x // x ∈ t } key : ↑(finrank K { x // x ∈ s ⊔ t }) + ↑(finrank K { x // x ∈ s ⊓ t }) = ↑(finrank K { x // x ∈ s }) + ↑(finrank K { x // x ∈ t }) ⊢ finrank K { x // x ∈ s ⊔ t } + finrank K { x // x ∈ s ⊓ t } = finrank K { x // x ∈ s } + finrank K { x // x ∈ t } [PROOFSTEP] rw [← finrank_eq_rank] at key [GOAL] K : Type u V : Type v inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : Module K V s t : Submodule K V inst✝¹ : FiniteDimensional K { x // x ∈ s } inst✝ : FiniteDimensional K { x // x ∈ t } key : ↑(finrank K { x // x ∈ s ⊔ t }) + ↑(finrank K { x // x ∈ s ⊓ t }) = ↑(finrank K { x // x ∈ s }) + ↑(finrank K { x // x ∈ t }) ⊢ finrank K { x // x ∈ s ⊔ t } + finrank K { x // x ∈ s ⊓ t } = finrank K { x // x ∈ s } + finrank K { x // x ∈ t } [PROOFSTEP] norm_cast at key [GOAL] K : Type u V : Type v inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : Module K V s t : Submodule K V inst✝¹ : FiniteDimensional K { x // x ∈ s } inst✝ : FiniteDimensional K { x // x ∈ t } ⊢ finrank K { x // x ∈ s ⊔ t } ≤ finrank K { x // x ∈ s } + finrank K { x // x ∈ t } [PROOFSTEP] rw [← finrank_sup_add_finrank_inf_eq] [GOAL] K : Type u V : Type v inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : Module K V s t : Submodule K V inst✝¹ : FiniteDimensional K { x // x ∈ s } inst✝ : FiniteDimensional K { x // x ∈ t } ⊢ finrank K { x // x ∈ s ⊔ t } ≤ finrank K { x // x ∈ s ⊔ t } + finrank K { x // x ∈ s ⊓ t } [PROOFSTEP] exact self_le_add_right _ _ [GOAL] K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V s t : Submodule K V hdim : finrank K { x // x ∈ s } + finrank K { x // x ∈ t } = finrank K V hdisjoint : Disjoint s t ⊢ s ⊔ t = ⊤ [PROOFSTEP] have h_finrank_inf : finrank K ↑(s ⊓ t) = 0 := by rw [disjoint_iff_inf_le, le_bot_iff] at hdisjoint rw [hdisjoint, finrank_bot] [GOAL] K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V s t : Submodule K V hdim : finrank K { x // x ∈ s } + finrank K { x // x ∈ t } = finrank K V hdisjoint : Disjoint s t ⊢ finrank K { x // x ∈ s ⊓ t } = 0 [PROOFSTEP] rw [disjoint_iff_inf_le, le_bot_iff] at hdisjoint [GOAL] K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V s t : Submodule K V hdim : finrank K { x // x ∈ s } + finrank K { x // x ∈ t } = finrank K V hdisjoint : s ⊓ t = ⊥ ⊢ finrank K { x // x ∈ s ⊓ t } = 0 [PROOFSTEP] rw [hdisjoint, finrank_bot] [GOAL] K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V s t : Submodule K V hdim : finrank K { x // x ∈ s } + finrank K { x // x ∈ t } = finrank K V hdisjoint : Disjoint s t h_finrank_inf : finrank K { x // x ∈ s ⊓ t } = 0 ⊢ s ⊔ t = ⊤ [PROOFSTEP] apply eq_top_of_finrank_eq [GOAL] case h K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V s t : Submodule K V hdim : finrank K { x // x ∈ s } + finrank K { x // x ∈ t } = finrank K V hdisjoint : Disjoint s t h_finrank_inf : finrank K { x // x ∈ s ⊓ t } = 0 ⊢ finrank K { x // x ∈ s ⊔ t } = finrank K V [PROOFSTEP] rw [← hdim] [GOAL] case h K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V s t : Submodule K V hdim : finrank K { x // x ∈ s } + finrank K { x // x ∈ t } = finrank K V hdisjoint : Disjoint s t h_finrank_inf : finrank K { x // x ∈ s ⊓ t } = 0 ⊢ finrank K { x // x ∈ s ⊔ t } = finrank K { x // x ∈ s } + finrank K { x // x ∈ t } [PROOFSTEP] convert s.finrank_sup_add_finrank_inf_eq t [GOAL] case h.e'_2 K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V s t : Submodule K V hdim : finrank K { x // x ∈ s } + finrank K { x // x ∈ t } = finrank K V hdisjoint : Disjoint s t h_finrank_inf : finrank K { x // x ∈ s ⊓ t } = 0 ⊢ finrank K { x // x ∈ s ⊔ t } = finrank K { x // x ∈ s ⊔ t } + finrank K { x // x ∈ s ⊓ t } [PROOFSTEP] rw [h_finrank_inf] [GOAL] case h.e'_2 K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V s t : Submodule K V hdim : finrank K { x // x ∈ s } + finrank K { x // x ∈ t } = finrank K V hdisjoint : Disjoint s t h_finrank_inf : finrank K { x // x ∈ s ⊓ t } = 0 ⊢ finrank K { x // x ∈ s ⊔ t } = finrank K { x // x ∈ s ⊔ t } + 0 [PROOFSTEP] rfl [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ S₁ S₂ : Submodule K V inst✝ : FiniteDimensional K { x // x ∈ S₂ } hle : S₁ ≤ S₂ hd : finrank K { x // x ∈ S₂ } ≤ finrank K { x // x ∈ S₁ } ⊢ S₁ = S₂ [PROOFSTEP] rw [← LinearEquiv.finrank_eq (Submodule.comapSubtypeEquivOfLe hle)] at hd [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ S₁ S₂ : Submodule K V inst✝ : FiniteDimensional K { x // x ∈ S₂ } hle : S₁ ≤ S₂ hd : finrank K { x // x ∈ S₂ } ≤ finrank K { x // x ∈ comap (Submodule.subtype S₂) S₁ } ⊢ S₁ = S₂ [PROOFSTEP] exact le_antisymm hle (Submodule.comap_subtype_eq_top.1 (eq_top_of_finrank_eq (le_antisymm (comap (Submodule.subtype S₂) S₁).finrank_le hd))) [GOAL] K : Type u V : Type v inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V V₂ : Type v' inst✝³ : AddCommGroup V₂ inst✝² : Module K V₂ inst✝¹ : FiniteDimensional K V inst✝ : FiniteDimensional K V₂ p : Subspace K V q : Subspace K V₂ f₁ : { x // x ∈ p } ≃ₗ[K] { x // x ∈ q } f₂ : V ≃ₗ[K] V₂ ⊢ finrank K (V ⧸ p) = finrank K (V₂ ⧸ q) [PROOFSTEP] rw [← @add_right_cancel_iff _ _ _ (finrank K p), Submodule.finrank_quotient_add_finrank, LinearEquiv.finrank_eq f₁, Submodule.finrank_quotient_add_finrank, LinearEquiv.finrank_eq f₂] [GOAL] K : Type u V : Type v inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V V₂ : Type v' inst✝³ : AddCommGroup V₂ inst✝² : Module K V₂ inst✝¹ : FiniteDimensional K V inst✝ : FiniteDimensional K V₂ p q : Subspace K V f : (V ⧸ p) ≃ₗ[K] { x // x ∈ q } ⊢ finrank K (V ⧸ q) + ?m.798563 f = finrank K { x // x ∈ p } + ?m.798563 f [PROOFSTEP] rw [Submodule.finrank_quotient_add_finrank, ← LinearEquiv.finrank_eq f, add_comm, Submodule.finrank_quotient_add_finrank] [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V f : V →ₗ[K] V hinj : Injective ↑f ⊢ Surjective ↑f [PROOFSTEP] have h := rank_range_of_injective _ hinj [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V f : V →ₗ[K] V hinj : Injective ↑f h : Module.rank K { x // x ∈ range f } = Module.rank K V ⊢ Surjective ↑f [PROOFSTEP] rw [← finrank_eq_rank, ← finrank_eq_rank, natCast_inj] at h [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V f : V →ₗ[K] V hinj : Injective ↑f h : finrank K { x // x ∈ range f } = finrank K V ⊢ Surjective ↑f [PROOFSTEP] exact range_eq_top.1 (eq_top_of_finrank_eq h) [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V f : V →ₗ[K] V ⊢ ker f = ⊥ ↔ range f = ⊤ [PROOFSTEP] rw [range_eq_top, ker_eq_bot, injective_iff_surjective] [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V f g : V →ₗ[K] V hfg : f * g = 1 ⊢ g * f = 1 [PROOFSTEP] have ginj : Injective g := HasLeftInverse.injective ⟨f, fun x => show (f * g) x = (1 : V →ₗ[K] V) x by rw [hfg]⟩ [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V f g : V →ₗ[K] V hfg : f * g = 1 x : V ⊢ ↑(f * g) x = ↑1 x [PROOFSTEP] rw [hfg] [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V f g : V →ₗ[K] V hfg : f * g = 1 ginj : Injective ↑g ⊢ g * f = 1 [PROOFSTEP] let ⟨i, hi⟩ := g.exists_rightInverse_of_surjective (range_eq_top.2 (injective_iff_surjective.1 ginj)) [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V f g : V →ₗ[K] V hfg : f * g = 1 ginj : Injective ↑g i : V →ₗ[K] V hi : comp g i = id ⊢ g * f = 1 [PROOFSTEP] have : f * (g * i) = f * 1 := congr_arg _ hi [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V f g : V →ₗ[K] V hfg : f * g = 1 ginj : Injective ↑g i : V →ₗ[K] V hi : comp g i = id this : f * (g * i) = f * 1 ⊢ g * f = 1 [PROOFSTEP] rw [← mul_assoc, hfg, one_mul, mul_one] at this [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V f g : V →ₗ[K] V hfg : f * g = 1 ginj : Injective ↑g i : V →ₗ[K] V hi : comp g i = id this : i = f ⊢ g * f = 1 [PROOFSTEP] rwa [← this] [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V f : V →ₗ[K] V₂ ⊢ finrank K { x // x ∈ range f } + finrank K { x // x ∈ ker f } = finrank K V [PROOFSTEP] rw [← f.quotKerEquivRange.finrank_eq] [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V f : V →ₗ[K] V₂ ⊢ finrank K (V ⧸ ker f) + finrank K { x // x ∈ ker f } = finrank K V [PROOFSTEP] exact Submodule.finrank_quotient_add_finrank _ [GOAL] K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : V →ₗ[K] V ⊢ IsUnit f ↔ ker f = ⊥ [PROOFSTEP] constructor [GOAL] case mp K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : V →ₗ[K] V ⊢ IsUnit f → ker f = ⊥ [PROOFSTEP] rintro ⟨u, rfl⟩ [GOAL] case mp.intro K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V u : (V →ₗ[K] V)ˣ ⊢ ker ↑u = ⊥ [PROOFSTEP] exact LinearMap.ker_eq_bot_of_inverse u.inv_mul [GOAL] case mpr K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : V →ₗ[K] V ⊢ ker f = ⊥ → IsUnit f [PROOFSTEP] intro h_inj [GOAL] case mpr K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : V →ₗ[K] V h_inj : ker f = ⊥ ⊢ IsUnit f [PROOFSTEP] rw [ker_eq_bot] at h_inj [GOAL] case mpr K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : V →ₗ[K] V h_inj : Injective ↑f ⊢ IsUnit f [PROOFSTEP] exact ⟨⟨f, (LinearEquiv.ofInjectiveEndo f h_inj).symm.toLinearMap, LinearEquiv.ofInjectiveEndo_right_inv f h_inj, LinearEquiv.ofInjectiveEndo_left_inv f h_inj⟩, rfl⟩ [GOAL] K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : V →ₗ[K] V ⊢ IsUnit f ↔ range f = ⊤ [PROOFSTEP] rw [isUnit_iff_ker_eq_bot, ker_eq_bot_iff_range_eq_top] [GOAL] K : Type u V : Type v inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V V₂ : Type v' inst✝³ : AddCommGroup V₂ inst✝² : Module K V₂ inst✝¹ : FiniteDimensional K V inst✝ : FiniteDimensional K V₂ H : finrank K V = finrank K V₂ f : V →ₗ[K] V₂ ⊢ Injective ↑f ↔ Surjective ↑f [PROOFSTEP] have := finrank_range_add_finrank_ker f [GOAL] K : Type u V : Type v inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V V₂ : Type v' inst✝³ : AddCommGroup V₂ inst✝² : Module K V₂ inst✝¹ : FiniteDimensional K V inst✝ : FiniteDimensional K V₂ H : finrank K V = finrank K V₂ f : V →ₗ[K] V₂ this : finrank K { x // x ∈ range f } + finrank K { x // x ∈ ker f } = finrank K V ⊢ Injective ↑f ↔ Surjective ↑f [PROOFSTEP] rw [← ker_eq_bot, ← range_eq_top] [GOAL] K : Type u V : Type v inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V V₂ : Type v' inst✝³ : AddCommGroup V₂ inst✝² : Module K V₂ inst✝¹ : FiniteDimensional K V inst✝ : FiniteDimensional K V₂ H : finrank K V = finrank K V₂ f : V →ₗ[K] V₂ this : finrank K { x // x ∈ range f } + finrank K { x // x ∈ ker f } = finrank K V ⊢ ker f = ⊥ ↔ range f = ⊤ [PROOFSTEP] refine' ⟨fun h => _, fun h => _⟩ [GOAL] case refine'_1 K : Type u V : Type v inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V V₂ : Type v' inst✝³ : AddCommGroup V₂ inst✝² : Module K V₂ inst✝¹ : FiniteDimensional K V inst✝ : FiniteDimensional K V₂ H : finrank K V = finrank K V₂ f : V →ₗ[K] V₂ this : finrank K { x // x ∈ range f } + finrank K { x // x ∈ ker f } = finrank K V h : ker f = ⊥ ⊢ range f = ⊤ [PROOFSTEP] rw [h, finrank_bot, add_zero, H] at this [GOAL] case refine'_1 K : Type u V : Type v inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V V₂ : Type v' inst✝³ : AddCommGroup V₂ inst✝² : Module K V₂ inst✝¹ : FiniteDimensional K V inst✝ : FiniteDimensional K V₂ H : finrank K V = finrank K V₂ f : V →ₗ[K] V₂ this : finrank K { x // x ∈ range f } = finrank K V₂ h : ker f = ⊥ ⊢ range f = ⊤ [PROOFSTEP] exact eq_top_of_finrank_eq this [GOAL] case refine'_2 K : Type u V : Type v inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V V₂ : Type v' inst✝³ : AddCommGroup V₂ inst✝² : Module K V₂ inst✝¹ : FiniteDimensional K V inst✝ : FiniteDimensional K V₂ H : finrank K V = finrank K V₂ f : V →ₗ[K] V₂ this : finrank K { x // x ∈ range f } + finrank K { x // x ∈ ker f } = finrank K V h : range f = ⊤ ⊢ ker f = ⊥ [PROOFSTEP] rw [h, finrank_top, H] at this [GOAL] case refine'_2 K : Type u V : Type v inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V V₂ : Type v' inst✝³ : AddCommGroup V₂ inst✝² : Module K V₂ inst✝¹ : FiniteDimensional K V inst✝ : FiniteDimensional K V₂ H : finrank K V = finrank K V₂ f : V →ₗ[K] V₂ this : finrank K V₂ + finrank K { x // x ∈ ker f } = finrank K V₂ h : range f = ⊤ ⊢ ker f = ⊥ [PROOFSTEP] exact finrank_eq_zero.1 (add_right_injective _ this) [GOAL] K : Type u V : Type v inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V V₂ : Type v' inst✝³ : AddCommGroup V₂ inst✝² : Module K V₂ inst✝¹ : FiniteDimensional K V inst✝ : FiniteDimensional K V₂ H : finrank K V = finrank K V₂ f : V →ₗ[K] V₂ ⊢ ker f = ⊥ ↔ range f = ⊤ [PROOFSTEP] rw [range_eq_top, ker_eq_bot, injective_iff_surjective_of_finrank_eq_finrank H] [GOAL] K✝ : Type u V : Type v F : Type u_1 K : Type u_2 inst✝⁴ : Field F inst✝³ : Ring K inst✝² : IsDomain K inst✝¹ : Algebra F K inst✝ : FiniteDimensional F K x : K H : x ≠ 0 ⊢ ∃ y, x * y = 1 [PROOFSTEP] have : Function.Surjective (LinearMap.mulLeft F x) := LinearMap.injective_iff_surjective.1 fun y z => ((mul_right_inj' H).1 : x * y = x * z → y = z) [GOAL] K✝ : Type u V : Type v F : Type u_1 K : Type u_2 inst✝⁴ : Field F inst✝³ : Ring K inst✝² : IsDomain K inst✝¹ : Algebra F K inst✝ : FiniteDimensional F K x : K H : x ≠ 0 this : Surjective ↑(LinearMap.mulLeft F x) ⊢ ∃ y, x * y = 1 [PROOFSTEP] exact this 1 [GOAL] K✝ : Type u V : Type v F : Type u_1 K : Type u_2 inst✝³ : Field F h : Ring K inst✝² : IsDomain K inst✝¹ : Algebra F K inst✝ : FiniteDimensional F K src✝ : IsDomain K := inst✝² x : K hx : x ≠ 0 ⊢ (x * if H : x = 0 then 0 else Classical.choose (_ : ∃ y, x * y = 1)) = 1 [PROOFSTEP] rw [dif_neg hx] [GOAL] K✝ : Type u V : Type v F : Type u_1 K : Type u_2 inst✝³ : Field F h : Ring K inst✝² : IsDomain K inst✝¹ : Algebra F K inst✝ : FiniteDimensional F K src✝ : IsDomain K := inst✝² x : K hx : x ≠ 0 ⊢ x * Classical.choose (_ : ∃ y, x * y = 1) = 1 [PROOFSTEP] exact (Classical.choose_spec (FiniteDimensional.exists_mul_eq_one F hx) :) [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V U W : Submodule K V h : IsCompl U W ⊢ finrank K { x // x ∈ U } + finrank K { x // x ∈ W } = finrank K V [PROOFSTEP] rw [← finrank_sup_add_finrank_inf_eq, h.codisjoint.eq_top, h.disjoint.eq_bot, finrank_bot, add_zero] [GOAL] K : Type u V : Type v inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V V₂ : Type v' inst✝² : AddCommGroup V₂ inst✝¹ : Module K V₂ inst✝ : FiniteDimensional K V U W : Submodule K V h : IsCompl U W ⊢ finrank K { x // x ∈ ⊤ } = finrank K V [PROOFSTEP] exact finrank_top _ _ [GOAL] K : Type u V : Type v inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V v : V hv : v ≠ 0 ⊢ finrank K { x // x ∈ span K {v} } = 1 [PROOFSTEP] apply le_antisymm [GOAL] case a K : Type u V : Type v inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V v : V hv : v ≠ 0 ⊢ finrank K { x // x ∈ span K {v} } ≤ 1 [PROOFSTEP] exact finrank_span_le_card ({ v } : Set V) [GOAL] case a K : Type u V : Type v inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V v : V hv : v ≠ 0 ⊢ 1 ≤ finrank K { x // x ∈ span K {v} } [PROOFSTEP] rw [Nat.succ_le_iff, finrank_pos_iff] [GOAL] case a K : Type u V : Type v inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V v : V hv : v ≠ 0 ⊢ Nontrivial { x // x ∈ span K {v} } [PROOFSTEP] use⟨v, mem_span_singleton_self v⟩, 0 [GOAL] case h K : Type u V : Type v inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V v : V hv : v ≠ 0 ⊢ { val := v, property := (_ : v ∈ span K {v}) } ≠ 0 [PROOFSTEP] simp [hv] [GOAL] K : Type u V : Type v inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V h : finrank K V = 1 x : V hx : x ≠ 0 y : V ⊢ ∃ c, c • x = y [PROOFSTEP] have : Submodule.span K { x } = ⊤ := by have : FiniteDimensional K V := finiteDimensional_of_finrank (zero_lt_one.trans_le h.symm.le) apply eq_top_of_finrank_eq rw [h] exact finrank_span_singleton hx [GOAL] K : Type u V : Type v inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V h : finrank K V = 1 x : V hx : x ≠ 0 y : V ⊢ span K {x} = ⊤ [PROOFSTEP] have : FiniteDimensional K V := finiteDimensional_of_finrank (zero_lt_one.trans_le h.symm.le) [GOAL] K : Type u V : Type v inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V h : finrank K V = 1 x : V hx : x ≠ 0 y : V this : FiniteDimensional K V ⊢ span K {x} = ⊤ [PROOFSTEP] apply eq_top_of_finrank_eq [GOAL] case h K : Type u V : Type v inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V h : finrank K V = 1 x : V hx : x ≠ 0 y : V this : FiniteDimensional K V ⊢ finrank K { x_1 // x_1 ∈ span K {x} } = finrank K V [PROOFSTEP] rw [h] [GOAL] case h K : Type u V : Type v inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V h : finrank K V = 1 x : V hx : x ≠ 0 y : V this : FiniteDimensional K V ⊢ finrank K { x_1 // x_1 ∈ span K {x} } = 1 [PROOFSTEP] exact finrank_span_singleton hx [GOAL] K : Type u V : Type v inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V h : finrank K V = 1 x : V hx : x ≠ 0 y : V this : span K {x} = ⊤ ⊢ ∃ c, c • x = y [PROOFSTEP] have : y ∈ Submodule.span K { x } := by rw [this]; trivial [GOAL] K : Type u V : Type v inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V h : finrank K V = 1 x : V hx : x ≠ 0 y : V this : span K {x} = ⊤ ⊢ y ∈ span K {x} [PROOFSTEP] rw [this] [GOAL] K : Type u V : Type v inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V h : finrank K V = 1 x : V hx : x ≠ 0 y : V this : span K {x} = ⊤ ⊢ y ∈ ⊤ [PROOFSTEP] trivial [GOAL] K : Type u V : Type v inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V h : finrank K V = 1 x : V hx : x ≠ 0 y : V this✝ : span K {x} = ⊤ this : y ∈ span K {x} ⊢ ∃ c, c • x = y [PROOFSTEP] exact mem_span_singleton.1 this [GOAL] K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V ι : Type u_1 hι : Nonempty ι inst✝ : Fintype ι b : ι → V lin_ind : LinearIndependent K b card_eq : Fintype.card ι = finrank K V ⊢ span K (Set.range b) = ⊤ [PROOFSTEP] by_cases fin : FiniteDimensional K V [GOAL] case pos K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V ι : Type u_1 hι : Nonempty ι inst✝ : Fintype ι b : ι → V lin_ind : LinearIndependent K b card_eq : Fintype.card ι = finrank K V fin : FiniteDimensional K V ⊢ span K (Set.range b) = ⊤ [PROOFSTEP] replace fin : FiniteDimensional _ _ := fin [GOAL] case pos K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V ι : Type u_1 hι : Nonempty ι inst✝ : Fintype ι b : ι → V lin_ind : LinearIndependent K b card_eq : Fintype.card ι = finrank K V fin : FiniteDimensional K V ⊢ span K (Set.range b) = ⊤ [PROOFSTEP] by_contra ne_top [GOAL] case pos K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V ι : Type u_1 hι : Nonempty ι inst✝ : Fintype ι b : ι → V lin_ind : LinearIndependent K b card_eq : Fintype.card ι = finrank K V fin : FiniteDimensional K V ne_top : ¬span K (Set.range b) = ⊤ ⊢ False [PROOFSTEP] have lt_top : span K (Set.range b) < ⊤ := lt_of_le_of_ne le_top ne_top [GOAL] case pos K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V ι : Type u_1 hι : Nonempty ι inst✝ : Fintype ι b : ι → V lin_ind : LinearIndependent K b card_eq : Fintype.card ι = finrank K V fin : FiniteDimensional K V ne_top : ¬span K (Set.range b) = ⊤ lt_top : span K (Set.range b) < ⊤ ⊢ False [PROOFSTEP] exact ne_of_lt (Submodule.finrank_lt lt_top) (_root_.trans (finrank_span_eq_card lin_ind) card_eq) [GOAL] case neg K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V ι : Type u_1 hι : Nonempty ι inst✝ : Fintype ι b : ι → V lin_ind : LinearIndependent K b card_eq : Fintype.card ι = finrank K V fin : ¬FiniteDimensional K V ⊢ span K (Set.range b) = ⊤ [PROOFSTEP] exfalso [GOAL] case neg.h K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V ι : Type u_1 hι : Nonempty ι inst✝ : Fintype ι b : ι → V lin_ind : LinearIndependent K b card_eq : Fintype.card ι = finrank K V fin : ¬FiniteDimensional K V ⊢ False [PROOFSTEP] apply ne_of_lt (Fintype.card_pos_iff.mpr hι) [GOAL] case neg.h K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V ι : Type u_1 hι : Nonempty ι inst✝ : Fintype ι b : ι → V lin_ind : LinearIndependent K b card_eq : Fintype.card ι = finrank K V fin : ¬FiniteDimensional K V ⊢ 0 = Fintype.card ι [PROOFSTEP] symm [GOAL] case neg.h K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V ι : Type u_1 hι : Nonempty ι inst✝ : Fintype ι b : ι → V lin_ind : LinearIndependent K b card_eq : Fintype.card ι = finrank K V fin : ¬FiniteDimensional K V ⊢ Fintype.card ι = 0 [PROOFSTEP] replace fin := (not_iff_not.2 IsNoetherian.iff_fg).2 fin [GOAL] case neg.h K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V ι : Type u_1 hι : Nonempty ι inst✝ : Fintype ι b : ι → V lin_ind : LinearIndependent K b card_eq : Fintype.card ι = finrank K V fin : ¬IsNoetherian K V ⊢ Fintype.card ι = 0 [PROOFSTEP] calc Fintype.card ι = finrank K V := card_eq _ = 0 := dif_neg (mt IsNoetherian.iff_rank_lt_aleph0.mpr fin) [GOAL] K : Type u V : Type v inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V s : Finset V hs : Finset.Nonempty s lin_ind : LinearIndependent K Subtype.val card_eq : Finset.card s = finrank K V ⊢ ↑(finsetBasisOfLinearIndependentOfCardEqFinrank hs lin_ind card_eq) = Subtype.val [PROOFSTEP] rw [finsetBasisOfLinearIndependentOfCardEqFinrank] [GOAL] K : Type u V : Type v inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V s : Finset V hs : Finset.Nonempty s lin_ind : LinearIndependent K Subtype.val card_eq : Finset.card s = finrank K V ⊢ ↑(basisOfLinearIndependentOfCardEqFinrank lin_ind (_ : Fintype.card { x // x ∈ s } = finrank K V)) = Subtype.val [PROOFSTEP] exact Basis.coe_mk _ _ [GOAL] K : Type u V : Type v inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : Module K V s : Set V inst✝¹ : Nonempty ↑s inst✝ : Fintype ↑s lin_ind : LinearIndependent K Subtype.val card_eq : Finset.card (Set.toFinset s) = finrank K V ⊢ ↑(setBasisOfLinearIndependentOfCardEqFinrank lin_ind card_eq) = Subtype.val [PROOFSTEP] rw [setBasisOfLinearIndependentOfCardEqFinrank] [GOAL] K : Type u V : Type v inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : Module K V s : Set V inst✝¹ : Nonempty ↑s inst✝ : Fintype ↑s lin_ind : LinearIndependent K Subtype.val card_eq : Finset.card (Set.toFinset s) = finrank K V ⊢ ↑(basisOfLinearIndependentOfCardEqFinrank lin_ind (_ : Fintype.card ↑s = finrank K V)) = Subtype.val [PROOFSTEP] exact Basis.coe_mk _ _ [GOAL] K : Type u V : Type v inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V v : V nz : v ≠ 0 h : finrank K V = 1 ⊢ span K {v} = ⊤ [PROOFSTEP] simpa using (basisSingleton PUnit.{u + 1} h v nz).span_eq [GOAL] K : Type u V : Type v inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V v : V nz : v ≠ 0 s : span K {v} = ⊤ ⊢ ⊤ ≤ span K (Set.range fun x => ↑x) [PROOFSTEP] convert s.ge [GOAL] case h.e'_4.h.e'_6 K : Type u V : Type v inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V v : V nz : v ≠ 0 s : span K {v} = ⊤ ⊢ (Set.range fun x => ↑x) = {v} [PROOFSTEP] simp [GOAL] K : Type u V : Type v inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V v : V nz : v ≠ 0 ⊢ finrank K V = 1 ↔ ∀ (w : V), ∃ c, c • v = w [PROOFSTEP] rw [finrank_eq_one_iff_of_nonzero v nz] [GOAL] K : Type u V : Type v inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V v : V nz : v ≠ 0 ⊢ span K {v} = ⊤ ↔ ∀ (w : V), ∃ c, c • v = w [PROOFSTEP] apply span_singleton_eq_top_iff [GOAL] K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V ι : Type u_1 inst✝ : Unique ι ⊢ finrank K V = 1 ↔ Nonempty (Basis ι K V) [PROOFSTEP] constructor [GOAL] case mp K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V ι : Type u_1 inst✝ : Unique ι ⊢ finrank K V = 1 → Nonempty (Basis ι K V) [PROOFSTEP] intro h [GOAL] case mp K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V ι : Type u_1 inst✝ : Unique ι h : finrank K V = 1 ⊢ Nonempty (Basis ι K V) [PROOFSTEP] haveI := finiteDimensional_of_finrank (_root_.zero_lt_one.trans_le h.symm.le) [GOAL] case mp K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V ι : Type u_1 inst✝ : Unique ι h : finrank K V = 1 this : FiniteDimensional K V ⊢ Nonempty (Basis ι K V) [PROOFSTEP] exact ⟨basisUnique ι h⟩ [GOAL] case mpr K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V ι : Type u_1 inst✝ : Unique ι ⊢ Nonempty (Basis ι K V) → finrank K V = 1 [PROOFSTEP] rintro ⟨b⟩ [GOAL] case mpr.intro K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V ι : Type u_1 inst✝ : Unique ι b : Basis ι K V ⊢ finrank K V = 1 [PROOFSTEP] simpa using finrank_eq_card_basis b [GOAL] K : Type u V : Type v inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V ⊢ finrank K V = 1 ↔ ∃ v _n, ∀ (w : V), ∃ c, c • v = w [PROOFSTEP] rw [finrank_eq_one_iff PUnit.{u + 1}, Basis.basis_singleton_iff PUnit] [GOAL] K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V ⊢ finrank K V ≤ 1 ↔ ∃ v, ∀ (w : V), ∃ c, c • v = w [PROOFSTEP] constructor [GOAL] case mp K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V ⊢ finrank K V ≤ 1 → ∃ v, ∀ (w : V), ∃ c, c • v = w [PROOFSTEP] intro h [GOAL] case mp K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V h : finrank K V ≤ 1 ⊢ ∃ v, ∀ (w : V), ∃ c, c • v = w [PROOFSTEP] by_cases h' : finrank K V = 0 [GOAL] case pos K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V h : finrank K V ≤ 1 h' : finrank K V = 0 ⊢ ∃ v, ∀ (w : V), ∃ c, c • v = w [PROOFSTEP] use 0 [GOAL] case h K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V h : finrank K V ≤ 1 h' : finrank K V = 0 ⊢ ∀ (w : V), ∃ c, c • 0 = w [PROOFSTEP] intro w [GOAL] case h K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V h : finrank K V ≤ 1 h' : finrank K V = 0 w : V ⊢ ∃ c, c • 0 = w [PROOFSTEP] use 0 [GOAL] case h K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V h : finrank K V ≤ 1 h' : finrank K V = 0 w : V ⊢ 0 • 0 = w [PROOFSTEP] haveI := finrank_zero_iff.mp h' [GOAL] case h K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V h : finrank K V ≤ 1 h' : finrank K V = 0 w : V this : Subsingleton V ⊢ 0 • 0 = w [PROOFSTEP] apply Subsingleton.elim [GOAL] case neg K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V h : finrank K V ≤ 1 h' : ¬finrank K V = 0 ⊢ ∃ v, ∀ (w : V), ∃ c, c • v = w [PROOFSTEP] replace h' := zero_lt_iff.mpr h' [GOAL] case neg K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V h : finrank K V ≤ 1 h' : 0 < finrank K V ⊢ ∃ v, ∀ (w : V), ∃ c, c • v = w [PROOFSTEP] have : finrank K V = 1 := by linarith [GOAL] K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V h : finrank K V ≤ 1 h' : 0 < finrank K V ⊢ finrank K V = 1 [PROOFSTEP] linarith [GOAL] case neg K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V h : finrank K V ≤ 1 h' : 0 < finrank K V this : finrank K V = 1 ⊢ ∃ v, ∀ (w : V), ∃ c, c • v = w [PROOFSTEP] obtain ⟨v, -, p⟩ := finrank_eq_one_iff'.mp this [GOAL] case neg.intro.intro K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V h : finrank K V ≤ 1 h' : 0 < finrank K V this : finrank K V = 1 v : V p : ∀ (w : V), ∃ c, c • v = w ⊢ ∃ v, ∀ (w : V), ∃ c, c • v = w [PROOFSTEP] use v, p [GOAL] case mpr K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V ⊢ (∃ v, ∀ (w : V), ∃ c, c • v = w) → finrank K V ≤ 1 [PROOFSTEP] rintro ⟨v, p⟩ [GOAL] case mpr.intro K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V v : V p : ∀ (w : V), ∃ c, c • v = w ⊢ finrank K V ≤ 1 [PROOFSTEP] exact finrank_le_one v p [GOAL] K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V W : Submodule K V inst✝ : FiniteDimensional K { x // x ∈ W } ⊢ finrank K { x // x ∈ W } ≤ 1 ↔ IsPrincipal W [PROOFSTEP] rw [← W.rank_le_one_iff_isPrincipal, ← finrank_eq_rank, ← Cardinal.natCast_le, Nat.cast_one] [GOAL] K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V ⊢ finrank K V ≤ 1 ↔ IsPrincipal ⊤ [PROOFSTEP] rw [← Module.rank_le_one_iff_top_isPrincipal, ← finrank_eq_rank, ← Cardinal.natCast_le, Nat.cast_one] [GOAL] K : Type u V : Type v inst✝⁸ : DivisionRing K inst✝⁷ : AddCommGroup V inst✝⁶ : Module K V W : Type u_1 A : Type u_2 inst✝⁵ : Semiring A inst✝⁴ : Module A V inst✝³ : AddCommGroup W inst✝² : Module K W inst✝¹ : Module A W inst✝ : LinearMap.CompatibleSMul V W K A h : finrank K W = 1 f : V →ₗ[A] W w : f ≠ 0 ⊢ Surjective ↑f [PROOFSTEP] change Surjective (f.restrictScalars K) [GOAL] K : Type u V : Type v inst✝⁸ : DivisionRing K inst✝⁷ : AddCommGroup V inst✝⁶ : Module K V W : Type u_1 A : Type u_2 inst✝⁵ : Semiring A inst✝⁴ : Module A V inst✝³ : AddCommGroup W inst✝² : Module K W inst✝¹ : Module A W inst✝ : LinearMap.CompatibleSMul V W K A h : finrank K W = 1 f : V →ₗ[A] W w : f ≠ 0 ⊢ Surjective ↑(↑K f) [PROOFSTEP] obtain ⟨v, n⟩ := FunLike.ne_iff.mp w [GOAL] case intro K : Type u V : Type v inst✝⁸ : DivisionRing K inst✝⁷ : AddCommGroup V inst✝⁶ : Module K V W : Type u_1 A : Type u_2 inst✝⁵ : Semiring A inst✝⁴ : Module A V inst✝³ : AddCommGroup W inst✝² : Module K W inst✝¹ : Module A W inst✝ : LinearMap.CompatibleSMul V W K A h : finrank K W = 1 f : V →ₗ[A] W w : f ≠ 0 v : V n : ↑f v ≠ ↑0 v ⊢ Surjective ↑(↑K f) [PROOFSTEP] intro z [GOAL] case intro K : Type u V : Type v inst✝⁸ : DivisionRing K inst✝⁷ : AddCommGroup V inst✝⁶ : Module K V W : Type u_1 A : Type u_2 inst✝⁵ : Semiring A inst✝⁴ : Module A V inst✝³ : AddCommGroup W inst✝² : Module K W inst✝¹ : Module A W inst✝ : LinearMap.CompatibleSMul V W K A h : finrank K W = 1 f : V →ₗ[A] W w : f ≠ 0 v : V n : ↑f v ≠ ↑0 v z : W ⊢ ∃ a, ↑(↑K f) a = z [PROOFSTEP] obtain ⟨c, rfl⟩ := (finrank_eq_one_iff_of_nonzero' (f v) n).mp h z [GOAL] case intro.intro K : Type u V : Type v inst✝⁸ : DivisionRing K inst✝⁷ : AddCommGroup V inst✝⁶ : Module K V W : Type u_1 A : Type u_2 inst✝⁵ : Semiring A inst✝⁴ : Module A V inst✝³ : AddCommGroup W inst✝² : Module K W inst✝¹ : Module A W inst✝ : LinearMap.CompatibleSMul V W K A h : finrank K W = 1 f : V →ₗ[A] W w : f ≠ 0 v : V n : ↑f v ≠ ↑0 v c : K ⊢ ∃ a, ↑(↑K f) a = c • ↑f v [PROOFSTEP] exact ⟨c • v, by simp⟩ [GOAL] K : Type u V : Type v inst✝⁸ : DivisionRing K inst✝⁷ : AddCommGroup V inst✝⁶ : Module K V W : Type u_1 A : Type u_2 inst✝⁵ : Semiring A inst✝⁴ : Module A V inst✝³ : AddCommGroup W inst✝² : Module K W inst✝¹ : Module A W inst✝ : LinearMap.CompatibleSMul V W K A h : finrank K W = 1 f : V →ₗ[A] W w : f ≠ 0 v : V n : ↑f v ≠ ↑0 v c : K ⊢ ↑(↑K f) (c • v) = c • ↑f v [PROOFSTEP] simp [GOAL] K : Type u V : Type v inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V A : Type u_1 inst✝³ : Semiring A inst✝² : Module A V inst✝¹ : SMul K A inst✝ : IsScalarTower K A V h : finrank K V = 1 ⊢ IsSimpleOrder (Submodule A V) [PROOFSTEP] haveI := nontrivial_of_finrank_eq_succ h [GOAL] K : Type u V : Type v inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V A : Type u_1 inst✝³ : Semiring A inst✝² : Module A V inst✝¹ : SMul K A inst✝ : IsScalarTower K A V h : finrank K V = 1 this : Nontrivial V ⊢ IsSimpleOrder (Submodule A V) [PROOFSTEP] refine' ⟨fun S => or_iff_not_imp_left.2 fun hn => _⟩ [GOAL] K : Type u V : Type v inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V A : Type u_1 inst✝³ : Semiring A inst✝² : Module A V inst✝¹ : SMul K A inst✝ : IsScalarTower K A V h : finrank K V = 1 this : Nontrivial V S : Submodule A V hn : ¬S = ⊥ ⊢ S = ⊤ [PROOFSTEP] rw [← restrictScalars_inj K] at hn ⊢ [GOAL] K : Type u V : Type v inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V A : Type u_1 inst✝³ : Semiring A inst✝² : Module A V inst✝¹ : SMul K A inst✝ : IsScalarTower K A V h : finrank K V = 1 this : Nontrivial V S : Submodule A V hn : ¬restrictScalars K S = restrictScalars K ⊥ ⊢ restrictScalars K S = restrictScalars K ⊤ [PROOFSTEP] haveI : FiniteDimensional _ _ := finiteDimensional_of_finrank_eq_succ h [GOAL] K : Type u V : Type v inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V A : Type u_1 inst✝³ : Semiring A inst✝² : Module A V inst✝¹ : SMul K A inst✝ : IsScalarTower K A V h : finrank K V = 1 this✝ : Nontrivial V S : Submodule A V hn : ¬restrictScalars K S = restrictScalars K ⊥ this : FiniteDimensional K V ⊢ restrictScalars K S = restrictScalars K ⊤ [PROOFSTEP] refine' eq_top_of_finrank_eq ((Submodule.finrank_le _).antisymm _) [GOAL] K : Type u V : Type v inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V A : Type u_1 inst✝³ : Semiring A inst✝² : Module A V inst✝¹ : SMul K A inst✝ : IsScalarTower K A V h : finrank K V = 1 this✝ : Nontrivial V S : Submodule A V hn : ¬restrictScalars K S = restrictScalars K ⊥ this : FiniteDimensional K V ⊢ finrank K V ≤ finrank K { x // x ∈ restrictScalars K S } [PROOFSTEP] simpa only [h, finrank_bot] using Submodule.finrank_strictMono (Ne.bot_lt hn) [GOAL] K : Type u V : Type v F : Type u_1 E : Type u_2 inst✝² : Field F inst✝¹ : Ring E inst✝ : Algebra F E ⊢ FiniteDimensional F { x // x ∈ ⊥ } [PROOFSTEP] nontriviality E [GOAL] K : Type u V : Type v F : Type u_1 E : Type u_2 inst✝² : Field F inst✝¹ : Ring E inst✝ : Algebra F E ✝ : Nontrivial E ⊢ FiniteDimensional F { x // x ∈ ⊥ } [PROOFSTEP] exact finiteDimensional_of_rank_eq_one Subalgebra.rank_bot [GOAL] K : Type u V : Type v F : Type u_1 E : Type u_2 inst✝² : Field F inst✝¹ : Ring E inst✝ : Algebra F E S : Subalgebra F E h : Module.rank F { x // x ∈ S } ≤ 1 ⊢ S = ⊥ [PROOFSTEP] nontriviality E [GOAL] K : Type u V : Type v F : Type u_1 E : Type u_2 inst✝² : Field F inst✝¹ : Ring E inst✝ : Algebra F E S : Subalgebra F E h : Module.rank F { x // x ∈ S } ≤ 1 ✝ : Nontrivial E ⊢ S = ⊥ [PROOFSTEP] obtain ⟨m, _, he⟩ := Cardinal.exists_nat_eq_of_le_nat (h.trans_eq Nat.cast_one.symm) -- porting note: fails without explicit type [GOAL] case intro.intro K : Type u V : Type v F : Type u_1 E : Type u_2 inst✝² : Field F inst✝¹ : Ring E inst✝ : Algebra F E S : Subalgebra F E h : Module.rank F { x // x ∈ S } ≤ 1 ✝ : Nontrivial E m : ℕ left✝ : m ≤ 1 he : Module.rank F { x // x ∈ S } = ↑m ⊢ S = ⊥ [PROOFSTEP] haveI : FiniteDimensional F S := finiteDimensional_of_rank_eq_nat he [GOAL] case intro.intro K : Type u V : Type v F : Type u_1 E : Type u_2 inst✝² : Field F inst✝¹ : Ring E inst✝ : Algebra F E S : Subalgebra F E h : Module.rank F { x // x ∈ S } ≤ 1 ✝ : Nontrivial E m : ℕ left✝ : m ≤ 1 he : Module.rank F { x // x ∈ S } = ↑m this : FiniteDimensional F { x // x ∈ S } ⊢ S = ⊥ [PROOFSTEP] rw [← not_bot_lt_iff, ← Subalgebra.toSubmodule.lt_iff_lt] -- porting note: fails without explicit type [GOAL] case intro.intro K : Type u V : Type v F : Type u_1 E : Type u_2 inst✝² : Field F inst✝¹ : Ring E inst✝ : Algebra F E S : Subalgebra F E h : Module.rank F { x // x ∈ S } ≤ 1 ✝ : Nontrivial E m : ℕ left✝ : m ≤ 1 he : Module.rank F { x // x ∈ S } = ↑m this : FiniteDimensional F { x // x ∈ S } ⊢ ¬↑toSubmodule ⊥ < ↑toSubmodule S [PROOFSTEP] haveI : FiniteDimensional F (Subalgebra.toSubmodule S) := S.toSubmoduleEquiv.symm.finiteDimensional [GOAL] case intro.intro K : Type u V : Type v F : Type u_1 E : Type u_2 inst✝² : Field F inst✝¹ : Ring E inst✝ : Algebra F E S : Subalgebra F E h : Module.rank F { x // x ∈ S } ≤ 1 ✝ : Nontrivial E m : ℕ left✝ : m ≤ 1 he : Module.rank F { x // x ∈ S } = ↑m this✝ : FiniteDimensional F { x // x ∈ S } this : FiniteDimensional F { x // x ∈ ↑toSubmodule S } ⊢ ¬↑toSubmodule ⊥ < ↑toSubmodule S [PROOFSTEP] refine fun hl => (Submodule.finrank_lt_finrank_of_lt hl).not_le (natCast_le.1 ?_) [GOAL] case intro.intro K : Type u V : Type v F : Type u_1 E : Type u_2 inst✝² : Field F inst✝¹ : Ring E inst✝ : Algebra F E S : Subalgebra F E h : Module.rank F { x // x ∈ S } ≤ 1 ✝ : Nontrivial E m : ℕ left✝ : m ≤ 1 he : Module.rank F { x // x ∈ S } = ↑m this✝ : FiniteDimensional F { x // x ∈ S } this : FiniteDimensional F { x // x ∈ ↑toSubmodule S } hl : ↑toSubmodule ⊥ < ↑toSubmodule S ⊢ ↑(finrank F { x // x ∈ ↑toSubmodule S }) ≤ ↑(finrank F { x // x ∈ ↑toSubmodule ⊥ }) [PROOFSTEP] iterate 2 rw [Subalgebra.finrank_toSubmodule, finrank_eq_rank] [GOAL] case intro.intro K : Type u V : Type v F : Type u_1 E : Type u_2 inst✝² : Field F inst✝¹ : Ring E inst✝ : Algebra F E S : Subalgebra F E h : Module.rank F { x // x ∈ S } ≤ 1 ✝ : Nontrivial E m : ℕ left✝ : m ≤ 1 he : Module.rank F { x // x ∈ S } = ↑m this✝ : FiniteDimensional F { x // x ∈ S } this : FiniteDimensional F { x // x ∈ ↑toSubmodule S } hl : ↑toSubmodule ⊥ < ↑toSubmodule S ⊢ ↑(finrank F { x // x ∈ ↑toSubmodule S }) ≤ ↑(finrank F { x // x ∈ ↑toSubmodule ⊥ }) [PROOFSTEP] rw [Subalgebra.finrank_toSubmodule, finrank_eq_rank] [GOAL] case intro.intro K : Type u V : Type v F : Type u_1 E : Type u_2 inst✝² : Field F inst✝¹ : Ring E inst✝ : Algebra F E S : Subalgebra F E h : Module.rank F { x // x ∈ S } ≤ 1 ✝ : Nontrivial E m : ℕ left✝ : m ≤ 1 he : Module.rank F { x // x ∈ S } = ↑m this✝ : FiniteDimensional F { x // x ∈ S } this : FiniteDimensional F { x // x ∈ ↑toSubmodule S } hl : ↑toSubmodule ⊥ < ↑toSubmodule S ⊢ Module.rank F { x // x ∈ S } ≤ ↑(finrank F { x // x ∈ ↑toSubmodule ⊥ }) [PROOFSTEP] rw [Subalgebra.finrank_toSubmodule, finrank_eq_rank] [GOAL] case intro.intro K : Type u V : Type v F : Type u_1 E : Type u_2 inst✝² : Field F inst✝¹ : Ring E inst✝ : Algebra F E S : Subalgebra F E h : Module.rank F { x // x ∈ S } ≤ 1 ✝ : Nontrivial E m : ℕ left✝ : m ≤ 1 he : Module.rank F { x // x ∈ S } = ↑m this✝ : FiniteDimensional F { x // x ∈ S } this : FiniteDimensional F { x // x ∈ ↑toSubmodule S } hl : ↑toSubmodule ⊥ < ↑toSubmodule S ⊢ Module.rank F { x // x ∈ S } ≤ Module.rank F { x // x ∈ ⊥ } [PROOFSTEP] exact h.trans_eq Subalgebra.rank_bot.symm [GOAL] K : Type u V : Type v F : Type u_1 E : Type u_2 inst✝² : Field F inst✝¹ : Ring E inst✝ : Algebra F E S : Subalgebra F E h : finrank F { x // x ∈ S } = 1 ⊢ Module.rank F { x // x ∈ S } ≤ 1 [PROOFSTEP] haveI : FiniteDimensional F S := finiteDimensional_of_finrank_eq_succ h [GOAL] K : Type u V : Type v F : Type u_1 E : Type u_2 inst✝² : Field F inst✝¹ : Ring E inst✝ : Algebra F E S : Subalgebra F E h : finrank F { x // x ∈ S } = 1 this : FiniteDimensional F { x // x ∈ S } ⊢ Module.rank F { x // x ∈ S } ≤ 1 [PROOFSTEP] rw [← finrank_eq_rank, h, Nat.cast_one] [GOAL] K : Type u V : Type v F : Type u_1 E : Type u_2 inst✝³ : Field F inst✝² : Ring E inst✝¹ : Algebra F E inst✝ : Nontrivial E ⊢ ⊥ = ⊤ ↔ Module.rank F E = 1 [PROOFSTEP] rw [← rank_top, Subalgebra.rank_eq_one_iff, eq_comm] [GOAL] K : Type u V : Type v F : Type u_1 E : Type u_2 inst✝³ : Field F inst✝² : Ring E inst✝¹ : Algebra F E inst✝ : Nontrivial E ⊢ ⊥ = ⊤ ↔ finrank F E = 1 [PROOFSTEP] rw [← finrank_top, ← subalgebra_top_finrank_eq_submodule_top_finrank, Subalgebra.finrank_eq_one_iff, eq_comm] [GOAL] K : Type u V : Type v F : Type u_1 E : Type u_2 inst✝² : Field F inst✝¹ : Ring E inst✝ : Algebra F E hr : finrank F E = 2 i : Nontrivial E := nontrivial_of_finrank_pos (LT.lt.trans_eq zero_lt_two (Eq.symm hr)) h : ⊥ = ⊤ ⊢ False [PROOFSTEP] cases hr.symm.trans (Subalgebra.bot_eq_top_iff_finrank_eq_one.1 h) [GOAL] K : Type u V : Type v F : Type u_1 E : Type u_2 inst✝² : Field F inst✝¹ : Ring E inst✝ : Algebra F E hr : finrank F E = 2 i : Nontrivial E := nontrivial_of_finrank_pos (LT.lt.trans_eq zero_lt_two (Eq.symm hr)) ⊢ ∀ (a : Subalgebra F E), a = ⊥ ∨ a = ⊤ [PROOFSTEP] intro S [GOAL] K : Type u V : Type v F : Type u_1 E : Type u_2 inst✝² : Field F inst✝¹ : Ring E inst✝ : Algebra F E hr : finrank F E = 2 i : Nontrivial E := nontrivial_of_finrank_pos (LT.lt.trans_eq zero_lt_two (Eq.symm hr)) S : Subalgebra F E ⊢ S = ⊥ ∨ S = ⊤ [PROOFSTEP] haveI : FiniteDimensional F E := finiteDimensional_of_finrank_eq_succ hr [GOAL] K : Type u V : Type v F : Type u_1 E : Type u_2 inst✝² : Field F inst✝¹ : Ring E inst✝ : Algebra F E hr : finrank F E = 2 i : Nontrivial E := nontrivial_of_finrank_pos (LT.lt.trans_eq zero_lt_two (Eq.symm hr)) S : Subalgebra F E this : FiniteDimensional F E ⊢ S = ⊥ ∨ S = ⊤ [PROOFSTEP] haveI : FiniteDimensional F S := FiniteDimensional.finiteDimensional_submodule (Subalgebra.toSubmodule S) [GOAL] K : Type u V : Type v F : Type u_1 E : Type u_2 inst✝² : Field F inst✝¹ : Ring E inst✝ : Algebra F E hr : finrank F E = 2 i : Nontrivial E := nontrivial_of_finrank_pos (LT.lt.trans_eq zero_lt_two (Eq.symm hr)) S : Subalgebra F E this✝ : FiniteDimensional F E this : FiniteDimensional F { x // x ∈ S } ⊢ S = ⊥ ∨ S = ⊤ [PROOFSTEP] have : finrank F S ≤ 2 := hr ▸ S.toSubmodule.finrank_le [GOAL] K : Type u V : Type v F : Type u_1 E : Type u_2 inst✝² : Field F inst✝¹ : Ring E inst✝ : Algebra F E hr : finrank F E = 2 i : Nontrivial E := nontrivial_of_finrank_pos (LT.lt.trans_eq zero_lt_two (Eq.symm hr)) S : Subalgebra F E this✝¹ : FiniteDimensional F E this✝ : FiniteDimensional F { x // x ∈ S } this : finrank F { x // x ∈ S } ≤ 2 ⊢ S = ⊥ ∨ S = ⊤ [PROOFSTEP] have : 0 < finrank F S := finrank_pos_iff.mpr inferInstance [GOAL] K : Type u V : Type v F : Type u_1 E : Type u_2 inst✝² : Field F inst✝¹ : Ring E inst✝ : Algebra F E hr : finrank F E = 2 i : Nontrivial E := nontrivial_of_finrank_pos (LT.lt.trans_eq zero_lt_two (Eq.symm hr)) S : Subalgebra F E this✝² : FiniteDimensional F E this✝¹ : FiniteDimensional F { x // x ∈ S } this✝ : finrank F { x // x ∈ S } ≤ 2 this : 0 < finrank F { x // x ∈ S } ⊢ S = ⊥ ∨ S = ⊤ [PROOFSTEP] interval_cases h : finrank F { x // x ∈ S } [GOAL] case «1» K : Type u V : Type v F : Type u_1 E : Type u_2 inst✝² : Field F inst✝¹ : Ring E inst✝ : Algebra F E hr : finrank F E = 2 i : Nontrivial E := nontrivial_of_finrank_pos (LT.lt.trans_eq zero_lt_two (Eq.symm hr)) S : Subalgebra F E this✝² : FiniteDimensional F E this✝¹ : FiniteDimensional F { x // x ∈ S } h : finrank F { x // x ∈ S } = 1 this✝ : 1 ≤ 2 this : 0 < 1 ⊢ S = ⊥ ∨ S = ⊤ [PROOFSTEP] left [GOAL] case «1».h K : Type u V : Type v F : Type u_1 E : Type u_2 inst✝² : Field F inst✝¹ : Ring E inst✝ : Algebra F E hr : finrank F E = 2 i : Nontrivial E := nontrivial_of_finrank_pos (LT.lt.trans_eq zero_lt_two (Eq.symm hr)) S : Subalgebra F E this✝² : FiniteDimensional F E this✝¹ : FiniteDimensional F { x // x ∈ S } h : finrank F { x // x ∈ S } = 1 this✝ : 1 ≤ 2 this : 0 < 1 ⊢ S = ⊥ [PROOFSTEP] exact Subalgebra.eq_bot_of_finrank_one h [GOAL] case «2» K : Type u V : Type v F : Type u_1 E : Type u_2 inst✝² : Field F inst✝¹ : Ring E inst✝ : Algebra F E hr : finrank F E = 2 i : Nontrivial E := nontrivial_of_finrank_pos (LT.lt.trans_eq zero_lt_two (Eq.symm hr)) S : Subalgebra F E this✝² : FiniteDimensional F E this✝¹ : FiniteDimensional F { x // x ∈ S } h : finrank F { x // x ∈ S } = 2 this✝ : 2 ≤ 2 this : 0 < 2 ⊢ S = ⊥ ∨ S = ⊤ [PROOFSTEP] right [GOAL] case «2».h K : Type u V : Type v F : Type u_1 E : Type u_2 inst✝² : Field F inst✝¹ : Ring E inst✝ : Algebra F E hr : finrank F E = 2 i : Nontrivial E := nontrivial_of_finrank_pos (LT.lt.trans_eq zero_lt_two (Eq.symm hr)) S : Subalgebra F E this✝² : FiniteDimensional F E this✝¹ : FiniteDimensional F { x // x ∈ S } h : finrank F { x // x ∈ S } = 2 this✝ : 2 ≤ 2 this : 0 < 2 ⊢ S = ⊤ [PROOFSTEP] rw [← hr] at h [GOAL] case «2».h K : Type u V : Type v F : Type u_1 E : Type u_2 inst✝² : Field F inst✝¹ : Ring E inst✝ : Algebra F E hr : finrank F E = 2 i : Nontrivial E := nontrivial_of_finrank_pos (LT.lt.trans_eq zero_lt_two (Eq.symm hr)) S : Subalgebra F E this✝² : FiniteDimensional F E this✝¹ : FiniteDimensional F { x // x ∈ S } h : finrank F { x // x ∈ S } = finrank F E this✝ : 2 ≤ 2 this : 0 < 2 ⊢ S = ⊤ [PROOFSTEP] rw [← Algebra.toSubmodule_eq_top] [GOAL] case «2».h K : Type u V : Type v F : Type u_1 E : Type u_2 inst✝² : Field F inst✝¹ : Ring E inst✝ : Algebra F E hr : finrank F E = 2 i : Nontrivial E := nontrivial_of_finrank_pos (LT.lt.trans_eq zero_lt_two (Eq.symm hr)) S : Subalgebra F E this✝² : FiniteDimensional F E this✝¹ : FiniteDimensional F { x // x ∈ S } h : finrank F { x // x ∈ S } = finrank F E this✝ : 2 ≤ 2 this : 0 < 2 ⊢ ↑toSubmodule S = ⊤ [PROOFSTEP] exact eq_top_of_finrank_eq h [GOAL] K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : End K V ⊢ ∃ k, k ≤ finrank K V ∧ LinearMap.ker (f ^ k) = LinearMap.ker (f ^ Nat.succ k) [PROOFSTEP] classical by_contra h_contra simp_rw [not_exists, not_and] at h_contra have h_le_ker_pow : ∀ n : ℕ, n ≤ (finrank K V).succ → n ≤ finrank K (LinearMap.ker (f ^ n)) := by intro n hn induction' n with n ih · exact zero_le (finrank _ _) · have h_ker_lt_ker : LinearMap.ker (f ^ n) < LinearMap.ker (f ^ n.succ) := by refine' lt_of_le_of_ne _ (h_contra n (Nat.le_of_succ_le_succ hn)) rw [pow_succ] apply LinearMap.ker_le_ker_comp have h_finrank_lt_finrank : finrank K (LinearMap.ker (f ^ n)) < finrank K (LinearMap.ker (f ^ n.succ)) := by apply Submodule.finrank_lt_finrank_of_lt h_ker_lt_ker calc n.succ ≤ (finrank K ↑(LinearMap.ker (f ^ n))).succ := Nat.succ_le_succ (ih (Nat.le_of_succ_le hn)) _ ≤ finrank K ↑(LinearMap.ker (f ^ n.succ)) := Nat.succ_le_of_lt h_finrank_lt_finrank have h_any_n_lt : ∀ n, n ≤ (finrank K V).succ → n ≤ finrank K V := fun n hn => (h_le_ker_pow n hn).trans (Submodule.finrank_le _) show False exact Nat.not_succ_le_self _ (h_any_n_lt (finrank K V).succ (finrank K V).succ.le_refl) [GOAL] K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : End K V ⊢ ∃ k, k ≤ finrank K V ∧ LinearMap.ker (f ^ k) = LinearMap.ker (f ^ Nat.succ k) [PROOFSTEP] by_contra h_contra [GOAL] K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : End K V h_contra : ¬∃ k, k ≤ finrank K V ∧ LinearMap.ker (f ^ k) = LinearMap.ker (f ^ Nat.succ k) ⊢ False [PROOFSTEP] simp_rw [not_exists, not_and] at h_contra [GOAL] K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : End K V h_contra : ∀ (x : ℕ), x ≤ finrank K V → ¬LinearMap.ker (f ^ x) = LinearMap.ker (f ^ Nat.succ x) ⊢ False [PROOFSTEP] have h_le_ker_pow : ∀ n : ℕ, n ≤ (finrank K V).succ → n ≤ finrank K (LinearMap.ker (f ^ n)) := by intro n hn induction' n with n ih · exact zero_le (finrank _ _) · have h_ker_lt_ker : LinearMap.ker (f ^ n) < LinearMap.ker (f ^ n.succ) := by refine' lt_of_le_of_ne _ (h_contra n (Nat.le_of_succ_le_succ hn)) rw [pow_succ] apply LinearMap.ker_le_ker_comp have h_finrank_lt_finrank : finrank K (LinearMap.ker (f ^ n)) < finrank K (LinearMap.ker (f ^ n.succ)) := by apply Submodule.finrank_lt_finrank_of_lt h_ker_lt_ker calc n.succ ≤ (finrank K ↑(LinearMap.ker (f ^ n))).succ := Nat.succ_le_succ (ih (Nat.le_of_succ_le hn)) _ ≤ finrank K ↑(LinearMap.ker (f ^ n.succ)) := Nat.succ_le_of_lt h_finrank_lt_finrank [GOAL] K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : End K V h_contra : ∀ (x : ℕ), x ≤ finrank K V → ¬LinearMap.ker (f ^ x) = LinearMap.ker (f ^ Nat.succ x) ⊢ ∀ (n : ℕ), n ≤ Nat.succ (finrank K V) → n ≤ finrank K { x // x ∈ LinearMap.ker (f ^ n) } [PROOFSTEP] intro n hn [GOAL] K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : End K V h_contra : ∀ (x : ℕ), x ≤ finrank K V → ¬LinearMap.ker (f ^ x) = LinearMap.ker (f ^ Nat.succ x) n : ℕ hn : n ≤ Nat.succ (finrank K V) ⊢ n ≤ finrank K { x // x ∈ LinearMap.ker (f ^ n) } [PROOFSTEP] induction' n with n ih [GOAL] case zero K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : End K V h_contra : ∀ (x : ℕ), x ≤ finrank K V → ¬LinearMap.ker (f ^ x) = LinearMap.ker (f ^ Nat.succ x) n : ℕ hn✝ : n ≤ Nat.succ (finrank K V) hn : Nat.zero ≤ Nat.succ (finrank K V) ⊢ Nat.zero ≤ finrank K { x // x ∈ LinearMap.ker (f ^ Nat.zero) } [PROOFSTEP] exact zero_le (finrank _ _) [GOAL] case succ K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : End K V h_contra : ∀ (x : ℕ), x ≤ finrank K V → ¬LinearMap.ker (f ^ x) = LinearMap.ker (f ^ Nat.succ x) n✝ : ℕ hn✝ : n✝ ≤ Nat.succ (finrank K V) n : ℕ ih : n ≤ Nat.succ (finrank K V) → n ≤ finrank K { x // x ∈ LinearMap.ker (f ^ n) } hn : Nat.succ n ≤ Nat.succ (finrank K V) ⊢ Nat.succ n ≤ finrank K { x // x ∈ LinearMap.ker (f ^ Nat.succ n) } [PROOFSTEP] have h_ker_lt_ker : LinearMap.ker (f ^ n) < LinearMap.ker (f ^ n.succ) := by refine' lt_of_le_of_ne _ (h_contra n (Nat.le_of_succ_le_succ hn)) rw [pow_succ] apply LinearMap.ker_le_ker_comp [GOAL] K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : End K V h_contra : ∀ (x : ℕ), x ≤ finrank K V → ¬LinearMap.ker (f ^ x) = LinearMap.ker (f ^ Nat.succ x) n✝ : ℕ hn✝ : n✝ ≤ Nat.succ (finrank K V) n : ℕ ih : n ≤ Nat.succ (finrank K V) → n ≤ finrank K { x // x ∈ LinearMap.ker (f ^ n) } hn : Nat.succ n ≤ Nat.succ (finrank K V) ⊢ LinearMap.ker (f ^ n) < LinearMap.ker (f ^ Nat.succ n) [PROOFSTEP] refine' lt_of_le_of_ne _ (h_contra n (Nat.le_of_succ_le_succ hn)) [GOAL] K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : End K V h_contra : ∀ (x : ℕ), x ≤ finrank K V → ¬LinearMap.ker (f ^ x) = LinearMap.ker (f ^ Nat.succ x) n✝ : ℕ hn✝ : n✝ ≤ Nat.succ (finrank K V) n : ℕ ih : n ≤ Nat.succ (finrank K V) → n ≤ finrank K { x // x ∈ LinearMap.ker (f ^ n) } hn : Nat.succ n ≤ Nat.succ (finrank K V) ⊢ LinearMap.ker (f ^ n) ≤ LinearMap.ker (f ^ Nat.succ n) [PROOFSTEP] rw [pow_succ] [GOAL] K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : End K V h_contra : ∀ (x : ℕ), x ≤ finrank K V → ¬LinearMap.ker (f ^ x) = LinearMap.ker (f ^ Nat.succ x) n✝ : ℕ hn✝ : n✝ ≤ Nat.succ (finrank K V) n : ℕ ih : n ≤ Nat.succ (finrank K V) → n ≤ finrank K { x // x ∈ LinearMap.ker (f ^ n) } hn : Nat.succ n ≤ Nat.succ (finrank K V) ⊢ LinearMap.ker (f ^ n) ≤ LinearMap.ker (f * f ^ n) [PROOFSTEP] apply LinearMap.ker_le_ker_comp [GOAL] case succ K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : End K V h_contra : ∀ (x : ℕ), x ≤ finrank K V → ¬LinearMap.ker (f ^ x) = LinearMap.ker (f ^ Nat.succ x) n✝ : ℕ hn✝ : n✝ ≤ Nat.succ (finrank K V) n : ℕ ih : n ≤ Nat.succ (finrank K V) → n ≤ finrank K { x // x ∈ LinearMap.ker (f ^ n) } hn : Nat.succ n ≤ Nat.succ (finrank K V) h_ker_lt_ker : LinearMap.ker (f ^ n) < LinearMap.ker (f ^ Nat.succ n) ⊢ Nat.succ n ≤ finrank K { x // x ∈ LinearMap.ker (f ^ Nat.succ n) } [PROOFSTEP] have h_finrank_lt_finrank : finrank K (LinearMap.ker (f ^ n)) < finrank K (LinearMap.ker (f ^ n.succ)) := by apply Submodule.finrank_lt_finrank_of_lt h_ker_lt_ker [GOAL] K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : End K V h_contra : ∀ (x : ℕ), x ≤ finrank K V → ¬LinearMap.ker (f ^ x) = LinearMap.ker (f ^ Nat.succ x) n✝ : ℕ hn✝ : n✝ ≤ Nat.succ (finrank K V) n : ℕ ih : n ≤ Nat.succ (finrank K V) → n ≤ finrank K { x // x ∈ LinearMap.ker (f ^ n) } hn : Nat.succ n ≤ Nat.succ (finrank K V) h_ker_lt_ker : LinearMap.ker (f ^ n) < LinearMap.ker (f ^ Nat.succ n) ⊢ finrank K { x // x ∈ LinearMap.ker (f ^ n) } < finrank K { x // x ∈ LinearMap.ker (f ^ Nat.succ n) } [PROOFSTEP] apply Submodule.finrank_lt_finrank_of_lt h_ker_lt_ker [GOAL] case succ K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : End K V h_contra : ∀ (x : ℕ), x ≤ finrank K V → ¬LinearMap.ker (f ^ x) = LinearMap.ker (f ^ Nat.succ x) n✝ : ℕ hn✝ : n✝ ≤ Nat.succ (finrank K V) n : ℕ ih : n ≤ Nat.succ (finrank K V) → n ≤ finrank K { x // x ∈ LinearMap.ker (f ^ n) } hn : Nat.succ n ≤ Nat.succ (finrank K V) h_ker_lt_ker : LinearMap.ker (f ^ n) < LinearMap.ker (f ^ Nat.succ n) h_finrank_lt_finrank : finrank K { x // x ∈ LinearMap.ker (f ^ n) } < finrank K { x // x ∈ LinearMap.ker (f ^ Nat.succ n) } ⊢ Nat.succ n ≤ finrank K { x // x ∈ LinearMap.ker (f ^ Nat.succ n) } [PROOFSTEP] calc n.succ ≤ (finrank K ↑(LinearMap.ker (f ^ n))).succ := Nat.succ_le_succ (ih (Nat.le_of_succ_le hn)) _ ≤ finrank K ↑(LinearMap.ker (f ^ n.succ)) := Nat.succ_le_of_lt h_finrank_lt_finrank [GOAL] K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : End K V h_contra : ∀ (x : ℕ), x ≤ finrank K V → ¬LinearMap.ker (f ^ x) = LinearMap.ker (f ^ Nat.succ x) h_le_ker_pow : ∀ (n : ℕ), n ≤ Nat.succ (finrank K V) → n ≤ finrank K { x // x ∈ LinearMap.ker (f ^ n) } ⊢ False [PROOFSTEP] have h_any_n_lt : ∀ n, n ≤ (finrank K V).succ → n ≤ finrank K V := fun n hn => (h_le_ker_pow n hn).trans (Submodule.finrank_le _) [GOAL] K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : End K V h_contra : ∀ (x : ℕ), x ≤ finrank K V → ¬LinearMap.ker (f ^ x) = LinearMap.ker (f ^ Nat.succ x) h_le_ker_pow : ∀ (n : ℕ), n ≤ Nat.succ (finrank K V) → n ≤ finrank K { x // x ∈ LinearMap.ker (f ^ n) } h_any_n_lt : ∀ (n : ℕ), n ≤ Nat.succ (finrank K V) → n ≤ finrank K V ⊢ False [PROOFSTEP] show False [GOAL] K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : End K V h_contra : ∀ (x : ℕ), x ≤ finrank K V → ¬LinearMap.ker (f ^ x) = LinearMap.ker (f ^ Nat.succ x) h_le_ker_pow : ∀ (n : ℕ), n ≤ Nat.succ (finrank K V) → n ≤ finrank K { x // x ∈ LinearMap.ker (f ^ n) } h_any_n_lt : ∀ (n : ℕ), n ≤ Nat.succ (finrank K V) → n ≤ finrank K V ⊢ False [PROOFSTEP] exact Nat.not_succ_le_self _ (h_any_n_lt (finrank K V).succ (finrank K V).succ.le_refl) [GOAL] K : Type u V : Type v inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V f : End K V k : ℕ h : LinearMap.ker (f ^ k) = LinearMap.ker (f ^ Nat.succ k) ⊢ LinearMap.ker (f ^ k) = LinearMap.ker (f ^ (k + 0)) [PROOFSTEP] simp [GOAL] K : Type u V : Type v inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V f : End K V k : ℕ h : LinearMap.ker (f ^ k) = LinearMap.ker (f ^ Nat.succ k) m : ℕ ⊢ LinearMap.ker (f ^ k) = LinearMap.ker (f ^ (k + (m + 1))) [PROOFSTEP] apply le_antisymm [GOAL] case a K : Type u V : Type v inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V f : End K V k : ℕ h : LinearMap.ker (f ^ k) = LinearMap.ker (f ^ Nat.succ k) m : ℕ ⊢ LinearMap.ker (f ^ k) ≤ LinearMap.ker (f ^ (k + (m + 1))) [PROOFSTEP] rw [add_comm, pow_add] [GOAL] case a K : Type u V : Type v inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V f : End K V k : ℕ h : LinearMap.ker (f ^ k) = LinearMap.ker (f ^ Nat.succ k) m : ℕ ⊢ LinearMap.ker (f ^ k) ≤ LinearMap.ker (f ^ (m + 1) * f ^ k) [PROOFSTEP] apply LinearMap.ker_le_ker_comp [GOAL] case a K : Type u V : Type v inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V f : End K V k : ℕ h : LinearMap.ker (f ^ k) = LinearMap.ker (f ^ Nat.succ k) m : ℕ ⊢ LinearMap.ker (f ^ (k + (m + 1))) ≤ LinearMap.ker (f ^ k) [PROOFSTEP] rw [ker_pow_constant h m, add_comm m 1, ← add_assoc, pow_add, pow_add f k m, LinearMap.mul_eq_comp, LinearMap.mul_eq_comp, LinearMap.ker_comp, LinearMap.ker_comp, h, Nat.add_one] [GOAL] K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : End K V m : ℕ hm : finrank K V ≤ m ⊢ LinearMap.ker (f ^ m) = LinearMap.ker (f ^ finrank K V) [PROOFSTEP] obtain ⟨k, h_k_le, hk⟩ : ∃ k, k ≤ finrank K V ∧ LinearMap.ker (f ^ k) = LinearMap.ker (f ^ k.succ) := exists_ker_pow_eq_ker_pow_succ f [GOAL] case intro.intro K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : End K V m : ℕ hm : finrank K V ≤ m k : ℕ h_k_le : k ≤ finrank K V hk : LinearMap.ker (f ^ k) = LinearMap.ker (f ^ Nat.succ k) ⊢ LinearMap.ker (f ^ m) = LinearMap.ker (f ^ finrank K V) [PROOFSTEP] calc LinearMap.ker (f ^ m) = LinearMap.ker (f ^ (k + (m - k))) := by rw [add_tsub_cancel_of_le (h_k_le.trans hm)] _ = LinearMap.ker (f ^ k) := by rw [ker_pow_constant hk _] _ = LinearMap.ker (f ^ (k + (finrank K V - k))) := (ker_pow_constant hk (finrank K V - k)) _ = LinearMap.ker (f ^ finrank K V) := by rw [add_tsub_cancel_of_le h_k_le] [GOAL] K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : End K V m : ℕ hm : finrank K V ≤ m k : ℕ h_k_le : k ≤ finrank K V hk : LinearMap.ker (f ^ k) = LinearMap.ker (f ^ Nat.succ k) ⊢ LinearMap.ker (f ^ m) = LinearMap.ker (f ^ (k + (m - k))) [PROOFSTEP] rw [add_tsub_cancel_of_le (h_k_le.trans hm)] [GOAL] K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : End K V m : ℕ hm : finrank K V ≤ m k : ℕ h_k_le : k ≤ finrank K V hk : LinearMap.ker (f ^ k) = LinearMap.ker (f ^ Nat.succ k) ⊢ LinearMap.ker (f ^ (k + (m - k))) = LinearMap.ker (f ^ k) [PROOFSTEP] rw [ker_pow_constant hk _] [GOAL] K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : End K V m : ℕ hm : finrank K V ≤ m k : ℕ h_k_le : k ≤ finrank K V hk : LinearMap.ker (f ^ k) = LinearMap.ker (f ^ Nat.succ k) ⊢ LinearMap.ker (f ^ (k + (finrank K V - k))) = LinearMap.ker (f ^ finrank K V) [PROOFSTEP] rw [add_tsub_cancel_of_le h_k_le] [GOAL] K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : End K V m : ℕ ⊢ LinearMap.ker (f ^ m) ≤ LinearMap.ker (f ^ finrank K V) [PROOFSTEP] by_cases h_cases : m < finrank K V [GOAL] case pos K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : End K V m : ℕ h_cases : m < finrank K V ⊢ LinearMap.ker (f ^ m) ≤ LinearMap.ker (f ^ finrank K V) [PROOFSTEP] rw [← add_tsub_cancel_of_le (Nat.le_of_lt h_cases), add_comm, pow_add] [GOAL] case pos K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : End K V m : ℕ h_cases : m < finrank K V ⊢ LinearMap.ker (f ^ m) ≤ LinearMap.ker (f ^ (finrank K V - m) * f ^ m) [PROOFSTEP] apply LinearMap.ker_le_ker_comp [GOAL] case neg K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : End K V m : ℕ h_cases : ¬m < finrank K V ⊢ LinearMap.ker (f ^ m) ≤ LinearMap.ker (f ^ finrank K V) [PROOFSTEP] rw [ker_pow_eq_ker_pow_finrank_of_le (le_of_not_lt h_cases)] [GOAL] K✝ : Type u V✝ : Type v K V : Type u inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V ⊢ #V = #K ^ Module.rank K V [PROOFSTEP] let s := Basis.ofVectorSpaceIndex K V [GOAL] K✝ : Type u V✝ : Type v K V : Type u inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V s : Set V := Basis.ofVectorSpaceIndex K V ⊢ #V = #K ^ Module.rank K V [PROOFSTEP] let hs := Basis.ofVectorSpace K V [GOAL] K✝ : Type u V✝ : Type v K V : Type u inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V s : Set V := Basis.ofVectorSpaceIndex K V hs : Basis (↑(Basis.ofVectorSpaceIndex K V)) K V := Basis.ofVectorSpace K V ⊢ #V = #K ^ Module.rank K V [PROOFSTEP] calc #V = #(s →₀ K) := Quotient.sound ⟨hs.repr.toEquiv⟩ _ = #(s → K) := (Quotient.sound ⟨Finsupp.equivFunOnFinite⟩) _ = _ := by rw [← Cardinal.lift_inj.1 hs.mk_eq_rank, Cardinal.power_def] [GOAL] K✝ : Type u V✝ : Type v K V : Type u inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V s : Set V := Basis.ofVectorSpaceIndex K V hs : Basis (↑(Basis.ofVectorSpaceIndex K V)) K V := Basis.ofVectorSpace K V ⊢ #(↑s → K) = #K ^ Module.rank K V [PROOFSTEP] rw [← Cardinal.lift_inj.1 hs.mk_eq_rank, Cardinal.power_def] [GOAL] K✝ : Type u V✝ : Type v K V : Type u inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : Module K V inst✝¹ : _root_.Finite K inst✝ : FiniteDimensional K V ⊢ #V < ℵ₀ [PROOFSTEP] letI : IsNoetherian K V := IsNoetherian.iff_fg.2 inferInstance [GOAL] K✝ : Type u V✝ : Type v K V : Type u inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : Module K V inst✝¹ : _root_.Finite K inst✝ : FiniteDimensional K V this : IsNoetherian K V := Iff.mpr IsNoetherian.iff_fg inferInstance ⊢ #V < ℵ₀ [PROOFSTEP] rw [cardinal_mk_eq_cardinal_mk_field_pow_rank K V] [GOAL] K✝ : Type u V✝ : Type v K V : Type u inst✝⁴ : DivisionRing K inst✝³ : AddCommGroup V inst✝² : Module K V inst✝¹ : _root_.Finite K inst✝ : FiniteDimensional K V this : IsNoetherian K V := Iff.mpr IsNoetherian.iff_fg inferInstance ⊢ #K ^ Module.rank K V < ℵ₀ [PROOFSTEP] exact Cardinal.power_lt_aleph0 (Cardinal.lt_aleph0_of_finite K) (IsNoetherian.rank_lt_aleph0 K V)
{"mathlib_filename": "Mathlib.LinearAlgebra.FiniteDimensional", "llama_tokens": 99386}
[GOAL] R : Type u1 inst✝⁴ : CommRing R M : Type u2 inst✝³ : AddCommGroup M inst✝² : Module R M A : Type u_1 inst✝¹ : Semiring A inst✝ : Algebra R A g : ExteriorAlgebra R M →ₐ[R] A m : M ⊢ ↑g (↑(ι R) m) * ↑g (↑(ι R) m) = 0 [PROOFSTEP] rw [← AlgHom.map_mul, ι_sq_zero, AlgHom.map_zero] [GOAL] R : Type u1 inst✝⁴ : CommRing R M : Type u2 inst✝³ : AddCommGroup M inst✝² : Module R M A : Type u_1 inst✝¹ : Semiring A inst✝ : Algebra R A ⊢ ∀ (a : M →ₗ[R] A), (∀ (m : M), ↑a m * ↑a m = 0) ↔ ∀ (m : M), ↑(↑(Equiv.refl (M →ₗ[R] A)) a) m * ↑(↑(Equiv.refl (M →ₗ[R] A)) a) m = ↑(algebraMap R A) (↑0 m) [PROOFSTEP] simp [GOAL] R : Type u1 inst✝⁴ : CommRing R M : Type u2 inst✝³ : AddCommGroup M inst✝² : Module R M A : Type u_1 inst✝¹ : Semiring A inst✝ : Algebra R A m : M ⊢ ↑0 m * ↑0 m = 0 [PROOFSTEP] simp [GOAL] R : Type u1 inst✝⁴ : CommRing R M : Type u2 inst✝³ : AddCommGroup M inst✝² : Module R M A : Type u_1 inst✝¹ : Semiring A inst✝ : Algebra R A x : R ⊢ ↑algebraMapInv (↑(algebraMap R (ExteriorAlgebra R M)) x) = x [PROOFSTEP] simp [algebraMapInv] [GOAL] R : Type u1 inst✝⁴ : CommRing R M : Type u2 inst✝³ : AddCommGroup M inst✝² : Module R M A : Type u_1 inst✝¹ : Semiring A inst✝ : Algebra R A ⊢ ExteriorAlgebra R M →ₗ[R] M [PROOFSTEP] letI : Module Rᵐᵒᵖ M := Module.compHom _ ((RingHom.id R).fromOpposite mul_comm) [GOAL] R : Type u1 inst✝⁴ : CommRing R M : Type u2 inst✝³ : AddCommGroup M inst✝² : Module R M A : Type u_1 inst✝¹ : Semiring A inst✝ : Algebra R A this : Module Rᵐᵒᵖ M := Module.compHom M (RingHom.fromOpposite (RingHom.id R) (_ : ∀ (a b : R), a * b = b * a)) ⊢ ExteriorAlgebra R M →ₗ[R] M [PROOFSTEP] haveI : IsCentralScalar R M := ⟨fun r m => rfl⟩ [GOAL] R : Type u1 inst✝⁴ : CommRing R M : Type u2 inst✝³ : AddCommGroup M inst✝² : Module R M A : Type u_1 inst✝¹ : Semiring A inst✝ : Algebra R A this✝ : Module Rᵐᵒᵖ M := Module.compHom M (RingHom.fromOpposite (RingHom.id R) (_ : ∀ (a b : R), a * b = b * a)) this : IsCentralScalar R M ⊢ ExteriorAlgebra R M →ₗ[R] M [PROOFSTEP] exact (TrivSqZeroExt.sndHom R M).comp toTrivSqZeroExt.toLinearMap [GOAL] R : Type u1 inst✝⁴ : CommRing R M : Type u2 inst✝³ : AddCommGroup M inst✝² : Module R M A : Type u_1 inst✝¹ : Semiring A inst✝ : Algebra R A x : M ⊢ ↑ιInv.toAddHom (↑(ι R) x) = x [PROOFSTEP] letI : Module Rᵐᵒᵖ M := Module.compHom _ ((RingHom.id R).fromOpposite mul_comm) [GOAL] R : Type u1 inst✝⁴ : CommRing R M : Type u2 inst✝³ : AddCommGroup M inst✝² : Module R M A : Type u_1 inst✝¹ : Semiring A inst✝ : Algebra R A x : M this : Module Rᵐᵒᵖ M := Module.compHom M (RingHom.fromOpposite (RingHom.id R) (_ : ∀ (a b : R), a * b = b * a)) ⊢ ↑ιInv.toAddHom (↑(ι R) x) = x [PROOFSTEP] haveI : IsCentralScalar R M := ⟨fun r m => rfl⟩ [GOAL] R : Type u1 inst✝⁴ : CommRing R M : Type u2 inst✝³ : AddCommGroup M inst✝² : Module R M A : Type u_1 inst✝¹ : Semiring A inst✝ : Algebra R A x : M this✝ : Module Rᵐᵒᵖ M := Module.compHom M (RingHom.fromOpposite (RingHom.id R) (_ : ∀ (a b : R), a * b = b * a)) this : IsCentralScalar R M ⊢ ↑ιInv.toAddHom (↑(ι R) x) = x [PROOFSTEP] simp [ιInv] [GOAL] R : Type u1 inst✝⁴ : CommRing R M : Type u2 inst✝³ : AddCommGroup M inst✝² : Module R M A : Type u_1 inst✝¹ : Semiring A inst✝ : Algebra R A x : M ⊢ ↑(ι R) x = 0 ↔ x = 0 [PROOFSTEP] rw [← ι_inj R x 0, LinearMap.map_zero] [GOAL] R : Type u1 inst✝⁴ : CommRing R M : Type u2 inst✝³ : AddCommGroup M inst✝² : Module R M A : Type u_1 inst✝¹ : Semiring A inst✝ : Algebra R A x : M r : R ⊢ ↑(ι R) x = ↑(algebraMap R (ExteriorAlgebra R M)) r ↔ x = 0 ∧ r = 0 [PROOFSTEP] refine' ⟨fun h => _, _⟩ [GOAL] case refine'_1 R : Type u1 inst✝⁴ : CommRing R M : Type u2 inst✝³ : AddCommGroup M inst✝² : Module R M A : Type u_1 inst✝¹ : Semiring A inst✝ : Algebra R A x : M r : R h : ↑(ι R) x = ↑(algebraMap R (ExteriorAlgebra R M)) r ⊢ x = 0 ∧ r = 0 [PROOFSTEP] letI : Module Rᵐᵒᵖ M := Module.compHom _ ((RingHom.id R).fromOpposite mul_comm) [GOAL] case refine'_1 R : Type u1 inst✝⁴ : CommRing R M : Type u2 inst✝³ : AddCommGroup M inst✝² : Module R M A : Type u_1 inst✝¹ : Semiring A inst✝ : Algebra R A x : M r : R h : ↑(ι R) x = ↑(algebraMap R (ExteriorAlgebra R M)) r this : Module Rᵐᵒᵖ M := Module.compHom M (RingHom.fromOpposite (RingHom.id R) (_ : ∀ (a b : R), a * b = b * a)) ⊢ x = 0 ∧ r = 0 [PROOFSTEP] haveI : IsCentralScalar R M := ⟨fun r m => rfl⟩ [GOAL] case refine'_1 R : Type u1 inst✝⁴ : CommRing R M : Type u2 inst✝³ : AddCommGroup M inst✝² : Module R M A : Type u_1 inst✝¹ : Semiring A inst✝ : Algebra R A x : M r : R h : ↑(ι R) x = ↑(algebraMap R (ExteriorAlgebra R M)) r this✝ : Module Rᵐᵒᵖ M := Module.compHom M (RingHom.fromOpposite (RingHom.id R) (_ : ∀ (a b : R), a * b = b * a)) this : IsCentralScalar R M ⊢ x = 0 ∧ r = 0 [PROOFSTEP] have hf0 : toTrivSqZeroExt (ι R x) = (0, x) := toTrivSqZeroExt_ι _ [GOAL] case refine'_1 R : Type u1 inst✝⁴ : CommRing R M : Type u2 inst✝³ : AddCommGroup M inst✝² : Module R M A : Type u_1 inst✝¹ : Semiring A inst✝ : Algebra R A x : M r : R h : ↑(ι R) x = ↑(algebraMap R (ExteriorAlgebra R M)) r this✝ : Module Rᵐᵒᵖ M := Module.compHom M (RingHom.fromOpposite (RingHom.id R) (_ : ∀ (a b : R), a * b = b * a)) this : IsCentralScalar R M hf0 : ↑toTrivSqZeroExt (↑(ι R) x) = (0, x) ⊢ x = 0 ∧ r = 0 [PROOFSTEP] rw [h, AlgHom.commutes] at hf0 [GOAL] case refine'_1 R : Type u1 inst✝⁴ : CommRing R M : Type u2 inst✝³ : AddCommGroup M inst✝² : Module R M A : Type u_1 inst✝¹ : Semiring A inst✝ : Algebra R A x : M r : R h : ↑(ι R) x = ↑(algebraMap R (ExteriorAlgebra R M)) r this✝ : Module Rᵐᵒᵖ M := Module.compHom M (RingHom.fromOpposite (RingHom.id R) (_ : ∀ (a b : R), a * b = b * a)) this : IsCentralScalar R M hf0 : ↑(algebraMap R (TrivSqZeroExt R M)) r = (0, x) ⊢ x = 0 ∧ r = 0 [PROOFSTEP] have : r = 0 ∧ 0 = x := Prod.ext_iff.1 hf0 [GOAL] case refine'_1 R : Type u1 inst✝⁴ : CommRing R M : Type u2 inst✝³ : AddCommGroup M inst✝² : Module R M A : Type u_1 inst✝¹ : Semiring A inst✝ : Algebra R A x : M r : R h : ↑(ι R) x = ↑(algebraMap R (ExteriorAlgebra R M)) r this✝¹ : Module Rᵐᵒᵖ M := Module.compHom M (RingHom.fromOpposite (RingHom.id R) (_ : ∀ (a b : R), a * b = b * a)) this✝ : IsCentralScalar R M hf0 : ↑(algebraMap R (TrivSqZeroExt R M)) r = (0, x) this : r = 0 ∧ 0 = x ⊢ x = 0 ∧ r = 0 [PROOFSTEP] exact this.symm.imp_left Eq.symm [GOAL] case refine'_2 R : Type u1 inst✝⁴ : CommRing R M : Type u2 inst✝³ : AddCommGroup M inst✝² : Module R M A : Type u_1 inst✝¹ : Semiring A inst✝ : Algebra R A x : M r : R ⊢ x = 0 ∧ r = 0 → ↑(ι R) x = ↑(algebraMap R (ExteriorAlgebra R M)) r [PROOFSTEP] rintro ⟨rfl, rfl⟩ [GOAL] case refine'_2.intro R : Type u1 inst✝⁴ : CommRing R M : Type u2 inst✝³ : AddCommGroup M inst✝² : Module R M A : Type u_1 inst✝¹ : Semiring A inst✝ : Algebra R A ⊢ ↑(ι R) 0 = ↑(algebraMap R (ExteriorAlgebra R M)) 0 [PROOFSTEP] rw [LinearMap.map_zero, RingHom.map_zero] [GOAL] R : Type u1 inst✝⁵ : CommRing R M : Type u2 inst✝⁴ : AddCommGroup M inst✝³ : Module R M A : Type u_1 inst✝² : Semiring A inst✝¹ : Algebra R A inst✝ : Nontrivial R x : M ⊢ ↑(ι R) x ≠ 1 [PROOFSTEP] rw [← (algebraMap R (ExteriorAlgebra R M)).map_one, Ne.def, ι_eq_algebraMap_iff] [GOAL] R : Type u1 inst✝⁵ : CommRing R M : Type u2 inst✝⁴ : AddCommGroup M inst✝³ : Module R M A : Type u_1 inst✝² : Semiring A inst✝¹ : Algebra R A inst✝ : Nontrivial R x : M ⊢ ¬(x = 0 ∧ 1 = 0) [PROOFSTEP] exact one_ne_zero ∘ And.right [GOAL] R : Type u1 inst✝⁴ : CommRing R M : Type u2 inst✝³ : AddCommGroup M inst✝² : Module R M A : Type u_1 inst✝¹ : Semiring A inst✝ : Algebra R A ⊢ Disjoint (LinearMap.range (ι R)) 1 [PROOFSTEP] rw [Submodule.disjoint_def] [GOAL] R : Type u1 inst✝⁴ : CommRing R M : Type u2 inst✝³ : AddCommGroup M inst✝² : Module R M A : Type u_1 inst✝¹ : Semiring A inst✝ : Algebra R A ⊢ ∀ (x : ExteriorAlgebra R M), x ∈ LinearMap.range (ι R) → x ∈ 1 → x = 0 [PROOFSTEP] rintro _ ⟨x, hx⟩ ⟨r, rfl : algebraMap R (ExteriorAlgebra R M) r = _⟩ [GOAL] case intro.intro R : Type u1 inst✝⁴ : CommRing R M : Type u2 inst✝³ : AddCommGroup M inst✝² : Module R M A : Type u_1 inst✝¹ : Semiring A inst✝ : Algebra R A x : M r : R hx : ↑(ι R) x = ↑(algebraMap R (ExteriorAlgebra R M)) r ⊢ ↑(algebraMap R (ExteriorAlgebra R M)) r = 0 [PROOFSTEP] rw [ι_eq_algebraMap_iff x] at hx [GOAL] case intro.intro R : Type u1 inst✝⁴ : CommRing R M : Type u2 inst✝³ : AddCommGroup M inst✝² : Module R M A : Type u_1 inst✝¹ : Semiring A inst✝ : Algebra R A x : M r : R hx : x = 0 ∧ r = 0 ⊢ ↑(algebraMap R (ExteriorAlgebra R M)) r = 0 [PROOFSTEP] rw [hx.2, RingHom.map_zero] [GOAL] R : Type u1 inst✝⁴ : CommRing R M : Type u2 inst✝³ : AddCommGroup M inst✝² : Module R M A : Type u_1 inst✝¹ : Semiring A inst✝ : Algebra R A x y : M ⊢ ↑(ι R) x * ↑(ι R) y + ↑(ι R) y * ↑(ι R) x = ↑(ι R) (y + x) * ↑(ι R) (y + x) [PROOFSTEP] simp [mul_add, add_mul] [GOAL] R : Type u1 inst✝⁴ : CommRing R M : Type u2 inst✝³ : AddCommGroup M inst✝² : Module R M A : Type u_1 inst✝¹ : Semiring A inst✝ : Algebra R A n : ℕ f : Fin n → M i : Fin n ⊢ ↑(ι R) (f i) * List.prod (List.ofFn fun i => ↑(ι R) (f i)) = 0 [PROOFSTEP] induction' n with n hn [GOAL] case zero R : Type u1 inst✝⁴ : CommRing R M : Type u2 inst✝³ : AddCommGroup M inst✝² : Module R M A : Type u_1 inst✝¹ : Semiring A inst✝ : Algebra R A n : ℕ f✝ : Fin n → M i✝ : Fin n f : Fin Nat.zero → M i : Fin Nat.zero ⊢ ↑(ι R) (f i) * List.prod (List.ofFn fun i => ↑(ι R) (f i)) = 0 [PROOFSTEP] exact i.elim0 [GOAL] case succ R : Type u1 inst✝⁴ : CommRing R M : Type u2 inst✝³ : AddCommGroup M inst✝² : Module R M A : Type u_1 inst✝¹ : Semiring A inst✝ : Algebra R A n✝ : ℕ f✝ : Fin n✝ → M i✝ : Fin n✝ n : ℕ hn : ∀ (f : Fin n → M) (i : Fin n), ↑(ι R) (f i) * List.prod (List.ofFn fun i => ↑(ι R) (f i)) = 0 f : Fin (Nat.succ n) → M i : Fin (Nat.succ n) ⊢ ↑(ι R) (f i) * List.prod (List.ofFn fun i => ↑(ι R) (f i)) = 0 [PROOFSTEP] rw [List.ofFn_succ, List.prod_cons, ← mul_assoc] [GOAL] case succ R : Type u1 inst✝⁴ : CommRing R M : Type u2 inst✝³ : AddCommGroup M inst✝² : Module R M A : Type u_1 inst✝¹ : Semiring A inst✝ : Algebra R A n✝ : ℕ f✝ : Fin n✝ → M i✝ : Fin n✝ n : ℕ hn : ∀ (f : Fin n → M) (i : Fin n), ↑(ι R) (f i) * List.prod (List.ofFn fun i => ↑(ι R) (f i)) = 0 f : Fin (Nat.succ n) → M i : Fin (Nat.succ n) ⊢ ↑(ι R) (f i) * ↑(ι R) (f 0) * List.prod (List.ofFn fun i => ↑(ι R) (f (Fin.succ i))) = 0 [PROOFSTEP] by_cases h : i = 0 [GOAL] case pos R : Type u1 inst✝⁴ : CommRing R M : Type u2 inst✝³ : AddCommGroup M inst✝² : Module R M A : Type u_1 inst✝¹ : Semiring A inst✝ : Algebra R A n✝ : ℕ f✝ : Fin n✝ → M i✝ : Fin n✝ n : ℕ hn : ∀ (f : Fin n → M) (i : Fin n), ↑(ι R) (f i) * List.prod (List.ofFn fun i => ↑(ι R) (f i)) = 0 f : Fin (Nat.succ n) → M i : Fin (Nat.succ n) h : i = 0 ⊢ ↑(ι R) (f i) * ↑(ι R) (f 0) * List.prod (List.ofFn fun i => ↑(ι R) (f (Fin.succ i))) = 0 [PROOFSTEP] rw [h, ι_sq_zero, zero_mul] [GOAL] case neg R : Type u1 inst✝⁴ : CommRing R M : Type u2 inst✝³ : AddCommGroup M inst✝² : Module R M A : Type u_1 inst✝¹ : Semiring A inst✝ : Algebra R A n✝ : ℕ f✝ : Fin n✝ → M i✝ : Fin n✝ n : ℕ hn : ∀ (f : Fin n → M) (i : Fin n), ↑(ι R) (f i) * List.prod (List.ofFn fun i => ↑(ι R) (f i)) = 0 f : Fin (Nat.succ n) → M i : Fin (Nat.succ n) h : ¬i = 0 ⊢ ↑(ι R) (f i) * ↑(ι R) (f 0) * List.prod (List.ofFn fun i => ↑(ι R) (f (Fin.succ i))) = 0 [PROOFSTEP] replace hn := congr_arg ((· * ·) <| ι R <| f 0) (hn (fun i => f <| Fin.succ i) (i.pred h)) [GOAL] case neg R : Type u1 inst✝⁴ : CommRing R M : Type u2 inst✝³ : AddCommGroup M inst✝² : Module R M A : Type u_1 inst✝¹ : Semiring A inst✝ : Algebra R A n✝ : ℕ f✝ : Fin n✝ → M i✝ : Fin n✝ n : ℕ f : Fin (Nat.succ n) → M i : Fin (Nat.succ n) h : ¬i = 0 hn : (fun x x_1 => x * x_1) (↑(ι R) (f 0)) (↑(ι R) (f (Fin.succ (Fin.pred i h))) * List.prod (List.ofFn fun i => ↑(ι R) (f (Fin.succ i)))) = (fun x x_1 => x * x_1) (↑(ι R) (f 0)) 0 ⊢ ↑(ι R) (f i) * ↑(ι R) (f 0) * List.prod (List.ofFn fun i => ↑(ι R) (f (Fin.succ i))) = 0 [PROOFSTEP] simp only at hn [GOAL] case neg R : Type u1 inst✝⁴ : CommRing R M : Type u2 inst✝³ : AddCommGroup M inst✝² : Module R M A : Type u_1 inst✝¹ : Semiring A inst✝ : Algebra R A n✝ : ℕ f✝ : Fin n✝ → M i✝ : Fin n✝ n : ℕ f : Fin (Nat.succ n) → M i : Fin (Nat.succ n) h : ¬i = 0 hn : ↑(ι R) (f 0) * (↑(ι R) (f (Fin.succ (Fin.pred i h))) * List.prod (List.ofFn fun i => ↑(ι R) (f (Fin.succ i)))) = ↑(ι R) (f 0) * 0 ⊢ ↑(ι R) (f i) * ↑(ι R) (f 0) * List.prod (List.ofFn fun i => ↑(ι R) (f (Fin.succ i))) = 0 [PROOFSTEP] rw [Fin.succ_pred, ← mul_assoc, mul_zero] at hn [GOAL] case neg R : Type u1 inst✝⁴ : CommRing R M : Type u2 inst✝³ : AddCommGroup M inst✝² : Module R M A : Type u_1 inst✝¹ : Semiring A inst✝ : Algebra R A n✝ : ℕ f✝ : Fin n✝ → M i✝ : Fin n✝ n : ℕ f : Fin (Nat.succ n) → M i : Fin (Nat.succ n) h : ¬i = 0 hn : ↑(ι R) (f 0) * ↑(ι R) (f i) * List.prod (List.ofFn fun i => ↑(ι R) (f (Fin.succ i))) = 0 ⊢ ↑(ι R) (f i) * ↑(ι R) (f 0) * List.prod (List.ofFn fun i => ↑(ι R) (f (Fin.succ i))) = 0 [PROOFSTEP] refine' (eq_zero_iff_eq_zero_of_add_eq_zero _).mp hn [GOAL] case neg R : Type u1 inst✝⁴ : CommRing R M : Type u2 inst✝³ : AddCommGroup M inst✝² : Module R M A : Type u_1 inst✝¹ : Semiring A inst✝ : Algebra R A n✝ : ℕ f✝ : Fin n✝ → M i✝ : Fin n✝ n : ℕ f : Fin (Nat.succ n) → M i : Fin (Nat.succ n) h : ¬i = 0 hn : ↑(ι R) (f 0) * ↑(ι R) (f i) * List.prod (List.ofFn fun i => ↑(ι R) (f (Fin.succ i))) = 0 ⊢ ↑(ι R) (f 0) * ↑(ι R) (f i) * List.prod (List.ofFn fun i => ↑(ι R) (f (Fin.succ i))) + ↑(ι R) (f i) * ↑(ι R) (f 0) * List.prod (List.ofFn fun i => ↑(ι R) (f (Fin.succ i))) = 0 [PROOFSTEP] rw [← add_mul, ι_add_mul_swap, zero_mul] [GOAL] R : Type u1 inst✝⁴ : CommRing R M : Type u2 inst✝³ : AddCommGroup M inst✝² : Module R M A : Type u_1 inst✝¹ : Semiring A inst✝ : Algebra R A n : ℕ F : MultilinearMap R (fun x => M) (ExteriorAlgebra R M) := MultilinearMap.compLinearMap (MultilinearMap.mkPiAlgebraFin R n (ExteriorAlgebra R M)) fun x => ι R f : Fin n → M x y : Fin n hfxy : f x = f y hxy : x ≠ y ⊢ MultilinearMap.toFun { toFun := ↑F, map_add' := (_ : ∀ [inst : DecidableEq (Fin n)] (m : Fin n → M) (i : Fin n) (x y : M), MultilinearMap.toFun F (Function.update m i (x + y)) = MultilinearMap.toFun F (Function.update m i x) + MultilinearMap.toFun F (Function.update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq (Fin n)] (m : Fin n → M) (i : Fin n) (c : R) (x : M), MultilinearMap.toFun F (Function.update m i (c • x)) = c • MultilinearMap.toFun F (Function.update m i x)) } f = 0 [PROOFSTEP] dsimp [GOAL] R : Type u1 inst✝⁴ : CommRing R M : Type u2 inst✝³ : AddCommGroup M inst✝² : Module R M A : Type u_1 inst✝¹ : Semiring A inst✝ : Algebra R A n : ℕ F : MultilinearMap R (fun x => M) (ExteriorAlgebra R M) := MultilinearMap.compLinearMap (MultilinearMap.mkPiAlgebraFin R n (ExteriorAlgebra R M)) fun x => ι R f : Fin n → M x y : Fin n hfxy : f x = f y hxy : x ≠ y ⊢ List.prod (List.ofFn fun i => ↑(ι R) (f i)) = 0 [PROOFSTEP] clear F [GOAL] R : Type u1 inst✝⁴ : CommRing R M : Type u2 inst✝³ : AddCommGroup M inst✝² : Module R M A : Type u_1 inst✝¹ : Semiring A inst✝ : Algebra R A n : ℕ f : Fin n → M x y : Fin n hfxy : f x = f y hxy : x ≠ y ⊢ List.prod (List.ofFn fun i => ↑(ι R) (f i)) = 0 [PROOFSTEP] wlog h : x < y [GOAL] case inr R : Type u1 inst✝⁴ : CommRing R M : Type u2 inst✝³ : AddCommGroup M inst✝² : Module R M A : Type u_1 inst✝¹ : Semiring A inst✝ : Algebra R A n : ℕ f : Fin n → M x y : Fin n hfxy : f x = f y hxy : x ≠ y this : ∀ (R : Type u1) [inst : CommRing R] {M : Type u2} [inst_1 : AddCommGroup M] [inst_2 : Module R M] {A : Type u_1} [inst_3 : Semiring A] [inst_4 : Algebra R A] (n : ℕ) (f : Fin n → M) (x y : Fin n), f x = f y → x ≠ y → x < y → List.prod (List.ofFn fun i => ↑(ι R) (f i)) = 0 h : ¬x < y ⊢ List.prod (List.ofFn fun i => ↑(ι R) (f i)) = 0 [PROOFSTEP] exact this R (A := A) n f y x hfxy.symm hxy.symm (hxy.lt_or_lt.resolve_left h) [GOAL] R✝ : Type u1 inst✝⁷ : CommRing R✝ M✝ : Type u2 inst✝⁶ : AddCommGroup M✝ inst✝⁵ : Module R✝ M✝ R : Type u1 inst✝⁴ : CommRing R M : Type u2 inst✝³ : AddCommGroup M inst✝² : Module R M A : Type u_1 inst✝¹ : Semiring A inst✝ : Algebra R A n : ℕ f : Fin n → M x y : Fin n hfxy : f x = f y hxy : x ≠ y h : x < y ⊢ List.prod (List.ofFn fun i => ↑(ι R) (f i)) = 0 [PROOFSTEP] clear hxy [GOAL] R✝ : Type u1 inst✝⁷ : CommRing R✝ M✝ : Type u2 inst✝⁶ : AddCommGroup M✝ inst✝⁵ : Module R✝ M✝ R : Type u1 inst✝⁴ : CommRing R M : Type u2 inst✝³ : AddCommGroup M inst✝² : Module R M A : Type u_1 inst✝¹ : Semiring A inst✝ : Algebra R A n : ℕ f : Fin n → M x y : Fin n hfxy : f x = f y h : x < y ⊢ List.prod (List.ofFn fun i => ↑(ι R) (f i)) = 0 [PROOFSTEP] induction' n with n hn [GOAL] case zero R✝ : Type u1 inst✝⁷ : CommRing R✝ M✝ : Type u2 inst✝⁶ : AddCommGroup M✝ inst✝⁵ : Module R✝ M✝ R : Type u1 inst✝⁴ : CommRing R M : Type u2 inst✝³ : AddCommGroup M inst✝² : Module R M A : Type u_1 inst✝¹ : Semiring A inst✝ : Algebra R A n : ℕ f✝ : Fin n → M x✝ y✝ : Fin n hfxy✝ : f✝ x✝ = f✝ y✝ h✝ : x✝ < y✝ f : Fin Nat.zero → M x y : Fin Nat.zero hfxy : f x = f y h : x < y ⊢ List.prod (List.ofFn fun i => ↑(ι R) (f i)) = 0 [PROOFSTEP] exact x.elim0 [GOAL] case succ R✝ : Type u1 inst✝⁷ : CommRing R✝ M✝ : Type u2 inst✝⁶ : AddCommGroup M✝ inst✝⁵ : Module R✝ M✝ R : Type u1 inst✝⁴ : CommRing R M : Type u2 inst✝³ : AddCommGroup M inst✝² : Module R M A : Type u_1 inst✝¹ : Semiring A inst✝ : Algebra R A n✝ : ℕ f✝ : Fin n✝ → M x✝ y✝ : Fin n✝ hfxy✝ : f✝ x✝ = f✝ y✝ h✝ : x✝ < y✝ n : ℕ hn : ∀ (f : Fin n → M) (x y : Fin n), f x = f y → x < y → List.prod (List.ofFn fun i => ↑(ι R) (f i)) = 0 f : Fin (Nat.succ n) → M x y : Fin (Nat.succ n) hfxy : f x = f y h : x < y ⊢ List.prod (List.ofFn fun i => ↑(ι R) (f i)) = 0 [PROOFSTEP] rw [List.ofFn_succ, List.prod_cons] [GOAL] case succ R✝ : Type u1 inst✝⁷ : CommRing R✝ M✝ : Type u2 inst✝⁶ : AddCommGroup M✝ inst✝⁵ : Module R✝ M✝ R : Type u1 inst✝⁴ : CommRing R M : Type u2 inst✝³ : AddCommGroup M inst✝² : Module R M A : Type u_1 inst✝¹ : Semiring A inst✝ : Algebra R A n✝ : ℕ f✝ : Fin n✝ → M x✝ y✝ : Fin n✝ hfxy✝ : f✝ x✝ = f✝ y✝ h✝ : x✝ < y✝ n : ℕ hn : ∀ (f : Fin n → M) (x y : Fin n), f x = f y → x < y → List.prod (List.ofFn fun i => ↑(ι R) (f i)) = 0 f : Fin (Nat.succ n) → M x y : Fin (Nat.succ n) hfxy : f x = f y h : x < y ⊢ ↑(ι R) (f 0) * List.prod (List.ofFn fun i => ↑(ι R) (f (Fin.succ i))) = 0 [PROOFSTEP] by_cases hx : x = 0 -- one of the repeated terms is on the left [GOAL] case pos R✝ : Type u1 inst✝⁷ : CommRing R✝ M✝ : Type u2 inst✝⁶ : AddCommGroup M✝ inst✝⁵ : Module R✝ M✝ R : Type u1 inst✝⁴ : CommRing R M : Type u2 inst✝³ : AddCommGroup M inst✝² : Module R M A : Type u_1 inst✝¹ : Semiring A inst✝ : Algebra R A n✝ : ℕ f✝ : Fin n✝ → M x✝ y✝ : Fin n✝ hfxy✝ : f✝ x✝ = f✝ y✝ h✝ : x✝ < y✝ n : ℕ hn : ∀ (f : Fin n → M) (x y : Fin n), f x = f y → x < y → List.prod (List.ofFn fun i => ↑(ι R) (f i)) = 0 f : Fin (Nat.succ n) → M x y : Fin (Nat.succ n) hfxy : f x = f y h : x < y hx : x = 0 ⊢ ↑(ι R) (f 0) * List.prod (List.ofFn fun i => ↑(ι R) (f (Fin.succ i))) = 0 [PROOFSTEP] rw [hx] at hfxy h [GOAL] case pos R✝ : Type u1 inst✝⁷ : CommRing R✝ M✝ : Type u2 inst✝⁶ : AddCommGroup M✝ inst✝⁵ : Module R✝ M✝ R : Type u1 inst✝⁴ : CommRing R M : Type u2 inst✝³ : AddCommGroup M inst✝² : Module R M A : Type u_1 inst✝¹ : Semiring A inst✝ : Algebra R A n✝ : ℕ f✝ : Fin n✝ → M x✝ y✝ : Fin n✝ hfxy✝ : f✝ x✝ = f✝ y✝ h✝ : x✝ < y✝ n : ℕ hn : ∀ (f : Fin n → M) (x y : Fin n), f x = f y → x < y → List.prod (List.ofFn fun i => ↑(ι R) (f i)) = 0 f : Fin (Nat.succ n) → M x y : Fin (Nat.succ n) hfxy : f 0 = f y h : 0 < y hx : x = 0 ⊢ ↑(ι R) (f 0) * List.prod (List.ofFn fun i => ↑(ι R) (f (Fin.succ i))) = 0 [PROOFSTEP] rw [hfxy, ← Fin.succ_pred y (ne_of_lt h).symm] [GOAL] case pos R✝ : Type u1 inst✝⁷ : CommRing R✝ M✝ : Type u2 inst✝⁶ : AddCommGroup M✝ inst✝⁵ : Module R✝ M✝ R : Type u1 inst✝⁴ : CommRing R M : Type u2 inst✝³ : AddCommGroup M inst✝² : Module R M A : Type u_1 inst✝¹ : Semiring A inst✝ : Algebra R A n✝ : ℕ f✝ : Fin n✝ → M x✝ y✝ : Fin n✝ hfxy✝ : f✝ x✝ = f✝ y✝ h✝ : x✝ < y✝ n : ℕ hn : ∀ (f : Fin n → M) (x y : Fin n), f x = f y → x < y → List.prod (List.ofFn fun i => ↑(ι R) (f i)) = 0 f : Fin (Nat.succ n) → M x y : Fin (Nat.succ n) hfxy : f 0 = f y h : 0 < y hx : x = 0 ⊢ ↑(ι R) (f (Fin.succ (Fin.pred y (_ : y ≠ 0)))) * List.prod (List.ofFn fun i => ↑(ι R) (f (Fin.succ i))) = 0 [PROOFSTEP] exact ι_mul_prod_list (f ∘ Fin.succ) _ -- ignore the left-most term and induct on the remaining ones, decrementing indices [GOAL] case neg R✝ : Type u1 inst✝⁷ : CommRing R✝ M✝ : Type u2 inst✝⁶ : AddCommGroup M✝ inst✝⁵ : Module R✝ M✝ R : Type u1 inst✝⁴ : CommRing R M : Type u2 inst✝³ : AddCommGroup M inst✝² : Module R M A : Type u_1 inst✝¹ : Semiring A inst✝ : Algebra R A n✝ : ℕ f✝ : Fin n✝ → M x✝ y✝ : Fin n✝ hfxy✝ : f✝ x✝ = f✝ y✝ h✝ : x✝ < y✝ n : ℕ hn : ∀ (f : Fin n → M) (x y : Fin n), f x = f y → x < y → List.prod (List.ofFn fun i => ↑(ι R) (f i)) = 0 f : Fin (Nat.succ n) → M x y : Fin (Nat.succ n) hfxy : f x = f y h : x < y hx : ¬x = 0 ⊢ ↑(ι R) (f 0) * List.prod (List.ofFn fun i => ↑(ι R) (f (Fin.succ i))) = 0 [PROOFSTEP] convert mul_zero (ι R (f 0)) [GOAL] case h.e'_2.h.e'_6 R✝ : Type u1 inst✝⁷ : CommRing R✝ M✝ : Type u2 inst✝⁶ : AddCommGroup M✝ inst✝⁵ : Module R✝ M✝ R : Type u1 inst✝⁴ : CommRing R M : Type u2 inst✝³ : AddCommGroup M inst✝² : Module R M A : Type u_1 inst✝¹ : Semiring A inst✝ : Algebra R A n✝ : ℕ f✝ : Fin n✝ → M x✝ y✝ : Fin n✝ hfxy✝ : f✝ x✝ = f✝ y✝ h✝ : x✝ < y✝ n : ℕ hn : ∀ (f : Fin n → M) (x y : Fin n), f x = f y → x < y → List.prod (List.ofFn fun i => ↑(ι R) (f i)) = 0 f : Fin (Nat.succ n) → M x y : Fin (Nat.succ n) hfxy : f x = f y h : x < y hx : ¬x = 0 ⊢ List.prod (List.ofFn fun i => ↑(ι R) (f (Fin.succ i))) = 0 [PROOFSTEP] refine' hn (fun i => f <| Fin.succ i) (x.pred hx) (y.pred (ne_of_lt <| lt_of_le_of_lt x.zero_le h).symm) _ (Fin.pred_lt_pred_iff.mpr h) [GOAL] case h.e'_2.h.e'_6 R✝ : Type u1 inst✝⁷ : CommRing R✝ M✝ : Type u2 inst✝⁶ : AddCommGroup M✝ inst✝⁵ : Module R✝ M✝ R : Type u1 inst✝⁴ : CommRing R M : Type u2 inst✝³ : AddCommGroup M inst✝² : Module R M A : Type u_1 inst✝¹ : Semiring A inst✝ : Algebra R A n✝ : ℕ f✝ : Fin n✝ → M x✝ y✝ : Fin n✝ hfxy✝ : f✝ x✝ = f✝ y✝ h✝ : x✝ < y✝ n : ℕ hn : ∀ (f : Fin n → M) (x y : Fin n), f x = f y → x < y → List.prod (List.ofFn fun i => ↑(ι R) (f i)) = 0 f : Fin (Nat.succ n) → M x y : Fin (Nat.succ n) hfxy : f x = f y h : x < y hx : ¬x = 0 ⊢ (fun i => f (Fin.succ i)) (Fin.pred x hx) = (fun i => f (Fin.succ i)) (Fin.pred y (_ : y ≠ 0)) [PROOFSTEP] simp only [Fin.succ_pred] [GOAL] case h.e'_2.h.e'_6 R✝ : Type u1 inst✝⁷ : CommRing R✝ M✝ : Type u2 inst✝⁶ : AddCommGroup M✝ inst✝⁵ : Module R✝ M✝ R : Type u1 inst✝⁴ : CommRing R M : Type u2 inst✝³ : AddCommGroup M inst✝² : Module R M A : Type u_1 inst✝¹ : Semiring A inst✝ : Algebra R A n✝ : ℕ f✝ : Fin n✝ → M x✝ y✝ : Fin n✝ hfxy✝ : f✝ x✝ = f✝ y✝ h✝ : x✝ < y✝ n : ℕ hn : ∀ (f : Fin n → M) (x y : Fin n), f x = f y → x < y → List.prod (List.ofFn fun i => ↑(ι R) (f i)) = 0 f : Fin (Nat.succ n) → M x y : Fin (Nat.succ n) hfxy : f x = f y h : x < y hx : ¬x = 0 ⊢ f x = f y [PROOFSTEP] exact hfxy [GOAL] R : Type u1 inst✝⁴ : CommRing R M : Type u2 inst✝³ : AddCommGroup M inst✝² : Module R M A : Type u_1 inst✝¹ : Semiring A inst✝ : Algebra R A n : ℕ m : M v : Fin n → M ⊢ ↑(ι R) (Matrix.vecCons m v 0) * ↑(ιMulti R n) (Matrix.vecTail (Matrix.vecCons m v)) = ↑(↑(LinearMap.compAlternatingMap (LinearMap.mulLeft R (↑(ι R) m))) (ιMulti R n)) v [PROOFSTEP] simp_rw [Matrix.tail_cons] [GOAL] R : Type u1 inst✝⁴ : CommRing R M : Type u2 inst✝³ : AddCommGroup M inst✝² : Module R M A : Type u_1 inst✝¹ : Semiring A inst✝ : Algebra R A n : ℕ m : M v : Fin n → M ⊢ ↑(ι R) (Matrix.vecCons m v 0) * ↑(ιMulti R n) v = ↑(↑(LinearMap.compAlternatingMap (LinearMap.mulLeft R (↑(ι R) m))) (ιMulti R n)) v [PROOFSTEP] rfl [GOAL] R : Type u1 inst✝² : CommRing R M : Type u2 inst✝¹ : AddCommGroup M inst✝ : Module R M m : M ⊢ ↑toExterior (↑(ι R) m) = ↑(ExteriorAlgebra.ι R) m [PROOFSTEP] simp [toExterior]
{"mathlib_filename": "Mathlib.LinearAlgebra.ExteriorAlgebra.Basic", "llama_tokens": 13124}
[GOAL] R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M x : CliffordAlgebra Q ⊢ star (star x) = x [PROOFSTEP] simp only [reverse_involute_commute.eq, reverse_reverse, involute_involute] [GOAL] R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M x y : CliffordAlgebra Q ⊢ star (x * y) = star y * star x [PROOFSTEP] simp only [map_mul, reverse.map_mul] [GOAL] R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M x y : CliffordAlgebra Q ⊢ star (x + y) = star x + star y [PROOFSTEP] simp only [map_add] -- porting note: cannot infer `Q` [GOAL] R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M m : M ⊢ star (↑(ι Q) m) = -↑(ι Q) m [PROOFSTEP] rw [star_def, involute_ι, map_neg, reverse_ι] [GOAL] R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M r : R x : CliffordAlgebra Q ⊢ star (r • x) = r • star x [PROOFSTEP] rw [star_def, star_def, map_smul, map_smul] [GOAL] R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M r : R ⊢ star (↑(algebraMap R (CliffordAlgebra Q)) r) = ↑(algebraMap R (CliffordAlgebra Q)) r [PROOFSTEP] rw [star_def, involute.commutes, reverse.commutes]
{"mathlib_filename": "Mathlib.LinearAlgebra.CliffordAlgebra.Star", "llama_tokens": 669}
[GOAL] ι : Type u_1 K : Type u_2 V : Type u_3 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V f : ι → ℙ K V ⊢ Independent f ↔ LinearIndependent K (Projectivization.rep ∘ f) [PROOFSTEP] refine' ⟨_, fun h => _⟩ [GOAL] case refine'_1 ι : Type u_1 K : Type u_2 V : Type u_3 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V f : ι → ℙ K V ⊢ Independent f → LinearIndependent K (Projectivization.rep ∘ f) [PROOFSTEP] rintro ⟨ff, hff, hh⟩ [GOAL] case refine'_1.mk ι : Type u_1 K : Type u_2 V : Type u_3 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V ff : ι → V hff : ∀ (i : ι), ff i ≠ 0 hh : LinearIndependent K ff ⊢ LinearIndependent K (Projectivization.rep ∘ fun i => mk K (ff i) (_ : ff i ≠ 0)) [PROOFSTEP] choose a ha using fun i : ι => exists_smul_eq_mk_rep K (ff i) (hff i) [GOAL] case refine'_1.mk ι : Type u_1 K : Type u_2 V : Type u_3 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V ff : ι → V hff : ∀ (i : ι), ff i ≠ 0 hh : LinearIndependent K ff a : ι → Kˣ ha : ∀ (i : ι), a i • ff i = Projectivization.rep (mk K (ff i) (_ : ff i ≠ 0)) ⊢ LinearIndependent K (Projectivization.rep ∘ fun i => mk K (ff i) (_ : ff i ≠ 0)) [PROOFSTEP] convert hh.units_smul a [GOAL] case h.e'_4 ι : Type u_1 K : Type u_2 V : Type u_3 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V ff : ι → V hff : ∀ (i : ι), ff i ≠ 0 hh : LinearIndependent K ff a : ι → Kˣ ha : ∀ (i : ι), a i • ff i = Projectivization.rep (mk K (ff i) (_ : ff i ≠ 0)) ⊢ (Projectivization.rep ∘ fun i => mk K (ff i) (_ : ff i ≠ 0)) = a • ff [PROOFSTEP] ext i [GOAL] case h.e'_4.h ι : Type u_1 K : Type u_2 V : Type u_3 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V ff : ι → V hff : ∀ (i : ι), ff i ≠ 0 hh : LinearIndependent K ff a : ι → Kˣ ha : ∀ (i : ι), a i • ff i = Projectivization.rep (mk K (ff i) (_ : ff i ≠ 0)) i : ι ⊢ (Projectivization.rep ∘ fun i => mk K (ff i) (_ : ff i ≠ 0)) i = (a • ff) i [PROOFSTEP] exact (ha i).symm [GOAL] case refine'_2 ι : Type u_1 K : Type u_2 V : Type u_3 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V f : ι → ℙ K V h : LinearIndependent K (Projectivization.rep ∘ f) ⊢ Independent f [PROOFSTEP] convert Independent.mk _ _ h [GOAL] case h.e'_7.h ι : Type u_1 K : Type u_2 V : Type u_3 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V f : ι → ℙ K V h : LinearIndependent K (Projectivization.rep ∘ f) x✝ : ι ⊢ f x✝ = mk K ((Projectivization.rep ∘ f) x✝) (_ : ?m.12147 x✝ ≠ 0) [PROOFSTEP] simp only [mk_rep, Function.comp_apply] [GOAL] case refine'_2 ι : Type u_1 K : Type u_2 V : Type u_3 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V f : ι → ℙ K V h : LinearIndependent K (Projectivization.rep ∘ f) ⊢ ∀ (i : ι), (Projectivization.rep ∘ f) i ≠ 0 [PROOFSTEP] intro i [GOAL] case refine'_2 ι : Type u_1 K : Type u_2 V : Type u_3 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V f : ι → ℙ K V h : LinearIndependent K (Projectivization.rep ∘ f) i : ι ⊢ (Projectivization.rep ∘ f) i ≠ 0 [PROOFSTEP] apply rep_nonzero [GOAL] ι : Type u_1 K : Type u_2 V : Type u_3 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V f : ι → ℙ K V ⊢ Independent f ↔ CompleteLattice.Independent fun i => Projectivization.submodule (f i) [PROOFSTEP] refine' ⟨_, fun h => _⟩ [GOAL] case refine'_1 ι : Type u_1 K : Type u_2 V : Type u_3 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V f : ι → ℙ K V ⊢ Independent f → CompleteLattice.Independent fun i => Projectivization.submodule (f i) [PROOFSTEP] rintro ⟨f, hf, hi⟩ [GOAL] case refine'_1.mk ι : Type u_1 K : Type u_2 V : Type u_3 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V f : ι → V hf : ∀ (i : ι), f i ≠ 0 hi : LinearIndependent K f ⊢ CompleteLattice.Independent fun i => Projectivization.submodule ((fun i => mk K (f i) (_ : f i ≠ 0)) i) [PROOFSTEP] simp only [submodule_mk] [GOAL] case refine'_1.mk ι : Type u_1 K : Type u_2 V : Type u_3 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V f : ι → V hf : ∀ (i : ι), f i ≠ 0 hi : LinearIndependent K f ⊢ CompleteLattice.Independent fun i => Submodule.span K {f i} [PROOFSTEP] exact (CompleteLattice.independent_iff_linearIndependent_of_ne_zero (R := K) hf).mpr hi [GOAL] case refine'_2 ι : Type u_1 K : Type u_2 V : Type u_3 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V f : ι → ℙ K V h : CompleteLattice.Independent fun i => Projectivization.submodule (f i) ⊢ Independent f [PROOFSTEP] rw [independent_iff] [GOAL] case refine'_2 ι : Type u_1 K : Type u_2 V : Type u_3 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V f : ι → ℙ K V h : CompleteLattice.Independent fun i => Projectivization.submodule (f i) ⊢ LinearIndependent K (Projectivization.rep ∘ f) [PROOFSTEP] refine' h.linearIndependent (Projectivization.submodule ∘ f) (fun i => _) fun i => _ [GOAL] case refine'_2.refine'_1 ι : Type u_1 K : Type u_2 V : Type u_3 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V f : ι → ℙ K V h : CompleteLattice.Independent fun i => Projectivization.submodule (f i) i : ι ⊢ (Projectivization.rep ∘ f) i ∈ (Projectivization.submodule ∘ f) i [PROOFSTEP] simpa only [Function.comp_apply, submodule_eq] using Submodule.mem_span_singleton_self _ [GOAL] case refine'_2.refine'_2 ι : Type u_1 K : Type u_2 V : Type u_3 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V f : ι → ℙ K V h : CompleteLattice.Independent fun i => Projectivization.submodule (f i) i : ι ⊢ (Projectivization.rep ∘ f) i ≠ 0 [PROOFSTEP] exact rep_nonzero (f i) [GOAL] ι : Type u_1 K : Type u_2 V : Type u_3 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V f : ι → ℙ K V ⊢ Dependent f ↔ ¬LinearIndependent K (Projectivization.rep ∘ f) [PROOFSTEP] refine' ⟨_, fun h => _⟩ [GOAL] case refine'_1 ι : Type u_1 K : Type u_2 V : Type u_3 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V f : ι → ℙ K V ⊢ Dependent f → ¬LinearIndependent K (Projectivization.rep ∘ f) [PROOFSTEP] rintro ⟨ff, hff, hh1⟩ [GOAL] case refine'_1.mk ι : Type u_1 K : Type u_2 V : Type u_3 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V ff : ι → V hff : ∀ (i : ι), ff i ≠ 0 hh1 : ¬LinearIndependent K ff ⊢ ¬LinearIndependent K (Projectivization.rep ∘ fun i => mk K (ff i) (_ : ff i ≠ 0)) [PROOFSTEP] contrapose! hh1 [GOAL] case refine'_1.mk ι : Type u_1 K : Type u_2 V : Type u_3 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V ff : ι → V hff : ∀ (i : ι), ff i ≠ 0 hh1 : LinearIndependent K (Projectivization.rep ∘ fun i => mk K (ff i) (_ : ff i ≠ 0)) ⊢ LinearIndependent K ff [PROOFSTEP] choose a ha using fun i : ι => exists_smul_eq_mk_rep K (ff i) (hff i) [GOAL] case refine'_1.mk ι : Type u_1 K : Type u_2 V : Type u_3 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V ff : ι → V hff : ∀ (i : ι), ff i ≠ 0 hh1 : LinearIndependent K (Projectivization.rep ∘ fun i => mk K (ff i) (_ : ff i ≠ 0)) a : ι → Kˣ ha : ∀ (i : ι), a i • ff i = Projectivization.rep (mk K (ff i) (_ : ff i ≠ 0)) ⊢ LinearIndependent K ff [PROOFSTEP] convert hh1.units_smul a⁻¹ [GOAL] case h.e'_4 ι : Type u_1 K : Type u_2 V : Type u_3 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V ff : ι → V hff : ∀ (i : ι), ff i ≠ 0 hh1 : LinearIndependent K (Projectivization.rep ∘ fun i => mk K (ff i) (_ : ff i ≠ 0)) a : ι → Kˣ ha : ∀ (i : ι), a i • ff i = Projectivization.rep (mk K (ff i) (_ : ff i ≠ 0)) ⊢ ff = a⁻¹ • Projectivization.rep ∘ fun i => mk K (ff i) (_ : ff i ≠ 0) [PROOFSTEP] ext i [GOAL] case h.e'_4.h ι : Type u_1 K : Type u_2 V : Type u_3 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V ff : ι → V hff : ∀ (i : ι), ff i ≠ 0 hh1 : LinearIndependent K (Projectivization.rep ∘ fun i => mk K (ff i) (_ : ff i ≠ 0)) a : ι → Kˣ ha : ∀ (i : ι), a i • ff i = Projectivization.rep (mk K (ff i) (_ : ff i ≠ 0)) i : ι ⊢ ff i = (a⁻¹ • Projectivization.rep ∘ fun i => mk K (ff i) (_ : ff i ≠ 0)) i [PROOFSTEP] simp only [← ha, inv_smul_smul, Pi.smul_apply', Pi.inv_apply, Function.comp_apply] [GOAL] case refine'_2 ι : Type u_1 K : Type u_2 V : Type u_3 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V f : ι → ℙ K V h : ¬LinearIndependent K (Projectivization.rep ∘ f) ⊢ Dependent f [PROOFSTEP] convert Dependent.mk _ _ h [GOAL] case h.e'_7.h ι : Type u_1 K : Type u_2 V : Type u_3 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V f : ι → ℙ K V h : ¬LinearIndependent K (Projectivization.rep ∘ f) x✝ : ι ⊢ f x✝ = mk K ((Projectivization.rep ∘ f) x✝) (_ : ?m.30442 x✝ ≠ 0) [PROOFSTEP] simp only [mk_rep, Function.comp_apply] [GOAL] case refine'_2 ι : Type u_1 K : Type u_2 V : Type u_3 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V f : ι → ℙ K V h : ¬LinearIndependent K (Projectivization.rep ∘ f) ⊢ ∀ (i : ι), (Projectivization.rep ∘ f) i ≠ 0 [PROOFSTEP] exact fun i => rep_nonzero (f i) [GOAL] ι : Type u_1 K : Type u_2 V : Type u_3 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V f : ι → ℙ K V ⊢ Dependent f ↔ ¬Independent f [PROOFSTEP] rw [dependent_iff, independent_iff] [GOAL] ι : Type u_1 K : Type u_2 V : Type u_3 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V f : ι → ℙ K V ⊢ Independent f ↔ ¬Dependent f [PROOFSTEP] rw [dependent_iff_not_independent, Classical.not_not] [GOAL] ι : Type u_1 K : Type u_2 V : Type u_3 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V f : ι → ℙ K V u v : ℙ K V ⊢ Dependent ![u, v] ↔ u = v [PROOFSTEP] rw [dependent_iff_not_independent, independent_iff, linearIndependent_fin2, Function.comp_apply, Matrix.cons_val_one, Matrix.head_cons, Ne.def] [GOAL] ι : Type u_1 K : Type u_2 V : Type u_3 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V f : ι → ℙ K V u v : ℙ K V ⊢ ¬(¬Projectivization.rep v = 0 ∧ ∀ (a : K), a • Projectivization.rep v ≠ (Projectivization.rep ∘ ![u, v]) 0) ↔ u = v [PROOFSTEP] simp only [Matrix.cons_val_zero, not_and, not_forall, Classical.not_not, Function.comp_apply, ← mk_eq_mk_iff' K _ _ (rep_nonzero u) (rep_nonzero v), mk_rep, imp_iff_right_iff] [GOAL] ι : Type u_1 K : Type u_2 V : Type u_3 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V f : ι → ℙ K V u v : ℙ K V ⊢ ¬Projectivization.rep v = 0 ∨ u = v [PROOFSTEP] exact Or.inl (rep_nonzero v) [GOAL] ι : Type u_1 K : Type u_2 V : Type u_3 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V f : ι → ℙ K V u v : ℙ K V ⊢ Independent ![u, v] ↔ u ≠ v [PROOFSTEP] rw [independent_iff_not_dependent, dependent_pair_iff_eq u v]
{"mathlib_filename": "Mathlib.LinearAlgebra.ProjectiveSpace.Independence", "llama_tokens": 5048}
[GOAL] R : Type u_1 V : Type u_2 P : Type u_3 inst✝⁴ : DivisionRing R inst✝³ : CharZero R inst✝² : AddCommGroup V inst✝¹ : Module R V inst✝ : AddTorsor V P a b : P ⊢ ↑(lineMap a b) (1 / 2) = midpoint R a b [PROOFSTEP] rw [one_div, lineMap_inv_two] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝⁴ : Field k inst✝³ : CharZero k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AddTorsor V P a b : P ⊢ ↑(homothety a (1 / 2)) b = midpoint k a b [PROOFSTEP] rw [one_div, homothety_inv_two]
{"mathlib_filename": "Mathlib.LinearAlgebra.AffineSpace.MidpointZero", "llama_tokens": 255}
[GOAL] K : Type u_1 V : Type u_2 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V A B : Subspace K V ⊢ A.carrier = B.carrier → A = B [PROOFSTEP] cases A [GOAL] case mk K : Type u_1 V : Type u_2 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V B : Subspace K V carrier✝ : Set (ℙ K V) mem_add'✝ : ∀ (v w : V) (hv : v ≠ 0) (hw : w ≠ 0) (hvw : v + w ≠ 0), Projectivization.mk K v hv ∈ carrier✝ → Projectivization.mk K w hw ∈ carrier✝ → Projectivization.mk K (v + w) hvw ∈ carrier✝ ⊢ { carrier := carrier✝, mem_add' := mem_add'✝ }.carrier = B.carrier → { carrier := carrier✝, mem_add' := mem_add'✝ } = B [PROOFSTEP] cases B [GOAL] case mk.mk K : Type u_1 V : Type u_2 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V carrier✝¹ : Set (ℙ K V) mem_add'✝¹ : ∀ (v w : V) (hv : v ≠ 0) (hw : w ≠ 0) (hvw : v + w ≠ 0), Projectivization.mk K v hv ∈ carrier✝¹ → Projectivization.mk K w hw ∈ carrier✝¹ → Projectivization.mk K (v + w) hvw ∈ carrier✝¹ carrier✝ : Set (ℙ K V) mem_add'✝ : ∀ (v w : V) (hv : v ≠ 0) (hw : w ≠ 0) (hvw : v + w ≠ 0), Projectivization.mk K v hv ∈ carrier✝ → Projectivization.mk K w hw ∈ carrier✝ → Projectivization.mk K (v + w) hvw ∈ carrier✝ ⊢ { carrier := carrier✝¹, mem_add' := mem_add'✝¹ }.carrier = { carrier := carrier✝, mem_add' := mem_add'✝ }.carrier → { carrier := carrier✝¹, mem_add' := mem_add'✝¹ } = { carrier := carrier✝, mem_add' := mem_add'✝ } [PROOFSTEP] simp [GOAL] K : Type u_1 V : Type u_2 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V A : Set (ℙ K V) B : Subspace K V ⊢ A ≤ ↑B → span A ≤ B [PROOFSTEP] intro h x hx [GOAL] K : Type u_1 V : Type u_2 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V A : Set (ℙ K V) B : Subspace K V h : A ≤ ↑B x : ℙ K V hx : x ∈ span A ⊢ x ∈ B [PROOFSTEP] induction' hx with y hy [GOAL] case of K : Type u_1 V : Type u_2 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V A : Set (ℙ K V) B : Subspace K V h : A ≤ ↑B x y : ℙ K V hy : y ∈ A ⊢ y ∈ B [PROOFSTEP] apply h [GOAL] case of.a K : Type u_1 V : Type u_2 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V A : Set (ℙ K V) B : Subspace K V h : A ≤ ↑B x y : ℙ K V hy : y ∈ A ⊢ y ∈ A [PROOFSTEP] assumption [GOAL] case mem_add K : Type u_1 V : Type u_2 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V A : Set (ℙ K V) B : Subspace K V h : A ≤ ↑B x : ℙ K V v✝ w✝ : V hv✝ : v✝ ≠ 0 hw✝ : w✝ ≠ 0 hvw✝ : v✝ + w✝ ≠ 0 a✝¹ : spanCarrier A (Projectivization.mk K v✝ hv✝) a✝ : spanCarrier A (Projectivization.mk K w✝ hw✝) a_ih✝¹ : Projectivization.mk K v✝ hv✝ ∈ B a_ih✝ : Projectivization.mk K w✝ hw✝ ∈ B ⊢ Projectivization.mk K (v✝ + w✝) hvw✝ ∈ B [PROOFSTEP] apply B.mem_add [GOAL] case mem_add.a K : Type u_1 V : Type u_2 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V A : Set (ℙ K V) B : Subspace K V h : A ≤ ↑B x : ℙ K V v✝ w✝ : V hv✝ : v✝ ≠ 0 hw✝ : w✝ ≠ 0 hvw✝ : v✝ + w✝ ≠ 0 a✝¹ : spanCarrier A (Projectivization.mk K v✝ hv✝) a✝ : spanCarrier A (Projectivization.mk K w✝ hw✝) a_ih✝¹ : Projectivization.mk K v✝ hv✝ ∈ B a_ih✝ : Projectivization.mk K w✝ hw✝ ∈ B ⊢ Projectivization.mk K v✝ ?mem_add.hv ∈ B case mem_add.a K : Type u_1 V : Type u_2 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V A : Set (ℙ K V) B : Subspace K V h : A ≤ ↑B x : ℙ K V v✝ w✝ : V hv✝ : v✝ ≠ 0 hw✝ : w✝ ≠ 0 hvw✝ : v✝ + w✝ ≠ 0 a✝¹ : spanCarrier A (Projectivization.mk K v✝ hv✝) a✝ : spanCarrier A (Projectivization.mk K w✝ hw✝) a_ih✝¹ : Projectivization.mk K v✝ hv✝ ∈ B a_ih✝ : Projectivization.mk K w✝ hw✝ ∈ B ⊢ Projectivization.mk K w✝ ?mem_add.hw ∈ B case mem_add.hv K : Type u_1 V : Type u_2 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V A : Set (ℙ K V) B : Subspace K V h : A ≤ ↑B x : ℙ K V v✝ w✝ : V hv✝ : v✝ ≠ 0 hw✝ : w✝ ≠ 0 hvw✝ : v✝ + w✝ ≠ 0 a✝¹ : spanCarrier A (Projectivization.mk K v✝ hv✝) a✝ : spanCarrier A (Projectivization.mk K w✝ hw✝) a_ih✝¹ : Projectivization.mk K v✝ hv✝ ∈ B a_ih✝ : Projectivization.mk K w✝ hw✝ ∈ B ⊢ v✝ ≠ 0 case mem_add.hw K : Type u_1 V : Type u_2 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V A : Set (ℙ K V) B : Subspace K V h : A ≤ ↑B x : ℙ K V v✝ w✝ : V hv✝ : v✝ ≠ 0 hw✝ : w✝ ≠ 0 hvw✝ : v✝ + w✝ ≠ 0 a✝¹ : spanCarrier A (Projectivization.mk K v✝ hv✝) a✝ : spanCarrier A (Projectivization.mk K w✝ hw✝) a_ih✝¹ : Projectivization.mk K v✝ hv✝ ∈ B a_ih✝ : Projectivization.mk K w✝ hw✝ ∈ B ⊢ w✝ ≠ 0 [PROOFSTEP] assumption' [GOAL] K : Type u_1 V : Type u_2 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V A : Set (Subspace K V) v w : V hv : v ≠ 0 hw : w ≠ 0 hvw : v + w ≠ 0 h1 : Projectivization.mk K v hv ∈ sInf (SetLike.coe '' A) h2 : Projectivization.mk K w hw ∈ sInf (SetLike.coe '' A) t : Set (ℙ K V) ⊢ t ∈ SetLike.coe '' A → Projectivization.mk K (v + w) hvw ∈ t [PROOFSTEP] rintro ⟨s, hs, rfl⟩ [GOAL] case intro.intro K : Type u_1 V : Type u_2 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V A : Set (Subspace K V) v w : V hv : v ≠ 0 hw : w ≠ 0 hvw : v + w ≠ 0 h1 : Projectivization.mk K v hv ∈ sInf (SetLike.coe '' A) h2 : Projectivization.mk K w hw ∈ sInf (SetLike.coe '' A) s : Subspace K V hs : s ∈ A ⊢ Projectivization.mk K (v + w) hvw ∈ ↑s [PROOFSTEP] exact s.mem_add v w hv hw _ (h1 s ⟨s, hs, rfl⟩) (h2 s ⟨s, hs, rfl⟩) [GOAL] K : Type u_1 V : Type u_2 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V src✝ : Inf (Subspace K V) := inferInstance ⊢ ∀ (s : Set (Subspace K V)), IsGLB s (sInf s) [PROOFSTEP] refine fun s => ⟨fun a ha x hx => hx _ ⟨a, ha, rfl⟩, fun a ha x hx E => ?_⟩ [GOAL] K : Type u_1 V : Type u_2 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V src✝ : Inf (Subspace K V) := inferInstance s : Set (Subspace K V) a : Subspace K V ha : a ∈ lowerBounds s x : ℙ K V hx : x ∈ a E : Set (ℙ K V) ⊢ E ∈ SetLike.coe '' s → x ∈ E [PROOFSTEP] rintro ⟨E, hE, rfl⟩ [GOAL] case intro.intro K : Type u_1 V : Type u_2 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V src✝ : Inf (Subspace K V) := inferInstance s : Set (Subspace K V) a : Subspace K V ha : a ∈ lowerBounds s x : ℙ K V hx : x ∈ a E : Subspace K V hE : E ∈ s ⊢ x ∈ ↑E [PROOFSTEP] exact ha hE hx [GOAL] K : Type u_1 V : Type u_2 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V ⊢ span Set.univ = ⊤ [PROOFSTEP] rw [eq_top_iff, SetLike.le_def] [GOAL] K : Type u_1 V : Type u_2 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V ⊢ ∀ ⦃x : ℙ K V⦄, x ∈ ⊤ → x ∈ span Set.univ [PROOFSTEP] intro x _hx [GOAL] K : Type u_1 V : Type u_2 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V x : ℙ K V _hx : x ∈ ⊤ ⊢ x ∈ span Set.univ [PROOFSTEP] exact subset_span _ (Set.mem_univ x) [GOAL] K : Type u_1 V : Type u_2 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V S : Set (ℙ K V) W : Subspace K V ⊢ W ⊔ span S = span (↑W ∪ S) [PROOFSTEP] rw [span_union, span_coe] [GOAL] K : Type u_1 V : Type u_2 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V S : Set (ℙ K V) W : Subspace K V ⊢ span S ⊔ W = span (S ∪ ↑W) [PROOFSTEP] rw [span_union, span_coe] [GOAL] K : Type u_1 V : Type u_2 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V S : Set (ℙ K V) u : ℙ K V ⊢ u ∈ span S ↔ ∀ (W : Subspace K V), S ⊆ ↑W → u ∈ W [PROOFSTEP] simp_rw [← span_le_subspace_iff] [GOAL] K : Type u_1 V : Type u_2 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V S : Set (ℙ K V) u : ℙ K V ⊢ u ∈ span S ↔ ∀ (W : Subspace K V), span S ≤ W → u ∈ W [PROOFSTEP] exact ⟨fun hu W hW => hW hu, fun W => W (span S) (le_refl _)⟩ [GOAL] K : Type u_1 V : Type u_2 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V S : Set (ℙ K V) ⊢ span S = sInf {W | S ⊆ ↑W} [PROOFSTEP] ext x [GOAL] case carrier.h K : Type u_1 V : Type u_2 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V S : Set (ℙ K V) x : ℙ K V ⊢ x ∈ (span S).carrier ↔ x ∈ (sInf {W | S ⊆ ↑W}).carrier [PROOFSTEP] simp_rw [mem_carrier_iff, mem_span x] [GOAL] case carrier.h K : Type u_1 V : Type u_2 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V S : Set (ℙ K V) x : ℙ K V ⊢ (∀ (W : Subspace K V), S ⊆ ↑W → x ∈ W) ↔ x ∈ sInf {W | S ⊆ ↑W} [PROOFSTEP] refine ⟨fun hx => ?_, fun hx W hW => ?_⟩ [GOAL] case carrier.h.refine_1 K : Type u_1 V : Type u_2 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V S : Set (ℙ K V) x : ℙ K V hx : ∀ (W : Subspace K V), S ⊆ ↑W → x ∈ W ⊢ x ∈ sInf {W | S ⊆ ↑W} [PROOFSTEP] rintro W ⟨T, hT, rfl⟩ [GOAL] case carrier.h.refine_1.intro.intro K : Type u_1 V : Type u_2 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V S : Set (ℙ K V) x : ℙ K V hx : ∀ (W : Subspace K V), S ⊆ ↑W → x ∈ W T : Subspace K V hT : T ∈ {W | S ⊆ ↑W} ⊢ x ∈ ↑T [PROOFSTEP] exact hx T hT [GOAL] case carrier.h.refine_2 K : Type u_1 V : Type u_2 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V S : Set (ℙ K V) x : ℙ K V hx : x ∈ sInf {W | S ⊆ ↑W} W : Subspace K V hW : S ⊆ ↑W ⊢ x ∈ W [PROOFSTEP] exact (@sInf_le _ _ {W : Subspace K V | S ⊆ ↑W} W hW) hx
{"mathlib_filename": "Mathlib.LinearAlgebra.ProjectiveSpace.Subspace", "llama_tokens": 5020}
[GOAL] K : Type u_1 V : Type u_2 inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V v : ℙ K V ⊢ ∀ (a b : { v // v ≠ 0 }), Setoid.r a b → Submodule.span K {↑a} = Submodule.span K {↑b} [PROOFSTEP] rintro ⟨a, ha⟩ ⟨b, hb⟩ ⟨x, rfl : x • b = a⟩ [GOAL] case mk.mk.intro K : Type u_1 V : Type u_2 inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V v : ℙ K V b : V hb : b ≠ 0 x : Kˣ ha : x • b ≠ 0 ⊢ Submodule.span K {↑{ val := x • b, property := ha }} = Submodule.span K {↑{ val := b, property := hb }} [PROOFSTEP] exact Submodule.span_singleton_group_smul_eq _ x _ [GOAL] K : Type u_1 V : Type u_2 inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V v w : V hv : v ≠ 0 hw : w ≠ 0 ⊢ mk K v hv = mk K w hw ↔ ∃ a, a • w = v [PROOFSTEP] rw [mk_eq_mk_iff K v w hv hw] [GOAL] K : Type u_1 V : Type u_2 inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V v w : V hv : v ≠ 0 hw : w ≠ 0 ⊢ (∃ a, a • w = v) ↔ ∃ a, a • w = v [PROOFSTEP] constructor [GOAL] case mp K : Type u_1 V : Type u_2 inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V v w : V hv : v ≠ 0 hw : w ≠ 0 ⊢ (∃ a, a • w = v) → ∃ a, a • w = v [PROOFSTEP] rintro ⟨a, ha⟩ [GOAL] case mp.intro K : Type u_1 V : Type u_2 inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V v w : V hv : v ≠ 0 hw : w ≠ 0 a : Kˣ ha : a • w = v ⊢ ∃ a, a • w = v [PROOFSTEP] exact ⟨a, ha⟩ [GOAL] case mpr K : Type u_1 V : Type u_2 inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V v w : V hv : v ≠ 0 hw : w ≠ 0 ⊢ (∃ a, a • w = v) → ∃ a, a • w = v [PROOFSTEP] rintro ⟨a, ha⟩ [GOAL] case mpr.intro K : Type u_1 V : Type u_2 inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V v w : V hv : v ≠ 0 hw : w ≠ 0 a : K ha : a • w = v ⊢ ∃ a, a • w = v [PROOFSTEP] refine' ⟨Units.mk0 a fun c => hv.symm _, ha⟩ [GOAL] case mpr.intro K : Type u_1 V : Type u_2 inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V v w : V hv : v ≠ 0 hw : w ≠ 0 a : K ha : a • w = v c : a = 0 ⊢ 0 = v [PROOFSTEP] rwa [c, zero_smul] at ha [GOAL] K : Type u_1 V : Type u_2 inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V v : ℙ K V ⊢ Projectivization.submodule v = Submodule.span K {Projectivization.rep v} [PROOFSTEP] conv_lhs => rw [← v.mk_rep] [GOAL] K : Type u_1 V : Type u_2 inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V v : ℙ K V | Projectivization.submodule v [PROOFSTEP] rw [← v.mk_rep] [GOAL] K : Type u_1 V : Type u_2 inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V v : ℙ K V | Projectivization.submodule v [PROOFSTEP] rw [← v.mk_rep] [GOAL] K : Type u_1 V : Type u_2 inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V v : ℙ K V | Projectivization.submodule v [PROOFSTEP] rw [← v.mk_rep] [GOAL] K : Type u_1 V : Type u_2 inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V v : ℙ K V ⊢ finrank K { x // x ∈ Projectivization.submodule v } = 1 [PROOFSTEP] rw [submodule_eq] [GOAL] K : Type u_1 V : Type u_2 inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V v : ℙ K V ⊢ finrank K { x // x ∈ Submodule.span K {Projectivization.rep v} } = 1 [PROOFSTEP] exact finrank_span_singleton v.rep_nonzero [GOAL] K : Type u_1 V : Type u_2 inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V v : ℙ K V ⊢ FiniteDimensional K { x // x ∈ Projectivization.submodule v } [PROOFSTEP] rw [← v.mk_rep] [GOAL] K : Type u_1 V : Type u_2 inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V v : ℙ K V ⊢ FiniteDimensional K { x // x ∈ Projectivization.submodule (mk K (Projectivization.rep v) (_ : Projectivization.rep v ≠ 0)) } [PROOFSTEP] change FiniteDimensional K (K ∙ v.rep) [GOAL] K : Type u_1 V : Type u_2 inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V v : ℙ K V ⊢ FiniteDimensional K { x // x ∈ Submodule.span K {Projectivization.rep v} } [PROOFSTEP] infer_instance [GOAL] K : Type u_1 V : Type u_2 inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V u v : ℙ K V h : Projectivization.submodule u = Projectivization.submodule v ⊢ u = v [PROOFSTEP] induction' u using ind with u hu [GOAL] case h K : Type u_1 V : Type u_2 inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V u✝ v : ℙ K V h✝ : Projectivization.submodule u✝ = Projectivization.submodule v u : V hu : u ≠ 0 h : Projectivization.submodule (mk K u hu) = Projectivization.submodule v ⊢ mk K u hu = v [PROOFSTEP] induction' v using ind with v hv [GOAL] case h.h K : Type u_1 V : Type u_2 inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V u✝ v✝ : ℙ K V h✝² : Projectivization.submodule u✝ = Projectivization.submodule v✝ u : V hu : u ≠ 0 h✝¹ : Projectivization.submodule (mk K u hu) = Projectivization.submodule v✝ v : V hv : v ≠ 0 h✝ : Projectivization.submodule u✝ = Projectivization.submodule (mk K v hv) h : Projectivization.submodule (mk K u hu) = Projectivization.submodule (mk K v hv) ⊢ mk K u hu = mk K v hv [PROOFSTEP] rw [submodule_mk, submodule_mk, Submodule.span_singleton_eq_span_singleton] at h [GOAL] case h.h K : Type u_1 V : Type u_2 inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V u✝ v✝ : ℙ K V h✝² : Projectivization.submodule u✝ = Projectivization.submodule v✝ u : V hu : u ≠ 0 h✝¹ : Projectivization.submodule (mk K u hu) = Projectivization.submodule v✝ v : V hv : v ≠ 0 h✝ : Projectivization.submodule u✝ = Projectivization.submodule (mk K v hv) h : ∃ z, z • u = v ⊢ mk K u hu = mk K v hv [PROOFSTEP] exact ((mk_eq_mk_iff K v u hv hu).2 h).symm [GOAL] K : Type u_1 V : Type u_2 inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V H : Submodule K V ⊢ H ∈ Set.range Projectivization.submodule ↔ finrank K { x // x ∈ ↑(Equiv.refl (Submodule K V)) H } = 1 [PROOFSTEP] refine ⟨fun ⟨v, hv⟩ ↦ hv ▸ v.finrank_submodule, fun h ↦ ?_⟩ [GOAL] K : Type u_1 V : Type u_2 inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V H : Submodule K V h : finrank K { x // x ∈ ↑(Equiv.refl (Submodule K V)) H } = 1 ⊢ H ∈ Set.range Projectivization.submodule [PROOFSTEP] rcases finrank_eq_one_iff'.1 h with ⟨v : H, hv₀, hv : ∀ w : H, _⟩ [GOAL] case intro.intro K : Type u_1 V : Type u_2 inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V H : Submodule K V h : finrank K { x // x ∈ ↑(Equiv.refl (Submodule K V)) H } = 1 v : { x // x ∈ H } hv₀ : v ≠ 0 hv : ∀ (w : { x // x ∈ H }), ∃ c, c • v = w ⊢ H ∈ Set.range Projectivization.submodule [PROOFSTEP] use mk K (v : V) (Subtype.coe_injective.ne hv₀) [GOAL] case h K : Type u_1 V : Type u_2 inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V H : Submodule K V h : finrank K { x // x ∈ ↑(Equiv.refl (Submodule K V)) H } = 1 v : { x // x ∈ H } hv₀ : v ≠ 0 hv : ∀ (w : { x // x ∈ H }), ∃ c, c • v = w ⊢ Projectivization.submodule (mk K ↑v (_ : ↑v ≠ ↑0)) = H [PROOFSTEP] rw [submodule_mk, SetLike.ext'_iff, Submodule.span_singleton_eq_range] [GOAL] case h K : Type u_1 V : Type u_2 inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V H : Submodule K V h : finrank K { x // x ∈ ↑(Equiv.refl (Submodule K V)) H } = 1 v : { x // x ∈ H } hv₀ : v ≠ 0 hv : ∀ (w : { x // x ∈ H }), ∃ c, c • v = w ⊢ (Set.range fun x => x • ↑v) = ↑H [PROOFSTEP] refine (Set.range_subset_iff.2 fun _ ↦ H.smul_mem _ v.2).antisymm fun x hx ↦ ?_ [GOAL] case h K : Type u_1 V : Type u_2 inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V H : Submodule K V h : finrank K { x // x ∈ ↑(Equiv.refl (Submodule K V)) H } = 1 v : { x // x ∈ H } hv₀ : v ≠ 0 hv : ∀ (w : { x // x ∈ H }), ∃ c, c • v = w x : V hx : x ∈ ↑H ⊢ x ∈ Set.range fun x => x • ↑v [PROOFSTEP] rcases hv ⟨x, hx⟩ with ⟨c, hc⟩ [GOAL] case h.intro K : Type u_1 V : Type u_2 inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V H : Submodule K V h : finrank K { x // x ∈ ↑(Equiv.refl (Submodule K V)) H } = 1 v : { x // x ∈ H } hv₀ : v ≠ 0 hv : ∀ (w : { x // x ∈ H }), ∃ c, c • v = w x : V hx : x ∈ ↑H c : K hc : c • v = { val := x, property := hx } ⊢ x ∈ Set.range fun x => x • ↑v [PROOFSTEP] exact ⟨c, congr_arg Subtype.val hc⟩ [GOAL] K : Type u_1 V : Type u_2 inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V L : Type u_3 W : Type u_4 inst✝² : DivisionRing L inst✝¹ : AddCommGroup W inst✝ : Module L W σ : K →+* L f : V →ₛₗ[σ] W hf : Function.Injective ↑f v : { v // v ≠ 0 } c : ↑f ↑v = 0 ⊢ ↑f ↑v = ↑f 0 [PROOFSTEP] simp [c] [GOAL] K : Type u_1 V : Type u_2 inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V L : Type u_3 W : Type u_4 inst✝² : DivisionRing L inst✝¹ : AddCommGroup W inst✝ : Module L W σ : K →+* L f : V →ₛₗ[σ] W hf : Function.Injective ↑f ⊢ (Setoid.r ⇒ Setoid.r) (fun v => { val := ↑f ↑v, property := (_ : ↑f ↑v = 0 → False) }) fun v => { val := ↑f ↑v, property := (_ : ↑f ↑v = 0 → False) } [PROOFSTEP] rintro ⟨u, hu⟩ ⟨v, hv⟩ ⟨a, ha⟩ [GOAL] case mk.mk.intro K : Type u_1 V : Type u_2 inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V L : Type u_3 W : Type u_4 inst✝² : DivisionRing L inst✝¹ : AddCommGroup W inst✝ : Module L W σ : K →+* L f : V →ₛₗ[σ] W hf : Function.Injective ↑f u : V hu : u ≠ 0 v : V hv : v ≠ 0 a : Kˣ ha : (fun m => m • ↑{ val := v, property := hv }) a = ↑{ val := u, property := hu } ⊢ Setoid.r ((fun v => { val := ↑f ↑v, property := (_ : ↑f ↑v = 0 → False) }) { val := u, property := hu }) ((fun v => { val := ↑f ↑v, property := (_ : ↑f ↑v = 0 → False) }) { val := v, property := hv }) [PROOFSTEP] use Units.map σ.toMonoidHom a [GOAL] case h K : Type u_1 V : Type u_2 inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V L : Type u_3 W : Type u_4 inst✝² : DivisionRing L inst✝¹ : AddCommGroup W inst✝ : Module L W σ : K →+* L f : V →ₛₗ[σ] W hf : Function.Injective ↑f u : V hu : u ≠ 0 v : V hv : v ≠ 0 a : Kˣ ha : (fun m => m • ↑{ val := v, property := hv }) a = ↑{ val := u, property := hu } ⊢ (fun m => m • ↑((fun v => { val := ↑f ↑v, property := (_ : ↑f ↑v = 0 → False) }) { val := v, property := hv })) (↑(Units.map ↑σ) a) = ↑((fun v => { val := ↑f ↑v, property := (_ : ↑f ↑v = 0 → False) }) { val := u, property := hu }) [PROOFSTEP] dsimp at ha ⊢ [GOAL] case h K : Type u_1 V : Type u_2 inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V L : Type u_3 W : Type u_4 inst✝² : DivisionRing L inst✝¹ : AddCommGroup W inst✝ : Module L W σ : K →+* L f : V →ₛₗ[σ] W hf : Function.Injective ↑f u : V hu : u ≠ 0 v : V hv : v ≠ 0 a : Kˣ ha : a • v = u ⊢ ↑(Units.map ↑σ) a • ↑f v = ↑f u [PROOFSTEP] erw [← f.map_smulₛₗ, ha] [GOAL] K : Type u_1 V : Type u_2 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V L : Type u_3 W : Type u_4 inst✝³ : DivisionRing L inst✝² : AddCommGroup W inst✝¹ : Module L W σ : K →+* L τ : L →+* K inst✝ : RingHomInvPair σ τ f : V →ₛₗ[σ] W hf : Function.Injective ↑f u v : ℙ K V h : map f hf u = map f hf v ⊢ u = v [PROOFSTEP] induction' u using ind with u hu [GOAL] case h K : Type u_1 V : Type u_2 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V L : Type u_3 W : Type u_4 inst✝³ : DivisionRing L inst✝² : AddCommGroup W inst✝¹ : Module L W σ : K →+* L τ : L →+* K inst✝ : RingHomInvPair σ τ f : V →ₛₗ[σ] W hf : Function.Injective ↑f u✝ v : ℙ K V h✝ : map f hf u✝ = map f hf v u : V hu : u ≠ 0 h : map f hf (mk K u hu) = map f hf v ⊢ mk K u hu = v [PROOFSTEP] induction' v using ind with v hv [GOAL] case h.h K : Type u_1 V : Type u_2 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V L : Type u_3 W : Type u_4 inst✝³ : DivisionRing L inst✝² : AddCommGroup W inst✝¹ : Module L W σ : K →+* L τ : L →+* K inst✝ : RingHomInvPair σ τ f : V →ₛₗ[σ] W hf : Function.Injective ↑f u✝ v✝ : ℙ K V h✝² : map f hf u✝ = map f hf v✝ u : V hu : u ≠ 0 h✝¹ : map f hf (mk K u hu) = map f hf v✝ v : V hv : v ≠ 0 h✝ : map f hf u✝ = map f hf (mk K v hv) h : map f hf (mk K u hu) = map f hf (mk K v hv) ⊢ mk K u hu = mk K v hv [PROOFSTEP] simp only [map_mk, mk_eq_mk_iff'] at h ⊢ [GOAL] case h.h K : Type u_1 V : Type u_2 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V L : Type u_3 W : Type u_4 inst✝³ : DivisionRing L inst✝² : AddCommGroup W inst✝¹ : Module L W σ : K →+* L τ : L →+* K inst✝ : RingHomInvPair σ τ f : V →ₛₗ[σ] W hf : Function.Injective ↑f u✝ v✝ : ℙ K V h✝² : map f hf u✝ = map f hf v✝ u : V hu : u ≠ 0 h✝¹ : map f hf (mk K u hu) = map f hf v✝ v : V hv : v ≠ 0 h✝ : map f hf u✝ = map f hf (mk K v hv) h : ∃ a, a • ↑f v = ↑f u ⊢ ∃ a, a • v = u [PROOFSTEP] rcases h with ⟨a, ha⟩ [GOAL] case h.h.intro K : Type u_1 V : Type u_2 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V L : Type u_3 W : Type u_4 inst✝³ : DivisionRing L inst✝² : AddCommGroup W inst✝¹ : Module L W σ : K →+* L τ : L →+* K inst✝ : RingHomInvPair σ τ f : V →ₛₗ[σ] W hf : Function.Injective ↑f u✝ v✝ : ℙ K V h✝¹ : map f hf u✝ = map f hf v✝ u : V hu : u ≠ 0 h✝ : map f hf (mk K u hu) = map f hf v✝ v : V hv : v ≠ 0 h : map f hf u✝ = map f hf (mk K v hv) a : L ha : a • ↑f v = ↑f u ⊢ ∃ a, a • v = u [PROOFSTEP] refine ⟨τ a, hf ?_⟩ [GOAL] case h.h.intro K : Type u_1 V : Type u_2 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V L : Type u_3 W : Type u_4 inst✝³ : DivisionRing L inst✝² : AddCommGroup W inst✝¹ : Module L W σ : K →+* L τ : L →+* K inst✝ : RingHomInvPair σ τ f : V →ₛₗ[σ] W hf : Function.Injective ↑f u✝ v✝ : ℙ K V h✝¹ : map f hf u✝ = map f hf v✝ u : V hu : u ≠ 0 h✝ : map f hf (mk K u hu) = map f hf v✝ v : V hv : v ≠ 0 h : map f hf u✝ = map f hf (mk K v hv) a : L ha : a • ↑f v = ↑f u ⊢ ↑f (↑τ a • v) = ↑f u [PROOFSTEP] rwa [f.map_smulₛₗ, RingHomInvPair.comp_apply_eq₂] [GOAL] K : Type u_1 V : Type u_2 inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V L : Type u_3 W : Type u_4 inst✝² : DivisionRing L inst✝¹ : AddCommGroup W inst✝ : Module L W ⊢ map LinearMap.id (_ : Function.Injective ↑(LinearEquiv.refl K V)) = id [PROOFSTEP] ext ⟨v⟩ [GOAL] case h.mk K : Type u_1 V : Type u_2 inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup V inst✝³ : Module K V L : Type u_3 W : Type u_4 inst✝² : DivisionRing L inst✝¹ : AddCommGroup W inst✝ : Module L W x✝ : ℙ K V v : { v // v ≠ 0 } ⊢ map LinearMap.id (_ : Function.Injective ↑(LinearEquiv.refl K V)) (Quot.mk Setoid.r v) = id (Quot.mk Setoid.r v) [PROOFSTEP] rfl [GOAL] K : Type u_1 V : Type u_2 inst✝⁹ : DivisionRing K inst✝⁸ : AddCommGroup V inst✝⁷ : Module K V L : Type u_3 W : Type u_4 inst✝⁶ : DivisionRing L inst✝⁵ : AddCommGroup W inst✝⁴ : Module L W F : Type u_5 U : Type u_6 inst✝³ : Field F inst✝² : AddCommGroup U inst✝¹ : Module F U σ : K →+* L τ : L →+* F γ : K →+* F inst✝ : RingHomCompTriple σ τ γ f : V →ₛₗ[σ] W hf : Function.Injective ↑f g : W →ₛₗ[τ] U hg : Function.Injective ↑g ⊢ map (LinearMap.comp g f) (_ : Function.Injective (↑g ∘ fun x => ↑f x)) = map g hg ∘ map f hf [PROOFSTEP] ext ⟨v⟩ [GOAL] case h.mk K : Type u_1 V : Type u_2 inst✝⁹ : DivisionRing K inst✝⁸ : AddCommGroup V inst✝⁷ : Module K V L : Type u_3 W : Type u_4 inst✝⁶ : DivisionRing L inst✝⁵ : AddCommGroup W inst✝⁴ : Module L W F : Type u_5 U : Type u_6 inst✝³ : Field F inst✝² : AddCommGroup U inst✝¹ : Module F U σ : K →+* L τ : L →+* F γ : K →+* F inst✝ : RingHomCompTriple σ τ γ f : V →ₛₗ[σ] W hf : Function.Injective ↑f g : W →ₛₗ[τ] U hg : Function.Injective ↑g x✝ : ℙ K V v : { v // v ≠ 0 } ⊢ map (LinearMap.comp g f) (_ : Function.Injective (↑g ∘ fun x => ↑f x)) (Quot.mk Setoid.r v) = (map g hg ∘ map f hf) (Quot.mk Setoid.r v) [PROOFSTEP] rfl
{"mathlib_filename": "Mathlib.LinearAlgebra.ProjectiveSpace.Basic", "llama_tokens": 8024}
[GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝² : Ring R inst✝¹ : CommRing R₁ inst✝ : AddCommGroup M f g : M → R x y : M ⊢ polar (f + g) x y = polar f x y + polar g x y [PROOFSTEP] simp only [polar, Pi.add_apply] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝² : Ring R inst✝¹ : CommRing R₁ inst✝ : AddCommGroup M f g : M → R x y : M ⊢ f (x + y) + g (x + y) - (f x + g x) - (f y + g y) = f (x + y) - f x - f y + (g (x + y) - g x - g y) [PROOFSTEP] abel [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝² : Ring R inst✝¹ : CommRing R₁ inst✝ : AddCommGroup M f g : M → R x y : M ⊢ f (x + y) + g (x + y) - (f x + g x) - (f y + g y) = f (x + y) - f x - f y + (g (x + y) - g x - g y) [PROOFSTEP] abel [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝² : Ring R inst✝¹ : CommRing R₁ inst✝ : AddCommGroup M f : M → R x y : M ⊢ polar (-f) x y = -polar f x y [PROOFSTEP] simp only [polar, Pi.neg_apply, sub_eq_add_neg, neg_add] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁴ : Ring R inst✝³ : CommRing R₁ inst✝² : AddCommGroup M inst✝¹ : Monoid S inst✝ : DistribMulAction S R f : M → R s : S x y : M ⊢ polar (s • f) x y = s • polar f x y [PROOFSTEP] simp only [polar, Pi.smul_apply, smul_sub] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝² : Ring R inst✝¹ : CommRing R₁ inst✝ : AddCommGroup M f : M → R x y : M ⊢ polar f x y = polar f y x [PROOFSTEP] rw [polar, polar, add_comm, sub_sub, sub_sub, add_comm (f x) (f y)] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝² : Ring R inst✝¹ : CommRing R₁ inst✝ : AddCommGroup M f : M → R x x' y : M ⊢ polar f (x + x') y = polar f x y + polar f x' y ↔ f (x + x' + y) + (f x + f x' + f y) = f (x + x') + f (x' + y) + f (y + x) [PROOFSTEP] simp only [← add_assoc] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝² : Ring R inst✝¹ : CommRing R₁ inst✝ : AddCommGroup M f : M → R x x' y : M ⊢ polar f (x + x') y = polar f x y + polar f x' y ↔ f (x + x' + y) + f x + f x' + f y = f (x + x') + f (x' + y) + f (y + x) [PROOFSTEP] simp only [polar, sub_eq_iff_eq_add, eq_sub_iff_add_eq, sub_add_eq_add_sub, add_sub] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝² : Ring R inst✝¹ : CommRing R₁ inst✝ : AddCommGroup M f : M → R x x' y : M ⊢ f (x + x' + y) + f y + f x' + f y + f x = f (x + y) + f (x' + y) + f y + f (x + x') ↔ f (x + x' + y) + f x + f x' + f y = f (x + x') + f (x' + y) + f (y + x) [PROOFSTEP] simp only [add_right_comm _ (f y) _, add_right_comm _ (f x') (f x)] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝² : Ring R inst✝¹ : CommRing R₁ inst✝ : AddCommGroup M f : M → R x x' y : M ⊢ f (x + x' + y) + f x + f x' + f y + f y = f (x + y) + f (x' + y) + f (x + x') + f y ↔ f (x + x' + y) + f x + f x' + f y = f (x + x') + f (x' + y) + f (y + x) [PROOFSTEP] rw [add_comm y x, add_right_comm _ _ (f (x + y)), add_comm _ (f (x + y)), add_right_comm (f (x + y)), add_left_inj] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁴ : Ring R inst✝³ : CommRing R₁ inst✝² : AddCommGroup M F : Type u_6 inst✝¹ : Ring S inst✝ : AddMonoidHomClass F R S f : M → R g : F x y : M ⊢ polar (↑g ∘ f) x y = ↑g (polar f x y) [PROOFSTEP] simp only [polar, Pi.smul_apply, Function.comp_apply, map_sub] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M Q Q' x y : QuadraticForm R M h : x.toFun = y.toFun ⊢ x = y [PROOFSTEP] cases x [GOAL] case mk S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M Q Q' y : QuadraticForm R M toFun✝ : M → R toFun_smul✝ : ∀ (a : R) (x : M), toFun✝ (a • x) = a * a * toFun✝ x exists_companion'✝ : ∃ B, ∀ (x y : M), toFun✝ (x + y) = toFun✝ x + toFun✝ y + BilinForm.bilin B x y h : { toFun := toFun✝, toFun_smul := toFun_smul✝, exists_companion' := exists_companion'✝ }.toFun = y.toFun ⊢ { toFun := toFun✝, toFun_smul := toFun_smul✝, exists_companion' := exists_companion'✝ } = y [PROOFSTEP] cases y [GOAL] case mk.mk S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M Q Q' : QuadraticForm R M toFun✝¹ : M → R toFun_smul✝¹ : ∀ (a : R) (x : M), toFun✝¹ (a • x) = a * a * toFun✝¹ x exists_companion'✝¹ : ∃ B, ∀ (x y : M), toFun✝¹ (x + y) = toFun✝¹ x + toFun✝¹ y + BilinForm.bilin B x y toFun✝ : M → R toFun_smul✝ : ∀ (a : R) (x : M), toFun✝ (a • x) = a * a * toFun✝ x exists_companion'✝ : ∃ B, ∀ (x y : M), toFun✝ (x + y) = toFun✝ x + toFun✝ y + BilinForm.bilin B x y h : { toFun := toFun✝¹, toFun_smul := toFun_smul✝¹, exists_companion' := exists_companion'✝¹ }.toFun = { toFun := toFun✝, toFun_smul := toFun_smul✝, exists_companion' := exists_companion'✝ }.toFun ⊢ { toFun := toFun✝¹, toFun_smul := toFun_smul✝¹, exists_companion' := exists_companion'✝¹ } = { toFun := toFun✝, toFun_smul := toFun_smul✝, exists_companion' := exists_companion'✝ } [PROOFSTEP] congr [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M Q : QuadraticForm R M x y z : M ⊢ ↑Q (x + y + z) + (↑Q x + ↑Q y + ↑Q z) = ↑Q (x + y) + ↑Q (y + z) + ↑Q (z + x) [PROOFSTEP] obtain ⟨B, h⟩ := Q.exists_companion [GOAL] case intro S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M Q : QuadraticForm R M x y z : M B : BilinForm R M h : ∀ (x y : M), ↑Q (x + y) = ↑Q x + ↑Q y + BilinForm.bilin B x y ⊢ ↑Q (x + y + z) + (↑Q x + ↑Q y + ↑Q z) = ↑Q (x + y) + ↑Q (y + z) + ↑Q (z + x) [PROOFSTEP] rw [add_comm z x] [GOAL] case intro S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M Q : QuadraticForm R M x y z : M B : BilinForm R M h : ∀ (x y : M), ↑Q (x + y) = ↑Q x + ↑Q y + BilinForm.bilin B x y ⊢ ↑Q (x + y + z) + (↑Q x + ↑Q y + ↑Q z) = ↑Q (x + y) + ↑Q (y + z) + ↑Q (x + z) [PROOFSTEP] simp [h] [GOAL] case intro S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M Q : QuadraticForm R M x y z : M B : BilinForm R M h : ∀ (x y : M), ↑Q (x + y) = ↑Q x + ↑Q y + BilinForm.bilin B x y ⊢ ↑Q x + ↑Q y + BilinForm.bilin B x y + ↑Q z + (BilinForm.bilin B x z + BilinForm.bilin B y z) + (↑Q x + ↑Q y + ↑Q z) = ↑Q x + ↑Q y + BilinForm.bilin B x y + (↑Q y + ↑Q z + BilinForm.bilin B y z) + (↑Q x + ↑Q z + BilinForm.bilin B x z) [PROOFSTEP] abel [GOAL] case intro S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M Q : QuadraticForm R M x y z : M B : BilinForm R M h : ∀ (x y : M), ↑Q (x + y) = ↑Q x + ↑Q y + BilinForm.bilin B x y ⊢ ↑Q x + ↑Q y + BilinForm.bilin B x y + ↑Q z + (BilinForm.bilin B x z + BilinForm.bilin B y z) + (↑Q x + ↑Q y + ↑Q z) = ↑Q x + ↑Q y + BilinForm.bilin B x y + (↑Q y + ↑Q z + BilinForm.bilin B y z) + (↑Q x + ↑Q z + BilinForm.bilin B x z) [PROOFSTEP] abel [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M Q : QuadraticForm R M x : M ⊢ ↑Q (x + x) = 4 * ↑Q x [PROOFSTEP] rw [← one_smul R x, ← add_smul, map_smul] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M Q : QuadraticForm R M x : M ⊢ (1 + 1) * (1 + 1) * ↑Q x = 4 * ↑Q (1 • x) [PROOFSTEP] norm_num [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M Q : QuadraticForm R M ⊢ ↑Q 0 = 0 [PROOFSTEP] rw [← @zero_smul R _ _ _ _ (0 : M), map_smul, zero_mul, zero_mul] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M Q : QuadraticForm R M inst✝³ : CommSemiring S inst✝² : Algebra S R inst✝¹ : Module S M inst✝ : IsScalarTower S R M a : S x : M ⊢ ↑Q (a • x) = (a * a) • ↑Q x [PROOFSTEP] rw [← IsScalarTower.algebraMap_smul R a x, map_smul, ← RingHom.map_mul, Algebra.smul_def] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝³ : Ring R inst✝² : CommRing R₁ inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M x : M ⊢ ↑Q (-x) = ↑Q x [PROOFSTEP] rw [← @neg_one_smul R _ _ _ _ x, map_smul, neg_one_mul, neg_neg, one_mul] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝³ : Ring R inst✝² : CommRing R₁ inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M x y : M ⊢ ↑Q (x - y) = ↑Q (y - x) [PROOFSTEP] rw [← neg_sub, map_neg] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝³ : Ring R inst✝² : CommRing R₁ inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M y : M ⊢ polar (↑Q) 0 y = 0 [PROOFSTEP] simp only [polar, zero_add, QuadraticForm.map_zero, sub_zero, sub_self] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝³ : Ring R inst✝² : CommRing R₁ inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M a : R x y : M ⊢ polar (↑Q) (a • x) y = a * polar (↑Q) x y [PROOFSTEP] obtain ⟨B, h⟩ := Q.exists_companion [GOAL] case intro S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝³ : Ring R inst✝² : CommRing R₁ inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M a : R x y : M B : BilinForm R M h : ∀ (x y : M), ↑Q (x + y) = ↑Q x + ↑Q y + BilinForm.bilin B x y ⊢ polar (↑Q) (a • x) y = a * polar (↑Q) x y [PROOFSTEP] simp_rw [polar, h, Q.map_smul, BilinForm.smul_left, sub_sub, add_sub_cancel'] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝³ : Ring R inst✝² : CommRing R₁ inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M x y : M ⊢ polar (↑Q) (-x) y = -polar (↑Q) x y [PROOFSTEP] rw [← neg_one_smul R x, polar_smul_left, neg_one_mul] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝³ : Ring R inst✝² : CommRing R₁ inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M x x' y : M ⊢ polar (↑Q) (x - x') y = polar (↑Q) x y - polar (↑Q) x' y [PROOFSTEP] rw [sub_eq_add_neg, sub_eq_add_neg, polar_add_left, polar_neg_left] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝³ : Ring R inst✝² : CommRing R₁ inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M y : M ⊢ polar (↑Q) y 0 = 0 [PROOFSTEP] simp only [add_zero, polar, QuadraticForm.map_zero, sub_self] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝³ : Ring R inst✝² : CommRing R₁ inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M x y y' : M ⊢ polar (↑Q) x (y + y') = polar (↑Q) x y + polar (↑Q) x y' [PROOFSTEP] rw [polar_comm Q x, polar_comm Q x, polar_comm Q x, polar_add_left] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝³ : Ring R inst✝² : CommRing R₁ inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M a : R x y : M ⊢ polar (↑Q) x (a • y) = a * polar (↑Q) x y [PROOFSTEP] rw [polar_comm Q x, polar_comm Q x, polar_smul_left] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝³ : Ring R inst✝² : CommRing R₁ inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M x y : M ⊢ polar (↑Q) x (-y) = -polar (↑Q) x y [PROOFSTEP] rw [← neg_one_smul R y, polar_smul_right, neg_one_mul] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝³ : Ring R inst✝² : CommRing R₁ inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M x y y' : M ⊢ polar (↑Q) x (y - y') = polar (↑Q) x y - polar (↑Q) x y' [PROOFSTEP] rw [sub_eq_add_neg, sub_eq_add_neg, polar_add_right, polar_neg_right] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝³ : Ring R inst✝² : CommRing R₁ inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M x : M ⊢ polar (↑Q) x x = 2 * ↑Q x [PROOFSTEP] rw [polar, map_add_self, sub_sub, sub_eq_iff_eq_add, ← two_mul, ← two_mul, ← mul_assoc] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝³ : Ring R inst✝² : CommRing R₁ inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M x : M ⊢ 4 * ↑Q x = 2 * 2 * ↑Q x [PROOFSTEP] norm_num [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝³ : Ring R inst✝² : CommRing R₁ inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M x y z : M ⊢ polar (↑Q) x (y + z) = polar (↑Q) x y + polar (↑Q) x z [PROOFSTEP] simp_rw [polar_comm _ x, polar_add_left Q] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝³ : Ring R inst✝² : CommRing R₁ inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M r : R x y : M ⊢ polar (↑Q) x (r • y) = r * polar (↑Q) x y [PROOFSTEP] simp_rw [polar_comm _ x, polar_smul_left Q] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁷ : Ring R inst✝⁶ : CommRing R₁ inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M Q : QuadraticForm R M inst✝³ : CommSemiring S inst✝² : Algebra S R inst✝¹ : Module S M inst✝ : IsScalarTower S R M a : S x y : M ⊢ polar (↑Q) (a • x) y = a • polar (↑Q) x y [PROOFSTEP] rw [← IsScalarTower.algebraMap_smul R a x, polar_smul_left, Algebra.smul_def] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁷ : Ring R inst✝⁶ : CommRing R₁ inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M Q : QuadraticForm R M inst✝³ : CommSemiring S inst✝² : Algebra S R inst✝¹ : Module S M inst✝ : IsScalarTower S R M a : S x y : M ⊢ polar (↑Q) x (a • y) = a • polar (↑Q) x y [PROOFSTEP] rw [← IsScalarTower.algebraMap_smul R a y, polar_smul_right, Algebra.smul_def] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁷ : Ring R inst✝⁶ : CommRing R₁ inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M Q : QuadraticForm R M inst✝³ : CommSemiring S inst✝² : Algebra S R inst✝¹ : Module S M inst✝ : IsScalarTower S R M toFun : M → R toFun_smul : ∀ (a : R) (x : M), toFun (a • x) = a * a * toFun x polar_add_left : ∀ (x x' y : M), polar toFun (x + x') y = polar toFun x y + polar toFun x' y polar_smul_left : ∀ (a : R) (x y : M), polar toFun (a • x) y = a • polar toFun x y x y z : M ⊢ polar toFun x (y + z) = polar toFun x y + polar toFun x z [PROOFSTEP] simp_rw [polar_comm _ x, polar_add_left] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁷ : Ring R inst✝⁶ : CommRing R₁ inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M Q : QuadraticForm R M inst✝³ : CommSemiring S inst✝² : Algebra S R inst✝¹ : Module S M inst✝ : IsScalarTower S R M toFun : M → R toFun_smul : ∀ (a : R) (x : M), toFun (a • x) = a * a * toFun x polar_add_left : ∀ (x x' y : M), polar toFun (x + x') y = polar toFun x y + polar toFun x' y polar_smul_left : ∀ (a : R) (x y : M), polar toFun (a • x) y = a • polar toFun x y r : R x y : M ⊢ polar toFun x (r • y) = r * polar toFun x y [PROOFSTEP] simp_rw [polar_comm _ x, polar_smul_left, smul_eq_mul] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁷ : Ring R inst✝⁶ : CommRing R₁ inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M Q : QuadraticForm R M inst✝³ : CommSemiring S inst✝² : Algebra S R inst✝¹ : Module S M inst✝ : IsScalarTower S R M toFun : M → R toFun_smul : ∀ (a : R) (x : M), toFun (a • x) = a * a * toFun x polar_add_left : ∀ (x x' y : M), polar toFun (x + x') y = polar toFun x y + polar toFun x' y polar_smul_left : ∀ (a : R) (x y : M), polar toFun (a • x) y = a • polar toFun x y x y : M ⊢ toFun (x + y) = toFun x + toFun y + BilinForm.bilin { bilin := polar toFun, bilin_add_left := polar_add_left, bilin_smul_left := polar_smul_left, bilin_add_right := (_ : ∀ (x y z : M), polar toFun x (y + z) = polar toFun x y + polar toFun x z), bilin_smul_right := (_ : ∀ (r : R) (x y : M), polar toFun x (r • y) = r * polar toFun x y) } x y [PROOFSTEP] rw [BilinForm.coeFn_mk, polar, sub_sub, add_sub_cancel'_right] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁷ : Ring R inst✝⁶ : CommRing R₁ inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M Q : QuadraticForm R M inst✝³ : CommSemiring S inst✝² : Algebra S R inst✝¹ : Module S M inst✝ : IsScalarTower S R M x y : M ⊢ BilinForm.bilin (Exists.choose (_ : ∃ B, ∀ (x y : M), ↑Q (x + y) = ↑Q x + ↑Q y + BilinForm.bilin B x y)) x y = BilinForm.bilin (polarBilin Q) x y [PROOFSTEP] rw [polarBilin_apply, polar, Q.exists_companion.choose_spec, sub_sub, add_sub_cancel'] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁸ : Semiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : Monoid S inst✝⁴ : Monoid T inst✝³ : DistribMulAction S R inst✝² : DistribMulAction T R inst✝¹ : SMulCommClass S R R inst✝ : SMulCommClass T R R a : S Q : QuadraticForm R M b : R x : M ⊢ (a • ↑Q) (b • x) = b * b * (a • ↑Q) x [PROOFSTEP] rw [Pi.smul_apply, map_smul, Pi.smul_apply, mul_smul_comm] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁸ : Semiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : Monoid S inst✝⁴ : Monoid T inst✝³ : DistribMulAction S R inst✝² : DistribMulAction T R inst✝¹ : SMulCommClass S R R inst✝ : SMulCommClass T R R a : S Q : QuadraticForm R M B : BilinForm R M h : ∀ (x y : M), ↑Q (x + y) = ↑Q x + ↑Q y + BilinForm.bilin B x y ⊢ ∀ (x y : M), (a • ↑Q) (x + y) = (a • ↑Q) x + (a • ↑Q) y + BilinForm.bilin (a • B) x y [PROOFSTEP] simp [h] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M a : R x✝ : M ⊢ (fun x => 0) (a • x✝) = a * a * (fun x => 0) x✝ [PROOFSTEP] simp only [mul_zero] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M x✝¹ x✝ : M ⊢ (fun x => 0) (x✝¹ + x✝) = (fun x => 0) x✝¹ + (fun x => 0) x✝ + BilinForm.bilin 0 x✝¹ x✝ [PROOFSTEP] simp only [add_zero, BilinForm.zero_apply] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M Q Q' : QuadraticForm R M a : R x : M ⊢ (↑Q + ↑Q') (a • x) = a * a * (↑Q + ↑Q') x [PROOFSTEP] simp only [Pi.add_apply, map_smul, mul_add] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M Q Q' : QuadraticForm R M B : BilinForm R M h : ∀ (x y : M), ↑Q (x + y) = ↑Q x + ↑Q y + BilinForm.bilin B x y B' : BilinForm R M h' : ∀ (x y : M), ↑Q' (x + y) = ↑Q' x + ↑Q' y + BilinForm.bilin B' x y x y : M ⊢ (↑Q + ↑Q') (x + y) = (↑Q + ↑Q') x + (↑Q + ↑Q') y + BilinForm.bilin (B + B') x y [PROOFSTEP] simp_rw [Pi.add_apply, h, h', BilinForm.add_apply, add_add_add_comm] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : Monoid S inst✝¹ : DistribMulAction S R inst✝ : SMulCommClass S R R Q : QuadraticForm R M x : M ⊢ ↑(1 • Q) x = ↑Q x [PROOFSTEP] simp only [QuadraticForm.smul_apply, one_smul] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : Monoid S inst✝¹ : DistribMulAction S R inst✝ : SMulCommClass S R R a b : S Q : QuadraticForm R M x : M ⊢ ↑((a * b) • Q) x = ↑(a • b • Q) x [PROOFSTEP] simp only [smul_apply, mul_smul] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : Monoid S inst✝¹ : DistribMulAction S R inst✝ : SMulCommClass S R R a : S ⊢ a • 0 = 0 [PROOFSTEP] ext [GOAL] case H S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : Monoid S inst✝¹ : DistribMulAction S R inst✝ : SMulCommClass S R R a : S x✝ : M ⊢ ↑(a • 0) x✝ = ↑0 x✝ [PROOFSTEP] simp only [zero_apply, smul_apply, smul_zero] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : Monoid S inst✝¹ : DistribMulAction S R inst✝ : SMulCommClass S R R a : S Q Q' : QuadraticForm R M ⊢ a • (Q + Q') = a • Q + a • Q' [PROOFSTEP] ext [GOAL] case H S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : Monoid S inst✝¹ : DistribMulAction S R inst✝ : SMulCommClass S R R a : S Q Q' : QuadraticForm R M x✝ : M ⊢ ↑(a • (Q + Q')) x✝ = ↑(a • Q + a • Q') x✝ [PROOFSTEP] simp only [add_apply, smul_apply, smul_add] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : Semiring S inst✝¹ : Module S R inst✝ : SMulCommClass S R R a b : S Q : QuadraticForm R M ⊢ (a + b) • Q = a • Q + b • Q [PROOFSTEP] ext [GOAL] case H S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : Semiring S inst✝¹ : Module S R inst✝ : SMulCommClass S R R a b : S Q : QuadraticForm R M x✝ : M ⊢ ↑((a + b) • Q) x✝ = ↑(a • Q + b • Q) x✝ [PROOFSTEP] simp only [add_apply, smul_apply, add_smul] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : Semiring S inst✝¹ : Module S R inst✝ : SMulCommClass S R R Q : QuadraticForm R M ⊢ 0 • Q = 0 [PROOFSTEP] ext [GOAL] case H S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid M inst✝³ : Module R M inst✝² : Semiring S inst✝¹ : Module S R inst✝ : SMulCommClass S R R Q : QuadraticForm R M x✝ : M ⊢ ↑(0 • Q) x✝ = ↑0 x✝ [PROOFSTEP] simp only [zero_apply, smul_apply, zero_smul] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M a : R x : M ⊢ (-↑Q) (a • x) = a * a * (-↑Q) x [PROOFSTEP] simp only [Pi.neg_apply, map_smul, mul_neg] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M B : BilinForm R M h : ∀ (x y : M), ↑Q (x + y) = ↑Q x + ↑Q y + BilinForm.bilin B x y x y : M ⊢ (-↑Q) (x + y) = (-↑Q) x + (-↑Q) y + BilinForm.bilin (-B) x y [PROOFSTEP] simp_rw [Pi.neg_apply, h, BilinForm.neg_apply, neg_add] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M N : Type v inst✝¹ : AddCommMonoid N inst✝ : Module R N Q : QuadraticForm R N f : M →ₗ[R] N a : R x : M ⊢ (fun x => ↑Q (↑f x)) (a • x) = a * a * (fun x => ↑Q (↑f x)) x [PROOFSTEP] simp only [map_smul, f.map_smul] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M N : Type v inst✝¹ : AddCommMonoid N inst✝ : Module R N Q : QuadraticForm R N f : M →ₗ[R] N B : BilinForm R N h : ∀ (x y : N), ↑Q (x + y) = ↑Q x + ↑Q y + BilinForm.bilin B x y x y : M ⊢ (fun x => ↑Q (↑f x)) (x + y) = (fun x => ↑Q (↑f x)) x + (fun x => ↑Q (↑f x)) y + BilinForm.bilin (BilinForm.comp B f f) x y [PROOFSTEP] simp_rw [f.map_add, h, BilinForm.comp_apply] [GOAL] S✝ : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁸ : Semiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M N : Type v inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N S : Type u_6 inst✝³ : CommSemiring S inst✝² : Algebra S R inst✝¹ : Module S M inst✝ : IsScalarTower S R M f : R →ₗ[S] S Q : QuadraticForm R M b : S x : M ⊢ (fun x => ↑f (↑Q x)) (b • x) = b * b * (fun x => ↑f (↑Q x)) x [PROOFSTEP] simp only [Q.map_smul_of_tower b x, f.map_smul, smul_eq_mul] [GOAL] S✝ : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁸ : Semiring R inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M N : Type v inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N S : Type u_6 inst✝³ : CommSemiring S inst✝² : Algebra S R inst✝¹ : Module S M inst✝ : IsScalarTower S R M f : R →ₗ[S] S Q : QuadraticForm R M B : BilinForm R M h : ∀ (x y : M), ↑Q (x + y) = ↑Q x + ↑Q y + BilinForm.bilin B x y x y : M ⊢ (fun x => ↑f (↑Q x)) (x + y) = (fun x => ↑f (↑Q x)) x + (fun x => ↑f (↑Q x)) y + BilinForm.bilin (LinearMap.compBilinForm f B) x y [PROOFSTEP] simp_rw [h, f.map_add, LinearMap.compBilinForm_apply] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M f g : M →ₗ[R] R a : R x : M ⊢ (↑f * ↑g) (a • x) = a * a * (↑f * ↑g) x [PROOFSTEP] simp only [smul_eq_mul, RingHom.id_apply, Pi.mul_apply, LinearMap.map_smulₛₗ] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M f g : M →ₗ[R] R a : R x : M ⊢ a * ↑f x * (a * ↑g x) = a * a * (↑f x * ↑g x) [PROOFSTEP] ring [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M f g : M →ₗ[R] R x y : M ⊢ (↑f * ↑g) (x + y) = (↑f * ↑g) x + (↑f * ↑g) y + BilinForm.bilin (BilinForm.linMulLin f g + BilinForm.linMulLin g f) x y [PROOFSTEP] simp [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝² : CommSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M f g : M →ₗ[R] R x y : M ⊢ (↑f x + ↑f y) * (↑g x + ↑g y) = ↑f x * ↑g x + ↑f y * ↑g y + (↑f x * ↑g y + ↑g x * ↑f y) [PROOFSTEP] ring [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M B✝ B : BilinForm R M a : R x : M ⊢ (fun x => bilin B x x) (a • x) = a * a * (fun x => bilin B x x) x [PROOFSTEP] simp only [mul_assoc, smul_right, smul_left] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M B✝ B : BilinForm R M x y : M ⊢ (fun x => bilin B x x) (x + y) = (fun x => bilin B x x) x + (fun x => bilin B x x) y + bilin (B + ↑(flipHom ℕ) B) x y [PROOFSTEP] simp [add_add_add_comm, add_comm] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M B : BilinForm R M x y : M ⊢ polar (fun x => bilin B x x) x y = bilin B x y + bilin B y x [PROOFSTEP] simp only [add_assoc, add_sub_cancel', add_right, polar, add_left_inj, add_neg_cancel_left, add_left, sub_eq_add_neg _ (B y y), add_comm (B y x) _] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁷ : Ring R inst✝⁶ : CommRing R₁ inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : Module R₁ M inst✝² : CommSemiring S inst✝¹ : Algebra S R inst✝ : Invertible 2 B₁ : BilinForm R M Q Q' : QuadraticForm R M ⊢ (fun Q => (fun x x_1 => x • x_1) { val := ⅟2, property := (_ : ∀ (x : R), Commute x ⅟(OfNat.ofNat 2)) } (polarBilin Q)) (Q + Q') = (fun Q => (fun x x_1 => x • x_1) { val := ⅟2, property := (_ : ∀ (x : R), Commute x ⅟(OfNat.ofNat 2)) } (polarBilin Q)) Q + (fun Q => (fun x x_1 => x • x_1) { val := ⅟2, property := (_ : ∀ (x : R), Commute x ⅟(OfNat.ofNat 2)) } (polarBilin Q)) Q' [PROOFSTEP] ext [GOAL] case H S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁷ : Ring R inst✝⁶ : CommRing R₁ inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : Module R₁ M inst✝² : CommSemiring S inst✝¹ : Algebra S R inst✝ : Invertible 2 B₁ : BilinForm R M Q Q' : QuadraticForm R M x✝ y✝ : M ⊢ bilin ((fun Q => (fun x x_1 => x • x_1) { val := ⅟2, property := (_ : ∀ (x : R), Commute x ⅟(OfNat.ofNat 2)) } (polarBilin Q)) (Q + Q')) x✝ y✝ = bilin ((fun Q => (fun x x_1 => x • x_1) { val := ⅟2, property := (_ : ∀ (x : R), Commute x ⅟(OfNat.ofNat 2)) } (polarBilin Q)) Q + (fun Q => (fun x x_1 => x • x_1) { val := ⅟2, property := (_ : ∀ (x : R), Commute x ⅟(OfNat.ofNat 2)) } (polarBilin Q)) Q') x✝ y✝ [PROOFSTEP] simp only [BilinForm.add_apply, BilinForm.smul_apply, coeFn_mk, polarBilin_apply, polar_add, coeFn_add, smul_add] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁷ : Ring R inst✝⁶ : CommRing R₁ inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : Module R₁ M inst✝² : CommSemiring S inst✝¹ : Algebra S R inst✝ : Invertible 2 B₁ : BilinForm R M s : S Q : QuadraticForm R M ⊢ AddHom.toFun { toFun := fun Q => (fun x x_1 => x • x_1) { val := ⅟2, property := (_ : ∀ (x : R), Commute x ⅟(OfNat.ofNat 2)) } (polarBilin Q), map_add' := (_ : ∀ (Q Q' : QuadraticForm R M), (fun Q => (fun x x_1 => x • x_1) { val := ⅟2, property := (_ : ∀ (x : R), Commute x ⅟(OfNat.ofNat 2)) } (polarBilin Q)) (Q + Q') = (fun Q => (fun x x_1 => x • x_1) { val := ⅟2, property := (_ : ∀ (x : R), Commute x ⅟(OfNat.ofNat 2)) } (polarBilin Q)) Q + (fun Q => (fun x x_1 => x • x_1) { val := ⅟2, property := (_ : ∀ (x : R), Commute x ⅟(OfNat.ofNat 2)) } (polarBilin Q)) Q') } (s • Q) = ↑(RingHom.id S) s • AddHom.toFun { toFun := fun Q => (fun x x_1 => x • x_1) { val := ⅟2, property := (_ : ∀ (x : R), Commute x ⅟(OfNat.ofNat 2)) } (polarBilin Q), map_add' := (_ : ∀ (Q Q' : QuadraticForm R M), (fun Q => (fun x x_1 => x • x_1) { val := ⅟2, property := (_ : ∀ (x : R), Commute x ⅟(OfNat.ofNat 2)) } (polarBilin Q)) (Q + Q') = (fun Q => (fun x x_1 => x • x_1) { val := ⅟2, property := (_ : ∀ (x : R), Commute x ⅟(OfNat.ofNat 2)) } (polarBilin Q)) Q + (fun Q => (fun x x_1 => x • x_1) { val := ⅟2, property := (_ : ∀ (x : R), Commute x ⅟(OfNat.ofNat 2)) } (polarBilin Q)) Q') } Q [PROOFSTEP] ext -- porting note: added type annotations [GOAL] case H S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁷ : Ring R inst✝⁶ : CommRing R₁ inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : Module R₁ M inst✝² : CommSemiring S inst✝¹ : Algebra S R inst✝ : Invertible 2 B₁ : BilinForm R M s : S Q : QuadraticForm R M x✝ y✝ : M ⊢ bilin (AddHom.toFun { toFun := fun Q => (fun x x_1 => x • x_1) { val := ⅟2, property := (_ : ∀ (x : R), Commute x ⅟(OfNat.ofNat 2)) } (polarBilin Q), map_add' := (_ : ∀ (Q Q' : QuadraticForm R M), (fun Q => (fun x x_1 => x • x_1) { val := ⅟2, property := (_ : ∀ (x : R), Commute x ⅟(OfNat.ofNat 2)) } (polarBilin Q)) (Q + Q') = (fun Q => (fun x x_1 => x • x_1) { val := ⅟2, property := (_ : ∀ (x : R), Commute x ⅟(OfNat.ofNat 2)) } (polarBilin Q)) Q + (fun Q => (fun x x_1 => x • x_1) { val := ⅟2, property := (_ : ∀ (x : R), Commute x ⅟(OfNat.ofNat 2)) } (polarBilin Q)) Q') } (s • Q)) x✝ y✝ = bilin (↑(RingHom.id S) s • AddHom.toFun { toFun := fun Q => (fun x x_1 => x • x_1) { val := ⅟2, property := (_ : ∀ (x : R), Commute x ⅟(OfNat.ofNat 2)) } (polarBilin Q), map_add' := (_ : ∀ (Q Q' : QuadraticForm R M), (fun Q => (fun x x_1 => x • x_1) { val := ⅟2, property := (_ : ∀ (x : R), Commute x ⅟(OfNat.ofNat 2)) } (polarBilin Q)) (Q + Q') = (fun Q => (fun x x_1 => x • x_1) { val := ⅟2, property := (_ : ∀ (x : R), Commute x ⅟(OfNat.ofNat 2)) } (polarBilin Q)) Q + (fun Q => (fun x x_1 => x • x_1) { val := ⅟2, property := (_ : ∀ (x : R), Commute x ⅟(OfNat.ofNat 2)) } (polarBilin Q)) Q') } Q) x✝ y✝ [PROOFSTEP] simp only [RingHom.id_apply, polar_smul, smul_comm s (_ : Submonoid.center R) (_ : R), polarBilin_apply, coeFn_mk, coeFn_smul, BilinForm.smul_apply] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁷ : Ring R inst✝⁶ : CommRing R₁ inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : Module R₁ M inst✝² : CommSemiring S inst✝¹ : Algebra S R inst✝ : Invertible 2 B₁ : BilinForm R M Q : QuadraticForm R M x y : M ⊢ bilin (↑(associatedHom S) Q) x y = bilin (↑(associatedHom S) Q) y x [PROOFSTEP] simp only [associated_apply, add_comm, add_left_comm, sub_eq_add_neg, add_assoc] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁹ : Ring R inst✝⁸ : CommRing R₁ inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : Module R₁ M inst✝⁴ : CommSemiring S inst✝³ : Algebra S R inst✝² : Invertible 2 B₁ : BilinForm R M Q : QuadraticForm R M N : Type v inst✝¹ : AddCommGroup N inst✝ : Module R N f : N →ₗ[R] M ⊢ ↑(associatedHom S) (comp Q f) = BilinForm.comp (↑(associatedHom S) Q) f f [PROOFSTEP] ext [GOAL] case H S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁹ : Ring R inst✝⁸ : CommRing R₁ inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M inst✝⁵ : Module R₁ M inst✝⁴ : CommSemiring S inst✝³ : Algebra S R inst✝² : Invertible 2 B₁ : BilinForm R M Q : QuadraticForm R M N : Type v inst✝¹ : AddCommGroup N inst✝ : Module R N f : N →ₗ[R] M x✝ y✝ : N ⊢ bilin (↑(associatedHom S) (comp Q f)) x✝ y✝ = bilin (BilinForm.comp (↑(associatedHom S) Q) f f) x✝ y✝ [PROOFSTEP] simp only [QuadraticForm.comp_apply, BilinForm.comp_apply, associated_apply, LinearMap.map_add] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁷ : Ring R inst✝⁶ : CommRing R₁ inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : Module R₁ M inst✝² : CommSemiring S inst✝¹ : Algebra S R inst✝ : Invertible 2 B₁ : BilinForm R M Q : QuadraticForm R M B : BilinForm R M x y : M ⊢ bilin (↑(associatedHom S) (toQuadraticForm B)) x y = ⅟2 * (bilin B x y + bilin B y x) [PROOFSTEP] simp only [associated_apply, ← polar_to_quadratic_form, polar, toQuadraticForm_apply] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁷ : Ring R inst✝⁶ : CommRing R₁ inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : Module R₁ M inst✝² : CommSemiring S inst✝¹ : Algebra S R inst✝ : Invertible 2 B₁ : BilinForm R M Q : QuadraticForm R M h : BilinForm.IsSymm B₁ x y : M ⊢ bilin (↑(associatedHom S) (toQuadraticForm B₁)) x y = bilin B₁ x y [PROOFSTEP] rw [associated_toQuadraticForm, h.eq x y, ← two_mul, ← mul_assoc, invOf_mul_self, one_mul] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁷ : Ring R inst✝⁶ : CommRing R₁ inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : Module R₁ M inst✝² : CommSemiring S inst✝¹ : Algebra S R inst✝ : Invertible 2 B₁ : BilinForm R M Q : QuadraticForm R M x : M ⊢ bilin (↑(associatedHom S) Q) x x = ↑Q x [PROOFSTEP] rw [associated_apply, map_add_self, ← three_add_one_eq_four, ← two_add_one_eq_three, add_mul, add_mul, one_mul, add_sub_cancel, add_sub_cancel, invOf_mul_self_assoc] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁷ : Ring R inst✝⁶ : CommRing R₁ inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : Module R₁ M inst✝² : CommSemiring S inst✝¹ : Algebra S R inst✝ : Invertible 2 B₁ : BilinForm R M Q✝ Q : QuadraticForm R M hB₁ : ↑associated' Q ≠ 0 ⊢ ∃ x, ↑Q x ≠ 0 [PROOFSTEP] rw [← not_forall] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁷ : Ring R inst✝⁶ : CommRing R₁ inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : Module R₁ M inst✝² : CommSemiring S inst✝¹ : Algebra S R inst✝ : Invertible 2 B₁ : BilinForm R M Q✝ Q : QuadraticForm R M hB₁ : ↑associated' Q ≠ 0 ⊢ ¬∀ (x : M), ↑Q x = 0 [PROOFSTEP] intro h [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁷ : Ring R inst✝⁶ : CommRing R₁ inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : Module R₁ M inst✝² : CommSemiring S inst✝¹ : Algebra S R inst✝ : Invertible 2 B₁ : BilinForm R M Q✝ Q : QuadraticForm R M hB₁ : ↑associated' Q ≠ 0 h : ∀ (x : M), ↑Q x = 0 ⊢ False [PROOFSTEP] apply hB₁ [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁷ : Ring R inst✝⁶ : CommRing R₁ inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : Module R₁ M inst✝² : CommSemiring S inst✝¹ : Algebra S R inst✝ : Invertible 2 B₁ : BilinForm R M Q✝ Q : QuadraticForm R M hB₁ : ↑associated' Q ≠ 0 h : ∀ (x : M), ↑Q x = 0 ⊢ ↑associated' Q = 0 [PROOFSTEP] rw [(QuadraticForm.ext h : Q = 0), LinearMap.map_zero] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝³ : CommRing R₁ inst✝² : AddCommGroup M inst✝¹ : Module R₁ M inst✝ : Invertible 2 f g : M →ₗ[R₁] R₁ ⊢ ↑associated (linMulLin f g) = ⅟2 • (BilinForm.linMulLin f g + BilinForm.linMulLin g f) [PROOFSTEP] ext [GOAL] case H S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝³ : CommRing R₁ inst✝² : AddCommGroup M inst✝¹ : Module R₁ M inst✝ : Invertible 2 f g : M →ₗ[R₁] R₁ x✝ y✝ : M ⊢ bilin (↑associated (linMulLin f g)) x✝ y✝ = bilin (⅟2 • (BilinForm.linMulLin f g + BilinForm.linMulLin g f)) x✝ y✝ [PROOFSTEP] simp only [smul_add, Algebra.id.smul_eq_mul, BilinForm.linMulLin_apply, QuadraticForm.linMulLin_apply, BilinForm.smul_apply, associated_apply, BilinForm.add_apply, LinearMap.map_add] [GOAL] case H S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝³ : CommRing R₁ inst✝² : AddCommGroup M inst✝¹ : Module R₁ M inst✝ : Invertible 2 f g : M →ₗ[R₁] R₁ x✝ y✝ : M ⊢ ⅟2 * ((↑f x✝ + ↑f y✝) * (↑g x✝ + ↑g y✝) - ↑f x✝ * ↑g x✝ - ↑f y✝ * ↑g y✝) = ⅟2 * (↑f x✝ * ↑g y✝) + ⅟2 * (↑g x✝ * ↑f y✝) [PROOFSTEP] ring [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M Q : QuadraticForm R M ⊢ ¬Anisotropic Q ↔ ∃ x, x ≠ 0 ∧ ↑Q x = 0 [PROOFSTEP] simp only [Anisotropic, not_forall, exists_prop, and_comm] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝³ : Ring R inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : Invertible 2 Q : QuadraticForm R M hB : Anisotropic Q x : M hx : ∀ (n : M), bilin (↑associated' Q) x n = 0 ⊢ ↑Q x = 0 [PROOFSTEP] rw [← hx x] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝³ : Ring R inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : Invertible 2 Q : QuadraticForm R M hB : Anisotropic Q x : M hx : ∀ (n : M), bilin (↑associated' Q) x n = 0 ⊢ ↑Q x = bilin (↑associated' Q) x x [PROOFSTEP] exact (associated_eq_self_apply _ _ x).symm [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 R₂ : Type u inst✝² : OrderedRing R₂ inst✝¹ : AddCommMonoid M inst✝ : Module R₂ M Q₂ : QuadraticForm R₂ M n : Type u_6 Q : QuadraticForm R₂ M hQ : PosDef Q x : M hQx : ↑Q x = 0 hx : ¬x = 0 ⊢ 0 < 0 [PROOFSTEP] have := hQ _ hx [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 R₂ : Type u inst✝² : OrderedRing R₂ inst✝¹ : AddCommMonoid M inst✝ : Module R₂ M Q₂ : QuadraticForm R₂ M n : Type u_6 Q : QuadraticForm R₂ M hQ : PosDef Q x : M hQx : ↑Q x = 0 hx : ¬x = 0 this : 0 < ↑Q x ⊢ 0 < 0 [PROOFSTEP] rw [hQx] at this [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 R₂ : Type u inst✝² : OrderedRing R₂ inst✝¹ : AddCommMonoid M inst✝ : Module R₂ M Q₂ : QuadraticForm R₂ M n : Type u_6 Q : QuadraticForm R₂ M hQ : PosDef Q x : M hQx : ↑Q x = 0 hx : ¬x = 0 this : 0 < 0 ⊢ 0 < 0 [PROOFSTEP] exact this [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 n : Type w inst✝⁵ : Fintype n inst✝⁴ : DecidableEq n inst✝³ : CommRing R₁ inst✝² : AddCommMonoid M inst✝¹ : Module R₁ M inst✝ : Invertible 2 a : R₁ Q : QuadraticForm R₁ (n → R₁) ⊢ toMatrix' (a • Q) = a • toMatrix' Q [PROOFSTEP] simp only [toMatrix', LinearEquiv.map_smul, LinearMap.map_smul] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 n : Type w inst✝⁵ : Fintype n inst✝⁴ : DecidableEq n inst✝³ : CommRing R₁ inst✝² : AddCommMonoid M inst✝¹ : Module R₁ M inst✝ : Invertible 2 Q : QuadraticForm R₁ (n → R₁) ⊢ Matrix.IsSymm (toMatrix' Q) [PROOFSTEP] ext i j [GOAL] case a.h S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 n : Type w inst✝⁵ : Fintype n inst✝⁴ : DecidableEq n inst✝³ : CommRing R₁ inst✝² : AddCommMonoid M inst✝¹ : Module R₁ M inst✝ : Invertible 2 Q : QuadraticForm R₁ (n → R₁) i j : n ⊢ Matrix.transpose (toMatrix' Q) i j = toMatrix' Q i j [PROOFSTEP] rw [toMatrix', Matrix.transpose_apply, BilinForm.toMatrix'_apply, BilinForm.toMatrix'_apply, associated_isSymm] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 n : Type w inst✝⁵ : Fintype n inst✝⁴ : CommRing R₁ inst✝³ : DecidableEq n inst✝² : Invertible 2 m : Type w inst✝¹ : DecidableEq m inst✝ : Fintype m Q : QuadraticForm R₁ (m → R₁) f : (n → R₁) →ₗ[R₁] m → R₁ ⊢ toMatrix' (comp Q f) = (↑LinearMap.toMatrix' f)ᵀ * toMatrix' Q * ↑LinearMap.toMatrix' f [PROOFSTEP] ext [GOAL] case a.h S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 n : Type w inst✝⁵ : Fintype n inst✝⁴ : CommRing R₁ inst✝³ : DecidableEq n inst✝² : Invertible 2 m : Type w inst✝¹ : DecidableEq m inst✝ : Fintype m Q : QuadraticForm R₁ (m → R₁) f : (n → R₁) →ₗ[R₁] m → R₁ i✝ x✝ : n ⊢ toMatrix' (comp Q f) i✝ x✝ = ((↑LinearMap.toMatrix' f)ᵀ * toMatrix' Q * ↑LinearMap.toMatrix' f) i✝ x✝ [PROOFSTEP] simp only [QuadraticForm.associated_comp, BilinForm.toMatrix'_comp, toMatrix'] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 n : Type w inst✝⁵ : Fintype n inst✝⁴ : CommRing R₁ inst✝³ : DecidableEq n inst✝² : Invertible 2 m : Type w inst✝¹ : DecidableEq m inst✝ : Fintype m Q : QuadraticForm R₁ (n → R₁) a : R₁ ⊢ discr (a • Q) = a ^ Fintype.card n * discr Q [PROOFSTEP] simp only [discr, toMatrix'_smul, Matrix.det_smul] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 n : Type w inst✝⁵ : Fintype n inst✝⁴ : CommRing R₁ inst✝³ : DecidableEq n inst✝² : Invertible 2 m : Type w inst✝¹ : DecidableEq m inst✝ : Fintype m Q : QuadraticForm R₁ (n → R₁) f : (n → R₁) →ₗ[R₁] n → R₁ ⊢ discr (comp Q f) = det (↑LinearMap.toMatrix' f) * det (↑LinearMap.toMatrix' f) * discr Q [PROOFSTEP] simp only [Matrix.det_transpose, mul_left_comm, QuadraticForm.toMatrix'_comp, mul_comm, Matrix.det_mul, discr] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M htwo : Invertible 2 B : BilinForm R M hB₁ : B ≠ 0 hB₂ : IsSymm B ⊢ ∃ x, ¬IsOrtho B x x [PROOFSTEP] lift B to QuadraticForm R M using hB₂ with Q [GOAL] case intro S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M htwo : Invertible 2 B : BilinForm R M Q : QuadraticForm R M hB₁✝ hB₁ : ↑(QuadraticForm.associatedHom ℕ) Q ≠ 0 ⊢ ∃ x, ¬IsOrtho (↑(QuadraticForm.associatedHom ℕ) Q) x x [PROOFSTEP] obtain ⟨x, hx⟩ := QuadraticForm.exists_quadraticForm_ne_zero hB₁ [GOAL] case intro.intro S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M htwo : Invertible 2 B : BilinForm R M Q : QuadraticForm R M hB₁✝ hB₁ : ↑(QuadraticForm.associatedHom ℕ) Q ≠ 0 x : M hx : ↑Q x ≠ 0 ⊢ ∃ x, ¬IsOrtho (↑(QuadraticForm.associatedHom ℕ) Q) x x [PROOFSTEP] exact ⟨x, fun h => hx (Q.associated_eq_self_apply ℕ x ▸ h)⟩ [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁶ : Ring R inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M V : Type u K : Type v inst✝³ : Field K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V hK : Invertible 2 B : BilinForm K V hB₂ : IsSymm B ⊢ ∃ v, iIsOrtho B ↑v [PROOFSTEP] induction' hd : finrank K V with d ih generalizing V [GOAL] case zero S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁹ : Ring R inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M V✝ : Type u K : Type v inst✝⁶ : Field K inst✝⁵ : AddCommGroup V✝ inst✝⁴ : Module K V✝ inst✝³ : FiniteDimensional K V✝ hK : Invertible 2 B✝ : BilinForm K V✝ hB₂✝ : IsSymm B✝ x✝ : ℕ hd✝ : finrank K V✝ = x✝ V : Type u inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V B : BilinForm K V hB₂ : IsSymm B hd : finrank K V = Nat.zero ⊢ ∃ v, iIsOrtho B ↑v [PROOFSTEP] simp_rw [Nat.zero_eq] [GOAL] case zero S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁹ : Ring R inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M V✝ : Type u K : Type v inst✝⁶ : Field K inst✝⁵ : AddCommGroup V✝ inst✝⁴ : Module K V✝ inst✝³ : FiniteDimensional K V✝ hK : Invertible 2 B✝ : BilinForm K V✝ hB₂✝ : IsSymm B✝ x✝ : ℕ hd✝ : finrank K V✝ = x✝ V : Type u inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V B : BilinForm K V hB₂ : IsSymm B hd : finrank K V = Nat.zero ⊢ ∃ v, iIsOrtho B ↑v [PROOFSTEP] exact ⟨basisOfFinrankZero hd, fun _ _ _ => zero_left _⟩ [GOAL] case succ S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁹ : Ring R inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M V✝ : Type u K : Type v inst✝⁶ : Field K inst✝⁵ : AddCommGroup V✝ inst✝⁴ : Module K V✝ inst✝³ : FiniteDimensional K V✝ hK : Invertible 2 B✝ : BilinForm K V✝ hB₂✝ : IsSymm B✝ x✝ : ℕ hd✝ : finrank K V✝ = x✝ d : ℕ ih : ∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V}, IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v V : Type u inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V B : BilinForm K V hB₂ : IsSymm B hd : finrank K V = Nat.succ d ⊢ ∃ v, iIsOrtho B ↑v [PROOFSTEP] haveI := finrank_pos_iff.1 (hd.symm ▸ Nat.succ_pos d : 0 < finrank K V) -- either the bilinear form is trivial or we can pick a non-null `x` [GOAL] case succ S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁹ : Ring R inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M V✝ : Type u K : Type v inst✝⁶ : Field K inst✝⁵ : AddCommGroup V✝ inst✝⁴ : Module K V✝ inst✝³ : FiniteDimensional K V✝ hK : Invertible 2 B✝ : BilinForm K V✝ hB₂✝ : IsSymm B✝ x✝ : ℕ hd✝ : finrank K V✝ = x✝ d : ℕ ih : ∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V}, IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v V : Type u inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V B : BilinForm K V hB₂ : IsSymm B hd : finrank K V = Nat.succ d this : Nontrivial V ⊢ ∃ v, iIsOrtho B ↑v [PROOFSTEP] obtain rfl | hB₁ := eq_or_ne B 0 [GOAL] case succ.inl S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁹ : Ring R inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M V✝ : Type u K : Type v inst✝⁶ : Field K inst✝⁵ : AddCommGroup V✝ inst✝⁴ : Module K V✝ inst✝³ : FiniteDimensional K V✝ hK : Invertible 2 B : BilinForm K V✝ hB₂✝ : IsSymm B x✝ : ℕ hd✝ : finrank K V✝ = x✝ d : ℕ ih : ∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V}, IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v V : Type u inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V hd : finrank K V = Nat.succ d this : Nontrivial V hB₂ : IsSymm 0 ⊢ ∃ v, iIsOrtho 0 ↑v [PROOFSTEP] let b := FiniteDimensional.finBasis K V [GOAL] case succ.inl S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁹ : Ring R inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M V✝ : Type u K : Type v inst✝⁶ : Field K inst✝⁵ : AddCommGroup V✝ inst✝⁴ : Module K V✝ inst✝³ : FiniteDimensional K V✝ hK : Invertible 2 B : BilinForm K V✝ hB₂✝ : IsSymm B x✝ : ℕ hd✝ : finrank K V✝ = x✝ d : ℕ ih : ∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V}, IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v V : Type u inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V hd : finrank K V = Nat.succ d this : Nontrivial V hB₂ : IsSymm 0 b : Basis (Fin (finrank K V)) K V := finBasis K V ⊢ ∃ v, iIsOrtho 0 ↑v [PROOFSTEP] rw [hd] at b [GOAL] case succ.inl S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁹ : Ring R inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M V✝ : Type u K : Type v inst✝⁶ : Field K inst✝⁵ : AddCommGroup V✝ inst✝⁴ : Module K V✝ inst✝³ : FiniteDimensional K V✝ hK : Invertible 2 B : BilinForm K V✝ hB₂✝ : IsSymm B x✝ : ℕ hd✝ : finrank K V✝ = x✝ d : ℕ ih : ∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V}, IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v V : Type u inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V hd : finrank K V = Nat.succ d this : Nontrivial V hB₂ : IsSymm 0 b : Basis (Fin (Nat.succ d)) K V ⊢ ∃ v, iIsOrtho 0 ↑v [PROOFSTEP] refine' ⟨b, fun i j _ => rfl⟩ [GOAL] case succ.inr S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁹ : Ring R inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M V✝ : Type u K : Type v inst✝⁶ : Field K inst✝⁵ : AddCommGroup V✝ inst✝⁴ : Module K V✝ inst✝³ : FiniteDimensional K V✝ hK : Invertible 2 B✝ : BilinForm K V✝ hB₂✝ : IsSymm B✝ x✝ : ℕ hd✝ : finrank K V✝ = x✝ d : ℕ ih : ∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V}, IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v V : Type u inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V B : BilinForm K V hB₂ : IsSymm B hd : finrank K V = Nat.succ d this : Nontrivial V hB₁ : B ≠ 0 ⊢ ∃ v, iIsOrtho B ↑v [PROOFSTEP] obtain ⟨x, hx⟩ := exists_bilinForm_self_ne_zero hB₁ hB₂ [GOAL] case succ.inr.intro S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁹ : Ring R inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M V✝ : Type u K : Type v inst✝⁶ : Field K inst✝⁵ : AddCommGroup V✝ inst✝⁴ : Module K V✝ inst✝³ : FiniteDimensional K V✝ hK : Invertible 2 B✝ : BilinForm K V✝ hB₂✝ : IsSymm B✝ x✝ : ℕ hd✝ : finrank K V✝ = x✝ d : ℕ ih : ∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V}, IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v V : Type u inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V B : BilinForm K V hB₂ : IsSymm B hd : finrank K V = Nat.succ d this : Nontrivial V hB₁ : B ≠ 0 x : V hx : ¬IsOrtho B x x ⊢ ∃ v, iIsOrtho B ↑v [PROOFSTEP] rw [← Submodule.finrank_add_eq_of_isCompl (isCompl_span_singleton_orthogonal hx).symm, finrank_span_singleton (ne_zero_of_not_isOrtho_self x hx)] at hd [GOAL] case succ.inr.intro S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁹ : Ring R inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M V✝ : Type u K : Type v inst✝⁶ : Field K inst✝⁵ : AddCommGroup V✝ inst✝⁴ : Module K V✝ inst✝³ : FiniteDimensional K V✝ hK : Invertible 2 B✝ : BilinForm K V✝ hB₂✝ : IsSymm B✝ x✝ : ℕ hd✝ : finrank K V✝ = x✝ d : ℕ ih : ∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V}, IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v V : Type u inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V B : BilinForm K V hB₂ : IsSymm B this : Nontrivial V hB₁ : B ≠ 0 x : V hd : finrank K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } + 1 = Nat.succ d hx : ¬IsOrtho B x x ⊢ ∃ v, iIsOrtho B ↑v [PROOFSTEP] let B' := B.restrict (B.orthogonal <| K ∙ x) [GOAL] case succ.inr.intro S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁹ : Ring R inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M V✝ : Type u K : Type v inst✝⁶ : Field K inst✝⁵ : AddCommGroup V✝ inst✝⁴ : Module K V✝ inst✝³ : FiniteDimensional K V✝ hK : Invertible 2 B✝ : BilinForm K V✝ hB₂✝ : IsSymm B✝ x✝ : ℕ hd✝ : finrank K V✝ = x✝ d : ℕ ih : ∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V}, IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v V : Type u inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V B : BilinForm K V hB₂ : IsSymm B this : Nontrivial V hB₁ : B ≠ 0 x : V hd : finrank K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } + 1 = Nat.succ d hx : ¬IsOrtho B x x B' : BilinForm K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } := restrict B (orthogonal B (Submodule.span K {x})) ⊢ ∃ v, iIsOrtho B ↑v [PROOFSTEP] obtain ⟨v', hv₁⟩ := ih (B.restrictSymm hB₂ _ : B'.IsSymm) (Nat.succ.inj hd) -- concatenate `x` with the basis obtained by induction [GOAL] case succ.inr.intro.intro S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁹ : Ring R inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M V✝ : Type u K : Type v inst✝⁶ : Field K inst✝⁵ : AddCommGroup V✝ inst✝⁴ : Module K V✝ inst✝³ : FiniteDimensional K V✝ hK : Invertible 2 B✝ : BilinForm K V✝ hB₂✝ : IsSymm B✝ x✝ : ℕ hd✝ : finrank K V✝ = x✝ d : ℕ ih : ∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V}, IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v V : Type u inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V B : BilinForm K V hB₂ : IsSymm B this : Nontrivial V hB₁ : B ≠ 0 x : V hd : finrank K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } + 1 = Nat.succ d hx : ¬IsOrtho B x x B' : BilinForm K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } := restrict B (orthogonal B (Submodule.span K {x})) v' : Basis (Fin d) K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } hv₁ : iIsOrtho (restrict B (orthogonal B (Submodule.span K {x}))) ↑v' ⊢ ∃ v, iIsOrtho B ↑v [PROOFSTEP] let b := Basis.mkFinCons x v' (by rintro c y hy hc rw [add_eq_zero_iff_neg_eq] at hc rw [← hc, Submodule.neg_mem_iff] at hy have := (isCompl_span_singleton_orthogonal hx).disjoint rw [Submodule.disjoint_def] at this have := this (c • x) (Submodule.smul_mem _ _ <| Submodule.mem_span_singleton_self _) hy exact (smul_eq_zero.1 this).resolve_right fun h => hx <| h.symm ▸ zero_left _) (by intro y refine' ⟨-B x y / B x x, fun z hz => _⟩ obtain ⟨c, rfl⟩ := Submodule.mem_span_singleton.1 hz rw [IsOrtho, smul_left, add_right, smul_right, div_mul_cancel _ hx, add_neg_self, mul_zero]) [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁹ : Ring R inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M V✝ : Type u K : Type v inst✝⁶ : Field K inst✝⁵ : AddCommGroup V✝ inst✝⁴ : Module K V✝ inst✝³ : FiniteDimensional K V✝ hK : Invertible 2 B✝ : BilinForm K V✝ hB₂✝ : IsSymm B✝ x✝ : ℕ hd✝ : finrank K V✝ = x✝ d : ℕ ih : ∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V}, IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v V : Type u inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V B : BilinForm K V hB₂ : IsSymm B this : Nontrivial V hB₁ : B ≠ 0 x : V hd : finrank K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } + 1 = Nat.succ d hx : ¬IsOrtho B x x B' : BilinForm K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } := restrict B (orthogonal B (Submodule.span K {x})) v' : Basis (Fin d) K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } hv₁ : iIsOrtho (restrict B (orthogonal B (Submodule.span K {x}))) ↑v' ⊢ ∀ (c : K) (x_1 : V), x_1 ∈ orthogonal B (Submodule.span K {x}) → c • x + x_1 = 0 → c = 0 [PROOFSTEP] rintro c y hy hc [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁹ : Ring R inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M V✝ : Type u K : Type v inst✝⁶ : Field K inst✝⁵ : AddCommGroup V✝ inst✝⁴ : Module K V✝ inst✝³ : FiniteDimensional K V✝ hK : Invertible 2 B✝ : BilinForm K V✝ hB₂✝ : IsSymm B✝ x✝ : ℕ hd✝ : finrank K V✝ = x✝ d : ℕ ih : ∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V}, IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v V : Type u inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V B : BilinForm K V hB₂ : IsSymm B this : Nontrivial V hB₁ : B ≠ 0 x : V hd : finrank K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } + 1 = Nat.succ d hx : ¬IsOrtho B x x B' : BilinForm K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } := restrict B (orthogonal B (Submodule.span K {x})) v' : Basis (Fin d) K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } hv₁ : iIsOrtho (restrict B (orthogonal B (Submodule.span K {x}))) ↑v' c : K y : V hy : y ∈ orthogonal B (Submodule.span K {x}) hc : c • x + y = 0 ⊢ c = 0 [PROOFSTEP] rw [add_eq_zero_iff_neg_eq] at hc [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁹ : Ring R inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M V✝ : Type u K : Type v inst✝⁶ : Field K inst✝⁵ : AddCommGroup V✝ inst✝⁴ : Module K V✝ inst✝³ : FiniteDimensional K V✝ hK : Invertible 2 B✝ : BilinForm K V✝ hB₂✝ : IsSymm B✝ x✝ : ℕ hd✝ : finrank K V✝ = x✝ d : ℕ ih : ∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V}, IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v V : Type u inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V B : BilinForm K V hB₂ : IsSymm B this : Nontrivial V hB₁ : B ≠ 0 x : V hd : finrank K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } + 1 = Nat.succ d hx : ¬IsOrtho B x x B' : BilinForm K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } := restrict B (orthogonal B (Submodule.span K {x})) v' : Basis (Fin d) K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } hv₁ : iIsOrtho (restrict B (orthogonal B (Submodule.span K {x}))) ↑v' c : K y : V hy : y ∈ orthogonal B (Submodule.span K {x}) hc : -(c • x) = y ⊢ c = 0 [PROOFSTEP] rw [← hc, Submodule.neg_mem_iff] at hy [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁹ : Ring R inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M V✝ : Type u K : Type v inst✝⁶ : Field K inst✝⁵ : AddCommGroup V✝ inst✝⁴ : Module K V✝ inst✝³ : FiniteDimensional K V✝ hK : Invertible 2 B✝ : BilinForm K V✝ hB₂✝ : IsSymm B✝ x✝ : ℕ hd✝ : finrank K V✝ = x✝ d : ℕ ih : ∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V}, IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v V : Type u inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V B : BilinForm K V hB₂ : IsSymm B this : Nontrivial V hB₁ : B ≠ 0 x : V hd : finrank K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } + 1 = Nat.succ d hx : ¬IsOrtho B x x B' : BilinForm K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } := restrict B (orthogonal B (Submodule.span K {x})) v' : Basis (Fin d) K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } hv₁ : iIsOrtho (restrict B (orthogonal B (Submodule.span K {x}))) ↑v' c : K y : V hy : c • x ∈ orthogonal B (Submodule.span K {x}) hc : -(c • x) = y ⊢ c = 0 [PROOFSTEP] have := (isCompl_span_singleton_orthogonal hx).disjoint [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁹ : Ring R inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M V✝ : Type u K : Type v inst✝⁶ : Field K inst✝⁵ : AddCommGroup V✝ inst✝⁴ : Module K V✝ inst✝³ : FiniteDimensional K V✝ hK : Invertible 2 B✝ : BilinForm K V✝ hB₂✝ : IsSymm B✝ x✝ : ℕ hd✝ : finrank K V✝ = x✝ d : ℕ ih : ∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V}, IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v V : Type u inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V B : BilinForm K V hB₂ : IsSymm B this✝ : Nontrivial V hB₁ : B ≠ 0 x : V hd : finrank K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } + 1 = Nat.succ d hx : ¬IsOrtho B x x B' : BilinForm K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } := restrict B (orthogonal B (Submodule.span K {x})) v' : Basis (Fin d) K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } hv₁ : iIsOrtho (restrict B (orthogonal B (Submodule.span K {x}))) ↑v' c : K y : V hy : c • x ∈ orthogonal B (Submodule.span K {x}) hc : -(c • x) = y this : Disjoint (Submodule.span K {x}) (orthogonal B (Submodule.span K {x})) ⊢ c = 0 [PROOFSTEP] rw [Submodule.disjoint_def] at this [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁹ : Ring R inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M V✝ : Type u K : Type v inst✝⁶ : Field K inst✝⁵ : AddCommGroup V✝ inst✝⁴ : Module K V✝ inst✝³ : FiniteDimensional K V✝ hK : Invertible 2 B✝ : BilinForm K V✝ hB₂✝ : IsSymm B✝ x✝ : ℕ hd✝ : finrank K V✝ = x✝ d : ℕ ih : ∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V}, IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v V : Type u inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V B : BilinForm K V hB₂ : IsSymm B this✝ : Nontrivial V hB₁ : B ≠ 0 x : V hd : finrank K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } + 1 = Nat.succ d hx : ¬IsOrtho B x x B' : BilinForm K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } := restrict B (orthogonal B (Submodule.span K {x})) v' : Basis (Fin d) K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } hv₁ : iIsOrtho (restrict B (orthogonal B (Submodule.span K {x}))) ↑v' c : K y : V hy : c • x ∈ orthogonal B (Submodule.span K {x}) hc : -(c • x) = y this : ∀ (x_1 : V), x_1 ∈ Submodule.span K {x} → x_1 ∈ orthogonal B (Submodule.span K {x}) → x_1 = 0 ⊢ c = 0 [PROOFSTEP] have := this (c • x) (Submodule.smul_mem _ _ <| Submodule.mem_span_singleton_self _) hy [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁹ : Ring R inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M V✝ : Type u K : Type v inst✝⁶ : Field K inst✝⁵ : AddCommGroup V✝ inst✝⁴ : Module K V✝ inst✝³ : FiniteDimensional K V✝ hK : Invertible 2 B✝ : BilinForm K V✝ hB₂✝ : IsSymm B✝ x✝ : ℕ hd✝ : finrank K V✝ = x✝ d : ℕ ih : ∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V}, IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v V : Type u inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V B : BilinForm K V hB₂ : IsSymm B this✝¹ : Nontrivial V hB₁ : B ≠ 0 x : V hd : finrank K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } + 1 = Nat.succ d hx : ¬IsOrtho B x x B' : BilinForm K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } := restrict B (orthogonal B (Submodule.span K {x})) v' : Basis (Fin d) K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } hv₁ : iIsOrtho (restrict B (orthogonal B (Submodule.span K {x}))) ↑v' c : K y : V hy : c • x ∈ orthogonal B (Submodule.span K {x}) hc : -(c • x) = y this✝ : ∀ (x_1 : V), x_1 ∈ Submodule.span K {x} → x_1 ∈ orthogonal B (Submodule.span K {x}) → x_1 = 0 this : c • x = 0 ⊢ c = 0 [PROOFSTEP] exact (smul_eq_zero.1 this).resolve_right fun h => hx <| h.symm ▸ zero_left _ [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁹ : Ring R inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M V✝ : Type u K : Type v inst✝⁶ : Field K inst✝⁵ : AddCommGroup V✝ inst✝⁴ : Module K V✝ inst✝³ : FiniteDimensional K V✝ hK : Invertible 2 B✝ : BilinForm K V✝ hB₂✝ : IsSymm B✝ x✝ : ℕ hd✝ : finrank K V✝ = x✝ d : ℕ ih : ∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V}, IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v V : Type u inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V B : BilinForm K V hB₂ : IsSymm B this : Nontrivial V hB₁ : B ≠ 0 x : V hd : finrank K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } + 1 = Nat.succ d hx : ¬IsOrtho B x x B' : BilinForm K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } := restrict B (orthogonal B (Submodule.span K {x})) v' : Basis (Fin d) K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } hv₁ : iIsOrtho (restrict B (orthogonal B (Submodule.span K {x}))) ↑v' ⊢ ∀ (z : V), ∃ c, z + c • x ∈ orthogonal B (Submodule.span K {x}) [PROOFSTEP] intro y [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁹ : Ring R inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M V✝ : Type u K : Type v inst✝⁶ : Field K inst✝⁵ : AddCommGroup V✝ inst✝⁴ : Module K V✝ inst✝³ : FiniteDimensional K V✝ hK : Invertible 2 B✝ : BilinForm K V✝ hB₂✝ : IsSymm B✝ x✝ : ℕ hd✝ : finrank K V✝ = x✝ d : ℕ ih : ∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V}, IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v V : Type u inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V B : BilinForm K V hB₂ : IsSymm B this : Nontrivial V hB₁ : B ≠ 0 x : V hd : finrank K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } + 1 = Nat.succ d hx : ¬IsOrtho B x x B' : BilinForm K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } := restrict B (orthogonal B (Submodule.span K {x})) v' : Basis (Fin d) K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } hv₁ : iIsOrtho (restrict B (orthogonal B (Submodule.span K {x}))) ↑v' y : V ⊢ ∃ c, y + c • x ∈ orthogonal B (Submodule.span K {x}) [PROOFSTEP] refine' ⟨-B x y / B x x, fun z hz => _⟩ [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁹ : Ring R inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M V✝ : Type u K : Type v inst✝⁶ : Field K inst✝⁵ : AddCommGroup V✝ inst✝⁴ : Module K V✝ inst✝³ : FiniteDimensional K V✝ hK : Invertible 2 B✝ : BilinForm K V✝ hB₂✝ : IsSymm B✝ x✝ : ℕ hd✝ : finrank K V✝ = x✝ d : ℕ ih : ∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V}, IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v V : Type u inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V B : BilinForm K V hB₂ : IsSymm B this : Nontrivial V hB₁ : B ≠ 0 x : V hd : finrank K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } + 1 = Nat.succ d hx : ¬IsOrtho B x x B' : BilinForm K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } := restrict B (orthogonal B (Submodule.span K {x})) v' : Basis (Fin d) K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } hv₁ : iIsOrtho (restrict B (orthogonal B (Submodule.span K {x}))) ↑v' y z : V hz : z ∈ Submodule.span K {x} ⊢ IsOrtho B z (y + (-bilin B x y / bilin B x x) • x) [PROOFSTEP] obtain ⟨c, rfl⟩ := Submodule.mem_span_singleton.1 hz [GOAL] case intro S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁹ : Ring R inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M V✝ : Type u K : Type v inst✝⁶ : Field K inst✝⁵ : AddCommGroup V✝ inst✝⁴ : Module K V✝ inst✝³ : FiniteDimensional K V✝ hK : Invertible 2 B✝ : BilinForm K V✝ hB₂✝ : IsSymm B✝ x✝ : ℕ hd✝ : finrank K V✝ = x✝ d : ℕ ih : ∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V}, IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v V : Type u inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V B : BilinForm K V hB₂ : IsSymm B this : Nontrivial V hB₁ : B ≠ 0 x : V hd : finrank K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } + 1 = Nat.succ d hx : ¬IsOrtho B x x B' : BilinForm K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } := restrict B (orthogonal B (Submodule.span K {x})) v' : Basis (Fin d) K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } hv₁ : iIsOrtho (restrict B (orthogonal B (Submodule.span K {x}))) ↑v' y : V c : K hz : c • x ∈ Submodule.span K {x} ⊢ IsOrtho B (c • x) (y + (-bilin B x y / bilin B x x) • x) [PROOFSTEP] rw [IsOrtho, smul_left, add_right, smul_right, div_mul_cancel _ hx, add_neg_self, mul_zero] [GOAL] case succ.inr.intro.intro S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁹ : Ring R inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M V✝ : Type u K : Type v inst✝⁶ : Field K inst✝⁵ : AddCommGroup V✝ inst✝⁴ : Module K V✝ inst✝³ : FiniteDimensional K V✝ hK : Invertible 2 B✝ : BilinForm K V✝ hB₂✝ : IsSymm B✝ x✝ : ℕ hd✝ : finrank K V✝ = x✝ d : ℕ ih : ∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V}, IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v V : Type u inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V B : BilinForm K V hB₂ : IsSymm B this : Nontrivial V hB₁ : B ≠ 0 x : V hd : finrank K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } + 1 = Nat.succ d hx : ¬IsOrtho B x x B' : BilinForm K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } := restrict B (orthogonal B (Submodule.span K {x})) v' : Basis (Fin d) K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } hv₁ : iIsOrtho (restrict B (orthogonal B (Submodule.span K {x}))) ↑v' b : Basis (Fin (d + 1)) K V := Basis.mkFinCons x v' (_ : ∀ (c : K) (y : V), y ∈ orthogonal B (Submodule.span K {x}) → c • x + y = 0 → c = 0) (_ : ∀ (y : V), ∃ c, y + c • x ∈ orthogonal B (Submodule.span K {x})) ⊢ ∃ v, iIsOrtho B ↑v [PROOFSTEP] refine' ⟨b, _⟩ [GOAL] case succ.inr.intro.intro S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁹ : Ring R inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M V✝ : Type u K : Type v inst✝⁶ : Field K inst✝⁵ : AddCommGroup V✝ inst✝⁴ : Module K V✝ inst✝³ : FiniteDimensional K V✝ hK : Invertible 2 B✝ : BilinForm K V✝ hB₂✝ : IsSymm B✝ x✝ : ℕ hd✝ : finrank K V✝ = x✝ d : ℕ ih : ∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V}, IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v V : Type u inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V B : BilinForm K V hB₂ : IsSymm B this : Nontrivial V hB₁ : B ≠ 0 x : V hd : finrank K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } + 1 = Nat.succ d hx : ¬IsOrtho B x x B' : BilinForm K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } := restrict B (orthogonal B (Submodule.span K {x})) v' : Basis (Fin d) K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } hv₁ : iIsOrtho (restrict B (orthogonal B (Submodule.span K {x}))) ↑v' b : Basis (Fin (d + 1)) K V := Basis.mkFinCons x v' (_ : ∀ (c : K) (y : V), y ∈ orthogonal B (Submodule.span K {x}) → c • x + y = 0 → c = 0) (_ : ∀ (y : V), ∃ c, y + c • x ∈ orthogonal B (Submodule.span K {x})) ⊢ iIsOrtho B ↑b [PROOFSTEP] rw [Basis.coe_mkFinCons] [GOAL] case succ.inr.intro.intro S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁹ : Ring R inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M V✝ : Type u K : Type v inst✝⁶ : Field K inst✝⁵ : AddCommGroup V✝ inst✝⁴ : Module K V✝ inst✝³ : FiniteDimensional K V✝ hK : Invertible 2 B✝ : BilinForm K V✝ hB₂✝ : IsSymm B✝ x✝ : ℕ hd✝ : finrank K V✝ = x✝ d : ℕ ih : ∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V}, IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v V : Type u inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V B : BilinForm K V hB₂ : IsSymm B this : Nontrivial V hB₁ : B ≠ 0 x : V hd : finrank K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } + 1 = Nat.succ d hx : ¬IsOrtho B x x B' : BilinForm K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } := restrict B (orthogonal B (Submodule.span K {x})) v' : Basis (Fin d) K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } hv₁ : iIsOrtho (restrict B (orthogonal B (Submodule.span K {x}))) ↑v' b : Basis (Fin (d + 1)) K V := Basis.mkFinCons x v' (_ : ∀ (c : K) (y : V), y ∈ orthogonal B (Submodule.span K {x}) → c • x + y = 0 → c = 0) (_ : ∀ (y : V), ∃ c, y + c • x ∈ orthogonal B (Submodule.span K {x})) ⊢ iIsOrtho B (Fin.cons x (Subtype.val ∘ ↑v')) [PROOFSTEP] intro j i [GOAL] case succ.inr.intro.intro S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁹ : Ring R inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M V✝ : Type u K : Type v inst✝⁶ : Field K inst✝⁵ : AddCommGroup V✝ inst✝⁴ : Module K V✝ inst✝³ : FiniteDimensional K V✝ hK : Invertible 2 B✝ : BilinForm K V✝ hB₂✝ : IsSymm B✝ x✝ : ℕ hd✝ : finrank K V✝ = x✝ d : ℕ ih : ∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V}, IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v V : Type u inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V B : BilinForm K V hB₂ : IsSymm B this : Nontrivial V hB₁ : B ≠ 0 x : V hd : finrank K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } + 1 = Nat.succ d hx : ¬IsOrtho B x x B' : BilinForm K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } := restrict B (orthogonal B (Submodule.span K {x})) v' : Basis (Fin d) K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } hv₁ : iIsOrtho (restrict B (orthogonal B (Submodule.span K {x}))) ↑v' b : Basis (Fin (d + 1)) K V := Basis.mkFinCons x v' (_ : ∀ (c : K) (y : V), y ∈ orthogonal B (Submodule.span K {x}) → c • x + y = 0 → c = 0) (_ : ∀ (y : V), ∃ c, y + c • x ∈ orthogonal B (Submodule.span K {x})) j i : Fin (Nat.succ d) ⊢ j ≠ i → (IsOrtho B on Fin.cons x (Subtype.val ∘ ↑v')) j i [PROOFSTEP] refine' Fin.cases _ (fun i => _) i [GOAL] case succ.inr.intro.intro.refine'_1 S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁹ : Ring R inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M V✝ : Type u K : Type v inst✝⁶ : Field K inst✝⁵ : AddCommGroup V✝ inst✝⁴ : Module K V✝ inst✝³ : FiniteDimensional K V✝ hK : Invertible 2 B✝ : BilinForm K V✝ hB₂✝ : IsSymm B✝ x✝ : ℕ hd✝ : finrank K V✝ = x✝ d : ℕ ih : ∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V}, IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v V : Type u inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V B : BilinForm K V hB₂ : IsSymm B this : Nontrivial V hB₁ : B ≠ 0 x : V hd : finrank K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } + 1 = Nat.succ d hx : ¬IsOrtho B x x B' : BilinForm K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } := restrict B (orthogonal B (Submodule.span K {x})) v' : Basis (Fin d) K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } hv₁ : iIsOrtho (restrict B (orthogonal B (Submodule.span K {x}))) ↑v' b : Basis (Fin (d + 1)) K V := Basis.mkFinCons x v' (_ : ∀ (c : K) (y : V), y ∈ orthogonal B (Submodule.span K {x}) → c • x + y = 0 → c = 0) (_ : ∀ (y : V), ∃ c, y + c • x ∈ orthogonal B (Submodule.span K {x})) j i : Fin (Nat.succ d) ⊢ j ≠ 0 → (IsOrtho B on Fin.cons x (Subtype.val ∘ ↑v')) j 0 [PROOFSTEP] refine' Fin.cases _ (fun j => _) j [GOAL] case succ.inr.intro.intro.refine'_2 S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁹ : Ring R inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M V✝ : Type u K : Type v inst✝⁶ : Field K inst✝⁵ : AddCommGroup V✝ inst✝⁴ : Module K V✝ inst✝³ : FiniteDimensional K V✝ hK : Invertible 2 B✝ : BilinForm K V✝ hB₂✝ : IsSymm B✝ x✝ : ℕ hd✝ : finrank K V✝ = x✝ d : ℕ ih : ∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V}, IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v V : Type u inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V B : BilinForm K V hB₂ : IsSymm B this : Nontrivial V hB₁ : B ≠ 0 x : V hd : finrank K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } + 1 = Nat.succ d hx : ¬IsOrtho B x x B' : BilinForm K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } := restrict B (orthogonal B (Submodule.span K {x})) v' : Basis (Fin d) K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } hv₁ : iIsOrtho (restrict B (orthogonal B (Submodule.span K {x}))) ↑v' b : Basis (Fin (d + 1)) K V := Basis.mkFinCons x v' (_ : ∀ (c : K) (y : V), y ∈ orthogonal B (Submodule.span K {x}) → c • x + y = 0 → c = 0) (_ : ∀ (y : V), ∃ c, y + c • x ∈ orthogonal B (Submodule.span K {x})) j i✝ : Fin (Nat.succ d) i : Fin d ⊢ j ≠ Fin.succ i → (IsOrtho B on Fin.cons x (Subtype.val ∘ ↑v')) j (Fin.succ i) [PROOFSTEP] refine' Fin.cases _ (fun j => _) j [GOAL] case succ.inr.intro.intro.refine'_1.refine'_1 S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁹ : Ring R inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M V✝ : Type u K : Type v inst✝⁶ : Field K inst✝⁵ : AddCommGroup V✝ inst✝⁴ : Module K V✝ inst✝³ : FiniteDimensional K V✝ hK : Invertible 2 B✝ : BilinForm K V✝ hB₂✝ : IsSymm B✝ x✝ : ℕ hd✝ : finrank K V✝ = x✝ d : ℕ ih : ∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V}, IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v V : Type u inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V B : BilinForm K V hB₂ : IsSymm B this : Nontrivial V hB₁ : B ≠ 0 x : V hd : finrank K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } + 1 = Nat.succ d hx : ¬IsOrtho B x x B' : BilinForm K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } := restrict B (orthogonal B (Submodule.span K {x})) v' : Basis (Fin d) K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } hv₁ : iIsOrtho (restrict B (orthogonal B (Submodule.span K {x}))) ↑v' b : Basis (Fin (d + 1)) K V := Basis.mkFinCons x v' (_ : ∀ (c : K) (y : V), y ∈ orthogonal B (Submodule.span K {x}) → c • x + y = 0 → c = 0) (_ : ∀ (y : V), ∃ c, y + c • x ∈ orthogonal B (Submodule.span K {x})) j i : Fin (Nat.succ d) ⊢ 0 ≠ 0 → (IsOrtho B on Fin.cons x (Subtype.val ∘ ↑v')) 0 0 [PROOFSTEP] intro hij [GOAL] case succ.inr.intro.intro.refine'_1.refine'_2 S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁹ : Ring R inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M V✝ : Type u K : Type v inst✝⁶ : Field K inst✝⁵ : AddCommGroup V✝ inst✝⁴ : Module K V✝ inst✝³ : FiniteDimensional K V✝ hK : Invertible 2 B✝ : BilinForm K V✝ hB₂✝ : IsSymm B✝ x✝ : ℕ hd✝ : finrank K V✝ = x✝ d : ℕ ih : ∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V}, IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v V : Type u inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V B : BilinForm K V hB₂ : IsSymm B this : Nontrivial V hB₁ : B ≠ 0 x : V hd : finrank K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } + 1 = Nat.succ d hx : ¬IsOrtho B x x B' : BilinForm K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } := restrict B (orthogonal B (Submodule.span K {x})) v' : Basis (Fin d) K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } hv₁ : iIsOrtho (restrict B (orthogonal B (Submodule.span K {x}))) ↑v' b : Basis (Fin (d + 1)) K V := Basis.mkFinCons x v' (_ : ∀ (c : K) (y : V), y ∈ orthogonal B (Submodule.span K {x}) → c • x + y = 0 → c = 0) (_ : ∀ (y : V), ∃ c, y + c • x ∈ orthogonal B (Submodule.span K {x})) j✝ i : Fin (Nat.succ d) j : Fin d ⊢ Fin.succ j ≠ 0 → (IsOrtho B on Fin.cons x (Subtype.val ∘ ↑v')) (Fin.succ j) 0 [PROOFSTEP] intro hij [GOAL] case succ.inr.intro.intro.refine'_2.refine'_1 S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁹ : Ring R inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M V✝ : Type u K : Type v inst✝⁶ : Field K inst✝⁵ : AddCommGroup V✝ inst✝⁴ : Module K V✝ inst✝³ : FiniteDimensional K V✝ hK : Invertible 2 B✝ : BilinForm K V✝ hB₂✝ : IsSymm B✝ x✝ : ℕ hd✝ : finrank K V✝ = x✝ d : ℕ ih : ∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V}, IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v V : Type u inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V B : BilinForm K V hB₂ : IsSymm B this : Nontrivial V hB₁ : B ≠ 0 x : V hd : finrank K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } + 1 = Nat.succ d hx : ¬IsOrtho B x x B' : BilinForm K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } := restrict B (orthogonal B (Submodule.span K {x})) v' : Basis (Fin d) K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } hv₁ : iIsOrtho (restrict B (orthogonal B (Submodule.span K {x}))) ↑v' b : Basis (Fin (d + 1)) K V := Basis.mkFinCons x v' (_ : ∀ (c : K) (y : V), y ∈ orthogonal B (Submodule.span K {x}) → c • x + y = 0 → c = 0) (_ : ∀ (y : V), ∃ c, y + c • x ∈ orthogonal B (Submodule.span K {x})) j i✝ : Fin (Nat.succ d) i : Fin d ⊢ 0 ≠ Fin.succ i → (IsOrtho B on Fin.cons x (Subtype.val ∘ ↑v')) 0 (Fin.succ i) [PROOFSTEP] intro hij [GOAL] case succ.inr.intro.intro.refine'_2.refine'_2 S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁹ : Ring R inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M V✝ : Type u K : Type v inst✝⁶ : Field K inst✝⁵ : AddCommGroup V✝ inst✝⁴ : Module K V✝ inst✝³ : FiniteDimensional K V✝ hK : Invertible 2 B✝ : BilinForm K V✝ hB₂✝ : IsSymm B✝ x✝ : ℕ hd✝ : finrank K V✝ = x✝ d : ℕ ih : ∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V}, IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v V : Type u inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V B : BilinForm K V hB₂ : IsSymm B this : Nontrivial V hB₁ : B ≠ 0 x : V hd : finrank K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } + 1 = Nat.succ d hx : ¬IsOrtho B x x B' : BilinForm K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } := restrict B (orthogonal B (Submodule.span K {x})) v' : Basis (Fin d) K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } hv₁ : iIsOrtho (restrict B (orthogonal B (Submodule.span K {x}))) ↑v' b : Basis (Fin (d + 1)) K V := Basis.mkFinCons x v' (_ : ∀ (c : K) (y : V), y ∈ orthogonal B (Submodule.span K {x}) → c • x + y = 0 → c = 0) (_ : ∀ (y : V), ∃ c, y + c • x ∈ orthogonal B (Submodule.span K {x})) j✝ i✝ : Fin (Nat.succ d) i j : Fin d ⊢ Fin.succ j ≠ Fin.succ i → (IsOrtho B on Fin.cons x (Subtype.val ∘ ↑v')) (Fin.succ j) (Fin.succ i) [PROOFSTEP] intro hij [GOAL] case succ.inr.intro.intro.refine'_1.refine'_1 S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁹ : Ring R inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M V✝ : Type u K : Type v inst✝⁶ : Field K inst✝⁵ : AddCommGroup V✝ inst✝⁴ : Module K V✝ inst✝³ : FiniteDimensional K V✝ hK : Invertible 2 B✝ : BilinForm K V✝ hB₂✝ : IsSymm B✝ x✝ : ℕ hd✝ : finrank K V✝ = x✝ d : ℕ ih : ∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V}, IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v V : Type u inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V B : BilinForm K V hB₂ : IsSymm B this : Nontrivial V hB₁ : B ≠ 0 x : V hd : finrank K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } + 1 = Nat.succ d hx : ¬IsOrtho B x x B' : BilinForm K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } := restrict B (orthogonal B (Submodule.span K {x})) v' : Basis (Fin d) K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } hv₁ : iIsOrtho (restrict B (orthogonal B (Submodule.span K {x}))) ↑v' b : Basis (Fin (d + 1)) K V := Basis.mkFinCons x v' (_ : ∀ (c : K) (y : V), y ∈ orthogonal B (Submodule.span K {x}) → c • x + y = 0 → c = 0) (_ : ∀ (y : V), ∃ c, y + c • x ∈ orthogonal B (Submodule.span K {x})) j i : Fin (Nat.succ d) hij : 0 ≠ 0 ⊢ (IsOrtho B on Fin.cons x (Subtype.val ∘ ↑v')) 0 0 [PROOFSTEP] simp only [Function.onFun, Fin.cons_zero, Fin.cons_succ, Function.comp_apply] [GOAL] case succ.inr.intro.intro.refine'_1.refine'_2 S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁹ : Ring R inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M V✝ : Type u K : Type v inst✝⁶ : Field K inst✝⁵ : AddCommGroup V✝ inst✝⁴ : Module K V✝ inst✝³ : FiniteDimensional K V✝ hK : Invertible 2 B✝ : BilinForm K V✝ hB₂✝ : IsSymm B✝ x✝ : ℕ hd✝ : finrank K V✝ = x✝ d : ℕ ih : ∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V}, IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v V : Type u inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V B : BilinForm K V hB₂ : IsSymm B this : Nontrivial V hB₁ : B ≠ 0 x : V hd : finrank K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } + 1 = Nat.succ d hx : ¬IsOrtho B x x B' : BilinForm K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } := restrict B (orthogonal B (Submodule.span K {x})) v' : Basis (Fin d) K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } hv₁ : iIsOrtho (restrict B (orthogonal B (Submodule.span K {x}))) ↑v' b : Basis (Fin (d + 1)) K V := Basis.mkFinCons x v' (_ : ∀ (c : K) (y : V), y ∈ orthogonal B (Submodule.span K {x}) → c • x + y = 0 → c = 0) (_ : ∀ (y : V), ∃ c, y + c • x ∈ orthogonal B (Submodule.span K {x})) j✝ i : Fin (Nat.succ d) j : Fin d hij : Fin.succ j ≠ 0 ⊢ (IsOrtho B on Fin.cons x (Subtype.val ∘ ↑v')) (Fin.succ j) 0 [PROOFSTEP] simp only [Function.onFun, Fin.cons_zero, Fin.cons_succ, Function.comp_apply] [GOAL] case succ.inr.intro.intro.refine'_2.refine'_1 S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁹ : Ring R inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M V✝ : Type u K : Type v inst✝⁶ : Field K inst✝⁵ : AddCommGroup V✝ inst✝⁴ : Module K V✝ inst✝³ : FiniteDimensional K V✝ hK : Invertible 2 B✝ : BilinForm K V✝ hB₂✝ : IsSymm B✝ x✝ : ℕ hd✝ : finrank K V✝ = x✝ d : ℕ ih : ∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V}, IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v V : Type u inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V B : BilinForm K V hB₂ : IsSymm B this : Nontrivial V hB₁ : B ≠ 0 x : V hd : finrank K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } + 1 = Nat.succ d hx : ¬IsOrtho B x x B' : BilinForm K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } := restrict B (orthogonal B (Submodule.span K {x})) v' : Basis (Fin d) K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } hv₁ : iIsOrtho (restrict B (orthogonal B (Submodule.span K {x}))) ↑v' b : Basis (Fin (d + 1)) K V := Basis.mkFinCons x v' (_ : ∀ (c : K) (y : V), y ∈ orthogonal B (Submodule.span K {x}) → c • x + y = 0 → c = 0) (_ : ∀ (y : V), ∃ c, y + c • x ∈ orthogonal B (Submodule.span K {x})) j i✝ : Fin (Nat.succ d) i : Fin d hij : 0 ≠ Fin.succ i ⊢ (IsOrtho B on Fin.cons x (Subtype.val ∘ ↑v')) 0 (Fin.succ i) [PROOFSTEP] simp only [Function.onFun, Fin.cons_zero, Fin.cons_succ, Function.comp_apply] [GOAL] case succ.inr.intro.intro.refine'_2.refine'_2 S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁹ : Ring R inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M V✝ : Type u K : Type v inst✝⁶ : Field K inst✝⁵ : AddCommGroup V✝ inst✝⁴ : Module K V✝ inst✝³ : FiniteDimensional K V✝ hK : Invertible 2 B✝ : BilinForm K V✝ hB₂✝ : IsSymm B✝ x✝ : ℕ hd✝ : finrank K V✝ = x✝ d : ℕ ih : ∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V}, IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v V : Type u inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V B : BilinForm K V hB₂ : IsSymm B this : Nontrivial V hB₁ : B ≠ 0 x : V hd : finrank K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } + 1 = Nat.succ d hx : ¬IsOrtho B x x B' : BilinForm K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } := restrict B (orthogonal B (Submodule.span K {x})) v' : Basis (Fin d) K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } hv₁ : iIsOrtho (restrict B (orthogonal B (Submodule.span K {x}))) ↑v' b : Basis (Fin (d + 1)) K V := Basis.mkFinCons x v' (_ : ∀ (c : K) (y : V), y ∈ orthogonal B (Submodule.span K {x}) → c • x + y = 0 → c = 0) (_ : ∀ (y : V), ∃ c, y + c • x ∈ orthogonal B (Submodule.span K {x})) j✝ i✝ : Fin (Nat.succ d) i j : Fin d hij : Fin.succ j ≠ Fin.succ i ⊢ (IsOrtho B on Fin.cons x (Subtype.val ∘ ↑v')) (Fin.succ j) (Fin.succ i) [PROOFSTEP] simp only [Function.onFun, Fin.cons_zero, Fin.cons_succ, Function.comp_apply] [GOAL] case succ.inr.intro.intro.refine'_1.refine'_1 S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁹ : Ring R inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M V✝ : Type u K : Type v inst✝⁶ : Field K inst✝⁵ : AddCommGroup V✝ inst✝⁴ : Module K V✝ inst✝³ : FiniteDimensional K V✝ hK : Invertible 2 B✝ : BilinForm K V✝ hB₂✝ : IsSymm B✝ x✝ : ℕ hd✝ : finrank K V✝ = x✝ d : ℕ ih : ∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V}, IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v V : Type u inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V B : BilinForm K V hB₂ : IsSymm B this : Nontrivial V hB₁ : B ≠ 0 x : V hd : finrank K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } + 1 = Nat.succ d hx : ¬IsOrtho B x x B' : BilinForm K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } := restrict B (orthogonal B (Submodule.span K {x})) v' : Basis (Fin d) K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } hv₁ : iIsOrtho (restrict B (orthogonal B (Submodule.span K {x}))) ↑v' b : Basis (Fin (d + 1)) K V := Basis.mkFinCons x v' (_ : ∀ (c : K) (y : V), y ∈ orthogonal B (Submodule.span K {x}) → c • x + y = 0 → c = 0) (_ : ∀ (y : V), ∃ c, y + c • x ∈ orthogonal B (Submodule.span K {x})) j i : Fin (Nat.succ d) hij : 0 ≠ 0 ⊢ IsOrtho B x x [PROOFSTEP] exact (hij rfl).elim [GOAL] case succ.inr.intro.intro.refine'_1.refine'_2 S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁹ : Ring R inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M V✝ : Type u K : Type v inst✝⁶ : Field K inst✝⁵ : AddCommGroup V✝ inst✝⁴ : Module K V✝ inst✝³ : FiniteDimensional K V✝ hK : Invertible 2 B✝ : BilinForm K V✝ hB₂✝ : IsSymm B✝ x✝ : ℕ hd✝ : finrank K V✝ = x✝ d : ℕ ih : ∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V}, IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v V : Type u inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V B : BilinForm K V hB₂ : IsSymm B this : Nontrivial V hB₁ : B ≠ 0 x : V hd : finrank K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } + 1 = Nat.succ d hx : ¬IsOrtho B x x B' : BilinForm K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } := restrict B (orthogonal B (Submodule.span K {x})) v' : Basis (Fin d) K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } hv₁ : iIsOrtho (restrict B (orthogonal B (Submodule.span K {x}))) ↑v' b : Basis (Fin (d + 1)) K V := Basis.mkFinCons x v' (_ : ∀ (c : K) (y : V), y ∈ orthogonal B (Submodule.span K {x}) → c • x + y = 0 → c = 0) (_ : ∀ (y : V), ∃ c, y + c • x ∈ orthogonal B (Submodule.span K {x})) j✝ i : Fin (Nat.succ d) j : Fin d hij : Fin.succ j ≠ 0 ⊢ IsOrtho B (↑(↑v' j)) x [PROOFSTEP] rw [IsOrtho, hB₂] [GOAL] case succ.inr.intro.intro.refine'_1.refine'_2 S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁹ : Ring R inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M V✝ : Type u K : Type v inst✝⁶ : Field K inst✝⁵ : AddCommGroup V✝ inst✝⁴ : Module K V✝ inst✝³ : FiniteDimensional K V✝ hK : Invertible 2 B✝ : BilinForm K V✝ hB₂✝ : IsSymm B✝ x✝ : ℕ hd✝ : finrank K V✝ = x✝ d : ℕ ih : ∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V}, IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v V : Type u inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V B : BilinForm K V hB₂ : IsSymm B this : Nontrivial V hB₁ : B ≠ 0 x : V hd : finrank K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } + 1 = Nat.succ d hx : ¬IsOrtho B x x B' : BilinForm K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } := restrict B (orthogonal B (Submodule.span K {x})) v' : Basis (Fin d) K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } hv₁ : iIsOrtho (restrict B (orthogonal B (Submodule.span K {x}))) ↑v' b : Basis (Fin (d + 1)) K V := Basis.mkFinCons x v' (_ : ∀ (c : K) (y : V), y ∈ orthogonal B (Submodule.span K {x}) → c • x + y = 0 → c = 0) (_ : ∀ (y : V), ∃ c, y + c • x ∈ orthogonal B (Submodule.span K {x})) j✝ i : Fin (Nat.succ d) j : Fin d hij : Fin.succ j ≠ 0 ⊢ bilin B x ↑(↑v' j) = 0 [PROOFSTEP] exact (v' j).prop _ (Submodule.mem_span_singleton_self x) [GOAL] case succ.inr.intro.intro.refine'_2.refine'_1 S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁹ : Ring R inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M V✝ : Type u K : Type v inst✝⁶ : Field K inst✝⁵ : AddCommGroup V✝ inst✝⁴ : Module K V✝ inst✝³ : FiniteDimensional K V✝ hK : Invertible 2 B✝ : BilinForm K V✝ hB₂✝ : IsSymm B✝ x✝ : ℕ hd✝ : finrank K V✝ = x✝ d : ℕ ih : ∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V}, IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v V : Type u inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V B : BilinForm K V hB₂ : IsSymm B this : Nontrivial V hB₁ : B ≠ 0 x : V hd : finrank K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } + 1 = Nat.succ d hx : ¬IsOrtho B x x B' : BilinForm K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } := restrict B (orthogonal B (Submodule.span K {x})) v' : Basis (Fin d) K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } hv₁ : iIsOrtho (restrict B (orthogonal B (Submodule.span K {x}))) ↑v' b : Basis (Fin (d + 1)) K V := Basis.mkFinCons x v' (_ : ∀ (c : K) (y : V), y ∈ orthogonal B (Submodule.span K {x}) → c • x + y = 0 → c = 0) (_ : ∀ (y : V), ∃ c, y + c • x ∈ orthogonal B (Submodule.span K {x})) j i✝ : Fin (Nat.succ d) i : Fin d hij : 0 ≠ Fin.succ i ⊢ IsOrtho B x ↑(↑v' i) [PROOFSTEP] exact (v' i).prop _ (Submodule.mem_span_singleton_self x) [GOAL] case succ.inr.intro.intro.refine'_2.refine'_2 S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁹ : Ring R inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M V✝ : Type u K : Type v inst✝⁶ : Field K inst✝⁵ : AddCommGroup V✝ inst✝⁴ : Module K V✝ inst✝³ : FiniteDimensional K V✝ hK : Invertible 2 B✝ : BilinForm K V✝ hB₂✝ : IsSymm B✝ x✝ : ℕ hd✝ : finrank K V✝ = x✝ d : ℕ ih : ∀ {V : Type u} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] {B : BilinForm K V}, IsSymm B → finrank K V = d → ∃ v, iIsOrtho B ↑v V : Type u inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V B : BilinForm K V hB₂ : IsSymm B this : Nontrivial V hB₁ : B ≠ 0 x : V hd : finrank K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } + 1 = Nat.succ d hx : ¬IsOrtho B x x B' : BilinForm K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } := restrict B (orthogonal B (Submodule.span K {x})) v' : Basis (Fin d) K { x_1 // x_1 ∈ orthogonal B (Submodule.span K {x}) } hv₁ : iIsOrtho (restrict B (orthogonal B (Submodule.span K {x}))) ↑v' b : Basis (Fin (d + 1)) K V := Basis.mkFinCons x v' (_ : ∀ (c : K) (y : V), y ∈ orthogonal B (Submodule.span K {x}) → c • x + y = 0 → c = 0) (_ : ∀ (y : V), ∃ c, y + c • x ∈ orthogonal B (Submodule.span K {x})) j✝ i✝ : Fin (Nat.succ d) i j : Fin d hij : Fin.succ j ≠ Fin.succ i ⊢ IsOrtho B ↑(↑v' j) ↑(↑v' i) [PROOFSTEP] exact hv₁ (ne_of_apply_ne _ hij) [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 M₁ : Type u_6 inst✝⁶ : Semiring R inst✝⁵ : CommSemiring R₁ inst✝⁴ : AddCommMonoid M inst✝³ : AddCommMonoid M₁ inst✝² : Module R M inst✝¹ : Module R M₁ ι : Type u_7 inst✝ : Fintype ι v : Basis ι R M Q : QuadraticForm R M w : ι → R ⊢ ↑(basisRepr Q v) w = ↑Q (∑ i : ι, w i • ↑v i) [PROOFSTEP] rw [← v.equivFun_symm_apply] [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁ : Type u_4 M : Type u_5 M₁ : Type u_6 inst✝⁶ : Semiring R inst✝⁵ : CommSemiring R₁ inst✝⁴ : AddCommMonoid M inst✝³ : AddCommMonoid M₁ inst✝² : Module R M inst✝¹ : Module R M₁ ι : Type u_7 inst✝ : Fintype ι v : Basis ι R M Q : QuadraticForm R M w : ι → R ⊢ ↑(basisRepr Q v) w = ↑Q (↑(LinearEquiv.symm (Basis.equivFun v)) fun i => w i) [PROOFSTEP] rfl [GOAL] S : Type u_1 T : Type u_2 R : Type u_3 R₁✝ : Type u_4 M✝ : Type u_5 M₁ : Type u_6 inst✝¹⁰ : Semiring R inst✝⁹ : CommSemiring R₁✝ inst✝⁸ : AddCommMonoid M✝ inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M✝ inst✝⁵ : Module R M₁ ι : Type u_7 inst✝⁴ : Fintype ι v✝ : Basis ι R M✝ R₁ : Type u_8 M : Type u_9 inst✝³ : CommRing R₁ inst✝² : AddCommGroup M inst✝¹ : Module R₁ M inst✝ : Invertible 2 Q : QuadraticForm R₁ M v : Basis ι R₁ M hv₂ : iIsOrtho (↑associated Q) ↑v ⊢ basisRepr Q v = weightedSumSquares R₁ fun i => ↑Q (↑v i) [PROOFSTEP] ext w [GOAL] case H S : Type u_1 T : Type u_2 R : Type u_3 R₁✝ : Type u_4 M✝ : Type u_5 M₁ : Type u_6 inst✝¹⁰ : Semiring R inst✝⁹ : CommSemiring R₁✝ inst✝⁸ : AddCommMonoid M✝ inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M✝ inst✝⁵ : Module R M₁ ι : Type u_7 inst✝⁴ : Fintype ι v✝ : Basis ι R M✝ R₁ : Type u_8 M : Type u_9 inst✝³ : CommRing R₁ inst✝² : AddCommGroup M inst✝¹ : Module R₁ M inst✝ : Invertible 2 Q : QuadraticForm R₁ M v : Basis ι R₁ M hv₂ : iIsOrtho (↑associated Q) ↑v w : ι → R₁ ⊢ ↑(basisRepr Q v) w = ↑(weightedSumSquares R₁ fun i => ↑Q (↑v i)) w [PROOFSTEP] rw [basisRepr_apply, ← @associated_eq_self_apply R₁, sum_left, weightedSumSquares_apply] [GOAL] case H S : Type u_1 T : Type u_2 R : Type u_3 R₁✝ : Type u_4 M✝ : Type u_5 M₁ : Type u_6 inst✝¹⁰ : Semiring R inst✝⁹ : CommSemiring R₁✝ inst✝⁸ : AddCommMonoid M✝ inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M✝ inst✝⁵ : Module R M₁ ι : Type u_7 inst✝⁴ : Fintype ι v✝ : Basis ι R M✝ R₁ : Type u_8 M : Type u_9 inst✝³ : CommRing R₁ inst✝² : AddCommGroup M inst✝¹ : Module R₁ M inst✝ : Invertible 2 Q : QuadraticForm R₁ M v : Basis ι R₁ M hv₂ : iIsOrtho (↑associated Q) ↑v w : ι → R₁ ⊢ ∑ i : ι, bilin (↑(associatedHom R₁) Q) (w i • ↑v i) (∑ i : ι, w i • ↑v i) = ∑ i : ι, ↑Q (↑v i) • (w i * w i) [PROOFSTEP] refine' sum_congr rfl fun j hj => _ [GOAL] case H S : Type u_1 T : Type u_2 R : Type u_3 R₁✝ : Type u_4 M✝ : Type u_5 M₁ : Type u_6 inst✝¹⁰ : Semiring R inst✝⁹ : CommSemiring R₁✝ inst✝⁸ : AddCommMonoid M✝ inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M✝ inst✝⁵ : Module R M₁ ι : Type u_7 inst✝⁴ : Fintype ι v✝ : Basis ι R M✝ R₁ : Type u_8 M : Type u_9 inst✝³ : CommRing R₁ inst✝² : AddCommGroup M inst✝¹ : Module R₁ M inst✝ : Invertible 2 Q : QuadraticForm R₁ M v : Basis ι R₁ M hv₂ : iIsOrtho (↑associated Q) ↑v w : ι → R₁ j : ι hj : j ∈ univ ⊢ bilin (↑(associatedHom R₁) Q) (w j • ↑v j) (∑ i : ι, w i • ↑v i) = ↑Q (↑v j) • (w j * w j) [PROOFSTEP] rw [← @associated_eq_self_apply R₁, sum_right, sum_eq_single_of_mem j hj] [GOAL] case H S : Type u_1 T : Type u_2 R : Type u_3 R₁✝ : Type u_4 M✝ : Type u_5 M₁ : Type u_6 inst✝¹⁰ : Semiring R inst✝⁹ : CommSemiring R₁✝ inst✝⁸ : AddCommMonoid M✝ inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M✝ inst✝⁵ : Module R M₁ ι : Type u_7 inst✝⁴ : Fintype ι v✝ : Basis ι R M✝ R₁ : Type u_8 M : Type u_9 inst✝³ : CommRing R₁ inst✝² : AddCommGroup M inst✝¹ : Module R₁ M inst✝ : Invertible 2 Q : QuadraticForm R₁ M v : Basis ι R₁ M hv₂ : iIsOrtho (↑associated Q) ↑v w : ι → R₁ j : ι hj : j ∈ univ ⊢ bilin (↑(associatedHom R₁) Q) (w j • ↑v j) (w j • ↑v j) = bilin (↑(associatedHom R₁) Q) (↑v j) (↑v j) • (w j * w j) [PROOFSTEP] rw [smul_left, smul_right, smul_eq_mul] [GOAL] case H S : Type u_1 T : Type u_2 R : Type u_3 R₁✝ : Type u_4 M✝ : Type u_5 M₁ : Type u_6 inst✝¹⁰ : Semiring R inst✝⁹ : CommSemiring R₁✝ inst✝⁸ : AddCommMonoid M✝ inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M✝ inst✝⁵ : Module R M₁ ι : Type u_7 inst✝⁴ : Fintype ι v✝ : Basis ι R M✝ R₁ : Type u_8 M : Type u_9 inst✝³ : CommRing R₁ inst✝² : AddCommGroup M inst✝¹ : Module R₁ M inst✝ : Invertible 2 Q : QuadraticForm R₁ M v : Basis ι R₁ M hv₂ : iIsOrtho (↑associated Q) ↑v w : ι → R₁ j : ι hj : j ∈ univ ⊢ w j * (w j * bilin (↑(associatedHom R₁) Q) (↑v j) (↑v j)) = bilin (↑(associatedHom R₁) Q) (↑v j) (↑v j) * (w j * w j) [PROOFSTEP] ring [GOAL] case H S : Type u_1 T : Type u_2 R : Type u_3 R₁✝ : Type u_4 M✝ : Type u_5 M₁ : Type u_6 inst✝¹⁰ : Semiring R inst✝⁹ : CommSemiring R₁✝ inst✝⁸ : AddCommMonoid M✝ inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M✝ inst✝⁵ : Module R M₁ ι : Type u_7 inst✝⁴ : Fintype ι v✝ : Basis ι R M✝ R₁ : Type u_8 M : Type u_9 inst✝³ : CommRing R₁ inst✝² : AddCommGroup M inst✝¹ : Module R₁ M inst✝ : Invertible 2 Q : QuadraticForm R₁ M v : Basis ι R₁ M hv₂ : iIsOrtho (↑associated Q) ↑v w : ι → R₁ j : ι hj : j ∈ univ ⊢ ∀ (b : ι), b ∈ univ → b ≠ j → bilin (↑(associatedHom R₁) Q) (w j • ↑v j) (w b • ↑v b) = 0 [PROOFSTEP] intro i _ hij [GOAL] case H S : Type u_1 T : Type u_2 R : Type u_3 R₁✝ : Type u_4 M✝ : Type u_5 M₁ : Type u_6 inst✝¹⁰ : Semiring R inst✝⁹ : CommSemiring R₁✝ inst✝⁸ : AddCommMonoid M✝ inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M✝ inst✝⁵ : Module R M₁ ι : Type u_7 inst✝⁴ : Fintype ι v✝ : Basis ι R M✝ R₁ : Type u_8 M : Type u_9 inst✝³ : CommRing R₁ inst✝² : AddCommGroup M inst✝¹ : Module R₁ M inst✝ : Invertible 2 Q : QuadraticForm R₁ M v : Basis ι R₁ M hv₂ : iIsOrtho (↑associated Q) ↑v w : ι → R₁ j : ι hj : j ∈ univ i : ι a✝ : i ∈ univ hij : i ≠ j ⊢ bilin (↑(associatedHom R₁) Q) (w j • ↑v j) (w i • ↑v i) = 0 [PROOFSTEP] rw [smul_left, smul_right, show associatedHom R₁ Q (v j) (v i) = 0 from hv₂ hij.symm, mul_zero, mul_zero]
{"mathlib_filename": "Mathlib.LinearAlgebra.QuadraticForm.Basic", "llama_tokens": 51901}
[GOAL] k : Type u_1 inst✝⁹ : Ring k V : Type u_2 P : Type u_3 V₁ : Type u_4 P₁ : Type u_5 V₂ : Type u_6 P₂ : Type u_7 inst✝⁸ : AddCommGroup V inst✝⁷ : Module k V inst✝⁶ : AffineSpace V P inst✝⁵ : AddCommGroup V₁ inst✝⁴ : Module k V₁ inst✝³ : AffineSpace V₁ P₁ inst✝² : AddCommGroup V₂ inst✝¹ : Module k V₂ inst✝ : AffineSpace V₂ P₂ v : V ⊢ v +ᵥ ⊥ = ⊥ [PROOFSTEP] ext [GOAL] case h k : Type u_1 inst✝⁹ : Ring k V : Type u_2 P : Type u_3 V₁ : Type u_4 P₁ : Type u_5 V₂ : Type u_6 P₂ : Type u_7 inst✝⁸ : AddCommGroup V inst✝⁷ : Module k V inst✝⁶ : AffineSpace V P inst✝⁵ : AddCommGroup V₁ inst✝⁴ : Module k V₁ inst✝³ : AffineSpace V₁ P₁ inst✝² : AddCommGroup V₂ inst✝¹ : Module k V₂ inst✝ : AffineSpace V₂ P₂ v : V x✝ : P ⊢ x✝ ∈ v +ᵥ ⊥ ↔ x✝ ∈ ⊥ [PROOFSTEP] simp [pointwise_vadd_eq_map, map_bot] [GOAL] k : Type u_1 inst✝⁹ : Ring k V : Type u_2 P : Type u_3 V₁ : Type u_4 P₁ : Type u_5 V₂ : Type u_6 P₂ : Type u_7 inst✝⁸ : AddCommGroup V inst✝⁷ : Module k V inst✝⁶ : AffineSpace V P inst✝⁵ : AddCommGroup V₁ inst✝⁴ : Module k V₁ inst✝³ : AffineSpace V₁ P₁ inst✝² : AddCommGroup V₂ inst✝¹ : Module k V₂ inst✝ : AffineSpace V₂ P₂ v : V s : AffineSubspace k P ⊢ direction (v +ᵥ s) = direction s [PROOFSTEP] rw [pointwise_vadd_eq_map, map_direction] [GOAL] k : Type u_1 inst✝⁹ : Ring k V : Type u_2 P : Type u_3 V₁ : Type u_4 P₁ : Type u_5 V₂ : Type u_6 P₂ : Type u_7 inst✝⁸ : AddCommGroup V inst✝⁷ : Module k V inst✝⁶ : AffineSpace V P inst✝⁵ : AddCommGroup V₁ inst✝⁴ : Module k V₁ inst✝³ : AffineSpace V₁ P₁ inst✝² : AddCommGroup V₂ inst✝¹ : Module k V₂ inst✝ : AffineSpace V₂ P₂ v : V s : AffineSubspace k P ⊢ Submodule.map (↑(AffineEquiv.constVAdd k P v)).linear (direction s) = direction s [PROOFSTEP] exact Submodule.map_id _ [GOAL] k : Type u_1 inst✝⁹ : Ring k V : Type u_2 P : Type u_3 V₁ : Type u_4 P₁ : Type u_5 V₂ : Type u_6 P₂ : Type u_7 inst✝⁸ : AddCommGroup V inst✝⁷ : Module k V inst✝⁶ : AffineSpace V P inst✝⁵ : AddCommGroup V₁ inst✝⁴ : Module k V₁ inst✝³ : AffineSpace V₁ P₁ inst✝² : AddCommGroup V₂ inst✝¹ : Module k V₂ inst✝ : AffineSpace V₂ P₂ f : P₁ →ᵃ[k] P₂ v : V₁ s : AffineSubspace k P₁ ⊢ map f (v +ᵥ s) = ↑f.linear v +ᵥ map f s [PROOFSTEP] erw [pointwise_vadd_eq_map, pointwise_vadd_eq_map, map_map, map_map] [GOAL] k : Type u_1 inst✝⁹ : Ring k V : Type u_2 P : Type u_3 V₁ : Type u_4 P₁ : Type u_5 V₂ : Type u_6 P₂ : Type u_7 inst✝⁸ : AddCommGroup V inst✝⁷ : Module k V inst✝⁶ : AffineSpace V P inst✝⁵ : AddCommGroup V₁ inst✝⁴ : Module k V₁ inst✝³ : AffineSpace V₁ P₁ inst✝² : AddCommGroup V₂ inst✝¹ : Module k V₂ inst✝ : AffineSpace V₂ P₂ f : P₁ →ᵃ[k] P₂ v : V₁ s : AffineSubspace k P₁ ⊢ map (AffineMap.comp f ↑(AffineEquiv.constVAdd k P₁ v)) s = map (AffineMap.comp (↑(AffineEquiv.constVAdd k P₂ (↑f.linear v))) f) s [PROOFSTEP] congr 1 [GOAL] case e_f k : Type u_1 inst✝⁹ : Ring k V : Type u_2 P : Type u_3 V₁ : Type u_4 P₁ : Type u_5 V₂ : Type u_6 P₂ : Type u_7 inst✝⁸ : AddCommGroup V inst✝⁷ : Module k V inst✝⁶ : AffineSpace V P inst✝⁵ : AddCommGroup V₁ inst✝⁴ : Module k V₁ inst✝³ : AffineSpace V₁ P₁ inst✝² : AddCommGroup V₂ inst✝¹ : Module k V₂ inst✝ : AffineSpace V₂ P₂ f : P₁ →ᵃ[k] P₂ v : V₁ s : AffineSubspace k P₁ ⊢ AffineMap.comp f ↑(AffineEquiv.constVAdd k P₁ v) = AffineMap.comp (↑(AffineEquiv.constVAdd k P₂ (↑f.linear v))) f [PROOFSTEP] ext [GOAL] case e_f.h k : Type u_1 inst✝⁹ : Ring k V : Type u_2 P : Type u_3 V₁ : Type u_4 P₁ : Type u_5 V₂ : Type u_6 P₂ : Type u_7 inst✝⁸ : AddCommGroup V inst✝⁷ : Module k V inst✝⁶ : AffineSpace V P inst✝⁵ : AddCommGroup V₁ inst✝⁴ : Module k V₁ inst✝³ : AffineSpace V₁ P₁ inst✝² : AddCommGroup V₂ inst✝¹ : Module k V₂ inst✝ : AffineSpace V₂ P₂ f : P₁ →ᵃ[k] P₂ v : V₁ s : AffineSubspace k P₁ p✝ : P₁ ⊢ ↑(AffineMap.comp f ↑(AffineEquiv.constVAdd k P₁ v)) p✝ = ↑(AffineMap.comp (↑(AffineEquiv.constVAdd k P₂ (↑f.linear v))) f) p✝ [PROOFSTEP] exact f.map_vadd _ _
{"mathlib_filename": "Mathlib.LinearAlgebra.AffineSpace.Pointwise", "llama_tokens": 2003}
[GOAL] k : Type u_1 E : Type u_2 PE : Type u_3 inst✝³ : Field k inst✝² : AddCommGroup E inst✝¹ : Module k E inst✝ : AddTorsor E PE f : k → PE a : k ⊢ slope f a a = 0 [PROOFSTEP] rw [slope, sub_self, inv_zero, zero_smul] [GOAL] k : Type u_1 E : Type u_2 PE : Type u_3 inst✝³ : Field k inst✝² : AddCommGroup E inst✝¹ : Module k E inst✝ : AddTorsor E PE f : k → PE a b : k ⊢ (b - a) • slope f a b = f b -ᵥ f a [PROOFSTEP] rcases eq_or_ne a b with (rfl | hne) [GOAL] case inl k : Type u_1 E : Type u_2 PE : Type u_3 inst✝³ : Field k inst✝² : AddCommGroup E inst✝¹ : Module k E inst✝ : AddTorsor E PE f : k → PE a : k ⊢ (a - a) • slope f a a = f a -ᵥ f a [PROOFSTEP] rw [sub_self, zero_smul, vsub_self] [GOAL] case inr k : Type u_1 E : Type u_2 PE : Type u_3 inst✝³ : Field k inst✝² : AddCommGroup E inst✝¹ : Module k E inst✝ : AddTorsor E PE f : k → PE a b : k hne : a ≠ b ⊢ (b - a) • slope f a b = f b -ᵥ f a [PROOFSTEP] rw [slope, smul_inv_smul₀ (sub_ne_zero.2 hne.symm)] [GOAL] k : Type u_1 E : Type u_2 PE : Type u_3 inst✝³ : Field k inst✝² : AddCommGroup E inst✝¹ : Module k E inst✝ : AddTorsor E PE f : k → PE a b : k ⊢ (b - a) • slope f a b +ᵥ f a = f b [PROOFSTEP] rw [sub_smul_slope, vsub_vadd] [GOAL] k : Type u_1 E : Type u_2 PE : Type u_3 inst✝³ : Field k inst✝² : AddCommGroup E inst✝¹ : Module k E inst✝ : AddTorsor E PE f : k → E c : PE ⊢ (slope fun x => f x +ᵥ c) = slope f [PROOFSTEP] ext a b [GOAL] case h.h k : Type u_1 E : Type u_2 PE : Type u_3 inst✝³ : Field k inst✝² : AddCommGroup E inst✝¹ : Module k E inst✝ : AddTorsor E PE f : k → E c : PE a b : k ⊢ slope (fun x => f x +ᵥ c) a b = slope f a b [PROOFSTEP] simp only [slope, vadd_vsub_vadd_cancel_right, vsub_eq_sub] [GOAL] k : Type u_1 E : Type u_2 PE : Type u_3 inst✝³ : Field k inst✝² : AddCommGroup E inst✝¹ : Module k E inst✝ : AddTorsor E PE f : k → E a b : k h : a ≠ b ⊢ slope (fun x => (x - a) • f x) a b = f b [PROOFSTEP] simp [slope, inv_smul_smul₀ (sub_ne_zero.2 h.symm)] [GOAL] k : Type u_1 E : Type u_2 PE : Type u_3 inst✝³ : Field k inst✝² : AddCommGroup E inst✝¹ : Module k E inst✝ : AddTorsor E PE f : k → PE a b : k h : slope f a b = 0 ⊢ f a = f b [PROOFSTEP] rw [← sub_smul_slope_vadd f a b, h, smul_zero, zero_vadd] [GOAL] k : Type u_1 E : Type u_2 PE : Type u_3 inst✝⁶ : Field k inst✝⁵ : AddCommGroup E inst✝⁴ : Module k E inst✝³ : AddTorsor E PE F : Type u_4 PF : Type u_5 inst✝² : AddCommGroup F inst✝¹ : Module k F inst✝ : AddTorsor F PF f : PE →ᵃ[k] PF g : k → PE a b : k ⊢ slope (↑f ∘ g) a b = ↑f.linear (slope g a b) [PROOFSTEP] simp only [slope, (· ∘ ·), f.linear.map_smul, f.linearMap_vsub] [GOAL] k : Type u_1 E : Type u_2 PE : Type u_3 inst✝³ : Field k inst✝² : AddCommGroup E inst✝¹ : Module k E inst✝ : AddTorsor E PE f : k → PE a b : k ⊢ slope f a b = slope f b a [PROOFSTEP] rw [slope, slope, ← neg_vsub_eq_vsub_rev, smul_neg, ← neg_smul, neg_inv, neg_sub] [GOAL] k : Type u_1 E : Type u_2 PE : Type u_3 inst✝³ : Field k inst✝² : AddCommGroup E inst✝¹ : Module k E inst✝ : AddTorsor E PE f : k → PE a b c : k ⊢ ((b - a) / (c - a)) • slope f a b + ((c - b) / (c - a)) • slope f b c = slope f a c [PROOFSTEP] by_cases hab : a = b [GOAL] case pos k : Type u_1 E : Type u_2 PE : Type u_3 inst✝³ : Field k inst✝² : AddCommGroup E inst✝¹ : Module k E inst✝ : AddTorsor E PE f : k → PE a b c : k hab : a = b ⊢ ((b - a) / (c - a)) • slope f a b + ((c - b) / (c - a)) • slope f b c = slope f a c [PROOFSTEP] subst hab [GOAL] case pos k : Type u_1 E : Type u_2 PE : Type u_3 inst✝³ : Field k inst✝² : AddCommGroup E inst✝¹ : Module k E inst✝ : AddTorsor E PE f : k → PE a c : k ⊢ ((a - a) / (c - a)) • slope f a a + ((c - a) / (c - a)) • slope f a c = slope f a c [PROOFSTEP] rw [sub_self, zero_div, zero_smul, zero_add] [GOAL] case pos k : Type u_1 E : Type u_2 PE : Type u_3 inst✝³ : Field k inst✝² : AddCommGroup E inst✝¹ : Module k E inst✝ : AddTorsor E PE f : k → PE a c : k ⊢ ((c - a) / (c - a)) • slope f a c = slope f a c [PROOFSTEP] by_cases hac : a = c [GOAL] case pos k : Type u_1 E : Type u_2 PE : Type u_3 inst✝³ : Field k inst✝² : AddCommGroup E inst✝¹ : Module k E inst✝ : AddTorsor E PE f : k → PE a c : k hac : a = c ⊢ ((c - a) / (c - a)) • slope f a c = slope f a c [PROOFSTEP] simp [hac] [GOAL] case neg k : Type u_1 E : Type u_2 PE : Type u_3 inst✝³ : Field k inst✝² : AddCommGroup E inst✝¹ : Module k E inst✝ : AddTorsor E PE f : k → PE a c : k hac : ¬a = c ⊢ ((c - a) / (c - a)) • slope f a c = slope f a c [PROOFSTEP] rw [div_self (sub_ne_zero.2 <| Ne.symm hac), one_smul] [GOAL] case neg k : Type u_1 E : Type u_2 PE : Type u_3 inst✝³ : Field k inst✝² : AddCommGroup E inst✝¹ : Module k E inst✝ : AddTorsor E PE f : k → PE a b c : k hab : ¬a = b ⊢ ((b - a) / (c - a)) • slope f a b + ((c - b) / (c - a)) • slope f b c = slope f a c [PROOFSTEP] by_cases hbc : b = c [GOAL] case pos k : Type u_1 E : Type u_2 PE : Type u_3 inst✝³ : Field k inst✝² : AddCommGroup E inst✝¹ : Module k E inst✝ : AddTorsor E PE f : k → PE a b c : k hab : ¬a = b hbc : b = c ⊢ ((b - a) / (c - a)) • slope f a b + ((c - b) / (c - a)) • slope f b c = slope f a c [PROOFSTEP] subst hbc [GOAL] case pos k : Type u_1 E : Type u_2 PE : Type u_3 inst✝³ : Field k inst✝² : AddCommGroup E inst✝¹ : Module k E inst✝ : AddTorsor E PE f : k → PE a b : k hab : ¬a = b ⊢ ((b - a) / (b - a)) • slope f a b + ((b - b) / (b - a)) • slope f b b = slope f a b [PROOFSTEP] simp [sub_ne_zero.2 (Ne.symm hab)] [GOAL] case neg k : Type u_1 E : Type u_2 PE : Type u_3 inst✝³ : Field k inst✝² : AddCommGroup E inst✝¹ : Module k E inst✝ : AddTorsor E PE f : k → PE a b c : k hab : ¬a = b hbc : ¬b = c ⊢ ((b - a) / (c - a)) • slope f a b + ((c - b) / (c - a)) • slope f b c = slope f a c [PROOFSTEP] rw [add_comm] [GOAL] case neg k : Type u_1 E : Type u_2 PE : Type u_3 inst✝³ : Field k inst✝² : AddCommGroup E inst✝¹ : Module k E inst✝ : AddTorsor E PE f : k → PE a b c : k hab : ¬a = b hbc : ¬b = c ⊢ ((c - b) / (c - a)) • slope f b c + ((b - a) / (c - a)) • slope f a b = slope f a c [PROOFSTEP] simp_rw [slope, div_eq_inv_mul, mul_smul, ← smul_add, smul_inv_smul₀ (sub_ne_zero.2 <| Ne.symm hab), smul_inv_smul₀ (sub_ne_zero.2 <| Ne.symm hbc), vsub_add_vsub_cancel] [GOAL] k : Type u_1 E : Type u_2 PE : Type u_3 inst✝³ : Field k inst✝² : AddCommGroup E inst✝¹ : Module k E inst✝ : AddTorsor E PE f : k → PE a b c : k h : a ≠ c ⊢ ↑(lineMap (slope f a b) (slope f b c)) ((c - b) / (c - a)) = slope f a c [PROOFSTEP] field_simp [sub_ne_zero.2 h.symm, ← sub_div_sub_smul_slope_add_sub_div_sub_smul_slope f a b c, lineMap_apply_module] [GOAL] k : Type u_1 E : Type u_2 PE : Type u_3 inst✝³ : Field k inst✝² : AddCommGroup E inst✝¹ : Module k E inst✝ : AddTorsor E PE f : k → PE a b r : k ⊢ ↑(lineMap (slope f (↑(lineMap a b) r) b) (slope f a (↑(lineMap a b) r))) r = slope f a b [PROOFSTEP] obtain rfl | hab : a = b ∨ a ≠ b := Classical.em _ [GOAL] case inl k : Type u_1 E : Type u_2 PE : Type u_3 inst✝³ : Field k inst✝² : AddCommGroup E inst✝¹ : Module k E inst✝ : AddTorsor E PE f : k → PE a r : k ⊢ ↑(lineMap (slope f (↑(lineMap a a) r) a) (slope f a (↑(lineMap a a) r))) r = slope f a a [PROOFSTEP] simp [GOAL] case inr k : Type u_1 E : Type u_2 PE : Type u_3 inst✝³ : Field k inst✝² : AddCommGroup E inst✝¹ : Module k E inst✝ : AddTorsor E PE f : k → PE a b r : k hab : a ≠ b ⊢ ↑(lineMap (slope f (↑(lineMap a b) r) b) (slope f a (↑(lineMap a b) r))) r = slope f a b [PROOFSTEP] rw [slope_comm _ a, slope_comm _ a, slope_comm _ _ b] [GOAL] case inr k : Type u_1 E : Type u_2 PE : Type u_3 inst✝³ : Field k inst✝² : AddCommGroup E inst✝¹ : Module k E inst✝ : AddTorsor E PE f : k → PE a b r : k hab : a ≠ b ⊢ ↑(lineMap (slope f b (↑(lineMap a b) r)) (slope f (↑(lineMap a b) r) a)) r = slope f b a [PROOFSTEP] convert lineMap_slope_slope_sub_div_sub f b (lineMap a b r) a hab.symm using 2 [GOAL] case h.e'_2.h.e'_6 k : Type u_1 E : Type u_2 PE : Type u_3 inst✝³ : Field k inst✝² : AddCommGroup E inst✝¹ : Module k E inst✝ : AddTorsor E PE f : k → PE a b r : k hab : a ≠ b ⊢ r = (a - ↑(lineMap a b) r) / (a - b) [PROOFSTEP] rw [lineMap_apply_ring, eq_div_iff (sub_ne_zero.2 hab), sub_mul, one_mul, mul_sub, ← sub_sub, sub_sub_cancel]
{"mathlib_filename": "Mathlib.LinearAlgebra.AffineSpace.Slope", "llama_tokens": 4243}
[GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁶ : Ring R M : Type v inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type v' inst✝³ : AddCommGroup M' inst✝² : Module R M' M₁ : Type v inst✝¹ : AddCommGroup M₁ inst✝ : Module R M₁ f : M →ₗ[R] M' i : Injective ↑f ⊢ lift (Module.rank R M) ≤ lift (Module.rank R M') [PROOFSTEP] simp only [Module.rank_def] [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁶ : Ring R M : Type v inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type v' inst✝³ : AddCommGroup M' inst✝² : Module R M' M₁ : Type v inst✝¹ : AddCommGroup M₁ inst✝ : Module R M₁ f : M →ₗ[R] M' i : Injective ↑f ⊢ lift (⨆ (ι : { s // LinearIndependent R Subtype.val }), #↑↑ι) ≤ lift (⨆ (ι : { s // LinearIndependent R Subtype.val }), #↑↑ι) [PROOFSTEP] rw [Cardinal.lift_iSup (Cardinal.bddAbove_range.{v', v'} _), Cardinal.lift_iSup (Cardinal.bddAbove_range.{v, v} _)] [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁶ : Ring R M : Type v inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type v' inst✝³ : AddCommGroup M' inst✝² : Module R M' M₁ : Type v inst✝¹ : AddCommGroup M₁ inst✝ : Module R M₁ f : M →ₗ[R] M' i : Injective ↑f ⊢ ⨆ (i : { s // LinearIndependent R Subtype.val }), lift #↑↑i ≤ ⨆ (i : { s // LinearIndependent R Subtype.val }), lift #↑↑i [PROOFSTEP] apply ciSup_mono' (Cardinal.bddAbove_range.{v', v} _) [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁶ : Ring R M : Type v inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type v' inst✝³ : AddCommGroup M' inst✝² : Module R M' M₁ : Type v inst✝¹ : AddCommGroup M₁ inst✝ : Module R M₁ f : M →ₗ[R] M' i : Injective ↑f ⊢ ∀ (i : { s // LinearIndependent R Subtype.val }), ∃ i', lift #↑↑i ≤ lift #↑↑i' [PROOFSTEP] rintro ⟨s, li⟩ [GOAL] case mk K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁶ : Ring R M : Type v inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type v' inst✝³ : AddCommGroup M' inst✝² : Module R M' M₁ : Type v inst✝¹ : AddCommGroup M₁ inst✝ : Module R M₁ f : M →ₗ[R] M' i : Injective ↑f s : Set M li : LinearIndependent R Subtype.val ⊢ ∃ i', lift #↑↑{ val := s, property := li } ≤ lift #↑↑i' [PROOFSTEP] refine' ⟨⟨f '' s, _⟩, Cardinal.lift_mk_le'.mpr ⟨(Equiv.Set.image f s i).toEmbedding⟩⟩ [GOAL] case mk K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁶ : Ring R M : Type v inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type v' inst✝³ : AddCommGroup M' inst✝² : Module R M' M₁ : Type v inst✝¹ : AddCommGroup M₁ inst✝ : Module R M₁ f : M →ₗ[R] M' i : Injective ↑f s : Set M li : LinearIndependent R Subtype.val ⊢ LinearIndependent R Subtype.val [PROOFSTEP] exact (li.map' _ <| LinearMap.ker_eq_bot.mpr i).image [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁶ : Ring R M : Type v inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type v' inst✝³ : AddCommGroup M' inst✝² : Module R M' M₁ : Type v inst✝¹ : AddCommGroup M₁ inst✝ : Module R M₁ n : ℕ H : ∀ (s : Finset M), (LinearIndependent R fun i => ↑i) → Finset.card s ≤ n ⊢ Module.rank R M ≤ ↑n [PROOFSTEP] rw [Module.rank_def] [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁶ : Ring R M : Type v inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type v' inst✝³ : AddCommGroup M' inst✝² : Module R M' M₁ : Type v inst✝¹ : AddCommGroup M₁ inst✝ : Module R M₁ n : ℕ H : ∀ (s : Finset M), (LinearIndependent R fun i => ↑i) → Finset.card s ≤ n ⊢ ⨆ (ι : { s // LinearIndependent R Subtype.val }), #↑↑ι ≤ ↑n [PROOFSTEP] apply ciSup_le' [GOAL] case h K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁶ : Ring R M : Type v inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type v' inst✝³ : AddCommGroup M' inst✝² : Module R M' M₁ : Type v inst✝¹ : AddCommGroup M₁ inst✝ : Module R M₁ n : ℕ H : ∀ (s : Finset M), (LinearIndependent R fun i => ↑i) → Finset.card s ≤ n ⊢ ∀ (i : { s // LinearIndependent R Subtype.val }), #↑↑i ≤ ↑n [PROOFSTEP] rintro ⟨s, li⟩ [GOAL] case h.mk K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁶ : Ring R M : Type v inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type v' inst✝³ : AddCommGroup M' inst✝² : Module R M' M₁ : Type v inst✝¹ : AddCommGroup M₁ inst✝ : Module R M₁ n : ℕ H : ∀ (s : Finset M), (LinearIndependent R fun i => ↑i) → Finset.card s ≤ n s : Set M li : LinearIndependent R Subtype.val ⊢ #↑↑{ val := s, property := li } ≤ ↑n [PROOFSTEP] exact linearIndependent_bounded_of_finset_linearIndependent_bounded H _ li [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁶ : Ring R M : Type v inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type v' inst✝³ : AddCommGroup M' inst✝² : Module R M' M₁ : Type v inst✝¹ : AddCommGroup M₁ inst✝ : Module R M₁ f : M →ₗ[R] M' ⊢ lift (Module.rank R { x // x ∈ LinearMap.range f }) ≤ lift (Module.rank R M) [PROOFSTEP] simp only [Module.rank_def] [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁶ : Ring R M : Type v inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type v' inst✝³ : AddCommGroup M' inst✝² : Module R M' M₁ : Type v inst✝¹ : AddCommGroup M₁ inst✝ : Module R M₁ f : M →ₗ[R] M' ⊢ lift (⨆ (ι : { s // LinearIndependent R Subtype.val }), #↑↑ι) ≤ lift (⨆ (ι : { s // LinearIndependent R Subtype.val }), #↑↑ι) [PROOFSTEP] rw [Cardinal.lift_iSup (Cardinal.bddAbove_range.{v', v'} _)] [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁶ : Ring R M : Type v inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type v' inst✝³ : AddCommGroup M' inst✝² : Module R M' M₁ : Type v inst✝¹ : AddCommGroup M₁ inst✝ : Module R M₁ f : M →ₗ[R] M' ⊢ ⨆ (i : { s // LinearIndependent R Subtype.val }), lift #↑↑i ≤ lift (⨆ (ι : { s // LinearIndependent R Subtype.val }), #↑↑ι) [PROOFSTEP] apply ciSup_le' [GOAL] case h K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁶ : Ring R M : Type v inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type v' inst✝³ : AddCommGroup M' inst✝² : Module R M' M₁ : Type v inst✝¹ : AddCommGroup M₁ inst✝ : Module R M₁ f : M →ₗ[R] M' ⊢ ∀ (i : { s // LinearIndependent R Subtype.val }), lift #↑↑i ≤ lift (⨆ (ι : { s // LinearIndependent R Subtype.val }), #↑↑ι) [PROOFSTEP] rintro ⟨s, li⟩ [GOAL] case h.mk K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁶ : Ring R M : Type v inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type v' inst✝³ : AddCommGroup M' inst✝² : Module R M' M₁ : Type v inst✝¹ : AddCommGroup M₁ inst✝ : Module R M₁ f : M →ₗ[R] M' s : Set { x // x ∈ LinearMap.range f } li : LinearIndependent R Subtype.val ⊢ lift #↑↑{ val := s, property := li } ≤ lift (⨆ (ι : { s // LinearIndependent R Subtype.val }), #↑↑ι) [PROOFSTEP] apply le_trans [GOAL] case h.mk.a K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁶ : Ring R M : Type v inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type v' inst✝³ : AddCommGroup M' inst✝² : Module R M' M₁ : Type v inst✝¹ : AddCommGroup M₁ inst✝ : Module R M₁ f : M →ₗ[R] M' s : Set { x // x ∈ LinearMap.range f } li : LinearIndependent R Subtype.val ⊢ lift #↑↑{ val := s, property := li } ≤ ?h.mk.b case h.mk.a K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁶ : Ring R M : Type v inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type v' inst✝³ : AddCommGroup M' inst✝² : Module R M' M₁ : Type v inst✝¹ : AddCommGroup M₁ inst✝ : Module R M₁ f : M →ₗ[R] M' s : Set { x // x ∈ LinearMap.range f } li : LinearIndependent R Subtype.val ⊢ ?h.mk.b ≤ lift (⨆ (ι : { s // LinearIndependent R Subtype.val }), #↑↑ι) case h.mk.b K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁶ : Ring R M : Type v inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type v' inst✝³ : AddCommGroup M' inst✝² : Module R M' M₁ : Type v inst✝¹ : AddCommGroup M₁ inst✝ : Module R M₁ f : M →ₗ[R] M' s : Set { x // x ∈ LinearMap.range f } li : LinearIndependent R Subtype.val ⊢ Cardinal.{max v' v} [PROOFSTEP] swap [GOAL] case h.mk.a K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁶ : Ring R M : Type v inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type v' inst✝³ : AddCommGroup M' inst✝² : Module R M' M₁ : Type v inst✝¹ : AddCommGroup M₁ inst✝ : Module R M₁ f : M →ₗ[R] M' s : Set { x // x ∈ LinearMap.range f } li : LinearIndependent R Subtype.val ⊢ ?h.mk.b ≤ lift (⨆ (ι : { s // LinearIndependent R Subtype.val }), #↑↑ι) [PROOFSTEP] apply Cardinal.lift_le.mpr [GOAL] case h.mk.a K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁶ : Ring R M : Type v inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type v' inst✝³ : AddCommGroup M' inst✝² : Module R M' M₁ : Type v inst✝¹ : AddCommGroup M₁ inst✝ : Module R M₁ f : M →ₗ[R] M' s : Set { x // x ∈ LinearMap.range f } li : LinearIndependent R Subtype.val ⊢ ?m.20621 ≤ ⨆ (ι : { s // LinearIndependent R Subtype.val }), #↑↑ι K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁶ : Ring R M : Type v inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type v' inst✝³ : AddCommGroup M' inst✝² : Module R M' M₁ : Type v inst✝¹ : AddCommGroup M₁ inst✝ : Module R M₁ f : M →ₗ[R] M' s : Set { x // x ∈ LinearMap.range f } li : LinearIndependent R Subtype.val ⊢ Cardinal.{v} [PROOFSTEP] refine' le_ciSup (Cardinal.bddAbove_range.{v, v} _) ⟨rangeSplitting f '' s, _⟩ [GOAL] case h.mk.a K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁶ : Ring R M : Type v inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type v' inst✝³ : AddCommGroup M' inst✝² : Module R M' M₁ : Type v inst✝¹ : AddCommGroup M₁ inst✝ : Module R M₁ f : M →ₗ[R] M' s : Set { x // x ∈ LinearMap.range f } li : LinearIndependent R Subtype.val ⊢ LinearIndependent R Subtype.val [PROOFSTEP] apply LinearIndependent.of_comp f.rangeRestrict [GOAL] case h.mk.a K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁶ : Ring R M : Type v inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type v' inst✝³ : AddCommGroup M' inst✝² : Module R M' M₁ : Type v inst✝¹ : AddCommGroup M₁ inst✝ : Module R M₁ f : M →ₗ[R] M' s : Set { x // x ∈ LinearMap.range f } li : LinearIndependent R Subtype.val ⊢ LinearIndependent R (↑(LinearMap.rangeRestrict f) ∘ Subtype.val) [PROOFSTEP] convert li.comp (Equiv.Set.rangeSplittingImageEquiv f s) (Equiv.injective _) using 1 [GOAL] case h.mk.a K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁶ : Ring R M : Type v inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type v' inst✝³ : AddCommGroup M' inst✝² : Module R M' M₁ : Type v inst✝¹ : AddCommGroup M₁ inst✝ : Module R M₁ f : M →ₗ[R] M' s : Set { x // x ∈ LinearMap.range f } li : LinearIndependent R Subtype.val ⊢ lift #↑↑{ val := s, property := li } ≤ lift #↑↑{ val := rangeSplitting ↑f '' s, property := (_ : LinearIndependent R Subtype.val) } [PROOFSTEP] exact (Cardinal.lift_mk_eq'.mpr ⟨Equiv.Set.rangeSplittingImageEquiv f s⟩).ge [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁶ : Ring R M : Type v inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type v' inst✝³ : AddCommGroup M' inst✝² : Module R M' M₁ : Type v inst✝¹ : AddCommGroup M₁ inst✝ : Module R M₁ f : M →ₗ[R] M₁ ⊢ Module.rank R { x // x ∈ LinearMap.range f } ≤ Module.rank R M [PROOFSTEP] simpa using lift_rank_range_le f [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁶ : Ring R M : Type v inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type v' inst✝³ : AddCommGroup M' inst✝² : Module R M' M₁ : Type v inst✝¹ : AddCommGroup M₁ inst✝ : Module R M₁ f : M →ₗ[R] M' p : Submodule R M ⊢ lift (Module.rank R { x // x ∈ Submodule.map f p }) ≤ lift (Module.rank R { x // x ∈ p }) [PROOFSTEP] have h := lift_rank_range_le (f.comp (Submodule.subtype p)) [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁶ : Ring R M : Type v inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type v' inst✝³ : AddCommGroup M' inst✝² : Module R M' M₁ : Type v inst✝¹ : AddCommGroup M₁ inst✝ : Module R M₁ f : M →ₗ[R] M' p : Submodule R M h : lift (Module.rank R { x // x ∈ LinearMap.range (LinearMap.comp f (Submodule.subtype p)) }) ≤ lift (Module.rank R { x // x ∈ p }) ⊢ lift (Module.rank R { x // x ∈ Submodule.map f p }) ≤ lift (Module.rank R { x // x ∈ p }) [PROOFSTEP] rwa [LinearMap.range_comp, range_subtype] at h [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁶ : Ring R M : Type v inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type v' inst✝³ : AddCommGroup M' inst✝² : Module R M' M₁ : Type v inst✝¹ : AddCommGroup M₁ inst✝ : Module R M₁ f : M →ₗ[R] M₁ p : Submodule R M ⊢ Module.rank R { x // x ∈ Submodule.map f p } ≤ Module.rank R { x // x ∈ p } [PROOFSTEP] simpa using lift_rank_map_le f p [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁶ : Ring R M : Type v inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type v' inst✝³ : AddCommGroup M' inst✝² : Module R M' M₁ : Type v inst✝¹ : AddCommGroup M₁ inst✝ : Module R M₁ f : M ≃ₗ[R] M' ⊢ lift (Module.rank R M) = lift (Module.rank R M') [PROOFSTEP] apply le_antisymm [GOAL] case a K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁶ : Ring R M : Type v inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type v' inst✝³ : AddCommGroup M' inst✝² : Module R M' M₁ : Type v inst✝¹ : AddCommGroup M₁ inst✝ : Module R M₁ f : M ≃ₗ[R] M' ⊢ lift (Module.rank R M) ≤ lift (Module.rank R M') [PROOFSTEP] exact f.toLinearMap.lift_rank_le_of_injective f.injective [GOAL] case a K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁶ : Ring R M : Type v inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type v' inst✝³ : AddCommGroup M' inst✝² : Module R M' M₁ : Type v inst✝¹ : AddCommGroup M₁ inst✝ : Module R M₁ f : M ≃ₗ[R] M' ⊢ lift (Module.rank R M') ≤ lift (Module.rank R M) [PROOFSTEP] exact f.symm.toLinearMap.lift_rank_le_of_injective f.symm.injective [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁶ : Ring R M : Type v inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type v' inst✝³ : AddCommGroup M' inst✝² : Module R M' M₁ : Type v inst✝¹ : AddCommGroup M₁ inst✝ : Module R M₁ ⊢ Module.rank R { x // x ∈ ⊤ } = Module.rank R M [PROOFSTEP] have : (⊤ : Submodule R M) ≃ₗ[R] M := LinearEquiv.ofTop ⊤ rfl [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁶ : Ring R M : Type v inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type v' inst✝³ : AddCommGroup M' inst✝² : Module R M' M₁ : Type v inst✝¹ : AddCommGroup M₁ inst✝ : Module R M₁ this : { x // x ∈ ⊤ } ≃ₗ[R] M ⊢ Module.rank R { x // x ∈ ⊤ } = Module.rank R M [PROOFSTEP] rw [this.rank_eq] [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁶ : Ring R M : Type v inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type v' inst✝³ : AddCommGroup M' inst✝² : Module R M' M₁ : Type v inst✝¹ : AddCommGroup M₁ inst✝ : Module R M₁ f : M →ₗ[R] M' h : Surjective ↑f ⊢ Module.rank R { x // x ∈ LinearMap.range f } = Module.rank R M' [PROOFSTEP] rw [LinearMap.range_eq_top.2 h, rank_top] [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁶ : Ring R M : Type v inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type v' inst✝³ : AddCommGroup M' inst✝² : Module R M' M₁ : Type v inst✝¹ : AddCommGroup M₁ inst✝ : Module R M₁ s : Submodule R M ⊢ Module.rank R { x // x ∈ s } ≤ Module.rank R M [PROOFSTEP] rw [← rank_top R M] [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁶ : Ring R M : Type v inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type v' inst✝³ : AddCommGroup M' inst✝² : Module R M' M₁ : Type v inst✝¹ : AddCommGroup M₁ inst✝ : Module R M₁ s : Submodule R M ⊢ Module.rank R { x // x ∈ s } ≤ Module.rank R { x // x ∈ ⊤ } [PROOFSTEP] exact rank_le_of_submodule _ _ le_top [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁶ : Ring R M : Type v inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type v' inst✝³ : AddCommGroup M' inst✝² : Module R M' M₁ : Type v inst✝¹ : AddCommGroup M₁ inst✝ : Module R M₁ f : M →ₗ[R] M₁ h : Surjective ↑f ⊢ Module.rank R M₁ ≤ Module.rank R M [PROOFSTEP] rw [← rank_range_of_surjective f h] [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁶ : Ring R M : Type v inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M M' : Type v' inst✝³ : AddCommGroup M' inst✝² : Module R M' M₁ : Type v inst✝¹ : AddCommGroup M₁ inst✝ : Module R M₁ f : M →ₗ[R] M₁ h : Surjective ↑f ⊢ Module.rank R { x // x ∈ range f } ≤ Module.rank R M [PROOFSTEP] apply rank_range_le [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R ι : Type w v : ι → M hv : LinearIndependent R v ⊢ lift #ι ≤ lift (Module.rank R M) [PROOFSTEP] apply le_trans [GOAL] case a K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R ι : Type w v : ι → M hv : LinearIndependent R v ⊢ lift #ι ≤ ?b [PROOFSTEP] exact Cardinal.lift_mk_le'.mpr ⟨(Equiv.ofInjective _ hv.injective).toEmbedding⟩ [GOAL] case a K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R ι : Type w v : ι → M hv : LinearIndependent R v ⊢ lift #↑(range v) ≤ lift (Module.rank R M) [PROOFSTEP] simp only [Cardinal.lift_le, Module.rank_def] [GOAL] case a K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R ι : Type w v : ι → M hv : LinearIndependent R v ⊢ #↑(range v) ≤ ⨆ (ι : { s // LinearIndependent R Subtype.val }), #↑↑ι [PROOFSTEP] apply le_trans [GOAL] case a.a K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R ι : Type w v : ι → M hv : LinearIndependent R v ⊢ #↑(range v) ≤ ?a.b✝ case a.a K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R ι : Type w v : ι → M hv : LinearIndependent R v ⊢ ?a.b✝ ≤ ⨆ (ι : { s // LinearIndependent R Subtype.val }), #↑↑ι case a.b K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R ι : Type w v : ι → M hv : LinearIndependent R v ⊢ Cardinal.{v} [PROOFSTEP] swap [GOAL] case a.a K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R ι : Type w v : ι → M hv : LinearIndependent R v ⊢ ?a.b✝ ≤ ⨆ (ι : { s // LinearIndependent R Subtype.val }), #↑↑ι [PROOFSTEP] exact le_ciSup (Cardinal.bddAbove_range.{v, v} _) ⟨range v, hv.coe_range⟩ [GOAL] case a.a K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R ι : Type w v : ι → M hv : LinearIndependent R v ⊢ #↑(range v) ≤ #↑↑{ val := range v, property := (_ : LinearIndependent R Subtype.val) } [PROOFSTEP] exact le_rfl [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R ι : Type v v : ι → M hv : LinearIndependent R v ⊢ #ι ≤ Module.rank R M [PROOFSTEP] simpa using cardinal_lift_le_rank_of_linearIndependent hv [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R ⊢ Module.rank R PUnit = 0 [PROOFSTEP] rw [← bot_eq_zero, ← le_bot_iff, Module.rank_def] [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R ⊢ ⨆ (ι : { s // LinearIndependent R Subtype.val }), #↑↑ι ≤ ⊥ [PROOFSTEP] apply ciSup_le' [GOAL] case h K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R ⊢ ∀ (i : { s // LinearIndependent R Subtype.val }), #↑↑i ≤ ⊥ [PROOFSTEP] rintro ⟨s, li⟩ [GOAL] case h.mk K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R s : Set PUnit li : LinearIndependent R Subtype.val ⊢ #↑↑{ val := s, property := li } ≤ ⊥ [PROOFSTEP] rw [le_bot_iff, bot_eq_zero, Cardinal.mk_emptyCollection_iff, Subtype.coe_mk] [GOAL] case h.mk K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R s : Set PUnit li : LinearIndependent R Subtype.val ⊢ s = ∅ [PROOFSTEP] by_contra h [GOAL] case h.mk K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R s : Set PUnit li : LinearIndependent R Subtype.val h : ¬s = ∅ ⊢ False [PROOFSTEP] obtain ⟨a, ha⟩ := nonempty_iff_ne_empty.2 h [GOAL] case h.mk.intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R s : Set PUnit li : LinearIndependent R Subtype.val h : ¬s = ∅ a : PUnit ha : a ∈ s ⊢ False [PROOFSTEP] simpa using LinearIndependent.ne_zero (⟨a, ha⟩ : s) li [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R ⊢ Module.rank R { x // x ∈ ⊥ } = 0 [PROOFSTEP] have : (⊥ : Submodule R M) ≃ₗ[R] PUnit := botEquivPUnit [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R this : { x // x ∈ ⊥ } ≃ₗ[R] PUnit ⊢ Module.rank R { x // x ∈ ⊥ } = 0 [PROOFSTEP] rw [this.rank_eq, rank_punit] [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R s : Submodule R M h : 0 < Module.rank R { x // x ∈ s } eq : s = ⊥ ⊢ False [PROOFSTEP] rw [eq, rank_bot] at h [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R s : Submodule R M h : 0 < 0 eq : s = ⊥ ⊢ False [PROOFSTEP] exact lt_irrefl _ h [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁸ : Ring R M : Type v inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M M' : Type v' inst✝⁵ : AddCommGroup M' inst✝⁴ : Module R M' M₁ : Type v inst✝³ : AddCommGroup M₁ inst✝² : Module R M₁ inst✝¹ : Nontrivial R inst✝ : IsNoetherian R M v : ι → M hv : LinearIndependent R v ⊢ Finite ι [PROOFSTEP] have hwf := isNoetherian_iff_wellFounded.mp (by infer_instance : IsNoetherian R M) [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁸ : Ring R M : Type v inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M M' : Type v' inst✝⁵ : AddCommGroup M' inst✝⁴ : Module R M' M₁ : Type v inst✝³ : AddCommGroup M₁ inst✝² : Module R M₁ inst✝¹ : Nontrivial R inst✝ : IsNoetherian R M v : ι → M hv : LinearIndependent R v ⊢ IsNoetherian R M [PROOFSTEP] infer_instance [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁸ : Ring R M : Type v inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M M' : Type v' inst✝⁵ : AddCommGroup M' inst✝⁴ : Module R M' M₁ : Type v inst✝³ : AddCommGroup M₁ inst✝² : Module R M₁ inst✝¹ : Nontrivial R inst✝ : IsNoetherian R M v : ι → M hv : LinearIndependent R v hwf : WellFounded fun x x_1 => x > x_1 ⊢ Finite ι [PROOFSTEP] refine' CompleteLattice.WellFounded.finite_of_independent hwf hv.independent_span_singleton fun i contra => _ [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁸ : Ring R M : Type v inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M M' : Type v' inst✝⁵ : AddCommGroup M' inst✝⁴ : Module R M' M₁ : Type v inst✝³ : AddCommGroup M₁ inst✝² : Module R M₁ inst✝¹ : Nontrivial R inst✝ : IsNoetherian R M v : ι → M hv : LinearIndependent R v hwf : WellFounded fun x x_1 => x > x_1 i : ι contra : span R {v i} = ⊥ ⊢ False [PROOFSTEP] apply hv.ne_zero i [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁸ : Ring R M : Type v inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M M' : Type v' inst✝⁵ : AddCommGroup M' inst✝⁴ : Module R M' M₁ : Type v inst✝³ : AddCommGroup M₁ inst✝² : Module R M₁ inst✝¹ : Nontrivial R inst✝ : IsNoetherian R M v : ι → M hv : LinearIndependent R v hwf : WellFounded fun x x_1 => x > x_1 i : ι contra : span R {v i} = ⊥ ⊢ v i = 0 [PROOFSTEP] have : v i ∈ R ∙ v i := Submodule.mem_span_singleton_self (v i) [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁸ : Ring R M : Type v inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M M' : Type v' inst✝⁵ : AddCommGroup M' inst✝⁴ : Module R M' M₁ : Type v inst✝³ : AddCommGroup M₁ inst✝² : Module R M₁ inst✝¹ : Nontrivial R inst✝ : IsNoetherian R M v : ι → M hv : LinearIndependent R v hwf : WellFounded fun x x_1 => x > x_1 i : ι contra : span R {v i} = ⊥ this : v i ∈ span R {v i} ⊢ v i = 0 [PROOFSTEP] rwa [contra, Submodule.mem_bot] at this [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R w : Set M hw : Set.Finite w s : span R w = ⊤ ι : Type w b : Basis ι R M ⊢ Finite ι [PROOFSTEP] classical haveI := hw.to_subtype cases nonempty_fintype w rw [← not_infinite_iff_finite] intro i let S : Finset ι := Finset.univ.sup fun x : w => (b.repr x).support let bS : Set M := b '' S have h : ∀ x ∈ w, x ∈ span R bS := by intro x m rw [← b.total_repr x, Finsupp.span_image_eq_map_total, Submodule.mem_map] use b.repr x simp only [and_true_iff, eq_self_iff_true, Finsupp.mem_supported] change (b.repr x).support ≤ S convert Finset.le_sup (α := Finset ι) (by simp : (⟨x, m⟩ : w) ∈ Finset.univ) rfl -- Thus this finite subset of the basis elements spans the entire module. have k : span R bS = ⊤ := eq_top_iff.2 (le_trans s.ge (span_le.2 h)) -- Now there is some `x : ι` not in `S`, since `ι` is infinite. obtain ⟨x, nm⟩ := Infinite.exists_not_mem_finset S have k' : b x ∈ span R bS := by rw [k] exact mem_top refine' b.linearIndependent.not_mem_span_image _ k' exact nm [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R w : Set M hw : Set.Finite w s : span R w = ⊤ ι : Type w b : Basis ι R M ⊢ Finite ι [PROOFSTEP] haveI := hw.to_subtype [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R w : Set M hw : Set.Finite w s : span R w = ⊤ ι : Type w b : Basis ι R M this : Finite ↑w ⊢ Finite ι [PROOFSTEP] cases nonempty_fintype w [GOAL] case intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R w : Set M hw : Set.Finite w s : span R w = ⊤ ι : Type w b : Basis ι R M this : Finite ↑w val✝ : Fintype ↑w ⊢ Finite ι [PROOFSTEP] rw [← not_infinite_iff_finite] [GOAL] case intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R w : Set M hw : Set.Finite w s : span R w = ⊤ ι : Type w b : Basis ι R M this : Finite ↑w val✝ : Fintype ↑w ⊢ ¬Infinite ι [PROOFSTEP] intro i [GOAL] case intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R w : Set M hw : Set.Finite w s : span R w = ⊤ ι : Type w b : Basis ι R M this : Finite ↑w val✝ : Fintype ↑w i : Infinite ι ⊢ False [PROOFSTEP] let S : Finset ι := Finset.univ.sup fun x : w => (b.repr x).support [GOAL] case intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R w : Set M hw : Set.Finite w s : span R w = ⊤ ι : Type w b : Basis ι R M this : Finite ↑w val✝ : Fintype ↑w i : Infinite ι S : Finset ι := Finset.sup Finset.univ fun x => (↑b.repr ↑x).support ⊢ False [PROOFSTEP] let bS : Set M := b '' S [GOAL] case intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R w : Set M hw : Set.Finite w s : span R w = ⊤ ι : Type w b : Basis ι R M this : Finite ↑w val✝ : Fintype ↑w i : Infinite ι S : Finset ι := Finset.sup Finset.univ fun x => (↑b.repr ↑x).support bS : Set M := ↑b '' ↑S ⊢ False [PROOFSTEP] have h : ∀ x ∈ w, x ∈ span R bS := by intro x m rw [← b.total_repr x, Finsupp.span_image_eq_map_total, Submodule.mem_map] use b.repr x simp only [and_true_iff, eq_self_iff_true, Finsupp.mem_supported] change (b.repr x).support ≤ S convert Finset.le_sup (α := Finset ι) (by simp : (⟨x, m⟩ : w) ∈ Finset.univ) rfl -- Thus this finite subset of the basis elements spans the entire module. [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R w : Set M hw : Set.Finite w s : span R w = ⊤ ι : Type w b : Basis ι R M this : Finite ↑w val✝ : Fintype ↑w i : Infinite ι S : Finset ι := Finset.sup Finset.univ fun x => (↑b.repr ↑x).support bS : Set M := ↑b '' ↑S ⊢ ∀ (x : M), x ∈ w → x ∈ span R bS [PROOFSTEP] intro x m [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R w : Set M hw : Set.Finite w s : span R w = ⊤ ι : Type w b : Basis ι R M this : Finite ↑w val✝ : Fintype ↑w i : Infinite ι S : Finset ι := Finset.sup Finset.univ fun x => (↑b.repr ↑x).support bS : Set M := ↑b '' ↑S x : M m : x ∈ w ⊢ x ∈ span R bS [PROOFSTEP] rw [← b.total_repr x, Finsupp.span_image_eq_map_total, Submodule.mem_map] [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R w : Set M hw : Set.Finite w s : span R w = ⊤ ι : Type w b : Basis ι R M this : Finite ↑w val✝ : Fintype ↑w i : Infinite ι S : Finset ι := Finset.sup Finset.univ fun x => (↑b.repr ↑x).support bS : Set M := ↑b '' ↑S x : M m : x ∈ w ⊢ ∃ y, y ∈ Finsupp.supported R R ↑S ∧ ↑(Finsupp.total ι M R ↑b) y = ↑(Finsupp.total ι M R ↑b) (↑b.repr x) [PROOFSTEP] use b.repr x [GOAL] case h K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R w : Set M hw : Set.Finite w s : span R w = ⊤ ι : Type w b : Basis ι R M this : Finite ↑w val✝ : Fintype ↑w i : Infinite ι S : Finset ι := Finset.sup Finset.univ fun x => (↑b.repr ↑x).support bS : Set M := ↑b '' ↑S x : M m : x ∈ w ⊢ ↑b.repr x ∈ Finsupp.supported R R ↑S ∧ ↑(Finsupp.total ι M R ↑b) (↑b.repr x) = ↑(Finsupp.total ι M R ↑b) (↑b.repr x) [PROOFSTEP] simp only [and_true_iff, eq_self_iff_true, Finsupp.mem_supported] [GOAL] case h K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R w : Set M hw : Set.Finite w s : span R w = ⊤ ι : Type w b : Basis ι R M this : Finite ↑w val✝ : Fintype ↑w i : Infinite ι S : Finset ι := Finset.sup Finset.univ fun x => (↑b.repr ↑x).support bS : Set M := ↑b '' ↑S x : M m : x ∈ w ⊢ ↑(↑b.repr x).support ⊆ ↑(Finset.sup Finset.univ fun x => (↑b.repr ↑x).support) [PROOFSTEP] change (b.repr x).support ≤ S [GOAL] case h K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R w : Set M hw : Set.Finite w s : span R w = ⊤ ι : Type w b : Basis ι R M this : Finite ↑w val✝ : Fintype ↑w i : Infinite ι S : Finset ι := Finset.sup Finset.univ fun x => (↑b.repr ↑x).support bS : Set M := ↑b '' ↑S x : M m : x ∈ w ⊢ (↑b.repr x).support ≤ S [PROOFSTEP] convert Finset.le_sup (α := Finset ι) (by simp : (⟨x, m⟩ : w) ∈ Finset.univ) [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R w : Set M hw : Set.Finite w s : span R w = ⊤ ι : Type w b : Basis ι R M this : Finite ↑w val✝ : Fintype ↑w i : Infinite ι S : Finset ι := Finset.sup Finset.univ fun x => (↑b.repr ↑x).support bS : Set M := ↑b '' ↑S x : M m : x ∈ w ⊢ { val := x, property := m } ∈ Finset.univ [PROOFSTEP] simp [GOAL] case h.e'_3 K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R w : Set M hw : Set.Finite w s : span R w = ⊤ ι : Type w b : Basis ι R M this : Finite ↑w val✝ : Fintype ↑w i : Infinite ι S : Finset ι := Finset.sup Finset.univ fun x => (↑b.repr ↑x).support bS : Set M := ↑b '' ↑S x : M m : x ∈ w ⊢ (↑b.repr x).support = (↑b.repr ↑{ val := x, property := m }).support [PROOFSTEP] rfl -- Thus this finite subset of the basis elements spans the entire module. [GOAL] case intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R w : Set M hw : Set.Finite w s : span R w = ⊤ ι : Type w b : Basis ι R M this : Finite ↑w val✝ : Fintype ↑w i : Infinite ι S : Finset ι := Finset.sup Finset.univ fun x => (↑b.repr ↑x).support bS : Set M := ↑b '' ↑S h : ∀ (x : M), x ∈ w → x ∈ span R bS ⊢ False [PROOFSTEP] have k : span R bS = ⊤ := eq_top_iff.2 (le_trans s.ge (span_le.2 h)) -- Now there is some `x : ι` not in `S`, since `ι` is infinite. [GOAL] case intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R w : Set M hw : Set.Finite w s : span R w = ⊤ ι : Type w b : Basis ι R M this : Finite ↑w val✝ : Fintype ↑w i : Infinite ι S : Finset ι := Finset.sup Finset.univ fun x => (↑b.repr ↑x).support bS : Set M := ↑b '' ↑S h : ∀ (x : M), x ∈ w → x ∈ span R bS k : span R bS = ⊤ ⊢ False [PROOFSTEP] obtain ⟨x, nm⟩ := Infinite.exists_not_mem_finset S [GOAL] case intro.intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R w : Set M hw : Set.Finite w s : span R w = ⊤ ι : Type w b : Basis ι R M this : Finite ↑w val✝ : Fintype ↑w i : Infinite ι S : Finset ι := Finset.sup Finset.univ fun x => (↑b.repr ↑x).support bS : Set M := ↑b '' ↑S h : ∀ (x : M), x ∈ w → x ∈ span R bS k : span R bS = ⊤ x : ι nm : ¬x ∈ S ⊢ False [PROOFSTEP] have k' : b x ∈ span R bS := by rw [k] exact mem_top [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R w : Set M hw : Set.Finite w s : span R w = ⊤ ι : Type w b : Basis ι R M this : Finite ↑w val✝ : Fintype ↑w i : Infinite ι S : Finset ι := Finset.sup Finset.univ fun x => (↑b.repr ↑x).support bS : Set M := ↑b '' ↑S h : ∀ (x : M), x ∈ w → x ∈ span R bS k : span R bS = ⊤ x : ι nm : ¬x ∈ S ⊢ ↑b x ∈ span R bS [PROOFSTEP] rw [k] [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R w : Set M hw : Set.Finite w s : span R w = ⊤ ι : Type w b : Basis ι R M this : Finite ↑w val✝ : Fintype ↑w i : Infinite ι S : Finset ι := Finset.sup Finset.univ fun x => (↑b.repr ↑x).support bS : Set M := ↑b '' ↑S h : ∀ (x : M), x ∈ w → x ∈ span R bS k : span R bS = ⊤ x : ι nm : ¬x ∈ S ⊢ ↑b x ∈ ⊤ [PROOFSTEP] exact mem_top [GOAL] case intro.intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R w : Set M hw : Set.Finite w s : span R w = ⊤ ι : Type w b : Basis ι R M this : Finite ↑w val✝ : Fintype ↑w i : Infinite ι S : Finset ι := Finset.sup Finset.univ fun x => (↑b.repr ↑x).support bS : Set M := ↑b '' ↑S h : ∀ (x : M), x ∈ w → x ∈ span R bS k : span R bS = ⊤ x : ι nm : ¬x ∈ S k' : ↑b x ∈ span R bS ⊢ False [PROOFSTEP] refine' b.linearIndependent.not_mem_span_image _ k' [GOAL] case intro.intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R w : Set M hw : Set.Finite w s : span R w = ⊤ ι : Type w b : Basis ι R M this : Finite ↑w val✝ : Fintype ↑w i : Infinite ι S : Finset ι := Finset.sup Finset.univ fun x => (↑b.repr ↑x).support bS : Set M := ↑b '' ↑S h : ∀ (x : M), x ∈ w → x ∈ span R bS k : span R bS = ⊤ x : ι nm : ¬x ∈ S k' : ↑b x ∈ span R bS ⊢ ¬x ∈ ↑S [PROOFSTEP] exact nm [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R ι : Type w b : Basis ι R M κ : Type w' v : κ → M i : LinearIndependent R v m : LinearIndependent.Maximal i ⊢ ⋃ (k : κ), ↑(↑b.repr (v k)).support = Set.univ [PROOFSTEP] by_contra h [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R ι : Type w b : Basis ι R M κ : Type w' v : κ → M i : LinearIndependent R v m : LinearIndependent.Maximal i h : ¬⋃ (k : κ), ↑(↑b.repr (v k)).support = Set.univ ⊢ False [PROOFSTEP] simp only [← Ne.def, ne_univ_iff_exists_not_mem, mem_iUnion, not_exists_not, Finsupp.mem_support_iff, Finset.mem_coe] at h [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R ι : Type w b : Basis ι R M κ : Type w' v : κ → M i : LinearIndependent R v m : LinearIndependent.Maximal i h : ∃ a, ∀ (x : κ), ↑(↑b.repr (v x)) a = 0 ⊢ False [PROOFSTEP] obtain ⟨b', w⟩ := h [GOAL] case intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R ι : Type w b : Basis ι R M κ : Type w' v : κ → M i : LinearIndependent R v m : LinearIndependent.Maximal i b' : ι w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0 ⊢ False [PROOFSTEP] let v' : Option κ → M := fun o => o.elim (b b') v [GOAL] case intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R ι : Type w b : Basis ι R M κ : Type w' v : κ → M i : LinearIndependent R v m : LinearIndependent.Maximal i b' : ι w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0 v' : Option κ → M := fun o => Option.elim o (↑b b') v ⊢ False [PROOFSTEP] have r : range v ⊆ range v' := by rintro - ⟨k, rfl⟩ use some k rfl [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R ι : Type w b : Basis ι R M κ : Type w' v : κ → M i : LinearIndependent R v m : LinearIndependent.Maximal i b' : ι w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0 v' : Option κ → M := fun o => Option.elim o (↑b b') v ⊢ range v ⊆ range v' [PROOFSTEP] rintro - ⟨k, rfl⟩ [GOAL] case intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R ι : Type w b : Basis ι R M κ : Type w' v : κ → M i : LinearIndependent R v m : LinearIndependent.Maximal i b' : ι w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0 v' : Option κ → M := fun o => Option.elim o (↑b b') v k : κ ⊢ v k ∈ range v' [PROOFSTEP] use some k [GOAL] case h K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R ι : Type w b : Basis ι R M κ : Type w' v : κ → M i : LinearIndependent R v m : LinearIndependent.Maximal i b' : ι w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0 v' : Option κ → M := fun o => Option.elim o (↑b b') v k : κ ⊢ v' (some k) = v k [PROOFSTEP] rfl [GOAL] case intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R ι : Type w b : Basis ι R M κ : Type w' v : κ → M i : LinearIndependent R v m : LinearIndependent.Maximal i b' : ι w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0 v' : Option κ → M := fun o => Option.elim o (↑b b') v r : range v ⊆ range v' ⊢ False [PROOFSTEP] have r' : b b' ∉ range v := by rintro ⟨k, p⟩ simpa [w] using congr_arg (fun m => (b.repr m) b') p [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R ι : Type w b : Basis ι R M κ : Type w' v : κ → M i : LinearIndependent R v m : LinearIndependent.Maximal i b' : ι w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0 v' : Option κ → M := fun o => Option.elim o (↑b b') v r : range v ⊆ range v' ⊢ ¬↑b b' ∈ range v [PROOFSTEP] rintro ⟨k, p⟩ [GOAL] case intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R ι : Type w b : Basis ι R M κ : Type w' v : κ → M i : LinearIndependent R v m : LinearIndependent.Maximal i b' : ι w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0 v' : Option κ → M := fun o => Option.elim o (↑b b') v r : range v ⊆ range v' k : κ p : v k = ↑b b' ⊢ False [PROOFSTEP] simpa [w] using congr_arg (fun m => (b.repr m) b') p [GOAL] case intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R ι : Type w b : Basis ι R M κ : Type w' v : κ → M i : LinearIndependent R v m : LinearIndependent.Maximal i b' : ι w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0 v' : Option κ → M := fun o => Option.elim o (↑b b') v r : range v ⊆ range v' r' : ¬↑b b' ∈ range v ⊢ False [PROOFSTEP] have r'' : range v ≠ range v' := by intro e have p : b b' ∈ range v' := by use none rfl rw [← e] at p exact r' p [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R ι : Type w b : Basis ι R M κ : Type w' v : κ → M i : LinearIndependent R v m : LinearIndependent.Maximal i b' : ι w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0 v' : Option κ → M := fun o => Option.elim o (↑b b') v r : range v ⊆ range v' r' : ¬↑b b' ∈ range v ⊢ range v ≠ range v' [PROOFSTEP] intro e [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R ι : Type w b : Basis ι R M κ : Type w' v : κ → M i : LinearIndependent R v m : LinearIndependent.Maximal i b' : ι w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0 v' : Option κ → M := fun o => Option.elim o (↑b b') v r : range v ⊆ range v' r' : ¬↑b b' ∈ range v e : range v = range v' ⊢ False [PROOFSTEP] have p : b b' ∈ range v' := by use none rfl [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R ι : Type w b : Basis ι R M κ : Type w' v : κ → M i : LinearIndependent R v m : LinearIndependent.Maximal i b' : ι w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0 v' : Option κ → M := fun o => Option.elim o (↑b b') v r : range v ⊆ range v' r' : ¬↑b b' ∈ range v e : range v = range v' ⊢ ↑b b' ∈ range v' [PROOFSTEP] use none [GOAL] case h K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R ι : Type w b : Basis ι R M κ : Type w' v : κ → M i : LinearIndependent R v m : LinearIndependent.Maximal i b' : ι w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0 v' : Option κ → M := fun o => Option.elim o (↑b b') v r : range v ⊆ range v' r' : ¬↑b b' ∈ range v e : range v = range v' ⊢ v' none = ↑b b' [PROOFSTEP] rfl [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R ι : Type w b : Basis ι R M κ : Type w' v : κ → M i : LinearIndependent R v m : LinearIndependent.Maximal i b' : ι w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0 v' : Option κ → M := fun o => Option.elim o (↑b b') v r : range v ⊆ range v' r' : ¬↑b b' ∈ range v e : range v = range v' p : ↑b b' ∈ range v' ⊢ False [PROOFSTEP] rw [← e] at p [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R ι : Type w b : Basis ι R M κ : Type w' v : κ → M i : LinearIndependent R v m : LinearIndependent.Maximal i b' : ι w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0 v' : Option κ → M := fun o => Option.elim o (↑b b') v r : range v ⊆ range v' r' : ¬↑b b' ∈ range v e : range v = range v' p : ↑b b' ∈ range v ⊢ False [PROOFSTEP] exact r' p [GOAL] case intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R ι : Type w b : Basis ι R M κ : Type w' v : κ → M i : LinearIndependent R v m : LinearIndependent.Maximal i b' : ι w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0 v' : Option κ → M := fun o => Option.elim o (↑b b') v r : range v ⊆ range v' r' : ¬↑b b' ∈ range v r'' : range v ≠ range v' ⊢ False [PROOFSTEP] have inj' : Injective v' := by rintro (_ | k) (_ | k) z · rfl · exfalso exact r' ⟨k, z.symm⟩ · exfalso exact r' ⟨k, z⟩ · congr exact i.injective z [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R ι : Type w b : Basis ι R M κ : Type w' v : κ → M i : LinearIndependent R v m : LinearIndependent.Maximal i b' : ι w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0 v' : Option κ → M := fun o => Option.elim o (↑b b') v r : range v ⊆ range v' r' : ¬↑b b' ∈ range v r'' : range v ≠ range v' ⊢ Injective v' [PROOFSTEP] rintro (_ | k) (_ | k) z [GOAL] case none.none K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R ι : Type w b : Basis ι R M κ : Type w' v : κ → M i : LinearIndependent R v m : LinearIndependent.Maximal i b' : ι w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0 v' : Option κ → M := fun o => Option.elim o (↑b b') v r : range v ⊆ range v' r' : ¬↑b b' ∈ range v r'' : range v ≠ range v' z : v' none = v' none ⊢ none = none [PROOFSTEP] rfl [GOAL] case none.some K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R ι : Type w b : Basis ι R M κ : Type w' v : κ → M i : LinearIndependent R v m : LinearIndependent.Maximal i b' : ι w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0 v' : Option κ → M := fun o => Option.elim o (↑b b') v r : range v ⊆ range v' r' : ¬↑b b' ∈ range v r'' : range v ≠ range v' k : κ z : v' none = v' (some k) ⊢ none = some k [PROOFSTEP] exfalso [GOAL] case none.some.h K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R ι : Type w b : Basis ι R M κ : Type w' v : κ → M i : LinearIndependent R v m : LinearIndependent.Maximal i b' : ι w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0 v' : Option κ → M := fun o => Option.elim o (↑b b') v r : range v ⊆ range v' r' : ¬↑b b' ∈ range v r'' : range v ≠ range v' k : κ z : v' none = v' (some k) ⊢ False [PROOFSTEP] exact r' ⟨k, z.symm⟩ [GOAL] case some.none K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R ι : Type w b : Basis ι R M κ : Type w' v : κ → M i : LinearIndependent R v m : LinearIndependent.Maximal i b' : ι w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0 v' : Option κ → M := fun o => Option.elim o (↑b b') v r : range v ⊆ range v' r' : ¬↑b b' ∈ range v r'' : range v ≠ range v' k : κ z : v' (some k) = v' none ⊢ some k = none [PROOFSTEP] exfalso [GOAL] case some.none.h K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R ι : Type w b : Basis ι R M κ : Type w' v : κ → M i : LinearIndependent R v m : LinearIndependent.Maximal i b' : ι w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0 v' : Option κ → M := fun o => Option.elim o (↑b b') v r : range v ⊆ range v' r' : ¬↑b b' ∈ range v r'' : range v ≠ range v' k : κ z : v' (some k) = v' none ⊢ False [PROOFSTEP] exact r' ⟨k, z⟩ [GOAL] case some.some K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R ι : Type w b : Basis ι R M κ : Type w' v : κ → M i : LinearIndependent R v m : LinearIndependent.Maximal i b' : ι w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0 v' : Option κ → M := fun o => Option.elim o (↑b b') v r : range v ⊆ range v' r' : ¬↑b b' ∈ range v r'' : range v ≠ range v' k✝ k : κ z : v' (some k✝) = v' (some k) ⊢ some k✝ = some k [PROOFSTEP] congr [GOAL] case some.some.e_val K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R ι : Type w b : Basis ι R M κ : Type w' v : κ → M i : LinearIndependent R v m : LinearIndependent.Maximal i b' : ι w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0 v' : Option κ → M := fun o => Option.elim o (↑b b') v r : range v ⊆ range v' r' : ¬↑b b' ∈ range v r'' : range v ≠ range v' k✝ k : κ z : v' (some k✝) = v' (some k) ⊢ k✝ = k [PROOFSTEP] exact i.injective z [GOAL] case intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R ι : Type w b : Basis ι R M κ : Type w' v : κ → M i : LinearIndependent R v m : LinearIndependent.Maximal i b' : ι w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0 v' : Option κ → M := fun o => Option.elim o (↑b b') v r : range v ⊆ range v' r' : ¬↑b b' ∈ range v r'' : range v ≠ range v' inj' : Injective v' ⊢ False [PROOFSTEP] have i' : LinearIndependent R ((↑) : range v' → M) := by rw [linearIndependent_subtype_range inj', linearIndependent_iff] intro l z rw [Finsupp.total_option] at z simp only [Option.elim'] at z change _ + Finsupp.total κ M R v l.some = 0 at z have l₀ : l none = 0 := by rw [← eq_neg_iff_add_eq_zero] at z replace z := neg_eq_iff_eq_neg.mpr z apply_fun fun x => b.repr x b' at z simp only [repr_self, LinearEquiv.map_smul, mul_one, Finsupp.single_eq_same, Pi.neg_apply, Finsupp.smul_single', LinearEquiv.map_neg, Finsupp.coe_neg] at z erw [FunLike.congr_fun (Finsupp.apply_total R (b.repr : M →ₗ[R] ι →₀ R) v l.some) b'] at z simpa [Finsupp.total_apply, w] using z have l₁ : l.some = 0 := by rw [l₀, zero_smul, zero_add] at z exact linearIndependent_iff.mp i _ z ext (_ | a) · simp only [l₀, Finsupp.coe_zero, Pi.zero_apply] · erw [FunLike.congr_fun l₁ a] simp only [Finsupp.coe_zero, Pi.zero_apply] [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R ι : Type w b : Basis ι R M κ : Type w' v : κ → M i : LinearIndependent R v m : LinearIndependent.Maximal i b' : ι w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0 v' : Option κ → M := fun o => Option.elim o (↑b b') v r : range v ⊆ range v' r' : ¬↑b b' ∈ range v r'' : range v ≠ range v' inj' : Injective v' ⊢ LinearIndependent R Subtype.val [PROOFSTEP] rw [linearIndependent_subtype_range inj', linearIndependent_iff] [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R ι : Type w b : Basis ι R M κ : Type w' v : κ → M i : LinearIndependent R v m : LinearIndependent.Maximal i b' : ι w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0 v' : Option κ → M := fun o => Option.elim o (↑b b') v r : range v ⊆ range v' r' : ¬↑b b' ∈ range v r'' : range v ≠ range v' inj' : Injective v' ⊢ ∀ (l : Option κ →₀ R), ↑(Finsupp.total (Option κ) M R v') l = 0 → l = 0 [PROOFSTEP] intro l z [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R ι : Type w b : Basis ι R M κ : Type w' v : κ → M i : LinearIndependent R v m : LinearIndependent.Maximal i b' : ι w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0 v' : Option κ → M := fun o => Option.elim o (↑b b') v r : range v ⊆ range v' r' : ¬↑b b' ∈ range v r'' : range v ≠ range v' inj' : Injective v' l : Option κ →₀ R z : ↑(Finsupp.total (Option κ) M R v') l = 0 ⊢ l = 0 [PROOFSTEP] rw [Finsupp.total_option] at z [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R ι : Type w b : Basis ι R M κ : Type w' v : κ → M i : LinearIndependent R v m : LinearIndependent.Maximal i b' : ι w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0 v' : Option κ → M := fun o => Option.elim o (↑b b') v r : range v ⊆ range v' r' : ¬↑b b' ∈ range v r'' : range v ≠ range v' inj' : Injective v' l : Option κ →₀ R z : ↑l none • v' none + ↑(Finsupp.total κ M R (v' ∘ some)) (Finsupp.some l) = 0 ⊢ l = 0 [PROOFSTEP] simp only [Option.elim'] at z [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R ι : Type w b : Basis ι R M κ : Type w' v : κ → M i : LinearIndependent R v m : LinearIndependent.Maximal i b' : ι w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0 v' : Option κ → M := fun o => Option.elim o (↑b b') v r : range v ⊆ range v' r' : ¬↑b b' ∈ range v r'' : range v ≠ range v' inj' : Injective v' l : Option κ →₀ R z : ↑l none • Option.elim none (↑b b') v + ↑(Finsupp.total κ M R ((fun o => Option.elim o (↑b b') v) ∘ some)) (Finsupp.some l) = 0 ⊢ l = 0 [PROOFSTEP] change _ + Finsupp.total κ M R v l.some = 0 at z [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R ι : Type w b : Basis ι R M κ : Type w' v : κ → M i : LinearIndependent R v m : LinearIndependent.Maximal i b' : ι w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0 v' : Option κ → M := fun o => Option.elim o (↑b b') v r : range v ⊆ range v' r' : ¬↑b b' ∈ range v r'' : range v ≠ range v' inj' : Injective v' l : Option κ →₀ R z : ↑l none • Option.elim none (↑b b') v + ↑(Finsupp.total κ M R v) (Finsupp.some l) = 0 ⊢ l = 0 [PROOFSTEP] have l₀ : l none = 0 := by rw [← eq_neg_iff_add_eq_zero] at z replace z := neg_eq_iff_eq_neg.mpr z apply_fun fun x => b.repr x b' at z simp only [repr_self, LinearEquiv.map_smul, mul_one, Finsupp.single_eq_same, Pi.neg_apply, Finsupp.smul_single', LinearEquiv.map_neg, Finsupp.coe_neg] at z erw [FunLike.congr_fun (Finsupp.apply_total R (b.repr : M →ₗ[R] ι →₀ R) v l.some) b'] at z simpa [Finsupp.total_apply, w] using z [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R ι : Type w b : Basis ι R M κ : Type w' v : κ → M i : LinearIndependent R v m : LinearIndependent.Maximal i b' : ι w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0 v' : Option κ → M := fun o => Option.elim o (↑b b') v r : range v ⊆ range v' r' : ¬↑b b' ∈ range v r'' : range v ≠ range v' inj' : Injective v' l : Option κ →₀ R z : ↑l none • Option.elim none (↑b b') v + ↑(Finsupp.total κ M R v) (Finsupp.some l) = 0 ⊢ ↑l none = 0 [PROOFSTEP] rw [← eq_neg_iff_add_eq_zero] at z [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R ι : Type w b : Basis ι R M κ : Type w' v : κ → M i : LinearIndependent R v m : LinearIndependent.Maximal i b' : ι w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0 v' : Option κ → M := fun o => Option.elim o (↑b b') v r : range v ⊆ range v' r' : ¬↑b b' ∈ range v r'' : range v ≠ range v' inj' : Injective v' l : Option κ →₀ R z : ↑l none • Option.elim none (↑b b') v = -↑(Finsupp.total κ M R v) (Finsupp.some l) ⊢ ↑l none = 0 [PROOFSTEP] replace z := neg_eq_iff_eq_neg.mpr z [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R ι : Type w b : Basis ι R M κ : Type w' v : κ → M i : LinearIndependent R v m : LinearIndependent.Maximal i b' : ι w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0 v' : Option κ → M := fun o => Option.elim o (↑b b') v r : range v ⊆ range v' r' : ¬↑b b' ∈ range v r'' : range v ≠ range v' inj' : Injective v' l : Option κ →₀ R z : -(↑l none • Option.elim none (↑b b') v) = ↑(Finsupp.total κ M R v) (Finsupp.some l) ⊢ ↑l none = 0 [PROOFSTEP] apply_fun fun x => b.repr x b' at z [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R ι : Type w b : Basis ι R M κ : Type w' v : κ → M i : LinearIndependent R v m : LinearIndependent.Maximal i b' : ι w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0 v' : Option κ → M := fun o => Option.elim o (↑b b') v r : range v ⊆ range v' r' : ¬↑b b' ∈ range v r'' : range v ≠ range v' inj' : Injective v' l : Option κ →₀ R z : ↑(↑b.repr (-(↑l none • Option.elim none (↑b b') v))) b' = ↑(↑b.repr (↑(Finsupp.total κ M R v) (Finsupp.some l))) b' ⊢ ↑l none = 0 [PROOFSTEP] simp only [repr_self, LinearEquiv.map_smul, mul_one, Finsupp.single_eq_same, Pi.neg_apply, Finsupp.smul_single', LinearEquiv.map_neg, Finsupp.coe_neg] at z [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R ι : Type w b : Basis ι R M κ : Type w' v : κ → M i : LinearIndependent R v m : LinearIndependent.Maximal i b' : ι w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0 v' : Option κ → M := fun o => Option.elim o (↑b b') v r : range v ⊆ range v' r' : ¬↑b b' ∈ range v r'' : range v ≠ range v' inj' : Injective v' l : Option κ →₀ R z : -↑(↑l none • ↑b.repr (Option.elim none (↑b b') v)) b' = ↑(↑b.repr (↑(Finsupp.total κ M R v) (Finsupp.some l))) b' ⊢ ↑l none = 0 [PROOFSTEP] erw [FunLike.congr_fun (Finsupp.apply_total R (b.repr : M →ₗ[R] ι →₀ R) v l.some) b'] at z [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R ι : Type w b : Basis ι R M κ : Type w' v : κ → M i : LinearIndependent R v m : LinearIndependent.Maximal i b' : ι w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0 v' : Option κ → M := fun o => Option.elim o (↑b b') v r : range v ⊆ range v' r' : ¬↑b b' ∈ range v r'' : range v ≠ range v' inj' : Injective v' l : Option κ →₀ R z : -↑(↑l none • ↑b.repr (Option.elim none (↑b b') v)) b' = ↑(↑(Finsupp.total κ (ι →₀ R) R (↑↑b.repr ∘ v)) (Finsupp.some l)) b' ⊢ ↑l none = 0 [PROOFSTEP] simpa [Finsupp.total_apply, w] using z [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R ι : Type w b : Basis ι R M κ : Type w' v : κ → M i : LinearIndependent R v m : LinearIndependent.Maximal i b' : ι w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0 v' : Option κ → M := fun o => Option.elim o (↑b b') v r : range v ⊆ range v' r' : ¬↑b b' ∈ range v r'' : range v ≠ range v' inj' : Injective v' l : Option κ →₀ R z : ↑l none • Option.elim none (↑b b') v + ↑(Finsupp.total κ M R v) (Finsupp.some l) = 0 l₀ : ↑l none = 0 ⊢ l = 0 [PROOFSTEP] have l₁ : l.some = 0 := by rw [l₀, zero_smul, zero_add] at z exact linearIndependent_iff.mp i _ z [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R ι : Type w b : Basis ι R M κ : Type w' v : κ → M i : LinearIndependent R v m : LinearIndependent.Maximal i b' : ι w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0 v' : Option κ → M := fun o => Option.elim o (↑b b') v r : range v ⊆ range v' r' : ¬↑b b' ∈ range v r'' : range v ≠ range v' inj' : Injective v' l : Option κ →₀ R z : ↑l none • Option.elim none (↑b b') v + ↑(Finsupp.total κ M R v) (Finsupp.some l) = 0 l₀ : ↑l none = 0 ⊢ Finsupp.some l = 0 [PROOFSTEP] rw [l₀, zero_smul, zero_add] at z [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R ι : Type w b : Basis ι R M κ : Type w' v : κ → M i : LinearIndependent R v m : LinearIndependent.Maximal i b' : ι w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0 v' : Option κ → M := fun o => Option.elim o (↑b b') v r : range v ⊆ range v' r' : ¬↑b b' ∈ range v r'' : range v ≠ range v' inj' : Injective v' l : Option κ →₀ R z : ↑(Finsupp.total κ M R v) (Finsupp.some l) = 0 l₀ : ↑l none = 0 ⊢ Finsupp.some l = 0 [PROOFSTEP] exact linearIndependent_iff.mp i _ z [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R ι : Type w b : Basis ι R M κ : Type w' v : κ → M i : LinearIndependent R v m : LinearIndependent.Maximal i b' : ι w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0 v' : Option κ → M := fun o => Option.elim o (↑b b') v r : range v ⊆ range v' r' : ¬↑b b' ∈ range v r'' : range v ≠ range v' inj' : Injective v' l : Option κ →₀ R z : ↑l none • Option.elim none (↑b b') v + ↑(Finsupp.total κ M R v) (Finsupp.some l) = 0 l₀ : ↑l none = 0 l₁ : Finsupp.some l = 0 ⊢ l = 0 [PROOFSTEP] ext (_ | a) [GOAL] case h.none K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R ι : Type w b : Basis ι R M κ : Type w' v : κ → M i : LinearIndependent R v m : LinearIndependent.Maximal i b' : ι w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0 v' : Option κ → M := fun o => Option.elim o (↑b b') v r : range v ⊆ range v' r' : ¬↑b b' ∈ range v r'' : range v ≠ range v' inj' : Injective v' l : Option κ →₀ R z : ↑l none • Option.elim none (↑b b') v + ↑(Finsupp.total κ M R v) (Finsupp.some l) = 0 l₀ : ↑l none = 0 l₁ : Finsupp.some l = 0 ⊢ ↑l none = ↑0 none [PROOFSTEP] simp only [l₀, Finsupp.coe_zero, Pi.zero_apply] [GOAL] case h.some K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R ι : Type w b : Basis ι R M κ : Type w' v : κ → M i : LinearIndependent R v m : LinearIndependent.Maximal i b' : ι w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0 v' : Option κ → M := fun o => Option.elim o (↑b b') v r : range v ⊆ range v' r' : ¬↑b b' ∈ range v r'' : range v ≠ range v' inj' : Injective v' l : Option κ →₀ R z : ↑l none • Option.elim none (↑b b') v + ↑(Finsupp.total κ M R v) (Finsupp.some l) = 0 l₀ : ↑l none = 0 l₁ : Finsupp.some l = 0 a : κ ⊢ ↑l (some a) = ↑0 (some a) [PROOFSTEP] erw [FunLike.congr_fun l₁ a] [GOAL] case h.some K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R ι : Type w b : Basis ι R M κ : Type w' v : κ → M i : LinearIndependent R v m : LinearIndependent.Maximal i b' : ι w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0 v' : Option κ → M := fun o => Option.elim o (↑b b') v r : range v ⊆ range v' r' : ¬↑b b' ∈ range v r'' : range v ≠ range v' inj' : Injective v' l : Option κ →₀ R z : ↑l none • Option.elim none (↑b b') v + ↑(Finsupp.total κ M R v) (Finsupp.some l) = 0 l₀ : ↑l none = 0 l₁ : Finsupp.some l = 0 a : κ ⊢ ↑0 a = ↑0 (some a) [PROOFSTEP] simp only [Finsupp.coe_zero, Pi.zero_apply] [GOAL] case intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R ι : Type w b : Basis ι R M κ : Type w' v : κ → M i : LinearIndependent R v m : LinearIndependent.Maximal i b' : ι w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0 v' : Option κ → M := fun o => Option.elim o (↑b b') v r : range v ⊆ range v' r' : ¬↑b b' ∈ range v r'' : range v ≠ range v' inj' : Injective v' i' : LinearIndependent R Subtype.val ⊢ False [PROOFSTEP] dsimp [LinearIndependent.Maximal] at m [GOAL] case intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R ι : Type w b : Basis ι R M κ : Type w' v : κ → M i : LinearIndependent R v m : ∀ (s : Set M), LinearIndependent R Subtype.val → range v ⊆ s → range v = s b' : ι w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0 v' : Option κ → M := fun o => Option.elim o (↑b b') v r : range v ⊆ range v' r' : ¬↑b b' ∈ range v r'' : range v ≠ range v' inj' : Injective v' i' : LinearIndependent R Subtype.val ⊢ False [PROOFSTEP] specialize m (range v') i' r [GOAL] case intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁷ : Ring R M : Type v inst✝⁶ : AddCommGroup M inst✝⁵ : Module R M M' : Type v' inst✝⁴ : AddCommGroup M' inst✝³ : Module R M' M₁ : Type v inst✝² : AddCommGroup M₁ inst✝¹ : Module R M₁ inst✝ : Nontrivial R ι : Type w b : Basis ι R M κ : Type w' v : κ → M i : LinearIndependent R v b' : ι w : ∀ (x : κ), ↑(↑b.repr (v x)) b' = 0 v' : Option κ → M := fun o => Option.elim o (↑b b') v r : range v ⊆ range v' r' : ¬↑b b' ∈ range v r'' : range v ≠ range v' inj' : Injective v' i' : LinearIndependent R Subtype.val m : range v = range v' ⊢ False [PROOFSTEP] exact r'' m [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁸ : Ring R M : Type v inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M M' : Type v' inst✝⁵ : AddCommGroup M' inst✝⁴ : Module R M' M₁ : Type v inst✝³ : AddCommGroup M₁ inst✝² : Module R M₁ inst✝¹ : Nontrivial R ι : Type w b : Basis ι R M inst✝ : Infinite ι κ : Type w' v : κ → M i : LinearIndependent R v m : LinearIndependent.Maximal i ⊢ lift #ι ≤ lift #κ [PROOFSTEP] let Φ := fun k : κ => (b.repr (v k)).support [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁸ : Ring R M : Type v inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M M' : Type v' inst✝⁵ : AddCommGroup M' inst✝⁴ : Module R M' M₁ : Type v inst✝³ : AddCommGroup M₁ inst✝² : Module R M₁ inst✝¹ : Nontrivial R ι : Type w b : Basis ι R M inst✝ : Infinite ι κ : Type w' v : κ → M i : LinearIndependent R v m : LinearIndependent.Maximal i Φ : κ → Finset ι := fun k => (↑b.repr (v k)).support ⊢ lift #ι ≤ lift #κ [PROOFSTEP] have w₁ : #ι ≤ #(Set.range Φ) := by apply Cardinal.le_range_of_union_finset_eq_top exact union_support_maximal_linearIndependent_eq_range_basis b v i m [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁸ : Ring R M : Type v inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M M' : Type v' inst✝⁵ : AddCommGroup M' inst✝⁴ : Module R M' M₁ : Type v inst✝³ : AddCommGroup M₁ inst✝² : Module R M₁ inst✝¹ : Nontrivial R ι : Type w b : Basis ι R M inst✝ : Infinite ι κ : Type w' v : κ → M i : LinearIndependent R v m : LinearIndependent.Maximal i Φ : κ → Finset ι := fun k => (↑b.repr (v k)).support ⊢ #ι ≤ #↑(range Φ) [PROOFSTEP] apply Cardinal.le_range_of_union_finset_eq_top [GOAL] case w K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁸ : Ring R M : Type v inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M M' : Type v' inst✝⁵ : AddCommGroup M' inst✝⁴ : Module R M' M₁ : Type v inst✝³ : AddCommGroup M₁ inst✝² : Module R M₁ inst✝¹ : Nontrivial R ι : Type w b : Basis ι R M inst✝ : Infinite ι κ : Type w' v : κ → M i : LinearIndependent R v m : LinearIndependent.Maximal i Φ : κ → Finset ι := fun k => (↑b.repr (v k)).support ⊢ ⋃ (a : κ), ↑(Φ a) = ⊤ [PROOFSTEP] exact union_support_maximal_linearIndependent_eq_range_basis b v i m [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁸ : Ring R M : Type v inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M M' : Type v' inst✝⁵ : AddCommGroup M' inst✝⁴ : Module R M' M₁ : Type v inst✝³ : AddCommGroup M₁ inst✝² : Module R M₁ inst✝¹ : Nontrivial R ι : Type w b : Basis ι R M inst✝ : Infinite ι κ : Type w' v : κ → M i : LinearIndependent R v m : LinearIndependent.Maximal i Φ : κ → Finset ι := fun k => (↑b.repr (v k)).support w₁ : #ι ≤ #↑(range Φ) ⊢ lift #ι ≤ lift #κ [PROOFSTEP] have w₂ : Cardinal.lift.{w'} #(Set.range Φ) ≤ Cardinal.lift.{w} #κ := Cardinal.mk_range_le_lift [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁸ : Ring R M : Type v inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M M' : Type v' inst✝⁵ : AddCommGroup M' inst✝⁴ : Module R M' M₁ : Type v inst✝³ : AddCommGroup M₁ inst✝² : Module R M₁ inst✝¹ : Nontrivial R ι : Type w b : Basis ι R M inst✝ : Infinite ι κ : Type w' v : κ → M i : LinearIndependent R v m : LinearIndependent.Maximal i Φ : κ → Finset ι := fun k => (↑b.repr (v k)).support w₁ : #ι ≤ #↑(range Φ) w₂ : lift #↑(range Φ) ≤ lift #κ ⊢ lift #ι ≤ lift #κ [PROOFSTEP] exact (Cardinal.lift_le.mpr w₁).trans w₂ [GOAL] K : Type u V✝ V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁸ : Ring R M : Type v inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M M' : Type v' inst✝⁵ : AddCommGroup M' inst✝⁴ : Module R M' M₁ : Type v inst✝³ : AddCommGroup M₁ inst✝² : Module R M₁ inst✝¹ : Nontrivial R inst✝ : NoZeroSMulDivisors R M V : ι → Submodule R M hV : Independent V ⊢ lift #{ i // V i ≠ ⊥ } ≤ lift (Module.rank R M) [PROOFSTEP] set I := { i : ι // V i ≠ ⊥ } [GOAL] K : Type u V✝ V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁸ : Ring R M : Type v inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M M' : Type v' inst✝⁵ : AddCommGroup M' inst✝⁴ : Module R M' M₁ : Type v inst✝³ : AddCommGroup M₁ inst✝² : Module R M₁ inst✝¹ : Nontrivial R inst✝ : NoZeroSMulDivisors R M V : ι → Submodule R M hV : Independent V I : Type w := { i // V i ≠ ⊥ } ⊢ lift #I ≤ lift (Module.rank R M) [PROOFSTEP] have hI : ∀ i : I, ∃ v ∈ V i, v ≠ (0 : M) := by intro i rw [← Submodule.ne_bot_iff] exact i.prop [GOAL] K : Type u V✝ V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁸ : Ring R M : Type v inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M M' : Type v' inst✝⁵ : AddCommGroup M' inst✝⁴ : Module R M' M₁ : Type v inst✝³ : AddCommGroup M₁ inst✝² : Module R M₁ inst✝¹ : Nontrivial R inst✝ : NoZeroSMulDivisors R M V : ι → Submodule R M hV : Independent V I : Type w := { i // V i ≠ ⊥ } ⊢ ∀ (i : I), ∃ v, v ∈ V ↑i ∧ v ≠ 0 [PROOFSTEP] intro i [GOAL] K : Type u V✝ V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁸ : Ring R M : Type v inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M M' : Type v' inst✝⁵ : AddCommGroup M' inst✝⁴ : Module R M' M₁ : Type v inst✝³ : AddCommGroup M₁ inst✝² : Module R M₁ inst✝¹ : Nontrivial R inst✝ : NoZeroSMulDivisors R M V : ι → Submodule R M hV : Independent V I : Type w := { i // V i ≠ ⊥ } i : I ⊢ ∃ v, v ∈ V ↑i ∧ v ≠ 0 [PROOFSTEP] rw [← Submodule.ne_bot_iff] [GOAL] K : Type u V✝ V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁸ : Ring R M : Type v inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M M' : Type v' inst✝⁵ : AddCommGroup M' inst✝⁴ : Module R M' M₁ : Type v inst✝³ : AddCommGroup M₁ inst✝² : Module R M₁ inst✝¹ : Nontrivial R inst✝ : NoZeroSMulDivisors R M V : ι → Submodule R M hV : Independent V I : Type w := { i // V i ≠ ⊥ } i : I ⊢ V ↑i ≠ ⊥ [PROOFSTEP] exact i.prop [GOAL] K : Type u V✝ V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁸ : Ring R M : Type v inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M M' : Type v' inst✝⁵ : AddCommGroup M' inst✝⁴ : Module R M' M₁ : Type v inst✝³ : AddCommGroup M₁ inst✝² : Module R M₁ inst✝¹ : Nontrivial R inst✝ : NoZeroSMulDivisors R M V : ι → Submodule R M hV : Independent V I : Type w := { i // V i ≠ ⊥ } hI : ∀ (i : I), ∃ v, v ∈ V ↑i ∧ v ≠ 0 ⊢ lift #I ≤ lift (Module.rank R M) [PROOFSTEP] choose v hvV hv using hI [GOAL] K : Type u V✝ V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁸ : Ring R M : Type v inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M M' : Type v' inst✝⁵ : AddCommGroup M' inst✝⁴ : Module R M' M₁ : Type v inst✝³ : AddCommGroup M₁ inst✝² : Module R M₁ inst✝¹ : Nontrivial R inst✝ : NoZeroSMulDivisors R M V : ι → Submodule R M hV : Independent V I : Type w := { i // V i ≠ ⊥ } v : I → M hvV : ∀ (i : I), v i ∈ V ↑i hv : ∀ (i : I), v i ≠ 0 ⊢ lift #I ≤ lift (Module.rank R M) [PROOFSTEP] have : LinearIndependent R v := (hV.comp Subtype.coe_injective).linearIndependent _ hvV hv [GOAL] K : Type u V✝ V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁸ : Ring R M : Type v inst✝⁷ : AddCommGroup M inst✝⁶ : Module R M M' : Type v' inst✝⁵ : AddCommGroup M' inst✝⁴ : Module R M' M₁ : Type v inst✝³ : AddCommGroup M₁ inst✝² : Module R M₁ inst✝¹ : Nontrivial R inst✝ : NoZeroSMulDivisors R M V : ι → Submodule R M hV : Independent V I : Type w := { i // V i ≠ ⊥ } v : I → M hvV : ∀ (i : I), v i ∈ V ↑i hv : ∀ (i : I), v i ≠ 0 this : LinearIndependent R v ⊢ lift #I ≤ lift (Module.rank R M) [PROOFSTEP] exact cardinal_lift_le_rank_of_linearIndependent' this [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u M : Type v inst✝³ : Ring R inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : Subsingleton R ⊢ Module.rank R M = 1 [PROOFSTEP] haveI := Module.subsingleton R M [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u M : Type v inst✝³ : Ring R inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : Subsingleton R this : Subsingleton M ⊢ Module.rank R M = 1 [PROOFSTEP] have : Nonempty { s : Set M // LinearIndependent R ((↑) : s → M) } := ⟨⟨∅, linearIndependent_empty _ _⟩⟩ [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u M : Type v inst✝³ : Ring R inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : Subsingleton R this✝ : Subsingleton M this : Nonempty { s // LinearIndependent R Subtype.val } ⊢ Module.rank R M = 1 [PROOFSTEP] rw [Module.rank_def, ciSup_eq_of_forall_le_of_forall_lt_exists_gt] [GOAL] case h₁ K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u M : Type v inst✝³ : Ring R inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : Subsingleton R this✝ : Subsingleton M this : Nonempty { s // LinearIndependent R Subtype.val } ⊢ ∀ (i : { s // LinearIndependent R Subtype.val }), #↑↑i ≤ 1 [PROOFSTEP] rintro ⟨s, hs⟩ [GOAL] case h₁.mk K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u M : Type v inst✝³ : Ring R inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : Subsingleton R this✝ : Subsingleton M this : Nonempty { s // LinearIndependent R Subtype.val } s : Set M hs : LinearIndependent R Subtype.val ⊢ #↑↑{ val := s, property := hs } ≤ 1 [PROOFSTEP] rw [Cardinal.mk_le_one_iff_set_subsingleton] [GOAL] case h₁.mk K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u M : Type v inst✝³ : Ring R inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : Subsingleton R this✝ : Subsingleton M this : Nonempty { s // LinearIndependent R Subtype.val } s : Set M hs : LinearIndependent R Subtype.val ⊢ Set.Subsingleton ↑{ val := s, property := hs } [PROOFSTEP] apply subsingleton_of_subsingleton [GOAL] case h₂ K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u M : Type v inst✝³ : Ring R inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : Subsingleton R this✝ : Subsingleton M this : Nonempty { s // LinearIndependent R Subtype.val } ⊢ ∀ (w : Cardinal.{v}), w < 1 → ∃ i, w < #↑↑i [PROOFSTEP] intro w hw [GOAL] case h₂ K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u M : Type v inst✝³ : Ring R inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : Subsingleton R this✝ : Subsingleton M this : Nonempty { s // LinearIndependent R Subtype.val } w : Cardinal.{v} hw : w < 1 ⊢ ∃ i, w < #↑↑i [PROOFSTEP] refine' ⟨⟨{0}, _⟩, _⟩ [GOAL] case h₂.refine'_1 K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u M : Type v inst✝³ : Ring R inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : Subsingleton R this✝ : Subsingleton M this : Nonempty { s // LinearIndependent R Subtype.val } w : Cardinal.{v} hw : w < 1 ⊢ LinearIndependent R Subtype.val [PROOFSTEP] rw [linearIndependent_iff'] [GOAL] case h₂.refine'_1 K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u M : Type v inst✝³ : Ring R inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : Subsingleton R this✝ : Subsingleton M this : Nonempty { s // LinearIndependent R Subtype.val } w : Cardinal.{v} hw : w < 1 ⊢ ∀ (s : Finset { x // x ∈ {0} }) (g : { x // x ∈ {0} } → R), ∑ i in s, g i • ↑i = 0 → ∀ (i : { x // x ∈ {0} }), i ∈ s → g i = 0 [PROOFSTEP] intros [GOAL] case h₂.refine'_1 K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u M : Type v inst✝³ : Ring R inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : Subsingleton R this✝ : Subsingleton M this : Nonempty { s // LinearIndependent R Subtype.val } w : Cardinal.{v} hw : w < 1 s✝ : Finset { x // x ∈ {0} } g✝ : { x // x ∈ {0} } → R a✝¹ : ∑ i in s✝, g✝ i • ↑i = 0 i✝ : { x // x ∈ {0} } a✝ : i✝ ∈ s✝ ⊢ g✝ i✝ = 0 [PROOFSTEP] exact Subsingleton.elim _ _ [GOAL] case h₂.refine'_2 K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u M : Type v inst✝³ : Ring R inst✝² : AddCommGroup M inst✝¹ : Module R M inst✝ : Subsingleton R this✝ : Subsingleton M this : Nonempty { s // LinearIndependent R Subtype.val } w : Cardinal.{v} hw : w < 1 ⊢ w < #↑↑{ val := {0}, property := (_ : LinearIndependent R Subtype.val) } [PROOFSTEP] exact hw.trans_eq (Cardinal.mk_singleton _).symm [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u M : Type v inst✝⁴ : Ring R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : NoZeroSMulDivisors R M inst✝ : Nontrivial M ⊢ 0 < Module.rank R M [PROOFSTEP] obtain ⟨x, hx⟩ := exists_ne (0 : M) [GOAL] case intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u M : Type v inst✝⁴ : Ring R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : NoZeroSMulDivisors R M inst✝ : Nontrivial M x : M hx : x ≠ 0 ⊢ 0 < Module.rank R M [PROOFSTEP] suffices 1 ≤ Module.rank R M by exact zero_lt_one.trans_le this [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u M : Type v inst✝⁴ : Ring R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : NoZeroSMulDivisors R M inst✝ : Nontrivial M x : M hx : x ≠ 0 this : 1 ≤ Module.rank R M ⊢ 0 < Module.rank R M [PROOFSTEP] exact zero_lt_one.trans_le this [GOAL] case intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u M : Type v inst✝⁴ : Ring R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : NoZeroSMulDivisors R M inst✝ : Nontrivial M x : M hx : x ≠ 0 ⊢ 1 ≤ Module.rank R M [PROOFSTEP] letI := Module.nontrivial R M [GOAL] case intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u M : Type v inst✝⁴ : Ring R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : NoZeroSMulDivisors R M inst✝ : Nontrivial M x : M hx : x ≠ 0 this : Nontrivial R := Module.nontrivial R M ⊢ 1 ≤ Module.rank R M [PROOFSTEP] suffices LinearIndependent R fun y : ({ x } : Set M) => (y : M) by simpa using cardinal_le_rank_of_linearIndependent this [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u M : Type v inst✝⁴ : Ring R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : NoZeroSMulDivisors R M inst✝ : Nontrivial M x : M hx : x ≠ 0 this✝ : Nontrivial R := Module.nontrivial R M this : LinearIndependent R fun y => ↑y ⊢ 1 ≤ Module.rank R M [PROOFSTEP] simpa using cardinal_le_rank_of_linearIndependent this [GOAL] case intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u M : Type v inst✝⁴ : Ring R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : NoZeroSMulDivisors R M inst✝ : Nontrivial M x : M hx : x ≠ 0 this : Nontrivial R := Module.nontrivial R M ⊢ LinearIndependent R fun y => ↑y [PROOFSTEP] exact linearIndependent_singleton hx [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u M : Type v inst✝⁴ : Ring R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : NoZeroSMulDivisors R M inst✝ : Nontrivial R ⊢ Module.rank R M = 0 ↔ ∀ (x : M), x = 0 [PROOFSTEP] refine' ⟨fun h => _, fun h => _⟩ [GOAL] case refine'_1 K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u M : Type v inst✝⁴ : Ring R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : NoZeroSMulDivisors R M inst✝ : Nontrivial R h : Module.rank R M = 0 ⊢ ∀ (x : M), x = 0 [PROOFSTEP] contrapose! h [GOAL] case refine'_1 K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u M : Type v inst✝⁴ : Ring R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : NoZeroSMulDivisors R M inst✝ : Nontrivial R h : ∃ x, x ≠ 0 ⊢ Module.rank R M ≠ 0 [PROOFSTEP] obtain ⟨x, hx⟩ := h [GOAL] case refine'_1.intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u M : Type v inst✝⁴ : Ring R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : NoZeroSMulDivisors R M inst✝ : Nontrivial R x : M hx : x ≠ 0 ⊢ Module.rank R M ≠ 0 [PROOFSTEP] letI : Nontrivial M := nontrivial_of_ne _ _ hx [GOAL] case refine'_1.intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u M : Type v inst✝⁴ : Ring R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : NoZeroSMulDivisors R M inst✝ : Nontrivial R x : M hx : x ≠ 0 this : Nontrivial M := nontrivial_of_ne x 0 hx ⊢ Module.rank R M ≠ 0 [PROOFSTEP] exact rank_pos.ne' [GOAL] case refine'_2 K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u M : Type v inst✝⁴ : Ring R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : NoZeroSMulDivisors R M inst✝ : Nontrivial R h : ∀ (x : M), x = 0 ⊢ Module.rank R M = 0 [PROOFSTEP] have : (⊤ : Submodule R M) = ⊥ := by ext x simp [h x] [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u M : Type v inst✝⁴ : Ring R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : NoZeroSMulDivisors R M inst✝ : Nontrivial R h : ∀ (x : M), x = 0 ⊢ ⊤ = ⊥ [PROOFSTEP] ext x [GOAL] case h K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u M : Type v inst✝⁴ : Ring R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : NoZeroSMulDivisors R M inst✝ : Nontrivial R h : ∀ (x : M), x = 0 x : M ⊢ x ∈ ⊤ ↔ x ∈ ⊥ [PROOFSTEP] simp [h x] [GOAL] case refine'_2 K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u M : Type v inst✝⁴ : Ring R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : NoZeroSMulDivisors R M inst✝ : Nontrivial R h : ∀ (x : M), x = 0 this : ⊤ = ⊥ ⊢ Module.rank R M = 0 [PROOFSTEP] rw [← rank_top, this, rank_bot] [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u M : Type v inst✝⁴ : Ring R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : NoZeroSMulDivisors R M inst✝ : Nontrivial R ⊢ 0 < Module.rank R M ↔ ∃ x, x ≠ 0 [PROOFSTEP] rw [← not_iff_not] [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u M : Type v inst✝⁴ : Ring R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : NoZeroSMulDivisors R M inst✝ : Nontrivial R ⊢ ¬0 < Module.rank R M ↔ ¬∃ x, x ≠ 0 [PROOFSTEP] simpa using rank_zero_iff_forall_zero [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝³ : Ring R inst✝² : InvariantBasisNumber R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M v : Basis ι R M v' : Basis ι' R M ⊢ lift #ι = lift #ι' [PROOFSTEP] classical haveI := nontrivial_of_invariantBasisNumber R cases fintypeOrInfinite ι · -- `v` is a finite basis, so by `basis_finite_of_finite_spans` so is `v'`. -- haveI : Finite (range v) := Set.finite_range v haveI := basis_finite_of_finite_spans _ (Set.finite_range v) v.span_eq v' cases nonempty_fintype ι' rw [Cardinal.mk_fintype, Cardinal.mk_fintype] simp only [Cardinal.lift_natCast, Cardinal.natCast_inj] -- Now we can use invariant basis number to show they have the same cardinality. apply card_eq_of_linearEquiv R exact (Finsupp.linearEquivFunOnFinite R R ι).symm.trans v.repr.symm ≪≫ₗ v'.repr ≪≫ₗ Finsupp.linearEquivFunOnFinite R R ι' · -- `v` is an infinite basis, -- so by `infinite_basis_le_maximal_linearIndependent`, `v'` is at least as big, -- and then applying `infinite_basis_le_maximal_linearIndependent` again -- we see they have the same cardinality. have w₁ := infinite_basis_le_maximal_linearIndependent' v _ v'.linearIndependent v'.maximal rcases Cardinal.lift_mk_le'.mp w₁ with ⟨f⟩ haveI : Infinite ι' := Infinite.of_injective f f.2 have w₂ := infinite_basis_le_maximal_linearIndependent' v' _ v.linearIndependent v.maximal exact le_antisymm w₁ w₂ [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝³ : Ring R inst✝² : InvariantBasisNumber R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M v : Basis ι R M v' : Basis ι' R M ⊢ lift #ι = lift #ι' [PROOFSTEP] haveI := nontrivial_of_invariantBasisNumber R [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝³ : Ring R inst✝² : InvariantBasisNumber R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M v : Basis ι R M v' : Basis ι' R M this : Nontrivial R ⊢ lift #ι = lift #ι' [PROOFSTEP] cases fintypeOrInfinite ι [GOAL] case inl K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝³ : Ring R inst✝² : InvariantBasisNumber R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M v : Basis ι R M v' : Basis ι' R M this : Nontrivial R val✝ : Fintype ι ⊢ lift #ι = lift #ι' [PROOFSTEP] haveI := basis_finite_of_finite_spans _ (Set.finite_range v) v.span_eq v' [GOAL] case inl K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝³ : Ring R inst✝² : InvariantBasisNumber R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M v : Basis ι R M v' : Basis ι' R M this✝ : Nontrivial R val✝ : Fintype ι this : Finite ι' ⊢ lift #ι = lift #ι' [PROOFSTEP] cases nonempty_fintype ι' [GOAL] case inl.intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝³ : Ring R inst✝² : InvariantBasisNumber R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M v : Basis ι R M v' : Basis ι' R M this✝ : Nontrivial R val✝¹ : Fintype ι this : Finite ι' val✝ : Fintype ι' ⊢ lift #ι = lift #ι' [PROOFSTEP] rw [Cardinal.mk_fintype, Cardinal.mk_fintype] [GOAL] case inl.intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝³ : Ring R inst✝² : InvariantBasisNumber R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M v : Basis ι R M v' : Basis ι' R M this✝ : Nontrivial R val✝¹ : Fintype ι this : Finite ι' val✝ : Fintype ι' ⊢ lift ↑(Fintype.card ι) = lift ↑(Fintype.card ι') [PROOFSTEP] simp only [Cardinal.lift_natCast, Cardinal.natCast_inj] -- Now we can use invariant basis number to show they have the same cardinality. [GOAL] case inl.intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝³ : Ring R inst✝² : InvariantBasisNumber R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M v : Basis ι R M v' : Basis ι' R M this✝ : Nontrivial R val✝¹ : Fintype ι this : Finite ι' val✝ : Fintype ι' ⊢ Fintype.card ι = Fintype.card ι' [PROOFSTEP] apply card_eq_of_linearEquiv R [GOAL] case inl.intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝³ : Ring R inst✝² : InvariantBasisNumber R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M v : Basis ι R M v' : Basis ι' R M this✝ : Nontrivial R val✝¹ : Fintype ι this : Finite ι' val✝ : Fintype ι' ⊢ (ι → R) ≃ₗ[R] ι' → R [PROOFSTEP] exact (Finsupp.linearEquivFunOnFinite R R ι).symm.trans v.repr.symm ≪≫ₗ v'.repr ≪≫ₗ Finsupp.linearEquivFunOnFinite R R ι' [GOAL] case inr K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝³ : Ring R inst✝² : InvariantBasisNumber R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M v : Basis ι R M v' : Basis ι' R M this : Nontrivial R val✝ : Infinite ι ⊢ lift #ι = lift #ι' [PROOFSTEP] have w₁ := infinite_basis_le_maximal_linearIndependent' v _ v'.linearIndependent v'.maximal [GOAL] case inr K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝³ : Ring R inst✝² : InvariantBasisNumber R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M v : Basis ι R M v' : Basis ι' R M this : Nontrivial R val✝ : Infinite ι w₁ : lift #ι ≤ lift #ι' ⊢ lift #ι = lift #ι' [PROOFSTEP] rcases Cardinal.lift_mk_le'.mp w₁ with ⟨f⟩ [GOAL] case inr.intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝³ : Ring R inst✝² : InvariantBasisNumber R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M v : Basis ι R M v' : Basis ι' R M this : Nontrivial R val✝ : Infinite ι w₁ : lift #ι ≤ lift #ι' f : ι ↪ ι' ⊢ lift #ι = lift #ι' [PROOFSTEP] haveI : Infinite ι' := Infinite.of_injective f f.2 [GOAL] case inr.intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝³ : Ring R inst✝² : InvariantBasisNumber R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M v : Basis ι R M v' : Basis ι' R M this✝ : Nontrivial R val✝ : Infinite ι w₁ : lift #ι ≤ lift #ι' f : ι ↪ ι' this : Infinite ι' ⊢ lift #ι = lift #ι' [PROOFSTEP] have w₂ := infinite_basis_le_maximal_linearIndependent' v' _ v.linearIndependent v.maximal [GOAL] case inr.intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝³ : Ring R inst✝² : InvariantBasisNumber R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M v : Basis ι R M v' : Basis ι' R M this✝ : Nontrivial R val✝ : Infinite ι w₁ : lift #ι ≤ lift #ι' f : ι ↪ ι' this : Infinite ι' w₂ : lift #ι' ≤ lift #ι ⊢ lift #ι = lift #ι' [PROOFSTEP] exact le_antisymm w₁ w₂ [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁵ : Ring R inst✝⁴ : RankCondition R M : Type v inst✝³ : AddCommGroup M inst✝² : Module R M ι : Type u_2 inst✝¹ : Fintype ι b : Basis ι R M w : Set M inst✝ : Fintype ↑w s : span R w = ⊤ ⊢ Fintype.card ι ≤ Fintype.card ↑w [PROOFSTEP] fapply card_le_of_surjective' R [GOAL] case f K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁵ : Ring R inst✝⁴ : RankCondition R M : Type v inst✝³ : AddCommGroup M inst✝² : Module R M ι : Type u_2 inst✝¹ : Fintype ι b : Basis ι R M w : Set M inst✝ : Fintype ↑w s : span R w = ⊤ ⊢ (↑w →₀ R) →ₗ[R] ι →₀ R [PROOFSTEP] exact b.repr.toLinearMap.comp (Finsupp.total w M R (↑)) [GOAL] case i K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁵ : Ring R inst✝⁴ : RankCondition R M : Type v inst✝³ : AddCommGroup M inst✝² : Module R M ι : Type u_2 inst✝¹ : Fintype ι b : Basis ι R M w : Set M inst✝ : Fintype ↑w s : span R w = ⊤ ⊢ Surjective ↑(LinearMap.comp (↑b.repr) (Finsupp.total (↑w) M R Subtype.val)) [PROOFSTEP] apply Surjective.comp (g := b.repr.toLinearMap) [GOAL] case i.hg K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁵ : Ring R inst✝⁴ : RankCondition R M : Type v inst✝³ : AddCommGroup M inst✝² : Module R M ι : Type u_2 inst✝¹ : Fintype ι b : Basis ι R M w : Set M inst✝ : Fintype ↑w s : span R w = ⊤ ⊢ Surjective ↑↑b.repr case i.hf K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁵ : Ring R inst✝⁴ : RankCondition R M : Type v inst✝³ : AddCommGroup M inst✝² : Module R M ι : Type u_2 inst✝¹ : Fintype ι b : Basis ι R M w : Set M inst✝ : Fintype ↑w s : span R w = ⊤ ⊢ Surjective fun x => ↑(Finsupp.total (↑w) M R Subtype.val) x [PROOFSTEP] apply LinearEquiv.surjective [GOAL] case i.hf K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁵ : Ring R inst✝⁴ : RankCondition R M : Type v inst✝³ : AddCommGroup M inst✝² : Module R M ι : Type u_2 inst✝¹ : Fintype ι b : Basis ι R M w : Set M inst✝ : Fintype ↑w s : span R w = ⊤ ⊢ Surjective fun x => ↑(Finsupp.total (↑w) M R Subtype.val) x [PROOFSTEP] rw [← LinearMap.range_eq_top, Finsupp.range_total] [GOAL] case i.hf K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁵ : Ring R inst✝⁴ : RankCondition R M : Type v inst✝³ : AddCommGroup M inst✝² : Module R M ι : Type u_2 inst✝¹ : Fintype ι b : Basis ι R M w : Set M inst✝ : Fintype ↑w s : span R w = ⊤ ⊢ span R (range Subtype.val) = ⊤ [PROOFSTEP] simpa using s [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁴ : Ring R inst✝³ : RankCondition R M : Type v inst✝² : AddCommGroup M inst✝¹ : Module R M ι : Type u_2 b : Basis ι R M w : Set M inst✝ : Fintype ↑w s : span R w = ⊤ ⊢ #ι ≤ ↑(Fintype.card ↑w) [PROOFSTEP] haveI := nontrivial_of_invariantBasisNumber R [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁴ : Ring R inst✝³ : RankCondition R M : Type v inst✝² : AddCommGroup M inst✝¹ : Module R M ι : Type u_2 b : Basis ι R M w : Set M inst✝ : Fintype ↑w s : span R w = ⊤ this : Nontrivial R ⊢ #ι ≤ ↑(Fintype.card ↑w) [PROOFSTEP] haveI := basis_finite_of_finite_spans w (toFinite _) s b [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁴ : Ring R inst✝³ : RankCondition R M : Type v inst✝² : AddCommGroup M inst✝¹ : Module R M ι : Type u_2 b : Basis ι R M w : Set M inst✝ : Fintype ↑w s : span R w = ⊤ this✝ : Nontrivial R this : Finite ι ⊢ #ι ≤ ↑(Fintype.card ↑w) [PROOFSTEP] cases nonempty_fintype ι [GOAL] case intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁴ : Ring R inst✝³ : RankCondition R M : Type v inst✝² : AddCommGroup M inst✝¹ : Module R M ι : Type u_2 b : Basis ι R M w : Set M inst✝ : Fintype ↑w s : span R w = ⊤ this✝ : Nontrivial R this : Finite ι val✝ : Fintype ι ⊢ #ι ≤ ↑(Fintype.card ↑w) [PROOFSTEP] rw [Cardinal.mk_fintype ι] [GOAL] case intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁴ : Ring R inst✝³ : RankCondition R M : Type v inst✝² : AddCommGroup M inst✝¹ : Module R M ι : Type u_2 b : Basis ι R M w : Set M inst✝ : Fintype ↑w s : span R w = ⊤ this✝ : Nontrivial R this : Finite ι val✝ : Fintype ι ⊢ ↑(Fintype.card ι) ≤ ↑(Fintype.card ↑w) [PROOFSTEP] simp only [Cardinal.natCast_le] [GOAL] case intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁴ : Ring R inst✝³ : RankCondition R M : Type v inst✝² : AddCommGroup M inst✝¹ : Module R M ι : Type u_2 b : Basis ι R M w : Set M inst✝ : Fintype ↑w s : span R w = ⊤ this✝ : Nontrivial R this : Finite ι val✝ : Fintype ι ⊢ Fintype.card ι ≤ Fintype.card ↑w [PROOFSTEP] exact Basis.le_span'' b s [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝³ : Ring R inst✝² : RankCondition R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M J : Set M v : Basis ι R M hJ : span R J = ⊤ ⊢ #↑(range ↑v) ≤ #↑J [PROOFSTEP] haveI := nontrivial_of_invariantBasisNumber R [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝³ : Ring R inst✝² : RankCondition R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M J : Set M v : Basis ι R M hJ : span R J = ⊤ this : Nontrivial R ⊢ #↑(range ↑v) ≤ #↑J [PROOFSTEP] cases fintypeOrInfinite J [GOAL] case inl K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝³ : Ring R inst✝² : RankCondition R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M J : Set M v : Basis ι R M hJ : span R J = ⊤ this : Nontrivial R val✝ : Fintype ↑J ⊢ #↑(range ↑v) ≤ #↑J [PROOFSTEP] rw [← Cardinal.lift_le, Cardinal.mk_range_eq_of_injective v.injective, Cardinal.mk_fintype J] [GOAL] case inl K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝³ : Ring R inst✝² : RankCondition R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M J : Set M v : Basis ι R M hJ : span R J = ⊤ this : Nontrivial R val✝ : Fintype ↑J ⊢ lift #ι ≤ lift ↑(Fintype.card ↑J) [PROOFSTEP] convert Cardinal.lift_le.{v}.2 (basis_le_span' v hJ) [GOAL] case h.e'_4 K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝³ : Ring R inst✝² : RankCondition R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M J : Set M v : Basis ι R M hJ : span R J = ⊤ this : Nontrivial R val✝ : Fintype ↑J ⊢ lift ↑(Fintype.card ↑J) = lift ↑(Fintype.card ↑J) [PROOFSTEP] simp [GOAL] case inr K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝³ : Ring R inst✝² : RankCondition R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M J : Set M v : Basis ι R M hJ : span R J = ⊤ this : Nontrivial R val✝ : Infinite ↑J ⊢ #↑(range ↑v) ≤ #↑J [PROOFSTEP] let S : J → Set ι := fun j => ↑(v.repr j).support [GOAL] case inr K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝³ : Ring R inst✝² : RankCondition R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M J : Set M v : Basis ι R M hJ : span R J = ⊤ this : Nontrivial R val✝ : Infinite ↑J S : ↑J → Set ι := fun j => ↑(↑v.repr ↑j).support ⊢ #↑(range ↑v) ≤ #↑J [PROOFSTEP] let S' : J → Set M := fun j => v '' S j [GOAL] case inr K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝³ : Ring R inst✝² : RankCondition R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M J : Set M v : Basis ι R M hJ : span R J = ⊤ this : Nontrivial R val✝ : Infinite ↑J S : ↑J → Set ι := fun j => ↑(↑v.repr ↑j).support S' : ↑J → Set M := fun j => ↑v '' S j ⊢ #↑(range ↑v) ≤ #↑J [PROOFSTEP] have hs : range v ⊆ ⋃ j, S' j := by intro b hb rcases mem_range.1 hb with ⟨i, hi⟩ have : span R J ≤ comap v.repr.toLinearMap (Finsupp.supported R R (⋃ j, S j)) := span_le.2 fun j hj x hx => ⟨_, ⟨⟨j, hj⟩, rfl⟩, hx⟩ rw [hJ] at this replace : v.repr (v i) ∈ Finsupp.supported R R (⋃ j, S j) := this trivial rw [v.repr_self, Finsupp.mem_supported, Finsupp.support_single_ne_zero _ one_ne_zero] at this · subst b rcases mem_iUnion.1 (this (Finset.mem_singleton_self _)) with ⟨j, hj⟩ exact mem_iUnion.2 ⟨j, (mem_image _ _ _).2 ⟨i, hj, rfl⟩⟩ [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝³ : Ring R inst✝² : RankCondition R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M J : Set M v : Basis ι R M hJ : span R J = ⊤ this : Nontrivial R val✝ : Infinite ↑J S : ↑J → Set ι := fun j => ↑(↑v.repr ↑j).support S' : ↑J → Set M := fun j => ↑v '' S j ⊢ range ↑v ⊆ ⋃ (j : ↑J), S' j [PROOFSTEP] intro b hb [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝³ : Ring R inst✝² : RankCondition R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M J : Set M v : Basis ι R M hJ : span R J = ⊤ this : Nontrivial R val✝ : Infinite ↑J S : ↑J → Set ι := fun j => ↑(↑v.repr ↑j).support S' : ↑J → Set M := fun j => ↑v '' S j b : M hb : b ∈ range ↑v ⊢ b ∈ ⋃ (j : ↑J), S' j [PROOFSTEP] rcases mem_range.1 hb with ⟨i, hi⟩ [GOAL] case intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝³ : Ring R inst✝² : RankCondition R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M J : Set M v : Basis ι R M hJ : span R J = ⊤ this : Nontrivial R val✝ : Infinite ↑J S : ↑J → Set ι := fun j => ↑(↑v.repr ↑j).support S' : ↑J → Set M := fun j => ↑v '' S j b : M hb : b ∈ range ↑v i : ι hi : ↑v i = b ⊢ b ∈ ⋃ (j : ↑J), S' j [PROOFSTEP] have : span R J ≤ comap v.repr.toLinearMap (Finsupp.supported R R (⋃ j, S j)) := span_le.2 fun j hj x hx => ⟨_, ⟨⟨j, hj⟩, rfl⟩, hx⟩ [GOAL] case intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝³ : Ring R inst✝² : RankCondition R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M J : Set M v : Basis ι R M hJ : span R J = ⊤ this✝ : Nontrivial R val✝ : Infinite ↑J S : ↑J → Set ι := fun j => ↑(↑v.repr ↑j).support S' : ↑J → Set M := fun j => ↑v '' S j b : M hb : b ∈ range ↑v i : ι hi : ↑v i = b this : span R J ≤ comap (↑v.repr) (Finsupp.supported R R (⋃ (j : ↑J), S j)) ⊢ b ∈ ⋃ (j : ↑J), S' j [PROOFSTEP] rw [hJ] at this [GOAL] case intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝³ : Ring R inst✝² : RankCondition R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M J : Set M v : Basis ι R M hJ : span R J = ⊤ this✝ : Nontrivial R val✝ : Infinite ↑J S : ↑J → Set ι := fun j => ↑(↑v.repr ↑j).support S' : ↑J → Set M := fun j => ↑v '' S j b : M hb : b ∈ range ↑v i : ι hi : ↑v i = b this : ⊤ ≤ comap (↑v.repr) (Finsupp.supported R R (⋃ (j : ↑J), S j)) ⊢ b ∈ ⋃ (j : ↑J), S' j [PROOFSTEP] replace : v.repr (v i) ∈ Finsupp.supported R R (⋃ j, S j) := this trivial [GOAL] case intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝³ : Ring R inst✝² : RankCondition R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M J : Set M v : Basis ι R M hJ : span R J = ⊤ this✝ : Nontrivial R val✝ : Infinite ↑J S : ↑J → Set ι := fun j => ↑(↑v.repr ↑j).support S' : ↑J → Set M := fun j => ↑v '' S j b : M hb : b ∈ range ↑v i : ι hi : ↑v i = b this : ↑v.repr (↑v i) ∈ Finsupp.supported R R (⋃ (j : ↑J), S j) ⊢ b ∈ ⋃ (j : ↑J), S' j [PROOFSTEP] rw [v.repr_self, Finsupp.mem_supported, Finsupp.support_single_ne_zero _ one_ne_zero] at this [GOAL] case intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝³ : Ring R inst✝² : RankCondition R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M J : Set M v : Basis ι R M hJ : span R J = ⊤ this✝ : Nontrivial R val✝ : Infinite ↑J S : ↑J → Set ι := fun j => ↑(↑v.repr ↑j).support S' : ↑J → Set M := fun j => ↑v '' S j b : M hb : b ∈ range ↑v i : ι hi : ↑v i = b this : ↑{i} ⊆ ⋃ (j : ↑J), S j ⊢ b ∈ ⋃ (j : ↑J), S' j [PROOFSTEP] subst b [GOAL] case intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝³ : Ring R inst✝² : RankCondition R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M J : Set M v : Basis ι R M hJ : span R J = ⊤ this✝ : Nontrivial R val✝ : Infinite ↑J S : ↑J → Set ι := fun j => ↑(↑v.repr ↑j).support S' : ↑J → Set M := fun j => ↑v '' S j i : ι this : ↑{i} ⊆ ⋃ (j : ↑J), S j hb : ↑v i ∈ range ↑v ⊢ ↑v i ∈ ⋃ (j : ↑J), S' j [PROOFSTEP] rcases mem_iUnion.1 (this (Finset.mem_singleton_self _)) with ⟨j, hj⟩ [GOAL] case intro.intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝³ : Ring R inst✝² : RankCondition R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M J : Set M v : Basis ι R M hJ : span R J = ⊤ this✝ : Nontrivial R val✝ : Infinite ↑J S : ↑J → Set ι := fun j => ↑(↑v.repr ↑j).support S' : ↑J → Set M := fun j => ↑v '' S j i : ι this : ↑{i} ⊆ ⋃ (j : ↑J), S j hb : ↑v i ∈ range ↑v j : ↑J hj : i ∈ S j ⊢ ↑v i ∈ ⋃ (j : ↑J), S' j [PROOFSTEP] exact mem_iUnion.2 ⟨j, (mem_image _ _ _).2 ⟨i, hj, rfl⟩⟩ [GOAL] case inr K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝³ : Ring R inst✝² : RankCondition R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M J : Set M v : Basis ι R M hJ : span R J = ⊤ this : Nontrivial R val✝ : Infinite ↑J S : ↑J → Set ι := fun j => ↑(↑v.repr ↑j).support S' : ↑J → Set M := fun j => ↑v '' S j hs : range ↑v ⊆ ⋃ (j : ↑J), S' j ⊢ #↑(range ↑v) ≤ #↑J [PROOFSTEP] refine' le_of_not_lt fun IJ => _ [GOAL] case inr K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝³ : Ring R inst✝² : RankCondition R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M J : Set M v : Basis ι R M hJ : span R J = ⊤ this : Nontrivial R val✝ : Infinite ↑J S : ↑J → Set ι := fun j => ↑(↑v.repr ↑j).support S' : ↑J → Set M := fun j => ↑v '' S j hs : range ↑v ⊆ ⋃ (j : ↑J), S' j IJ : #↑J < #↑(range ↑v) ⊢ False [PROOFSTEP] suffices #(⋃ j, S' j) < #(range v) by exact not_le_of_lt this ⟨Set.embeddingOfSubset _ _ hs⟩ [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝³ : Ring R inst✝² : RankCondition R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M J : Set M v : Basis ι R M hJ : span R J = ⊤ this✝ : Nontrivial R val✝ : Infinite ↑J S : ↑J → Set ι := fun j => ↑(↑v.repr ↑j).support S' : ↑J → Set M := fun j => ↑v '' S j hs : range ↑v ⊆ ⋃ (j : ↑J), S' j IJ : #↑J < #↑(range ↑v) this : #↑(⋃ (j : ↑J), S' j) < #↑(range ↑v) ⊢ False [PROOFSTEP] exact not_le_of_lt this ⟨Set.embeddingOfSubset _ _ hs⟩ [GOAL] case inr K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝³ : Ring R inst✝² : RankCondition R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M J : Set M v : Basis ι R M hJ : span R J = ⊤ this : Nontrivial R val✝ : Infinite ↑J S : ↑J → Set ι := fun j => ↑(↑v.repr ↑j).support S' : ↑J → Set M := fun j => ↑v '' S j hs : range ↑v ⊆ ⋃ (j : ↑J), S' j IJ : #↑J < #↑(range ↑v) ⊢ #↑(⋃ (j : ↑J), S' j) < #↑(range ↑v) [PROOFSTEP] refine' lt_of_le_of_lt (le_trans Cardinal.mk_iUnion_le_sum_mk (Cardinal.sum_le_sum _ (fun _ => ℵ₀) _)) _ [GOAL] case inr.refine'_1 K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝³ : Ring R inst✝² : RankCondition R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M J : Set M v : Basis ι R M hJ : span R J = ⊤ this : Nontrivial R val✝ : Infinite ↑J S : ↑J → Set ι := fun j => ↑(↑v.repr ↑j).support S' : ↑J → Set M := fun j => ↑v '' S j hs : range ↑v ⊆ ⋃ (j : ↑J), S' j IJ : #↑J < #↑(range ↑v) ⊢ ∀ (i : ↑J), #↑(S' i) ≤ (fun x => ℵ₀) i [PROOFSTEP] exact fun j => (Cardinal.lt_aleph0_of_finite _).le [GOAL] case inr.refine'_2 K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝³ : Ring R inst✝² : RankCondition R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M J : Set M v : Basis ι R M hJ : span R J = ⊤ this : Nontrivial R val✝ : Infinite ↑J S : ↑J → Set ι := fun j => ↑(↑v.repr ↑j).support S' : ↑J → Set M := fun j => ↑v '' S j hs : range ↑v ⊆ ⋃ (j : ↑J), S' j IJ : #↑J < #↑(range ↑v) ⊢ (sum fun x => ℵ₀) < #↑(range ↑v) [PROOFSTEP] simpa [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁵ : Ring R inst✝⁴ : StrongRankCondition R M : Type v inst✝³ : AddCommGroup M inst✝² : Module R M ι : Type u_2 inst✝¹ : Fintype ι v : ι → M i : LinearIndependent R v w : Set M inst✝ : Fintype ↑w s : range v ≤ ↑(span R w) ⊢ Fintype.card ι ≤ Fintype.card ↑w [PROOFSTEP] fapply card_le_of_injective' R [GOAL] case f K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁵ : Ring R inst✝⁴ : StrongRankCondition R M : Type v inst✝³ : AddCommGroup M inst✝² : Module R M ι : Type u_2 inst✝¹ : Fintype ι v : ι → M i : LinearIndependent R v w : Set M inst✝ : Fintype ↑w s : range v ≤ ↑(span R w) ⊢ (ι →₀ R) →ₗ[R] ↑w →₀ R [PROOFSTEP] apply Finsupp.total [GOAL] case f.v K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁵ : Ring R inst✝⁴ : StrongRankCondition R M : Type v inst✝³ : AddCommGroup M inst✝² : Module R M ι : Type u_2 inst✝¹ : Fintype ι v : ι → M i : LinearIndependent R v w : Set M inst✝ : Fintype ↑w s : range v ≤ ↑(span R w) ⊢ ι → ↑w →₀ R [PROOFSTEP] exact fun i => Span.repr R w ⟨v i, s (mem_range_self i)⟩ [GOAL] case i K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁵ : Ring R inst✝⁴ : StrongRankCondition R M : Type v inst✝³ : AddCommGroup M inst✝² : Module R M ι : Type u_2 inst✝¹ : Fintype ι v : ι → M i : LinearIndependent R v w : Set M inst✝ : Fintype ↑w s : range v ≤ ↑(span R w) ⊢ Injective ↑(Finsupp.total ι (↑w →₀ R) R fun i => Span.repr R w { val := v i, property := (_ : v i ∈ ↑(span R w)) }) [PROOFSTEP] intro f g h [GOAL] case i K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁵ : Ring R inst✝⁴ : StrongRankCondition R M : Type v inst✝³ : AddCommGroup M inst✝² : Module R M ι : Type u_2 inst✝¹ : Fintype ι v : ι → M i : LinearIndependent R v w : Set M inst✝ : Fintype ↑w s : range v ≤ ↑(span R w) f g : ι →₀ R h : ↑(Finsupp.total ι (↑w →₀ R) R fun i => Span.repr R w { val := v i, property := (_ : v i ∈ ↑(span R w)) }) f = ↑(Finsupp.total ι (↑w →₀ R) R fun i => Span.repr R w { val := v i, property := (_ : v i ∈ ↑(span R w)) }) g ⊢ f = g [PROOFSTEP] apply_fun Finsupp.total w M R (↑) at h [GOAL] case i K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁵ : Ring R inst✝⁴ : StrongRankCondition R M : Type v inst✝³ : AddCommGroup M inst✝² : Module R M ι : Type u_2 inst✝¹ : Fintype ι v : ι → M i : LinearIndependent R v w : Set M inst✝ : Fintype ↑w s : range v ≤ ↑(span R w) f g : ι →₀ R h : ↑(Finsupp.total (↑w) M R Subtype.val) (↑(Finsupp.total ι (↑w →₀ R) R fun i => Span.repr R w { val := v i, property := (_ : v i ∈ ↑(span R w)) }) f) = ↑(Finsupp.total (↑w) M R Subtype.val) (↑(Finsupp.total ι (↑w →₀ R) R fun i => Span.repr R w { val := v i, property := (_ : v i ∈ ↑(span R w)) }) g) ⊢ f = g [PROOFSTEP] simp only [Finsupp.total_total, Submodule.coe_mk, Span.finsupp_total_repr] at h [GOAL] case i K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁵ : Ring R inst✝⁴ : StrongRankCondition R M : Type v inst✝³ : AddCommGroup M inst✝² : Module R M ι : Type u_2 inst✝¹ : Fintype ι v : ι → M i : LinearIndependent R v w : Set M inst✝ : Fintype ↑w s : range v ≤ ↑(span R w) f g : ι →₀ R h : ↑(Finsupp.total ι M R fun b => v b) f = ↑(Finsupp.total ι M R fun b => v b) g ⊢ f = g [PROOFSTEP] rw [← sub_eq_zero, ← LinearMap.map_sub] at h [GOAL] case i K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁵ : Ring R inst✝⁴ : StrongRankCondition R M : Type v inst✝³ : AddCommGroup M inst✝² : Module R M ι : Type u_2 inst✝¹ : Fintype ι v : ι → M i : LinearIndependent R v w : Set M inst✝ : Fintype ↑w s : range v ≤ ↑(span R w) f g : ι →₀ R h✝ : ↑(Finsupp.total ι M R fun b => v b) f = ↑(Finsupp.total ι M R fun b => v b) g h : ↑(Finsupp.total ι M R fun b => v b) (f - g) = 0 ⊢ f = g [PROOFSTEP] exact sub_eq_zero.mp (linearIndependent_iff.mp i _ h) [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁴ : Ring R inst✝³ : StrongRankCondition R M : Type v inst✝² : AddCommGroup M inst✝¹ : Module R M ι : Type u_2 v : ι → M i : LinearIndependent R v w : Set M inst✝ : Fintype ↑w s : range v ≤ ↑(span R w) t : Finset ι ⊢ Finset.card t ≤ Fintype.card ↑w [PROOFSTEP] let v' := fun x : (t : Set ι) => v x [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁴ : Ring R inst✝³ : StrongRankCondition R M : Type v inst✝² : AddCommGroup M inst✝¹ : Module R M ι : Type u_2 v : ι → M i : LinearIndependent R v w : Set M inst✝ : Fintype ↑w s : range v ≤ ↑(span R w) t : Finset ι v' : ↑↑t → M := fun x => v ↑x ⊢ Finset.card t ≤ Fintype.card ↑w [PROOFSTEP] have i' : LinearIndependent R v' := i.comp _ Subtype.val_injective [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁴ : Ring R inst✝³ : StrongRankCondition R M : Type v inst✝² : AddCommGroup M inst✝¹ : Module R M ι : Type u_2 v : ι → M i : LinearIndependent R v w : Set M inst✝ : Fintype ↑w s : range v ≤ ↑(span R w) t : Finset ι v' : ↑↑t → M := fun x => v ↑x i' : LinearIndependent R v' ⊢ Finset.card t ≤ Fintype.card ↑w [PROOFSTEP] have s' : range v' ≤ span R w := (range_comp_subset_range _ _).trans s [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁴ : Ring R inst✝³ : StrongRankCondition R M : Type v inst✝² : AddCommGroup M inst✝¹ : Module R M ι : Type u_2 v : ι → M i : LinearIndependent R v w : Set M inst✝ : Fintype ↑w s : range v ≤ ↑(span R w) t : Finset ι v' : ↑↑t → M := fun x => v ↑x i' : LinearIndependent R v' s' : range v' ≤ ↑(span R w) ⊢ Finset.card t ≤ Fintype.card ↑w [PROOFSTEP] simpa using linearIndependent_le_span_aux' v' i' w s' [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁴ : Ring R inst✝³ : StrongRankCondition R M : Type v inst✝² : AddCommGroup M inst✝¹ : Module R M ι : Type u_2 v : ι → M i : LinearIndependent R v w : Set M inst✝ : Fintype ↑w s : range v ≤ ↑(span R w) ⊢ #ι ≤ ↑(Fintype.card ↑w) [PROOFSTEP] haveI : Fintype ι := linearIndependentFintypeOfLeSpanFintype v i w s [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁴ : Ring R inst✝³ : StrongRankCondition R M : Type v inst✝² : AddCommGroup M inst✝¹ : Module R M ι : Type u_2 v : ι → M i : LinearIndependent R v w : Set M inst✝ : Fintype ↑w s : range v ≤ ↑(span R w) this : Fintype ι ⊢ #ι ≤ ↑(Fintype.card ↑w) [PROOFSTEP] rw [Cardinal.mk_fintype] [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁴ : Ring R inst✝³ : StrongRankCondition R M : Type v inst✝² : AddCommGroup M inst✝¹ : Module R M ι : Type u_2 v : ι → M i : LinearIndependent R v w : Set M inst✝ : Fintype ↑w s : range v ≤ ↑(span R w) this : Fintype ι ⊢ ↑(Fintype.card ι) ≤ ↑(Fintype.card ↑w) [PROOFSTEP] simp only [Cardinal.natCast_le] [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁴ : Ring R inst✝³ : StrongRankCondition R M : Type v inst✝² : AddCommGroup M inst✝¹ : Module R M ι : Type u_2 v : ι → M i : LinearIndependent R v w : Set M inst✝ : Fintype ↑w s : range v ≤ ↑(span R w) this : Fintype ι ⊢ Fintype.card ι ≤ Fintype.card ↑w [PROOFSTEP] exact linearIndependent_le_span_aux' v i w s [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁴ : Ring R inst✝³ : StrongRankCondition R M : Type v inst✝² : AddCommGroup M inst✝¹ : Module R M ι : Type u_2 v : ι → M i : LinearIndependent R v w : Set M inst✝ : Fintype ↑w s : span R w = ⊤ ⊢ #ι ≤ ↑(Fintype.card ↑w) [PROOFSTEP] apply linearIndependent_le_span' v i w [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁴ : Ring R inst✝³ : StrongRankCondition R M : Type v inst✝² : AddCommGroup M inst✝¹ : Module R M ι : Type u_2 v : ι → M i : LinearIndependent R v w : Set M inst✝ : Fintype ↑w s : span R w = ⊤ ⊢ range v ≤ ↑(span R w) [PROOFSTEP] rw [s] [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁴ : Ring R inst✝³ : StrongRankCondition R M : Type v inst✝² : AddCommGroup M inst✝¹ : Module R M ι : Type u_2 v : ι → M i : LinearIndependent R v w : Set M inst✝ : Fintype ↑w s : span R w = ⊤ ⊢ range v ≤ ↑⊤ [PROOFSTEP] exact le_top [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝³ : Ring R inst✝² : StrongRankCondition R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M ι : Type u_2 v : ι → M i : LinearIndependent R v w : Finset M s : span R ↑w = ⊤ ⊢ #ι ≤ ↑(Finset.card w) [PROOFSTEP] simpa only [Finset.coe_sort_coe, Fintype.card_coe] using linearIndependent_le_span v i w s [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁴ : Ring R inst✝³ : StrongRankCondition R M : Type v inst✝² : AddCommGroup M inst✝¹ : Module R M ι : Type u_2 b : Basis ι R M inst✝ : Infinite ι κ : Type u_2 v : κ → M i : LinearIndependent R v ⊢ #κ ≤ #ι [PROOFSTEP] classical by_contra h rw [not_le, ← Cardinal.mk_finset_of_infinite ι] at h let Φ := fun k : κ => (b.repr (v k)).support obtain ⟨s, w : Infinite ↑(Φ ⁻¹' { s })⟩ := Cardinal.exists_infinite_fiber Φ h (by infer_instance) let v' := fun k : Φ ⁻¹' { s } => v k have i' : LinearIndependent R v' := i.comp _ Subtype.val_injective have w' : Fintype (Φ ⁻¹' { s }) := by apply linearIndependentFintypeOfLeSpanFintype v' i' (s.image b) rintro m ⟨⟨p, ⟨rfl⟩⟩, rfl⟩ simp only [SetLike.mem_coe, Subtype.coe_mk, Finset.coe_image] apply Basis.mem_span_repr_support exact w.false [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁴ : Ring R inst✝³ : StrongRankCondition R M : Type v inst✝² : AddCommGroup M inst✝¹ : Module R M ι : Type u_2 b : Basis ι R M inst✝ : Infinite ι κ : Type u_2 v : κ → M i : LinearIndependent R v ⊢ #κ ≤ #ι [PROOFSTEP] by_contra h [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁴ : Ring R inst✝³ : StrongRankCondition R M : Type v inst✝² : AddCommGroup M inst✝¹ : Module R M ι : Type u_2 b : Basis ι R M inst✝ : Infinite ι κ : Type u_2 v : κ → M i : LinearIndependent R v h : ¬#κ ≤ #ι ⊢ False [PROOFSTEP] rw [not_le, ← Cardinal.mk_finset_of_infinite ι] at h [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁴ : Ring R inst✝³ : StrongRankCondition R M : Type v inst✝² : AddCommGroup M inst✝¹ : Module R M ι : Type u_2 b : Basis ι R M inst✝ : Infinite ι κ : Type u_2 v : κ → M i : LinearIndependent R v h : #(Finset ι) < #κ ⊢ False [PROOFSTEP] let Φ := fun k : κ => (b.repr (v k)).support [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁴ : Ring R inst✝³ : StrongRankCondition R M : Type v inst✝² : AddCommGroup M inst✝¹ : Module R M ι : Type u_2 b : Basis ι R M inst✝ : Infinite ι κ : Type u_2 v : κ → M i : LinearIndependent R v h : #(Finset ι) < #κ Φ : κ → Finset ι := fun k => (↑b.repr (v k)).support ⊢ False [PROOFSTEP] obtain ⟨s, w : Infinite ↑(Φ ⁻¹' { s })⟩ := Cardinal.exists_infinite_fiber Φ h (by infer_instance) [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁴ : Ring R inst✝³ : StrongRankCondition R M : Type v inst✝² : AddCommGroup M inst✝¹ : Module R M ι : Type u_2 b : Basis ι R M inst✝ : Infinite ι κ : Type u_2 v : κ → M i : LinearIndependent R v h : #(Finset ι) < #κ Φ : κ → Finset ι := fun k => (↑b.repr (v k)).support ⊢ Infinite (Finset ι) [PROOFSTEP] infer_instance [GOAL] case intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁴ : Ring R inst✝³ : StrongRankCondition R M : Type v inst✝² : AddCommGroup M inst✝¹ : Module R M ι : Type u_2 b : Basis ι R M inst✝ : Infinite ι κ : Type u_2 v : κ → M i : LinearIndependent R v h : #(Finset ι) < #κ Φ : κ → Finset ι := fun k => (↑b.repr (v k)).support s : Finset ι w : Infinite ↑(Φ ⁻¹' {s}) ⊢ False [PROOFSTEP] let v' := fun k : Φ ⁻¹' { s } => v k [GOAL] case intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁴ : Ring R inst✝³ : StrongRankCondition R M : Type v inst✝² : AddCommGroup M inst✝¹ : Module R M ι : Type u_2 b : Basis ι R M inst✝ : Infinite ι κ : Type u_2 v : κ → M i : LinearIndependent R v h : #(Finset ι) < #κ Φ : κ → Finset ι := fun k => (↑b.repr (v k)).support s : Finset ι w : Infinite ↑(Φ ⁻¹' {s}) v' : ↑(Φ ⁻¹' {s}) → M := fun k => v ↑k ⊢ False [PROOFSTEP] have i' : LinearIndependent R v' := i.comp _ Subtype.val_injective [GOAL] case intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁴ : Ring R inst✝³ : StrongRankCondition R M : Type v inst✝² : AddCommGroup M inst✝¹ : Module R M ι : Type u_2 b : Basis ι R M inst✝ : Infinite ι κ : Type u_2 v : κ → M i : LinearIndependent R v h : #(Finset ι) < #κ Φ : κ → Finset ι := fun k => (↑b.repr (v k)).support s : Finset ι w : Infinite ↑(Φ ⁻¹' {s}) v' : ↑(Φ ⁻¹' {s}) → M := fun k => v ↑k i' : LinearIndependent R v' ⊢ False [PROOFSTEP] have w' : Fintype (Φ ⁻¹' { s }) := by apply linearIndependentFintypeOfLeSpanFintype v' i' (s.image b) rintro m ⟨⟨p, ⟨rfl⟩⟩, rfl⟩ simp only [SetLike.mem_coe, Subtype.coe_mk, Finset.coe_image] apply Basis.mem_span_repr_support [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁴ : Ring R inst✝³ : StrongRankCondition R M : Type v inst✝² : AddCommGroup M inst✝¹ : Module R M ι : Type u_2 b : Basis ι R M inst✝ : Infinite ι κ : Type u_2 v : κ → M i : LinearIndependent R v h : #(Finset ι) < #κ Φ : κ → Finset ι := fun k => (↑b.repr (v k)).support s : Finset ι w : Infinite ↑(Φ ⁻¹' {s}) v' : ↑(Φ ⁻¹' {s}) → M := fun k => v ↑k i' : LinearIndependent R v' ⊢ Fintype ↑(Φ ⁻¹' {s}) [PROOFSTEP] apply linearIndependentFintypeOfLeSpanFintype v' i' (s.image b) [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁴ : Ring R inst✝³ : StrongRankCondition R M : Type v inst✝² : AddCommGroup M inst✝¹ : Module R M ι : Type u_2 b : Basis ι R M inst✝ : Infinite ι κ : Type u_2 v : κ → M i : LinearIndependent R v h : #(Finset ι) < #κ Φ : κ → Finset ι := fun k => (↑b.repr (v k)).support s : Finset ι w : Infinite ↑(Φ ⁻¹' {s}) v' : ↑(Φ ⁻¹' {s}) → M := fun k => v ↑k i' : LinearIndependent R v' ⊢ range v' ≤ ↑(span R ↑(Finset.image (↑b) s)) [PROOFSTEP] rintro m ⟨⟨p, ⟨rfl⟩⟩, rfl⟩ [GOAL] case intro.mk.refl K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁴ : Ring R inst✝³ : StrongRankCondition R M : Type v inst✝² : AddCommGroup M inst✝¹ : Module R M ι : Type u_2 b : Basis ι R M inst✝ : Infinite ι κ : Type u_2 v : κ → M i : LinearIndependent R v h : #(Finset ι) < #κ Φ : κ → Finset ι := fun k => (↑b.repr (v k)).support p : κ w : Infinite ↑(Φ ⁻¹' {Φ p}) v' : ↑(Φ ⁻¹' {Φ p}) → M := fun k => v ↑k i' : LinearIndependent R v' ⊢ v' { val := p, property := (_ : Φ p = Φ p) } ∈ ↑(span R ↑(Finset.image (↑b) (Φ p))) [PROOFSTEP] simp only [SetLike.mem_coe, Subtype.coe_mk, Finset.coe_image] [GOAL] case intro.mk.refl K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁴ : Ring R inst✝³ : StrongRankCondition R M : Type v inst✝² : AddCommGroup M inst✝¹ : Module R M ι : Type u_2 b : Basis ι R M inst✝ : Infinite ι κ : Type u_2 v : κ → M i : LinearIndependent R v h : #(Finset ι) < #κ Φ : κ → Finset ι := fun k => (↑b.repr (v k)).support p : κ w : Infinite ↑(Φ ⁻¹' {Φ p}) v' : ↑(Φ ⁻¹' {Φ p}) → M := fun k => v ↑k i' : LinearIndependent R v' ⊢ v p ∈ span R (↑b '' ↑(↑b.repr (v p)).support) [PROOFSTEP] apply Basis.mem_span_repr_support [GOAL] case intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁴ : Ring R inst✝³ : StrongRankCondition R M : Type v inst✝² : AddCommGroup M inst✝¹ : Module R M ι : Type u_2 b : Basis ι R M inst✝ : Infinite ι κ : Type u_2 v : κ → M i : LinearIndependent R v h : #(Finset ι) < #κ Φ : κ → Finset ι := fun k => (↑b.repr (v k)).support s : Finset ι w : Infinite ↑(Φ ⁻¹' {s}) v' : ↑(Φ ⁻¹' {s}) → M := fun k => v ↑k i' : LinearIndependent R v' w' : Fintype ↑(Φ ⁻¹' {s}) ⊢ False [PROOFSTEP] exact w.false [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝³ : Ring R inst✝² : StrongRankCondition R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M ι : Type u_2 b : Basis ι R M κ : Type u_2 v : κ → M i : LinearIndependent R v ⊢ #κ ≤ #ι [PROOFSTEP] classical -- We split into cases depending on whether `ι` is infinite. cases fintypeOrInfinite ι · rw [Cardinal.mk_fintype ι] -- When `ι` is finite, we have `linearIndependent_le_span`, haveI : Nontrivial R := nontrivial_of_invariantBasisNumber R rw [Fintype.card_congr (Equiv.ofInjective b b.injective)] exact linearIndependent_le_span v i (range b) b.span_eq · -- and otherwise we have `linearIndependent_le_infinite_basis`.exact linearIndependent_le_infinite_basis b v i [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝³ : Ring R inst✝² : StrongRankCondition R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M ι : Type u_2 b : Basis ι R M κ : Type u_2 v : κ → M i : LinearIndependent R v ⊢ #κ ≤ #ι [PROOFSTEP] cases fintypeOrInfinite ι [GOAL] case inl K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝³ : Ring R inst✝² : StrongRankCondition R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M ι : Type u_2 b : Basis ι R M κ : Type u_2 v : κ → M i : LinearIndependent R v val✝ : Fintype ι ⊢ #κ ≤ #ι [PROOFSTEP] rw [Cardinal.mk_fintype ι] -- When `ι` is finite, we have `linearIndependent_le_span`, [GOAL] case inl K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝³ : Ring R inst✝² : StrongRankCondition R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M ι : Type u_2 b : Basis ι R M κ : Type u_2 v : κ → M i : LinearIndependent R v val✝ : Fintype ι ⊢ #κ ≤ ↑(Fintype.card ι) [PROOFSTEP] haveI : Nontrivial R := nontrivial_of_invariantBasisNumber R [GOAL] case inl K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝³ : Ring R inst✝² : StrongRankCondition R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M ι : Type u_2 b : Basis ι R M κ : Type u_2 v : κ → M i : LinearIndependent R v val✝ : Fintype ι this : Nontrivial R ⊢ #κ ≤ ↑(Fintype.card ι) [PROOFSTEP] rw [Fintype.card_congr (Equiv.ofInjective b b.injective)] [GOAL] case inl K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝³ : Ring R inst✝² : StrongRankCondition R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M ι : Type u_2 b : Basis ι R M κ : Type u_2 v : κ → M i : LinearIndependent R v val✝ : Fintype ι this : Nontrivial R ⊢ #κ ≤ ↑(Fintype.card ↑(range ↑b)) [PROOFSTEP] exact linearIndependent_le_span v i (range b) b.span_eq [GOAL] case inr K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝³ : Ring R inst✝² : StrongRankCondition R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M ι : Type u_2 b : Basis ι R M κ : Type u_2 v : κ → M i : LinearIndependent R v val✝ : Infinite ι ⊢ #κ ≤ #ι [PROOFSTEP] exact linearIndependent_le_infinite_basis b v i [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R✝ : Type u inst✝⁵ : Ring R✝ inst✝⁴ : StrongRankCondition R✝ M : Type v inst✝³ : AddCommGroup M inst✝² : Module R✝ M R : Type u_2 inst✝¹ : Ring R inst✝ : StrongRankCondition R n m : ℕ v : Fin m → Fin n → R h : LinearIndependent R v ⊢ m ≤ n [PROOFSTEP] simpa using linearIndependent_le_basis (Pi.basisFun R (Fin n)) v h [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁴ : Ring R inst✝³ : StrongRankCondition R M : Type v inst✝² : AddCommGroup M inst✝¹ : Module R M ι : Type u_2 b : Basis ι R M inst✝ : Infinite ι κ : Type u_2 v : κ → M i : LinearIndependent R v m : LinearIndependent.Maximal i ⊢ #κ = #ι [PROOFSTEP] apply le_antisymm [GOAL] case a K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁴ : Ring R inst✝³ : StrongRankCondition R M : Type v inst✝² : AddCommGroup M inst✝¹ : Module R M ι : Type u_2 b : Basis ι R M inst✝ : Infinite ι κ : Type u_2 v : κ → M i : LinearIndependent R v m : LinearIndependent.Maximal i ⊢ #κ ≤ #ι [PROOFSTEP] exact linearIndependent_le_basis b v i [GOAL] case a K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁴ : Ring R inst✝³ : StrongRankCondition R M : Type v inst✝² : AddCommGroup M inst✝¹ : Module R M ι : Type u_2 b : Basis ι R M inst✝ : Infinite ι κ : Type u_2 v : κ → M i : LinearIndependent R v m : LinearIndependent.Maximal i ⊢ #ι ≤ #κ [PROOFSTEP] haveI : Nontrivial R := nontrivial_of_invariantBasisNumber R [GOAL] case a K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁴ : Ring R inst✝³ : StrongRankCondition R M : Type v inst✝² : AddCommGroup M inst✝¹ : Module R M ι : Type u_2 b : Basis ι R M inst✝ : Infinite ι κ : Type u_2 v : κ → M i : LinearIndependent R v m : LinearIndependent.Maximal i this : Nontrivial R ⊢ #ι ≤ #κ [PROOFSTEP] exact infinite_basis_le_maximal_linearIndependent b v i m [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝³ : Ring R inst✝² : StrongRankCondition R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M ι : Type v v : Basis ι R M ⊢ #ι = Module.rank R M [PROOFSTEP] haveI := nontrivial_of_invariantBasisNumber R [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝³ : Ring R inst✝² : StrongRankCondition R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M ι : Type v v : Basis ι R M this : Nontrivial R ⊢ #ι = Module.rank R M [PROOFSTEP] rw [Module.rank_def] [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝³ : Ring R inst✝² : StrongRankCondition R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M ι : Type v v : Basis ι R M this : Nontrivial R ⊢ #ι = ⨆ (ι : { s // LinearIndependent R Subtype.val }), #↑↑ι [PROOFSTEP] apply le_antisymm [GOAL] case a K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝³ : Ring R inst✝² : StrongRankCondition R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M ι : Type v v : Basis ι R M this : Nontrivial R ⊢ #ι ≤ ⨆ (ι : { s // LinearIndependent R Subtype.val }), #↑↑ι [PROOFSTEP] trans [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝³ : Ring R inst✝² : StrongRankCondition R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M ι : Type v v : Basis ι R M this : Nontrivial R ⊢ #ι ≤ ?m.374465 K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝³ : Ring R inst✝² : StrongRankCondition R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M ι : Type v v : Basis ι R M this : Nontrivial R ⊢ ?m.374465 ≤ ⨆ (ι : { s // LinearIndependent R Subtype.val }), #↑↑ι K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝³ : Ring R inst✝² : StrongRankCondition R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M ι : Type v v : Basis ι R M this : Nontrivial R ⊢ Cardinal.{v} [PROOFSTEP] swap [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝³ : Ring R inst✝² : StrongRankCondition R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M ι : Type v v : Basis ι R M this : Nontrivial R ⊢ ?m.374465 ≤ ⨆ (ι : { s // LinearIndependent R Subtype.val }), #↑↑ι [PROOFSTEP] apply le_ciSup (Cardinal.bddAbove_range.{v, v} _) [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝³ : Ring R inst✝² : StrongRankCondition R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M ι : Type v v : Basis ι R M this : Nontrivial R ⊢ { s // LinearIndependent R Subtype.val } [PROOFSTEP] exact ⟨Set.range v, by convert v.reindexRange.linearIndependent ext simp⟩ [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝³ : Ring R inst✝² : StrongRankCondition R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M ι : Type v v : Basis ι R M this : Nontrivial R ⊢ LinearIndependent R Subtype.val [PROOFSTEP] convert v.reindexRange.linearIndependent [GOAL] case h.e'_4 K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝³ : Ring R inst✝² : StrongRankCondition R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M ι : Type v v : Basis ι R M this : Nontrivial R ⊢ Subtype.val = ↑(reindexRange v) [PROOFSTEP] ext [GOAL] case h.e'_4.h K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝³ : Ring R inst✝² : StrongRankCondition R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M ι : Type v v : Basis ι R M this : Nontrivial R x✝ : { x // x ∈ range ↑v } ⊢ ↑x✝ = ↑(reindexRange v) x✝ [PROOFSTEP] simp [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝³ : Ring R inst✝² : StrongRankCondition R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M ι : Type v v : Basis ι R M this : Nontrivial R ⊢ #ι ≤ #↑↑{ val := range ↑v, property := (_ : LinearIndependent R Subtype.val) } [PROOFSTEP] exact (Cardinal.mk_range_eq v v.injective).ge [GOAL] case a K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝³ : Ring R inst✝² : StrongRankCondition R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M ι : Type v v : Basis ι R M this : Nontrivial R ⊢ ⨆ (ι : { s // LinearIndependent R Subtype.val }), #↑↑ι ≤ #ι [PROOFSTEP] apply ciSup_le' [GOAL] case a.h K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝³ : Ring R inst✝² : StrongRankCondition R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M ι : Type v v : Basis ι R M this : Nontrivial R ⊢ ∀ (i : { s // LinearIndependent R Subtype.val }), #↑↑i ≤ #ι [PROOFSTEP] rintro ⟨s, li⟩ [GOAL] case a.h.mk K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝³ : Ring R inst✝² : StrongRankCondition R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M ι : Type v v : Basis ι R M this : Nontrivial R s : Set M li : LinearIndependent R Subtype.val ⊢ #↑↑{ val := s, property := li } ≤ #ι [PROOFSTEP] apply linearIndependent_le_basis v _ li [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁴ : Ring R inst✝³ : StrongRankCondition R M : Type v inst✝² : AddCommGroup M inst✝¹ : Module R M ι : Type w inst✝ : Fintype ι h : Basis ι R M ⊢ Module.rank R M = ↑(Fintype.card ι) [PROOFSTEP] classical haveI := nontrivial_of_invariantBasisNumber R rw [← h.mk_range_eq_rank, Cardinal.mk_fintype, Set.card_range_of_injective h.injective] [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁴ : Ring R inst✝³ : StrongRankCondition R M : Type v inst✝² : AddCommGroup M inst✝¹ : Module R M ι : Type w inst✝ : Fintype ι h : Basis ι R M ⊢ Module.rank R M = ↑(Fintype.card ι) [PROOFSTEP] haveI := nontrivial_of_invariantBasisNumber R [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁴ : Ring R inst✝³ : StrongRankCondition R M : Type v inst✝² : AddCommGroup M inst✝¹ : Module R M ι : Type w inst✝ : Fintype ι h : Basis ι R M this : Nontrivial R ⊢ Module.rank R M = ↑(Fintype.card ι) [PROOFSTEP] rw [← h.mk_range_eq_rank, Cardinal.mk_fintype, Set.card_range_of_injective h.injective] [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι'✝ : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁵ : Ring R inst✝⁴ : StrongRankCondition R M : Type v inst✝³ : AddCommGroup M inst✝² : Module R M ι : Type u_2 inst✝¹ : Fintype ι b : Basis ι R M ι' : Type u_3 inst✝ : Fintype ι' v : ι' → M hv : LinearIndependent R v ⊢ Fintype.card ι' ≤ Fintype.card ι [PROOFSTEP] letI := nontrivial_of_invariantBasisNumber R [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι'✝ : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁵ : Ring R inst✝⁴ : StrongRankCondition R M : Type v inst✝³ : AddCommGroup M inst✝² : Module R M ι : Type u_2 inst✝¹ : Fintype ι b : Basis ι R M ι' : Type u_3 inst✝ : Fintype ι' v : ι' → M hv : LinearIndependent R v this : Nontrivial R := nontrivial_of_invariantBasisNumber R ⊢ Fintype.card ι' ≤ Fintype.card ι [PROOFSTEP] simpa [rank_eq_card_basis b, Cardinal.mk_fintype] using cardinal_lift_le_rank_of_linearIndependent' hv [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝³ : Ring R inst✝² : StrongRankCondition R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M v : Basis ι R M ⊢ lift #ι = lift (Module.rank R M) [PROOFSTEP] haveI := nontrivial_of_invariantBasisNumber R [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝³ : Ring R inst✝² : StrongRankCondition R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M v : Basis ι R M this : Nontrivial R ⊢ lift #ι = lift (Module.rank R M) [PROOFSTEP] rw [← v.mk_range_eq_rank, Cardinal.mk_range_eq_of_injective v.injective] [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι✝ : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝³ : Ring R inst✝² : StrongRankCondition R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M ι : Type u_2 b : Basis ι R M h : Module.rank R M < ℵ₀ ⊢ Nonempty (Fintype ι) [PROOFSTEP] rwa [← Cardinal.lift_lt, ← b.mk_eq_rank, Cardinal.lift_aleph0, Cardinal.lift_lt_aleph0, Cardinal.lt_aleph0_iff_fintype] at h [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝³ : Ring R inst✝² : StrongRankCondition R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M v : ι → M hv : LinearIndependent R v ⊢ Module.rank R { x // x ∈ span R (range v) } = #↑(range v) [PROOFSTEP] haveI := nontrivial_of_invariantBasisNumber R [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝³ : Ring R inst✝² : StrongRankCondition R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M v : ι → M hv : LinearIndependent R v this : Nontrivial R ⊢ Module.rank R { x // x ∈ span R (range v) } = #↑(range v) [PROOFSTEP] rw [← Cardinal.lift_inj, ← (Basis.span hv).mk_eq_rank, Cardinal.mk_range_eq_of_injective (@LinearIndependent.injective ι R M v _ _ _ _ hv)] [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝³ : Ring R inst✝² : StrongRankCondition R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M s : Set M hs : LinearIndependent R fun x => ↑x ⊢ Module.rank R { x // x ∈ span R s } = #↑s [PROOFSTEP] rw [← @setOf_mem_eq _ s, ← Subtype.range_coe_subtype] [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝³ : Ring R inst✝² : StrongRankCondition R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M s : Set M hs : LinearIndependent R fun x => ↑x ⊢ Module.rank R { x // x ∈ span R (range Subtype.val) } = #↑(range Subtype.val) [PROOFSTEP] exact rank_span hs [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝⁵ : Ring R inst✝⁴ : StrongRankCondition R M : Type v inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : IsDomain R inst✝ : Fintype ι b : Basis ι R M P : Submodule R M → Sort u_2 ih : (N : Submodule R M) → ((N' : Submodule R M) → N' ≤ N → (x : M) → x ∈ N → (∀ (c : R) (y : M), y ∈ N' → c • x + y = 0 → c = 0) → P N') → P N N : Submodule R M m✝ : ℕ hs : Fin m✝ → { x // x ∈ N } hli : LinearIndependent R (Subtype.val ∘ hs) ⊢ m✝ ≤ Fintype.card ι [PROOFSTEP] simpa using b.card_le_card_of_linearIndependent hli [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R✝ : Type u inst✝¹⁰ : Ring R✝ inst✝⁹ : StrongRankCondition R✝ M : Type v inst✝⁸ : AddCommGroup M inst✝⁷ : Module R✝ M R : Type u_2 S : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : StrongRankCondition R inst✝⁴ : Ring S inst✝³ : IsDomain S inst✝² : Algebra R S n : Type u_4 m : Type u_5 inst✝¹ : Fintype n inst✝ : Fintype m b : Basis n R S I : Ideal S hI : I ≠ ⊥ c : Basis m R { x // x ∈ I } ⊢ Fintype.card m = Fintype.card n [PROOFSTEP] obtain ⟨a, ha⟩ := Submodule.nonzero_mem_of_bot_lt (bot_lt_iff_ne_bot.mpr hI) [GOAL] case intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R✝ : Type u inst✝¹⁰ : Ring R✝ inst✝⁹ : StrongRankCondition R✝ M : Type v inst✝⁸ : AddCommGroup M inst✝⁷ : Module R✝ M R : Type u_2 S : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : StrongRankCondition R inst✝⁴ : Ring S inst✝³ : IsDomain S inst✝² : Algebra R S n : Type u_4 m : Type u_5 inst✝¹ : Fintype n inst✝ : Fintype m b : Basis n R S I : Ideal S hI : I ≠ ⊥ c : Basis m R { x // x ∈ I } a : { x // x ∈ I } ha : a ≠ 0 ⊢ Fintype.card m = Fintype.card n [PROOFSTEP] have : LinearIndependent R fun i => b i • a := by have hb := b.linearIndependent rw [Fintype.linearIndependent_iff] at hb ⊢ intro g hg apply hb g simp only [← smul_assoc, ← Finset.sum_smul, smul_eq_zero] at hg exact hg.resolve_right ha [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R✝ : Type u inst✝¹⁰ : Ring R✝ inst✝⁹ : StrongRankCondition R✝ M : Type v inst✝⁸ : AddCommGroup M inst✝⁷ : Module R✝ M R : Type u_2 S : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : StrongRankCondition R inst✝⁴ : Ring S inst✝³ : IsDomain S inst✝² : Algebra R S n : Type u_4 m : Type u_5 inst✝¹ : Fintype n inst✝ : Fintype m b : Basis n R S I : Ideal S hI : I ≠ ⊥ c : Basis m R { x // x ∈ I } a : { x // x ∈ I } ha : a ≠ 0 ⊢ LinearIndependent R fun i => ↑b i • a [PROOFSTEP] have hb := b.linearIndependent [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R✝ : Type u inst✝¹⁰ : Ring R✝ inst✝⁹ : StrongRankCondition R✝ M : Type v inst✝⁸ : AddCommGroup M inst✝⁷ : Module R✝ M R : Type u_2 S : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : StrongRankCondition R inst✝⁴ : Ring S inst✝³ : IsDomain S inst✝² : Algebra R S n : Type u_4 m : Type u_5 inst✝¹ : Fintype n inst✝ : Fintype m b : Basis n R S I : Ideal S hI : I ≠ ⊥ c : Basis m R { x // x ∈ I } a : { x // x ∈ I } ha : a ≠ 0 hb : LinearIndependent R ↑b ⊢ LinearIndependent R fun i => ↑b i • a [PROOFSTEP] rw [Fintype.linearIndependent_iff] at hb ⊢ [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R✝ : Type u inst✝¹⁰ : Ring R✝ inst✝⁹ : StrongRankCondition R✝ M : Type v inst✝⁸ : AddCommGroup M inst✝⁷ : Module R✝ M R : Type u_2 S : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : StrongRankCondition R inst✝⁴ : Ring S inst✝³ : IsDomain S inst✝² : Algebra R S n : Type u_4 m : Type u_5 inst✝¹ : Fintype n inst✝ : Fintype m b : Basis n R S I : Ideal S hI : I ≠ ⊥ c : Basis m R { x // x ∈ I } a : { x // x ∈ I } ha : a ≠ 0 hb✝ : LinearIndependent R ↑b hb : ∀ (g : n → R), ∑ i : n, g i • ↑b i = 0 → ∀ (i : n), g i = 0 ⊢ ∀ (g : n → R), ∑ i : n, g i • ↑b i • a = 0 → ∀ (i : n), g i = 0 [PROOFSTEP] intro g hg [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R✝ : Type u inst✝¹⁰ : Ring R✝ inst✝⁹ : StrongRankCondition R✝ M : Type v inst✝⁸ : AddCommGroup M inst✝⁷ : Module R✝ M R : Type u_2 S : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : StrongRankCondition R inst✝⁴ : Ring S inst✝³ : IsDomain S inst✝² : Algebra R S n : Type u_4 m : Type u_5 inst✝¹ : Fintype n inst✝ : Fintype m b : Basis n R S I : Ideal S hI : I ≠ ⊥ c : Basis m R { x // x ∈ I } a : { x // x ∈ I } ha : a ≠ 0 hb✝ : LinearIndependent R ↑b hb : ∀ (g : n → R), ∑ i : n, g i • ↑b i = 0 → ∀ (i : n), g i = 0 g : n → R hg : ∑ i : n, g i • ↑b i • a = 0 ⊢ ∀ (i : n), g i = 0 [PROOFSTEP] apply hb g [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R✝ : Type u inst✝¹⁰ : Ring R✝ inst✝⁹ : StrongRankCondition R✝ M : Type v inst✝⁸ : AddCommGroup M inst✝⁷ : Module R✝ M R : Type u_2 S : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : StrongRankCondition R inst✝⁴ : Ring S inst✝³ : IsDomain S inst✝² : Algebra R S n : Type u_4 m : Type u_5 inst✝¹ : Fintype n inst✝ : Fintype m b : Basis n R S I : Ideal S hI : I ≠ ⊥ c : Basis m R { x // x ∈ I } a : { x // x ∈ I } ha : a ≠ 0 hb✝ : LinearIndependent R ↑b hb : ∀ (g : n → R), ∑ i : n, g i • ↑b i = 0 → ∀ (i : n), g i = 0 g : n → R hg : ∑ i : n, g i • ↑b i • a = 0 ⊢ ∑ i : n, g i • ↑b i = 0 [PROOFSTEP] simp only [← smul_assoc, ← Finset.sum_smul, smul_eq_zero] at hg [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R✝ : Type u inst✝¹⁰ : Ring R✝ inst✝⁹ : StrongRankCondition R✝ M : Type v inst✝⁸ : AddCommGroup M inst✝⁷ : Module R✝ M R : Type u_2 S : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : StrongRankCondition R inst✝⁴ : Ring S inst✝³ : IsDomain S inst✝² : Algebra R S n : Type u_4 m : Type u_5 inst✝¹ : Fintype n inst✝ : Fintype m b : Basis n R S I : Ideal S hI : I ≠ ⊥ c : Basis m R { x // x ∈ I } a : { x // x ∈ I } ha : a ≠ 0 hb✝ : LinearIndependent R ↑b hb : ∀ (g : n → R), ∑ i : n, g i • ↑b i = 0 → ∀ (i : n), g i = 0 g : n → R hg : ∑ i : n, g i • ↑b i = 0 ∨ a = 0 ⊢ ∑ i : n, g i • ↑b i = 0 [PROOFSTEP] exact hg.resolve_right ha [GOAL] case intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R✝ : Type u inst✝¹⁰ : Ring R✝ inst✝⁹ : StrongRankCondition R✝ M : Type v inst✝⁸ : AddCommGroup M inst✝⁷ : Module R✝ M R : Type u_2 S : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : StrongRankCondition R inst✝⁴ : Ring S inst✝³ : IsDomain S inst✝² : Algebra R S n : Type u_4 m : Type u_5 inst✝¹ : Fintype n inst✝ : Fintype m b : Basis n R S I : Ideal S hI : I ≠ ⊥ c : Basis m R { x // x ∈ I } a : { x // x ∈ I } ha : a ≠ 0 this : LinearIndependent R fun i => ↑b i • a ⊢ Fintype.card m = Fintype.card n [PROOFSTEP] exact le_antisymm (b.card_le_card_of_linearIndependent (c.linearIndependent.map' (Submodule.subtype I) ((LinearMap.ker_eq_bot (f := (Submodule.subtype I : I →ₗ[R] S))).mpr Subtype.coe_injective))) (c.card_le_card_of_linearIndependent this) [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 R : Type u inst✝³ : Ring R inst✝² : StrongRankCondition R M : Type v inst✝¹ : AddCommGroup M inst✝ : Module R M ⊢ Module.rank R R = 1 [PROOFSTEP] rw [← Cardinal.lift_inj, ← (Basis.singleton PUnit R).mk_eq_rank, Cardinal.mk_punit] [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝¹⁰ : Ring K inst✝⁹ : StrongRankCondition K inst✝⁸ : AddCommGroup V inst✝⁷ : Module K V inst✝⁶ : Module.Free K V inst✝⁵ : AddCommGroup V' inst✝⁴ : Module K V' inst✝³ : Module.Free K V' inst✝² : AddCommGroup V₁ inst✝¹ : Module K V₁ inst✝ : Module.Free K V₁ cnd : lift (Module.rank K V) = lift (Module.rank K V') ⊢ Nonempty (V ≃ₗ[K] V') [PROOFSTEP] obtain ⟨⟨_, B⟩⟩ := Module.Free.exists_basis (R := K) (M := V) [GOAL] case intro.mk K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝¹⁰ : Ring K inst✝⁹ : StrongRankCondition K inst✝⁸ : AddCommGroup V inst✝⁷ : Module K V inst✝⁶ : Module.Free K V inst✝⁵ : AddCommGroup V' inst✝⁴ : Module K V' inst✝³ : Module.Free K V' inst✝² : AddCommGroup V₁ inst✝¹ : Module K V₁ inst✝ : Module.Free K V₁ cnd : lift (Module.rank K V) = lift (Module.rank K V') fst✝ : Type v B : Basis fst✝ K V ⊢ Nonempty (V ≃ₗ[K] V') [PROOFSTEP] obtain ⟨⟨_, B'⟩⟩ := Module.Free.exists_basis (R := K) (M := V') [GOAL] case intro.mk.intro.mk K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝¹⁰ : Ring K inst✝⁹ : StrongRankCondition K inst✝⁸ : AddCommGroup V inst✝⁷ : Module K V inst✝⁶ : Module.Free K V inst✝⁵ : AddCommGroup V' inst✝⁴ : Module K V' inst✝³ : Module.Free K V' inst✝² : AddCommGroup V₁ inst✝¹ : Module K V₁ inst✝ : Module.Free K V₁ cnd : lift (Module.rank K V) = lift (Module.rank K V') fst✝¹ : Type v B : Basis fst✝¹ K V fst✝ : Type v' B' : Basis fst✝ K V' ⊢ Nonempty (V ≃ₗ[K] V') [PROOFSTEP] have : Cardinal.lift.{v', v} #_ = Cardinal.lift.{v, v'} #_ := by rw [B.mk_eq_rank'', cnd, B'.mk_eq_rank''] [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝¹⁰ : Ring K inst✝⁹ : StrongRankCondition K inst✝⁸ : AddCommGroup V inst✝⁷ : Module K V inst✝⁶ : Module.Free K V inst✝⁵ : AddCommGroup V' inst✝⁴ : Module K V' inst✝³ : Module.Free K V' inst✝² : AddCommGroup V₁ inst✝¹ : Module K V₁ inst✝ : Module.Free K V₁ cnd : lift (Module.rank K V) = lift (Module.rank K V') fst✝¹ : Type v B : Basis fst✝¹ K V fst✝ : Type v' B' : Basis fst✝ K V' ⊢ lift #?m.460093 = lift #?m.460095 [PROOFSTEP] rw [B.mk_eq_rank'', cnd, B'.mk_eq_rank''] [GOAL] case intro.mk.intro.mk K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝¹⁰ : Ring K inst✝⁹ : StrongRankCondition K inst✝⁸ : AddCommGroup V inst✝⁷ : Module K V inst✝⁶ : Module.Free K V inst✝⁵ : AddCommGroup V' inst✝⁴ : Module K V' inst✝³ : Module.Free K V' inst✝² : AddCommGroup V₁ inst✝¹ : Module K V₁ inst✝ : Module.Free K V₁ cnd : lift (Module.rank K V) = lift (Module.rank K V') fst✝¹ : Type v B : Basis fst✝¹ K V fst✝ : Type v' B' : Basis fst✝ K V' this : lift #fst✝¹ = lift #fst✝ ⊢ Nonempty (V ≃ₗ[K] V') [PROOFSTEP] exact (Cardinal.lift_mk_eq.{v, v', 0}.1 this).map (B.equiv B') [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝¹⁰ : Ring K inst✝⁹ : StrongRankCondition K inst✝⁸ : AddCommGroup V inst✝⁷ : Module K V inst✝⁶ : Module.Free K V inst✝⁵ : AddCommGroup V' inst✝⁴ : Module K V' inst✝³ : Module.Free K V' inst✝² : AddCommGroup V₁ inst✝¹ : Module K V₁ inst✝ : Module.Free K V₁ ⊢ Module.rank K (V × V') = lift (Module.rank K V) + lift (Module.rank K V') [PROOFSTEP] simpa [rank_eq_card_chooseBasisIndex K V, rank_eq_card_chooseBasisIndex K V', lift_umax, lift_umax'] using ((chooseBasis K V).prod (chooseBasis K V')).mk_eq_rank.symm [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝¹⁰ : Ring K inst✝⁹ : StrongRankCondition K inst✝⁸ : AddCommGroup V inst✝⁷ : Module K V inst✝⁶ : Module.Free K V inst✝⁵ : AddCommGroup V' inst✝⁴ : Module K V' inst✝³ : Module.Free K V' inst✝² : AddCommGroup V₁ inst✝¹ : Module K V₁ inst✝ : Module.Free K V₁ ⊢ Module.rank K (V × V₁) = Module.rank K V + Module.rank K V₁ [PROOFSTEP] simp [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝¹⁴ : Ring K inst✝¹³ : StrongRankCondition K inst✝¹² : AddCommGroup V inst✝¹¹ : Module K V inst✝¹⁰ : Module.Free K V inst✝⁹ : AddCommGroup V' inst✝⁸ : Module K V' inst✝⁷ : Module.Free K V' inst✝⁶ : AddCommGroup V₁ inst✝⁵ : Module K V₁ inst✝⁴ : Module.Free K V₁ inst✝³ : (i : η) → AddCommGroup (φ i) inst✝² : (i : η) → Module K (φ i) inst✝¹ : ∀ (i : η), Module.Free K (φ i) inst✝ : Finite η ⊢ Module.rank K ((i : η) → φ i) = sum fun i => Module.rank K (φ i) [PROOFSTEP] cases nonempty_fintype η [GOAL] case intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝¹⁴ : Ring K inst✝¹³ : StrongRankCondition K inst✝¹² : AddCommGroup V inst✝¹¹ : Module K V inst✝¹⁰ : Module.Free K V inst✝⁹ : AddCommGroup V' inst✝⁸ : Module K V' inst✝⁷ : Module.Free K V' inst✝⁶ : AddCommGroup V₁ inst✝⁵ : Module K V₁ inst✝⁴ : Module.Free K V₁ inst✝³ : (i : η) → AddCommGroup (φ i) inst✝² : (i : η) → Module K (φ i) inst✝¹ : ∀ (i : η), Module.Free K (φ i) inst✝ : Finite η val✝ : Fintype η ⊢ Module.rank K ((i : η) → φ i) = sum fun i => Module.rank K (φ i) [PROOFSTEP] let B i := chooseBasis K (φ i) [GOAL] case intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝¹⁴ : Ring K inst✝¹³ : StrongRankCondition K inst✝¹² : AddCommGroup V inst✝¹¹ : Module K V inst✝¹⁰ : Module.Free K V inst✝⁹ : AddCommGroup V' inst✝⁸ : Module K V' inst✝⁷ : Module.Free K V' inst✝⁶ : AddCommGroup V₁ inst✝⁵ : Module K V₁ inst✝⁴ : Module.Free K V₁ inst✝³ : (i : η) → AddCommGroup (φ i) inst✝² : (i : η) → Module K (φ i) inst✝¹ : ∀ (i : η), Module.Free K (φ i) inst✝ : Finite η val✝ : Fintype η B : (i : η) → Basis (ChooseBasisIndex K (φ i)) K (φ i) := fun i => chooseBasis K (φ i) ⊢ Module.rank K ((i : η) → φ i) = sum fun i => Module.rank K (φ i) [PROOFSTEP] let b : Basis _ K (∀ i, φ i) := Pi.basis fun i => B i [GOAL] case intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝¹⁴ : Ring K inst✝¹³ : StrongRankCondition K inst✝¹² : AddCommGroup V inst✝¹¹ : Module K V inst✝¹⁰ : Module.Free K V inst✝⁹ : AddCommGroup V' inst✝⁸ : Module K V' inst✝⁷ : Module.Free K V' inst✝⁶ : AddCommGroup V₁ inst✝⁵ : Module K V₁ inst✝⁴ : Module.Free K V₁ inst✝³ : (i : η) → AddCommGroup (φ i) inst✝² : (i : η) → Module K (φ i) inst✝¹ : ∀ (i : η), Module.Free K (φ i) inst✝ : Finite η val✝ : Fintype η B : (i : η) → Basis (ChooseBasisIndex K (φ i)) K (φ i) := fun i => chooseBasis K (φ i) b : Basis ((j : η) × ChooseBasisIndex K (φ j)) K ((i : η) → φ i) := Pi.basis fun i => B i ⊢ Module.rank K ((i : η) → φ i) = sum fun i => Module.rank K (φ i) [PROOFSTEP] simp [← b.mk_eq_rank'', fun i => (B i).mk_eq_rank''] [GOAL] K : Type u V✝ V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η✝ : Type u₁' φ : η✝ → Type u_1 inst✝¹⁸ : Ring K inst✝¹⁷ : StrongRankCondition K inst✝¹⁶ : AddCommGroup V✝ inst✝¹⁵ : Module K V✝ inst✝¹⁴ : Module.Free K V✝ inst✝¹³ : AddCommGroup V' inst✝¹² : Module K V' inst✝¹¹ : Module.Free K V' inst✝¹⁰ : AddCommGroup V₁ inst✝⁹ : Module K V₁ inst✝⁸ : Module.Free K V₁ inst✝⁷ : (i : η✝) → AddCommGroup (φ i) inst✝⁶ : (i : η✝) → Module K (φ i) inst✝⁵ : ∀ (i : η✝), Module.Free K (φ i) inst✝⁴ : Fintype η✝ V η : Type u inst✝³ : Fintype η inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : Module.Free K V ⊢ Module.rank K (η → V) = ↑(Fintype.card η) * Module.rank K V [PROOFSTEP] rw [rank_pi, Cardinal.sum_const', Cardinal.mk_fintype] [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝¹⁴ : Ring K inst✝¹³ : StrongRankCondition K inst✝¹² : AddCommGroup V inst✝¹¹ : Module K V inst✝¹⁰ : Module.Free K V inst✝⁹ : AddCommGroup V' inst✝⁸ : Module K V' inst✝⁷ : Module.Free K V' inst✝⁶ : AddCommGroup V₁ inst✝⁵ : Module K V₁ inst✝⁴ : Module.Free K V₁ inst✝³ : (i : η) → AddCommGroup (φ i) inst✝² : (i : η) → Module K (φ i) inst✝¹ : ∀ (i : η), Module.Free K (φ i) inst✝ : Fintype η ⊢ Module.rank K (η → V) = ↑(Fintype.card η) * lift (Module.rank K V) [PROOFSTEP] rw [rank_pi, Cardinal.sum_const, Cardinal.mk_fintype, Cardinal.lift_natCast] [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝¹⁴ : Ring K inst✝¹³ : StrongRankCondition K inst✝¹² : AddCommGroup V inst✝¹¹ : Module K V inst✝¹⁰ : Module.Free K V inst✝⁹ : AddCommGroup V' inst✝⁸ : Module K V' inst✝⁷ : Module.Free K V' inst✝⁶ : AddCommGroup V₁ inst✝⁵ : Module K V₁ inst✝⁴ : Module.Free K V₁ inst✝³ : (i : η) → AddCommGroup (φ i) inst✝² : (i : η) → Module K (φ i) inst✝¹ : ∀ (i : η), Module.Free K (φ i) inst✝ : Fintype η ⊢ Module.rank K (η → K) = ↑(Fintype.card η) [PROOFSTEP] rw [rank_fun_eq_lift_mul, rank_self, Cardinal.lift_one, mul_one, Cardinal.natCast_inj] [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝¹⁴ : Ring K inst✝¹³ : StrongRankCondition K inst✝¹² : AddCommGroup V inst✝¹¹ : Module K V inst✝¹⁰ : Module.Free K V inst✝⁹ : AddCommGroup V' inst✝⁸ : Module K V' inst✝⁷ : Module.Free K V' inst✝⁶ : AddCommGroup V₁ inst✝⁵ : Module K V₁ inst✝⁴ : Module.Free K V₁ inst✝³ : (i : η) → AddCommGroup (φ i) inst✝² : (i : η) → Module K (φ i) inst✝¹ : ∀ (i : η), Module.Free K (φ i) inst✝ : Fintype η n : ℕ ⊢ Module.rank K (Fin n → K) = ↑n [PROOFSTEP] simp [rank_fun'] [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝¹⁰ : Ring K inst✝⁹ : StrongRankCondition K inst✝⁸ : AddCommGroup V inst✝⁷ : Module K V inst✝⁶ : Module.Free K V inst✝⁵ : AddCommGroup V' inst✝⁴ : Module K V' inst✝³ : Module.Free K V' inst✝² : AddCommGroup V₁ inst✝¹ : Module K V₁ inst✝ : Module.Free K V₁ n : ℕ hn : Module.rank K V = ↑n ⊢ V ≃ₗ[K] Fin n → K [PROOFSTEP] haveI := nontrivial_of_invariantBasisNumber K [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝¹⁰ : Ring K inst✝⁹ : StrongRankCondition K inst✝⁸ : AddCommGroup V inst✝⁷ : Module K V inst✝⁶ : Module.Free K V inst✝⁵ : AddCommGroup V' inst✝⁴ : Module K V' inst✝³ : Module.Free K V' inst✝² : AddCommGroup V₁ inst✝¹ : Module K V₁ inst✝ : Module.Free K V₁ n : ℕ hn : Module.rank K V = ↑n this : Nontrivial K ⊢ V ≃ₗ[K] Fin n → K [PROOFSTEP] have : Cardinal.lift.{u} (n : Cardinal.{v}) = Cardinal.lift.{v} (n : Cardinal.{u}) := by simp [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝¹⁰ : Ring K inst✝⁹ : StrongRankCondition K inst✝⁸ : AddCommGroup V inst✝⁷ : Module K V inst✝⁶ : Module.Free K V inst✝⁵ : AddCommGroup V' inst✝⁴ : Module K V' inst✝³ : Module.Free K V' inst✝² : AddCommGroup V₁ inst✝¹ : Module K V₁ inst✝ : Module.Free K V₁ n : ℕ hn : Module.rank K V = ↑n this : Nontrivial K ⊢ lift ↑n = lift ↑n [PROOFSTEP] simp [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝¹⁰ : Ring K inst✝⁹ : StrongRankCondition K inst✝⁸ : AddCommGroup V inst✝⁷ : Module K V inst✝⁶ : Module.Free K V inst✝⁵ : AddCommGroup V' inst✝⁴ : Module K V' inst✝³ : Module.Free K V' inst✝² : AddCommGroup V₁ inst✝¹ : Module K V₁ inst✝ : Module.Free K V₁ n : ℕ hn : Module.rank K V = ↑n this✝ : Nontrivial K this : lift ↑n = lift ↑n ⊢ V ≃ₗ[K] Fin n → K [PROOFSTEP] have hn := Cardinal.lift_inj.{v, u}.2 hn [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝¹⁰ : Ring K inst✝⁹ : StrongRankCondition K inst✝⁸ : AddCommGroup V inst✝⁷ : Module K V inst✝⁶ : Module.Free K V inst✝⁵ : AddCommGroup V' inst✝⁴ : Module K V' inst✝³ : Module.Free K V' inst✝² : AddCommGroup V₁ inst✝¹ : Module K V₁ inst✝ : Module.Free K V₁ n : ℕ hn✝ : Module.rank K V = ↑n this✝ : Nontrivial K this : lift ↑n = lift ↑n hn : lift (Module.rank K V) = lift ↑n ⊢ V ≃ₗ[K] Fin n → K [PROOFSTEP] rw [this] at hn [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝¹⁰ : Ring K inst✝⁹ : StrongRankCondition K inst✝⁸ : AddCommGroup V inst✝⁷ : Module K V inst✝⁶ : Module.Free K V inst✝⁵ : AddCommGroup V' inst✝⁴ : Module K V' inst✝³ : Module.Free K V' inst✝² : AddCommGroup V₁ inst✝¹ : Module K V₁ inst✝ : Module.Free K V₁ n : ℕ hn✝ : Module.rank K V = ↑n this✝ : Nontrivial K this : lift ↑n = lift ↑n hn : lift (Module.rank K V) = lift ↑n ⊢ V ≃ₗ[K] Fin n → K [PROOFSTEP] rw [← @rank_fin_fun K _ _ n] at hn [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝¹⁰ : Ring K inst✝⁹ : StrongRankCondition K inst✝⁸ : AddCommGroup V inst✝⁷ : Module K V inst✝⁶ : Module.Free K V inst✝⁵ : AddCommGroup V' inst✝⁴ : Module K V' inst✝³ : Module.Free K V' inst✝² : AddCommGroup V₁ inst✝¹ : Module K V₁ inst✝ : Module.Free K V₁ n : ℕ hn✝ : Module.rank K V = ↑n this✝ : Nontrivial K this : lift ↑n = lift ↑n hn : lift (Module.rank K V) = lift (Module.rank K (Fin n → K)) ⊢ V ≃ₗ[K] Fin n → K [PROOFSTEP] haveI : Module.Free K (Fin n → K) := Module.Free.pi _ _ [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝¹⁰ : Ring K inst✝⁹ : StrongRankCondition K inst✝⁸ : AddCommGroup V inst✝⁷ : Module K V inst✝⁶ : Module.Free K V inst✝⁵ : AddCommGroup V' inst✝⁴ : Module K V' inst✝³ : Module.Free K V' inst✝² : AddCommGroup V₁ inst✝¹ : Module K V₁ inst✝ : Module.Free K V₁ n : ℕ hn✝ : Module.rank K V = ↑n this✝¹ : Nontrivial K this✝ : lift ↑n = lift ↑n hn : lift (Module.rank K V) = lift (Module.rank K (Fin n → K)) this : Module.Free K (Fin n → K) ⊢ V ≃ₗ[K] Fin n → K [PROOFSTEP] exact Classical.choice (nonempty_linearEquiv_of_lift_rank_eq hn) [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V' inst✝² : Module K V' inst✝¹ : AddCommGroup V₁ inst✝ : Module K V₁ s : Set V ⊢ Module.rank K { x // x ∈ span K s } ≤ #↑s [PROOFSTEP] obtain ⟨b, hb, hsab, hlib⟩ := exists_linearIndependent K s [GOAL] case intro.intro.intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V' inst✝² : Module K V' inst✝¹ : AddCommGroup V₁ inst✝ : Module K V₁ s b : Set V hb : b ⊆ s hsab : span K b = span K s hlib : LinearIndependent K Subtype.val ⊢ Module.rank K { x // x ∈ span K s } ≤ #↑s [PROOFSTEP] convert Cardinal.mk_le_mk_of_subset hb [GOAL] case h.e'_3 K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V' inst✝² : Module K V' inst✝¹ : AddCommGroup V₁ inst✝ : Module K V₁ s b : Set V hb : b ⊆ s hsab : span K b = span K s hlib : LinearIndependent K Subtype.val ⊢ Module.rank K { x // x ∈ span K s } = #↑b [PROOFSTEP] rw [← hsab, rank_span_set hlib] [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V' inst✝² : Module K V' inst✝¹ : AddCommGroup V₁ inst✝ : Module K V₁ s : Finset V ⊢ #↑↑s = ↑(Finset.card s) [PROOFSTEP] rw [Finset.coe_sort_coe, Cardinal.mk_coe_finset] [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V' inst✝² : Module K V' inst✝¹ : AddCommGroup V₁ inst✝ : Module K V₁ p : Submodule K V ⊢ Module.rank K (V ⧸ p) + Module.rank K { x // x ∈ p } = Module.rank K V [PROOFSTEP] classical let ⟨f⟩ := quotient_prod_linearEquiv p exact rank_prod'.symm.trans f.rank_eq [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V' inst✝² : Module K V' inst✝¹ : AddCommGroup V₁ inst✝ : Module K V₁ p : Submodule K V ⊢ Module.rank K (V ⧸ p) + Module.rank K { x // x ∈ p } = Module.rank K V [PROOFSTEP] let ⟨f⟩ := quotient_prod_linearEquiv p [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V' inst✝² : Module K V' inst✝¹ : AddCommGroup V₁ inst✝ : Module K V₁ p : Submodule K V f : ((V ⧸ p) × { x // x ∈ p }) ≃ₗ[K] V ⊢ Module.rank K (V ⧸ p) + Module.rank K { x // x ∈ p } = Module.rank K V [PROOFSTEP] exact rank_prod'.symm.trans f.rank_eq [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V' inst✝² : Module K V' inst✝¹ : AddCommGroup V₁ inst✝ : Module K V₁ f : V →ₗ[K] V₁ ⊢ Module.rank K { x // x ∈ LinearMap.range f } + Module.rank K { x // x ∈ LinearMap.ker f } = Module.rank K V [PROOFSTEP] haveI := fun p : Submodule K V => Classical.decEq (V ⧸ p) [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V' inst✝² : Module K V' inst✝¹ : AddCommGroup V₁ inst✝ : Module K V₁ f : V →ₗ[K] V₁ this : (p : Submodule K V) → DecidableEq (V ⧸ p) ⊢ Module.rank K { x // x ∈ LinearMap.range f } + Module.rank K { x // x ∈ LinearMap.ker f } = Module.rank K V [PROOFSTEP] rw [← f.quotKerEquivRange.rank_eq, rank_quotient_add_rank] [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V' inst✝² : Module K V' inst✝¹ : AddCommGroup V₁ inst✝ : Module K V₁ f : V →ₗ[K] V₁ h : Surjective ↑f ⊢ Module.rank K V = Module.rank K V₁ + Module.rank K { x // x ∈ LinearMap.ker f } [PROOFSTEP] rw [← rank_range_add_rank_ker f, ← rank_range_of_surjective f h] [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V' inst✝² : Module K V' inst✝¹ : AddCommGroup V₁ inst✝ : Module K V₁ n : ℕ v : Fin n → V hv : LinearIndependent K v h : ↑n < Module.rank K V ⊢ ∃ x, LinearIndependent K (Fin.cons x v) [PROOFSTEP] have A : Submodule.span K (range v) ≠ ⊤ := by intro H rw [← rank_top, ← H] at h have : Module.rank K (Submodule.span K (range v)) ≤ n := by have := Cardinal.mk_range_le_lift (f := v) simp only [Cardinal.lift_id'] at this exact (rank_span_le _).trans (this.trans (by simp)) exact lt_irrefl _ (h.trans_le this) [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V' inst✝² : Module K V' inst✝¹ : AddCommGroup V₁ inst✝ : Module K V₁ n : ℕ v : Fin n → V hv : LinearIndependent K v h : ↑n < Module.rank K V ⊢ span K (range v) ≠ ⊤ [PROOFSTEP] intro H [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V' inst✝² : Module K V' inst✝¹ : AddCommGroup V₁ inst✝ : Module K V₁ n : ℕ v : Fin n → V hv : LinearIndependent K v h : ↑n < Module.rank K V H : span K (range v) = ⊤ ⊢ False [PROOFSTEP] rw [← rank_top, ← H] at h [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V' inst✝² : Module K V' inst✝¹ : AddCommGroup V₁ inst✝ : Module K V₁ n : ℕ v : Fin n → V hv : LinearIndependent K v h : ↑n < Module.rank K { x // x ∈ span K (range v) } H : span K (range v) = ⊤ ⊢ False [PROOFSTEP] have : Module.rank K (Submodule.span K (range v)) ≤ n := by have := Cardinal.mk_range_le_lift (f := v) simp only [Cardinal.lift_id'] at this exact (rank_span_le _).trans (this.trans (by simp)) [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V' inst✝² : Module K V' inst✝¹ : AddCommGroup V₁ inst✝ : Module K V₁ n : ℕ v : Fin n → V hv : LinearIndependent K v h : ↑n < Module.rank K { x // x ∈ span K (range v) } H : span K (range v) = ⊤ ⊢ Module.rank K { x // x ∈ span K (range v) } ≤ ↑n [PROOFSTEP] have := Cardinal.mk_range_le_lift (f := v) [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V' inst✝² : Module K V' inst✝¹ : AddCommGroup V₁ inst✝ : Module K V₁ n : ℕ v : Fin n → V hv : LinearIndependent K v h : ↑n < Module.rank K { x // x ∈ span K (range v) } H : span K (range v) = ⊤ this : lift #↑(range v) ≤ lift #(Fin n) ⊢ Module.rank K { x // x ∈ span K (range v) } ≤ ↑n [PROOFSTEP] simp only [Cardinal.lift_id'] at this [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V' inst✝² : Module K V' inst✝¹ : AddCommGroup V₁ inst✝ : Module K V₁ n : ℕ v : Fin n → V hv : LinearIndependent K v h : ↑n < Module.rank K { x // x ∈ span K (range v) } H : span K (range v) = ⊤ this : #↑(range v) ≤ lift #(Fin n) ⊢ Module.rank K { x // x ∈ span K (range v) } ≤ ↑n [PROOFSTEP] exact (rank_span_le _).trans (this.trans (by simp)) [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V' inst✝² : Module K V' inst✝¹ : AddCommGroup V₁ inst✝ : Module K V₁ n : ℕ v : Fin n → V hv : LinearIndependent K v h : ↑n < Module.rank K { x // x ∈ span K (range v) } H : span K (range v) = ⊤ this : #↑(range v) ≤ lift #(Fin n) ⊢ lift #(Fin n) ≤ ↑n [PROOFSTEP] simp [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V' inst✝² : Module K V' inst✝¹ : AddCommGroup V₁ inst✝ : Module K V₁ n : ℕ v : Fin n → V hv : LinearIndependent K v h : ↑n < Module.rank K { x // x ∈ span K (range v) } H : span K (range v) = ⊤ this : Module.rank K { x // x ∈ span K (range v) } ≤ ↑n ⊢ False [PROOFSTEP] exact lt_irrefl _ (h.trans_le this) [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V' inst✝² : Module K V' inst✝¹ : AddCommGroup V₁ inst✝ : Module K V₁ n : ℕ v : Fin n → V hv : LinearIndependent K v h : ↑n < Module.rank K V A : span K (range v) ≠ ⊤ ⊢ ∃ x, LinearIndependent K (Fin.cons x v) [PROOFSTEP] obtain ⟨x, hx⟩ : ∃ x, x ∉ Submodule.span K (range v) := by contrapose! A exact Iff.mpr Submodule.eq_top_iff' A [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V' inst✝² : Module K V' inst✝¹ : AddCommGroup V₁ inst✝ : Module K V₁ n : ℕ v : Fin n → V hv : LinearIndependent K v h : ↑n < Module.rank K V A : span K (range v) ≠ ⊤ ⊢ ∃ x, ¬x ∈ span K (range v) [PROOFSTEP] contrapose! A [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V' inst✝² : Module K V' inst✝¹ : AddCommGroup V₁ inst✝ : Module K V₁ n : ℕ v : Fin n → V hv : LinearIndependent K v h : ↑n < Module.rank K V A : ∀ (x : V), x ∈ span K (range v) ⊢ span K (range v) = ⊤ [PROOFSTEP] exact Iff.mpr Submodule.eq_top_iff' A [GOAL] case intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V' inst✝² : Module K V' inst✝¹ : AddCommGroup V₁ inst✝ : Module K V₁ n : ℕ v : Fin n → V hv : LinearIndependent K v h : ↑n < Module.rank K V A : span K (range v) ≠ ⊤ x : V hx : ¬x ∈ span K (range v) ⊢ ∃ x, LinearIndependent K (Fin.cons x v) [PROOFSTEP] exact ⟨x, linearIndependent_fin_cons.2 ⟨hv, hx⟩⟩ [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V' inst✝² : Module K V' inst✝¹ : AddCommGroup V₁ inst✝ : Module K V₁ n : ℕ v : Fin n → V hv : LinearIndependent K v h : ↑n < Module.rank K V ⊢ ∃ x, LinearIndependent K (Fin.snoc v x) [PROOFSTEP] simpa [linearIndependent_fin_cons, ← linearIndependent_fin_snoc] using exists_linear_independent_cons_of_lt_rank hv h [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V' inst✝² : Module K V' inst✝¹ : AddCommGroup V₁ inst✝ : Module K V₁ h : 1 < Module.rank K V x : V hx : x ≠ 0 ⊢ ∃ y, LinearIndependent K ![x, y] [PROOFSTEP] obtain ⟨y, hy⟩ := exists_linear_independent_snoc_of_lt_rank (linearIndependent_unique ![x] hx) h [GOAL] case intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V' inst✝² : Module K V' inst✝¹ : AddCommGroup V₁ inst✝ : Module K V₁ h : 1 < Module.rank K V x : V hx : x ≠ 0 y : V hy : LinearIndependent K (Fin.snoc ![x] y) ⊢ ∃ y, LinearIndependent K ![x, y] [PROOFSTEP] have : Fin.snoc ![x] y = ![x, y] := Iff.mp List.ofFn_inj rfl [GOAL] case intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V' inst✝² : Module K V' inst✝¹ : AddCommGroup V₁ inst✝ : Module K V₁ h : 1 < Module.rank K V x : V hx : x ≠ 0 y : V hy : LinearIndependent K (Fin.snoc ![x] y) this : Fin.snoc ![x] y = ![x, y] ⊢ ∃ y, LinearIndependent K ![x, y] [PROOFSTEP] rw [this] at hy [GOAL] case intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V' inst✝² : Module K V' inst✝¹ : AddCommGroup V₁ inst✝ : Module K V₁ h : 1 < Module.rank K V x : V hx : x ≠ 0 y : V hy : LinearIndependent K ![x, y] this : Fin.snoc ![x] y = ![x, y] ⊢ ∃ y, LinearIndependent K ![x, y] [PROOFSTEP] exact ⟨y, hy⟩ [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝¹⁰ : DivisionRing K inst✝⁹ : AddCommGroup V inst✝⁸ : Module K V inst✝⁷ : AddCommGroup V' inst✝⁶ : Module K V' inst✝⁵ : AddCommGroup V₁ inst✝⁴ : Module K V₁ inst✝³ : AddCommGroup V₂ inst✝² : Module K V₂ inst✝¹ : AddCommGroup V₃ inst✝ : Module K V₃ db : V₂ →ₗ[K] V eb : V₃ →ₗ[K] V cd : V₁ →ₗ[K] V₂ ce : V₁ →ₗ[K] V₃ hde : ⊤ ≤ LinearMap.range db ⊔ LinearMap.range eb hgd : ker cd = ⊥ eq : LinearMap.comp db cd = LinearMap.comp eb ce eq₂ : ∀ (d : V₂) (e : V₃), ↑db d = ↑eb e → ∃ c, ↑cd c = d ∧ ↑ce c = e ⊢ Module.rank K V + Module.rank K V₁ = Module.rank K V₂ + Module.rank K V₃ [PROOFSTEP] have hf : Surjective (coprod db eb) := by rwa [← range_eq_top, range_coprod, eq_top_iff] [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝¹⁰ : DivisionRing K inst✝⁹ : AddCommGroup V inst✝⁸ : Module K V inst✝⁷ : AddCommGroup V' inst✝⁶ : Module K V' inst✝⁵ : AddCommGroup V₁ inst✝⁴ : Module K V₁ inst✝³ : AddCommGroup V₂ inst✝² : Module K V₂ inst✝¹ : AddCommGroup V₃ inst✝ : Module K V₃ db : V₂ →ₗ[K] V eb : V₃ →ₗ[K] V cd : V₁ →ₗ[K] V₂ ce : V₁ →ₗ[K] V₃ hde : ⊤ ≤ LinearMap.range db ⊔ LinearMap.range eb hgd : ker cd = ⊥ eq : LinearMap.comp db cd = LinearMap.comp eb ce eq₂ : ∀ (d : V₂) (e : V₃), ↑db d = ↑eb e → ∃ c, ↑cd c = d ∧ ↑ce c = e ⊢ Surjective ↑(coprod db eb) [PROOFSTEP] rwa [← range_eq_top, range_coprod, eq_top_iff] [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝¹⁰ : DivisionRing K inst✝⁹ : AddCommGroup V inst✝⁸ : Module K V inst✝⁷ : AddCommGroup V' inst✝⁶ : Module K V' inst✝⁵ : AddCommGroup V₁ inst✝⁴ : Module K V₁ inst✝³ : AddCommGroup V₂ inst✝² : Module K V₂ inst✝¹ : AddCommGroup V₃ inst✝ : Module K V₃ db : V₂ →ₗ[K] V eb : V₃ →ₗ[K] V cd : V₁ →ₗ[K] V₂ ce : V₁ →ₗ[K] V₃ hde : ⊤ ≤ LinearMap.range db ⊔ LinearMap.range eb hgd : ker cd = ⊥ eq : LinearMap.comp db cd = LinearMap.comp eb ce eq₂ : ∀ (d : V₂) (e : V₃), ↑db d = ↑eb e → ∃ c, ↑cd c = d ∧ ↑ce c = e hf : Surjective ↑(coprod db eb) ⊢ Module.rank K V + Module.rank K V₁ = Module.rank K V₂ + Module.rank K V₃ [PROOFSTEP] conv => rhs rw [← rank_prod', rank_eq_of_surjective _ hf] [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝¹⁰ : DivisionRing K inst✝⁹ : AddCommGroup V inst✝⁸ : Module K V inst✝⁷ : AddCommGroup V' inst✝⁶ : Module K V' inst✝⁵ : AddCommGroup V₁ inst✝⁴ : Module K V₁ inst✝³ : AddCommGroup V₂ inst✝² : Module K V₂ inst✝¹ : AddCommGroup V₃ inst✝ : Module K V₃ db : V₂ →ₗ[K] V eb : V₃ →ₗ[K] V cd : V₁ →ₗ[K] V₂ ce : V₁ →ₗ[K] V₃ hde : ⊤ ≤ LinearMap.range db ⊔ LinearMap.range eb hgd : ker cd = ⊥ eq : LinearMap.comp db cd = LinearMap.comp eb ce eq₂ : ∀ (d : V₂) (e : V₃), ↑db d = ↑eb e → ∃ c, ↑cd c = d ∧ ↑ce c = e hf : Surjective ↑(coprod db eb) | Module.rank K V + Module.rank K V₁ = Module.rank K V₂ + Module.rank K V₃ [PROOFSTEP] rhs rw [← rank_prod', rank_eq_of_surjective _ hf] [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝¹⁰ : DivisionRing K inst✝⁹ : AddCommGroup V inst✝⁸ : Module K V inst✝⁷ : AddCommGroup V' inst✝⁶ : Module K V' inst✝⁵ : AddCommGroup V₁ inst✝⁴ : Module K V₁ inst✝³ : AddCommGroup V₂ inst✝² : Module K V₂ inst✝¹ : AddCommGroup V₃ inst✝ : Module K V₃ db : V₂ →ₗ[K] V eb : V₃ →ₗ[K] V cd : V₁ →ₗ[K] V₂ ce : V₁ →ₗ[K] V₃ hde : ⊤ ≤ LinearMap.range db ⊔ LinearMap.range eb hgd : ker cd = ⊥ eq : LinearMap.comp db cd = LinearMap.comp eb ce eq₂ : ∀ (d : V₂) (e : V₃), ↑db d = ↑eb e → ∃ c, ↑cd c = d ∧ ↑ce c = e hf : Surjective ↑(coprod db eb) | Module.rank K V + Module.rank K V₁ = Module.rank K V₂ + Module.rank K V₃ [PROOFSTEP] rhs rw [← rank_prod', rank_eq_of_surjective _ hf] [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝¹⁰ : DivisionRing K inst✝⁹ : AddCommGroup V inst✝⁸ : Module K V inst✝⁷ : AddCommGroup V' inst✝⁶ : Module K V' inst✝⁵ : AddCommGroup V₁ inst✝⁴ : Module K V₁ inst✝³ : AddCommGroup V₂ inst✝² : Module K V₂ inst✝¹ : AddCommGroup V₃ inst✝ : Module K V₃ db : V₂ →ₗ[K] V eb : V₃ →ₗ[K] V cd : V₁ →ₗ[K] V₂ ce : V₁ →ₗ[K] V₃ hde : ⊤ ≤ LinearMap.range db ⊔ LinearMap.range eb hgd : ker cd = ⊥ eq : LinearMap.comp db cd = LinearMap.comp eb ce eq₂ : ∀ (d : V₂) (e : V₃), ↑db d = ↑eb e → ∃ c, ↑cd c = d ∧ ↑ce c = e hf : Surjective ↑(coprod db eb) | Module.rank K V + Module.rank K V₁ = Module.rank K V₂ + Module.rank K V₃ [PROOFSTEP] rhs [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝¹⁰ : DivisionRing K inst✝⁹ : AddCommGroup V inst✝⁸ : Module K V inst✝⁷ : AddCommGroup V' inst✝⁶ : Module K V' inst✝⁵ : AddCommGroup V₁ inst✝⁴ : Module K V₁ inst✝³ : AddCommGroup V₂ inst✝² : Module K V₂ inst✝¹ : AddCommGroup V₃ inst✝ : Module K V₃ db : V₂ →ₗ[K] V eb : V₃ →ₗ[K] V cd : V₁ →ₗ[K] V₂ ce : V₁ →ₗ[K] V₃ hde : ⊤ ≤ LinearMap.range db ⊔ LinearMap.range eb hgd : ker cd = ⊥ eq : LinearMap.comp db cd = LinearMap.comp eb ce eq₂ : ∀ (d : V₂) (e : V₃), ↑db d = ↑eb e → ∃ c, ↑cd c = d ∧ ↑ce c = e hf : Surjective ↑(coprod db eb) | Module.rank K V₂ + Module.rank K V₃ [PROOFSTEP] rw [← rank_prod', rank_eq_of_surjective _ hf] [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝¹⁰ : DivisionRing K inst✝⁹ : AddCommGroup V inst✝⁸ : Module K V inst✝⁷ : AddCommGroup V' inst✝⁶ : Module K V' inst✝⁵ : AddCommGroup V₁ inst✝⁴ : Module K V₁ inst✝³ : AddCommGroup V₂ inst✝² : Module K V₂ inst✝¹ : AddCommGroup V₃ inst✝ : Module K V₃ db : V₂ →ₗ[K] V eb : V₃ →ₗ[K] V cd : V₁ →ₗ[K] V₂ ce : V₁ →ₗ[K] V₃ hde : ⊤ ≤ LinearMap.range db ⊔ LinearMap.range eb hgd : ker cd = ⊥ eq : LinearMap.comp db cd = LinearMap.comp eb ce eq₂ : ∀ (d : V₂) (e : V₃), ↑db d = ↑eb e → ∃ c, ↑cd c = d ∧ ↑ce c = e hf : Surjective ↑(coprod db eb) ⊢ Module.rank K V + Module.rank K V₁ = Module.rank K V + Module.rank K { x // x ∈ ker (coprod db eb) } [PROOFSTEP] congr 1 [GOAL] case e_a K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝¹⁰ : DivisionRing K inst✝⁹ : AddCommGroup V inst✝⁸ : Module K V inst✝⁷ : AddCommGroup V' inst✝⁶ : Module K V' inst✝⁵ : AddCommGroup V₁ inst✝⁴ : Module K V₁ inst✝³ : AddCommGroup V₂ inst✝² : Module K V₂ inst✝¹ : AddCommGroup V₃ inst✝ : Module K V₃ db : V₂ →ₗ[K] V eb : V₃ →ₗ[K] V cd : V₁ →ₗ[K] V₂ ce : V₁ →ₗ[K] V₃ hde : ⊤ ≤ LinearMap.range db ⊔ LinearMap.range eb hgd : ker cd = ⊥ eq : LinearMap.comp db cd = LinearMap.comp eb ce eq₂ : ∀ (d : V₂) (e : V₃), ↑db d = ↑eb e → ∃ c, ↑cd c = d ∧ ↑ce c = e hf : Surjective ↑(coprod db eb) ⊢ Module.rank K V₁ = Module.rank K { x // x ∈ ker (coprod db eb) } [PROOFSTEP] apply LinearEquiv.rank_eq [GOAL] case e_a.f K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝¹⁰ : DivisionRing K inst✝⁹ : AddCommGroup V inst✝⁸ : Module K V inst✝⁷ : AddCommGroup V' inst✝⁶ : Module K V' inst✝⁵ : AddCommGroup V₁ inst✝⁴ : Module K V₁ inst✝³ : AddCommGroup V₂ inst✝² : Module K V₂ inst✝¹ : AddCommGroup V₃ inst✝ : Module K V₃ db : V₂ →ₗ[K] V eb : V₃ →ₗ[K] V cd : V₁ →ₗ[K] V₂ ce : V₁ →ₗ[K] V₃ hde : ⊤ ≤ LinearMap.range db ⊔ LinearMap.range eb hgd : ker cd = ⊥ eq : LinearMap.comp db cd = LinearMap.comp eb ce eq₂ : ∀ (d : V₂) (e : V₃), ↑db d = ↑eb e → ∃ c, ↑cd c = d ∧ ↑ce c = e hf : Surjective ↑(coprod db eb) ⊢ V₁ ≃ₗ[K] { x // x ∈ ker (coprod db eb) } [PROOFSTEP] let L : V₁ →ₗ[K] ker (coprod db eb) := by -- Porting note: this is needed to avoid a timeout refine' LinearMap.codRestrict _ (prod cd (-ce)) _ · intro c simp only [add_eq_zero_iff_eq_neg, LinearMap.prod_apply, mem_ker, Pi.prod, coprod_apply, neg_neg, map_neg, neg_apply] exact LinearMap.ext_iff.1 eq c [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝¹⁰ : DivisionRing K inst✝⁹ : AddCommGroup V inst✝⁸ : Module K V inst✝⁷ : AddCommGroup V' inst✝⁶ : Module K V' inst✝⁵ : AddCommGroup V₁ inst✝⁴ : Module K V₁ inst✝³ : AddCommGroup V₂ inst✝² : Module K V₂ inst✝¹ : AddCommGroup V₃ inst✝ : Module K V₃ db : V₂ →ₗ[K] V eb : V₃ →ₗ[K] V cd : V₁ →ₗ[K] V₂ ce : V₁ →ₗ[K] V₃ hde : ⊤ ≤ LinearMap.range db ⊔ LinearMap.range eb hgd : ker cd = ⊥ eq : LinearMap.comp db cd = LinearMap.comp eb ce eq₂ : ∀ (d : V₂) (e : V₃), ↑db d = ↑eb e → ∃ c, ↑cd c = d ∧ ↑ce c = e hf : Surjective ↑(coprod db eb) ⊢ V₁ →ₗ[K] { x // x ∈ ker (coprod db eb) } [PROOFSTEP] refine' LinearMap.codRestrict _ (prod cd (-ce)) _ [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝¹⁰ : DivisionRing K inst✝⁹ : AddCommGroup V inst✝⁸ : Module K V inst✝⁷ : AddCommGroup V' inst✝⁶ : Module K V' inst✝⁵ : AddCommGroup V₁ inst✝⁴ : Module K V₁ inst✝³ : AddCommGroup V₂ inst✝² : Module K V₂ inst✝¹ : AddCommGroup V₃ inst✝ : Module K V₃ db : V₂ →ₗ[K] V eb : V₃ →ₗ[K] V cd : V₁ →ₗ[K] V₂ ce : V₁ →ₗ[K] V₃ hde : ⊤ ≤ LinearMap.range db ⊔ LinearMap.range eb hgd : ker cd = ⊥ eq : LinearMap.comp db cd = LinearMap.comp eb ce eq₂ : ∀ (d : V₂) (e : V₃), ↑db d = ↑eb e → ∃ c, ↑cd c = d ∧ ↑ce c = e hf : Surjective ↑(coprod db eb) ⊢ ∀ (c : V₁), ↑(LinearMap.prod cd (-ce)) c ∈ ker (coprod db eb) [PROOFSTEP] intro c [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝¹⁰ : DivisionRing K inst✝⁹ : AddCommGroup V inst✝⁸ : Module K V inst✝⁷ : AddCommGroup V' inst✝⁶ : Module K V' inst✝⁵ : AddCommGroup V₁ inst✝⁴ : Module K V₁ inst✝³ : AddCommGroup V₂ inst✝² : Module K V₂ inst✝¹ : AddCommGroup V₃ inst✝ : Module K V₃ db : V₂ →ₗ[K] V eb : V₃ →ₗ[K] V cd : V₁ →ₗ[K] V₂ ce : V₁ →ₗ[K] V₃ hde : ⊤ ≤ LinearMap.range db ⊔ LinearMap.range eb hgd : ker cd = ⊥ eq : LinearMap.comp db cd = LinearMap.comp eb ce eq₂ : ∀ (d : V₂) (e : V₃), ↑db d = ↑eb e → ∃ c, ↑cd c = d ∧ ↑ce c = e hf : Surjective ↑(coprod db eb) c : V₁ ⊢ ↑(LinearMap.prod cd (-ce)) c ∈ ker (coprod db eb) [PROOFSTEP] simp only [add_eq_zero_iff_eq_neg, LinearMap.prod_apply, mem_ker, Pi.prod, coprod_apply, neg_neg, map_neg, neg_apply] [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝¹⁰ : DivisionRing K inst✝⁹ : AddCommGroup V inst✝⁸ : Module K V inst✝⁷ : AddCommGroup V' inst✝⁶ : Module K V' inst✝⁵ : AddCommGroup V₁ inst✝⁴ : Module K V₁ inst✝³ : AddCommGroup V₂ inst✝² : Module K V₂ inst✝¹ : AddCommGroup V₃ inst✝ : Module K V₃ db : V₂ →ₗ[K] V eb : V₃ →ₗ[K] V cd : V₁ →ₗ[K] V₂ ce : V₁ →ₗ[K] V₃ hde : ⊤ ≤ LinearMap.range db ⊔ LinearMap.range eb hgd : ker cd = ⊥ eq : LinearMap.comp db cd = LinearMap.comp eb ce eq₂ : ∀ (d : V₂) (e : V₃), ↑db d = ↑eb e → ∃ c, ↑cd c = d ∧ ↑ce c = e hf : Surjective ↑(coprod db eb) c : V₁ ⊢ ↑db (↑cd c) = ↑eb (↑ce c) [PROOFSTEP] exact LinearMap.ext_iff.1 eq c [GOAL] case e_a.f K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝¹⁰ : DivisionRing K inst✝⁹ : AddCommGroup V inst✝⁸ : Module K V inst✝⁷ : AddCommGroup V' inst✝⁶ : Module K V' inst✝⁵ : AddCommGroup V₁ inst✝⁴ : Module K V₁ inst✝³ : AddCommGroup V₂ inst✝² : Module K V₂ inst✝¹ : AddCommGroup V₃ inst✝ : Module K V₃ db : V₂ →ₗ[K] V eb : V₃ →ₗ[K] V cd : V₁ →ₗ[K] V₂ ce : V₁ →ₗ[K] V₃ hde : ⊤ ≤ LinearMap.range db ⊔ LinearMap.range eb hgd : ker cd = ⊥ eq : LinearMap.comp db cd = LinearMap.comp eb ce eq₂ : ∀ (d : V₂) (e : V₃), ↑db d = ↑eb e → ∃ c, ↑cd c = d ∧ ↑ce c = e hf : Surjective ↑(coprod db eb) L : V₁ →ₗ[K] { x // x ∈ ker (coprod db eb) } := LinearMap.codRestrict (ker (coprod db eb)) (LinearMap.prod cd (-ce)) (_ : ∀ (c : V₁), ↑(LinearMap.prod cd (-ce)) c ∈ ker (coprod db eb)) ⊢ V₁ ≃ₗ[K] { x // x ∈ ker (coprod db eb) } [PROOFSTEP] refine' LinearEquiv.ofBijective L ⟨_, _⟩ [GOAL] case e_a.f.refine'_1 K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝¹⁰ : DivisionRing K inst✝⁹ : AddCommGroup V inst✝⁸ : Module K V inst✝⁷ : AddCommGroup V' inst✝⁶ : Module K V' inst✝⁵ : AddCommGroup V₁ inst✝⁴ : Module K V₁ inst✝³ : AddCommGroup V₂ inst✝² : Module K V₂ inst✝¹ : AddCommGroup V₃ inst✝ : Module K V₃ db : V₂ →ₗ[K] V eb : V₃ →ₗ[K] V cd : V₁ →ₗ[K] V₂ ce : V₁ →ₗ[K] V₃ hde : ⊤ ≤ LinearMap.range db ⊔ LinearMap.range eb hgd : ker cd = ⊥ eq : LinearMap.comp db cd = LinearMap.comp eb ce eq₂ : ∀ (d : V₂) (e : V₃), ↑db d = ↑eb e → ∃ c, ↑cd c = d ∧ ↑ce c = e hf : Surjective ↑(coprod db eb) L : V₁ →ₗ[K] { x // x ∈ ker (coprod db eb) } := LinearMap.codRestrict (ker (coprod db eb)) (LinearMap.prod cd (-ce)) (_ : ∀ (c : V₁), ↑(LinearMap.prod cd (-ce)) c ∈ ker (coprod db eb)) ⊢ Injective ↑L [PROOFSTEP] rw [← ker_eq_bot, ker_codRestrict, ker_prod, hgd, bot_inf_eq] [GOAL] case e_a.f.refine'_2 K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝¹⁰ : DivisionRing K inst✝⁹ : AddCommGroup V inst✝⁸ : Module K V inst✝⁷ : AddCommGroup V' inst✝⁶ : Module K V' inst✝⁵ : AddCommGroup V₁ inst✝⁴ : Module K V₁ inst✝³ : AddCommGroup V₂ inst✝² : Module K V₂ inst✝¹ : AddCommGroup V₃ inst✝ : Module K V₃ db : V₂ →ₗ[K] V eb : V₃ →ₗ[K] V cd : V₁ →ₗ[K] V₂ ce : V₁ →ₗ[K] V₃ hde : ⊤ ≤ LinearMap.range db ⊔ LinearMap.range eb hgd : ker cd = ⊥ eq : LinearMap.comp db cd = LinearMap.comp eb ce eq₂ : ∀ (d : V₂) (e : V₃), ↑db d = ↑eb e → ∃ c, ↑cd c = d ∧ ↑ce c = e hf : Surjective ↑(coprod db eb) L : V₁ →ₗ[K] { x // x ∈ ker (coprod db eb) } := LinearMap.codRestrict (ker (coprod db eb)) (LinearMap.prod cd (-ce)) (_ : ∀ (c : V₁), ↑(LinearMap.prod cd (-ce)) c ∈ ker (coprod db eb)) ⊢ Surjective ↑L [PROOFSTEP] rw [← range_eq_top, eq_top_iff, range_codRestrict, ← map_le_iff_le_comap, Submodule.map_top, range_subtype] [GOAL] case e_a.f.refine'_2 K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝¹⁰ : DivisionRing K inst✝⁹ : AddCommGroup V inst✝⁸ : Module K V inst✝⁷ : AddCommGroup V' inst✝⁶ : Module K V' inst✝⁵ : AddCommGroup V₁ inst✝⁴ : Module K V₁ inst✝³ : AddCommGroup V₂ inst✝² : Module K V₂ inst✝¹ : AddCommGroup V₃ inst✝ : Module K V₃ db : V₂ →ₗ[K] V eb : V₃ →ₗ[K] V cd : V₁ →ₗ[K] V₂ ce : V₁ →ₗ[K] V₃ hde : ⊤ ≤ LinearMap.range db ⊔ LinearMap.range eb hgd : ker cd = ⊥ eq : LinearMap.comp db cd = LinearMap.comp eb ce eq₂ : ∀ (d : V₂) (e : V₃), ↑db d = ↑eb e → ∃ c, ↑cd c = d ∧ ↑ce c = e hf : Surjective ↑(coprod db eb) L : V₁ →ₗ[K] { x // x ∈ ker (coprod db eb) } := LinearMap.codRestrict (ker (coprod db eb)) (LinearMap.prod cd (-ce)) (_ : ∀ (c : V₁), ↑(LinearMap.prod cd (-ce)) c ∈ ker (coprod db eb)) ⊢ ker (coprod db eb) ≤ LinearMap.range (LinearMap.prod cd (-ce)) [PROOFSTEP] rintro ⟨d, e⟩ [GOAL] case e_a.f.refine'_2.mk K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝¹⁰ : DivisionRing K inst✝⁹ : AddCommGroup V inst✝⁸ : Module K V inst✝⁷ : AddCommGroup V' inst✝⁶ : Module K V' inst✝⁵ : AddCommGroup V₁ inst✝⁴ : Module K V₁ inst✝³ : AddCommGroup V₂ inst✝² : Module K V₂ inst✝¹ : AddCommGroup V₃ inst✝ : Module K V₃ db : V₂ →ₗ[K] V eb : V₃ →ₗ[K] V cd : V₁ →ₗ[K] V₂ ce : V₁ →ₗ[K] V₃ hde : ⊤ ≤ LinearMap.range db ⊔ LinearMap.range eb hgd : ker cd = ⊥ eq : LinearMap.comp db cd = LinearMap.comp eb ce eq₂ : ∀ (d : V₂) (e : V₃), ↑db d = ↑eb e → ∃ c, ↑cd c = d ∧ ↑ce c = e hf : Surjective ↑(coprod db eb) L : V₁ →ₗ[K] { x // x ∈ ker (coprod db eb) } := LinearMap.codRestrict (ker (coprod db eb)) (LinearMap.prod cd (-ce)) (_ : ∀ (c : V₁), ↑(LinearMap.prod cd (-ce)) c ∈ ker (coprod db eb)) d : V₂ e : V₃ ⊢ (d, e) ∈ ker (coprod db eb) → (d, e) ∈ LinearMap.range (LinearMap.prod cd (-ce)) [PROOFSTEP] have h := eq₂ d (-e) [GOAL] case e_a.f.refine'_2.mk K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝¹⁰ : DivisionRing K inst✝⁹ : AddCommGroup V inst✝⁸ : Module K V inst✝⁷ : AddCommGroup V' inst✝⁶ : Module K V' inst✝⁵ : AddCommGroup V₁ inst✝⁴ : Module K V₁ inst✝³ : AddCommGroup V₂ inst✝² : Module K V₂ inst✝¹ : AddCommGroup V₃ inst✝ : Module K V₃ db : V₂ →ₗ[K] V eb : V₃ →ₗ[K] V cd : V₁ →ₗ[K] V₂ ce : V₁ →ₗ[K] V₃ hde : ⊤ ≤ LinearMap.range db ⊔ LinearMap.range eb hgd : ker cd = ⊥ eq : LinearMap.comp db cd = LinearMap.comp eb ce eq₂ : ∀ (d : V₂) (e : V₃), ↑db d = ↑eb e → ∃ c, ↑cd c = d ∧ ↑ce c = e hf : Surjective ↑(coprod db eb) L : V₁ →ₗ[K] { x // x ∈ ker (coprod db eb) } := LinearMap.codRestrict (ker (coprod db eb)) (LinearMap.prod cd (-ce)) (_ : ∀ (c : V₁), ↑(LinearMap.prod cd (-ce)) c ∈ ker (coprod db eb)) d : V₂ e : V₃ h : ↑db d = ↑eb (-e) → ∃ c, ↑cd c = d ∧ ↑ce c = -e ⊢ (d, e) ∈ ker (coprod db eb) → (d, e) ∈ LinearMap.range (LinearMap.prod cd (-ce)) [PROOFSTEP] simp only [add_eq_zero_iff_eq_neg, LinearMap.prod_apply, mem_ker, SetLike.mem_coe, Prod.mk.inj_iff, coprod_apply, map_neg, neg_apply, LinearMap.mem_range, Pi.prod] at h ⊢ [GOAL] case e_a.f.refine'_2.mk K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝¹⁰ : DivisionRing K inst✝⁹ : AddCommGroup V inst✝⁸ : Module K V inst✝⁷ : AddCommGroup V' inst✝⁶ : Module K V' inst✝⁵ : AddCommGroup V₁ inst✝⁴ : Module K V₁ inst✝³ : AddCommGroup V₂ inst✝² : Module K V₂ inst✝¹ : AddCommGroup V₃ inst✝ : Module K V₃ db : V₂ →ₗ[K] V eb : V₃ →ₗ[K] V cd : V₁ →ₗ[K] V₂ ce : V₁ →ₗ[K] V₃ hde : ⊤ ≤ LinearMap.range db ⊔ LinearMap.range eb hgd : ker cd = ⊥ eq : LinearMap.comp db cd = LinearMap.comp eb ce eq₂ : ∀ (d : V₂) (e : V₃), ↑db d = ↑eb e → ∃ c, ↑cd c = d ∧ ↑ce c = e hf : Surjective ↑(coprod db eb) L : V₁ →ₗ[K] { x // x ∈ ker (coprod db eb) } := LinearMap.codRestrict (ker (coprod db eb)) (LinearMap.prod cd (-ce)) (_ : ∀ (c : V₁), ↑(LinearMap.prod cd (-ce)) c ∈ ker (coprod db eb)) d : V₂ e : V₃ h : ↑db d = -↑eb e → ∃ c, ↑cd c = d ∧ ↑ce c = -e ⊢ ↑db d = -↑eb e → ∃ y, ↑cd y = d ∧ -↑ce y = e [PROOFSTEP] intro hde [GOAL] case e_a.f.refine'_2.mk K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝¹⁰ : DivisionRing K inst✝⁹ : AddCommGroup V inst✝⁸ : Module K V inst✝⁷ : AddCommGroup V' inst✝⁶ : Module K V' inst✝⁵ : AddCommGroup V₁ inst✝⁴ : Module K V₁ inst✝³ : AddCommGroup V₂ inst✝² : Module K V₂ inst✝¹ : AddCommGroup V₃ inst✝ : Module K V₃ db : V₂ →ₗ[K] V eb : V₃ →ₗ[K] V cd : V₁ →ₗ[K] V₂ ce : V₁ →ₗ[K] V₃ hde✝ : ⊤ ≤ LinearMap.range db ⊔ LinearMap.range eb hgd : ker cd = ⊥ eq : LinearMap.comp db cd = LinearMap.comp eb ce eq₂ : ∀ (d : V₂) (e : V₃), ↑db d = ↑eb e → ∃ c, ↑cd c = d ∧ ↑ce c = e hf : Surjective ↑(coprod db eb) L : V₁ →ₗ[K] { x // x ∈ ker (coprod db eb) } := LinearMap.codRestrict (ker (coprod db eb)) (LinearMap.prod cd (-ce)) (_ : ∀ (c : V₁), ↑(LinearMap.prod cd (-ce)) c ∈ ker (coprod db eb)) d : V₂ e : V₃ h : ↑db d = -↑eb e → ∃ c, ↑cd c = d ∧ ↑ce c = -e hde : ↑db d = -↑eb e ⊢ ∃ y, ↑cd y = d ∧ -↑ce y = e [PROOFSTEP] rcases h hde with ⟨c, h₁, h₂⟩ [GOAL] case e_a.f.refine'_2.mk.intro.intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝¹⁰ : DivisionRing K inst✝⁹ : AddCommGroup V inst✝⁸ : Module K V inst✝⁷ : AddCommGroup V' inst✝⁶ : Module K V' inst✝⁵ : AddCommGroup V₁ inst✝⁴ : Module K V₁ inst✝³ : AddCommGroup V₂ inst✝² : Module K V₂ inst✝¹ : AddCommGroup V₃ inst✝ : Module K V₃ db : V₂ →ₗ[K] V eb : V₃ →ₗ[K] V cd : V₁ →ₗ[K] V₂ ce : V₁ →ₗ[K] V₃ hde✝ : ⊤ ≤ LinearMap.range db ⊔ LinearMap.range eb hgd : ker cd = ⊥ eq : LinearMap.comp db cd = LinearMap.comp eb ce eq₂ : ∀ (d : V₂) (e : V₃), ↑db d = ↑eb e → ∃ c, ↑cd c = d ∧ ↑ce c = e hf : Surjective ↑(coprod db eb) L : V₁ →ₗ[K] { x // x ∈ ker (coprod db eb) } := LinearMap.codRestrict (ker (coprod db eb)) (LinearMap.prod cd (-ce)) (_ : ∀ (c : V₁), ↑(LinearMap.prod cd (-ce)) c ∈ ker (coprod db eb)) d : V₂ e : V₃ h : ↑db d = -↑eb e → ∃ c, ↑cd c = d ∧ ↑ce c = -e hde : ↑db d = -↑eb e c : V₁ h₁ : ↑cd c = d h₂ : ↑ce c = -e ⊢ ∃ y, ↑cd y = d ∧ -↑ce y = e [PROOFSTEP] refine' ⟨c, h₁, _⟩ [GOAL] case e_a.f.refine'_2.mk.intro.intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝¹⁰ : DivisionRing K inst✝⁹ : AddCommGroup V inst✝⁸ : Module K V inst✝⁷ : AddCommGroup V' inst✝⁶ : Module K V' inst✝⁵ : AddCommGroup V₁ inst✝⁴ : Module K V₁ inst✝³ : AddCommGroup V₂ inst✝² : Module K V₂ inst✝¹ : AddCommGroup V₃ inst✝ : Module K V₃ db : V₂ →ₗ[K] V eb : V₃ →ₗ[K] V cd : V₁ →ₗ[K] V₂ ce : V₁ →ₗ[K] V₃ hde✝ : ⊤ ≤ LinearMap.range db ⊔ LinearMap.range eb hgd : ker cd = ⊥ eq : LinearMap.comp db cd = LinearMap.comp eb ce eq₂ : ∀ (d : V₂) (e : V₃), ↑db d = ↑eb e → ∃ c, ↑cd c = d ∧ ↑ce c = e hf : Surjective ↑(coprod db eb) L : V₁ →ₗ[K] { x // x ∈ ker (coprod db eb) } := LinearMap.codRestrict (ker (coprod db eb)) (LinearMap.prod cd (-ce)) (_ : ∀ (c : V₁), ↑(LinearMap.prod cd (-ce)) c ∈ ker (coprod db eb)) d : V₂ e : V₃ h : ↑db d = -↑eb e → ∃ c, ↑cd c = d ∧ ↑ce c = -e hde : ↑db d = -↑eb e c : V₁ h₁ : ↑cd c = d h₂ : ↑ce c = -e ⊢ -↑ce c = e [PROOFSTEP] rw [h₂, _root_.neg_neg] [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝¹⁰ : DivisionRing K inst✝⁹ : AddCommGroup V inst✝⁸ : Module K V inst✝⁷ : AddCommGroup V' inst✝⁶ : Module K V' inst✝⁵ : AddCommGroup V₁ inst✝⁴ : Module K V₁ inst✝³ : AddCommGroup V₂ inst✝² : Module K V₂ inst✝¹ : AddCommGroup V₃ inst✝ : Module K V₃ s t : Submodule K V ⊢ ⊤ ≤ LinearMap.range (ofLe (_ : s ≤ s ⊔ t)) ⊔ LinearMap.range (ofLe (_ : t ≤ s ⊔ t)) [PROOFSTEP] rw [← map_le_map_iff' (ker_subtype <| s ⊔ t), Submodule.map_sup, Submodule.map_top, ← LinearMap.range_comp, ← LinearMap.range_comp, subtype_comp_ofLe, subtype_comp_ofLe, range_subtype, range_subtype, range_subtype] [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝¹⁰ : DivisionRing K inst✝⁹ : AddCommGroup V inst✝⁸ : Module K V inst✝⁷ : AddCommGroup V' inst✝⁶ : Module K V' inst✝⁵ : AddCommGroup V₁ inst✝⁴ : Module K V₁ inst✝³ : AddCommGroup V₂ inst✝² : Module K V₂ inst✝¹ : AddCommGroup V₃ inst✝ : Module K V₃ s t : Submodule K V ⊢ LinearMap.comp (ofLe (_ : s ≤ s ⊔ t)) (ofLe (_ : s ⊓ t ≤ s)) = LinearMap.comp (ofLe (_ : t ≤ s ⊔ t)) (ofLe (_ : s ⊓ t ≤ t)) [PROOFSTEP] ext ⟨x, hx⟩ [GOAL] case h.mk.a K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝¹⁰ : DivisionRing K inst✝⁹ : AddCommGroup V inst✝⁸ : Module K V inst✝⁷ : AddCommGroup V' inst✝⁶ : Module K V' inst✝⁵ : AddCommGroup V₁ inst✝⁴ : Module K V₁ inst✝³ : AddCommGroup V₂ inst✝² : Module K V₂ inst✝¹ : AddCommGroup V₃ inst✝ : Module K V₃ s t : Submodule K V x : V hx : x ∈ s ⊓ t ⊢ ↑(↑(LinearMap.comp (ofLe (_ : s ≤ s ⊔ t)) (ofLe (_ : s ⊓ t ≤ s))) { val := x, property := hx }) = ↑(↑(LinearMap.comp (ofLe (_ : t ≤ s ⊔ t)) (ofLe (_ : s ⊓ t ≤ t))) { val := x, property := hx }) [PROOFSTEP] rfl [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝¹⁰ : DivisionRing K inst✝⁹ : AddCommGroup V inst✝⁸ : Module K V inst✝⁷ : AddCommGroup V' inst✝⁶ : Module K V' inst✝⁵ : AddCommGroup V₁ inst✝⁴ : Module K V₁ inst✝³ : AddCommGroup V₂ inst✝² : Module K V₂ inst✝¹ : AddCommGroup V₃ inst✝ : Module K V₃ s t : Submodule K V ⊢ ∀ (d : { x // x ∈ s }) (e : { x // x ∈ t }), ↑(ofLe (_ : s ≤ s ⊔ t)) d = ↑(ofLe (_ : t ≤ s ⊔ t)) e → ∃ c, ↑(ofLe (_ : s ⊓ t ≤ s)) c = d ∧ ↑(ofLe (_ : s ⊓ t ≤ t)) c = e [PROOFSTEP] rintro ⟨b₁, hb₁⟩ ⟨b₂, hb₂⟩ eq [GOAL] case mk.mk K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝¹⁰ : DivisionRing K inst✝⁹ : AddCommGroup V inst✝⁸ : Module K V inst✝⁷ : AddCommGroup V' inst✝⁶ : Module K V' inst✝⁵ : AddCommGroup V₁ inst✝⁴ : Module K V₁ inst✝³ : AddCommGroup V₂ inst✝² : Module K V₂ inst✝¹ : AddCommGroup V₃ inst✝ : Module K V₃ s t : Submodule K V b₁ : V hb₁ : b₁ ∈ s b₂ : V hb₂ : b₂ ∈ t eq : ↑(ofLe (_ : s ≤ s ⊔ t)) { val := b₁, property := hb₁ } = ↑(ofLe (_ : t ≤ s ⊔ t)) { val := b₂, property := hb₂ } ⊢ ∃ c, ↑(ofLe (_ : s ⊓ t ≤ s)) c = { val := b₁, property := hb₁ } ∧ ↑(ofLe (_ : s ⊓ t ≤ t)) c = { val := b₂, property := hb₂ } [PROOFSTEP] obtain rfl : b₁ = b₂ := congr_arg Subtype.val eq [GOAL] case mk.mk K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝¹⁰ : DivisionRing K inst✝⁹ : AddCommGroup V inst✝⁸ : Module K V inst✝⁷ : AddCommGroup V' inst✝⁶ : Module K V' inst✝⁵ : AddCommGroup V₁ inst✝⁴ : Module K V₁ inst✝³ : AddCommGroup V₂ inst✝² : Module K V₂ inst✝¹ : AddCommGroup V₃ inst✝ : Module K V₃ s t : Submodule K V b₁ : V hb₁ : b₁ ∈ s hb₂ : b₁ ∈ t eq : ↑(ofLe (_ : s ≤ s ⊔ t)) { val := b₁, property := hb₁ } = ↑(ofLe (_ : t ≤ s ⊔ t)) { val := b₁, property := hb₂ } ⊢ ∃ c, ↑(ofLe (_ : s ⊓ t ≤ s)) c = { val := b₁, property := hb₁ } ∧ ↑(ofLe (_ : s ⊓ t ≤ t)) c = { val := b₁, property := hb₂ } [PROOFSTEP] exact ⟨⟨b₁, hb₁, hb₂⟩, rfl, rfl⟩ [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝¹⁰ : DivisionRing K inst✝⁹ : AddCommGroup V inst✝⁸ : Module K V inst✝⁷ : AddCommGroup V' inst✝⁶ : Module K V' inst✝⁵ : AddCommGroup V₁ inst✝⁴ : Module K V₁ inst✝³ : AddCommGroup V₂ inst✝² : Module K V₂ inst✝¹ : AddCommGroup V₃ inst✝ : Module K V₃ s t : Submodule K V ⊢ Module.rank K { x // x ∈ s ⊔ t } ≤ Module.rank K { x // x ∈ s } + Module.rank K { x // x ∈ t } [PROOFSTEP] rw [← Submodule.rank_sup_add_rank_inf_eq] [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝¹⁰ : DivisionRing K inst✝⁹ : AddCommGroup V inst✝⁸ : Module K V inst✝⁷ : AddCommGroup V' inst✝⁶ : Module K V' inst✝⁵ : AddCommGroup V₁ inst✝⁴ : Module K V₁ inst✝³ : AddCommGroup V₂ inst✝² : Module K V₂ inst✝¹ : AddCommGroup V₃ inst✝ : Module K V₃ s t : Submodule K V ⊢ Module.rank K { x // x ∈ s ⊔ t } ≤ Module.rank K { x // x ∈ s ⊔ t } + Module.rank K { x // x ∈ s ⊓ t } [PROOFSTEP] exact self_le_add_right _ _ [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' c : Cardinal.{v} ⊢ c ≤ Module.rank K V ↔ ∃ s, #↑s = c ∧ LinearIndependent K Subtype.val [PROOFSTEP] constructor [GOAL] case mp K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' c : Cardinal.{v} ⊢ c ≤ Module.rank K V → ∃ s, #↑s = c ∧ LinearIndependent K Subtype.val [PROOFSTEP] intro h [GOAL] case mp K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' c : Cardinal.{v} h : c ≤ Module.rank K V ⊢ ∃ s, #↑s = c ∧ LinearIndependent K Subtype.val [PROOFSTEP] let t := Basis.ofVectorSpace K V [GOAL] case mp K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' c : Cardinal.{v} h : c ≤ Module.rank K V t : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V ⊢ ∃ s, #↑s = c ∧ LinearIndependent K Subtype.val [PROOFSTEP] rw [← t.mk_eq_rank'', Cardinal.le_mk_iff_exists_subset] at h [GOAL] case mp K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' c : Cardinal.{v} h : ∃ p, p ⊆ ofVectorSpaceIndex K V ∧ #↑p = c t : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V ⊢ ∃ s, #↑s = c ∧ LinearIndependent K Subtype.val [PROOFSTEP] rcases h with ⟨s, hst, hsc⟩ [GOAL] case mp.intro.intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' c : Cardinal.{v} t : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V s : Set V hst : s ⊆ ofVectorSpaceIndex K V hsc : #↑s = c ⊢ ∃ s, #↑s = c ∧ LinearIndependent K Subtype.val [PROOFSTEP] exact ⟨s, hsc, (ofVectorSpaceIndex.linearIndependent K V).mono hst⟩ [GOAL] case mpr K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' c : Cardinal.{v} ⊢ (∃ s, #↑s = c ∧ LinearIndependent K Subtype.val) → c ≤ Module.rank K V [PROOFSTEP] rintro ⟨s, rfl, si⟩ [GOAL] case mpr.intro.intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' s : Set V si : LinearIndependent K Subtype.val ⊢ #↑s ≤ Module.rank K V [PROOFSTEP] exact cardinal_le_rank_of_linearIndependent si [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' n : ℕ ⊢ ↑n ≤ Module.rank K V ↔ ∃ s, Finset.card s = n ∧ LinearIndependent K Subtype.val [PROOFSTEP] simp only [le_rank_iff_exists_linearIndependent, Cardinal.mk_set_eq_nat_iff_finset] [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' n : ℕ ⊢ (∃ s, (∃ t, ↑t = s ∧ Finset.card t = n) ∧ LinearIndependent K Subtype.val) ↔ ∃ s, Finset.card s = n ∧ LinearIndependent K Subtype.val [PROOFSTEP] constructor [GOAL] case mp K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' n : ℕ ⊢ (∃ s, (∃ t, ↑t = s ∧ Finset.card t = n) ∧ LinearIndependent K Subtype.val) → ∃ s, Finset.card s = n ∧ LinearIndependent K Subtype.val [PROOFSTEP] rintro ⟨s, ⟨t, rfl, rfl⟩, si⟩ [GOAL] case mp.intro.intro.intro.intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' t : Finset V si : LinearIndependent K Subtype.val ⊢ ∃ s, Finset.card s = Finset.card t ∧ LinearIndependent K Subtype.val [PROOFSTEP] exact ⟨t, rfl, si⟩ [GOAL] case mpr K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' n : ℕ ⊢ (∃ s, Finset.card s = n ∧ LinearIndependent K Subtype.val) → ∃ s, (∃ t, ↑t = s ∧ Finset.card t = n) ∧ LinearIndependent K Subtype.val [PROOFSTEP] rintro ⟨s, rfl, si⟩ [GOAL] case mpr.intro.intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' s : Finset V si : LinearIndependent K Subtype.val ⊢ ∃ s_1, (∃ t, ↑t = s_1 ∧ Finset.card t = Finset.card s) ∧ LinearIndependent K Subtype.val [PROOFSTEP] exact ⟨s, ⟨s, rfl, rfl⟩, si⟩ [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' ⊢ Module.rank K V ≤ 1 ↔ ∃ v₀, ∀ (v : V), ∃ r, r • v₀ = v [PROOFSTEP] let b := Basis.ofVectorSpace K V [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' b : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V ⊢ Module.rank K V ≤ 1 ↔ ∃ v₀, ∀ (v : V), ∃ r, r • v₀ = v [PROOFSTEP] constructor [GOAL] case mp K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' b : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V ⊢ Module.rank K V ≤ 1 → ∃ v₀, ∀ (v : V), ∃ r, r • v₀ = v [PROOFSTEP] intro hd [GOAL] case mp K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' b : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V hd : Module.rank K V ≤ 1 ⊢ ∃ v₀, ∀ (v : V), ∃ r, r • v₀ = v [PROOFSTEP] rw [← b.mk_eq_rank'', Cardinal.le_one_iff_subsingleton, subsingleton_coe] at hd [GOAL] case mp K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' b : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V hd : Set.Subsingleton (ofVectorSpaceIndex K V) ⊢ ∃ v₀, ∀ (v : V), ∃ r, r • v₀ = v [PROOFSTEP] rcases eq_empty_or_nonempty (ofVectorSpaceIndex K V) with (hb | ⟨⟨v₀, hv₀⟩⟩) [GOAL] case mp.inl K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' b : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V hd : Set.Subsingleton (ofVectorSpaceIndex K V) hb : ofVectorSpaceIndex K V = ∅ ⊢ ∃ v₀, ∀ (v : V), ∃ r, r • v₀ = v [PROOFSTEP] use 0 [GOAL] case h K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' b : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V hd : Set.Subsingleton (ofVectorSpaceIndex K V) hb : ofVectorSpaceIndex K V = ∅ ⊢ ∀ (v : V), ∃ r, r • 0 = v [PROOFSTEP] have h' : ∀ v : V, v = 0 := by simpa [hb, Submodule.eq_bot_iff] using b.span_eq.symm [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' b : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V hd : Set.Subsingleton (ofVectorSpaceIndex K V) hb : ofVectorSpaceIndex K V = ∅ ⊢ ∀ (v : V), v = 0 [PROOFSTEP] simpa [hb, Submodule.eq_bot_iff] using b.span_eq.symm [GOAL] case h K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' b : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V hd : Set.Subsingleton (ofVectorSpaceIndex K V) hb : ofVectorSpaceIndex K V = ∅ h' : ∀ (v : V), v = 0 ⊢ ∀ (v : V), ∃ r, r • 0 = v [PROOFSTEP] intro v [GOAL] case h K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' b : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V hd : Set.Subsingleton (ofVectorSpaceIndex K V) hb : ofVectorSpaceIndex K V = ∅ h' : ∀ (v : V), v = 0 v : V ⊢ ∃ r, r • 0 = v [PROOFSTEP] simp [h' v] [GOAL] case mp.inr.intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' b : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V hd : Set.Subsingleton (ofVectorSpaceIndex K V) v₀ : V hv₀ : v₀ ∈ ofVectorSpaceIndex K V ⊢ ∃ v₀, ∀ (v : V), ∃ r, r • v₀ = v [PROOFSTEP] use v₀ [GOAL] case h K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' b : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V hd : Set.Subsingleton (ofVectorSpaceIndex K V) v₀ : V hv₀ : v₀ ∈ ofVectorSpaceIndex K V ⊢ ∀ (v : V), ∃ r, r • v₀ = v [PROOFSTEP] have h' : (K ∙ v₀) = ⊤ := by simpa [hd.eq_singleton_of_mem hv₀] using b.span_eq [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' b : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V hd : Set.Subsingleton (ofVectorSpaceIndex K V) v₀ : V hv₀ : v₀ ∈ ofVectorSpaceIndex K V ⊢ span K {v₀} = ⊤ [PROOFSTEP] simpa [hd.eq_singleton_of_mem hv₀] using b.span_eq [GOAL] case h K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' b : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V hd : Set.Subsingleton (ofVectorSpaceIndex K V) v₀ : V hv₀ : v₀ ∈ ofVectorSpaceIndex K V h' : span K {v₀} = ⊤ ⊢ ∀ (v : V), ∃ r, r • v₀ = v [PROOFSTEP] intro v [GOAL] case h K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' b : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V hd : Set.Subsingleton (ofVectorSpaceIndex K V) v₀ : V hv₀ : v₀ ∈ ofVectorSpaceIndex K V h' : span K {v₀} = ⊤ v : V ⊢ ∃ r, r • v₀ = v [PROOFSTEP] have hv : v ∈ (⊤ : Submodule K V) := mem_top [GOAL] case h K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' b : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V hd : Set.Subsingleton (ofVectorSpaceIndex K V) v₀ : V hv₀ : v₀ ∈ ofVectorSpaceIndex K V h' : span K {v₀} = ⊤ v : V hv : v ∈ ⊤ ⊢ ∃ r, r • v₀ = v [PROOFSTEP] rwa [← h', mem_span_singleton] at hv [GOAL] case mpr K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' b : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V ⊢ (∃ v₀, ∀ (v : V), ∃ r, r • v₀ = v) → Module.rank K V ≤ 1 [PROOFSTEP] rintro ⟨v₀, hv₀⟩ [GOAL] case mpr.intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' b : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V v₀ : V hv₀ : ∀ (v : V), ∃ r, r • v₀ = v ⊢ Module.rank K V ≤ 1 [PROOFSTEP] have h : (K ∙ v₀) = ⊤ := by ext simp [mem_span_singleton, hv₀] [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' b : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V v₀ : V hv₀ : ∀ (v : V), ∃ r, r • v₀ = v ⊢ span K {v₀} = ⊤ [PROOFSTEP] ext [GOAL] case h K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' b : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V v₀ : V hv₀ : ∀ (v : V), ∃ r, r • v₀ = v x✝ : V ⊢ x✝ ∈ span K {v₀} ↔ x✝ ∈ ⊤ [PROOFSTEP] simp [mem_span_singleton, hv₀] [GOAL] case mpr.intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' b : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V v₀ : V hv₀ : ∀ (v : V), ∃ r, r • v₀ = v h : span K {v₀} = ⊤ ⊢ Module.rank K V ≤ 1 [PROOFSTEP] rw [← rank_top, ← h] [GOAL] case mpr.intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' b : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V v₀ : V hv₀ : ∀ (v : V), ∃ r, r • v₀ = v h : span K {v₀} = ⊤ ⊢ Module.rank K { x // x ∈ span K {v₀} } ≤ 1 [PROOFSTEP] refine' (rank_span_le _).trans_eq _ [GOAL] case mpr.intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' b : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V v₀ : V hv₀ : ∀ (v : V), ∃ r, r • v₀ = v h : span K {v₀} = ⊤ ⊢ #↑{v₀} = 1 [PROOFSTEP] simp [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' s : Submodule K V ⊢ Module.rank K { x // x ∈ s } ≤ 1 ↔ ∃ v₀, v₀ ∈ s ∧ s ≤ span K {v₀} [PROOFSTEP] simp_rw [rank_le_one_iff, le_span_singleton_iff] [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' s : Submodule K V ⊢ (∃ v₀, ∀ (v : { x // x ∈ s }), ∃ r, r • v₀ = v) ↔ ∃ v₀, v₀ ∈ s ∧ ∀ (v : V), v ∈ s → ∃ r, r • v₀ = v [PROOFSTEP] constructor [GOAL] case mp K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' s : Submodule K V ⊢ (∃ v₀, ∀ (v : { x // x ∈ s }), ∃ r, r • v₀ = v) → ∃ v₀, v₀ ∈ s ∧ ∀ (v : V), v ∈ s → ∃ r, r • v₀ = v [PROOFSTEP] rintro ⟨⟨v₀, hv₀⟩, h⟩ [GOAL] case mp.intro.mk K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' s : Submodule K V v₀ : V hv₀ : v₀ ∈ s h : ∀ (v : { x // x ∈ s }), ∃ r, r • { val := v₀, property := hv₀ } = v ⊢ ∃ v₀, v₀ ∈ s ∧ ∀ (v : V), v ∈ s → ∃ r, r • v₀ = v [PROOFSTEP] use v₀, hv₀ [GOAL] case right K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' s : Submodule K V v₀ : V hv₀ : v₀ ∈ s h : ∀ (v : { x // x ∈ s }), ∃ r, r • { val := v₀, property := hv₀ } = v ⊢ ∀ (v : V), v ∈ s → ∃ r, r • v₀ = v [PROOFSTEP] intro v hv [GOAL] case right K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' s : Submodule K V v₀ : V hv₀ : v₀ ∈ s h : ∀ (v : { x // x ∈ s }), ∃ r, r • { val := v₀, property := hv₀ } = v v : V hv : v ∈ s ⊢ ∃ r, r • v₀ = v [PROOFSTEP] obtain ⟨r, hr⟩ := h ⟨v, hv⟩ [GOAL] case right.intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' s : Submodule K V v₀ : V hv₀ : v₀ ∈ s h : ∀ (v : { x // x ∈ s }), ∃ r, r • { val := v₀, property := hv₀ } = v v : V hv : v ∈ s r : K hr : r • { val := v₀, property := hv₀ } = { val := v, property := hv } ⊢ ∃ r, r • v₀ = v [PROOFSTEP] use r [GOAL] case h K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' s : Submodule K V v₀ : V hv₀ : v₀ ∈ s h : ∀ (v : { x // x ∈ s }), ∃ r, r • { val := v₀, property := hv₀ } = v v : V hv : v ∈ s r : K hr : r • { val := v₀, property := hv₀ } = { val := v, property := hv } ⊢ r • v₀ = v [PROOFSTEP] simp_rw [Subtype.ext_iff, coe_smul] at hr [GOAL] case h K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' s : Submodule K V v₀ : V hv₀ : v₀ ∈ s h : ∀ (v : { x // x ∈ s }), ∃ r, r • { val := v₀, property := hv₀ } = v v : V hv : v ∈ s r : K hr : r • v₀ = v ⊢ r • v₀ = v [PROOFSTEP] exact hr [GOAL] case mpr K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' s : Submodule K V ⊢ (∃ v₀, v₀ ∈ s ∧ ∀ (v : V), v ∈ s → ∃ r, r • v₀ = v) → ∃ v₀, ∀ (v : { x // x ∈ s }), ∃ r, r • v₀ = v [PROOFSTEP] rintro ⟨v₀, hv₀, h⟩ [GOAL] case mpr.intro.intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' s : Submodule K V v₀ : V hv₀ : v₀ ∈ s h : ∀ (v : V), v ∈ s → ∃ r, r • v₀ = v ⊢ ∃ v₀, ∀ (v : { x // x ∈ s }), ∃ r, r • v₀ = v [PROOFSTEP] use⟨v₀, hv₀⟩ [GOAL] case h K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' s : Submodule K V v₀ : V hv₀ : v₀ ∈ s h : ∀ (v : V), v ∈ s → ∃ r, r • v₀ = v ⊢ ∀ (v : { x // x ∈ s }), ∃ r, r • { val := v₀, property := hv₀ } = v [PROOFSTEP] rintro ⟨v, hv⟩ [GOAL] case h.mk K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' s : Submodule K V v₀ : V hv₀ : v₀ ∈ s h : ∀ (v : V), v ∈ s → ∃ r, r • v₀ = v v : V hv : v ∈ s ⊢ ∃ r, r • { val := v₀, property := hv₀ } = { val := v, property := hv } [PROOFSTEP] obtain ⟨r, hr⟩ := h v hv [GOAL] case h.mk.intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' s : Submodule K V v₀ : V hv₀ : v₀ ∈ s h : ∀ (v : V), v ∈ s → ∃ r, r • v₀ = v v : V hv : v ∈ s r : K hr : r • v₀ = v ⊢ ∃ r, r • { val := v₀, property := hv₀ } = { val := v, property := hv } [PROOFSTEP] use r [GOAL] case h K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' s : Submodule K V v₀ : V hv₀ : v₀ ∈ s h : ∀ (v : V), v ∈ s → ∃ r, r • v₀ = v v : V hv : v ∈ s r : K hr : r • v₀ = v ⊢ r • { val := v₀, property := hv₀ } = { val := v, property := hv } [PROOFSTEP] simp_rw [Subtype.ext_iff, coe_smul] [GOAL] case h K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' s : Submodule K V v₀ : V hv₀ : v₀ ∈ s h : ∀ (v : V), v ∈ s → ∃ r, r • v₀ = v v : V hv : v ∈ s r : K hr : r • v₀ = v ⊢ r • v₀ = v [PROOFSTEP] exact hr [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' s : Submodule K V ⊢ Module.rank K { x // x ∈ s } ≤ 1 ↔ ∃ v₀, s ≤ span K {v₀} [PROOFSTEP] rw [rank_submodule_le_one_iff] [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' s : Submodule K V ⊢ (∃ v₀, v₀ ∈ s ∧ s ≤ span K {v₀}) ↔ ∃ v₀, s ≤ span K {v₀} [PROOFSTEP] constructor [GOAL] case mp K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' s : Submodule K V ⊢ (∃ v₀, v₀ ∈ s ∧ s ≤ span K {v₀}) → ∃ v₀, s ≤ span K {v₀} [PROOFSTEP] rintro ⟨v₀, _, h⟩ [GOAL] case mp.intro.intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' s : Submodule K V v₀ : V left✝ : v₀ ∈ s h : s ≤ span K {v₀} ⊢ ∃ v₀, s ≤ span K {v₀} [PROOFSTEP] exact ⟨v₀, h⟩ [GOAL] case mpr K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' s : Submodule K V ⊢ (∃ v₀, s ≤ span K {v₀}) → ∃ v₀, v₀ ∈ s ∧ s ≤ span K {v₀} [PROOFSTEP] rintro ⟨v₀, h⟩ [GOAL] case mpr.intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' s : Submodule K V v₀ : V h : s ≤ span K {v₀} ⊢ ∃ v₀, v₀ ∈ s ∧ s ≤ span K {v₀} [PROOFSTEP] by_cases hw : ∃ w : V, w ∈ s ∧ w ≠ 0 [GOAL] case pos K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' s : Submodule K V v₀ : V h : s ≤ span K {v₀} hw : ∃ w, w ∈ s ∧ w ≠ 0 ⊢ ∃ v₀, v₀ ∈ s ∧ s ≤ span K {v₀} [PROOFSTEP] rcases hw with ⟨w, hw, hw0⟩ [GOAL] case pos.intro.intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' s : Submodule K V v₀ : V h : s ≤ span K {v₀} w : V hw : w ∈ s hw0 : w ≠ 0 ⊢ ∃ v₀, v₀ ∈ s ∧ s ≤ span K {v₀} [PROOFSTEP] use w, hw [GOAL] case right K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' s : Submodule K V v₀ : V h : s ≤ span K {v₀} w : V hw : w ∈ s hw0 : w ≠ 0 ⊢ s ≤ span K {w} [PROOFSTEP] rcases mem_span_singleton.1 (h hw) with ⟨r', rfl⟩ [GOAL] case right.intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' s : Submodule K V v₀ : V h : s ≤ span K {v₀} r' : K hw : r' • v₀ ∈ s hw0 : r' • v₀ ≠ 0 ⊢ s ≤ span K {r' • v₀} [PROOFSTEP] have h0 : r' ≠ 0 := by rintro rfl simp at hw0 [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' s : Submodule K V v₀ : V h : s ≤ span K {v₀} r' : K hw : r' • v₀ ∈ s hw0 : r' • v₀ ≠ 0 ⊢ r' ≠ 0 [PROOFSTEP] rintro rfl [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' s : Submodule K V v₀ : V h : s ≤ span K {v₀} hw : 0 • v₀ ∈ s hw0 : 0 • v₀ ≠ 0 ⊢ False [PROOFSTEP] simp at hw0 [GOAL] case right.intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' s : Submodule K V v₀ : V h : s ≤ span K {v₀} r' : K hw : r' • v₀ ∈ s hw0 : r' • v₀ ≠ 0 h0 : r' ≠ 0 ⊢ s ≤ span K {r' • v₀} [PROOFSTEP] rwa [span_singleton_smul_eq (IsUnit.mk0 _ h0) _] [GOAL] case neg K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' s : Submodule K V v₀ : V h : s ≤ span K {v₀} hw : ¬∃ w, w ∈ s ∧ w ≠ 0 ⊢ ∃ v₀, v₀ ∈ s ∧ s ≤ span K {v₀} [PROOFSTEP] push_neg at hw [GOAL] case neg K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' s : Submodule K V v₀ : V h : s ≤ span K {v₀} hw : ∀ (w : V), w ∈ s → w = 0 ⊢ ∃ v₀, v₀ ∈ s ∧ s ≤ span K {v₀} [PROOFSTEP] rw [← Submodule.eq_bot_iff] at hw [GOAL] case neg K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' s : Submodule K V v₀ : V h : s ≤ span K {v₀} hw : s = ⊥ ⊢ ∃ v₀, v₀ ∈ s ∧ s ≤ span K {v₀} [PROOFSTEP] simp [hw] [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' W : Submodule K V ⊢ Module.rank K { x // x ∈ W } ≤ 1 ↔ IsPrincipal W [PROOFSTEP] simp only [rank_le_one_iff, Submodule.IsPrincipal_iff, le_antisymm_iff, le_span_singleton_iff, span_singleton_le_iff_mem] [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' W : Submodule K V ⊢ (∃ v₀, ∀ (v : { x // x ∈ W }), ∃ r, r • v₀ = v) ↔ ∃ a, (∀ (v : V), v ∈ W → ∃ r, r • a = v) ∧ a ∈ W [PROOFSTEP] constructor [GOAL] case mp K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' W : Submodule K V ⊢ (∃ v₀, ∀ (v : { x // x ∈ W }), ∃ r, r • v₀ = v) → ∃ a, (∀ (v : V), v ∈ W → ∃ r, r • a = v) ∧ a ∈ W [PROOFSTEP] rintro ⟨⟨m, hm⟩, hm'⟩ [GOAL] case mp.intro.mk K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' W : Submodule K V m : V hm : m ∈ W hm' : ∀ (v : { x // x ∈ W }), ∃ r, r • { val := m, property := hm } = v ⊢ ∃ a, (∀ (v : V), v ∈ W → ∃ r, r • a = v) ∧ a ∈ W [PROOFSTEP] choose f hf using hm' [GOAL] case mp.intro.mk K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' W : Submodule K V m : V hm : m ∈ W f : { x // x ∈ W } → K hf : ∀ (v : { x // x ∈ W }), f v • { val := m, property := hm } = v ⊢ ∃ a, (∀ (v : V), v ∈ W → ∃ r, r • a = v) ∧ a ∈ W [PROOFSTEP] exact ⟨m, ⟨fun v hv => ⟨f ⟨v, hv⟩, congr_arg ((↑) : W → V) (hf ⟨v, hv⟩)⟩, hm⟩⟩ [GOAL] case mpr K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' W : Submodule K V ⊢ (∃ a, (∀ (v : V), v ∈ W → ∃ r, r • a = v) ∧ a ∈ W) → ∃ v₀, ∀ (v : { x // x ∈ W }), ∃ r, r • v₀ = v [PROOFSTEP] rintro ⟨a, ⟨h, ha⟩⟩ [GOAL] case mpr.intro.intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' W : Submodule K V a : V h : ∀ (v : V), v ∈ W → ∃ r, r • a = v ha : a ∈ W ⊢ ∃ v₀, ∀ (v : { x // x ∈ W }), ∃ r, r • v₀ = v [PROOFSTEP] choose f hf using h [GOAL] case mpr.intro.intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' W : Submodule K V a : V ha : a ∈ W f : (v : V) → v ∈ W → K hf : ∀ (v : V) (a_1 : v ∈ W), f v a_1 • a = v ⊢ ∃ v₀, ∀ (v : { x // x ∈ W }), ∃ r, r • v₀ = v [PROOFSTEP] exact ⟨⟨a, ha⟩, fun v => ⟨f v.1 v.2, Subtype.ext (hf v.1 v.2)⟩⟩ [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' ⊢ Module.rank K V ≤ 1 ↔ IsPrincipal ⊤ [PROOFSTEP] rw [← Submodule.rank_le_one_iff_isPrincipal, rank_top] [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁷ : Ring K inst✝⁶ : AddCommGroup V inst✝⁵ : Module K V inst✝⁴ : AddCommGroup V₁ inst✝³ : Module K V₁ inst✝² : AddCommGroup V' inst✝¹ : Module K V' inst✝ : Nontrivial K ⊢ rank 0 = 0 [PROOFSTEP] rw [rank, LinearMap.range_zero, rank_bot] [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁸ : Ring K inst✝⁷ : AddCommGroup V inst✝⁶ : Module K V inst✝⁵ : AddCommGroup V₁ inst✝⁴ : Module K V₁ inst✝³ : AddCommGroup V' inst✝² : Module K V' inst✝¹ : AddCommGroup V'' inst✝ : Module K V'' g : V →ₗ[K] V' f : V' →ₗ[K] V'' ⊢ rank (comp f g) ≤ rank f [PROOFSTEP] refine' rank_le_of_submodule _ _ _ [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁸ : Ring K inst✝⁷ : AddCommGroup V inst✝⁶ : Module K V inst✝⁵ : AddCommGroup V₁ inst✝⁴ : Module K V₁ inst✝³ : AddCommGroup V' inst✝² : Module K V' inst✝¹ : AddCommGroup V'' inst✝ : Module K V'' g : V →ₗ[K] V' f : V' →ₗ[K] V'' ⊢ range (comp f g) ≤ range f [PROOFSTEP] rw [LinearMap.range_comp] [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁸ : Ring K inst✝⁷ : AddCommGroup V inst✝⁶ : Module K V inst✝⁵ : AddCommGroup V₁ inst✝⁴ : Module K V₁ inst✝³ : AddCommGroup V' inst✝² : Module K V' inst✝¹ : AddCommGroup V'' inst✝ : Module K V'' g : V →ₗ[K] V' f : V' →ₗ[K] V'' ⊢ Submodule.map f (range g) ≤ range f [PROOFSTEP] exact LinearMap.map_le_range [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁸ : Ring K inst✝⁷ : AddCommGroup V inst✝⁶ : Module K V inst✝⁵ : AddCommGroup V₁ inst✝⁴ : Module K V₁ inst✝³ : AddCommGroup V' inst✝² : Module K V' inst✝¹ : AddCommGroup V'' inst✝ : Module K V'' g : V →ₗ[K] V' f : V' →ₗ[K] V'' ⊢ lift (rank (comp f g)) ≤ lift (rank g) [PROOFSTEP] rw [rank, rank, LinearMap.range_comp] [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁸ : Ring K inst✝⁷ : AddCommGroup V inst✝⁶ : Module K V inst✝⁵ : AddCommGroup V₁ inst✝⁴ : Module K V₁ inst✝³ : AddCommGroup V' inst✝² : Module K V' inst✝¹ : AddCommGroup V'' inst✝ : Module K V'' g : V →ₗ[K] V' f : V' →ₗ[K] V'' ⊢ lift (Module.rank K { x // x ∈ Submodule.map f (range g) }) ≤ lift (Module.rank K { x // x ∈ range g }) [PROOFSTEP] exact lift_rank_map_le _ _ [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝¹⁰ : Ring K inst✝⁹ : AddCommGroup V inst✝⁸ : Module K V inst✝⁷ : AddCommGroup V₁ inst✝⁶ : Module K V₁ inst✝⁵ : AddCommGroup V' inst✝⁴ : Module K V' inst✝³ : AddCommGroup V'' inst✝² : Module K V'' inst✝¹ : AddCommGroup V'₁ inst✝ : Module K V'₁ g : V →ₗ[K] V' f : V' →ₗ[K] V'₁ ⊢ rank (comp f g) ≤ rank g [PROOFSTEP] simpa only [Cardinal.lift_id] using lift_rank_comp_le_right g f [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝¹⁰ : Ring K inst✝⁹ : AddCommGroup V inst✝⁸ : Module K V inst✝⁷ : AddCommGroup V₁ inst✝⁶ : Module K V₁ inst✝⁵ : AddCommGroup V' inst✝⁴ : Module K V' inst✝³ : AddCommGroup V'' inst✝² : Module K V'' inst✝¹ : AddCommGroup V'₁ inst✝ : Module K V'₁ g : V →ₗ[K] V' f : V' →ₗ[K] V'₁ ⊢ rank (comp f g) ≤ min (rank f) (rank g) [PROOFSTEP] simpa only [Cardinal.lift_id] using lift_rank_comp_le g f [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' f g : V →ₗ[K] V' ⊢ rank (f + g) ≤ Module.rank K { x // x ∈ range f ⊔ range g } [PROOFSTEP] refine' rank_le_of_submodule _ _ _ [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' f g : V →ₗ[K] V' ⊢ range (f + g) ≤ range f ⊔ range g [PROOFSTEP] exact LinearMap.range_le_iff_comap.2 <| eq_top_iff'.2 fun x => show f x + g x ∈ (LinearMap.range f ⊔ LinearMap.range g : Submodule K V') from mem_sup.2 ⟨_, ⟨x, rfl⟩, _, ⟨x, rfl⟩, rfl⟩ [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' c : Cardinal.{v'} f : V →ₗ[K] V' ⊢ c ≤ rank f ↔ ∃ s, lift #↑s = lift c ∧ LinearIndependent K fun x => ↑f ↑x [PROOFSTEP] rcases f.rangeRestrict.exists_rightInverse_of_surjective f.range_rangeRestrict with ⟨g, hg⟩ [GOAL] case intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' c : Cardinal.{v'} f : V →ₗ[K] V' g : { x // x ∈ range f } →ₗ[K] V hg : comp (rangeRestrict f) g = id ⊢ c ≤ rank f ↔ ∃ s, lift #↑s = lift c ∧ LinearIndependent K fun x => ↑f ↑x [PROOFSTEP] have fg : LeftInverse f.rangeRestrict g := LinearMap.congr_fun hg [GOAL] case intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' c : Cardinal.{v'} f : V →ₗ[K] V' g : { x // x ∈ range f } →ₗ[K] V hg : comp (rangeRestrict f) g = id fg : LeftInverse ↑(rangeRestrict f) ↑g ⊢ c ≤ rank f ↔ ∃ s, lift #↑s = lift c ∧ LinearIndependent K fun x => ↑f ↑x [PROOFSTEP] refine' ⟨fun h => _, _⟩ [GOAL] case intro.refine'_1 K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' c : Cardinal.{v'} f : V →ₗ[K] V' g : { x // x ∈ range f } →ₗ[K] V hg : comp (rangeRestrict f) g = id fg : LeftInverse ↑(rangeRestrict f) ↑g h : c ≤ rank f ⊢ ∃ s, lift #↑s = lift c ∧ LinearIndependent K fun x => ↑f ↑x [PROOFSTEP] rcases _root_.le_rank_iff_exists_linearIndependent.1 h with ⟨s, rfl, si⟩ [GOAL] case intro.refine'_1.intro.intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' f : V →ₗ[K] V' g : { x // x ∈ range f } →ₗ[K] V hg : comp (rangeRestrict f) g = id fg : LeftInverse ↑(rangeRestrict f) ↑g s : Set { x // x ∈ range f } si : LinearIndependent K Subtype.val h : #↑s ≤ rank f ⊢ ∃ s_1, lift #↑s_1 = lift #↑s ∧ LinearIndependent K fun x => ↑f ↑x [PROOFSTEP] refine' ⟨g '' s, Cardinal.mk_image_eq_lift _ _ fg.injective, _⟩ [GOAL] case intro.refine'_1.intro.intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' f : V →ₗ[K] V' g : { x // x ∈ range f } →ₗ[K] V hg : comp (rangeRestrict f) g = id fg : LeftInverse ↑(rangeRestrict f) ↑g s : Set { x // x ∈ range f } si : LinearIndependent K Subtype.val h : #↑s ≤ rank f ⊢ LinearIndependent K fun x => ↑f ↑x [PROOFSTEP] replace fg : ∀ x, f (g x) = x [GOAL] case fg K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' f : V →ₗ[K] V' g : { x // x ∈ range f } →ₗ[K] V hg : comp (rangeRestrict f) g = id fg : LeftInverse ↑(rangeRestrict f) ↑g s : Set { x // x ∈ range f } si : LinearIndependent K Subtype.val h : #↑s ≤ rank f ⊢ ∀ (x : { x // x ∈ range f }), ↑f (↑g x) = ↑x [PROOFSTEP] intro x [GOAL] case fg K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' f : V →ₗ[K] V' g : { x // x ∈ range f } →ₗ[K] V hg : comp (rangeRestrict f) g = id fg : LeftInverse ↑(rangeRestrict f) ↑g s : Set { x // x ∈ range f } si : LinearIndependent K Subtype.val h : #↑s ≤ rank f x : { x // x ∈ range f } ⊢ ↑f (↑g x) = ↑x [PROOFSTEP] convert congr_arg Subtype.val (fg x) [GOAL] case intro.refine'_1.intro.intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' f : V →ₗ[K] V' g : { x // x ∈ range f } →ₗ[K] V hg : comp (rangeRestrict f) g = id s : Set { x // x ∈ range f } si : LinearIndependent K Subtype.val h : #↑s ≤ rank f fg : ∀ (x : { x // x ∈ range f }), ↑f (↑g x) = ↑x ⊢ LinearIndependent K fun x => ↑f ↑x [PROOFSTEP] replace si : LinearIndependent K fun x : s => f (g x) [GOAL] case si K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' f : V →ₗ[K] V' g : { x // x ∈ range f } →ₗ[K] V hg : comp (rangeRestrict f) g = id s : Set { x // x ∈ range f } si : LinearIndependent K Subtype.val h : #↑s ≤ rank f fg : ∀ (x : { x // x ∈ range f }), ↑f (↑g x) = ↑x ⊢ LinearIndependent K fun x => ↑f (↑g ↑x) [PROOFSTEP] simpa only [fg] using si.map' _ (ker_subtype _) [GOAL] case intro.refine'_1.intro.intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' f : V →ₗ[K] V' g : { x // x ∈ range f } →ₗ[K] V hg : comp (rangeRestrict f) g = id s : Set { x // x ∈ range f } h : #↑s ≤ rank f fg : ∀ (x : { x // x ∈ range f }), ↑f (↑g x) = ↑x si : LinearIndependent K fun x => ↑f (↑g ↑x) ⊢ LinearIndependent K fun x => ↑f ↑x [PROOFSTEP] exact si.image_of_comp s g f [GOAL] case intro.refine'_2 K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' c : Cardinal.{v'} f : V →ₗ[K] V' g : { x // x ∈ range f } →ₗ[K] V hg : comp (rangeRestrict f) g = id fg : LeftInverse ↑(rangeRestrict f) ↑g ⊢ (∃ s, lift #↑s = lift c ∧ LinearIndependent K fun x => ↑f ↑x) → c ≤ rank f [PROOFSTEP] rintro ⟨s, hsc, si⟩ [GOAL] case intro.refine'_2.intro.intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' c : Cardinal.{v'} f : V →ₗ[K] V' g : { x // x ∈ range f } →ₗ[K] V hg : comp (rangeRestrict f) g = id fg : LeftInverse ↑(rangeRestrict f) ↑g s : Set V hsc : lift #↑s = lift c si : LinearIndependent K fun x => ↑f ↑x ⊢ c ≤ rank f [PROOFSTEP] have : LinearIndependent K fun x : s => f.rangeRestrict x := LinearIndependent.of_comp f.range.subtype (by convert si) [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' c : Cardinal.{v'} f : V →ₗ[K] V' g : { x // x ∈ range f } →ₗ[K] V hg : comp (rangeRestrict f) g = id fg : LeftInverse ↑(rangeRestrict f) ↑g s : Set V hsc : lift #↑s = lift c si : LinearIndependent K fun x => ↑f ↑x ⊢ LinearIndependent K (↑(Submodule.subtype (range f)) ∘ fun x => ↑(rangeRestrict f) ↑x) [PROOFSTEP] convert si [GOAL] case intro.refine'_2.intro.intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' c : Cardinal.{v'} f : V →ₗ[K] V' g : { x // x ∈ range f } →ₗ[K] V hg : comp (rangeRestrict f) g = id fg : LeftInverse ↑(rangeRestrict f) ↑g s : Set V hsc : lift #↑s = lift c si : LinearIndependent K fun x => ↑f ↑x this : LinearIndependent K fun x => ↑(rangeRestrict f) ↑x ⊢ c ≤ rank f [PROOFSTEP] convert cardinal_le_rank_of_linearIndependent this.image [GOAL] case h.e'_3 K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' c : Cardinal.{v'} f : V →ₗ[K] V' g : { x // x ∈ range f } →ₗ[K] V hg : comp (rangeRestrict f) g = id fg : LeftInverse ↑(rangeRestrict f) ↑g s : Set V hsc : lift #↑s = lift c si : LinearIndependent K fun x => ↑f ↑x this : LinearIndependent K fun x => ↑(rangeRestrict f) ↑x ⊢ c = #↑(↑(rangeRestrict f) '' s) [PROOFSTEP] rw [← Cardinal.lift_inj, ← hsc, Cardinal.mk_image_eq_of_injOn_lift] [GOAL] case h.e'_3.h K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' c : Cardinal.{v'} f : V →ₗ[K] V' g : { x // x ∈ range f } →ₗ[K] V hg : comp (rangeRestrict f) g = id fg : LeftInverse ↑(rangeRestrict f) ↑g s : Set V hsc : lift #↑s = lift c si : LinearIndependent K fun x => ↑f ↑x this : LinearIndependent K fun x => ↑(rangeRestrict f) ↑x ⊢ InjOn (↑(rangeRestrict f)) s [PROOFSTEP] exact injOn_iff_injective.2 this.injective [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' n : ℕ f : V →ₗ[K] V' ⊢ ↑n ≤ rank f ↔ ∃ s, Finset.card s = n ∧ LinearIndependent K fun x => ↑f ↑x [PROOFSTEP] simp only [le_rank_iff_exists_linearIndependent, Cardinal.lift_natCast, Cardinal.lift_eq_nat_iff, Cardinal.mk_set_eq_nat_iff_finset] [GOAL] K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' n : ℕ f : V →ₗ[K] V' ⊢ (∃ s, (∃ t, ↑t = s ∧ Finset.card t = n) ∧ LinearIndependent K fun x => ↑f ↑x) ↔ ∃ s, Finset.card s = n ∧ LinearIndependent K fun x => ↑f ↑x [PROOFSTEP] constructor [GOAL] case mp K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' n : ℕ f : V →ₗ[K] V' ⊢ (∃ s, (∃ t, ↑t = s ∧ Finset.card t = n) ∧ LinearIndependent K fun x => ↑f ↑x) → ∃ s, Finset.card s = n ∧ LinearIndependent K fun x => ↑f ↑x [PROOFSTEP] rintro ⟨s, ⟨t, rfl, rfl⟩, si⟩ [GOAL] case mp.intro.intro.intro.intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' f : V →ₗ[K] V' t : Finset V si : LinearIndependent K fun x => ↑f ↑x ⊢ ∃ s, Finset.card s = Finset.card t ∧ LinearIndependent K fun x => ↑f ↑x [PROOFSTEP] exact ⟨t, rfl, si⟩ [GOAL] case mpr K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' n : ℕ f : V →ₗ[K] V' ⊢ (∃ s, Finset.card s = n ∧ LinearIndependent K fun x => ↑f ↑x) → ∃ s, (∃ t, ↑t = s ∧ Finset.card t = n) ∧ LinearIndependent K fun x => ↑f ↑x [PROOFSTEP] rintro ⟨s, rfl, si⟩ [GOAL] case mpr.intro.intro K : Type u V V₁ V₂ V₃ : Type v V' V'₁ : Type v' V'' : Type v'' ι : Type w ι' : Type w' η : Type u₁' φ : η → Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup V inst✝⁴ : Module K V inst✝³ : AddCommGroup V₁ inst✝² : Module K V₁ inst✝¹ : AddCommGroup V' inst✝ : Module K V' f : V →ₗ[K] V' s : Finset V si : LinearIndependent K fun x => ↑f ↑x ⊢ ∃ s_1, (∃ t, ↑t = s_1 ∧ Finset.card t = Finset.card s) ∧ LinearIndependent K fun x => ↑f ↑x [PROOFSTEP] exact ⟨s, ⟨s, rfl, rfl⟩, si⟩
{"mathlib_filename": "Mathlib.LinearAlgebra.Dimension", "llama_tokens": 142788}
[GOAL] k : Type u_1 V₁ : Type u_2 P₁ : Type u_3 V₂ : Type u_4 P₂ : Type u_5 inst✝⁶ : Ring k inst✝⁵ : AddCommGroup V₁ inst✝⁴ : AddCommGroup V₂ inst✝³ : Module k V₁ inst✝² : Module k V₂ inst✝¹ : AddTorsor V₁ P₁ inst✝ : AddTorsor V₂ P₂ E : AffineSubspace k P₁ Ene : Nonempty { x // x ∈ E } φ : P₁ →ᵃ[k] P₂ ⊢ Nonempty { x // x ∈ map φ E } [PROOFSTEP] obtain ⟨x, hx⟩ := id Ene [GOAL] case intro.mk k : Type u_1 V₁ : Type u_2 P₁ : Type u_3 V₂ : Type u_4 P₂ : Type u_5 inst✝⁶ : Ring k inst✝⁵ : AddCommGroup V₁ inst✝⁴ : AddCommGroup V₂ inst✝³ : Module k V₁ inst✝² : Module k V₂ inst✝¹ : AddTorsor V₁ P₁ inst✝ : AddTorsor V₂ P₂ E : AffineSubspace k P₁ Ene : Nonempty { x // x ∈ E } φ : P₁ →ᵃ[k] P₂ x : P₁ hx : x ∈ E ⊢ Nonempty { x // x ∈ map φ E } [PROOFSTEP] refine' ⟨⟨φ x, AffineSubspace.mem_map.mpr ⟨x, hx, rfl⟩⟩⟩ [GOAL] k : Type u_1 V₁ : Type u_2 P₁ : Type u_3 V₂ : Type u_4 P₂ : Type u_5 inst✝⁸ : Ring k inst✝⁷ : AddCommGroup V₁ inst✝⁶ : AddCommGroup V₂ inst✝⁵ : Module k V₁ inst✝⁴ : Module k V₂ inst✝³ : AddTorsor V₁ P₁ inst✝² : AddTorsor V₂ P₂ φ : P₁ →ᵃ[k] P₂ E : AffineSubspace k P₁ F : AffineSubspace k P₂ inst✝¹ : Nonempty { x // x ∈ E } inst✝ : Nonempty { x // x ∈ F } hEF : AffineSubspace.map φ E ≤ F ⊢ { x // x ∈ E } →ᵃ[k] { x // x ∈ F } [PROOFSTEP] refine' ⟨_, _, _⟩ [GOAL] case refine'_1 k : Type u_1 V₁ : Type u_2 P₁ : Type u_3 V₂ : Type u_4 P₂ : Type u_5 inst✝⁸ : Ring k inst✝⁷ : AddCommGroup V₁ inst✝⁶ : AddCommGroup V₂ inst✝⁵ : Module k V₁ inst✝⁴ : Module k V₂ inst✝³ : AddTorsor V₁ P₁ inst✝² : AddTorsor V₂ P₂ φ : P₁ →ᵃ[k] P₂ E : AffineSubspace k P₁ F : AffineSubspace k P₂ inst✝¹ : Nonempty { x // x ∈ E } inst✝ : Nonempty { x // x ∈ F } hEF : AffineSubspace.map φ E ≤ F ⊢ { x // x ∈ E } → { x // x ∈ F } [PROOFSTEP] exact fun x => ⟨φ x, hEF <| AffineSubspace.mem_map.mpr ⟨x, x.property, rfl⟩⟩ [GOAL] case refine'_2 k : Type u_1 V₁ : Type u_2 P₁ : Type u_3 V₂ : Type u_4 P₂ : Type u_5 inst✝⁸ : Ring k inst✝⁷ : AddCommGroup V₁ inst✝⁶ : AddCommGroup V₂ inst✝⁵ : Module k V₁ inst✝⁴ : Module k V₂ inst✝³ : AddTorsor V₁ P₁ inst✝² : AddTorsor V₂ P₂ φ : P₁ →ᵃ[k] P₂ E : AffineSubspace k P₁ F : AffineSubspace k P₂ inst✝¹ : Nonempty { x // x ∈ E } inst✝ : Nonempty { x // x ∈ F } hEF : AffineSubspace.map φ E ≤ F ⊢ { x // x ∈ AffineSubspace.direction E } →ₗ[k] { x // x ∈ AffineSubspace.direction F } [PROOFSTEP] refine' φ.linear.restrict (_ : E.direction ≤ F.direction.comap φ.linear) [GOAL] case refine'_2 k : Type u_1 V₁ : Type u_2 P₁ : Type u_3 V₂ : Type u_4 P₂ : Type u_5 inst✝⁸ : Ring k inst✝⁷ : AddCommGroup V₁ inst✝⁶ : AddCommGroup V₂ inst✝⁵ : Module k V₁ inst✝⁴ : Module k V₂ inst✝³ : AddTorsor V₁ P₁ inst✝² : AddTorsor V₂ P₂ φ : P₁ →ᵃ[k] P₂ E : AffineSubspace k P₁ F : AffineSubspace k P₂ inst✝¹ : Nonempty { x // x ∈ E } inst✝ : Nonempty { x // x ∈ F } hEF : AffineSubspace.map φ E ≤ F ⊢ AffineSubspace.direction E ≤ Submodule.comap φ.linear (AffineSubspace.direction F) [PROOFSTEP] rw [← Submodule.map_le_iff_le_comap, ← AffineSubspace.map_direction] [GOAL] case refine'_2 k : Type u_1 V₁ : Type u_2 P₁ : Type u_3 V₂ : Type u_4 P₂ : Type u_5 inst✝⁸ : Ring k inst✝⁷ : AddCommGroup V₁ inst✝⁶ : AddCommGroup V₂ inst✝⁵ : Module k V₁ inst✝⁴ : Module k V₂ inst✝³ : AddTorsor V₁ P₁ inst✝² : AddTorsor V₂ P₂ φ : P₁ →ᵃ[k] P₂ E : AffineSubspace k P₁ F : AffineSubspace k P₂ inst✝¹ : Nonempty { x // x ∈ E } inst✝ : Nonempty { x // x ∈ F } hEF : AffineSubspace.map φ E ≤ F ⊢ AffineSubspace.direction (AffineSubspace.map φ E) ≤ AffineSubspace.direction F [PROOFSTEP] exact AffineSubspace.direction_le hEF [GOAL] case refine'_3 k : Type u_1 V₁ : Type u_2 P₁ : Type u_3 V₂ : Type u_4 P₂ : Type u_5 inst✝⁸ : Ring k inst✝⁷ : AddCommGroup V₁ inst✝⁶ : AddCommGroup V₂ inst✝⁵ : Module k V₁ inst✝⁴ : Module k V₂ inst✝³ : AddTorsor V₁ P₁ inst✝² : AddTorsor V₂ P₂ φ : P₁ →ᵃ[k] P₂ E : AffineSubspace k P₁ F : AffineSubspace k P₂ inst✝¹ : Nonempty { x // x ∈ E } inst✝ : Nonempty { x // x ∈ F } hEF : AffineSubspace.map φ E ≤ F ⊢ ∀ (p : { x // x ∈ E }) (v : { x // x ∈ AffineSubspace.direction E }), { val := ↑φ ↑(v +ᵥ p), property := (_ : ↑φ ↑(v +ᵥ p) ∈ ↑F) } = ↑(LinearMap.restrict φ.linear (_ : AffineSubspace.direction E ≤ Submodule.comap φ.linear (AffineSubspace.direction F))) v +ᵥ { val := ↑φ ↑p, property := (_ : ↑φ ↑p ∈ ↑F) } [PROOFSTEP] intro p v [GOAL] case refine'_3 k : Type u_1 V₁ : Type u_2 P₁ : Type u_3 V₂ : Type u_4 P₂ : Type u_5 inst✝⁸ : Ring k inst✝⁷ : AddCommGroup V₁ inst✝⁶ : AddCommGroup V₂ inst✝⁵ : Module k V₁ inst✝⁴ : Module k V₂ inst✝³ : AddTorsor V₁ P₁ inst✝² : AddTorsor V₂ P₂ φ : P₁ →ᵃ[k] P₂ E : AffineSubspace k P₁ F : AffineSubspace k P₂ inst✝¹ : Nonempty { x // x ∈ E } inst✝ : Nonempty { x // x ∈ F } hEF : AffineSubspace.map φ E ≤ F p : { x // x ∈ E } v : { x // x ∈ AffineSubspace.direction E } ⊢ { val := ↑φ ↑(v +ᵥ p), property := (_ : ↑φ ↑(v +ᵥ p) ∈ ↑F) } = ↑(LinearMap.restrict φ.linear (_ : AffineSubspace.direction E ≤ Submodule.comap φ.linear (AffineSubspace.direction F))) v +ᵥ { val := ↑φ ↑p, property := (_ : ↑φ ↑p ∈ ↑F) } [PROOFSTEP] simp only [Subtype.ext_iff, Subtype.coe_mk, AffineSubspace.coe_vadd] [GOAL] case refine'_3 k : Type u_1 V₁ : Type u_2 P₁ : Type u_3 V₂ : Type u_4 P₂ : Type u_5 inst✝⁸ : Ring k inst✝⁷ : AddCommGroup V₁ inst✝⁶ : AddCommGroup V₂ inst✝⁵ : Module k V₁ inst✝⁴ : Module k V₂ inst✝³ : AddTorsor V₁ P₁ inst✝² : AddTorsor V₂ P₂ φ : P₁ →ᵃ[k] P₂ E : AffineSubspace k P₁ F : AffineSubspace k P₂ inst✝¹ : Nonempty { x // x ∈ E } inst✝ : Nonempty { x // x ∈ F } hEF : AffineSubspace.map φ E ≤ F p : { x // x ∈ E } v : { x // x ∈ AffineSubspace.direction E } ⊢ ↑φ (↑v +ᵥ ↑p) = ↑(↑(LinearMap.restrict φ.linear (_ : AffineSubspace.direction E ≤ Submodule.comap φ.linear (AffineSubspace.direction F))) v) +ᵥ ↑φ ↑p [PROOFSTEP] apply AffineMap.map_vadd [GOAL] k : Type u_1 V₁ : Type u_2 P₁ : Type u_3 V₂ : Type u_4 P₂ : Type u_5 inst✝⁶ : Ring k inst✝⁵ : AddCommGroup V₁ inst✝⁴ : AddCommGroup V₂ inst✝³ : Module k V₁ inst✝² : Module k V₂ inst✝¹ : AddTorsor V₁ P₁ inst✝ : AddTorsor V₂ P₂ φ : P₁ →ᵃ[k] P₂ E : AffineSubspace k P₁ F : AffineSubspace k P₂ hEF : AffineSubspace.map φ E ≤ F ⊢ AffineSubspace.direction E ≤ Submodule.comap φ.linear (AffineSubspace.direction F) [PROOFSTEP] rw [← Submodule.map_le_iff_le_comap, ← AffineSubspace.map_direction] [GOAL] k : Type u_1 V₁ : Type u_2 P₁ : Type u_3 V₂ : Type u_4 P₂ : Type u_5 inst✝⁶ : Ring k inst✝⁵ : AddCommGroup V₁ inst✝⁴ : AddCommGroup V₂ inst✝³ : Module k V₁ inst✝² : Module k V₂ inst✝¹ : AddTorsor V₁ P₁ inst✝ : AddTorsor V₂ P₂ φ : P₁ →ᵃ[k] P₂ E : AffineSubspace k P₁ F : AffineSubspace k P₂ hEF : AffineSubspace.map φ E ≤ F ⊢ AffineSubspace.direction (AffineSubspace.map φ E) ≤ AffineSubspace.direction F [PROOFSTEP] exact AffineSubspace.direction_le hEF [GOAL] k : Type u_1 V₁ : Type u_2 P₁ : Type u_3 V₂ : Type u_4 P₂ : Type u_5 inst✝⁸ : Ring k inst✝⁷ : AddCommGroup V₁ inst✝⁶ : AddCommGroup V₂ inst✝⁵ : Module k V₁ inst✝⁴ : Module k V₂ inst✝³ : AddTorsor V₁ P₁ inst✝² : AddTorsor V₂ P₂ φ : P₁ →ᵃ[k] P₂ hφ : Function.Injective ↑φ E : AffineSubspace k P₁ F : AffineSubspace k P₂ inst✝¹ : Nonempty { x // x ∈ E } inst✝ : Nonempty { x // x ∈ F } hEF : AffineSubspace.map φ E ≤ F ⊢ Function.Injective ↑(restrict φ hEF) [PROOFSTEP] intro x y h [GOAL] k : Type u_1 V₁ : Type u_2 P₁ : Type u_3 V₂ : Type u_4 P₂ : Type u_5 inst✝⁸ : Ring k inst✝⁷ : AddCommGroup V₁ inst✝⁶ : AddCommGroup V₂ inst✝⁵ : Module k V₁ inst✝⁴ : Module k V₂ inst✝³ : AddTorsor V₁ P₁ inst✝² : AddTorsor V₂ P₂ φ : P₁ →ᵃ[k] P₂ hφ : Function.Injective ↑φ E : AffineSubspace k P₁ F : AffineSubspace k P₂ inst✝¹ : Nonempty { x // x ∈ E } inst✝ : Nonempty { x // x ∈ F } hEF : AffineSubspace.map φ E ≤ F x y : { x // x ∈ E } h : ↑(restrict φ hEF) x = ↑(restrict φ hEF) y ⊢ x = y [PROOFSTEP] simp only [Subtype.ext_iff, Subtype.coe_mk, AffineMap.restrict.coe_apply] at h ⊢ [GOAL] k : Type u_1 V₁ : Type u_2 P₁ : Type u_3 V₂ : Type u_4 P₂ : Type u_5 inst✝⁸ : Ring k inst✝⁷ : AddCommGroup V₁ inst✝⁶ : AddCommGroup V₂ inst✝⁵ : Module k V₁ inst✝⁴ : Module k V₂ inst✝³ : AddTorsor V₁ P₁ inst✝² : AddTorsor V₂ P₂ φ : P₁ →ᵃ[k] P₂ hφ : Function.Injective ↑φ E : AffineSubspace k P₁ F : AffineSubspace k P₂ inst✝¹ : Nonempty { x // x ∈ E } inst✝ : Nonempty { x // x ∈ F } hEF : AffineSubspace.map φ E ≤ F x y : { x // x ∈ E } h : ↑φ ↑x = ↑φ ↑y ⊢ ↑x = ↑y [PROOFSTEP] exact hφ h [GOAL] k : Type u_1 V₁ : Type u_2 P₁ : Type u_3 V₂ : Type u_4 P₂ : Type u_5 inst✝⁸ : Ring k inst✝⁷ : AddCommGroup V₁ inst✝⁶ : AddCommGroup V₂ inst✝⁵ : Module k V₁ inst✝⁴ : Module k V₂ inst✝³ : AddTorsor V₁ P₁ inst✝² : AddTorsor V₂ P₂ φ : P₁ →ᵃ[k] P₂ E : AffineSubspace k P₁ F : AffineSubspace k P₂ inst✝¹ : Nonempty { x // x ∈ E } inst✝ : Nonempty { x // x ∈ F } h : AffineSubspace.map φ E = F ⊢ Function.Surjective ↑(restrict φ (_ : AffineSubspace.map φ E ≤ F)) [PROOFSTEP] rintro ⟨x, hx : x ∈ F⟩ [GOAL] case mk k : Type u_1 V₁ : Type u_2 P₁ : Type u_3 V₂ : Type u_4 P₂ : Type u_5 inst✝⁸ : Ring k inst✝⁷ : AddCommGroup V₁ inst✝⁶ : AddCommGroup V₂ inst✝⁵ : Module k V₁ inst✝⁴ : Module k V₂ inst✝³ : AddTorsor V₁ P₁ inst✝² : AddTorsor V₂ P₂ φ : P₁ →ᵃ[k] P₂ E : AffineSubspace k P₁ F : AffineSubspace k P₂ inst✝¹ : Nonempty { x // x ∈ E } inst✝ : Nonempty { x // x ∈ F } h : AffineSubspace.map φ E = F x : P₂ hx : x ∈ F ⊢ ∃ a, ↑(restrict φ (_ : AffineSubspace.map φ E ≤ F)) a = { val := x, property := hx } [PROOFSTEP] rw [← h, AffineSubspace.mem_map] at hx [GOAL] case mk k : Type u_1 V₁ : Type u_2 P₁ : Type u_3 V₂ : Type u_4 P₂ : Type u_5 inst✝⁸ : Ring k inst✝⁷ : AddCommGroup V₁ inst✝⁶ : AddCommGroup V₂ inst✝⁵ : Module k V₁ inst✝⁴ : Module k V₂ inst✝³ : AddTorsor V₁ P₁ inst✝² : AddTorsor V₂ P₂ φ : P₁ →ᵃ[k] P₂ E : AffineSubspace k P₁ F : AffineSubspace k P₂ inst✝¹ : Nonempty { x // x ∈ E } inst✝ : Nonempty { x // x ∈ F } h : AffineSubspace.map φ E = F x : P₂ hx✝ : x ∈ F hx : ∃ y, y ∈ E ∧ ↑φ y = x ⊢ ∃ a, ↑(restrict φ (_ : AffineSubspace.map φ E ≤ F)) a = { val := x, property := hx✝ } [PROOFSTEP] obtain ⟨y, hy, rfl⟩ := hx [GOAL] case mk.intro.intro k : Type u_1 V₁ : Type u_2 P₁ : Type u_3 V₂ : Type u_4 P₂ : Type u_5 inst✝⁸ : Ring k inst✝⁷ : AddCommGroup V₁ inst✝⁶ : AddCommGroup V₂ inst✝⁵ : Module k V₁ inst✝⁴ : Module k V₂ inst✝³ : AddTorsor V₁ P₁ inst✝² : AddTorsor V₂ P₂ φ : P₁ →ᵃ[k] P₂ E : AffineSubspace k P₁ F : AffineSubspace k P₂ inst✝¹ : Nonempty { x // x ∈ E } inst✝ : Nonempty { x // x ∈ F } h : AffineSubspace.map φ E = F y : P₁ hy : y ∈ E hx : ↑φ y ∈ F ⊢ ∃ a, ↑(restrict φ (_ : AffineSubspace.map φ E ≤ F)) a = { val := ↑φ y, property := hx } [PROOFSTEP] exact ⟨⟨y, hy⟩, rfl⟩
{"mathlib_filename": "Mathlib.LinearAlgebra.AffineSpace.Restrict", "llama_tokens": 5418}
[GOAL] R : Type u_1 M : Type u_2 ι : Type u_3 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M φ : ι → Type u_4 f : (ι : ι) → φ ι → M hf : ∀ (i : ι), LinearIndependent R (f i) ⊢ LinearIndependent R fun ix => single ix.fst (f ix.fst ix.snd) [PROOFSTEP] apply @linearIndependent_iUnion_finite R _ _ _ _ ι φ fun i x => single i (f i x) [GOAL] case hindep R : Type u_1 M : Type u_2 ι : Type u_3 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M φ : ι → Type u_4 f : (ι : ι) → φ ι → M hf : ∀ (i : ι), LinearIndependent R (f i) ⊢ ∀ (j : ι), LinearIndependent R fun x => single j (f j x) [PROOFSTEP] intro i [GOAL] case hindep R : Type u_1 M : Type u_2 ι : Type u_3 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M φ : ι → Type u_4 f : (ι : ι) → φ ι → M hf : ∀ (i : ι), LinearIndependent R (f i) i : ι ⊢ LinearIndependent R fun x => single i (f i x) [PROOFSTEP] have h_disjoint : Disjoint (span R (range (f i))) (ker (lsingle i)) := by rw [ker_lsingle] exact disjoint_bot_right [GOAL] R : Type u_1 M : Type u_2 ι : Type u_3 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M φ : ι → Type u_4 f : (ι : ι) → φ ι → M hf : ∀ (i : ι), LinearIndependent R (f i) i : ι ⊢ Disjoint (span R (Set.range (f i))) (ker (lsingle i)) [PROOFSTEP] rw [ker_lsingle] [GOAL] R : Type u_1 M : Type u_2 ι : Type u_3 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M φ : ι → Type u_4 f : (ι : ι) → φ ι → M hf : ∀ (i : ι), LinearIndependent R (f i) i : ι ⊢ Disjoint (span R (Set.range (f i))) ⊥ [PROOFSTEP] exact disjoint_bot_right [GOAL] case hindep R : Type u_1 M : Type u_2 ι : Type u_3 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M φ : ι → Type u_4 f : (ι : ι) → φ ι → M hf : ∀ (i : ι), LinearIndependent R (f i) i : ι h_disjoint : Disjoint (span R (Set.range (f i))) (ker (lsingle i)) ⊢ LinearIndependent R fun x => single i (f i x) [PROOFSTEP] apply (hf i).map h_disjoint [GOAL] case hd R : Type u_1 M : Type u_2 ι : Type u_3 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M φ : ι → Type u_4 f : (ι : ι) → φ ι → M hf : ∀ (i : ι), LinearIndependent R (f i) ⊢ ∀ (i : ι) (t : Set ι), Set.Finite t → ¬i ∈ t → Disjoint (span R (Set.range fun x => single i (f i x))) (⨆ (i : ι) (_ : i ∈ t), span R (Set.range fun x => single i (f i x))) [PROOFSTEP] intro i t _ hit [GOAL] case hd R : Type u_1 M : Type u_2 ι : Type u_3 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M φ : ι → Type u_4 f : (ι : ι) → φ ι → M hf : ∀ (i : ι), LinearIndependent R (f i) i : ι t : Set ι a✝ : Set.Finite t hit : ¬i ∈ t ⊢ Disjoint (span R (Set.range fun x => single i (f i x))) (⨆ (i : ι) (_ : i ∈ t), span R (Set.range fun x => single i (f i x))) [PROOFSTEP] refine' (disjoint_lsingle_lsingle { i } t (disjoint_singleton_left.2 hit)).mono _ _ [GOAL] case hd.refine'_1 R : Type u_1 M : Type u_2 ι : Type u_3 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M φ : ι → Type u_4 f : (ι : ι) → φ ι → M hf : ∀ (i : ι), LinearIndependent R (f i) i : ι t : Set ι a✝ : Set.Finite t hit : ¬i ∈ t ⊢ span R (Set.range fun x => single i (f i x)) ≤ ⨆ (a : ι) (_ : a ∈ {i}), LinearMap.range (lsingle a) [PROOFSTEP] rw [span_le] [GOAL] case hd.refine'_1 R : Type u_1 M : Type u_2 ι : Type u_3 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M φ : ι → Type u_4 f : (ι : ι) → φ ι → M hf : ∀ (i : ι), LinearIndependent R (f i) i : ι t : Set ι a✝ : Set.Finite t hit : ¬i ∈ t ⊢ (Set.range fun x => single i (f i x)) ⊆ ↑(⨆ (a : ι) (_ : a ∈ {i}), LinearMap.range (lsingle a)) [PROOFSTEP] simp only [iSup_singleton] [GOAL] case hd.refine'_1 R : Type u_1 M : Type u_2 ι : Type u_3 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M φ : ι → Type u_4 f : (ι : ι) → φ ι → M hf : ∀ (i : ι), LinearIndependent R (f i) i : ι t : Set ι a✝ : Set.Finite t hit : ¬i ∈ t ⊢ (Set.range fun x => single i (f i x)) ⊆ ↑(LinearMap.range (lsingle i)) [PROOFSTEP] rw [range_coe] [GOAL] case hd.refine'_1 R : Type u_1 M : Type u_2 ι : Type u_3 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M φ : ι → Type u_4 f : (ι : ι) → φ ι → M hf : ∀ (i : ι), LinearIndependent R (f i) i : ι t : Set ι a✝ : Set.Finite t hit : ¬i ∈ t ⊢ (Set.range fun x => single i (f i x)) ⊆ Set.range ↑(lsingle i) [PROOFSTEP] apply range_comp_subset_range _ (lsingle i) [GOAL] case hd.refine'_2 R : Type u_1 M : Type u_2 ι : Type u_3 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M φ : ι → Type u_4 f : (ι : ι) → φ ι → M hf : ∀ (i : ι), LinearIndependent R (f i) i : ι t : Set ι a✝ : Set.Finite t hit : ¬i ∈ t ⊢ ⨆ (i : ι) (_ : i ∈ t), span R (Set.range fun x => single i (f i x)) ≤ ⨆ (a : ι) (_ : a ∈ t), LinearMap.range (lsingle a) [PROOFSTEP] refine' iSup₂_mono fun i hi => _ [GOAL] case hd.refine'_2 R : Type u_1 M : Type u_2 ι : Type u_3 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M φ : ι → Type u_4 f : (ι : ι) → φ ι → M hf : ∀ (i : ι), LinearIndependent R (f i) i✝ : ι t : Set ι a✝ : Set.Finite t hit : ¬i✝ ∈ t i : ι hi : i ∈ t ⊢ span R (Set.range fun x => single i (f i x)) ≤ LinearMap.range (lsingle i) [PROOFSTEP] rw [span_le, range_coe] [GOAL] case hd.refine'_2 R : Type u_1 M : Type u_2 ι : Type u_3 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M φ : ι → Type u_4 f : (ι : ι) → φ ι → M hf : ∀ (i : ι), LinearIndependent R (f i) i✝ : ι t : Set ι a✝ : Set.Finite t hit : ¬i✝ ∈ t i : ι hi : i ∈ t ⊢ (Set.range fun x => single i (f i x)) ⊆ Set.range ↑(lsingle i) [PROOFSTEP] apply range_comp_subset_range _ (lsingle i) [GOAL] R : Type u_1 M : Type u_2 ι : Type u_3 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M φ : ι → Type u_4 b : (i : ι) → Basis (φ i) R M g : ι →₀ M ix : (i : ι) × φ i ⊢ (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0 [PROOFSTEP] simp only [Finset.mem_sigma, mem_support_iff, and_iff_right_iff_imp, Ne.def] [GOAL] R : Type u_1 M : Type u_2 ι : Type u_3 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M φ : ι → Type u_4 b : (i : ι) → Basis (φ i) R M g : ι →₀ M ix : (i : ι) × φ i ⊢ ¬↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd = 0 → ¬↑g ix.fst = 0 [PROOFSTEP] intro b hg [GOAL] R : Type u_1 M : Type u_2 ι : Type u_3 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M φ : ι → Type u_4 b✝ : (i : ι) → Basis (φ i) R M g : ι →₀ M ix : (i : ι) × φ i b : ¬↑(↑(b✝ ix.fst).repr (↑g ix.fst)) ix.snd = 0 hg : ↑g ix.fst = 0 ⊢ False [PROOFSTEP] simp [hg] at b [GOAL] R : Type u_1 M : Type u_2 ι : Type u_3 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M φ : ι → Type u_4 b : (i : ι) → Basis (φ i) R M g h : ι →₀ M ⊢ (fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }) (g + h) = (fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }) g + (fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }) h [PROOFSTEP] ext ⟨i, x⟩ [GOAL] case h.mk R : Type u_1 M : Type u_2 ι : Type u_3 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M φ : ι → Type u_4 b : (i : ι) → Basis (φ i) R M g h : ι →₀ M i : ι x : φ i ⊢ ↑((fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }) (g + h)) { fst := i, snd := x } = ↑((fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }) g + (fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }) h) { fst := i, snd := x } [PROOFSTEP] simp only [coe_mk, add_apply, LinearEquiv.map_add] [GOAL] R : Type u_1 M : Type u_2 ι : Type u_3 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M φ : ι → Type u_4 b : (i : ι) → Basis (φ i) R M c : R h : ι →₀ M ⊢ AddHom.toFun { toFun := fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }, map_add' := (_ : ∀ (g h : ι →₀ M), (fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }) (g + h) = (fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }) g + (fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }) h) } (c • h) = ↑(RingHom.id R) c • AddHom.toFun { toFun := fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }, map_add' := (_ : ∀ (g h : ι →₀ M), (fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }) (g + h) = (fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }) g + (fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }) h) } h [PROOFSTEP] ext ⟨i, x⟩ [GOAL] case h.mk R : Type u_1 M : Type u_2 ι : Type u_3 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M φ : ι → Type u_4 b : (i : ι) → Basis (φ i) R M c : R h : ι →₀ M i : ι x : φ i ⊢ ↑(AddHom.toFun { toFun := fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }, map_add' := (_ : ∀ (g h : ι →₀ M), (fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }) (g + h) = (fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }) g + (fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }) h) } (c • h)) { fst := i, snd := x } = ↑(↑(RingHom.id R) c • AddHom.toFun { toFun := fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }, map_add' := (_ : ∀ (g h : ι →₀ M), (fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }) (g + h) = (fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }) g + (fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }) h) } h) { fst := i, snd := x } [PROOFSTEP] simp only [coe_mk, smul_apply, LinearEquiv.map_smul, RingHom.id_apply] [GOAL] R : Type u_1 M : Type u_2 ι : Type u_3 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M φ : ι → Type u_4 b : (i : ι) → Basis (φ i) R M g : (i : ι) × φ i →₀ R i : ι ⊢ i ∈ Finset.image Sigma.fst g.support ↔ (fun i => ↑(LinearEquiv.symm (b i).repr) (comapDomain (Sigma.mk i) g (_ : InjOn (Sigma.mk i) (Sigma.mk i ⁻¹' ↑g.support)))) i ≠ 0 [PROOFSTEP] rw [Ne.def, ← (b i).repr.injective.eq_iff, (b i).repr.apply_symm_apply, FunLike.ext_iff] [GOAL] R : Type u_1 M : Type u_2 ι : Type u_3 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M φ : ι → Type u_4 b : (i : ι) → Basis (φ i) R M g : (i : ι) × φ i →₀ R i : ι ⊢ i ∈ Finset.image Sigma.fst g.support ↔ ¬∀ (x : φ i), ↑(comapDomain (Sigma.mk i) g (_ : InjOn (Sigma.mk i) (Sigma.mk i ⁻¹' ↑g.support))) x = ↑(↑(b i).repr 0) x [PROOFSTEP] simp only [exists_prop, LinearEquiv.map_zero, comapDomain_apply, zero_apply, exists_and_right, mem_support_iff, exists_eq_right, Sigma.exists, Finset.mem_image, not_forall] [GOAL] R : Type u_1 M : Type u_2 ι : Type u_3 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M φ : ι → Type u_4 b : (i : ι) → Basis (φ i) R M g : ι →₀ M ⊢ (fun g => { support := Finset.image Sigma.fst g.support, toFun := fun i => ↑(LinearEquiv.symm (b i).repr) (comapDomain (Sigma.mk i) g (_ : InjOn (Sigma.mk i) (Sigma.mk i ⁻¹' ↑g.support))), mem_support_toFun := (_ : ∀ (i : ι), i ∈ Finset.image Sigma.fst g.support ↔ (fun i => ↑(LinearEquiv.symm (b i).repr) (comapDomain (Sigma.mk i) g (_ : InjOn (Sigma.mk i) (Sigma.mk i ⁻¹' ↑g.support)))) i ≠ 0) }) (AddHom.toFun { toAddHom := { toFun := fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }, map_add' := (_ : ∀ (g h : ι →₀ M), (fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }) (g + h) = (fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }) g + (fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }) h) }, map_smul' := (_ : ∀ (c : R) (h : ι →₀ M), AddHom.toFun { toFun := fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }, map_add' := (_ : ∀ (g h : ι →₀ M), (fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }) (g + h) = (fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }) g + (fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }) h) } (c • h) = ↑(RingHom.id R) c • AddHom.toFun { toFun := fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }, map_add' := (_ : ∀ (g h : ι →₀ M), (fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }) (g + h) = (fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }) g + (fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }) h) } h) }.toAddHom g) = g [PROOFSTEP] ext i [GOAL] case h R : Type u_1 M : Type u_2 ι : Type u_3 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M φ : ι → Type u_4 b : (i : ι) → Basis (φ i) R M g : ι →₀ M i : ι ⊢ ↑((fun g => { support := Finset.image Sigma.fst g.support, toFun := fun i => ↑(LinearEquiv.symm (b i).repr) (comapDomain (Sigma.mk i) g (_ : InjOn (Sigma.mk i) (Sigma.mk i ⁻¹' ↑g.support))), mem_support_toFun := (_ : ∀ (i : ι), i ∈ Finset.image Sigma.fst g.support ↔ (fun i => ↑(LinearEquiv.symm (b i).repr) (comapDomain (Sigma.mk i) g (_ : InjOn (Sigma.mk i) (Sigma.mk i ⁻¹' ↑g.support)))) i ≠ 0) }) (AddHom.toFun { toAddHom := { toFun := fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }, map_add' := (_ : ∀ (g h : ι →₀ M), (fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }) (g + h) = (fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }) g + (fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }) h) }, map_smul' := (_ : ∀ (c : R) (h : ι →₀ M), AddHom.toFun { toFun := fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }, map_add' := (_ : ∀ (g h : ι →₀ M), (fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }) (g + h) = (fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }) g + (fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }) h) } (c • h) = ↑(RingHom.id R) c • AddHom.toFun { toFun := fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }, map_add' := (_ : ∀ (g h : ι →₀ M), (fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }) (g + h) = (fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }) g + (fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }) h) } h) }.toAddHom g)) i = ↑g i [PROOFSTEP] rw [← (b i).repr.injective.eq_iff] [GOAL] case h R : Type u_1 M : Type u_2 ι : Type u_3 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M φ : ι → Type u_4 b : (i : ι) → Basis (φ i) R M g : ι →₀ M i : ι ⊢ ↑(b i).repr (↑((fun g => { support := Finset.image Sigma.fst g.support, toFun := fun i => ↑(LinearEquiv.symm (b i).repr) (comapDomain (Sigma.mk i) g (_ : InjOn (Sigma.mk i) (Sigma.mk i ⁻¹' ↑g.support))), mem_support_toFun := (_ : ∀ (i : ι), i ∈ Finset.image Sigma.fst g.support ↔ (fun i => ↑(LinearEquiv.symm (b i).repr) (comapDomain (Sigma.mk i) g (_ : InjOn (Sigma.mk i) (Sigma.mk i ⁻¹' ↑g.support)))) i ≠ 0) }) (AddHom.toFun { toAddHom := { toFun := fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }, map_add' := (_ : ∀ (g h : ι →₀ M), (fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }) (g + h) = (fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }) g + (fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }) h) }, map_smul' := (_ : ∀ (c : R) (h : ι →₀ M), AddHom.toFun { toFun := fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }, map_add' := (_ : ∀ (g h : ι →₀ M), (fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }) (g + h) = (fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }) g + (fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }) h) } (c • h) = ↑(RingHom.id R) c • AddHom.toFun { toFun := fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }, map_add' := (_ : ∀ (g h : ι →₀ M), (fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }) (g + h) = (fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }) g + (fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }) h) } h) }.toAddHom g)) i) = ↑(b i).repr (↑g i) [PROOFSTEP] ext x [GOAL] case h.h R : Type u_1 M : Type u_2 ι : Type u_3 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M φ : ι → Type u_4 b : (i : ι) → Basis (φ i) R M g : ι →₀ M i : ι x : φ i ⊢ ↑(↑(b i).repr (↑((fun g => { support := Finset.image Sigma.fst g.support, toFun := fun i => ↑(LinearEquiv.symm (b i).repr) (comapDomain (Sigma.mk i) g (_ : InjOn (Sigma.mk i) (Sigma.mk i ⁻¹' ↑g.support))), mem_support_toFun := (_ : ∀ (i : ι), i ∈ Finset.image Sigma.fst g.support ↔ (fun i => ↑(LinearEquiv.symm (b i).repr) (comapDomain (Sigma.mk i) g (_ : InjOn (Sigma.mk i) (Sigma.mk i ⁻¹' ↑g.support)))) i ≠ 0) }) (AddHom.toFun { toAddHom := { toFun := fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }, map_add' := (_ : ∀ (g h : ι →₀ M), (fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }) (g + h) = (fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }) g + (fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }) h) }, map_smul' := (_ : ∀ (c : R) (h : ι →₀ M), AddHom.toFun { toFun := fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }, map_add' := (_ : ∀ (g h : ι →₀ M), (fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }) (g + h) = (fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }) g + (fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }) h) } (c • h) = ↑(RingHom.id R) c • AddHom.toFun { toFun := fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }, map_add' := (_ : ∀ (g h : ι →₀ M), (fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }) (g + h) = (fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }) g + (fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }) h) } h) }.toAddHom g)) i)) x = ↑(↑(b i).repr (↑g i)) x [PROOFSTEP] simp only [coe_mk, LinearEquiv.apply_symm_apply, comapDomain_apply] [GOAL] R : Type u_1 M : Type u_2 ι : Type u_3 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M φ : ι → Type u_4 b : (i : ι) → Basis (φ i) R M g : (i : ι) × φ i →₀ R ⊢ AddHom.toFun { toAddHom := { toFun := fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }, map_add' := (_ : ∀ (g h : ι →₀ M), (fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }) (g + h) = (fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }) g + (fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }) h) }, map_smul' := (_ : ∀ (c : R) (h : ι →₀ M), AddHom.toFun { toFun := fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }, map_add' := (_ : ∀ (g h : ι →₀ M), (fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }) (g + h) = (fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }) g + (fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }) h) } (c • h) = ↑(RingHom.id R) c • AddHom.toFun { toFun := fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }, map_add' := (_ : ∀ (g h : ι →₀ M), (fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }) (g + h) = (fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }) g + (fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }) h) } h) }.toAddHom ((fun g => { support := Finset.image Sigma.fst g.support, toFun := fun i => ↑(LinearEquiv.symm (b i).repr) (comapDomain (Sigma.mk i) g (_ : InjOn (Sigma.mk i) (Sigma.mk i ⁻¹' ↑g.support))), mem_support_toFun := (_ : ∀ (i : ι), i ∈ Finset.image Sigma.fst g.support ↔ (fun i => ↑(LinearEquiv.symm (b i).repr) (comapDomain (Sigma.mk i) g (_ : InjOn (Sigma.mk i) (Sigma.mk i ⁻¹' ↑g.support)))) i ≠ 0) }) g) = g [PROOFSTEP] ext ⟨i, x⟩ [GOAL] case h.mk R : Type u_1 M : Type u_2 ι : Type u_3 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M φ : ι → Type u_4 b : (i : ι) → Basis (φ i) R M g : (i : ι) × φ i →₀ R i : ι x : φ i ⊢ ↑(AddHom.toFun { toAddHom := { toFun := fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }, map_add' := (_ : ∀ (g h : ι →₀ M), (fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }) (g + h) = (fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }) g + (fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }) h) }, map_smul' := (_ : ∀ (c : R) (h : ι →₀ M), AddHom.toFun { toFun := fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }, map_add' := (_ : ∀ (g h : ι →₀ M), (fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }) (g + h) = (fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }) g + (fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }) h) } (c • h) = ↑(RingHom.id R) c • AddHom.toFun { toFun := fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }, map_add' := (_ : ∀ (g h : ι →₀ M), (fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }) (g + h) = (fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }) g + (fun g => { support := Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support, toFun := fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd, mem_support_toFun := (_ : ∀ (ix : (i : ι) × φ i), (ix ∈ Finset.sigma g.support fun i => (↑(b i).repr (↑g i)).support) ↔ (fun ix => ↑(↑(b ix.fst).repr (↑g ix.fst)) ix.snd) ix ≠ 0) }) h) } h) }.toAddHom ((fun g => { support := Finset.image Sigma.fst g.support, toFun := fun i => ↑(LinearEquiv.symm (b i).repr) (comapDomain (Sigma.mk i) g (_ : InjOn (Sigma.mk i) (Sigma.mk i ⁻¹' ↑g.support))), mem_support_toFun := (_ : ∀ (i : ι), i ∈ Finset.image Sigma.fst g.support ↔ (fun i => ↑(LinearEquiv.symm (b i).repr) (comapDomain (Sigma.mk i) g (_ : InjOn (Sigma.mk i) (Sigma.mk i ⁻¹' ↑g.support)))) i ≠ 0) }) g)) { fst := i, snd := x } = ↑g { fst := i, snd := x } [PROOFSTEP] simp only [coe_mk, LinearEquiv.apply_symm_apply, comapDomain_apply] [GOAL] R : Type u_1 M : Type u_2 ι : Type u_3 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M φ : ι → Type u_4 b : (i : ι) → Basis (φ i) R M x✝ : (i : ι) × φ i i : ι x : φ i ⊢ ↑(Finsupp.basis b).repr (single { fst := i, snd := x }.fst (↑(b { fst := i, snd := x }.fst) { fst := i, snd := x }.snd)) = single { fst := i, snd := x } 1 [PROOFSTEP] classical ext ⟨j, y⟩ by_cases h : i = j · cases h simp only [basis_repr, single_eq_same, Basis.repr_self, Finsupp.single_apply_left sigma_mk_injective] · have : Sigma.mk i x ≠ Sigma.mk j y := fun h' => h <| congrArg (fun s => s.fst) h' simp only [basis_repr, single_apply, h, this, false_and_iff, if_false, LinearEquiv.map_zero, zero_apply] [GOAL] R : Type u_1 M : Type u_2 ι : Type u_3 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M φ : ι → Type u_4 b : (i : ι) → Basis (φ i) R M x✝ : (i : ι) × φ i i : ι x : φ i ⊢ ↑(Finsupp.basis b).repr (single { fst := i, snd := x }.fst (↑(b { fst := i, snd := x }.fst) { fst := i, snd := x }.snd)) = single { fst := i, snd := x } 1 [PROOFSTEP] ext ⟨j, y⟩ [GOAL] case h.mk R : Type u_1 M : Type u_2 ι : Type u_3 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M φ : ι → Type u_4 b : (i : ι) → Basis (φ i) R M x✝ : (i : ι) × φ i i : ι x : φ i j : ι y : φ j ⊢ ↑(↑(Finsupp.basis b).repr (single { fst := i, snd := x }.fst (↑(b { fst := i, snd := x }.fst) { fst := i, snd := x }.snd))) { fst := j, snd := y } = ↑(single { fst := i, snd := x } 1) { fst := j, snd := y } [PROOFSTEP] by_cases h : i = j [GOAL] case pos R : Type u_1 M : Type u_2 ι : Type u_3 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M φ : ι → Type u_4 b : (i : ι) → Basis (φ i) R M x✝ : (i : ι) × φ i i : ι x : φ i j : ι y : φ j h : i = j ⊢ ↑(↑(Finsupp.basis b).repr (single { fst := i, snd := x }.fst (↑(b { fst := i, snd := x }.fst) { fst := i, snd := x }.snd))) { fst := j, snd := y } = ↑(single { fst := i, snd := x } 1) { fst := j, snd := y } [PROOFSTEP] cases h [GOAL] case pos.refl R : Type u_1 M : Type u_2 ι : Type u_3 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M φ : ι → Type u_4 b : (i : ι) → Basis (φ i) R M x✝ : (i : ι) × φ i i : ι x y : φ i ⊢ ↑(↑(Finsupp.basis b).repr (single { fst := i, snd := x }.fst (↑(b { fst := i, snd := x }.fst) { fst := i, snd := x }.snd))) { fst := i, snd := y } = ↑(single { fst := i, snd := x } 1) { fst := i, snd := y } [PROOFSTEP] simp only [basis_repr, single_eq_same, Basis.repr_self, Finsupp.single_apply_left sigma_mk_injective] [GOAL] case neg R : Type u_1 M : Type u_2 ι : Type u_3 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M φ : ι → Type u_4 b : (i : ι) → Basis (φ i) R M x✝ : (i : ι) × φ i i : ι x : φ i j : ι y : φ j h : ¬i = j ⊢ ↑(↑(Finsupp.basis b).repr (single { fst := i, snd := x }.fst (↑(b { fst := i, snd := x }.fst) { fst := i, snd := x }.snd))) { fst := j, snd := y } = ↑(single { fst := i, snd := x } 1) { fst := j, snd := y } [PROOFSTEP] have : Sigma.mk i x ≠ Sigma.mk j y := fun h' => h <| congrArg (fun s => s.fst) h' [GOAL] case neg R : Type u_1 M : Type u_2 ι : Type u_3 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M φ : ι → Type u_4 b : (i : ι) → Basis (φ i) R M x✝ : (i : ι) × φ i i : ι x : φ i j : ι y : φ j h : ¬i = j this : { fst := i, snd := x } ≠ { fst := j, snd := y } ⊢ ↑(↑(Finsupp.basis b).repr (single { fst := i, snd := x }.fst (↑(b { fst := i, snd := x }.fst) { fst := i, snd := x }.snd))) { fst := j, snd := y } = ↑(single { fst := i, snd := x } 1) { fst := j, snd := y } [PROOFSTEP] simp only [basis_repr, single_apply, h, this, false_and_iff, if_false, LinearEquiv.map_zero, zero_apply] [GOAL] R : Type u_1 M : Type u_2 n : Type u_3 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M a : R i : n ⊢ (Finset.sum Finset.univ fun x => Finsupp.single x (if i = x then a else 0)) = Finsupp.single i a [PROOFSTEP] rw [Finset.sum_congr_set { i } (fun x : n => Finsupp.single x (ite (i = x) a 0)) fun _ => Finsupp.single i a] [GOAL] R : Type u_1 M : Type u_2 n : Type u_3 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M a : R i : n ⊢ (Finset.sum Finset.univ fun x => Finsupp.single i a) = Finsupp.single i a [PROOFSTEP] simp [GOAL] case w R : Type u_1 M : Type u_2 n : Type u_3 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M a : R i : n ⊢ ∀ (x : n), x ∈ {i} → Finsupp.single x (if i = x then a else 0) = Finsupp.single i a [PROOFSTEP] intro x hx [GOAL] case w R : Type u_1 M : Type u_2 n : Type u_3 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M a : R i x : n hx : x ∈ {i} ⊢ Finsupp.single x (if i = x then a else 0) = Finsupp.single i a [PROOFSTEP] rw [Set.mem_singleton_iff] at hx [GOAL] case w R : Type u_1 M : Type u_2 n : Type u_3 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M a : R i x : n hx : x = i ⊢ Finsupp.single x (if i = x then a else 0) = Finsupp.single i a [PROOFSTEP] simp [hx] [GOAL] case w' R : Type u_1 M : Type u_2 n : Type u_3 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M a : R i : n ⊢ ∀ (x : n), ¬x ∈ {i} → Finsupp.single x (if i = x then a else 0) = 0 [PROOFSTEP] intro x hx [GOAL] case w' R : Type u_1 M : Type u_2 n : Type u_3 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M a : R i x : n hx : ¬x ∈ {i} ⊢ Finsupp.single x (if i = x then a else 0) = 0 [PROOFSTEP] have hx' : ¬i = x := by refine' ne_comm.mp _ rwa [mem_singleton_iff] at hx [GOAL] R : Type u_1 M : Type u_2 n : Type u_3 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M a : R i x : n hx : ¬x ∈ {i} ⊢ ¬i = x [PROOFSTEP] refine' ne_comm.mp _ [GOAL] R : Type u_1 M : Type u_2 n : Type u_3 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M a : R i x : n hx : ¬x ∈ {i} ⊢ x ≠ i [PROOFSTEP] rwa [mem_singleton_iff] at hx [GOAL] case w' R : Type u_1 M : Type u_2 n : Type u_3 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M a : R i x : n hx : ¬x ∈ {i} hx' : ¬i = x ⊢ Finsupp.single x (if i = x then a else 0) = 0 [PROOFSTEP] simp [hx'] [GOAL] R : Type u_1 M : Type u_2 n : Type u_3 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M b : n → M i : n ⊢ (Finset.sum Finset.univ fun x => (if i = x then 1 else 0) • b x) = b i [PROOFSTEP] simp only [ite_smul, zero_smul, one_smul, Finset.sum_ite_eq, Finset.mem_univ, ite_true] [GOAL] R : Type u_1 M : Type u_2 n : Type u_3 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M b : Basis n R M i : n ⊢ ↑(LinearEquiv.symm (equivFun b)) (↑(stdBasis R (fun x => R) i) 1) = ↑b i [PROOFSTEP] simp
{"mathlib_filename": "Mathlib.LinearAlgebra.FinsuppVectorSpace", "llama_tokens": 30698}
[GOAL] ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝³ : AddCommGroup V inst✝² : AffineSpace V P inst✝¹ : Ring k inst✝ : Module k V b : AffineBasis ι k P s : Finset ι i j : ι e : ι ≃ ι' ⊢ affineSpan k (range id) = ⊤ [PROOFSTEP] simp [GOAL] ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝³ : AddCommGroup V inst✝² : AffineSpace V P inst✝¹ : Ring k inst✝ : Module k V b : AffineBasis ι k P s : Finset ι i j : ι e : ι ≃ ι' f g : AffineBasis ι k P h : f.toFun = g.toFun ⊢ f = g [PROOFSTEP] cases f [GOAL] case mk ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝³ : AddCommGroup V inst✝² : AffineSpace V P inst✝¹ : Ring k inst✝ : Module k V b : AffineBasis ι k P s : Finset ι i j : ι e : ι ≃ ι' g : AffineBasis ι k P toFun✝ : ι → P ind'✝ : AffineIndependent k toFun✝ tot'✝ : affineSpan k (range toFun✝) = ⊤ h : { toFun := toFun✝, ind' := ind'✝, tot' := tot'✝ }.toFun = g.toFun ⊢ { toFun := toFun✝, ind' := ind'✝, tot' := tot'✝ } = g [PROOFSTEP] cases g [GOAL] case mk.mk ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝³ : AddCommGroup V inst✝² : AffineSpace V P inst✝¹ : Ring k inst✝ : Module k V b : AffineBasis ι k P s : Finset ι i j : ι e : ι ≃ ι' toFun✝¹ : ι → P ind'✝¹ : AffineIndependent k toFun✝¹ tot'✝¹ : affineSpan k (range toFun✝¹) = ⊤ toFun✝ : ι → P ind'✝ : AffineIndependent k toFun✝ tot'✝ : affineSpan k (range toFun✝) = ⊤ h : { toFun := toFun✝¹, ind' := ind'✝¹, tot' := tot'✝¹ }.toFun = { toFun := toFun✝, ind' := ind'✝, tot' := tot'✝ }.toFun ⊢ { toFun := toFun✝¹, ind' := ind'✝¹, tot' := tot'✝¹ } = { toFun := toFun✝, ind' := ind'✝, tot' := tot'✝ } [PROOFSTEP] congr [GOAL] ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝³ : AddCommGroup V inst✝² : AffineSpace V P inst✝¹ : Ring k inst✝ : Module k V b : AffineBasis ι k P s : Finset ι i j : ι e : ι ≃ ι' hι : IsEmpty ι ⊢ False [PROOFSTEP] simpa only [@range_eq_empty _ _ hι, AffineSubspace.span_empty, bot_ne_top] using b.tot [GOAL] ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝³ : AddCommGroup V inst✝² : AffineSpace V P inst✝¹ : Ring k inst✝ : Module k V b : AffineBasis ι k P s : Finset ι i j : ι e✝ e : ι ≃ ι' ⊢ affineSpan k (range (↑b ∘ ↑e.symm)) = ⊤ [PROOFSTEP] rw [e.symm.surjective.range_comp] [GOAL] ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝³ : AddCommGroup V inst✝² : AffineSpace V P inst✝¹ : Ring k inst✝ : Module k V b : AffineBasis ι k P s : Finset ι i j : ι e✝ e : ι ≃ ι' ⊢ affineSpan k (range ↑b) = ⊤ [PROOFSTEP] exact b.3 [GOAL] ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝³ : AddCommGroup V inst✝² : AffineSpace V P inst✝¹ : Ring k inst✝ : Module k V b : AffineBasis ι k P s : Finset ι i✝ j : ι e : ι ≃ ι' i : ι ⊢ ⊤ ≤ Submodule.span k (range fun i_1 => ↑b ↑i_1 -ᵥ ↑b i) [PROOFSTEP] suffices Submodule.span k (range fun j : { x // x ≠ i } => b ↑j -ᵥ b i) = vectorSpan k (range b) by rw [this, ← direction_affineSpan, b.tot, AffineSubspace.direction_top] [GOAL] ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝³ : AddCommGroup V inst✝² : AffineSpace V P inst✝¹ : Ring k inst✝ : Module k V b : AffineBasis ι k P s : Finset ι i✝ j : ι e : ι ≃ ι' i : ι this : Submodule.span k (range fun j => ↑b ↑j -ᵥ ↑b i) = vectorSpan k (range ↑b) ⊢ ⊤ ≤ Submodule.span k (range fun i_1 => ↑b ↑i_1 -ᵥ ↑b i) [PROOFSTEP] rw [this, ← direction_affineSpan, b.tot, AffineSubspace.direction_top] [GOAL] ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝³ : AddCommGroup V inst✝² : AffineSpace V P inst✝¹ : Ring k inst✝ : Module k V b : AffineBasis ι k P s : Finset ι i✝ j : ι e : ι ≃ ι' i : ι ⊢ Submodule.span k (range fun j => ↑b ↑j -ᵥ ↑b i) = vectorSpan k (range ↑b) [PROOFSTEP] conv_rhs => rw [← image_univ] [GOAL] ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝³ : AddCommGroup V inst✝² : AffineSpace V P inst✝¹ : Ring k inst✝ : Module k V b : AffineBasis ι k P s : Finset ι i✝ j : ι e : ι ≃ ι' i : ι | vectorSpan k (range ↑b) [PROOFSTEP] rw [← image_univ] [GOAL] ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝³ : AddCommGroup V inst✝² : AffineSpace V P inst✝¹ : Ring k inst✝ : Module k V b : AffineBasis ι k P s : Finset ι i✝ j : ι e : ι ≃ ι' i : ι | vectorSpan k (range ↑b) [PROOFSTEP] rw [← image_univ] [GOAL] ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝³ : AddCommGroup V inst✝² : AffineSpace V P inst✝¹ : Ring k inst✝ : Module k V b : AffineBasis ι k P s : Finset ι i✝ j : ι e : ι ≃ ι' i : ι | vectorSpan k (range ↑b) [PROOFSTEP] rw [← image_univ] [GOAL] ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝³ : AddCommGroup V inst✝² : AffineSpace V P inst✝¹ : Ring k inst✝ : Module k V b : AffineBasis ι k P s : Finset ι i✝ j : ι e : ι ≃ ι' i : ι ⊢ Submodule.span k (range fun j => ↑b ↑j -ᵥ ↑b i) = vectorSpan k (↑b '' univ) [PROOFSTEP] rw [vectorSpan_image_eq_span_vsub_set_right_ne k b (mem_univ i)] [GOAL] ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝³ : AddCommGroup V inst✝² : AffineSpace V P inst✝¹ : Ring k inst✝ : Module k V b : AffineBasis ι k P s : Finset ι i✝ j : ι e : ι ≃ ι' i : ι ⊢ Submodule.span k (range fun j => ↑b ↑j -ᵥ ↑b i) = Submodule.span k ((fun x => x -ᵥ ↑b i) '' (↑b '' (univ \ {i}))) [PROOFSTEP] congr [GOAL] case e_s ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝³ : AddCommGroup V inst✝² : AffineSpace V P inst✝¹ : Ring k inst✝ : Module k V b : AffineBasis ι k P s : Finset ι i✝ j : ι e : ι ≃ ι' i : ι ⊢ (range fun j => ↑b ↑j -ᵥ ↑b i) = (fun x => x -ᵥ ↑b i) '' (↑b '' (univ \ {i})) [PROOFSTEP] ext v [GOAL] case e_s.h ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝³ : AddCommGroup V inst✝² : AffineSpace V P inst✝¹ : Ring k inst✝ : Module k V b : AffineBasis ι k P s : Finset ι i✝ j : ι e : ι ≃ ι' i : ι v : V ⊢ (v ∈ range fun j => ↑b ↑j -ᵥ ↑b i) ↔ v ∈ (fun x => x -ᵥ ↑b i) '' (↑b '' (univ \ {i})) [PROOFSTEP] simp [GOAL] ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝³ : AddCommGroup V inst✝² : AffineSpace V P inst✝¹ : Ring k inst✝ : Module k V b : AffineBasis ι k P s : Finset ι i✝ j✝ : ι e : ι ≃ ι' i : ι j : { j // j ≠ i } ⊢ ↑(basisOf b i) j = ↑b ↑j -ᵥ ↑b i [PROOFSTEP] simp [basisOf] [GOAL] ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝³ : AddCommGroup V inst✝² : AffineSpace V P inst✝¹ : Ring k inst✝ : Module k V b : AffineBasis ι k P s : Finset ι i✝ j : ι e : ι ≃ ι' i : ι' ⊢ basisOf (reindex b e) i = Basis.reindex (basisOf b (↑e.symm i)) (Equiv.subtypeEquiv e (_ : ∀ (x : ι), ¬x = ↑e.symm i ↔ ¬↑e x = i)) [PROOFSTEP] ext j [GOAL] case a ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝³ : AddCommGroup V inst✝² : AffineSpace V P inst✝¹ : Ring k inst✝ : Module k V b : AffineBasis ι k P s : Finset ι i✝ j✝ : ι e : ι ≃ ι' i : ι' j : { j // j ≠ i } ⊢ ↑(basisOf (reindex b e) i) j = ↑(Basis.reindex (basisOf b (↑e.symm i)) (Equiv.subtypeEquiv e (_ : ∀ (x : ι), ¬x = ↑e.symm i ↔ ¬↑e x = i))) j [PROOFSTEP] simp [GOAL] ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝³ : AddCommGroup V inst✝² : AffineSpace V P inst✝¹ : Ring k inst✝ : Module k V b : AffineBasis ι k P s : Finset ι i✝ j : ι e : ι ≃ ι' i : ι q : P v : V ⊢ (fun q => 1 - ↑(Basis.sumCoords (basisOf b i)) (q -ᵥ ↑b i)) (v +ᵥ q) = ↑(-Basis.sumCoords (basisOf b i)) v +ᵥ (fun q => 1 - ↑(Basis.sumCoords (basisOf b i)) (q -ᵥ ↑b i)) q [PROOFSTEP] dsimp only [GOAL] ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝³ : AddCommGroup V inst✝² : AffineSpace V P inst✝¹ : Ring k inst✝ : Module k V b : AffineBasis ι k P s : Finset ι i✝ j : ι e : ι ≃ ι' i : ι q : P v : V ⊢ 1 - ↑(Basis.sumCoords (basisOf b i)) (v +ᵥ q -ᵥ ↑b i) = ↑(-Basis.sumCoords (basisOf b i)) v +ᵥ (1 - ↑(Basis.sumCoords (basisOf b i)) (q -ᵥ ↑b i)) [PROOFSTEP] rw [vadd_vsub_assoc, LinearMap.map_add, vadd_eq_add, LinearMap.neg_apply, sub_add_eq_sub_sub_swap, add_comm, sub_eq_add_neg] [GOAL] ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝³ : AddCommGroup V inst✝² : AffineSpace V P inst✝¹ : Ring k inst✝ : Module k V b : AffineBasis ι k P s : Finset ι i✝ j : ι e : ι ≃ ι' i : ι' ⊢ coord (reindex b e) i = coord b (↑e.symm i) [PROOFSTEP] ext [GOAL] case h ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝³ : AddCommGroup V inst✝² : AffineSpace V P inst✝¹ : Ring k inst✝ : Module k V b : AffineBasis ι k P s : Finset ι i✝ j : ι e : ι ≃ ι' i : ι' p✝ : P ⊢ ↑(coord (reindex b e) i) p✝ = ↑(coord b (↑e.symm i)) p✝ [PROOFSTEP] classical simp [AffineBasis.coord] [GOAL] case h ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝³ : AddCommGroup V inst✝² : AffineSpace V P inst✝¹ : Ring k inst✝ : Module k V b : AffineBasis ι k P s : Finset ι i✝ j : ι e : ι ≃ ι' i : ι' p✝ : P ⊢ ↑(coord (reindex b e) i) p✝ = ↑(coord b (↑e.symm i)) p✝ [PROOFSTEP] simp [AffineBasis.coord] [GOAL] ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝³ : AddCommGroup V inst✝² : AffineSpace V P inst✝¹ : Ring k inst✝ : Module k V b : AffineBasis ι k P s : Finset ι i✝ j : ι e : ι ≃ ι' i : ι ⊢ ↑(coord b i) (↑b i) = 1 [PROOFSTEP] simp only [coord, Basis.coe_sumCoords, LinearEquiv.map_zero, LinearEquiv.coe_coe, sub_zero, AffineMap.coe_mk, Finsupp.sum_zero_index, vsub_self] [GOAL] ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝³ : AddCommGroup V inst✝² : AffineSpace V P inst✝¹ : Ring k inst✝ : Module k V b : AffineBasis ι k P s : Finset ι i j : ι e : ι ≃ ι' h : i ≠ j ⊢ ↑(coord b i) (↑b j) = 0 [PROOFSTEP] rw [coord, AffineMap.coe_mk, ← @Subtype.coe_mk _ (fun j => j ≠ i) j h.symm, ← b.basisOf_apply, Basis.sumCoords_self_apply, sub_self] [GOAL] ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝⁴ : AddCommGroup V inst✝³ : AffineSpace V P inst✝² : Ring k inst✝¹ : Module k V b : AffineBasis ι k P s : Finset ι i✝ j✝ : ι e : ι ≃ ι' inst✝ : DecidableEq ι i j : ι ⊢ ↑(coord b i) (↑b j) = if i = j then 1 else 0 [PROOFSTEP] cases' eq_or_ne i j with h h [GOAL] case inl ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝⁴ : AddCommGroup V inst✝³ : AffineSpace V P inst✝² : Ring k inst✝¹ : Module k V b : AffineBasis ι k P s : Finset ι i✝ j✝ : ι e : ι ≃ ι' inst✝ : DecidableEq ι i j : ι h : i = j ⊢ ↑(coord b i) (↑b j) = if i = j then 1 else 0 [PROOFSTEP] simp [h] [GOAL] case inr ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝⁴ : AddCommGroup V inst✝³ : AffineSpace V P inst✝² : Ring k inst✝¹ : Module k V b : AffineBasis ι k P s : Finset ι i✝ j✝ : ι e : ι ≃ ι' inst✝ : DecidableEq ι i j : ι h : i ≠ j ⊢ ↑(coord b i) (↑b j) = if i = j then 1 else 0 [PROOFSTEP] simp [h] [GOAL] ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝³ : AddCommGroup V inst✝² : AffineSpace V P inst✝¹ : Ring k inst✝ : Module k V b : AffineBasis ι k P s : Finset ι i j : ι e : ι ≃ ι' hi : i ∈ s w : ι → k hw : Finset.sum s w = 1 ⊢ ↑(coord b i) (↑(Finset.affineCombination k s ↑b) w) = w i [PROOFSTEP] classical simp only [coord_apply, hi, Finset.affineCombination_eq_linear_combination, if_true, mul_boole, hw, Function.comp_apply, smul_eq_mul, s.sum_ite_eq, s.map_affineCombination b w hw] [GOAL] ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝³ : AddCommGroup V inst✝² : AffineSpace V P inst✝¹ : Ring k inst✝ : Module k V b : AffineBasis ι k P s : Finset ι i j : ι e : ι ≃ ι' hi : i ∈ s w : ι → k hw : Finset.sum s w = 1 ⊢ ↑(coord b i) (↑(Finset.affineCombination k s ↑b) w) = w i [PROOFSTEP] simp only [coord_apply, hi, Finset.affineCombination_eq_linear_combination, if_true, mul_boole, hw, Function.comp_apply, smul_eq_mul, s.sum_ite_eq, s.map_affineCombination b w hw] [GOAL] ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝³ : AddCommGroup V inst✝² : AffineSpace V P inst✝¹ : Ring k inst✝ : Module k V b : AffineBasis ι k P s : Finset ι i j : ι e : ι ≃ ι' hi : ¬i ∈ s w : ι → k hw : Finset.sum s w = 1 ⊢ ↑(coord b i) (↑(Finset.affineCombination k s ↑b) w) = 0 [PROOFSTEP] classical simp only [coord_apply, hi, Finset.affineCombination_eq_linear_combination, if_false, mul_boole, hw, Function.comp_apply, smul_eq_mul, s.sum_ite_eq, s.map_affineCombination b w hw] [GOAL] ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝³ : AddCommGroup V inst✝² : AffineSpace V P inst✝¹ : Ring k inst✝ : Module k V b : AffineBasis ι k P s : Finset ι i j : ι e : ι ≃ ι' hi : ¬i ∈ s w : ι → k hw : Finset.sum s w = 1 ⊢ ↑(coord b i) (↑(Finset.affineCombination k s ↑b) w) = 0 [PROOFSTEP] simp only [coord_apply, hi, Finset.affineCombination_eq_linear_combination, if_false, mul_boole, hw, Function.comp_apply, smul_eq_mul, s.sum_ite_eq, s.map_affineCombination b w hw] [GOAL] ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝⁴ : AddCommGroup V inst✝³ : AffineSpace V P inst✝² : Ring k inst✝¹ : Module k V b : AffineBasis ι k P s : Finset ι i j : ι e : ι ≃ ι' inst✝ : Fintype ι q : P ⊢ ∑ i : ι, ↑(coord b i) q = 1 [PROOFSTEP] have hq : q ∈ affineSpan k (range b) := by rw [b.tot] exact AffineSubspace.mem_top k V q [GOAL] ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝⁴ : AddCommGroup V inst✝³ : AffineSpace V P inst✝² : Ring k inst✝¹ : Module k V b : AffineBasis ι k P s : Finset ι i j : ι e : ι ≃ ι' inst✝ : Fintype ι q : P ⊢ q ∈ affineSpan k (range ↑b) [PROOFSTEP] rw [b.tot] [GOAL] ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝⁴ : AddCommGroup V inst✝³ : AffineSpace V P inst✝² : Ring k inst✝¹ : Module k V b : AffineBasis ι k P s : Finset ι i j : ι e : ι ≃ ι' inst✝ : Fintype ι q : P ⊢ q ∈ ⊤ [PROOFSTEP] exact AffineSubspace.mem_top k V q [GOAL] ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝⁴ : AddCommGroup V inst✝³ : AffineSpace V P inst✝² : Ring k inst✝¹ : Module k V b : AffineBasis ι k P s : Finset ι i j : ι e : ι ≃ ι' inst✝ : Fintype ι q : P hq : q ∈ affineSpan k (range ↑b) ⊢ ∑ i : ι, ↑(coord b i) q = 1 [PROOFSTEP] obtain ⟨w, hw, rfl⟩ := eq_affineCombination_of_mem_affineSpan_of_fintype hq [GOAL] case intro.intro ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝⁴ : AddCommGroup V inst✝³ : AffineSpace V P inst✝² : Ring k inst✝¹ : Module k V b : AffineBasis ι k P s : Finset ι i j : ι e : ι ≃ ι' inst✝ : Fintype ι w : ι → k hw : ∑ i : ι, w i = 1 hq : ↑(Finset.affineCombination k Finset.univ ↑b) w ∈ affineSpan k (range ↑b) ⊢ ∑ i : ι, ↑(coord b i) (↑(Finset.affineCombination k Finset.univ ↑b) w) = 1 [PROOFSTEP] convert hw [GOAL] case h.e'_2.a ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝⁴ : AddCommGroup V inst✝³ : AffineSpace V P inst✝² : Ring k inst✝¹ : Module k V b : AffineBasis ι k P s : Finset ι i j : ι e : ι ≃ ι' inst✝ : Fintype ι w : ι → k hw : ∑ i : ι, w i = 1 hq : ↑(Finset.affineCombination k Finset.univ ↑b) w ∈ affineSpan k (range ↑b) x✝ : ι a✝ : x✝ ∈ Finset.univ ⊢ ↑(coord b x✝) (↑(Finset.affineCombination k Finset.univ ↑b) w) = w x✝ [PROOFSTEP] exact b.coord_apply_combination_of_mem (Finset.mem_univ _) hw [GOAL] ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝⁴ : AddCommGroup V inst✝³ : AffineSpace V P inst✝² : Ring k inst✝¹ : Module k V b : AffineBasis ι k P s : Finset ι i j : ι e : ι ≃ ι' inst✝ : Fintype ι q : P ⊢ (↑(Finset.affineCombination k Finset.univ ↑b) fun i => ↑(coord b i) q) = q [PROOFSTEP] have hq : q ∈ affineSpan k (range b) := by rw [b.tot] exact AffineSubspace.mem_top k V q [GOAL] ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝⁴ : AddCommGroup V inst✝³ : AffineSpace V P inst✝² : Ring k inst✝¹ : Module k V b : AffineBasis ι k P s : Finset ι i j : ι e : ι ≃ ι' inst✝ : Fintype ι q : P ⊢ q ∈ affineSpan k (range ↑b) [PROOFSTEP] rw [b.tot] [GOAL] ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝⁴ : AddCommGroup V inst✝³ : AffineSpace V P inst✝² : Ring k inst✝¹ : Module k V b : AffineBasis ι k P s : Finset ι i j : ι e : ι ≃ ι' inst✝ : Fintype ι q : P ⊢ q ∈ ⊤ [PROOFSTEP] exact AffineSubspace.mem_top k V q [GOAL] ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝⁴ : AddCommGroup V inst✝³ : AffineSpace V P inst✝² : Ring k inst✝¹ : Module k V b : AffineBasis ι k P s : Finset ι i j : ι e : ι ≃ ι' inst✝ : Fintype ι q : P hq : q ∈ affineSpan k (range ↑b) ⊢ (↑(Finset.affineCombination k Finset.univ ↑b) fun i => ↑(coord b i) q) = q [PROOFSTEP] obtain ⟨w, hw, rfl⟩ := eq_affineCombination_of_mem_affineSpan_of_fintype hq [GOAL] case intro.intro ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝⁴ : AddCommGroup V inst✝³ : AffineSpace V P inst✝² : Ring k inst✝¹ : Module k V b : AffineBasis ι k P s : Finset ι i j : ι e : ι ≃ ι' inst✝ : Fintype ι w : ι → k hw : ∑ i : ι, w i = 1 hq : ↑(Finset.affineCombination k Finset.univ ↑b) w ∈ affineSpan k (range ↑b) ⊢ (↑(Finset.affineCombination k Finset.univ ↑b) fun i => ↑(coord b i) (↑(Finset.affineCombination k Finset.univ ↑b) w)) = ↑(Finset.affineCombination k Finset.univ ↑b) w [PROOFSTEP] congr [GOAL] case intro.intro.h.e_6.h ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝⁴ : AddCommGroup V inst✝³ : AffineSpace V P inst✝² : Ring k inst✝¹ : Module k V b : AffineBasis ι k P s : Finset ι i j : ι e : ι ≃ ι' inst✝ : Fintype ι w : ι → k hw : ∑ i : ι, w i = 1 hq : ↑(Finset.affineCombination k Finset.univ ↑b) w ∈ affineSpan k (range ↑b) ⊢ (fun i => ↑(coord b i) (↑(Finset.affineCombination k Finset.univ ↑b) w)) = w [PROOFSTEP] ext i [GOAL] case intro.intro.h.e_6.h.h ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝⁴ : AddCommGroup V inst✝³ : AffineSpace V P inst✝² : Ring k inst✝¹ : Module k V b : AffineBasis ι k P s : Finset ι i✝ j : ι e : ι ≃ ι' inst✝ : Fintype ι w : ι → k hw : ∑ i : ι, w i = 1 hq : ↑(Finset.affineCombination k Finset.univ ↑b) w ∈ affineSpan k (range ↑b) i : ι ⊢ ↑(coord b i) (↑(Finset.affineCombination k Finset.univ ↑b) w) = w i [PROOFSTEP] exact b.coord_apply_combination_of_mem (Finset.mem_univ i) hw [GOAL] ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝⁴ : AddCommGroup V inst✝³ : AffineSpace V P inst✝² : Ring k inst✝¹ : Module k V b✝ : AffineBasis ι k P s : Finset ι i j : ι e : ι ≃ ι' inst✝ : Fintype ι b : AffineBasis ι k V v : V ⊢ ∑ i : ι, ↑(coord b i) v • ↑b i = v [PROOFSTEP] have hb := b.affineCombination_coord_eq_self v [GOAL] ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝⁴ : AddCommGroup V inst✝³ : AffineSpace V P inst✝² : Ring k inst✝¹ : Module k V b✝ : AffineBasis ι k P s : Finset ι i j : ι e : ι ≃ ι' inst✝ : Fintype ι b : AffineBasis ι k V v : V hb : (↑(Finset.affineCombination k Finset.univ ↑b) fun i => ↑(coord b i) v) = v ⊢ ∑ i : ι, ↑(coord b i) v • ↑b i = v [PROOFSTEP] rwa [Finset.univ.affineCombination_eq_linear_combination _ _ (b.sum_coord_apply_eq_one v)] at hb [GOAL] ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝⁴ : AddCommGroup V inst✝³ : AffineSpace V P inst✝² : Ring k inst✝¹ : Module k V b : AffineBasis ι k P s : Finset ι i j : ι e : ι ≃ ι' inst✝ : Finite ι q₁ q₂ : P h : ∀ (i : ι), ↑(coord b i) q₁ = ↑(coord b i) q₂ ⊢ q₁ = q₂ [PROOFSTEP] cases nonempty_fintype ι [GOAL] case intro ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝⁴ : AddCommGroup V inst✝³ : AffineSpace V P inst✝² : Ring k inst✝¹ : Module k V b : AffineBasis ι k P s : Finset ι i j : ι e : ι ≃ ι' inst✝ : Finite ι q₁ q₂ : P h : ∀ (i : ι), ↑(coord b i) q₁ = ↑(coord b i) q₂ val✝ : Fintype ι ⊢ q₁ = q₂ [PROOFSTEP] rw [← b.affineCombination_coord_eq_self q₁, ← b.affineCombination_coord_eq_self q₂] [GOAL] case intro ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝⁴ : AddCommGroup V inst✝³ : AffineSpace V P inst✝² : Ring k inst✝¹ : Module k V b : AffineBasis ι k P s : Finset ι i j : ι e : ι ≃ ι' inst✝ : Finite ι q₁ q₂ : P h : ∀ (i : ι), ↑(coord b i) q₁ = ↑(coord b i) q₂ val✝ : Fintype ι ⊢ (↑(Finset.affineCombination k Finset.univ ↑b) fun i => ↑(coord b i) q₁) = ↑(Finset.affineCombination k Finset.univ ↑b) fun i => ↑(coord b i) q₂ [PROOFSTEP] simp only [h] [GOAL] ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝⁴ : AddCommGroup V inst✝³ : AffineSpace V P inst✝² : Ring k inst✝¹ : Module k V b : AffineBasis ι k P s : Finset ι i✝ j : ι e : ι ≃ ι' inst✝ : Subsingleton ι i : ι ⊢ ↑(coord b i) = 1 [PROOFSTEP] ext q [GOAL] case h ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝⁴ : AddCommGroup V inst✝³ : AffineSpace V P inst✝² : Ring k inst✝¹ : Module k V b : AffineBasis ι k P s : Finset ι i✝ j : ι e : ι ≃ ι' inst✝ : Subsingleton ι i : ι q : P ⊢ ↑(coord b i) q = OfNat.ofNat 1 q [PROOFSTEP] have hp : (range b).Subsingleton := by rw [← image_univ] apply Subsingleton.image apply subsingleton_of_subsingleton [GOAL] ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝⁴ : AddCommGroup V inst✝³ : AffineSpace V P inst✝² : Ring k inst✝¹ : Module k V b : AffineBasis ι k P s : Finset ι i✝ j : ι e : ι ≃ ι' inst✝ : Subsingleton ι i : ι q : P ⊢ Set.Subsingleton (range ↑b) [PROOFSTEP] rw [← image_univ] [GOAL] ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝⁴ : AddCommGroup V inst✝³ : AffineSpace V P inst✝² : Ring k inst✝¹ : Module k V b : AffineBasis ι k P s : Finset ι i✝ j : ι e : ι ≃ ι' inst✝ : Subsingleton ι i : ι q : P ⊢ Set.Subsingleton (↑b '' univ) [PROOFSTEP] apply Subsingleton.image [GOAL] case hs ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝⁴ : AddCommGroup V inst✝³ : AffineSpace V P inst✝² : Ring k inst✝¹ : Module k V b : AffineBasis ι k P s : Finset ι i✝ j : ι e : ι ≃ ι' inst✝ : Subsingleton ι i : ι q : P ⊢ Set.Subsingleton univ [PROOFSTEP] apply subsingleton_of_subsingleton [GOAL] case h ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝⁴ : AddCommGroup V inst✝³ : AffineSpace V P inst✝² : Ring k inst✝¹ : Module k V b : AffineBasis ι k P s : Finset ι i✝ j : ι e : ι ≃ ι' inst✝ : Subsingleton ι i : ι q : P hp : Set.Subsingleton (range ↑b) ⊢ ↑(coord b i) q = OfNat.ofNat 1 q [PROOFSTEP] haveI := AffineSubspace.subsingleton_of_subsingleton_span_eq_top hp b.tot [GOAL] case h ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝⁴ : AddCommGroup V inst✝³ : AffineSpace V P inst✝² : Ring k inst✝¹ : Module k V b : AffineBasis ι k P s : Finset ι i✝ j : ι e : ι ≃ ι' inst✝ : Subsingleton ι i : ι q : P hp : Set.Subsingleton (range ↑b) this : Subsingleton P ⊢ ↑(coord b i) q = OfNat.ofNat 1 q [PROOFSTEP] let s : Finset ι := { i } [GOAL] case h ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝⁴ : AddCommGroup V inst✝³ : AffineSpace V P inst✝² : Ring k inst✝¹ : Module k V b : AffineBasis ι k P s✝ : Finset ι i✝ j : ι e : ι ≃ ι' inst✝ : Subsingleton ι i : ι q : P hp : Set.Subsingleton (range ↑b) this : Subsingleton P s : Finset ι := {i} ⊢ ↑(coord b i) q = OfNat.ofNat 1 q [PROOFSTEP] have hi : i ∈ s := by simp [GOAL] ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝⁴ : AddCommGroup V inst✝³ : AffineSpace V P inst✝² : Ring k inst✝¹ : Module k V b : AffineBasis ι k P s✝ : Finset ι i✝ j : ι e : ι ≃ ι' inst✝ : Subsingleton ι i : ι q : P hp : Set.Subsingleton (range ↑b) this : Subsingleton P s : Finset ι := {i} ⊢ i ∈ s [PROOFSTEP] simp [GOAL] case h ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝⁴ : AddCommGroup V inst✝³ : AffineSpace V P inst✝² : Ring k inst✝¹ : Module k V b : AffineBasis ι k P s✝ : Finset ι i✝ j : ι e : ι ≃ ι' inst✝ : Subsingleton ι i : ι q : P hp : Set.Subsingleton (range ↑b) this : Subsingleton P s : Finset ι := {i} hi : i ∈ s ⊢ ↑(coord b i) q = OfNat.ofNat 1 q [PROOFSTEP] have hw : s.sum (Function.const ι (1 : k)) = 1 := by simp [GOAL] ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝⁴ : AddCommGroup V inst✝³ : AffineSpace V P inst✝² : Ring k inst✝¹ : Module k V b : AffineBasis ι k P s✝ : Finset ι i✝ j : ι e : ι ≃ ι' inst✝ : Subsingleton ι i : ι q : P hp : Set.Subsingleton (range ↑b) this : Subsingleton P s : Finset ι := {i} hi : i ∈ s ⊢ Finset.sum s (Function.const ι 1) = 1 [PROOFSTEP] simp [GOAL] case h ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝⁴ : AddCommGroup V inst✝³ : AffineSpace V P inst✝² : Ring k inst✝¹ : Module k V b : AffineBasis ι k P s✝ : Finset ι i✝ j : ι e : ι ≃ ι' inst✝ : Subsingleton ι i : ι q : P hp : Set.Subsingleton (range ↑b) this : Subsingleton P s : Finset ι := {i} hi : i ∈ s hw : Finset.sum s (Function.const ι 1) = 1 ⊢ ↑(coord b i) q = OfNat.ofNat 1 q [PROOFSTEP] have hq : q = s.affineCombination k b (Function.const ι (1 : k)) := by simp [GOAL] ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝⁴ : AddCommGroup V inst✝³ : AffineSpace V P inst✝² : Ring k inst✝¹ : Module k V b : AffineBasis ι k P s✝ : Finset ι i✝ j : ι e : ι ≃ ι' inst✝ : Subsingleton ι i : ι q : P hp : Set.Subsingleton (range ↑b) this : Subsingleton P s : Finset ι := {i} hi : i ∈ s hw : Finset.sum s (Function.const ι 1) = 1 ⊢ q = ↑(Finset.affineCombination k s ↑b) (Function.const ι 1) [PROOFSTEP] simp [GOAL] case h ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝⁴ : AddCommGroup V inst✝³ : AffineSpace V P inst✝² : Ring k inst✝¹ : Module k V b : AffineBasis ι k P s✝ : Finset ι i✝ j : ι e : ι ≃ ι' inst✝ : Subsingleton ι i : ι q : P hp : Set.Subsingleton (range ↑b) this : Subsingleton P s : Finset ι := {i} hi : i ∈ s hw : Finset.sum s (Function.const ι 1) = 1 hq : q = ↑(Finset.affineCombination k s ↑b) (Function.const ι 1) ⊢ ↑(coord b i) q = OfNat.ofNat 1 q [PROOFSTEP] rw [Pi.one_apply, hq, b.coord_apply_combination_of_mem hi hw, Function.const_apply] [GOAL] ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝⁴ : AddCommGroup V inst✝³ : AffineSpace V P inst✝² : Ring k inst✝¹ : Module k V b : AffineBasis ι k P s : Finset ι i✝ j : ι e : ι ≃ ι' inst✝ : Nontrivial ι i : ι ⊢ Function.Surjective ↑(coord b i) [PROOFSTEP] classical intro x obtain ⟨j, hij⟩ := exists_ne i let s : Finset ι := { i, j } have hi : i ∈ s := by simp have _ : j ∈ s := by simp let w : ι → k := fun j' => if j' = i then x else 1 - x have hw : s.sum w = 1 := by -- Porting note: previously this subgoal worked just by: -- simp [hij, Finset.sum_ite, Finset.filter_insert, Finset.filter_eq'] -- I'm not sure why `simp` can not successfully use `Finset.filter_eq'`. simp [Finset.sum_ite, Finset.filter_insert, hij] erw [Finset.filter_eq'] simp [hij.symm] use s.affineCombination k b w simp [b.coord_apply_combination_of_mem hi hw] [GOAL] ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝⁴ : AddCommGroup V inst✝³ : AffineSpace V P inst✝² : Ring k inst✝¹ : Module k V b : AffineBasis ι k P s : Finset ι i✝ j : ι e : ι ≃ ι' inst✝ : Nontrivial ι i : ι ⊢ Function.Surjective ↑(coord b i) [PROOFSTEP] intro x [GOAL] ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝⁴ : AddCommGroup V inst✝³ : AffineSpace V P inst✝² : Ring k inst✝¹ : Module k V b : AffineBasis ι k P s : Finset ι i✝ j : ι e : ι ≃ ι' inst✝ : Nontrivial ι i : ι x : k ⊢ ∃ a, ↑(coord b i) a = x [PROOFSTEP] obtain ⟨j, hij⟩ := exists_ne i [GOAL] case intro ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝⁴ : AddCommGroup V inst✝³ : AffineSpace V P inst✝² : Ring k inst✝¹ : Module k V b : AffineBasis ι k P s : Finset ι i✝ j✝ : ι e : ι ≃ ι' inst✝ : Nontrivial ι i : ι x : k j : ι hij : j ≠ i ⊢ ∃ a, ↑(coord b i) a = x [PROOFSTEP] let s : Finset ι := { i, j } [GOAL] case intro ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝⁴ : AddCommGroup V inst✝³ : AffineSpace V P inst✝² : Ring k inst✝¹ : Module k V b : AffineBasis ι k P s✝ : Finset ι i✝ j✝ : ι e : ι ≃ ι' inst✝ : Nontrivial ι i : ι x : k j : ι hij : j ≠ i s : Finset ι := {i, j} ⊢ ∃ a, ↑(coord b i) a = x [PROOFSTEP] have hi : i ∈ s := by simp [GOAL] ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝⁴ : AddCommGroup V inst✝³ : AffineSpace V P inst✝² : Ring k inst✝¹ : Module k V b : AffineBasis ι k P s✝ : Finset ι i✝ j✝ : ι e : ι ≃ ι' inst✝ : Nontrivial ι i : ι x : k j : ι hij : j ≠ i s : Finset ι := {i, j} ⊢ i ∈ s [PROOFSTEP] simp [GOAL] case intro ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝⁴ : AddCommGroup V inst✝³ : AffineSpace V P inst✝² : Ring k inst✝¹ : Module k V b : AffineBasis ι k P s✝ : Finset ι i✝ j✝ : ι e : ι ≃ ι' inst✝ : Nontrivial ι i : ι x : k j : ι hij : j ≠ i s : Finset ι := {i, j} hi : i ∈ s ⊢ ∃ a, ↑(coord b i) a = x [PROOFSTEP] have _ : j ∈ s := by simp [GOAL] ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝⁴ : AddCommGroup V inst✝³ : AffineSpace V P inst✝² : Ring k inst✝¹ : Module k V b : AffineBasis ι k P s✝ : Finset ι i✝ j✝ : ι e : ι ≃ ι' inst✝ : Nontrivial ι i : ι x : k j : ι hij : j ≠ i s : Finset ι := {i, j} hi : i ∈ s ⊢ j ∈ s [PROOFSTEP] simp [GOAL] case intro ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝⁴ : AddCommGroup V inst✝³ : AffineSpace V P inst✝² : Ring k inst✝¹ : Module k V b : AffineBasis ι k P s✝ : Finset ι i✝ j✝ : ι e : ι ≃ ι' inst✝ : Nontrivial ι i : ι x : k j : ι hij : j ≠ i s : Finset ι := {i, j} hi : i ∈ s x✝ : j ∈ s ⊢ ∃ a, ↑(coord b i) a = x [PROOFSTEP] let w : ι → k := fun j' => if j' = i then x else 1 - x [GOAL] case intro ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝⁴ : AddCommGroup V inst✝³ : AffineSpace V P inst✝² : Ring k inst✝¹ : Module k V b : AffineBasis ι k P s✝ : Finset ι i✝ j✝ : ι e : ι ≃ ι' inst✝ : Nontrivial ι i : ι x : k j : ι hij : j ≠ i s : Finset ι := {i, j} hi : i ∈ s x✝ : j ∈ s w : ι → k := fun j' => if j' = i then x else 1 - x ⊢ ∃ a, ↑(coord b i) a = x [PROOFSTEP] have hw : s.sum w = 1 := by -- Porting note: previously this subgoal worked just by: -- simp [hij, Finset.sum_ite, Finset.filter_insert, Finset.filter_eq'] -- I'm not sure why `simp` can not successfully use `Finset.filter_eq'`. simp [Finset.sum_ite, Finset.filter_insert, hij] erw [Finset.filter_eq'] simp [hij.symm] [GOAL] ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝⁴ : AddCommGroup V inst✝³ : AffineSpace V P inst✝² : Ring k inst✝¹ : Module k V b : AffineBasis ι k P s✝ : Finset ι i✝ j✝ : ι e : ι ≃ ι' inst✝ : Nontrivial ι i : ι x : k j : ι hij : j ≠ i s : Finset ι := {i, j} hi : i ∈ s x✝ : j ∈ s w : ι → k := fun j' => if j' = i then x else 1 - x ⊢ Finset.sum s w = 1 [PROOFSTEP] simp [Finset.sum_ite, Finset.filter_insert, hij] [GOAL] ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝⁴ : AddCommGroup V inst✝³ : AffineSpace V P inst✝² : Ring k inst✝¹ : Module k V b : AffineBasis ι k P s✝ : Finset ι i✝ j✝ : ι e : ι ≃ ι' inst✝ : Nontrivial ι i : ι x : k j : ι hij : j ≠ i s : Finset ι := {i, j} hi : i ∈ s x✝ : j ∈ s w : ι → k := fun j' => if j' = i then x else 1 - x ⊢ ↑(Finset.card (insert i (Finset.filter (fun x => x = i) {j}))) * x + (1 - x) = 1 [PROOFSTEP] erw [Finset.filter_eq'] [GOAL] ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝⁴ : AddCommGroup V inst✝³ : AffineSpace V P inst✝² : Ring k inst✝¹ : Module k V b : AffineBasis ι k P s✝ : Finset ι i✝ j✝ : ι e : ι ≃ ι' inst✝ : Nontrivial ι i : ι x : k j : ι hij : j ≠ i s : Finset ι := {i, j} hi : i ∈ s x✝ : j ∈ s w : ι → k := fun j' => if j' = i then x else 1 - x ⊢ ↑(Finset.card (insert i (if i ∈ {j} then {i} else ∅))) * x + (1 - x) = 1 [PROOFSTEP] simp [hij.symm] [GOAL] case intro ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝⁴ : AddCommGroup V inst✝³ : AffineSpace V P inst✝² : Ring k inst✝¹ : Module k V b : AffineBasis ι k P s✝ : Finset ι i✝ j✝ : ι e : ι ≃ ι' inst✝ : Nontrivial ι i : ι x : k j : ι hij : j ≠ i s : Finset ι := {i, j} hi : i ∈ s x✝ : j ∈ s w : ι → k := fun j' => if j' = i then x else 1 - x hw : Finset.sum s w = 1 ⊢ ∃ a, ↑(coord b i) a = x [PROOFSTEP] use s.affineCombination k b w [GOAL] case h ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝⁴ : AddCommGroup V inst✝³ : AffineSpace V P inst✝² : Ring k inst✝¹ : Module k V b : AffineBasis ι k P s✝ : Finset ι i✝ j✝ : ι e : ι ≃ ι' inst✝ : Nontrivial ι i : ι x : k j : ι hij : j ≠ i s : Finset ι := {i, j} hi : i ∈ s x✝ : j ∈ s w : ι → k := fun j' => if j' = i then x else 1 - x hw : Finset.sum s w = 1 ⊢ ↑(coord b i) (↑(Finset.affineCombination k s ↑b) w) = x [PROOFSTEP] simp [b.coord_apply_combination_of_mem hi hw] [GOAL] ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝³ : AddCommGroup V inst✝² : AffineSpace V P inst✝¹ : Ring k inst✝ : Module k V b : AffineBasis ι k P s : Finset ι i j : ι e : ι ≃ ι' v w : V ⊢ (fun v i => -↑(Basis.sumCoords (basisOf b i)) v) (v + w) = (fun v i => -↑(Basis.sumCoords (basisOf b i)) v) v + (fun v i => -↑(Basis.sumCoords (basisOf b i)) v) w [PROOFSTEP] ext i [GOAL] case h ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝³ : AddCommGroup V inst✝² : AffineSpace V P inst✝¹ : Ring k inst✝ : Module k V b : AffineBasis ι k P s : Finset ι i✝ j : ι e : ι ≃ ι' v w : V i : ι ⊢ (fun v i => -↑(Basis.sumCoords (basisOf b i)) v) (v + w) i = ((fun v i => -↑(Basis.sumCoords (basisOf b i)) v) v + (fun v i => -↑(Basis.sumCoords (basisOf b i)) v) w) i [PROOFSTEP] simp only [LinearMap.map_add, Pi.add_apply, neg_add] [GOAL] ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝³ : AddCommGroup V inst✝² : AffineSpace V P inst✝¹ : Ring k inst✝ : Module k V b : AffineBasis ι k P s : Finset ι i j : ι e : ι ≃ ι' t : k v : V ⊢ AddHom.toFun { toFun := fun v i => -↑(Basis.sumCoords (basisOf b i)) v, map_add' := (_ : ∀ (v w : V), (fun v i => -↑(Basis.sumCoords (basisOf b i)) v) (v + w) = (fun v i => -↑(Basis.sumCoords (basisOf b i)) v) v + (fun v i => -↑(Basis.sumCoords (basisOf b i)) v) w) } (t • v) = ↑(RingHom.id k) t • AddHom.toFun { toFun := fun v i => -↑(Basis.sumCoords (basisOf b i)) v, map_add' := (_ : ∀ (v w : V), (fun v i => -↑(Basis.sumCoords (basisOf b i)) v) (v + w) = (fun v i => -↑(Basis.sumCoords (basisOf b i)) v) v + (fun v i => -↑(Basis.sumCoords (basisOf b i)) v) w) } v [PROOFSTEP] ext i [GOAL] case h ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝³ : AddCommGroup V inst✝² : AffineSpace V P inst✝¹ : Ring k inst✝ : Module k V b : AffineBasis ι k P s : Finset ι i✝ j : ι e : ι ≃ ι' t : k v : V i : ι ⊢ AddHom.toFun { toFun := fun v i => -↑(Basis.sumCoords (basisOf b i)) v, map_add' := (_ : ∀ (v w : V), (fun v i => -↑(Basis.sumCoords (basisOf b i)) v) (v + w) = (fun v i => -↑(Basis.sumCoords (basisOf b i)) v) v + (fun v i => -↑(Basis.sumCoords (basisOf b i)) v) w) } (t • v) i = (↑(RingHom.id k) t • AddHom.toFun { toFun := fun v i => -↑(Basis.sumCoords (basisOf b i)) v, map_add' := (_ : ∀ (v w : V), (fun v i => -↑(Basis.sumCoords (basisOf b i)) v) (v + w) = (fun v i => -↑(Basis.sumCoords (basisOf b i)) v) v + (fun v i => -↑(Basis.sumCoords (basisOf b i)) v) w) } v) i [PROOFSTEP] simp only [LinearMap.map_smul, Pi.smul_apply, smul_neg, RingHom.id_apply, mul_neg] [GOAL] ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝³ : AddCommGroup V inst✝² : AffineSpace V P inst✝¹ : Ring k inst✝ : Module k V b : AffineBasis ι k P s : Finset ι i j : ι e : ι ≃ ι' p : P v : V ⊢ (fun q i => ↑(coord b i) q) (v +ᵥ p) = ↑{ toAddHom := { toFun := fun v i => -↑(Basis.sumCoords (basisOf b i)) v, map_add' := (_ : ∀ (v w : V), (fun v i => -↑(Basis.sumCoords (basisOf b i)) v) (v + w) = (fun v i => -↑(Basis.sumCoords (basisOf b i)) v) v + (fun v i => -↑(Basis.sumCoords (basisOf b i)) v) w) }, map_smul' := (_ : ∀ (t : k) (v : V), AddHom.toFun { toFun := fun v i => -↑(Basis.sumCoords (basisOf b i)) v, map_add' := (_ : ∀ (v w : V), (fun v i => -↑(Basis.sumCoords (basisOf b i)) v) (v + w) = (fun v i => -↑(Basis.sumCoords (basisOf b i)) v) v + (fun v i => -↑(Basis.sumCoords (basisOf b i)) v) w) } (t • v) = ↑(RingHom.id k) t • AddHom.toFun { toFun := fun v i => -↑(Basis.sumCoords (basisOf b i)) v, map_add' := (_ : ∀ (v w : V), (fun v i => -↑(Basis.sumCoords (basisOf b i)) v) (v + w) = (fun v i => -↑(Basis.sumCoords (basisOf b i)) v) v + (fun v i => -↑(Basis.sumCoords (basisOf b i)) v) w) } v) } v +ᵥ (fun q i => ↑(coord b i) q) p [PROOFSTEP] ext i [GOAL] case h ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝³ : AddCommGroup V inst✝² : AffineSpace V P inst✝¹ : Ring k inst✝ : Module k V b : AffineBasis ι k P s : Finset ι i✝ j : ι e : ι ≃ ι' p : P v : V i : ι ⊢ (fun q i => ↑(coord b i) q) (v +ᵥ p) i = (↑{ toAddHom := { toFun := fun v i => -↑(Basis.sumCoords (basisOf b i)) v, map_add' := (_ : ∀ (v w : V), (fun v i => -↑(Basis.sumCoords (basisOf b i)) v) (v + w) = (fun v i => -↑(Basis.sumCoords (basisOf b i)) v) v + (fun v i => -↑(Basis.sumCoords (basisOf b i)) v) w) }, map_smul' := (_ : ∀ (t : k) (v : V), AddHom.toFun { toFun := fun v i => -↑(Basis.sumCoords (basisOf b i)) v, map_add' := (_ : ∀ (v w : V), (fun v i => -↑(Basis.sumCoords (basisOf b i)) v) (v + w) = (fun v i => -↑(Basis.sumCoords (basisOf b i)) v) v + (fun v i => -↑(Basis.sumCoords (basisOf b i)) v) w) } (t • v) = ↑(RingHom.id k) t • AddHom.toFun { toFun := fun v i => -↑(Basis.sumCoords (basisOf b i)) v, map_add' := (_ : ∀ (v w : V), (fun v i => -↑(Basis.sumCoords (basisOf b i)) v) (v + w) = (fun v i => -↑(Basis.sumCoords (basisOf b i)) v) v + (fun v i => -↑(Basis.sumCoords (basisOf b i)) v) w) } v) } v +ᵥ (fun q i => ↑(coord b i) q) p) i [PROOFSTEP] rw [LinearMap.coe_mk, Pi.vadd_apply'] [GOAL] case h ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝³ : AddCommGroup V inst✝² : AffineSpace V P inst✝¹ : Ring k inst✝ : Module k V b : AffineBasis ι k P s : Finset ι i✝ j : ι e : ι ≃ ι' p : P v : V i : ι ⊢ (fun q i => ↑(coord b i) q) (v +ᵥ p) i = ↑{ toFun := fun v i => -↑(Basis.sumCoords (basisOf b i)) v, map_add' := (_ : ∀ (v w : V), (fun v i => -↑(Basis.sumCoords (basisOf b i)) v) (v + w) = (fun v i => -↑(Basis.sumCoords (basisOf b i)) v) v + (fun v i => -↑(Basis.sumCoords (basisOf b i)) v) w) } v i +ᵥ (fun q i => ↑(coord b i) q) p i [PROOFSTEP] dsimp [GOAL] case h ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝³ : AddCommGroup V inst✝² : AffineSpace V P inst✝¹ : Ring k inst✝ : Module k V b : AffineBasis ι k P s : Finset ι i✝ j : ι e : ι ≃ ι' p : P v : V i : ι ⊢ ↑(coord b i) (v +ᵥ p) = (-Finsupp.sum (↑(basisOf b i).repr v) fun x => id) + ↑(coord b i) p [PROOFSTEP] rw [AffineMap.map_vadd, linear_eq_sumCoords, LinearMap.neg_apply] [GOAL] case h ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝³ : AddCommGroup V inst✝² : AffineSpace V P inst✝¹ : Ring k inst✝ : Module k V b : AffineBasis ι k P s : Finset ι i✝ j : ι e : ι ≃ ι' p : P v : V i : ι ⊢ -↑(Basis.sumCoords (basisOf b i)) v +ᵥ ↑(coord b i) p = (-Finsupp.sum (↑(basisOf b i).repr v) fun x => id) + ↑(coord b i) p [PROOFSTEP] simp only [ne_eq, Basis.coe_sumCoords, vadd_eq_add] [GOAL] ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝⁴ : AddCommGroup V inst✝³ : AffineSpace V P inst✝² : DivisionRing k inst✝¹ : Module k V inst✝ : CharZero k b : AffineBasis ι k P s : Finset ι i : ι hi : i ∈ s ⊢ ↑(coord b i) (Finset.centroid k s ↑b) = (↑(Finset.card s))⁻¹ [PROOFSTEP] rw [Finset.centroid, b.coord_apply_combination_of_mem hi (s.sum_centroidWeights_eq_one_of_nonempty _ ⟨i, hi⟩), Finset.centroidWeights, Function.const_apply] [GOAL] ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝³ : AddCommGroup V inst✝² : AffineSpace V P inst✝¹ : DivisionRing k inst✝ : Module k V t : Set P ht : affineSpan k t = ⊤ ⊢ ∃ s x b, ↑b = Subtype.val [PROOFSTEP] obtain ⟨s, hst, h_tot, h_ind⟩ := exists_affineIndependent k V t [GOAL] case intro.intro.intro ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝³ : AddCommGroup V inst✝² : AffineSpace V P inst✝¹ : DivisionRing k inst✝ : Module k V t : Set P ht : affineSpan k t = ⊤ s : Set P hst : s ⊆ t h_tot : affineSpan k s = affineSpan k t h_ind : AffineIndependent k Subtype.val ⊢ ∃ s x b, ↑b = Subtype.val [PROOFSTEP] refine' ⟨s, hst, ⟨(↑), h_ind, _⟩, rfl⟩ [GOAL] case intro.intro.intro ι : Type u_1 ι' : Type u_2 k : Type u_3 V : Type u_4 P : Type u_5 inst✝³ : AddCommGroup V inst✝² : AffineSpace V P inst✝¹ : DivisionRing k inst✝ : Module k V t : Set P ht : affineSpan k t = ⊤ s : Set P hst : s ⊆ t h_tot : affineSpan k s = affineSpan k t h_ind : AffineIndependent k Subtype.val ⊢ affineSpan k (range Subtype.val) = ⊤ [PROOFSTEP] rw [Subtype.range_coe, h_tot, ht]
{"mathlib_filename": "Mathlib.LinearAlgebra.AffineSpace.Basis", "llama_tokens": 22063}
{"mathlib_filename": "Mathlib.LinearAlgebra.AffineSpace.Basic", "llama_tokens": 0}
[GOAL] R : Type u_1 inst✝¹⁰ : Semiring R M : Type u_2 inst✝⁹ : AddCommMonoid M inst✝⁸ : Module R M N : Type u_3 inst✝⁷ : AddCommMonoid N inst✝⁶ : Module R N P : Type u_4 inst✝⁵ : AddCommMonoid P inst✝⁴ : Module R P M' : Type u_5 inst✝³ : AddCommGroup M' inst✝² : Module R M' N' : Type u_6 inst✝¹ : AddCommGroup N' inst✝ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 f✝ f' : AlternatingMap R M N ι g✝ g₂ : AlternatingMap R M N' ι g' : AlternatingMap R M' N' ι v : ι → M v' : ι → M' f g : AlternatingMap R M N ι h : (fun f => f.toFun) f = (fun f => f.toFun) g ⊢ f = g [PROOFSTEP] rcases f with ⟨⟨_, _, _⟩, _⟩ [GOAL] case mk.mk R : Type u_1 inst✝¹⁰ : Semiring R M : Type u_2 inst✝⁹ : AddCommMonoid M inst✝⁸ : Module R M N : Type u_3 inst✝⁷ : AddCommMonoid N inst✝⁶ : Module R N P : Type u_4 inst✝⁵ : AddCommMonoid P inst✝⁴ : Module R P M' : Type u_5 inst✝³ : AddCommGroup M' inst✝² : Module R M' N' : Type u_6 inst✝¹ : AddCommGroup N' inst✝ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 f f' : AlternatingMap R M N ι g✝ g₂ : AlternatingMap R M N' ι g' : AlternatingMap R M' N' ι v : ι → M v' : ι → M' g : AlternatingMap R M N ι toFun✝ : (ι → M) → N map_add'✝ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M), toFun✝ (update m i (x + y)) = toFun✝ (update m i x) + toFun✝ (update m i y) map_smul'✝ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M), toFun✝ (update m i (c • x)) = c • toFun✝ (update m i x) map_eq_zero_of_eq'✝ : ∀ (v : ι → M) (i j : ι), v i = v j → i ≠ j → MultilinearMap.toFun { toFun := toFun✝, map_add' := map_add'✝, map_smul' := map_smul'✝ } v = 0 h : (fun f => f.toFun) { toMultilinearMap := { toFun := toFun✝, map_add' := map_add'✝, map_smul' := map_smul'✝ }, map_eq_zero_of_eq' := map_eq_zero_of_eq'✝ } = (fun f => f.toFun) g ⊢ { toMultilinearMap := { toFun := toFun✝, map_add' := map_add'✝, map_smul' := map_smul'✝ }, map_eq_zero_of_eq' := map_eq_zero_of_eq'✝ } = g [PROOFSTEP] rcases g with ⟨⟨_, _, _⟩, _⟩ [GOAL] case mk.mk.mk.mk R : Type u_1 inst✝¹⁰ : Semiring R M : Type u_2 inst✝⁹ : AddCommMonoid M inst✝⁸ : Module R M N : Type u_3 inst✝⁷ : AddCommMonoid N inst✝⁶ : Module R N P : Type u_4 inst✝⁵ : AddCommMonoid P inst✝⁴ : Module R P M' : Type u_5 inst✝³ : AddCommGroup M' inst✝² : Module R M' N' : Type u_6 inst✝¹ : AddCommGroup N' inst✝ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 f f' : AlternatingMap R M N ι g g₂ : AlternatingMap R M N' ι g' : AlternatingMap R M' N' ι v : ι → M v' : ι → M' toFun✝¹ : (ι → M) → N map_add'✝¹ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M), toFun✝¹ (update m i (x + y)) = toFun✝¹ (update m i x) + toFun✝¹ (update m i y) map_smul'✝¹ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M), toFun✝¹ (update m i (c • x)) = c • toFun✝¹ (update m i x) map_eq_zero_of_eq'✝¹ : ∀ (v : ι → M) (i j : ι), v i = v j → i ≠ j → MultilinearMap.toFun { toFun := toFun✝¹, map_add' := map_add'✝¹, map_smul' := map_smul'✝¹ } v = 0 toFun✝ : (ι → M) → N map_add'✝ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M), toFun✝ (update m i (x + y)) = toFun✝ (update m i x) + toFun✝ (update m i y) map_smul'✝ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M), toFun✝ (update m i (c • x)) = c • toFun✝ (update m i x) map_eq_zero_of_eq'✝ : ∀ (v : ι → M) (i j : ι), v i = v j → i ≠ j → MultilinearMap.toFun { toFun := toFun✝, map_add' := map_add'✝, map_smul' := map_smul'✝ } v = 0 h : (fun f => f.toFun) { toMultilinearMap := { toFun := toFun✝¹, map_add' := map_add'✝¹, map_smul' := map_smul'✝¹ }, map_eq_zero_of_eq' := map_eq_zero_of_eq'✝¹ } = (fun f => f.toFun) { toMultilinearMap := { toFun := toFun✝, map_add' := map_add'✝, map_smul' := map_smul'✝ }, map_eq_zero_of_eq' := map_eq_zero_of_eq'✝ } ⊢ { toMultilinearMap := { toFun := toFun✝¹, map_add' := map_add'✝¹, map_smul' := map_smul'✝¹ }, map_eq_zero_of_eq' := map_eq_zero_of_eq'✝¹ } = { toMultilinearMap := { toFun := toFun✝, map_add' := map_add'✝, map_smul' := map_smul'✝ }, map_eq_zero_of_eq' := map_eq_zero_of_eq'✝ } [PROOFSTEP] congr [GOAL] R : Type u_1 inst✝¹⁰ : Semiring R M : Type u_2 inst✝⁹ : AddCommMonoid M inst✝⁸ : Module R M N : Type u_3 inst✝⁷ : AddCommMonoid N inst✝⁶ : Module R N P : Type u_4 inst✝⁵ : AddCommMonoid P inst✝⁴ : Module R P M' : Type u_5 inst✝³ : AddCommGroup M' inst✝² : Module R M' N' : Type u_6 inst✝¹ : AddCommGroup N' inst✝ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 f✝ f' : AlternatingMap R M N ι g g₂ : AlternatingMap R M N' ι g' : AlternatingMap R M' N' ι v : ι → M v' : ι → M' f : (ι → M) → N h₁ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M), f (update m i (x + y)) = f (update m i x) + f (update m i y) h₂ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M), f (update m i (c • x)) = c • f (update m i x) h₃ : ∀ (v : ι → M) (i j : ι), v i = v j → i ≠ j → MultilinearMap.toFun { toFun := f, map_add' := (_ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M), f (update m i (x + y)) = f (update m i x) + f (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M), f (update m i (c • x)) = c • f (update m i x)) } v = 0 ⊢ ↑{ toMultilinearMap := { toFun := f, map_add' := (_ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M), f (update m i (x + y)) = f (update m i x) + f (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M), f (update m i (c • x)) = c • f (update m i x)) }, map_eq_zero_of_eq' := h₃ } = { toFun := f, map_add' := h₁, map_smul' := h₂ } [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝¹⁰ : Semiring R M : Type u_2 inst✝⁹ : AddCommMonoid M inst✝⁸ : Module R M N : Type u_3 inst✝⁷ : AddCommMonoid N inst✝⁶ : Module R N P : Type u_4 inst✝⁵ : AddCommMonoid P inst✝⁴ : Module R P M' : Type u_5 inst✝³ : AddCommGroup M' inst✝² : Module R M' N' : Type u_6 inst✝¹ : AddCommGroup N' inst✝ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 f f' : AlternatingMap R M N ι g g₂ : AlternatingMap R M N' ι g' : AlternatingMap R M' N' ι v✝ : ι → M v' : ι → M' v : ι → M hv : ¬Injective v ⊢ ↑f v = 0 [PROOFSTEP] rw [Function.Injective] at hv [GOAL] R : Type u_1 inst✝¹⁰ : Semiring R M : Type u_2 inst✝⁹ : AddCommMonoid M inst✝⁸ : Module R M N : Type u_3 inst✝⁷ : AddCommMonoid N inst✝⁶ : Module R N P : Type u_4 inst✝⁵ : AddCommMonoid P inst✝⁴ : Module R P M' : Type u_5 inst✝³ : AddCommGroup M' inst✝² : Module R M' N' : Type u_6 inst✝¹ : AddCommGroup N' inst✝ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 f f' : AlternatingMap R M N ι g g₂ : AlternatingMap R M N' ι g' : AlternatingMap R M' N' ι v✝ : ι → M v' : ι → M' v : ι → M hv : ¬∀ ⦃a₁ a₂ : ι⦄, v a₁ = v a₂ → a₁ = a₂ ⊢ ↑f v = 0 [PROOFSTEP] push_neg at hv [GOAL] R : Type u_1 inst✝¹⁰ : Semiring R M : Type u_2 inst✝⁹ : AddCommMonoid M inst✝⁸ : Module R M N : Type u_3 inst✝⁷ : AddCommMonoid N inst✝⁶ : Module R N P : Type u_4 inst✝⁵ : AddCommMonoid P inst✝⁴ : Module R P M' : Type u_5 inst✝³ : AddCommGroup M' inst✝² : Module R M' N' : Type u_6 inst✝¹ : AddCommGroup N' inst✝ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 f f' : AlternatingMap R M N ι g g₂ : AlternatingMap R M N' ι g' : AlternatingMap R M' N' ι v✝ : ι → M v' : ι → M' v : ι → M hv : Exists fun ⦃a₁⦄ => Exists fun ⦃a₂⦄ => v a₁ = v a₂ ∧ a₁ ≠ a₂ ⊢ ↑f v = 0 [PROOFSTEP] rcases hv with ⟨i₁, i₂, heq, hne⟩ [GOAL] case intro.intro.intro R : Type u_1 inst✝¹⁰ : Semiring R M : Type u_2 inst✝⁹ : AddCommMonoid M inst✝⁸ : Module R M N : Type u_3 inst✝⁷ : AddCommMonoid N inst✝⁶ : Module R N P : Type u_4 inst✝⁵ : AddCommMonoid P inst✝⁴ : Module R P M' : Type u_5 inst✝³ : AddCommGroup M' inst✝² : Module R M' N' : Type u_6 inst✝¹ : AddCommGroup N' inst✝ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 f f' : AlternatingMap R M N ι g g₂ : AlternatingMap R M N' ι g' : AlternatingMap R M' N' ι v✝ : ι → M v' : ι → M' v : ι → M i₁ i₂ : ι heq : v i₁ = v i₂ hne : i₁ ≠ i₂ ⊢ ↑f v = 0 [PROOFSTEP] exact f.map_eq_zero_of_eq v heq hne [GOAL] R : Type u_1 inst✝¹³ : Semiring R M : Type u_2 inst✝¹² : AddCommMonoid M inst✝¹¹ : Module R M N : Type u_3 inst✝¹⁰ : AddCommMonoid N inst✝⁹ : Module R N P : Type u_4 inst✝⁸ : AddCommMonoid P inst✝⁷ : Module R P M' : Type u_5 inst✝⁶ : AddCommGroup M' inst✝⁵ : Module R M' N' : Type u_6 inst✝⁴ : AddCommGroup N' inst✝³ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 f✝ f' : AlternatingMap R M N ι g g₂ : AlternatingMap R M N' ι g' : AlternatingMap R M' N' ι v✝ : ι → M v' : ι → M' S : Type u_10 inst✝² : Monoid S inst✝¹ : DistribMulAction S N inst✝ : SMulCommClass R S N c : S f : AlternatingMap R M N ι src✝ : MultilinearMap R (fun x => M) N := c • ↑f v : ι → M i j : ι h : v i = v j hij : i ≠ j ⊢ MultilinearMap.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M), MultilinearMap.toFun src✝ (update m i (x + y)) = MultilinearMap.toFun src✝ (update m i x) + MultilinearMap.toFun src✝ (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M), MultilinearMap.toFun src✝ (update m i (c • x)) = c • MultilinearMap.toFun src✝ (update m i x)) } v = 0 [PROOFSTEP] simp [f.map_eq_zero_of_eq v h hij] [GOAL] R✝ : Type u_1 inst✝¹⁵ : Semiring R✝ M : Type u_2 inst✝¹⁴ : AddCommMonoid M inst✝¹³ : Module R✝ M N : Type u_3 inst✝¹² : AddCommMonoid N inst✝¹¹ : Module R✝ N P : Type u_4 inst✝¹⁰ : AddCommMonoid P inst✝⁹ : Module R✝ P M' : Type u_5 inst✝⁸ : AddCommGroup M' inst✝⁷ : Module R✝ M' N' : Type u_6 inst✝⁶ : AddCommGroup N' inst✝⁵ : Module R✝ N' ι✝ : Type u_7 ι' : Type u_8 ι'' : Type u_9 f✝ f' : AlternatingMap R✝ M N ι✝ g g₂ : AlternatingMap R✝ M N' ι✝ g' : AlternatingMap R✝ M' N' ι✝ v✝ : ι✝ → M v' : ι✝ → M' R : Type u_10 M₁ : Type u_11 M₂ : Type u_12 ι : Type u_13 inst✝⁴ : CommSemiring R inst✝³ : AddCommMonoid M₁ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M₁ inst✝ : Module R M₂ f : AlternatingMap R M₁ R ι z : M₂ src✝ : MultilinearMap R (fun x => M₁) M₂ := MultilinearMap.smulRight (↑f) z v : ι → M₁ i j : ι h : v i = v j hne : i ≠ j ⊢ MultilinearMap.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ [inst : DecidableEq ι] (m : ι → M₁) (i : ι) (x y : M₁), MultilinearMap.toFun src✝ (update m i (x + y)) = MultilinearMap.toFun src✝ (update m i x) + MultilinearMap.toFun src✝ (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι] (m : ι → M₁) (i : ι) (c : R) (x : M₁), MultilinearMap.toFun src✝ (update m i (c • x)) = c • MultilinearMap.toFun src✝ (update m i x)) } v = 0 [PROOFSTEP] simp [f.map_eq_zero_of_eq v h hne] [GOAL] R : Type u_1 inst✝¹⁰ : Semiring R M : Type u_2 inst✝⁹ : AddCommMonoid M inst✝⁸ : Module R M N : Type u_3 inst✝⁷ : AddCommMonoid N inst✝⁶ : Module R N P : Type u_4 inst✝⁵ : AddCommMonoid P inst✝⁴ : Module R P M' : Type u_5 inst✝³ : AddCommGroup M' inst✝² : Module R M' N' : Type u_6 inst✝¹ : AddCommGroup N' inst✝ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 f f' : AlternatingMap R M N ι g g₂ : AlternatingMap R M N' ι g' : AlternatingMap R M' N' ι v✝ : ι → M v' : ι → M' a b : AlternatingMap R M N ι src✝ : MultilinearMap R (fun x => M) N := ↑a + ↑b v : ι → M i j : ι h : v i = v j hij : i ≠ j ⊢ MultilinearMap.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M), MultilinearMap.toFun src✝ (update m i (x + y)) = MultilinearMap.toFun src✝ (update m i x) + MultilinearMap.toFun src✝ (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M), MultilinearMap.toFun src✝ (update m i (c • x)) = c • MultilinearMap.toFun src✝ (update m i x)) } v = 0 [PROOFSTEP] simp [a.map_eq_zero_of_eq v h hij, b.map_eq_zero_of_eq v h hij] [GOAL] R : Type u_1 inst✝¹⁰ : Semiring R M : Type u_2 inst✝⁹ : AddCommMonoid M inst✝⁸ : Module R M N : Type u_3 inst✝⁷ : AddCommMonoid N inst✝⁶ : Module R N P : Type u_4 inst✝⁵ : AddCommMonoid P inst✝⁴ : Module R P M' : Type u_5 inst✝³ : AddCommGroup M' inst✝² : Module R M' N' : Type u_6 inst✝¹ : AddCommGroup N' inst✝ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 f f' : AlternatingMap R M N ι g g₂ : AlternatingMap R M N' ι g' : AlternatingMap R M' N' ι v✝ : ι → M v' : ι → M' src✝ : MultilinearMap R (fun x => M) N := 0 v : ι → M i j : ι x✝¹ : v i = v j x✝ : i ≠ j ⊢ MultilinearMap.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M), MultilinearMap.toFun src✝ (update m i (x + y)) = MultilinearMap.toFun src✝ (update m i x) + MultilinearMap.toFun src✝ (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M), MultilinearMap.toFun src✝ (update m i (c • x)) = c • MultilinearMap.toFun src✝ (update m i x)) } v = 0 [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝¹⁰ : Semiring R M : Type u_2 inst✝⁹ : AddCommMonoid M inst✝⁸ : Module R M N : Type u_3 inst✝⁷ : AddCommMonoid N inst✝⁶ : Module R N P : Type u_4 inst✝⁵ : AddCommMonoid P inst✝⁴ : Module R P M' : Type u_5 inst✝³ : AddCommGroup M' inst✝² : Module R M' N' : Type u_6 inst✝¹ : AddCommGroup N' inst✝ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 f✝ f' : AlternatingMap R M N ι g g₂ : AlternatingMap R M N' ι g' : AlternatingMap R M' N' ι v✝ : ι → M v' : ι → M' f : AlternatingMap R M N' ι src✝ : MultilinearMap R (fun x => M) N' := -↑f v : ι → M i j : ι h : v i = v j hij : i ≠ j ⊢ MultilinearMap.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M), MultilinearMap.toFun src✝ (update m i (x + y)) = MultilinearMap.toFun src✝ (update m i x) + MultilinearMap.toFun src✝ (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M), MultilinearMap.toFun src✝ (update m i (c • x)) = c • MultilinearMap.toFun src✝ (update m i x)) } v = 0 [PROOFSTEP] simp [f.map_eq_zero_of_eq v h hij] [GOAL] R : Type u_1 inst✝¹⁰ : Semiring R M : Type u_2 inst✝⁹ : AddCommMonoid M inst✝⁸ : Module R M N : Type u_3 inst✝⁷ : AddCommMonoid N inst✝⁶ : Module R N P : Type u_4 inst✝⁵ : AddCommMonoid P inst✝⁴ : Module R P M' : Type u_5 inst✝³ : AddCommGroup M' inst✝² : Module R M' N' : Type u_6 inst✝¹ : AddCommGroup N' inst✝ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 f✝ f' : AlternatingMap R M N ι g✝ g₂ : AlternatingMap R M N' ι g' : AlternatingMap R M' N' ι v✝ : ι → M v' : ι → M' f g : AlternatingMap R M N' ι src✝ : MultilinearMap R (fun x => M) N' := ↑f - ↑g v : ι → M i j : ι h : v i = v j hij : i ≠ j ⊢ MultilinearMap.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M), MultilinearMap.toFun src✝ (update m i (x + y)) = MultilinearMap.toFun src✝ (update m i x) + MultilinearMap.toFun src✝ (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M), MultilinearMap.toFun src✝ (update m i (c • x)) = c • MultilinearMap.toFun src✝ (update m i x)) } v = 0 [PROOFSTEP] simp [f.map_eq_zero_of_eq v h hij, g.map_eq_zero_of_eq v h hij] [GOAL] R : Type u_1 inst✝¹² : Semiring R M : Type u_2 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : Module R M N : Type u_3 inst✝⁹ : AddCommMonoid N inst✝⁸ : Module R N P : Type u_4 inst✝⁷ : AddCommMonoid P inst✝⁶ : Module R P M' : Type u_5 inst✝⁵ : AddCommGroup M' inst✝⁴ : Module R M' N' : Type u_6 inst✝³ : AddCommGroup N' inst✝² : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 N₂ : Type u_10 inst✝¹ : AddCommMonoid N₂ inst✝ : Module R N₂ g : N →ₗ[R] N₂ f : AlternatingMap R M N ι src✝ : MultilinearMap R (fun x => M) N₂ := compMultilinearMap g ↑f v : ι → M i j : ι h : v i = v j hij : i ≠ j ⊢ MultilinearMap.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M), MultilinearMap.toFun src✝ (Function.update m i (x + y)) = MultilinearMap.toFun src✝ (Function.update m i x) + MultilinearMap.toFun src✝ (Function.update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M), MultilinearMap.toFun src✝ (Function.update m i (c • x)) = c • MultilinearMap.toFun src✝ (Function.update m i x)) } v = 0 [PROOFSTEP] simp [f.map_eq_zero_of_eq v h hij] [GOAL] R : Type u_1 inst✝¹² : Semiring R M : Type u_2 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : Module R M N : Type u_3 inst✝⁹ : AddCommMonoid N inst✝⁸ : Module R N P : Type u_4 inst✝⁷ : AddCommMonoid P inst✝⁶ : Module R P M' : Type u_5 inst✝⁵ : AddCommGroup M' inst✝⁴ : Module R M' N' : Type u_6 inst✝³ : AddCommGroup N' inst✝² : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 N₂ : Type u_10 inst✝¹ : AddCommMonoid N₂ inst✝ : Module R N₂ g : N →ₗ[R] N₂ ⊢ (fun f => let src := compMultilinearMap g ↑f; { toMultilinearMap := { toFun := src.toFun, map_add' := (_ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M), MultilinearMap.toFun src (Function.update m i (x + y)) = MultilinearMap.toFun src (Function.update m i x) + MultilinearMap.toFun src (Function.update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M), MultilinearMap.toFun src (Function.update m i (c • x)) = c • MultilinearMap.toFun src (Function.update m i x)) }, map_eq_zero_of_eq' := (_ : ∀ (v : ι → M) (i j : ι), v i = v j → i ≠ j → ↑g (↑f v) = 0) }) 0 = 0 [PROOFSTEP] ext [GOAL] case H R : Type u_1 inst✝¹² : Semiring R M : Type u_2 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : Module R M N : Type u_3 inst✝⁹ : AddCommMonoid N inst✝⁸ : Module R N P : Type u_4 inst✝⁷ : AddCommMonoid P inst✝⁶ : Module R P M' : Type u_5 inst✝⁵ : AddCommGroup M' inst✝⁴ : Module R M' N' : Type u_6 inst✝³ : AddCommGroup N' inst✝² : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 N₂ : Type u_10 inst✝¹ : AddCommMonoid N₂ inst✝ : Module R N₂ g : N →ₗ[R] N₂ x✝ : ι → M ⊢ ↑((fun f => let src := compMultilinearMap g ↑f; { toMultilinearMap := { toFun := src.toFun, map_add' := (_ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M), MultilinearMap.toFun src (Function.update m i (x + y)) = MultilinearMap.toFun src (Function.update m i x) + MultilinearMap.toFun src (Function.update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M), MultilinearMap.toFun src (Function.update m i (c • x)) = c • MultilinearMap.toFun src (Function.update m i x)) }, map_eq_zero_of_eq' := (_ : ∀ (v : ι → M) (i j : ι), v i = v j → i ≠ j → ↑g (↑f v) = 0) }) 0) x✝ = ↑0 x✝ [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝¹² : Semiring R M : Type u_2 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : Module R M N : Type u_3 inst✝⁹ : AddCommMonoid N inst✝⁸ : Module R N P : Type u_4 inst✝⁷ : AddCommMonoid P inst✝⁶ : Module R P M' : Type u_5 inst✝⁵ : AddCommGroup M' inst✝⁴ : Module R M' N' : Type u_6 inst✝³ : AddCommGroup N' inst✝² : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 N₂ : Type u_10 inst✝¹ : AddCommMonoid N₂ inst✝ : Module R N₂ g : N →ₗ[R] N₂ a b : AlternatingMap R M N ι ⊢ ZeroHom.toFun { toFun := fun f => let src := compMultilinearMap g ↑f; { toMultilinearMap := { toFun := src.toFun, map_add' := (_ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M), MultilinearMap.toFun src (Function.update m i (x + y)) = MultilinearMap.toFun src (Function.update m i x) + MultilinearMap.toFun src (Function.update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M), MultilinearMap.toFun src (Function.update m i (c • x)) = c • MultilinearMap.toFun src (Function.update m i x)) }, map_eq_zero_of_eq' := (_ : ∀ (v : ι → M) (i j : ι), v i = v j → i ≠ j → ↑g (↑f v) = 0) }, map_zero' := (_ : (fun f => let src := compMultilinearMap g ↑f; { toMultilinearMap := { toFun := src.toFun, map_add' := (_ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M), MultilinearMap.toFun src (Function.update m i (x + y)) = MultilinearMap.toFun src (Function.update m i x) + MultilinearMap.toFun src (Function.update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M), MultilinearMap.toFun src (Function.update m i (c • x)) = c • MultilinearMap.toFun src (Function.update m i x)) }, map_eq_zero_of_eq' := (_ : ∀ (v : ι → M) (i j : ι), v i = v j → i ≠ j → ↑g (↑f v) = 0) }) 0 = 0) } (a + b) = ZeroHom.toFun { toFun := fun f => let src := compMultilinearMap g ↑f; { toMultilinearMap := { toFun := src.toFun, map_add' := (_ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M), MultilinearMap.toFun src (Function.update m i (x + y)) = MultilinearMap.toFun src (Function.update m i x) + MultilinearMap.toFun src (Function.update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M), MultilinearMap.toFun src (Function.update m i (c • x)) = c • MultilinearMap.toFun src (Function.update m i x)) }, map_eq_zero_of_eq' := (_ : ∀ (v : ι → M) (i j : ι), v i = v j → i ≠ j → ↑g (↑f v) = 0) }, map_zero' := (_ : (fun f => let src := compMultilinearMap g ↑f; { toMultilinearMap := { toFun := src.toFun, map_add' := (_ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M), MultilinearMap.toFun src (Function.update m i (x + y)) = MultilinearMap.toFun src (Function.update m i x) + MultilinearMap.toFun src (Function.update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M), MultilinearMap.toFun src (Function.update m i (c • x)) = c • MultilinearMap.toFun src (Function.update m i x)) }, map_eq_zero_of_eq' := (_ : ∀ (v : ι → M) (i j : ι), v i = v j → i ≠ j → ↑g (↑f v) = 0) }) 0 = 0) } a + ZeroHom.toFun { toFun := fun f => let src := compMultilinearMap g ↑f; { toMultilinearMap := { toFun := src.toFun, map_add' := (_ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M), MultilinearMap.toFun src (Function.update m i (x + y)) = MultilinearMap.toFun src (Function.update m i x) + MultilinearMap.toFun src (Function.update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M), MultilinearMap.toFun src (Function.update m i (c • x)) = c • MultilinearMap.toFun src (Function.update m i x)) }, map_eq_zero_of_eq' := (_ : ∀ (v : ι → M) (i j : ι), v i = v j → i ≠ j → ↑g (↑f v) = 0) }, map_zero' := (_ : (fun f => let src := compMultilinearMap g ↑f; { toMultilinearMap := { toFun := src.toFun, map_add' := (_ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M), MultilinearMap.toFun src (Function.update m i (x + y)) = MultilinearMap.toFun src (Function.update m i x) + MultilinearMap.toFun src (Function.update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M), MultilinearMap.toFun src (Function.update m i (c • x)) = c • MultilinearMap.toFun src (Function.update m i x)) }, map_eq_zero_of_eq' := (_ : ∀ (v : ι → M) (i j : ι), v i = v j → i ≠ j → ↑g (↑f v) = 0) }) 0 = 0) } b [PROOFSTEP] ext [GOAL] case H R : Type u_1 inst✝¹² : Semiring R M : Type u_2 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : Module R M N : Type u_3 inst✝⁹ : AddCommMonoid N inst✝⁸ : Module R N P : Type u_4 inst✝⁷ : AddCommMonoid P inst✝⁶ : Module R P M' : Type u_5 inst✝⁵ : AddCommGroup M' inst✝⁴ : Module R M' N' : Type u_6 inst✝³ : AddCommGroup N' inst✝² : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 N₂ : Type u_10 inst✝¹ : AddCommMonoid N₂ inst✝ : Module R N₂ g : N →ₗ[R] N₂ a b : AlternatingMap R M N ι x✝ : ι → M ⊢ ↑(ZeroHom.toFun { toFun := fun f => let src := compMultilinearMap g ↑f; { toMultilinearMap := { toFun := src.toFun, map_add' := (_ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M), MultilinearMap.toFun src (Function.update m i (x + y)) = MultilinearMap.toFun src (Function.update m i x) + MultilinearMap.toFun src (Function.update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M), MultilinearMap.toFun src (Function.update m i (c • x)) = c • MultilinearMap.toFun src (Function.update m i x)) }, map_eq_zero_of_eq' := (_ : ∀ (v : ι → M) (i j : ι), v i = v j → i ≠ j → ↑g (↑f v) = 0) }, map_zero' := (_ : (fun f => let src := compMultilinearMap g ↑f; { toMultilinearMap := { toFun := src.toFun, map_add' := (_ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M), MultilinearMap.toFun src (Function.update m i (x + y)) = MultilinearMap.toFun src (Function.update m i x) + MultilinearMap.toFun src (Function.update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M), MultilinearMap.toFun src (Function.update m i (c • x)) = c • MultilinearMap.toFun src (Function.update m i x)) }, map_eq_zero_of_eq' := (_ : ∀ (v : ι → M) (i j : ι), v i = v j → i ≠ j → ↑g (↑f v) = 0) }) 0 = 0) } (a + b)) x✝ = ↑(ZeroHom.toFun { toFun := fun f => let src := compMultilinearMap g ↑f; { toMultilinearMap := { toFun := src.toFun, map_add' := (_ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M), MultilinearMap.toFun src (Function.update m i (x + y)) = MultilinearMap.toFun src (Function.update m i x) + MultilinearMap.toFun src (Function.update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M), MultilinearMap.toFun src (Function.update m i (c • x)) = c • MultilinearMap.toFun src (Function.update m i x)) }, map_eq_zero_of_eq' := (_ : ∀ (v : ι → M) (i j : ι), v i = v j → i ≠ j → ↑g (↑f v) = 0) }, map_zero' := (_ : (fun f => let src := compMultilinearMap g ↑f; { toMultilinearMap := { toFun := src.toFun, map_add' := (_ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M), MultilinearMap.toFun src (Function.update m i (x + y)) = MultilinearMap.toFun src (Function.update m i x) + MultilinearMap.toFun src (Function.update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M), MultilinearMap.toFun src (Function.update m i (c • x)) = c • MultilinearMap.toFun src (Function.update m i x)) }, map_eq_zero_of_eq' := (_ : ∀ (v : ι → M) (i j : ι), v i = v j → i ≠ j → ↑g (↑f v) = 0) }) 0 = 0) } a + ZeroHom.toFun { toFun := fun f => let src := compMultilinearMap g ↑f; { toMultilinearMap := { toFun := src.toFun, map_add' := (_ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M), MultilinearMap.toFun src (Function.update m i (x + y)) = MultilinearMap.toFun src (Function.update m i x) + MultilinearMap.toFun src (Function.update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M), MultilinearMap.toFun src (Function.update m i (c • x)) = c • MultilinearMap.toFun src (Function.update m i x)) }, map_eq_zero_of_eq' := (_ : ∀ (v : ι → M) (i j : ι), v i = v j → i ≠ j → ↑g (↑f v) = 0) }, map_zero' := (_ : (fun f => let src := compMultilinearMap g ↑f; { toMultilinearMap := { toFun := src.toFun, map_add' := (_ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M), MultilinearMap.toFun src (Function.update m i (x + y)) = MultilinearMap.toFun src (Function.update m i x) + MultilinearMap.toFun src (Function.update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M), MultilinearMap.toFun src (Function.update m i (c • x)) = c • MultilinearMap.toFun src (Function.update m i x)) }, map_eq_zero_of_eq' := (_ : ∀ (v : ι → M) (i j : ι), v i = v j → i ≠ j → ↑g (↑f v) = 0) }) 0 = 0) } b) x✝ [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝¹⁴ : Semiring R M : Type u_2 inst✝¹³ : AddCommMonoid M inst✝¹² : Module R M N : Type u_3 inst✝¹¹ : AddCommMonoid N inst✝¹⁰ : Module R N P : Type u_4 inst✝⁹ : AddCommMonoid P inst✝⁸ : Module R P M' : Type u_5 inst✝⁷ : AddCommGroup M' inst✝⁶ : Module R M' N' : Type u_6 inst✝⁵ : AddCommGroup N' inst✝⁴ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 M₂ : Type u_10 inst✝³ : AddCommMonoid M₂ inst✝² : Module R M₂ M₃ : Type u_11 inst✝¹ : AddCommMonoid M₃ inst✝ : Module R M₃ g : M₂ →ₗ[R] M ⊢ compLinearMap 0 g = 0 [PROOFSTEP] ext [GOAL] case H R : Type u_1 inst✝¹⁴ : Semiring R M : Type u_2 inst✝¹³ : AddCommMonoid M inst✝¹² : Module R M N : Type u_3 inst✝¹¹ : AddCommMonoid N inst✝¹⁰ : Module R N P : Type u_4 inst✝⁹ : AddCommMonoid P inst✝⁸ : Module R P M' : Type u_5 inst✝⁷ : AddCommGroup M' inst✝⁶ : Module R M' N' : Type u_6 inst✝⁵ : AddCommGroup N' inst✝⁴ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 M₂ : Type u_10 inst✝³ : AddCommMonoid M₂ inst✝² : Module R M₂ M₃ : Type u_11 inst✝¹ : AddCommMonoid M₃ inst✝ : Module R M₃ g : M₂ →ₗ[R] M x✝ : ι → M₂ ⊢ ↑(compLinearMap 0 g) x✝ = ↑0 x✝ [PROOFSTEP] simp only [compLinearMap_apply, zero_apply] [GOAL] R : Type u_1 inst✝¹⁴ : Semiring R M : Type u_2 inst✝¹³ : AddCommMonoid M inst✝¹² : Module R M N : Type u_3 inst✝¹¹ : AddCommMonoid N inst✝¹⁰ : Module R N P : Type u_4 inst✝⁹ : AddCommMonoid P inst✝⁸ : Module R P M' : Type u_5 inst✝⁷ : AddCommGroup M' inst✝⁶ : Module R M' N' : Type u_6 inst✝⁵ : AddCommGroup N' inst✝⁴ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 M₂ : Type u_10 inst✝³ : AddCommMonoid M₂ inst✝² : Module R M₂ M₃ : Type u_11 inst✝¹ : AddCommMonoid M₃ inst✝ : Module R M₃ f₁ f₂ : AlternatingMap R M N ι g : M₂ →ₗ[R] M ⊢ compLinearMap (f₁ + f₂) g = compLinearMap f₁ g + compLinearMap f₂ g [PROOFSTEP] ext [GOAL] case H R : Type u_1 inst✝¹⁴ : Semiring R M : Type u_2 inst✝¹³ : AddCommMonoid M inst✝¹² : Module R M N : Type u_3 inst✝¹¹ : AddCommMonoid N inst✝¹⁰ : Module R N P : Type u_4 inst✝⁹ : AddCommMonoid P inst✝⁸ : Module R P M' : Type u_5 inst✝⁷ : AddCommGroup M' inst✝⁶ : Module R M' N' : Type u_6 inst✝⁵ : AddCommGroup N' inst✝⁴ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 M₂ : Type u_10 inst✝³ : AddCommMonoid M₂ inst✝² : Module R M₂ M₃ : Type u_11 inst✝¹ : AddCommMonoid M₃ inst✝ : Module R M₃ f₁ f₂ : AlternatingMap R M N ι g : M₂ →ₗ[R] M x✝ : ι → M₂ ⊢ ↑(compLinearMap (f₁ + f₂) g) x✝ = ↑(compLinearMap f₁ g + compLinearMap f₂ g) x✝ [PROOFSTEP] simp only [compLinearMap_apply, add_apply] [GOAL] R : Type u_1 inst✝¹⁵ : Semiring R M : Type u_2 inst✝¹⁴ : AddCommMonoid M inst✝¹³ : Module R M N : Type u_3 inst✝¹² : AddCommMonoid N inst✝¹¹ : Module R N P : Type u_4 inst✝¹⁰ : AddCommMonoid P inst✝⁹ : Module R P M' : Type u_5 inst✝⁸ : AddCommGroup M' inst✝⁷ : Module R M' N' : Type u_6 inst✝⁶ : AddCommGroup N' inst✝⁵ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 M₂ : Type u_10 inst✝⁴ : AddCommMonoid M₂ inst✝³ : Module R M₂ M₃ : Type u_11 inst✝² : AddCommMonoid M₃ inst✝¹ : Module R M₃ inst✝ : Nonempty ι f : AlternatingMap R M N ι ⊢ compLinearMap f 0 = 0 [PROOFSTEP] ext -- Porting note: Was `simp_rw [.., ← Pi.zero_def, map_zero, zero_apply]`. [GOAL] case H R : Type u_1 inst✝¹⁵ : Semiring R M : Type u_2 inst✝¹⁴ : AddCommMonoid M inst✝¹³ : Module R M N : Type u_3 inst✝¹² : AddCommMonoid N inst✝¹¹ : Module R N P : Type u_4 inst✝¹⁰ : AddCommMonoid P inst✝⁹ : Module R P M' : Type u_5 inst✝⁸ : AddCommGroup M' inst✝⁷ : Module R M' N' : Type u_6 inst✝⁶ : AddCommGroup N' inst✝⁵ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 M₂ : Type u_10 inst✝⁴ : AddCommMonoid M₂ inst✝³ : Module R M₂ M₃ : Type u_11 inst✝² : AddCommMonoid M₃ inst✝¹ : Module R M₃ inst✝ : Nonempty ι f : AlternatingMap R M N ι x✝ : ι → M₂ ⊢ ↑(compLinearMap f 0) x✝ = ↑0 x✝ [PROOFSTEP] simp_rw [compLinearMap_apply, LinearMap.zero_apply, ← Pi.zero_def, zero_apply] [GOAL] case H R : Type u_1 inst✝¹⁵ : Semiring R M : Type u_2 inst✝¹⁴ : AddCommMonoid M inst✝¹³ : Module R M N : Type u_3 inst✝¹² : AddCommMonoid N inst✝¹¹ : Module R N P : Type u_4 inst✝¹⁰ : AddCommMonoid P inst✝⁹ : Module R P M' : Type u_5 inst✝⁸ : AddCommGroup M' inst✝⁷ : Module R M' N' : Type u_6 inst✝⁶ : AddCommGroup N' inst✝⁵ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 M₂ : Type u_10 inst✝⁴ : AddCommMonoid M₂ inst✝³ : Module R M₂ M₃ : Type u_11 inst✝² : AddCommMonoid M₃ inst✝¹ : Module R M₃ inst✝ : Nonempty ι f : AlternatingMap R M N ι x✝ : ι → M₂ ⊢ ↑f 0 = 0 [PROOFSTEP] exact map_zero f [GOAL] R : Type u_1 inst✝¹⁴ : Semiring R M : Type u_2 inst✝¹³ : AddCommMonoid M inst✝¹² : Module R M N : Type u_3 inst✝¹¹ : AddCommMonoid N inst✝¹⁰ : Module R N P : Type u_4 inst✝⁹ : AddCommMonoid P inst✝⁸ : Module R P M' : Type u_5 inst✝⁷ : AddCommGroup M' inst✝⁶ : Module R M' N' : Type u_6 inst✝⁵ : AddCommGroup N' inst✝⁴ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 M₂ : Type u_10 inst✝³ : AddCommMonoid M₂ inst✝² : Module R M₂ M₃ : Type u_11 inst✝¹ : AddCommMonoid M₃ inst✝ : Module R M₃ f : M₂ →ₗ[R] M hf : Function.Surjective ↑f g₁ g₂ : AlternatingMap R M N ι h : (fun g => compLinearMap g f) g₁ = (fun g => compLinearMap g f) g₂ x : ι → M ⊢ ↑g₁ x = ↑g₂ x [PROOFSTEP] simpa [Function.surjInv_eq hf] using ext_iff.mp h (Function.surjInv hf ∘ x) [GOAL] R : Type u_1 inst✝¹⁵ : Semiring R M : Type u_2 inst✝¹⁴ : AddCommMonoid M inst✝¹³ : Module R M N : Type u_3 inst✝¹² : AddCommMonoid N inst✝¹¹ : Module R N P : Type u_4 inst✝¹⁰ : AddCommMonoid P inst✝⁹ : Module R P M' : Type u_5 inst✝⁸ : AddCommGroup M' inst✝⁷ : Module R M' N' : Type u_6 inst✝⁶ : AddCommGroup N' inst✝⁵ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 M₂ : Type u_10 inst✝⁴ : AddCommMonoid M₂ inst✝³ : Module R M₂ M₃ : Type u_11 inst✝² : AddCommMonoid M₃ inst✝¹ : Module R M₃ f f' : AlternatingMap R M N ι g g₂ : AlternatingMap R M N' ι g' : AlternatingMap R M' N' ι v : ι → M v' : ι → M' inst✝ : DecidableEq ι i j : ι hij : i ≠ j ⊢ update v i (v j) i = update v i (v j) j [PROOFSTEP] rw [Function.update_same, Function.update_noteq hij.symm] [GOAL] R : Type u_1 inst✝¹⁵ : Semiring R M : Type u_2 inst✝¹⁴ : AddCommMonoid M inst✝¹³ : Module R M N : Type u_3 inst✝¹² : AddCommMonoid N inst✝¹¹ : Module R N P : Type u_4 inst✝¹⁰ : AddCommMonoid P inst✝⁹ : Module R P M' : Type u_5 inst✝⁸ : AddCommGroup M' inst✝⁷ : Module R M' N' : Type u_6 inst✝⁶ : AddCommGroup N' inst✝⁵ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 M₂ : Type u_10 inst✝⁴ : AddCommMonoid M₂ inst✝³ : Module R M₂ M₃ : Type u_11 inst✝² : AddCommMonoid M₃ inst✝¹ : Module R M₃ f f' : AlternatingMap R M N ι g g₂ : AlternatingMap R M N' ι g' : AlternatingMap R M' N' ι v : ι → M v' : ι → M' inst✝ : DecidableEq ι i j : ι hij : i ≠ j m : M ⊢ update (update v i m) j m i = update (update v i m) j m j [PROOFSTEP] rw [Function.update_same, Function.update_noteq hij, Function.update_same] [GOAL] R : Type u_1 inst✝¹⁵ : Semiring R M : Type u_2 inst✝¹⁴ : AddCommMonoid M inst✝¹³ : Module R M N : Type u_3 inst✝¹² : AddCommMonoid N inst✝¹¹ : Module R N P : Type u_4 inst✝¹⁰ : AddCommMonoid P inst✝⁹ : Module R P M' : Type u_5 inst✝⁸ : AddCommGroup M' inst✝⁷ : Module R M' N' : Type u_6 inst✝⁶ : AddCommGroup N' inst✝⁵ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 M₂ : Type u_10 inst✝⁴ : AddCommMonoid M₂ inst✝³ : Module R M₂ M₃ : Type u_11 inst✝² : AddCommMonoid M₃ inst✝¹ : Module R M₃ f f' : AlternatingMap R M N ι g g₂ : AlternatingMap R M N' ι g' : AlternatingMap R M' N' ι v : ι → M v' : ι → M' inst✝ : DecidableEq ι i j : ι hij : i ≠ j ⊢ ↑f (v ∘ ↑(Equiv.swap i j)) + ↑f v = 0 [PROOFSTEP] rw [Equiv.comp_swap_eq_update] [GOAL] R : Type u_1 inst✝¹⁵ : Semiring R M : Type u_2 inst✝¹⁴ : AddCommMonoid M inst✝¹³ : Module R M N : Type u_3 inst✝¹² : AddCommMonoid N inst✝¹¹ : Module R N P : Type u_4 inst✝¹⁰ : AddCommMonoid P inst✝⁹ : Module R P M' : Type u_5 inst✝⁸ : AddCommGroup M' inst✝⁷ : Module R M' N' : Type u_6 inst✝⁶ : AddCommGroup N' inst✝⁵ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 M₂ : Type u_10 inst✝⁴ : AddCommMonoid M₂ inst✝³ : Module R M₂ M₃ : Type u_11 inst✝² : AddCommMonoid M₃ inst✝¹ : Module R M₃ f f' : AlternatingMap R M N ι g g₂ : AlternatingMap R M N' ι g' : AlternatingMap R M' N' ι v : ι → M v' : ι → M' inst✝ : DecidableEq ι i j : ι hij : i ≠ j ⊢ ↑f (update (update v j (v i)) i (v j)) + ↑f v = 0 [PROOFSTEP] convert f.map_update_update v hij (v i + v j) [GOAL] case h.e'_2 R : Type u_1 inst✝¹⁵ : Semiring R M : Type u_2 inst✝¹⁴ : AddCommMonoid M inst✝¹³ : Module R M N : Type u_3 inst✝¹² : AddCommMonoid N inst✝¹¹ : Module R N P : Type u_4 inst✝¹⁰ : AddCommMonoid P inst✝⁹ : Module R P M' : Type u_5 inst✝⁸ : AddCommGroup M' inst✝⁷ : Module R M' N' : Type u_6 inst✝⁶ : AddCommGroup N' inst✝⁵ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 M₂ : Type u_10 inst✝⁴ : AddCommMonoid M₂ inst✝³ : Module R M₂ M₃ : Type u_11 inst✝² : AddCommMonoid M₃ inst✝¹ : Module R M₃ f f' : AlternatingMap R M N ι g g₂ : AlternatingMap R M N' ι g' : AlternatingMap R M' N' ι v : ι → M v' : ι → M' inst✝ : DecidableEq ι i j : ι hij : i ≠ j ⊢ ↑f (update (update v j (v i)) i (v j)) + ↑f v = ↑f (update (update v i (v i + v j)) j (v i + v j)) [PROOFSTEP] simp [f.map_update_self _ hij, f.map_update_self _ hij.symm, Function.update_comm hij (v i + v j) (v _) v, Function.update_comm hij.symm (v i) (v i) v] [GOAL] R : Type u_1 inst✝¹⁵ : Semiring R M : Type u_2 inst✝¹⁴ : AddCommMonoid M inst✝¹³ : Module R M N : Type u_3 inst✝¹² : AddCommMonoid N inst✝¹¹ : Module R N P : Type u_4 inst✝¹⁰ : AddCommMonoid P inst✝⁹ : Module R P M' : Type u_5 inst✝⁸ : AddCommGroup M' inst✝⁷ : Module R M' N' : Type u_6 inst✝⁶ : AddCommGroup N' inst✝⁵ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 M₂ : Type u_10 inst✝⁴ : AddCommMonoid M₂ inst✝³ : Module R M₂ M₃ : Type u_11 inst✝² : AddCommMonoid M₃ inst✝¹ : Module R M₃ f f' : AlternatingMap R M N ι g g₂ : AlternatingMap R M N' ι g' : AlternatingMap R M' N' ι v : ι → M v' : ι → M' inst✝ : DecidableEq ι i j : ι hij : i ≠ j ⊢ ↑f v + ↑f (v ∘ ↑(Equiv.swap i j)) = 0 [PROOFSTEP] rw [add_comm] [GOAL] R : Type u_1 inst✝¹⁵ : Semiring R M : Type u_2 inst✝¹⁴ : AddCommMonoid M inst✝¹³ : Module R M N : Type u_3 inst✝¹² : AddCommMonoid N inst✝¹¹ : Module R N P : Type u_4 inst✝¹⁰ : AddCommMonoid P inst✝⁹ : Module R P M' : Type u_5 inst✝⁸ : AddCommGroup M' inst✝⁷ : Module R M' N' : Type u_6 inst✝⁶ : AddCommGroup N' inst✝⁵ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 M₂ : Type u_10 inst✝⁴ : AddCommMonoid M₂ inst✝³ : Module R M₂ M₃ : Type u_11 inst✝² : AddCommMonoid M₃ inst✝¹ : Module R M₃ f f' : AlternatingMap R M N ι g g₂ : AlternatingMap R M N' ι g' : AlternatingMap R M' N' ι v : ι → M v' : ι → M' inst✝ : DecidableEq ι i j : ι hij : i ≠ j ⊢ ↑f (v ∘ ↑(Equiv.swap i j)) + ↑f v = 0 [PROOFSTEP] exact f.map_swap_add v hij [GOAL] R : Type u_1 inst✝¹⁶ : Semiring R M : Type u_2 inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M N : Type u_3 inst✝¹³ : AddCommMonoid N inst✝¹² : Module R N P : Type u_4 inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : Module R P M' : Type u_5 inst✝⁹ : AddCommGroup M' inst✝⁸ : Module R M' N' : Type u_6 inst✝⁷ : AddCommGroup N' inst✝⁶ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 M₂ : Type u_10 inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ M₃ : Type u_11 inst✝³ : AddCommMonoid M₃ inst✝² : Module R M₃ f f' : AlternatingMap R M N ι g g₂ : AlternatingMap R M N' ι g' : AlternatingMap R M' N' ι v✝ : ι → M v' : ι → M' inst✝¹ : DecidableEq ι inst✝ : Fintype ι v : ι → M σ : Equiv.Perm ι ⊢ ↑g (v ∘ ↑σ) = ↑Equiv.Perm.sign σ • ↑g v [PROOFSTEP] induction' σ using Equiv.Perm.swap_induction_on' with s x y hxy hI [GOAL] case a R : Type u_1 inst✝¹⁶ : Semiring R M : Type u_2 inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M N : Type u_3 inst✝¹³ : AddCommMonoid N inst✝¹² : Module R N P : Type u_4 inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : Module R P M' : Type u_5 inst✝⁹ : AddCommGroup M' inst✝⁸ : Module R M' N' : Type u_6 inst✝⁷ : AddCommGroup N' inst✝⁶ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 M₂ : Type u_10 inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ M₃ : Type u_11 inst✝³ : AddCommMonoid M₃ inst✝² : Module R M₃ f f' : AlternatingMap R M N ι g g₂ : AlternatingMap R M N' ι g' : AlternatingMap R M' N' ι v✝ : ι → M v' : ι → M' inst✝¹ : DecidableEq ι inst✝ : Fintype ι v : ι → M ⊢ ↑g (v ∘ ↑1) = ↑Equiv.Perm.sign 1 • ↑g v [PROOFSTEP] simp [GOAL] case a R : Type u_1 inst✝¹⁶ : Semiring R M : Type u_2 inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M N : Type u_3 inst✝¹³ : AddCommMonoid N inst✝¹² : Module R N P : Type u_4 inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : Module R P M' : Type u_5 inst✝⁹ : AddCommGroup M' inst✝⁸ : Module R M' N' : Type u_6 inst✝⁷ : AddCommGroup N' inst✝⁶ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 M₂ : Type u_10 inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ M₃ : Type u_11 inst✝³ : AddCommMonoid M₃ inst✝² : Module R M₃ f f' : AlternatingMap R M N ι g g₂ : AlternatingMap R M N' ι g' : AlternatingMap R M' N' ι v✝ : ι → M v' : ι → M' inst✝¹ : DecidableEq ι inst✝ : Fintype ι v : ι → M s : Equiv.Perm ι x y : ι hxy : x ≠ y hI : ↑g (v ∘ ↑s) = ↑Equiv.Perm.sign s • ↑g v ⊢ ↑g (v ∘ ↑(s * Equiv.swap x y)) = ↑Equiv.Perm.sign (s * Equiv.swap x y) • ↑g v [PROOFSTEP] simpa [← Function.comp.assoc, g.map_swap (v ∘ s) hxy, Equiv.Perm.sign_swap hxy, -Equiv.Perm.sign_swap'] using hI [GOAL] R : Type u_1 inst✝¹⁶ : Semiring R M : Type u_2 inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M N : Type u_3 inst✝¹³ : AddCommMonoid N inst✝¹² : Module R N P : Type u_4 inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : Module R P M' : Type u_5 inst✝⁹ : AddCommGroup M' inst✝⁸ : Module R M' N' : Type u_6 inst✝⁷ : AddCommGroup N' inst✝⁶ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 M₂ : Type u_10 inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ M₃ : Type u_11 inst✝³ : AddCommMonoid M₃ inst✝² : Module R M₃ f f' : AlternatingMap R M N ι g g₂ : AlternatingMap R M N' ι g' : AlternatingMap R M' N' ι v : ι → M v' : ι → M' inst✝¹ : DecidableEq ι inst✝ : Fintype ι σ : Equiv.Perm ι ⊢ ↑g v = ↑Equiv.Perm.sign σ • ↑g (v ∘ ↑σ) [PROOFSTEP] rw [g.map_perm, smul_smul] [GOAL] R : Type u_1 inst✝¹⁶ : Semiring R M : Type u_2 inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M N : Type u_3 inst✝¹³ : AddCommMonoid N inst✝¹² : Module R N P : Type u_4 inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : Module R P M' : Type u_5 inst✝⁹ : AddCommGroup M' inst✝⁸ : Module R M' N' : Type u_6 inst✝⁷ : AddCommGroup N' inst✝⁶ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 M₂ : Type u_10 inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ M₃ : Type u_11 inst✝³ : AddCommMonoid M₃ inst✝² : Module R M₃ f f' : AlternatingMap R M N ι g g₂ : AlternatingMap R M N' ι g' : AlternatingMap R M' N' ι v : ι → M v' : ι → M' inst✝¹ : DecidableEq ι inst✝ : Fintype ι σ : Equiv.Perm ι ⊢ ↑g v = (↑Equiv.Perm.sign σ * ↑Equiv.Perm.sign σ) • ↑g v [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝¹⁴ : Semiring R M : Type u_2 inst✝¹³ : AddCommMonoid M inst✝¹² : Module R M N : Type u_3 inst✝¹¹ : AddCommMonoid N inst✝¹⁰ : Module R N P : Type u_4 inst✝⁹ : AddCommMonoid P inst✝⁸ : Module R P M' : Type u_5 inst✝⁷ : AddCommGroup M' inst✝⁶ : Module R M' N' : Type u_6 inst✝⁵ : AddCommGroup N' inst✝⁴ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 M₂ : Type u_10 inst✝³ : AddCommMonoid M₂ inst✝² : Module R M₂ M₃ : Type u_11 inst✝¹ : AddCommMonoid M₃ inst✝ : Module R M₃ f✝ f' : AlternatingMap R M N ι g g₂ : AlternatingMap R M N' ι g' : AlternatingMap R M' N' ι v✝ : ι → M v' : ι → M' σ : ι ≃ ι' f : AlternatingMap R M N ι src✝ : MultilinearMap R (fun x => M) N := MultilinearMap.domDomCongr σ ↑f v : ι' → M i j : ι' hv : v i = v j hij : i ≠ j ⊢ (v ∘ ↑σ) (↑σ.symm i) = (v ∘ ↑σ) (↑σ.symm j) [PROOFSTEP] simpa using hv [GOAL] R : Type u_1 inst✝¹⁴ : Semiring R M : Type u_2 inst✝¹³ : AddCommMonoid M inst✝¹² : Module R M N : Type u_3 inst✝¹¹ : AddCommMonoid N inst✝¹⁰ : Module R N P : Type u_4 inst✝⁹ : AddCommMonoid P inst✝⁸ : Module R P M' : Type u_5 inst✝⁷ : AddCommGroup M' inst✝⁶ : Module R M' N' : Type u_6 inst✝⁵ : AddCommGroup N' inst✝⁴ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 M₂ : Type u_10 inst✝³ : AddCommMonoid M₂ inst✝² : Module R M₂ M₃ : Type u_11 inst✝¹ : AddCommMonoid M₃ inst✝ : Module R M₃ f✝ f' : AlternatingMap R M N ι g g₂ : AlternatingMap R M N' ι g' : AlternatingMap R M' N' ι v : ι → M v' : ι → M' σ : ι ≃ ι' f : AlternatingMap R M N ι ⊢ domDomCongr σ.symm (domDomCongr σ f) = f [PROOFSTEP] ext [GOAL] case H R : Type u_1 inst✝¹⁴ : Semiring R M : Type u_2 inst✝¹³ : AddCommMonoid M inst✝¹² : Module R M N : Type u_3 inst✝¹¹ : AddCommMonoid N inst✝¹⁰ : Module R N P : Type u_4 inst✝⁹ : AddCommMonoid P inst✝⁸ : Module R P M' : Type u_5 inst✝⁷ : AddCommGroup M' inst✝⁶ : Module R M' N' : Type u_6 inst✝⁵ : AddCommGroup N' inst✝⁴ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 M₂ : Type u_10 inst✝³ : AddCommMonoid M₂ inst✝² : Module R M₂ M₃ : Type u_11 inst✝¹ : AddCommMonoid M₃ inst✝ : Module R M₃ f✝ f' : AlternatingMap R M N ι g g₂ : AlternatingMap R M N' ι g' : AlternatingMap R M' N' ι v : ι → M v' : ι → M' σ : ι ≃ ι' f : AlternatingMap R M N ι x✝ : ι → M ⊢ ↑(domDomCongr σ.symm (domDomCongr σ f)) x✝ = ↑f x✝ [PROOFSTEP] simp [Function.comp] [GOAL] R : Type u_1 inst✝¹⁴ : Semiring R M : Type u_2 inst✝¹³ : AddCommMonoid M inst✝¹² : Module R M N : Type u_3 inst✝¹¹ : AddCommMonoid N inst✝¹⁰ : Module R N P : Type u_4 inst✝⁹ : AddCommMonoid P inst✝⁸ : Module R P M' : Type u_5 inst✝⁷ : AddCommGroup M' inst✝⁶ : Module R M' N' : Type u_6 inst✝⁵ : AddCommGroup N' inst✝⁴ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 M₂ : Type u_10 inst✝³ : AddCommMonoid M₂ inst✝² : Module R M₂ M₃ : Type u_11 inst✝¹ : AddCommMonoid M₃ inst✝ : Module R M₃ f f' : AlternatingMap R M N ι g g₂ : AlternatingMap R M N' ι g' : AlternatingMap R M' N' ι v : ι → M v' : ι → M' σ : ι ≃ ι' m : AlternatingMap R M N ι' ⊢ domDomCongr σ (domDomCongr σ.symm m) = m [PROOFSTEP] ext [GOAL] case H R : Type u_1 inst✝¹⁴ : Semiring R M : Type u_2 inst✝¹³ : AddCommMonoid M inst✝¹² : Module R M N : Type u_3 inst✝¹¹ : AddCommMonoid N inst✝¹⁰ : Module R N P : Type u_4 inst✝⁹ : AddCommMonoid P inst✝⁸ : Module R P M' : Type u_5 inst✝⁷ : AddCommGroup M' inst✝⁶ : Module R M' N' : Type u_6 inst✝⁵ : AddCommGroup N' inst✝⁴ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 M₂ : Type u_10 inst✝³ : AddCommMonoid M₂ inst✝² : Module R M₂ M₃ : Type u_11 inst✝¹ : AddCommMonoid M₃ inst✝ : Module R M₃ f f' : AlternatingMap R M N ι g g₂ : AlternatingMap R M N' ι g' : AlternatingMap R M' N' ι v : ι → M v' : ι → M' σ : ι ≃ ι' m : AlternatingMap R M N ι' x✝ : ι' → M ⊢ ↑(domDomCongr σ (domDomCongr σ.symm m)) x✝ = ↑m x✝ [PROOFSTEP] simp [Function.comp] [GOAL] R : Type u_1 inst✝²⁰ : Semiring R M✝ : Type u_2 inst✝¹⁹ : AddCommMonoid M✝ inst✝¹⁸ : Module R M✝ N✝ : Type u_3 inst✝¹⁷ : AddCommMonoid N✝ inst✝¹⁶ : Module R N✝ P : Type u_4 inst✝¹⁵ : AddCommMonoid P inst✝¹⁴ : Module R P M' : Type u_5 inst✝¹³ : AddCommGroup M' inst✝¹² : Module R M' N' : Type u_6 inst✝¹¹ : AddCommGroup N' inst✝¹⁰ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 M₂ : Type u_10 inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R M₂ M₃ : Type u_11 inst✝⁷ : AddCommMonoid M₃ inst✝⁶ : Module R M₃ f✝ f' : AlternatingMap R M✝ N✝ ι g g₂ : AlternatingMap R M✝ N' ι g' : AlternatingMap R M' N' ι v✝ : ι → M✝ v' : ι → M' K : Type u_12 inst✝⁵ : Ring K M : Type u_13 inst✝⁴ : AddCommGroup M inst✝³ : Module K M N : Type u_14 inst✝² : AddCommGroup N inst✝¹ : Module K N inst✝ : NoZeroSMulDivisors K N f : AlternatingMap K M N ι v : ι → M h : ¬LinearIndependent K v ⊢ ↑f v = 0 [PROOFSTEP] obtain ⟨s, g, h, i, hi, hz⟩ := not_linearIndependent_iff.mp h [GOAL] case intro.intro.intro.intro.intro R : Type u_1 inst✝²⁰ : Semiring R M✝ : Type u_2 inst✝¹⁹ : AddCommMonoid M✝ inst✝¹⁸ : Module R M✝ N✝ : Type u_3 inst✝¹⁷ : AddCommMonoid N✝ inst✝¹⁶ : Module R N✝ P : Type u_4 inst✝¹⁵ : AddCommMonoid P inst✝¹⁴ : Module R P M' : Type u_5 inst✝¹³ : AddCommGroup M' inst✝¹² : Module R M' N' : Type u_6 inst✝¹¹ : AddCommGroup N' inst✝¹⁰ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 M₂ : Type u_10 inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R M₂ M₃ : Type u_11 inst✝⁷ : AddCommMonoid M₃ inst✝⁶ : Module R M₃ f✝ f' : AlternatingMap R M✝ N✝ ι g✝ g₂ : AlternatingMap R M✝ N' ι g' : AlternatingMap R M' N' ι v✝ : ι → M✝ v' : ι → M' K : Type u_12 inst✝⁵ : Ring K M : Type u_13 inst✝⁴ : AddCommGroup M inst✝³ : Module K M N : Type u_14 inst✝² : AddCommGroup N inst✝¹ : Module K N inst✝ : NoZeroSMulDivisors K N f : AlternatingMap K M N ι v : ι → M h✝ : ¬LinearIndependent K v s : Finset ι g : ι → K h : (Finset.sum s fun i => g i • v i) = 0 i : ι hi : i ∈ s hz : g i ≠ 0 ⊢ ↑f v = 0 [PROOFSTEP] letI := Classical.decEq ι [GOAL] case intro.intro.intro.intro.intro R : Type u_1 inst✝²⁰ : Semiring R M✝ : Type u_2 inst✝¹⁹ : AddCommMonoid M✝ inst✝¹⁸ : Module R M✝ N✝ : Type u_3 inst✝¹⁷ : AddCommMonoid N✝ inst✝¹⁶ : Module R N✝ P : Type u_4 inst✝¹⁵ : AddCommMonoid P inst✝¹⁴ : Module R P M' : Type u_5 inst✝¹³ : AddCommGroup M' inst✝¹² : Module R M' N' : Type u_6 inst✝¹¹ : AddCommGroup N' inst✝¹⁰ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 M₂ : Type u_10 inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R M₂ M₃ : Type u_11 inst✝⁷ : AddCommMonoid M₃ inst✝⁶ : Module R M₃ f✝ f' : AlternatingMap R M✝ N✝ ι g✝ g₂ : AlternatingMap R M✝ N' ι g' : AlternatingMap R M' N' ι v✝ : ι → M✝ v' : ι → M' K : Type u_12 inst✝⁵ : Ring K M : Type u_13 inst✝⁴ : AddCommGroup M inst✝³ : Module K M N : Type u_14 inst✝² : AddCommGroup N inst✝¹ : Module K N inst✝ : NoZeroSMulDivisors K N f : AlternatingMap K M N ι v : ι → M h✝ : ¬LinearIndependent K v s : Finset ι g : ι → K h : (Finset.sum s fun i => g i • v i) = 0 i : ι hi : i ∈ s hz : g i ≠ 0 this : DecidableEq ι := Classical.decEq ι ⊢ ↑f v = 0 [PROOFSTEP] suffices f (update v i (g i • v i)) = 0 by rw [f.map_smul, Function.update_eq_self, smul_eq_zero] at this exact Or.resolve_left this hz [GOAL] R : Type u_1 inst✝²⁰ : Semiring R M✝ : Type u_2 inst✝¹⁹ : AddCommMonoid M✝ inst✝¹⁸ : Module R M✝ N✝ : Type u_3 inst✝¹⁷ : AddCommMonoid N✝ inst✝¹⁶ : Module R N✝ P : Type u_4 inst✝¹⁵ : AddCommMonoid P inst✝¹⁴ : Module R P M' : Type u_5 inst✝¹³ : AddCommGroup M' inst✝¹² : Module R M' N' : Type u_6 inst✝¹¹ : AddCommGroup N' inst✝¹⁰ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 M₂ : Type u_10 inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R M₂ M₃ : Type u_11 inst✝⁷ : AddCommMonoid M₃ inst✝⁶ : Module R M₃ f✝ f' : AlternatingMap R M✝ N✝ ι g✝ g₂ : AlternatingMap R M✝ N' ι g' : AlternatingMap R M' N' ι v✝ : ι → M✝ v' : ι → M' K : Type u_12 inst✝⁵ : Ring K M : Type u_13 inst✝⁴ : AddCommGroup M inst✝³ : Module K M N : Type u_14 inst✝² : AddCommGroup N inst✝¹ : Module K N inst✝ : NoZeroSMulDivisors K N f : AlternatingMap K M N ι v : ι → M h✝ : ¬LinearIndependent K v s : Finset ι g : ι → K h : (Finset.sum s fun i => g i • v i) = 0 i : ι hi : i ∈ s hz : g i ≠ 0 this✝ : DecidableEq ι := Classical.decEq ι this : ↑f (update v i (g i • v i)) = 0 ⊢ ↑f v = 0 [PROOFSTEP] rw [f.map_smul, Function.update_eq_self, smul_eq_zero] at this [GOAL] R : Type u_1 inst✝²⁰ : Semiring R M✝ : Type u_2 inst✝¹⁹ : AddCommMonoid M✝ inst✝¹⁸ : Module R M✝ N✝ : Type u_3 inst✝¹⁷ : AddCommMonoid N✝ inst✝¹⁶ : Module R N✝ P : Type u_4 inst✝¹⁵ : AddCommMonoid P inst✝¹⁴ : Module R P M' : Type u_5 inst✝¹³ : AddCommGroup M' inst✝¹² : Module R M' N' : Type u_6 inst✝¹¹ : AddCommGroup N' inst✝¹⁰ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 M₂ : Type u_10 inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R M₂ M₃ : Type u_11 inst✝⁷ : AddCommMonoid M₃ inst✝⁶ : Module R M₃ f✝ f' : AlternatingMap R M✝ N✝ ι g✝ g₂ : AlternatingMap R M✝ N' ι g' : AlternatingMap R M' N' ι v✝ : ι → M✝ v' : ι → M' K : Type u_12 inst✝⁵ : Ring K M : Type u_13 inst✝⁴ : AddCommGroup M inst✝³ : Module K M N : Type u_14 inst✝² : AddCommGroup N inst✝¹ : Module K N inst✝ : NoZeroSMulDivisors K N f : AlternatingMap K M N ι v : ι → M h✝ : ¬LinearIndependent K v s : Finset ι g : ι → K h : (Finset.sum s fun i => g i • v i) = 0 i : ι hi : i ∈ s hz : g i ≠ 0 this✝ : DecidableEq ι := Classical.decEq ι this : g i = 0 ∨ ↑f v = 0 ⊢ ↑f v = 0 [PROOFSTEP] exact Or.resolve_left this hz [GOAL] case intro.intro.intro.intro.intro R : Type u_1 inst✝²⁰ : Semiring R M✝ : Type u_2 inst✝¹⁹ : AddCommMonoid M✝ inst✝¹⁸ : Module R M✝ N✝ : Type u_3 inst✝¹⁷ : AddCommMonoid N✝ inst✝¹⁶ : Module R N✝ P : Type u_4 inst✝¹⁵ : AddCommMonoid P inst✝¹⁴ : Module R P M' : Type u_5 inst✝¹³ : AddCommGroup M' inst✝¹² : Module R M' N' : Type u_6 inst✝¹¹ : AddCommGroup N' inst✝¹⁰ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 M₂ : Type u_10 inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R M₂ M₃ : Type u_11 inst✝⁷ : AddCommMonoid M₃ inst✝⁶ : Module R M₃ f✝ f' : AlternatingMap R M✝ N✝ ι g✝ g₂ : AlternatingMap R M✝ N' ι g' : AlternatingMap R M' N' ι v✝ : ι → M✝ v' : ι → M' K : Type u_12 inst✝⁵ : Ring K M : Type u_13 inst✝⁴ : AddCommGroup M inst✝³ : Module K M N : Type u_14 inst✝² : AddCommGroup N inst✝¹ : Module K N inst✝ : NoZeroSMulDivisors K N f : AlternatingMap K M N ι v : ι → M h✝ : ¬LinearIndependent K v s : Finset ι g : ι → K h : (Finset.sum s fun i => g i • v i) = 0 i : ι hi : i ∈ s hz : g i ≠ 0 this : DecidableEq ι := Classical.decEq ι ⊢ ↑f (update v i (g i • v i)) = 0 [PROOFSTEP] rw [← (funext fun x => ite_self (c := i = x) (d := Classical.decEq ι i x) (g x • v x))] at h [GOAL] case intro.intro.intro.intro.intro R : Type u_1 inst✝²⁰ : Semiring R M✝ : Type u_2 inst✝¹⁹ : AddCommMonoid M✝ inst✝¹⁸ : Module R M✝ N✝ : Type u_3 inst✝¹⁷ : AddCommMonoid N✝ inst✝¹⁶ : Module R N✝ P : Type u_4 inst✝¹⁵ : AddCommMonoid P inst✝¹⁴ : Module R P M' : Type u_5 inst✝¹³ : AddCommGroup M' inst✝¹² : Module R M' N' : Type u_6 inst✝¹¹ : AddCommGroup N' inst✝¹⁰ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 M₂ : Type u_10 inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R M₂ M₃ : Type u_11 inst✝⁷ : AddCommMonoid M₃ inst✝⁶ : Module R M₃ f✝ f' : AlternatingMap R M✝ N✝ ι g✝ g₂ : AlternatingMap R M✝ N' ι g' : AlternatingMap R M' N' ι v✝ : ι → M✝ v' : ι → M' K : Type u_12 inst✝⁵ : Ring K M : Type u_13 inst✝⁴ : AddCommGroup M inst✝³ : Module K M N : Type u_14 inst✝² : AddCommGroup N inst✝¹ : Module K N inst✝ : NoZeroSMulDivisors K N f : AlternatingMap K M N ι v : ι → M h✝ : ¬LinearIndependent K v s : Finset ι g : ι → K i : ι h : (Finset.sum s fun x => if i = x then g x • v x else g x • v x) = 0 hi : i ∈ s hz : g i ≠ 0 this : DecidableEq ι := Classical.decEq ι ⊢ ↑f (update v i (g i • v i)) = 0 [PROOFSTEP] rw [Finset.sum_ite, Finset.filter_eq, Finset.filter_ne, if_pos hi, Finset.sum_singleton, add_eq_zero_iff_eq_neg] at h [GOAL] case intro.intro.intro.intro.intro R : Type u_1 inst✝²⁰ : Semiring R M✝ : Type u_2 inst✝¹⁹ : AddCommMonoid M✝ inst✝¹⁸ : Module R M✝ N✝ : Type u_3 inst✝¹⁷ : AddCommMonoid N✝ inst✝¹⁶ : Module R N✝ P : Type u_4 inst✝¹⁵ : AddCommMonoid P inst✝¹⁴ : Module R P M' : Type u_5 inst✝¹³ : AddCommGroup M' inst✝¹² : Module R M' N' : Type u_6 inst✝¹¹ : AddCommGroup N' inst✝¹⁰ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 M₂ : Type u_10 inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R M₂ M₃ : Type u_11 inst✝⁷ : AddCommMonoid M₃ inst✝⁶ : Module R M₃ f✝ f' : AlternatingMap R M✝ N✝ ι g✝ g₂ : AlternatingMap R M✝ N' ι g' : AlternatingMap R M' N' ι v✝ : ι → M✝ v' : ι → M' K : Type u_12 inst✝⁵ : Ring K M : Type u_13 inst✝⁴ : AddCommGroup M inst✝³ : Module K M N : Type u_14 inst✝² : AddCommGroup N inst✝¹ : Module K N inst✝ : NoZeroSMulDivisors K N f : AlternatingMap K M N ι v : ι → M h✝ : ¬LinearIndependent K v s : Finset ι g : ι → K i : ι hi : i ∈ s hz : g i ≠ 0 this : DecidableEq ι := Classical.decEq ι h : g i • v i = -Finset.sum (Finset.erase s i) fun x => g x • v x ⊢ ↑f (update v i (g i • v i)) = 0 [PROOFSTEP] rw [h, f.map_neg, f.map_update_sum, neg_eq_zero] [GOAL] case intro.intro.intro.intro.intro R : Type u_1 inst✝²⁰ : Semiring R M✝ : Type u_2 inst✝¹⁹ : AddCommMonoid M✝ inst✝¹⁸ : Module R M✝ N✝ : Type u_3 inst✝¹⁷ : AddCommMonoid N✝ inst✝¹⁶ : Module R N✝ P : Type u_4 inst✝¹⁵ : AddCommMonoid P inst✝¹⁴ : Module R P M' : Type u_5 inst✝¹³ : AddCommGroup M' inst✝¹² : Module R M' N' : Type u_6 inst✝¹¹ : AddCommGroup N' inst✝¹⁰ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 M₂ : Type u_10 inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R M₂ M₃ : Type u_11 inst✝⁷ : AddCommMonoid M₃ inst✝⁶ : Module R M₃ f✝ f' : AlternatingMap R M✝ N✝ ι g✝ g₂ : AlternatingMap R M✝ N' ι g' : AlternatingMap R M' N' ι v✝ : ι → M✝ v' : ι → M' K : Type u_12 inst✝⁵ : Ring K M : Type u_13 inst✝⁴ : AddCommGroup M inst✝³ : Module K M N : Type u_14 inst✝² : AddCommGroup N inst✝¹ : Module K N inst✝ : NoZeroSMulDivisors K N f : AlternatingMap K M N ι v : ι → M h✝ : ¬LinearIndependent K v s : Finset ι g : ι → K i : ι hi : i ∈ s hz : g i ≠ 0 this : DecidableEq ι := Classical.decEq ι h : g i • v i = -Finset.sum (Finset.erase s i) fun x => g x • v x ⊢ (Finset.sum (Finset.erase s i) fun a => ↑f (update v i (g a • v a))) = 0 [PROOFSTEP] apply Finset.sum_eq_zero [GOAL] case intro.intro.intro.intro.intro.h R : Type u_1 inst✝²⁰ : Semiring R M✝ : Type u_2 inst✝¹⁹ : AddCommMonoid M✝ inst✝¹⁸ : Module R M✝ N✝ : Type u_3 inst✝¹⁷ : AddCommMonoid N✝ inst✝¹⁶ : Module R N✝ P : Type u_4 inst✝¹⁵ : AddCommMonoid P inst✝¹⁴ : Module R P M' : Type u_5 inst✝¹³ : AddCommGroup M' inst✝¹² : Module R M' N' : Type u_6 inst✝¹¹ : AddCommGroup N' inst✝¹⁰ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 M₂ : Type u_10 inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R M₂ M₃ : Type u_11 inst✝⁷ : AddCommMonoid M₃ inst✝⁶ : Module R M₃ f✝ f' : AlternatingMap R M✝ N✝ ι g✝ g₂ : AlternatingMap R M✝ N' ι g' : AlternatingMap R M' N' ι v✝ : ι → M✝ v' : ι → M' K : Type u_12 inst✝⁵ : Ring K M : Type u_13 inst✝⁴ : AddCommGroup M inst✝³ : Module K M N : Type u_14 inst✝² : AddCommGroup N inst✝¹ : Module K N inst✝ : NoZeroSMulDivisors K N f : AlternatingMap K M N ι v : ι → M h✝ : ¬LinearIndependent K v s : Finset ι g : ι → K i : ι hi : i ∈ s hz : g i ≠ 0 this : DecidableEq ι := Classical.decEq ι h : g i • v i = -Finset.sum (Finset.erase s i) fun x => g x • v x ⊢ ∀ (x : ι), x ∈ Finset.erase s i → ↑f (update v i (g x • v x)) = 0 [PROOFSTEP] intro j hj [GOAL] case intro.intro.intro.intro.intro.h R : Type u_1 inst✝²⁰ : Semiring R M✝ : Type u_2 inst✝¹⁹ : AddCommMonoid M✝ inst✝¹⁸ : Module R M✝ N✝ : Type u_3 inst✝¹⁷ : AddCommMonoid N✝ inst✝¹⁶ : Module R N✝ P : Type u_4 inst✝¹⁵ : AddCommMonoid P inst✝¹⁴ : Module R P M' : Type u_5 inst✝¹³ : AddCommGroup M' inst✝¹² : Module R M' N' : Type u_6 inst✝¹¹ : AddCommGroup N' inst✝¹⁰ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 M₂ : Type u_10 inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R M₂ M₃ : Type u_11 inst✝⁷ : AddCommMonoid M₃ inst✝⁶ : Module R M₃ f✝ f' : AlternatingMap R M✝ N✝ ι g✝ g₂ : AlternatingMap R M✝ N' ι g' : AlternatingMap R M' N' ι v✝ : ι → M✝ v' : ι → M' K : Type u_12 inst✝⁵ : Ring K M : Type u_13 inst✝⁴ : AddCommGroup M inst✝³ : Module K M N : Type u_14 inst✝² : AddCommGroup N inst✝¹ : Module K N inst✝ : NoZeroSMulDivisors K N f : AlternatingMap K M N ι v : ι → M h✝ : ¬LinearIndependent K v s : Finset ι g : ι → K i : ι hi : i ∈ s hz : g i ≠ 0 this : DecidableEq ι := Classical.decEq ι h : g i • v i = -Finset.sum (Finset.erase s i) fun x => g x • v x j : ι hj : j ∈ Finset.erase s i ⊢ ↑f (update v i (g j • v j)) = 0 [PROOFSTEP] obtain ⟨hij, _⟩ := Finset.mem_erase.mp hj [GOAL] case intro.intro.intro.intro.intro.h.intro R : Type u_1 inst✝²⁰ : Semiring R M✝ : Type u_2 inst✝¹⁹ : AddCommMonoid M✝ inst✝¹⁸ : Module R M✝ N✝ : Type u_3 inst✝¹⁷ : AddCommMonoid N✝ inst✝¹⁶ : Module R N✝ P : Type u_4 inst✝¹⁵ : AddCommMonoid P inst✝¹⁴ : Module R P M' : Type u_5 inst✝¹³ : AddCommGroup M' inst✝¹² : Module R M' N' : Type u_6 inst✝¹¹ : AddCommGroup N' inst✝¹⁰ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 M₂ : Type u_10 inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : Module R M₂ M₃ : Type u_11 inst✝⁷ : AddCommMonoid M₃ inst✝⁶ : Module R M₃ f✝ f' : AlternatingMap R M✝ N✝ ι g✝ g₂ : AlternatingMap R M✝ N' ι g' : AlternatingMap R M' N' ι v✝ : ι → M✝ v' : ι → M' K : Type u_12 inst✝⁵ : Ring K M : Type u_13 inst✝⁴ : AddCommGroup M inst✝³ : Module K M N : Type u_14 inst✝² : AddCommGroup N inst✝¹ : Module K N inst✝ : NoZeroSMulDivisors K N f : AlternatingMap K M N ι v : ι → M h✝ : ¬LinearIndependent K v s : Finset ι g : ι → K i : ι hi : i ∈ s hz : g i ≠ 0 this : DecidableEq ι := Classical.decEq ι h : g i • v i = -Finset.sum (Finset.erase s i) fun x => g x • v x j : ι hj : j ∈ Finset.erase s i hij : j ≠ i right✝ : j ∈ s ⊢ ↑f (update v i (g j • v j)) = 0 [PROOFSTEP] rw [f.map_smul, f.map_update_self _ hij.symm, smul_zero] [GOAL] R : Type u_1 inst✝¹² : Semiring R M : Type u_2 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : Module R M N : Type u_3 inst✝⁹ : AddCommMonoid N inst✝⁸ : Module R N P : Type u_4 inst✝⁷ : AddCommMonoid P inst✝⁶ : Module R P M' : Type u_5 inst✝⁵ : AddCommGroup M' inst✝⁴ : Module R M' N' : Type u_6 inst✝³ : AddCommGroup N' inst✝² : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 inst✝¹ : Fintype ι inst✝ : DecidableEq ι m : MultilinearMap R (fun x => M) N' v : ι → M i j : ι i_ne_j : i ≠ j hv : v i = v j ⊢ ↑(∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m) v = 0 [PROOFSTEP] rw [sum_apply] [GOAL] R : Type u_1 inst✝¹² : Semiring R M : Type u_2 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : Module R M N : Type u_3 inst✝⁹ : AddCommMonoid N inst✝⁸ : Module R N P : Type u_4 inst✝⁷ : AddCommMonoid P inst✝⁶ : Module R P M' : Type u_5 inst✝⁵ : AddCommGroup M' inst✝⁴ : Module R M' N' : Type u_6 inst✝³ : AddCommGroup N' inst✝² : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 inst✝¹ : Fintype ι inst✝ : DecidableEq ι m : MultilinearMap R (fun x => M) N' v : ι → M i j : ι i_ne_j : i ≠ j hv : v i = v j ⊢ ∑ a : Perm ι, ↑(↑Perm.sign a • domDomCongr a m) v = 0 [PROOFSTEP] exact Finset.sum_involution (fun σ _ => swap i j * σ) -- Porting note: `-Equiv.Perm.sign_swap'` is required. (fun σ _ => by simp [Perm.sign_swap i_ne_j, apply_swap_eq_self hv, -Equiv.Perm.sign_swap']) (fun σ _ _ => (not_congr swap_mul_eq_iff).mpr i_ne_j) (fun σ _ => Finset.mem_univ _) fun σ _ => swap_mul_involutive i j σ [GOAL] R : Type u_1 inst✝¹² : Semiring R M : Type u_2 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : Module R M N : Type u_3 inst✝⁹ : AddCommMonoid N inst✝⁸ : Module R N P : Type u_4 inst✝⁷ : AddCommMonoid P inst✝⁶ : Module R P M' : Type u_5 inst✝⁵ : AddCommGroup M' inst✝⁴ : Module R M' N' : Type u_6 inst✝³ : AddCommGroup N' inst✝² : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 inst✝¹ : Fintype ι inst✝ : DecidableEq ι m : MultilinearMap R (fun x => M) N' v : ι → M i j : ι i_ne_j : i ≠ j hv : v i = v j σ : Perm ι x✝ : σ ∈ Finset.univ ⊢ ↑(↑Perm.sign σ • domDomCongr σ m) v + ↑(↑Perm.sign ((fun σ x => swap i j * σ) σ x✝) • domDomCongr ((fun σ x => swap i j * σ) σ x✝) m) v = 0 [PROOFSTEP] simp [Perm.sign_swap i_ne_j, apply_swap_eq_self hv, -Equiv.Perm.sign_swap'] [GOAL] R : Type u_1 inst✝¹² : Semiring R M : Type u_2 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : Module R M N : Type u_3 inst✝⁹ : AddCommMonoid N inst✝⁸ : Module R N P : Type u_4 inst✝⁷ : AddCommMonoid P inst✝⁶ : Module R P M' : Type u_5 inst✝⁵ : AddCommGroup M' inst✝⁴ : Module R M' N' : Type u_6 inst✝³ : AddCommGroup N' inst✝² : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 inst✝¹ : Fintype ι inst✝ : DecidableEq ι ⊢ (fun m => let src := ∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m; { toMultilinearMap := { toFun := ↑(∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m), map_add' := (_ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M), toFun src (Function.update m i (x + y)) = toFun src (Function.update m i x) + toFun src (Function.update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M), toFun src (Function.update m i (c • x)) = c • toFun src (Function.update m i x)) }, map_eq_zero_of_eq' := (_ : ∀ (v : ι → M) (i j : ι), v i = v j → i ≠ j → ↑(∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m) v = 0) }) 0 = 0 [PROOFSTEP] ext [GOAL] case H R : Type u_1 inst✝¹² : Semiring R M : Type u_2 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : Module R M N : Type u_3 inst✝⁹ : AddCommMonoid N inst✝⁸ : Module R N P : Type u_4 inst✝⁷ : AddCommMonoid P inst✝⁶ : Module R P M' : Type u_5 inst✝⁵ : AddCommGroup M' inst✝⁴ : Module R M' N' : Type u_6 inst✝³ : AddCommGroup N' inst✝² : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 inst✝¹ : Fintype ι inst✝ : DecidableEq ι x✝ : ι → M ⊢ ↑((fun m => let src := ∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m; { toMultilinearMap := { toFun := ↑(∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m), map_add' := (_ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M), toFun src (Function.update m i (x + y)) = toFun src (Function.update m i x) + toFun src (Function.update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M), toFun src (Function.update m i (c • x)) = c • toFun src (Function.update m i x)) }, map_eq_zero_of_eq' := (_ : ∀ (v : ι → M) (i j : ι), v i = v j → i ≠ j → ↑(∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m) v = 0) }) 0) x✝ = ↑0 x✝ [PROOFSTEP] simp only [mk_coe, AlternatingMap.coe_mk, sum_apply, smul_apply, domDomCongr_apply, zero_apply, smul_zero, Finset.sum_const_zero, AlternatingMap.zero_apply] [GOAL] R : Type u_1 inst✝¹² : Semiring R M : Type u_2 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : Module R M N : Type u_3 inst✝⁹ : AddCommMonoid N inst✝⁸ : Module R N P : Type u_4 inst✝⁷ : AddCommMonoid P inst✝⁶ : Module R P M' : Type u_5 inst✝⁵ : AddCommGroup M' inst✝⁴ : Module R M' N' : Type u_6 inst✝³ : AddCommGroup N' inst✝² : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 inst✝¹ : Fintype ι inst✝ : DecidableEq ι a b : MultilinearMap R (fun x => M) N' ⊢ ZeroHom.toFun { toFun := fun m => let src := ∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m; { toMultilinearMap := { toFun := ↑(∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m), map_add' := (_ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M), toFun src (Function.update m i (x + y)) = toFun src (Function.update m i x) + toFun src (Function.update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M), toFun src (Function.update m i (c • x)) = c • toFun src (Function.update m i x)) }, map_eq_zero_of_eq' := (_ : ∀ (v : ι → M) (i j : ι), v i = v j → i ≠ j → ↑(∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m) v = 0) }, map_zero' := (_ : (fun m => let src := ∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m; { toMultilinearMap := { toFun := ↑(∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m), map_add' := (_ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M), toFun src (Function.update m i (x + y)) = toFun src (Function.update m i x) + toFun src (Function.update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M), toFun src (Function.update m i (c • x)) = c • toFun src (Function.update m i x)) }, map_eq_zero_of_eq' := (_ : ∀ (v : ι → M) (i j : ι), v i = v j → i ≠ j → ↑(∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m) v = 0) }) 0 = 0) } (a + b) = ZeroHom.toFun { toFun := fun m => let src := ∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m; { toMultilinearMap := { toFun := ↑(∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m), map_add' := (_ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M), toFun src (Function.update m i (x + y)) = toFun src (Function.update m i x) + toFun src (Function.update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M), toFun src (Function.update m i (c • x)) = c • toFun src (Function.update m i x)) }, map_eq_zero_of_eq' := (_ : ∀ (v : ι → M) (i j : ι), v i = v j → i ≠ j → ↑(∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m) v = 0) }, map_zero' := (_ : (fun m => let src := ∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m; { toMultilinearMap := { toFun := ↑(∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m), map_add' := (_ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M), toFun src (Function.update m i (x + y)) = toFun src (Function.update m i x) + toFun src (Function.update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M), toFun src (Function.update m i (c • x)) = c • toFun src (Function.update m i x)) }, map_eq_zero_of_eq' := (_ : ∀ (v : ι → M) (i j : ι), v i = v j → i ≠ j → ↑(∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m) v = 0) }) 0 = 0) } a + ZeroHom.toFun { toFun := fun m => let src := ∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m; { toMultilinearMap := { toFun := ↑(∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m), map_add' := (_ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M), toFun src (Function.update m i (x + y)) = toFun src (Function.update m i x) + toFun src (Function.update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M), toFun src (Function.update m i (c • x)) = c • toFun src (Function.update m i x)) }, map_eq_zero_of_eq' := (_ : ∀ (v : ι → M) (i j : ι), v i = v j → i ≠ j → ↑(∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m) v = 0) }, map_zero' := (_ : (fun m => let src := ∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m; { toMultilinearMap := { toFun := ↑(∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m), map_add' := (_ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M), toFun src (Function.update m i (x + y)) = toFun src (Function.update m i x) + toFun src (Function.update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M), toFun src (Function.update m i (c • x)) = c • toFun src (Function.update m i x)) }, map_eq_zero_of_eq' := (_ : ∀ (v : ι → M) (i j : ι), v i = v j → i ≠ j → ↑(∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m) v = 0) }) 0 = 0) } b [PROOFSTEP] ext [GOAL] case H R : Type u_1 inst✝¹² : Semiring R M : Type u_2 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : Module R M N : Type u_3 inst✝⁹ : AddCommMonoid N inst✝⁸ : Module R N P : Type u_4 inst✝⁷ : AddCommMonoid P inst✝⁶ : Module R P M' : Type u_5 inst✝⁵ : AddCommGroup M' inst✝⁴ : Module R M' N' : Type u_6 inst✝³ : AddCommGroup N' inst✝² : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 inst✝¹ : Fintype ι inst✝ : DecidableEq ι a b : MultilinearMap R (fun x => M) N' x✝ : ι → M ⊢ ↑(ZeroHom.toFun { toFun := fun m => let src := ∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m; { toMultilinearMap := { toFun := ↑(∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m), map_add' := (_ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M), toFun src (Function.update m i (x + y)) = toFun src (Function.update m i x) + toFun src (Function.update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M), toFun src (Function.update m i (c • x)) = c • toFun src (Function.update m i x)) }, map_eq_zero_of_eq' := (_ : ∀ (v : ι → M) (i j : ι), v i = v j → i ≠ j → ↑(∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m) v = 0) }, map_zero' := (_ : (fun m => let src := ∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m; { toMultilinearMap := { toFun := ↑(∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m), map_add' := (_ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M), toFun src (Function.update m i (x + y)) = toFun src (Function.update m i x) + toFun src (Function.update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M), toFun src (Function.update m i (c • x)) = c • toFun src (Function.update m i x)) }, map_eq_zero_of_eq' := (_ : ∀ (v : ι → M) (i j : ι), v i = v j → i ≠ j → ↑(∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m) v = 0) }) 0 = 0) } (a + b)) x✝ = ↑(ZeroHom.toFun { toFun := fun m => let src := ∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m; { toMultilinearMap := { toFun := ↑(∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m), map_add' := (_ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M), toFun src (Function.update m i (x + y)) = toFun src (Function.update m i x) + toFun src (Function.update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M), toFun src (Function.update m i (c • x)) = c • toFun src (Function.update m i x)) }, map_eq_zero_of_eq' := (_ : ∀ (v : ι → M) (i j : ι), v i = v j → i ≠ j → ↑(∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m) v = 0) }, map_zero' := (_ : (fun m => let src := ∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m; { toMultilinearMap := { toFun := ↑(∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m), map_add' := (_ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M), toFun src (Function.update m i (x + y)) = toFun src (Function.update m i x) + toFun src (Function.update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M), toFun src (Function.update m i (c • x)) = c • toFun src (Function.update m i x)) }, map_eq_zero_of_eq' := (_ : ∀ (v : ι → M) (i j : ι), v i = v j → i ≠ j → ↑(∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m) v = 0) }) 0 = 0) } a + ZeroHom.toFun { toFun := fun m => let src := ∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m; { toMultilinearMap := { toFun := ↑(∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m), map_add' := (_ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M), toFun src (Function.update m i (x + y)) = toFun src (Function.update m i x) + toFun src (Function.update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M), toFun src (Function.update m i (c • x)) = c • toFun src (Function.update m i x)) }, map_eq_zero_of_eq' := (_ : ∀ (v : ι → M) (i j : ι), v i = v j → i ≠ j → ↑(∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m) v = 0) }, map_zero' := (_ : (fun m => let src := ∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m; { toMultilinearMap := { toFun := ↑(∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m), map_add' := (_ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (x y : M), toFun src (Function.update m i (x + y)) = toFun src (Function.update m i x) + toFun src (Function.update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M), toFun src (Function.update m i (c • x)) = c • toFun src (Function.update m i x)) }, map_eq_zero_of_eq' := (_ : ∀ (v : ι → M) (i j : ι), v i = v j → i ≠ j → ↑(∑ σ : Perm ι, ↑Perm.sign σ • domDomCongr σ m) v = 0) }) 0 = 0) } b) x✝ [PROOFSTEP] simp only [mk_coe, AlternatingMap.coe_mk, sum_apply, smul_apply, domDomCongr_apply, add_apply, smul_add, Finset.sum_add_distrib, AlternatingMap.add_apply] [GOAL] R : Type u_1 inst✝¹² : Semiring R M : Type u_2 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : Module R M N : Type u_3 inst✝⁹ : AddCommMonoid N inst✝⁸ : Module R N P : Type u_4 inst✝⁷ : AddCommMonoid P inst✝⁶ : Module R P M' : Type u_5 inst✝⁵ : AddCommGroup M' inst✝⁴ : Module R M' N' : Type u_6 inst✝³ : AddCommGroup N' inst✝² : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 inst✝¹ : Fintype ι inst✝ : DecidableEq ι m : MultilinearMap R (fun x => M) N' v : ι → M ⊢ ↑(↑alternatization m) v = ∑ σ : Perm ι, ↑Perm.sign σ • ↑(domDomCongr σ m) v [PROOFSTEP] simp only [alternatization_def, smul_apply, sum_apply] [GOAL] R : Type u_1 inst✝¹² : Semiring R M : Type u_2 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : Module R M N : Type u_3 inst✝⁹ : AddCommMonoid N inst✝⁸ : Module R N P : Type u_4 inst✝⁷ : AddCommMonoid P inst✝⁶ : Module R P M' : Type u_5 inst✝⁵ : AddCommGroup M' inst✝⁴ : Module R M' N' : Type u_6 inst✝³ : AddCommGroup N' inst✝² : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 inst✝¹ : DecidableEq ι inst✝ : Fintype ι a : AlternatingMap R M N' ι ⊢ ↑MultilinearMap.alternatization ↑a = Nat.factorial (Fintype.card ι) • a [PROOFSTEP] apply AlternatingMap.coe_injective [GOAL] case a R : Type u_1 inst✝¹² : Semiring R M : Type u_2 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : Module R M N : Type u_3 inst✝⁹ : AddCommMonoid N inst✝⁸ : Module R N P : Type u_4 inst✝⁷ : AddCommMonoid P inst✝⁶ : Module R P M' : Type u_5 inst✝⁵ : AddCommGroup M' inst✝⁴ : Module R M' N' : Type u_6 inst✝³ : AddCommGroup N' inst✝² : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 inst✝¹ : DecidableEq ι inst✝ : Fintype ι a : AlternatingMap R M N' ι ⊢ ↑(↑MultilinearMap.alternatization ↑a) = ↑(Nat.factorial (Fintype.card ι) • a) [PROOFSTEP] simp_rw [MultilinearMap.alternatization_def, ← coe_domDomCongr, domDomCongr_perm, coe_smul, smul_smul, Int.units_mul_self, one_smul, Finset.sum_const, Finset.card_univ, Fintype.card_perm, ← coe_multilinearMap, coe_smul] [GOAL] R : Type u_1 inst✝¹⁴ : Semiring R M : Type u_2 inst✝¹³ : AddCommMonoid M inst✝¹² : Module R M N : Type u_3 inst✝¹¹ : AddCommMonoid N inst✝¹⁰ : Module R N P : Type u_4 inst✝⁹ : AddCommMonoid P inst✝⁸ : Module R P M' : Type u_5 inst✝⁷ : AddCommGroup M' inst✝⁶ : Module R M' N' : Type u_6 inst✝⁵ : AddCommGroup N' inst✝⁴ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 N'₂ : Type u_10 inst✝³ : AddCommGroup N'₂ inst✝² : Module R N'₂ inst✝¹ : DecidableEq ι inst✝ : Fintype ι g : N' →ₗ[R] N'₂ f : MultilinearMap R (fun x => M) N' ⊢ ↑MultilinearMap.alternatization (compMultilinearMap g f) = ↑(compAlternatingMap g) (↑MultilinearMap.alternatization f) [PROOFSTEP] ext [GOAL] case H R : Type u_1 inst✝¹⁴ : Semiring R M : Type u_2 inst✝¹³ : AddCommMonoid M inst✝¹² : Module R M N : Type u_3 inst✝¹¹ : AddCommMonoid N inst✝¹⁰ : Module R N P : Type u_4 inst✝⁹ : AddCommMonoid P inst✝⁸ : Module R P M' : Type u_5 inst✝⁷ : AddCommGroup M' inst✝⁶ : Module R M' N' : Type u_6 inst✝⁵ : AddCommGroup N' inst✝⁴ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 N'₂ : Type u_10 inst✝³ : AddCommGroup N'₂ inst✝² : Module R N'₂ inst✝¹ : DecidableEq ι inst✝ : Fintype ι g : N' →ₗ[R] N'₂ f : MultilinearMap R (fun x => M) N' x✝ : ι → M ⊢ ↑(↑MultilinearMap.alternatization (compMultilinearMap g f)) x✝ = ↑(↑(compAlternatingMap g) (↑MultilinearMap.alternatization f)) x✝ [PROOFSTEP] simp [MultilinearMap.alternatization_def] [GOAL] R : Type u_1 inst✝²⁰ : Semiring R M : Type u_2 inst✝¹⁹ : AddCommMonoid M inst✝¹⁸ : Module R M N : Type u_3 inst✝¹⁷ : AddCommMonoid N inst✝¹⁶ : Module R N P : Type u_4 inst✝¹⁵ : AddCommMonoid P inst✝¹⁴ : Module R P M' : Type u_5 inst✝¹³ : AddCommGroup M' inst✝¹² : Module R M' N' : Type u_6 inst✝¹¹ : AddCommGroup N' inst✝¹⁰ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝⁹ : Fintype ιa inst✝⁸ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁷ : CommSemiring R' inst✝⁶ : AddCommGroup N₁ inst✝⁵ : Module R' N₁ inst✝⁴ : AddCommGroup N₂ inst✝³ : Module R' N₂ inst✝² : AddCommMonoid Mᵢ inst✝¹ : Module R' Mᵢ α : Type u_16 β : Type u_17 inst✝ : DecidableEq (α ⊕ β) i j : α ⊕ β σ : ModSumCongr α β ⊢ SMul.smul (swap i j) (SMul.smul (swap i j) σ) = σ [PROOFSTEP] refine Quotient.inductionOn' σ fun σ => ?_ [GOAL] R : Type u_1 inst✝²⁰ : Semiring R M : Type u_2 inst✝¹⁹ : AddCommMonoid M inst✝¹⁸ : Module R M N : Type u_3 inst✝¹⁷ : AddCommMonoid N inst✝¹⁶ : Module R N P : Type u_4 inst✝¹⁵ : AddCommMonoid P inst✝¹⁴ : Module R P M' : Type u_5 inst✝¹³ : AddCommGroup M' inst✝¹² : Module R M' N' : Type u_6 inst✝¹¹ : AddCommGroup N' inst✝¹⁰ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝⁹ : Fintype ιa inst✝⁸ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁷ : CommSemiring R' inst✝⁶ : AddCommGroup N₁ inst✝⁵ : Module R' N₁ inst✝⁴ : AddCommGroup N₂ inst✝³ : Module R' N₂ inst✝² : AddCommMonoid Mᵢ inst✝¹ : Module R' Mᵢ α : Type u_16 β : Type u_17 inst✝ : DecidableEq (α ⊕ β) i j : α ⊕ β σ✝ : ModSumCongr α β σ : Perm (α ⊕ β) ⊢ SMul.smul (swap i j) (SMul.smul (swap i j) (Quotient.mk'' σ)) = Quotient.mk'' σ [PROOFSTEP] exact _root_.congr_arg Quotient.mk'' (Equiv.swap_mul_involutive i j σ) [GOAL] R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : AlternatingMap R' Mᵢ N₁ ιa b : AlternatingMap R' Mᵢ N₂ ιb σ : Perm.ModSumCongr ιa ιb σ₁ σ₂ : Perm (ιa ⊕ ιb) H : Setoid.r σ₁ σ₂ ⊢ (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑a ↑b)) σ₁ = (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑a ↑b)) σ₂ [PROOFSTEP] rw [QuotientGroup.leftRel_apply] at H [GOAL] R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : AlternatingMap R' Mᵢ N₁ ιa b : AlternatingMap R' Mᵢ N₂ ιb σ : Perm.ModSumCongr ιa ιb σ₁ σ₂ : Perm (ιa ⊕ ιb) H : σ₁⁻¹ * σ₂ ∈ MonoidHom.range (Perm.sumCongrHom ιa ιb) ⊢ (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑a ↑b)) σ₁ = (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑a ↑b)) σ₂ [PROOFSTEP] obtain ⟨⟨sl, sr⟩, h⟩ := H [GOAL] case intro.mk R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : AlternatingMap R' Mᵢ N₁ ιa b : AlternatingMap R' Mᵢ N₂ ιb σ : Perm.ModSumCongr ιa ιb σ₁ σ₂ : Perm (ιa ⊕ ιb) sl : Perm ιa sr : Perm ιb h : ↑(Perm.sumCongrHom ιa ιb) (sl, sr) = σ₁⁻¹ * σ₂ ⊢ (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑a ↑b)) σ₁ = (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑a ↑b)) σ₂ [PROOFSTEP] ext v [GOAL] case intro.mk.H R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : AlternatingMap R' Mᵢ N₁ ιa b : AlternatingMap R' Mᵢ N₂ ιb σ : Perm.ModSumCongr ιa ιb σ₁ σ₂ : Perm (ιa ⊕ ιb) sl : Perm ιa sr : Perm ιb h : ↑(Perm.sumCongrHom ιa ιb) (sl, sr) = σ₁⁻¹ * σ₂ v : ιa ⊕ ιb → Mᵢ ⊢ ↑((fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑a ↑b)) σ₁) v = ↑((fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑a ↑b)) σ₂) v [PROOFSTEP] simp only [MultilinearMap.domDomCongr_apply, MultilinearMap.domCoprod_apply, coe_multilinearMap, MultilinearMap.smul_apply] [GOAL] case intro.mk.H R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : AlternatingMap R' Mᵢ N₁ ιa b : AlternatingMap R' Mᵢ N₂ ιb σ : Perm.ModSumCongr ιa ιb σ₁ σ₂ : Perm (ιa ⊕ ιb) sl : Perm ιa sr : Perm ιb h : ↑(Perm.sumCongrHom ιa ιb) (sl, sr) = σ₁⁻¹ * σ₂ v : ιa ⊕ ιb → Mᵢ ⊢ (↑Perm.sign σ₁ • (↑a fun i => v (↑σ₁ (Sum.inl i))) ⊗ₜ[R'] ↑b fun i => v (↑σ₁ (Sum.inr i))) = ↑Perm.sign σ₂ • (↑a fun i => v (↑σ₂ (Sum.inl i))) ⊗ₜ[R'] ↑b fun i => v (↑σ₂ (Sum.inr i)) [PROOFSTEP] replace h := inv_mul_eq_iff_eq_mul.mp h.symm [GOAL] case intro.mk.H R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : AlternatingMap R' Mᵢ N₁ ιa b : AlternatingMap R' Mᵢ N₂ ιb σ : Perm.ModSumCongr ιa ιb σ₁ σ₂ : Perm (ιa ⊕ ιb) sl : Perm ιa sr : Perm ιb v : ιa ⊕ ιb → Mᵢ h : σ₂ = σ₁ * ↑(Perm.sumCongrHom ιa ιb) (sl, sr) ⊢ (↑Perm.sign σ₁ • (↑a fun i => v (↑σ₁ (Sum.inl i))) ⊗ₜ[R'] ↑b fun i => v (↑σ₁ (Sum.inr i))) = ↑Perm.sign σ₂ • (↑a fun i => v (↑σ₂ (Sum.inl i))) ⊗ₜ[R'] ↑b fun i => v (↑σ₂ (Sum.inr i)) [PROOFSTEP] have : Equiv.Perm.sign (σ₁ * Perm.sumCongrHom _ _ (sl, sr)) = Equiv.Perm.sign σ₁ * (Equiv.Perm.sign sl * Equiv.Perm.sign sr) := by simp [GOAL] R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : AlternatingMap R' Mᵢ N₁ ιa b : AlternatingMap R' Mᵢ N₂ ιb σ : Perm.ModSumCongr ιa ιb σ₁ σ₂ : Perm (ιa ⊕ ιb) sl : Perm ιa sr : Perm ιb v : ιa ⊕ ιb → Mᵢ h : σ₂ = σ₁ * ↑(Perm.sumCongrHom ιa ιb) (sl, sr) ⊢ ↑Perm.sign (σ₁ * ↑(Perm.sumCongrHom ιa ιb) (sl, sr)) = ↑Perm.sign σ₁ * (↑Perm.sign sl * ↑Perm.sign sr) [PROOFSTEP] simp [GOAL] case intro.mk.H R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : AlternatingMap R' Mᵢ N₁ ιa b : AlternatingMap R' Mᵢ N₂ ιb σ : Perm.ModSumCongr ιa ιb σ₁ σ₂ : Perm (ιa ⊕ ιb) sl : Perm ιa sr : Perm ιb v : ιa ⊕ ιb → Mᵢ h : σ₂ = σ₁ * ↑(Perm.sumCongrHom ιa ιb) (sl, sr) this : ↑Perm.sign (σ₁ * ↑(Perm.sumCongrHom ιa ιb) (sl, sr)) = ↑Perm.sign σ₁ * (↑Perm.sign sl * ↑Perm.sign sr) ⊢ (↑Perm.sign σ₁ • (↑a fun i => v (↑σ₁ (Sum.inl i))) ⊗ₜ[R'] ↑b fun i => v (↑σ₁ (Sum.inr i))) = ↑Perm.sign σ₂ • (↑a fun i => v (↑σ₂ (Sum.inl i))) ⊗ₜ[R'] ↑b fun i => v (↑σ₂ (Sum.inr i)) [PROOFSTEP] rw [h, this, mul_smul, mul_smul, smul_left_cancel_iff, ← TensorProduct.tmul_smul, TensorProduct.smul_tmul'] [GOAL] case intro.mk.H R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : AlternatingMap R' Mᵢ N₁ ιa b : AlternatingMap R' Mᵢ N₂ ιb σ : Perm.ModSumCongr ιa ιb σ₁ σ₂ : Perm (ιa ⊕ ιb) sl : Perm ιa sr : Perm ιb v : ιa ⊕ ιb → Mᵢ h : σ₂ = σ₁ * ↑(Perm.sumCongrHom ιa ιb) (sl, sr) this : ↑Perm.sign (σ₁ * ↑(Perm.sumCongrHom ιa ιb) (sl, sr)) = ↑Perm.sign σ₁ * (↑Perm.sign sl * ↑Perm.sign sr) ⊢ ((↑a fun i => v (↑σ₁ (Sum.inl i))) ⊗ₜ[R'] ↑b fun i => v (↑σ₁ (Sum.inr i))) = (↑Perm.sign sl • ↑a fun i => v (↑(σ₁ * ↑(Perm.sumCongrHom ιa ιb) (sl, sr)) (Sum.inl i))) ⊗ₜ[R'] (↑Perm.sign sr • ↑b fun i => v (↑(σ₁ * ↑(Perm.sumCongrHom ιa ιb) (sl, sr)) (Sum.inr i))) [PROOFSTEP] simp only [Sum.map_inr, Perm.sumCongrHom_apply, Perm.sumCongr_apply, Sum.map_inl, Function.comp_apply, Perm.coe_mul] -- Porting note: Was `rw`. [GOAL] case intro.mk.H R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : AlternatingMap R' Mᵢ N₁ ιa b : AlternatingMap R' Mᵢ N₂ ιb σ : Perm.ModSumCongr ιa ιb σ₁ σ₂ : Perm (ιa ⊕ ιb) sl : Perm ιa sr : Perm ιb v : ιa ⊕ ιb → Mᵢ h : σ₂ = σ₁ * ↑(Perm.sumCongrHom ιa ιb) (sl, sr) this : ↑Perm.sign (σ₁ * ↑(Perm.sumCongrHom ιa ιb) (sl, sr)) = ↑Perm.sign σ₁ * (↑Perm.sign sl * ↑Perm.sign sr) ⊢ ((↑a fun i => v (↑σ₁ (Sum.inl i))) ⊗ₜ[R'] ↑b fun i => v (↑σ₁ (Sum.inr i))) = (↑Perm.sign sl • ↑a fun i => v (↑σ₁ (Sum.inl (↑sl i)))) ⊗ₜ[R'] (↑Perm.sign sr • ↑b fun i => v (↑σ₁ (Sum.inr (↑sr i)))) [PROOFSTEP] erw [← a.map_congr_perm fun i => v (σ₁ _), ← b.map_congr_perm fun i => v (σ₁ _)] [GOAL] R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : AlternatingMap R' Mᵢ N₁ ιa b : AlternatingMap R' Mᵢ N₂ ιb σ : Perm.ModSumCongr ιa ιb v : ιa ⊕ ιb → Mᵢ i j : ιa ⊕ ιb hv : v i = v j hij : i ≠ j ⊢ ↑(summand a b σ) v + ↑(summand a b (swap i j • σ)) v = 0 [PROOFSTEP] refine Quotient.inductionOn' σ fun σ => ?_ [GOAL] R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : AlternatingMap R' Mᵢ N₁ ιa b : AlternatingMap R' Mᵢ N₂ ιb σ✝ : Perm.ModSumCongr ιa ιb v : ιa ⊕ ιb → Mᵢ i j : ιa ⊕ ιb hv : v i = v j hij : i ≠ j σ : Perm (ιa ⊕ ιb) ⊢ ↑(summand a b (Quotient.mk'' σ)) v + ↑(summand a b (swap i j • Quotient.mk'' σ)) v = 0 [PROOFSTEP] dsimp only [Quotient.liftOn'_mk'', Quotient.map'_mk'', MulAction.Quotient.smul_mk, domCoprod.summand] [GOAL] R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : AlternatingMap R' Mᵢ N₁ ιa b : AlternatingMap R' Mᵢ N₂ ιb σ✝ : Perm.ModSumCongr ιa ιb v : ιa ⊕ ιb → Mᵢ i j : ιa ⊕ ιb hv : v i = v j hij : i ≠ j σ : Perm (ιa ⊕ ιb) ⊢ ↑(↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑a ↑b)) v + ↑(↑Perm.sign (swap i j • σ) • MultilinearMap.domDomCongr (swap i j • σ) (MultilinearMap.domCoprod ↑a ↑b)) v = 0 [PROOFSTEP] rw [smul_eq_mul, Perm.sign_mul, Perm.sign_swap hij] [GOAL] R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : AlternatingMap R' Mᵢ N₁ ιa b : AlternatingMap R' Mᵢ N₂ ιb σ✝ : Perm.ModSumCongr ιa ιb v : ιa ⊕ ιb → Mᵢ i j : ιa ⊕ ιb hv : v i = v j hij : i ≠ j σ : Perm (ιa ⊕ ιb) ⊢ ↑(↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑a ↑b)) v + ↑((-1 * ↑Perm.sign σ) • MultilinearMap.domDomCongr (swap i j * σ) (MultilinearMap.domCoprod ↑a ↑b)) v = 0 [PROOFSTEP] simp only [one_mul, neg_mul, Function.comp_apply, Units.neg_smul, Perm.coe_mul, Units.val_neg, MultilinearMap.smul_apply, MultilinearMap.neg_apply, MultilinearMap.domDomCongr_apply, MultilinearMap.domCoprod_apply] [GOAL] R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : AlternatingMap R' Mᵢ N₁ ιa b : AlternatingMap R' Mᵢ N₂ ιb σ✝ : Perm.ModSumCongr ιa ιb v : ιa ⊕ ιb → Mᵢ i j : ιa ⊕ ιb hv : v i = v j hij : i ≠ j σ : Perm (ιa ⊕ ιb) ⊢ (↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) + -(↑Perm.sign σ • (↑↑a fun i_1 => v (↑(swap i j) (↑σ (Sum.inl i_1)))) ⊗ₜ[R'] ↑↑b fun i_1 => v (↑(swap i j) (↑σ (Sum.inr i_1)))) = 0 [PROOFSTEP] convert add_right_neg (G := N₁ ⊗[R'] N₂) _ using 6 [GOAL] case h.e'_2.h.e'_6.h.e'_3.h.e'_6.h.e'_9.h.e'_6 R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : AlternatingMap R' Mᵢ N₁ ιa b : AlternatingMap R' Mᵢ N₂ ιb σ✝ : Perm.ModSumCongr ιa ιb v : ιa ⊕ ιb → Mᵢ i j : ιa ⊕ ιb hv : v i = v j hij : i ≠ j σ : Perm (ιa ⊕ ιb) ⊢ (fun i_1 => v (↑(swap i j) (↑σ (Sum.inl i_1)))) = fun i => v (↑σ (Sum.inl i)) [PROOFSTEP] ext k [GOAL] case h.e'_2.h.e'_6.h.e'_3.h.e'_6.h.e'_9.h.e'_6.h R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : AlternatingMap R' Mᵢ N₁ ιa b : AlternatingMap R' Mᵢ N₂ ιb σ✝ : Perm.ModSumCongr ιa ιb v : ιa ⊕ ιb → Mᵢ i j : ιa ⊕ ιb hv : v i = v j hij : i ≠ j σ : Perm (ιa ⊕ ιb) k : ιa ⊢ v (↑(swap i j) (↑σ (Sum.inl k))) = v (↑σ (Sum.inl k)) [PROOFSTEP] rw [Equiv.apply_swap_eq_self hv] [GOAL] case h.e'_2.h.e'_6.h.e'_3.h.e'_6.h.e'_10.h.e'_6 R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : AlternatingMap R' Mᵢ N₁ ιa b : AlternatingMap R' Mᵢ N₂ ιb σ✝ : Perm.ModSumCongr ιa ιb v : ιa ⊕ ιb → Mᵢ i j : ιa ⊕ ιb hv : v i = v j hij : i ≠ j σ : Perm (ιa ⊕ ιb) ⊢ (fun i_1 => v (↑(swap i j) (↑σ (Sum.inr i_1)))) = fun i => v (↑σ (Sum.inr i)) [PROOFSTEP] ext k [GOAL] case h.e'_2.h.e'_6.h.e'_3.h.e'_6.h.e'_10.h.e'_6.h R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : AlternatingMap R' Mᵢ N₁ ιa b : AlternatingMap R' Mᵢ N₂ ιb σ✝ : Perm.ModSumCongr ιa ιb v : ιa ⊕ ιb → Mᵢ i j : ιa ⊕ ιb hv : v i = v j hij : i ≠ j σ : Perm (ιa ⊕ ιb) k : ιb ⊢ v (↑(swap i j) (↑σ (Sum.inr k))) = v (↑σ (Sum.inr k)) [PROOFSTEP] rw [Equiv.apply_swap_eq_self hv] [GOAL] R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : AlternatingMap R' Mᵢ N₁ ιa b : AlternatingMap R' Mᵢ N₂ ιb σ : Perm.ModSumCongr ιa ιb v : ιa ⊕ ιb → Mᵢ i j : ιa ⊕ ιb hv : v i = v j hij : i ≠ j ⊢ swap i j • σ = σ → ↑(summand a b σ) v = 0 [PROOFSTEP] refine Quotient.inductionOn' σ fun σ => ?_ [GOAL] R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : AlternatingMap R' Mᵢ N₁ ιa b : AlternatingMap R' Mᵢ N₂ ιb σ✝ : Perm.ModSumCongr ιa ιb v : ιa ⊕ ιb → Mᵢ i j : ιa ⊕ ιb hv : v i = v j hij : i ≠ j σ : Perm (ιa ⊕ ιb) ⊢ swap i j • Quotient.mk'' σ = Quotient.mk'' σ → ↑(summand a b (Quotient.mk'' σ)) v = 0 [PROOFSTEP] dsimp only [Quotient.liftOn'_mk'', Quotient.map'_mk'', MultilinearMap.smul_apply, MultilinearMap.domDomCongr_apply, MultilinearMap.domCoprod_apply, domCoprod.summand] [GOAL] R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : AlternatingMap R' Mᵢ N₁ ιa b : AlternatingMap R' Mᵢ N₂ ιb σ✝ : Perm.ModSumCongr ιa ιb v : ιa ⊕ ιb → Mᵢ i j : ιa ⊕ ιb hv : v i = v j hij : i ≠ j σ : Perm (ιa ⊕ ιb) ⊢ swap i j • Quotient.mk'' σ = Quotient.mk'' σ → (↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0 [PROOFSTEP] intro hσ [GOAL] R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : AlternatingMap R' Mᵢ N₁ ιa b : AlternatingMap R' Mᵢ N₂ ιb σ✝ : Perm.ModSumCongr ιa ιb v : ιa ⊕ ιb → Mᵢ i j : ιa ⊕ ιb hv : v i = v j hij : i ≠ j σ : Perm (ιa ⊕ ιb) hσ : swap i j • Quotient.mk'' σ = Quotient.mk'' σ ⊢ (↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0 [PROOFSTEP] cases' hi : σ⁻¹ i with val val [GOAL] case inl R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : AlternatingMap R' Mᵢ N₁ ιa b : AlternatingMap R' Mᵢ N₂ ιb σ✝ : Perm.ModSumCongr ιa ιb v : ιa ⊕ ιb → Mᵢ i j : ιa ⊕ ιb hv : v i = v j hij : i ≠ j σ : Perm (ιa ⊕ ιb) hσ : swap i j • Quotient.mk'' σ = Quotient.mk'' σ val : ιa hi : ↑σ⁻¹ i = Sum.inl val ⊢ (↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0 [PROOFSTEP] cases' hj : σ⁻¹ j with val_1 val_1 [GOAL] case inr R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : AlternatingMap R' Mᵢ N₁ ιa b : AlternatingMap R' Mᵢ N₂ ιb σ✝ : Perm.ModSumCongr ιa ιb v : ιa ⊕ ιb → Mᵢ i j : ιa ⊕ ιb hv : v i = v j hij : i ≠ j σ : Perm (ιa ⊕ ιb) hσ : swap i j • Quotient.mk'' σ = Quotient.mk'' σ val : ιb hi : ↑σ⁻¹ i = Sum.inr val ⊢ (↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0 [PROOFSTEP] cases' hj : σ⁻¹ j with val_1 val_1 [GOAL] case inl.inl R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : AlternatingMap R' Mᵢ N₁ ιa b : AlternatingMap R' Mᵢ N₂ ιb σ✝ : Perm.ModSumCongr ιa ιb v : ιa ⊕ ιb → Mᵢ i j : ιa ⊕ ιb hv : v i = v j hij : i ≠ j σ : Perm (ιa ⊕ ιb) hσ : swap i j • Quotient.mk'' σ = Quotient.mk'' σ val : ιa hi : ↑σ⁻¹ i = Sum.inl val val_1 : ιa hj : ↑σ⁻¹ j = Sum.inl val_1 ⊢ (↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0 [PROOFSTEP] rw [Perm.inv_eq_iff_eq] at hi hj [GOAL] case inl.inr R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : AlternatingMap R' Mᵢ N₁ ιa b : AlternatingMap R' Mᵢ N₂ ιb σ✝ : Perm.ModSumCongr ιa ιb v : ιa ⊕ ιb → Mᵢ i j : ιa ⊕ ιb hv : v i = v j hij : i ≠ j σ : Perm (ιa ⊕ ιb) hσ : swap i j • Quotient.mk'' σ = Quotient.mk'' σ val : ιa hi : ↑σ⁻¹ i = Sum.inl val val_1 : ιb hj : ↑σ⁻¹ j = Sum.inr val_1 ⊢ (↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0 [PROOFSTEP] rw [Perm.inv_eq_iff_eq] at hi hj [GOAL] case inr.inl R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : AlternatingMap R' Mᵢ N₁ ιa b : AlternatingMap R' Mᵢ N₂ ιb σ✝ : Perm.ModSumCongr ιa ιb v : ιa ⊕ ιb → Mᵢ i j : ιa ⊕ ιb hv : v i = v j hij : i ≠ j σ : Perm (ιa ⊕ ιb) hσ : swap i j • Quotient.mk'' σ = Quotient.mk'' σ val : ιb hi : ↑σ⁻¹ i = Sum.inr val val_1 : ιa hj : ↑σ⁻¹ j = Sum.inl val_1 ⊢ (↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0 [PROOFSTEP] rw [Perm.inv_eq_iff_eq] at hi hj [GOAL] case inr.inr R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : AlternatingMap R' Mᵢ N₁ ιa b : AlternatingMap R' Mᵢ N₂ ιb σ✝ : Perm.ModSumCongr ιa ιb v : ιa ⊕ ιb → Mᵢ i j : ιa ⊕ ιb hv : v i = v j hij : i ≠ j σ : Perm (ιa ⊕ ιb) hσ : swap i j • Quotient.mk'' σ = Quotient.mk'' σ val : ιb hi : ↑σ⁻¹ i = Sum.inr val val_1 : ιb hj : ↑σ⁻¹ j = Sum.inr val_1 ⊢ (↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0 [PROOFSTEP] rw [Perm.inv_eq_iff_eq] at hi hj [GOAL] case inl.inl R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : AlternatingMap R' Mᵢ N₁ ιa b : AlternatingMap R' Mᵢ N₂ ιb σ✝ : Perm.ModSumCongr ιa ιb v : ιa ⊕ ιb → Mᵢ i j : ιa ⊕ ιb hv : v i = v j hij : i ≠ j σ : Perm (ιa ⊕ ιb) hσ : swap i j • Quotient.mk'' σ = Quotient.mk'' σ val : ιa hi : i = ↑σ (Sum.inl val) val_1 : ιa hj : j = ↑σ (Sum.inl val_1) ⊢ (↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0 [PROOFSTEP] substs hi hj [GOAL] case inl.inr R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : AlternatingMap R' Mᵢ N₁ ιa b : AlternatingMap R' Mᵢ N₂ ιb σ✝ : Perm.ModSumCongr ιa ιb v : ιa ⊕ ιb → Mᵢ i j : ιa ⊕ ιb hv : v i = v j hij : i ≠ j σ : Perm (ιa ⊕ ιb) hσ : swap i j • Quotient.mk'' σ = Quotient.mk'' σ val : ιa hi : i = ↑σ (Sum.inl val) val_1 : ιb hj : j = ↑σ (Sum.inr val_1) ⊢ (↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0 [PROOFSTEP] substs hi hj [GOAL] case inr.inl R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : AlternatingMap R' Mᵢ N₁ ιa b : AlternatingMap R' Mᵢ N₂ ιb σ✝ : Perm.ModSumCongr ιa ιb v : ιa ⊕ ιb → Mᵢ i j : ιa ⊕ ιb hv : v i = v j hij : i ≠ j σ : Perm (ιa ⊕ ιb) hσ : swap i j • Quotient.mk'' σ = Quotient.mk'' σ val : ιb hi : i = ↑σ (Sum.inr val) val_1 : ιa hj : j = ↑σ (Sum.inl val_1) ⊢ (↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0 [PROOFSTEP] substs hi hj [GOAL] case inr.inr R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : AlternatingMap R' Mᵢ N₁ ιa b : AlternatingMap R' Mᵢ N₂ ιb σ✝ : Perm.ModSumCongr ιa ιb v : ιa ⊕ ιb → Mᵢ i j : ιa ⊕ ιb hv : v i = v j hij : i ≠ j σ : Perm (ιa ⊕ ιb) hσ : swap i j • Quotient.mk'' σ = Quotient.mk'' σ val : ιb hi : i = ↑σ (Sum.inr val) val_1 : ιb hj : j = ↑σ (Sum.inr val_1) ⊢ (↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0 [PROOFSTEP] substs hi hj [GOAL] case inl.inl R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : AlternatingMap R' Mᵢ N₁ ιa b : AlternatingMap R' Mᵢ N₂ ιb σ✝ : Perm.ModSumCongr ιa ιb v : ιa ⊕ ιb → Mᵢ σ : Perm (ιa ⊕ ιb) val val_1 : ιa hv : v (↑σ (Sum.inl val)) = v (↑σ (Sum.inl val_1)) hij : ↑σ (Sum.inl val) ≠ ↑σ (Sum.inl val_1) hσ : swap (↑σ (Sum.inl val)) (↑σ (Sum.inl val_1)) • Quotient.mk'' σ = Quotient.mk'' σ ⊢ (↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0 [PROOFSTEP] revert val val_1 [GOAL] case inl.inr R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : AlternatingMap R' Mᵢ N₁ ιa b : AlternatingMap R' Mᵢ N₂ ιb σ✝ : Perm.ModSumCongr ιa ιb v : ιa ⊕ ιb → Mᵢ σ : Perm (ιa ⊕ ιb) val : ιa val_1 : ιb hv : v (↑σ (Sum.inl val)) = v (↑σ (Sum.inr val_1)) hij : ↑σ (Sum.inl val) ≠ ↑σ (Sum.inr val_1) hσ : swap (↑σ (Sum.inl val)) (↑σ (Sum.inr val_1)) • Quotient.mk'' σ = Quotient.mk'' σ ⊢ (↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0 [PROOFSTEP] revert val val_1 [GOAL] case inr.inl R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : AlternatingMap R' Mᵢ N₁ ιa b : AlternatingMap R' Mᵢ N₂ ιb σ✝ : Perm.ModSumCongr ιa ιb v : ιa ⊕ ιb → Mᵢ σ : Perm (ιa ⊕ ιb) val : ιb val_1 : ιa hv : v (↑σ (Sum.inr val)) = v (↑σ (Sum.inl val_1)) hij : ↑σ (Sum.inr val) ≠ ↑σ (Sum.inl val_1) hσ : swap (↑σ (Sum.inr val)) (↑σ (Sum.inl val_1)) • Quotient.mk'' σ = Quotient.mk'' σ ⊢ (↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0 [PROOFSTEP] revert val val_1 [GOAL] case inr.inr R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : AlternatingMap R' Mᵢ N₁ ιa b : AlternatingMap R' Mᵢ N₂ ιb σ✝ : Perm.ModSumCongr ιa ιb v : ιa ⊕ ιb → Mᵢ σ : Perm (ιa ⊕ ιb) val val_1 : ιb hv : v (↑σ (Sum.inr val)) = v (↑σ (Sum.inr val_1)) hij : ↑σ (Sum.inr val) ≠ ↑σ (Sum.inr val_1) hσ : swap (↑σ (Sum.inr val)) (↑σ (Sum.inr val_1)) • Quotient.mk'' σ = Quotient.mk'' σ ⊢ (↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0 [PROOFSTEP] revert val val_1 [GOAL] case inl.inl R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : AlternatingMap R' Mᵢ N₁ ιa b : AlternatingMap R' Mᵢ N₂ ιb σ✝ : Perm.ModSumCongr ιa ιb v : ιa ⊕ ιb → Mᵢ σ : Perm (ιa ⊕ ιb) ⊢ ∀ (val val_1 : ιa), v (↑σ (Sum.inl val)) = v (↑σ (Sum.inl val_1)) → ↑σ (Sum.inl val) ≠ ↑σ (Sum.inl val_1) → swap (↑σ (Sum.inl val)) (↑σ (Sum.inl val_1)) • Quotient.mk'' σ = Quotient.mk'' σ → (↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0 case inl.inr R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : AlternatingMap R' Mᵢ N₁ ιa b : AlternatingMap R' Mᵢ N₂ ιb σ✝ : Perm.ModSumCongr ιa ιb v : ιa ⊕ ιb → Mᵢ σ : Perm (ιa ⊕ ιb) ⊢ ∀ (val : ιa) (val_1 : ιb), v (↑σ (Sum.inl val)) = v (↑σ (Sum.inr val_1)) → ↑σ (Sum.inl val) ≠ ↑σ (Sum.inr val_1) → swap (↑σ (Sum.inl val)) (↑σ (Sum.inr val_1)) • Quotient.mk'' σ = Quotient.mk'' σ → (↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0 case inr.inl R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : AlternatingMap R' Mᵢ N₁ ιa b : AlternatingMap R' Mᵢ N₂ ιb σ✝ : Perm.ModSumCongr ιa ιb v : ιa ⊕ ιb → Mᵢ σ : Perm (ιa ⊕ ιb) ⊢ ∀ (val : ιb) (val_1 : ιa), v (↑σ (Sum.inr val)) = v (↑σ (Sum.inl val_1)) → ↑σ (Sum.inr val) ≠ ↑σ (Sum.inl val_1) → swap (↑σ (Sum.inr val)) (↑σ (Sum.inl val_1)) • Quotient.mk'' σ = Quotient.mk'' σ → (↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0 case inr.inr R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : AlternatingMap R' Mᵢ N₁ ιa b : AlternatingMap R' Mᵢ N₂ ιb σ✝ : Perm.ModSumCongr ιa ιb v : ιa ⊕ ιb → Mᵢ σ : Perm (ιa ⊕ ιb) ⊢ ∀ (val val_1 : ιb), v (↑σ (Sum.inr val)) = v (↑σ (Sum.inr val_1)) → ↑σ (Sum.inr val) ≠ ↑σ (Sum.inr val_1) → swap (↑σ (Sum.inr val)) (↑σ (Sum.inr val_1)) • Quotient.mk'' σ = Quotient.mk'' σ → (↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0 [PROOFSTEP] case inl.inr => intro i' j' _ _ hσ obtain ⟨⟨sl, sr⟩, hσ⟩ := QuotientGroup.leftRel_apply.mp (Quotient.exact' hσ) replace hσ := Equiv.congr_fun hσ (Sum.inl i') dsimp only at hσ rw [smul_eq_mul, ← mul_swap_eq_swap_mul, mul_inv_rev, swap_inv, inv_mul_cancel_right] at hσ simp at hσ [GOAL] R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : AlternatingMap R' Mᵢ N₁ ιa b : AlternatingMap R' Mᵢ N₂ ιb σ✝ : Perm.ModSumCongr ιa ιb v : ιa ⊕ ιb → Mᵢ σ : Perm (ιa ⊕ ιb) ⊢ ∀ (val : ιa) (val_1 : ιb), v (↑σ (Sum.inl val)) = v (↑σ (Sum.inr val_1)) → ↑σ (Sum.inl val) ≠ ↑σ (Sum.inr val_1) → swap (↑σ (Sum.inl val)) (↑σ (Sum.inr val_1)) • Quotient.mk'' σ = Quotient.mk'' σ → (↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0 [PROOFSTEP] case inl.inr => intro i' j' _ _ hσ obtain ⟨⟨sl, sr⟩, hσ⟩ := QuotientGroup.leftRel_apply.mp (Quotient.exact' hσ) replace hσ := Equiv.congr_fun hσ (Sum.inl i') dsimp only at hσ rw [smul_eq_mul, ← mul_swap_eq_swap_mul, mul_inv_rev, swap_inv, inv_mul_cancel_right] at hσ simp at hσ [GOAL] R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : AlternatingMap R' Mᵢ N₁ ιa b : AlternatingMap R' Mᵢ N₂ ιb σ✝ : Perm.ModSumCongr ιa ιb v : ιa ⊕ ιb → Mᵢ σ : Perm (ιa ⊕ ιb) ⊢ ∀ (val : ιa) (val_1 : ιb), v (↑σ (Sum.inl val)) = v (↑σ (Sum.inr val_1)) → ↑σ (Sum.inl val) ≠ ↑σ (Sum.inr val_1) → swap (↑σ (Sum.inl val)) (↑σ (Sum.inr val_1)) • Quotient.mk'' σ = Quotient.mk'' σ → (↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0 [PROOFSTEP] intro i' j' _ _ hσ [GOAL] R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : AlternatingMap R' Mᵢ N₁ ιa b : AlternatingMap R' Mᵢ N₂ ιb σ✝ : Perm.ModSumCongr ιa ιb v : ιa ⊕ ιb → Mᵢ σ : Perm (ιa ⊕ ιb) i' : ιa j' : ιb hv✝ : v (↑σ (Sum.inl i')) = v (↑σ (Sum.inr j')) hij✝ : ↑σ (Sum.inl i') ≠ ↑σ (Sum.inr j') hσ : swap (↑σ (Sum.inl i')) (↑σ (Sum.inr j')) • Quotient.mk'' σ = Quotient.mk'' σ ⊢ (↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0 [PROOFSTEP] obtain ⟨⟨sl, sr⟩, hσ⟩ := QuotientGroup.leftRel_apply.mp (Quotient.exact' hσ) [GOAL] case intro.mk R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : AlternatingMap R' Mᵢ N₁ ιa b : AlternatingMap R' Mᵢ N₂ ιb σ✝ : Perm.ModSumCongr ιa ιb v : ιa ⊕ ιb → Mᵢ σ : Perm (ιa ⊕ ιb) i' : ιa j' : ιb hv✝ : v (↑σ (Sum.inl i')) = v (↑σ (Sum.inr j')) hij✝ : ↑σ (Sum.inl i') ≠ ↑σ (Sum.inr j') hσ✝ : swap (↑σ (Sum.inl i')) (↑σ (Sum.inr j')) • Quotient.mk'' σ = Quotient.mk'' σ sl : Perm ιa sr : Perm ιb hσ : ↑(Perm.sumCongrHom ιa ιb) (sl, sr) = ((fun x x_1 => x • x_1) (swap (↑σ (Sum.inl i')) (↑σ (Sum.inr j'))) σ)⁻¹ * σ ⊢ (↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0 [PROOFSTEP] replace hσ := Equiv.congr_fun hσ (Sum.inl i') [GOAL] case intro.mk R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : AlternatingMap R' Mᵢ N₁ ιa b : AlternatingMap R' Mᵢ N₂ ιb σ✝ : Perm.ModSumCongr ιa ιb v : ιa ⊕ ιb → Mᵢ σ : Perm (ιa ⊕ ιb) i' : ιa j' : ιb hv✝ : v (↑σ (Sum.inl i')) = v (↑σ (Sum.inr j')) hij✝ : ↑σ (Sum.inl i') ≠ ↑σ (Sum.inr j') hσ✝ : swap (↑σ (Sum.inl i')) (↑σ (Sum.inr j')) • Quotient.mk'' σ = Quotient.mk'' σ sl : Perm ιa sr : Perm ιb hσ : ↑(↑(Perm.sumCongrHom ιa ιb) (sl, sr)) (Sum.inl i') = ↑(((fun x x_1 => x • x_1) (swap (↑σ (Sum.inl i')) (↑σ (Sum.inr j'))) σ)⁻¹ * σ) (Sum.inl i') ⊢ (↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0 [PROOFSTEP] dsimp only at hσ [GOAL] case intro.mk R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : AlternatingMap R' Mᵢ N₁ ιa b : AlternatingMap R' Mᵢ N₂ ιb σ✝ : Perm.ModSumCongr ιa ιb v : ιa ⊕ ιb → Mᵢ σ : Perm (ιa ⊕ ιb) i' : ιa j' : ιb hv✝ : v (↑σ (Sum.inl i')) = v (↑σ (Sum.inr j')) hij✝ : ↑σ (Sum.inl i') ≠ ↑σ (Sum.inr j') hσ✝ : swap (↑σ (Sum.inl i')) (↑σ (Sum.inr j')) • Quotient.mk'' σ = Quotient.mk'' σ sl : Perm ιa sr : Perm ιb hσ : ↑(↑(Perm.sumCongrHom ιa ιb) (sl, sr)) (Sum.inl i') = ↑((swap (↑σ (Sum.inl i')) (↑σ (Sum.inr j')) • σ)⁻¹ * σ) (Sum.inl i') ⊢ (↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0 [PROOFSTEP] rw [smul_eq_mul, ← mul_swap_eq_swap_mul, mul_inv_rev, swap_inv, inv_mul_cancel_right] at hσ [GOAL] case intro.mk R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : AlternatingMap R' Mᵢ N₁ ιa b : AlternatingMap R' Mᵢ N₂ ιb σ✝ : Perm.ModSumCongr ιa ιb v : ιa ⊕ ιb → Mᵢ σ : Perm (ιa ⊕ ιb) i' : ιa j' : ιb hv✝ : v (↑σ (Sum.inl i')) = v (↑σ (Sum.inr j')) hij✝ : ↑σ (Sum.inl i') ≠ ↑σ (Sum.inr j') hσ✝ : swap (↑σ (Sum.inl i')) (↑σ (Sum.inr j')) • Quotient.mk'' σ = Quotient.mk'' σ sl : Perm ιa sr : Perm ιb hσ : ↑(↑(Perm.sumCongrHom ιa ιb) (sl, sr)) (Sum.inl i') = ↑(swap (Sum.inl i') (Sum.inr j')) (Sum.inl i') ⊢ (↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0 [PROOFSTEP] simp at hσ [GOAL] case inl.inl R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : AlternatingMap R' Mᵢ N₁ ιa b : AlternatingMap R' Mᵢ N₂ ιb σ✝ : Perm.ModSumCongr ιa ιb v : ιa ⊕ ιb → Mᵢ σ : Perm (ιa ⊕ ιb) ⊢ ∀ (val val_1 : ιa), v (↑σ (Sum.inl val)) = v (↑σ (Sum.inl val_1)) → ↑σ (Sum.inl val) ≠ ↑σ (Sum.inl val_1) → swap (↑σ (Sum.inl val)) (↑σ (Sum.inl val_1)) • Quotient.mk'' σ = Quotient.mk'' σ → (↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0 case inr.inl R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : AlternatingMap R' Mᵢ N₁ ιa b : AlternatingMap R' Mᵢ N₂ ιb σ✝ : Perm.ModSumCongr ιa ιb v : ιa ⊕ ιb → Mᵢ σ : Perm (ιa ⊕ ιb) ⊢ ∀ (val : ιb) (val_1 : ιa), v (↑σ (Sum.inr val)) = v (↑σ (Sum.inl val_1)) → ↑σ (Sum.inr val) ≠ ↑σ (Sum.inl val_1) → swap (↑σ (Sum.inr val)) (↑σ (Sum.inl val_1)) • Quotient.mk'' σ = Quotient.mk'' σ → (↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0 case inr.inr R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : AlternatingMap R' Mᵢ N₁ ιa b : AlternatingMap R' Mᵢ N₂ ιb σ✝ : Perm.ModSumCongr ιa ιb v : ιa ⊕ ιb → Mᵢ σ : Perm (ιa ⊕ ιb) ⊢ ∀ (val val_1 : ιb), v (↑σ (Sum.inr val)) = v (↑σ (Sum.inr val_1)) → ↑σ (Sum.inr val) ≠ ↑σ (Sum.inr val_1) → swap (↑σ (Sum.inr val)) (↑σ (Sum.inr val_1)) • Quotient.mk'' σ = Quotient.mk'' σ → (↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0 [PROOFSTEP] case inr.inl => intro i' j' _ _ hσ obtain ⟨⟨sl, sr⟩, hσ⟩ := QuotientGroup.leftRel_apply.mp (Quotient.exact' hσ) replace hσ := Equiv.congr_fun hσ (Sum.inr i') dsimp only at hσ rw [smul_eq_mul, ← mul_swap_eq_swap_mul, mul_inv_rev, swap_inv, inv_mul_cancel_right] at hσ simp at hσ [GOAL] R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : AlternatingMap R' Mᵢ N₁ ιa b : AlternatingMap R' Mᵢ N₂ ιb σ✝ : Perm.ModSumCongr ιa ιb v : ιa ⊕ ιb → Mᵢ σ : Perm (ιa ⊕ ιb) ⊢ ∀ (val : ιb) (val_1 : ιa), v (↑σ (Sum.inr val)) = v (↑σ (Sum.inl val_1)) → ↑σ (Sum.inr val) ≠ ↑σ (Sum.inl val_1) → swap (↑σ (Sum.inr val)) (↑σ (Sum.inl val_1)) • Quotient.mk'' σ = Quotient.mk'' σ → (↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0 [PROOFSTEP] case inr.inl => intro i' j' _ _ hσ obtain ⟨⟨sl, sr⟩, hσ⟩ := QuotientGroup.leftRel_apply.mp (Quotient.exact' hσ) replace hσ := Equiv.congr_fun hσ (Sum.inr i') dsimp only at hσ rw [smul_eq_mul, ← mul_swap_eq_swap_mul, mul_inv_rev, swap_inv, inv_mul_cancel_right] at hσ simp at hσ [GOAL] R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : AlternatingMap R' Mᵢ N₁ ιa b : AlternatingMap R' Mᵢ N₂ ιb σ✝ : Perm.ModSumCongr ιa ιb v : ιa ⊕ ιb → Mᵢ σ : Perm (ιa ⊕ ιb) ⊢ ∀ (val : ιb) (val_1 : ιa), v (↑σ (Sum.inr val)) = v (↑σ (Sum.inl val_1)) → ↑σ (Sum.inr val) ≠ ↑σ (Sum.inl val_1) → swap (↑σ (Sum.inr val)) (↑σ (Sum.inl val_1)) • Quotient.mk'' σ = Quotient.mk'' σ → (↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0 [PROOFSTEP] intro i' j' _ _ hσ [GOAL] R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : AlternatingMap R' Mᵢ N₁ ιa b : AlternatingMap R' Mᵢ N₂ ιb σ✝ : Perm.ModSumCongr ιa ιb v : ιa ⊕ ιb → Mᵢ σ : Perm (ιa ⊕ ιb) i' : ιb j' : ιa hv✝ : v (↑σ (Sum.inr i')) = v (↑σ (Sum.inl j')) hij✝ : ↑σ (Sum.inr i') ≠ ↑σ (Sum.inl j') hσ : swap (↑σ (Sum.inr i')) (↑σ (Sum.inl j')) • Quotient.mk'' σ = Quotient.mk'' σ ⊢ (↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0 [PROOFSTEP] obtain ⟨⟨sl, sr⟩, hσ⟩ := QuotientGroup.leftRel_apply.mp (Quotient.exact' hσ) [GOAL] case intro.mk R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : AlternatingMap R' Mᵢ N₁ ιa b : AlternatingMap R' Mᵢ N₂ ιb σ✝ : Perm.ModSumCongr ιa ιb v : ιa ⊕ ιb → Mᵢ σ : Perm (ιa ⊕ ιb) i' : ιb j' : ιa hv✝ : v (↑σ (Sum.inr i')) = v (↑σ (Sum.inl j')) hij✝ : ↑σ (Sum.inr i') ≠ ↑σ (Sum.inl j') hσ✝ : swap (↑σ (Sum.inr i')) (↑σ (Sum.inl j')) • Quotient.mk'' σ = Quotient.mk'' σ sl : Perm ιa sr : Perm ιb hσ : ↑(Perm.sumCongrHom ιa ιb) (sl, sr) = ((fun x x_1 => x • x_1) (swap (↑σ (Sum.inr i')) (↑σ (Sum.inl j'))) σ)⁻¹ * σ ⊢ (↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0 [PROOFSTEP] replace hσ := Equiv.congr_fun hσ (Sum.inr i') [GOAL] case intro.mk R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : AlternatingMap R' Mᵢ N₁ ιa b : AlternatingMap R' Mᵢ N₂ ιb σ✝ : Perm.ModSumCongr ιa ιb v : ιa ⊕ ιb → Mᵢ σ : Perm (ιa ⊕ ιb) i' : ιb j' : ιa hv✝ : v (↑σ (Sum.inr i')) = v (↑σ (Sum.inl j')) hij✝ : ↑σ (Sum.inr i') ≠ ↑σ (Sum.inl j') hσ✝ : swap (↑σ (Sum.inr i')) (↑σ (Sum.inl j')) • Quotient.mk'' σ = Quotient.mk'' σ sl : Perm ιa sr : Perm ιb hσ : ↑(↑(Perm.sumCongrHom ιa ιb) (sl, sr)) (Sum.inr i') = ↑(((fun x x_1 => x • x_1) (swap (↑σ (Sum.inr i')) (↑σ (Sum.inl j'))) σ)⁻¹ * σ) (Sum.inr i') ⊢ (↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0 [PROOFSTEP] dsimp only at hσ [GOAL] case intro.mk R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : AlternatingMap R' Mᵢ N₁ ιa b : AlternatingMap R' Mᵢ N₂ ιb σ✝ : Perm.ModSumCongr ιa ιb v : ιa ⊕ ιb → Mᵢ σ : Perm (ιa ⊕ ιb) i' : ιb j' : ιa hv✝ : v (↑σ (Sum.inr i')) = v (↑σ (Sum.inl j')) hij✝ : ↑σ (Sum.inr i') ≠ ↑σ (Sum.inl j') hσ✝ : swap (↑σ (Sum.inr i')) (↑σ (Sum.inl j')) • Quotient.mk'' σ = Quotient.mk'' σ sl : Perm ιa sr : Perm ιb hσ : ↑(↑(Perm.sumCongrHom ιa ιb) (sl, sr)) (Sum.inr i') = ↑((swap (↑σ (Sum.inr i')) (↑σ (Sum.inl j')) • σ)⁻¹ * σ) (Sum.inr i') ⊢ (↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0 [PROOFSTEP] rw [smul_eq_mul, ← mul_swap_eq_swap_mul, mul_inv_rev, swap_inv, inv_mul_cancel_right] at hσ [GOAL] case intro.mk R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : AlternatingMap R' Mᵢ N₁ ιa b : AlternatingMap R' Mᵢ N₂ ιb σ✝ : Perm.ModSumCongr ιa ιb v : ιa ⊕ ιb → Mᵢ σ : Perm (ιa ⊕ ιb) i' : ιb j' : ιa hv✝ : v (↑σ (Sum.inr i')) = v (↑σ (Sum.inl j')) hij✝ : ↑σ (Sum.inr i') ≠ ↑σ (Sum.inl j') hσ✝ : swap (↑σ (Sum.inr i')) (↑σ (Sum.inl j')) • Quotient.mk'' σ = Quotient.mk'' σ sl : Perm ιa sr : Perm ιb hσ : ↑(↑(Perm.sumCongrHom ιa ιb) (sl, sr)) (Sum.inr i') = ↑(swap (Sum.inr i') (Sum.inl j')) (Sum.inr i') ⊢ (↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0 [PROOFSTEP] simp at hσ [GOAL] case inl.inl R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : AlternatingMap R' Mᵢ N₁ ιa b : AlternatingMap R' Mᵢ N₂ ιb σ✝ : Perm.ModSumCongr ιa ιb v : ιa ⊕ ιb → Mᵢ σ : Perm (ιa ⊕ ιb) ⊢ ∀ (val val_1 : ιa), v (↑σ (Sum.inl val)) = v (↑σ (Sum.inl val_1)) → ↑σ (Sum.inl val) ≠ ↑σ (Sum.inl val_1) → swap (↑σ (Sum.inl val)) (↑σ (Sum.inl val_1)) • Quotient.mk'' σ = Quotient.mk'' σ → (↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0 case inr.inr R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : AlternatingMap R' Mᵢ N₁ ιa b : AlternatingMap R' Mᵢ N₂ ιb σ✝ : Perm.ModSumCongr ιa ιb v : ιa ⊕ ιb → Mᵢ σ : Perm (ιa ⊕ ιb) ⊢ ∀ (val val_1 : ιb), v (↑σ (Sum.inr val)) = v (↑σ (Sum.inr val_1)) → ↑σ (Sum.inr val) ≠ ↑σ (Sum.inr val_1) → swap (↑σ (Sum.inr val)) (↑σ (Sum.inr val_1)) • Quotient.mk'' σ = Quotient.mk'' σ → (↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0 [PROOFSTEP] case inr.inr => intro i' j' hv hij _ convert smul_zero (M := ℤˣ) (A := N₁ ⊗[R'] N₂) _ convert TensorProduct.tmul_zero (R := R') (M := N₁) N₂ _ exact AlternatingMap.map_eq_zero_of_eq _ _ hv fun hij' => hij (hij' ▸ rfl) [GOAL] R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : AlternatingMap R' Mᵢ N₁ ιa b : AlternatingMap R' Mᵢ N₂ ιb σ✝ : Perm.ModSumCongr ιa ιb v : ιa ⊕ ιb → Mᵢ σ : Perm (ιa ⊕ ιb) ⊢ ∀ (val val_1 : ιb), v (↑σ (Sum.inr val)) = v (↑σ (Sum.inr val_1)) → ↑σ (Sum.inr val) ≠ ↑σ (Sum.inr val_1) → swap (↑σ (Sum.inr val)) (↑σ (Sum.inr val_1)) • Quotient.mk'' σ = Quotient.mk'' σ → (↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0 [PROOFSTEP] case inr.inr => intro i' j' hv hij _ convert smul_zero (M := ℤˣ) (A := N₁ ⊗[R'] N₂) _ convert TensorProduct.tmul_zero (R := R') (M := N₁) N₂ _ exact AlternatingMap.map_eq_zero_of_eq _ _ hv fun hij' => hij (hij' ▸ rfl) [GOAL] R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : AlternatingMap R' Mᵢ N₁ ιa b : AlternatingMap R' Mᵢ N₂ ιb σ✝ : Perm.ModSumCongr ιa ιb v : ιa ⊕ ιb → Mᵢ σ : Perm (ιa ⊕ ιb) ⊢ ∀ (val val_1 : ιb), v (↑σ (Sum.inr val)) = v (↑σ (Sum.inr val_1)) → ↑σ (Sum.inr val) ≠ ↑σ (Sum.inr val_1) → swap (↑σ (Sum.inr val)) (↑σ (Sum.inr val_1)) • Quotient.mk'' σ = Quotient.mk'' σ → (↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0 [PROOFSTEP] intro i' j' hv hij _ [GOAL] R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : AlternatingMap R' Mᵢ N₁ ιa b : AlternatingMap R' Mᵢ N₂ ιb σ✝ : Perm.ModSumCongr ιa ιb v : ιa ⊕ ιb → Mᵢ σ : Perm (ιa ⊕ ιb) i' j' : ιb hv : v (↑σ (Sum.inr i')) = v (↑σ (Sum.inr j')) hij : ↑σ (Sum.inr i') ≠ ↑σ (Sum.inr j') hσ✝ : swap (↑σ (Sum.inr i')) (↑σ (Sum.inr j')) • Quotient.mk'' σ = Quotient.mk'' σ ⊢ (↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0 [PROOFSTEP] convert smul_zero (M := ℤˣ) (A := N₁ ⊗[R'] N₂) _ [GOAL] case h.e'_2.h.e'_6 R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : AlternatingMap R' Mᵢ N₁ ιa b : AlternatingMap R' Mᵢ N₂ ιb σ✝ : Perm.ModSumCongr ιa ιb v : ιa ⊕ ιb → Mᵢ σ : Perm (ιa ⊕ ιb) i' j' : ιb hv : v (↑σ (Sum.inr i')) = v (↑σ (Sum.inr j')) hij : ↑σ (Sum.inr i') ≠ ↑σ (Sum.inr j') hσ✝ : swap (↑σ (Sum.inr i')) (↑σ (Sum.inr j')) • Quotient.mk'' σ = Quotient.mk'' σ ⊢ ((↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0 [PROOFSTEP] convert TensorProduct.tmul_zero (R := R') (M := N₁) N₂ _ [GOAL] case h.e'_2.h.e'_10 R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : AlternatingMap R' Mᵢ N₁ ιa b : AlternatingMap R' Mᵢ N₂ ιb σ✝ : Perm.ModSumCongr ιa ιb v : ιa ⊕ ιb → Mᵢ σ : Perm (ιa ⊕ ιb) i' j' : ιb hv : v (↑σ (Sum.inr i')) = v (↑σ (Sum.inr j')) hij : ↑σ (Sum.inr i') ≠ ↑σ (Sum.inr j') hσ✝ : swap (↑σ (Sum.inr i')) (↑σ (Sum.inr j')) • Quotient.mk'' σ = Quotient.mk'' σ ⊢ (↑↑b fun i => v (↑σ (Sum.inr i))) = 0 [PROOFSTEP] exact AlternatingMap.map_eq_zero_of_eq _ _ hv fun hij' => hij (hij' ▸ rfl) [GOAL] case inl.inl R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : AlternatingMap R' Mᵢ N₁ ιa b : AlternatingMap R' Mᵢ N₂ ιb σ✝ : Perm.ModSumCongr ιa ιb v : ιa ⊕ ιb → Mᵢ σ : Perm (ιa ⊕ ιb) ⊢ ∀ (val val_1 : ιa), v (↑σ (Sum.inl val)) = v (↑σ (Sum.inl val_1)) → ↑σ (Sum.inl val) ≠ ↑σ (Sum.inl val_1) → swap (↑σ (Sum.inl val)) (↑σ (Sum.inl val_1)) • Quotient.mk'' σ = Quotient.mk'' σ → (↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0 [PROOFSTEP] case inl.inl => intro i' j' hv hij _ convert smul_zero (M := ℤˣ) (A := N₁ ⊗[R'] N₂) _ convert TensorProduct.zero_tmul (R := R') N₁ (N := N₂) _ exact AlternatingMap.map_eq_zero_of_eq _ _ hv fun hij' => hij (hij' ▸ rfl) [GOAL] R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : AlternatingMap R' Mᵢ N₁ ιa b : AlternatingMap R' Mᵢ N₂ ιb σ✝ : Perm.ModSumCongr ιa ιb v : ιa ⊕ ιb → Mᵢ σ : Perm (ιa ⊕ ιb) ⊢ ∀ (val val_1 : ιa), v (↑σ (Sum.inl val)) = v (↑σ (Sum.inl val_1)) → ↑σ (Sum.inl val) ≠ ↑σ (Sum.inl val_1) → swap (↑σ (Sum.inl val)) (↑σ (Sum.inl val_1)) • Quotient.mk'' σ = Quotient.mk'' σ → (↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0 [PROOFSTEP] case inl.inl => intro i' j' hv hij _ convert smul_zero (M := ℤˣ) (A := N₁ ⊗[R'] N₂) _ convert TensorProduct.zero_tmul (R := R') N₁ (N := N₂) _ exact AlternatingMap.map_eq_zero_of_eq _ _ hv fun hij' => hij (hij' ▸ rfl) [GOAL] R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : AlternatingMap R' Mᵢ N₁ ιa b : AlternatingMap R' Mᵢ N₂ ιb σ✝ : Perm.ModSumCongr ιa ιb v : ιa ⊕ ιb → Mᵢ σ : Perm (ιa ⊕ ιb) ⊢ ∀ (val val_1 : ιa), v (↑σ (Sum.inl val)) = v (↑σ (Sum.inl val_1)) → ↑σ (Sum.inl val) ≠ ↑σ (Sum.inl val_1) → swap (↑σ (Sum.inl val)) (↑σ (Sum.inl val_1)) • Quotient.mk'' σ = Quotient.mk'' σ → (↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0 [PROOFSTEP] intro i' j' hv hij _ [GOAL] R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : AlternatingMap R' Mᵢ N₁ ιa b : AlternatingMap R' Mᵢ N₂ ιb σ✝ : Perm.ModSumCongr ιa ιb v : ιa ⊕ ιb → Mᵢ σ : Perm (ιa ⊕ ιb) i' j' : ιa hv : v (↑σ (Sum.inl i')) = v (↑σ (Sum.inl j')) hij : ↑σ (Sum.inl i') ≠ ↑σ (Sum.inl j') hσ✝ : swap (↑σ (Sum.inl i')) (↑σ (Sum.inl j')) • Quotient.mk'' σ = Quotient.mk'' σ ⊢ (↑Perm.sign σ • (↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0 [PROOFSTEP] convert smul_zero (M := ℤˣ) (A := N₁ ⊗[R'] N₂) _ [GOAL] case h.e'_2.h.e'_6 R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : AlternatingMap R' Mᵢ N₁ ιa b : AlternatingMap R' Mᵢ N₂ ιb σ✝ : Perm.ModSumCongr ιa ιb v : ιa ⊕ ιb → Mᵢ σ : Perm (ιa ⊕ ιb) i' j' : ιa hv : v (↑σ (Sum.inl i')) = v (↑σ (Sum.inl j')) hij : ↑σ (Sum.inl i') ≠ ↑σ (Sum.inl j') hσ✝ : swap (↑σ (Sum.inl i')) (↑σ (Sum.inl j')) • Quotient.mk'' σ = Quotient.mk'' σ ⊢ ((↑↑a fun i => v (↑σ (Sum.inl i))) ⊗ₜ[R'] ↑↑b fun i => v (↑σ (Sum.inr i))) = 0 [PROOFSTEP] convert TensorProduct.zero_tmul (R := R') N₁ (N := N₂) _ [GOAL] case h.e'_2.h.e'_9 R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : AlternatingMap R' Mᵢ N₁ ιa b : AlternatingMap R' Mᵢ N₂ ιb σ✝ : Perm.ModSumCongr ιa ιb v : ιa ⊕ ιb → Mᵢ σ : Perm (ιa ⊕ ιb) i' j' : ιa hv : v (↑σ (Sum.inl i')) = v (↑σ (Sum.inl j')) hij : ↑σ (Sum.inl i') ≠ ↑σ (Sum.inl j') hσ✝ : swap (↑σ (Sum.inl i')) (↑σ (Sum.inl j')) • Quotient.mk'' σ = Quotient.mk'' σ ⊢ (↑↑a fun i => v (↑σ (Sum.inl i))) = 0 [PROOFSTEP] exact AlternatingMap.map_eq_zero_of_eq _ _ hv fun hij' => hij (hij' ▸ rfl) [GOAL] R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : AlternatingMap R' Mᵢ N₁ ιa b : AlternatingMap R' Mᵢ N₂ ιb src✝ : MultilinearMap R' (fun x => Mᵢ) (N₁ ⊗[R'] N₂) := ∑ σ : Perm.ModSumCongr ιa ιb, domCoprod.summand a b σ v : ιa ⊕ ιb → Mᵢ i j : ιa ⊕ ιb hv : v i = v j hij : i ≠ j ⊢ MultilinearMap.toFun { toFun := fun v => ↑(∑ σ : Perm.ModSumCongr ιa ιb, domCoprod.summand a b σ) v, map_add' := (_ : ∀ [inst : DecidableEq (ιa ⊕ ιb)] (m : ιa ⊕ ιb → Mᵢ) (i : ιa ⊕ ιb) (x y : Mᵢ), MultilinearMap.toFun src✝ (Function.update m i (x + y)) = MultilinearMap.toFun src✝ (Function.update m i x) + MultilinearMap.toFun src✝ (Function.update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq (ιa ⊕ ιb)] (m : ιa ⊕ ιb → Mᵢ) (i : ιa ⊕ ιb) (c : R') (x : Mᵢ), MultilinearMap.toFun src✝ (Function.update m i (c • x)) = c • MultilinearMap.toFun src✝ (Function.update m i x)) } v = 0 [PROOFSTEP] dsimp only [GOAL] R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : AlternatingMap R' Mᵢ N₁ ιa b : AlternatingMap R' Mᵢ N₂ ιb src✝ : MultilinearMap R' (fun x => Mᵢ) (N₁ ⊗[R'] N₂) := ∑ σ : Perm.ModSumCongr ιa ιb, domCoprod.summand a b σ v : ιa ⊕ ιb → Mᵢ i j : ιa ⊕ ιb hv : v i = v j hij : i ≠ j ⊢ ↑(∑ σ : Perm.ModSumCongr ιa ιb, domCoprod.summand a b σ) v = 0 [PROOFSTEP] rw [MultilinearMap.sum_apply] [GOAL] R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : AlternatingMap R' Mᵢ N₁ ιa b : AlternatingMap R' Mᵢ N₂ ιb src✝ : MultilinearMap R' (fun x => Mᵢ) (N₁ ⊗[R'] N₂) := ∑ σ : Perm.ModSumCongr ιa ιb, domCoprod.summand a b σ v : ιa ⊕ ιb → Mᵢ i j : ιa ⊕ ιb hv : v i = v j hij : i ≠ j ⊢ ∑ a_1 : Perm.ModSumCongr ιa ιb, ↑(domCoprod.summand a b a_1) v = 0 [PROOFSTEP] exact Finset.sum_involution (fun σ _ => Equiv.swap i j • σ) (fun σ _ => domCoprod.summand_add_swap_smul_eq_zero a b σ hv hij) (fun σ _ => mt <| domCoprod.summand_eq_zero_of_smul_invariant a b σ hv hij) (fun σ _ => Finset.mem_univ _) fun σ _ => Equiv.Perm.ModSumCongr.swap_smul_involutive i j σ [GOAL] R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb ⊢ AlternatingMap R' Mᵢ N₁ ιa →ₗ[R'] AlternatingMap R' Mᵢ N₂ ιb →ₗ[R'] AlternatingMap R' Mᵢ (N₁ ⊗[R'] N₂) (ιa ⊕ ιb) [PROOFSTEP] refine' LinearMap.mk₂ R' domCoprod (fun m₁ m₂ n => _) (fun c m n => _) (fun m n₁ n₂ => _) fun c m n => _ [GOAL] case refine'_1 R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb m₁ m₂ : AlternatingMap R' Mᵢ N₁ ιa n : AlternatingMap R' Mᵢ N₂ ιb ⊢ domCoprod (m₁ + m₂) n = domCoprod m₁ n + domCoprod m₂ n [PROOFSTEP] ext [GOAL] case refine'_1.H R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb m₁ m₂ : AlternatingMap R' Mᵢ N₁ ιa n : AlternatingMap R' Mᵢ N₂ ιb x✝ : ιa ⊕ ιb → Mᵢ ⊢ ↑(domCoprod (m₁ + m₂) n) x✝ = ↑(domCoprod m₁ n + domCoprod m₂ n) x✝ [PROOFSTEP] simp only [domCoprod_apply, add_apply, smul_apply, ← Finset.sum_add_distrib, Finset.smul_sum, MultilinearMap.sum_apply, domCoprod.summand] [GOAL] case refine'_1.H R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb m₁ m₂ : AlternatingMap R' Mᵢ N₁ ιa n : AlternatingMap R' Mᵢ N₂ ιb x✝ : ιa ⊕ ιb → Mᵢ ⊢ ∑ x : Perm.ModSumCongr ιa ιb, ↑(Quotient.liftOn' x (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑(m₁ + m₂) ↑n)) (_ : ∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)), Setoid.r σ₁ σ₂ → (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑(m₁ + m₂) ↑n)) σ₁ = (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑(m₁ + m₂) ↑n)) σ₂)) x✝ = ∑ x : Perm.ModSumCongr ιa ιb, (↑(Quotient.liftOn' x (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m₁ ↑n)) (_ : ∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)), Setoid.r σ₁ σ₂ → (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m₁ ↑n)) σ₁ = (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m₁ ↑n)) σ₂)) x✝ + ↑(Quotient.liftOn' x (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m₂ ↑n)) (_ : ∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)), Setoid.r σ₁ σ₂ → (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m₂ ↑n)) σ₁ = (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m₂ ↑n)) σ₂)) x✝) [PROOFSTEP] congr [GOAL] case refine'_1.H.e_f R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb m₁ m₂ : AlternatingMap R' Mᵢ N₁ ιa n : AlternatingMap R' Mᵢ N₂ ιb x✝ : ιa ⊕ ιb → Mᵢ ⊢ (fun x => ↑(Quotient.liftOn' x (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑(m₁ + m₂) ↑n)) (_ : ∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)), Setoid.r σ₁ σ₂ → (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑(m₁ + m₂) ↑n)) σ₁ = (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑(m₁ + m₂) ↑n)) σ₂)) x✝) = fun x => ↑(Quotient.liftOn' x (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m₁ ↑n)) (_ : ∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)), Setoid.r σ₁ σ₂ → (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m₁ ↑n)) σ₁ = (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m₁ ↑n)) σ₂)) x✝ + ↑(Quotient.liftOn' x (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m₂ ↑n)) (_ : ∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)), Setoid.r σ₁ σ₂ → (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m₂ ↑n)) σ₁ = (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m₂ ↑n)) σ₂)) x✝ [PROOFSTEP] ext σ [GOAL] case refine'_1.H.e_f.h R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb m₁ m₂ : AlternatingMap R' Mᵢ N₁ ιa n : AlternatingMap R' Mᵢ N₂ ιb x✝ : ιa ⊕ ιb → Mᵢ σ : Perm.ModSumCongr ιa ιb ⊢ ↑(Quotient.liftOn' σ (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑(m₁ + m₂) ↑n)) (_ : ∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)), Setoid.r σ₁ σ₂ → (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑(m₁ + m₂) ↑n)) σ₁ = (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑(m₁ + m₂) ↑n)) σ₂)) x✝ = ↑(Quotient.liftOn' σ (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m₁ ↑n)) (_ : ∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)), Setoid.r σ₁ σ₂ → (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m₁ ↑n)) σ₁ = (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m₁ ↑n)) σ₂)) x✝ + ↑(Quotient.liftOn' σ (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m₂ ↑n)) (_ : ∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)), Setoid.r σ₁ σ₂ → (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m₂ ↑n)) σ₁ = (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m₂ ↑n)) σ₂)) x✝ [PROOFSTEP] refine Quotient.inductionOn' σ fun σ => ?_ [GOAL] case refine'_1.H.e_f.h R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb m₁ m₂ : AlternatingMap R' Mᵢ N₁ ιa n : AlternatingMap R' Mᵢ N₂ ιb x✝ : ιa ⊕ ιb → Mᵢ σ✝ : Perm.ModSumCongr ιa ιb σ : Perm (ιa ⊕ ιb) ⊢ ↑(Quotient.liftOn' (Quotient.mk'' σ) (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑(m₁ + m₂) ↑n)) (_ : ∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)), Setoid.r σ₁ σ₂ → (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑(m₁ + m₂) ↑n)) σ₁ = (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑(m₁ + m₂) ↑n)) σ₂)) x✝ = ↑(Quotient.liftOn' (Quotient.mk'' σ) (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m₁ ↑n)) (_ : ∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)), Setoid.r σ₁ σ₂ → (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m₁ ↑n)) σ₁ = (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m₁ ↑n)) σ₂)) x✝ + ↑(Quotient.liftOn' (Quotient.mk'' σ) (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m₂ ↑n)) (_ : ∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)), Setoid.r σ₁ σ₂ → (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m₂ ↑n)) σ₁ = (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m₂ ↑n)) σ₂)) x✝ [PROOFSTEP] simp only [Quotient.liftOn'_mk'', coe_add, coe_smul, MultilinearMap.smul_apply, ← MultilinearMap.domCoprod'_apply] [GOAL] case refine'_1.H.e_f.h R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb m₁ m₂ : AlternatingMap R' Mᵢ N₁ ιa n : AlternatingMap R' Mᵢ N₂ ιb x✝ : ιa ⊕ ιb → Mᵢ σ✝ : Perm.ModSumCongr ιa ιb σ : Perm (ιa ⊕ ιb) ⊢ ↑Perm.sign σ • ↑(MultilinearMap.domDomCongr σ (↑MultilinearMap.domCoprod' ((↑m₁ + ↑m₂) ⊗ₜ[R'] ↑n))) x✝ = ↑Perm.sign σ • ↑(MultilinearMap.domDomCongr σ (↑MultilinearMap.domCoprod' (↑m₁ ⊗ₜ[R'] ↑n))) x✝ + ↑Perm.sign σ • ↑(MultilinearMap.domDomCongr σ (↑MultilinearMap.domCoprod' (↑m₂ ⊗ₜ[R'] ↑n))) x✝ [PROOFSTEP] simp only [TensorProduct.add_tmul, ← TensorProduct.smul_tmul', TensorProduct.tmul_add, TensorProduct.tmul_smul, LinearMap.map_add, LinearMap.map_smul] [GOAL] case refine'_1.H.e_f.h R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb m₁ m₂ : AlternatingMap R' Mᵢ N₁ ιa n : AlternatingMap R' Mᵢ N₂ ιb x✝ : ιa ⊕ ιb → Mᵢ σ✝ : Perm.ModSumCongr ιa ιb σ : Perm (ιa ⊕ ιb) ⊢ ↑Perm.sign σ • ↑(MultilinearMap.domDomCongr σ (↑MultilinearMap.domCoprod' (↑m₁ ⊗ₜ[R'] ↑n) + ↑MultilinearMap.domCoprod' (↑m₂ ⊗ₜ[R'] ↑n))) x✝ = ↑Perm.sign σ • ↑(MultilinearMap.domDomCongr σ (↑MultilinearMap.domCoprod' (↑m₁ ⊗ₜ[R'] ↑n))) x✝ + ↑Perm.sign σ • ↑(MultilinearMap.domDomCongr σ (↑MultilinearMap.domCoprod' (↑m₂ ⊗ₜ[R'] ↑n))) x✝ [PROOFSTEP] first | rw [← smul_add] | rw [smul_comm] [GOAL] case refine'_1.H.e_f.h R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb m₁ m₂ : AlternatingMap R' Mᵢ N₁ ιa n : AlternatingMap R' Mᵢ N₂ ιb x✝ : ιa ⊕ ιb → Mᵢ σ✝ : Perm.ModSumCongr ιa ιb σ : Perm (ιa ⊕ ιb) ⊢ ↑Perm.sign σ • ↑(MultilinearMap.domDomCongr σ (↑MultilinearMap.domCoprod' (↑m₁ ⊗ₜ[R'] ↑n) + ↑MultilinearMap.domCoprod' (↑m₂ ⊗ₜ[R'] ↑n))) x✝ = ↑Perm.sign σ • ↑(MultilinearMap.domDomCongr σ (↑MultilinearMap.domCoprod' (↑m₁ ⊗ₜ[R'] ↑n))) x✝ + ↑Perm.sign σ • ↑(MultilinearMap.domDomCongr σ (↑MultilinearMap.domCoprod' (↑m₂ ⊗ₜ[R'] ↑n))) x✝ [PROOFSTEP] rw [← smul_add] [GOAL] case refine'_1.H.e_f.h R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb m₁ m₂ : AlternatingMap R' Mᵢ N₁ ιa n : AlternatingMap R' Mᵢ N₂ ιb x✝ : ιa ⊕ ιb → Mᵢ σ✝ : Perm.ModSumCongr ιa ιb σ : Perm (ιa ⊕ ιb) ⊢ ↑Perm.sign σ • ↑(MultilinearMap.domDomCongr σ (↑MultilinearMap.domCoprod' (↑m₁ ⊗ₜ[R'] ↑n) + ↑MultilinearMap.domCoprod' (↑m₂ ⊗ₜ[R'] ↑n))) x✝ = ↑Perm.sign σ • (↑(MultilinearMap.domDomCongr σ (↑MultilinearMap.domCoprod' (↑m₁ ⊗ₜ[R'] ↑n))) x✝ + ↑(MultilinearMap.domDomCongr σ (↑MultilinearMap.domCoprod' (↑m₂ ⊗ₜ[R'] ↑n))) x✝) [PROOFSTEP] rfl [GOAL] case refine'_2 R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb c : R' m : AlternatingMap R' Mᵢ N₁ ιa n : AlternatingMap R' Mᵢ N₂ ιb ⊢ domCoprod (c • m) n = c • domCoprod m n [PROOFSTEP] ext [GOAL] case refine'_2.H R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb c : R' m : AlternatingMap R' Mᵢ N₁ ιa n : AlternatingMap R' Mᵢ N₂ ιb x✝ : ιa ⊕ ιb → Mᵢ ⊢ ↑(domCoprod (c • m) n) x✝ = ↑(c • domCoprod m n) x✝ [PROOFSTEP] simp only [domCoprod_apply, add_apply, smul_apply, ← Finset.sum_add_distrib, Finset.smul_sum, MultilinearMap.sum_apply, domCoprod.summand] [GOAL] case refine'_2.H R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb c : R' m : AlternatingMap R' Mᵢ N₁ ιa n : AlternatingMap R' Mᵢ N₂ ιb x✝ : ιa ⊕ ιb → Mᵢ ⊢ ∑ x : Perm.ModSumCongr ιa ιb, ↑(Quotient.liftOn' x (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑(c • m) ↑n)) (_ : ∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)), Setoid.r σ₁ σ₂ → (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑(c • m) ↑n)) σ₁ = (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑(c • m) ↑n)) σ₂)) x✝ = ∑ x : Perm.ModSumCongr ιa ιb, c • ↑(Quotient.liftOn' x (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n)) (_ : ∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)), Setoid.r σ₁ σ₂ → (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n)) σ₁ = (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n)) σ₂)) x✝ [PROOFSTEP] congr [GOAL] case refine'_2.H.e_f R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb c : R' m : AlternatingMap R' Mᵢ N₁ ιa n : AlternatingMap R' Mᵢ N₂ ιb x✝ : ιa ⊕ ιb → Mᵢ ⊢ (fun x => ↑(Quotient.liftOn' x (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑(c • m) ↑n)) (_ : ∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)), Setoid.r σ₁ σ₂ → (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑(c • m) ↑n)) σ₁ = (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑(c • m) ↑n)) σ₂)) x✝) = fun x => c • ↑(Quotient.liftOn' x (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n)) (_ : ∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)), Setoid.r σ₁ σ₂ → (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n)) σ₁ = (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n)) σ₂)) x✝ [PROOFSTEP] ext σ [GOAL] case refine'_2.H.e_f.h R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb c : R' m : AlternatingMap R' Mᵢ N₁ ιa n : AlternatingMap R' Mᵢ N₂ ιb x✝ : ιa ⊕ ιb → Mᵢ σ : Perm.ModSumCongr ιa ιb ⊢ ↑(Quotient.liftOn' σ (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑(c • m) ↑n)) (_ : ∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)), Setoid.r σ₁ σ₂ → (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑(c • m) ↑n)) σ₁ = (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑(c • m) ↑n)) σ₂)) x✝ = c • ↑(Quotient.liftOn' σ (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n)) (_ : ∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)), Setoid.r σ₁ σ₂ → (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n)) σ₁ = (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n)) σ₂)) x✝ [PROOFSTEP] refine Quotient.inductionOn' σ fun σ => ?_ [GOAL] case refine'_2.H.e_f.h R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb c : R' m : AlternatingMap R' Mᵢ N₁ ιa n : AlternatingMap R' Mᵢ N₂ ιb x✝ : ιa ⊕ ιb → Mᵢ σ✝ : Perm.ModSumCongr ιa ιb σ : Perm (ιa ⊕ ιb) ⊢ ↑(Quotient.liftOn' (Quotient.mk'' σ) (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑(c • m) ↑n)) (_ : ∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)), Setoid.r σ₁ σ₂ → (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑(c • m) ↑n)) σ₁ = (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑(c • m) ↑n)) σ₂)) x✝ = c • ↑(Quotient.liftOn' (Quotient.mk'' σ) (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n)) (_ : ∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)), Setoid.r σ₁ σ₂ → (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n)) σ₁ = (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n)) σ₂)) x✝ [PROOFSTEP] simp only [Quotient.liftOn'_mk'', coe_add, coe_smul, MultilinearMap.smul_apply, ← MultilinearMap.domCoprod'_apply] [GOAL] case refine'_2.H.e_f.h R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb c : R' m : AlternatingMap R' Mᵢ N₁ ιa n : AlternatingMap R' Mᵢ N₂ ιb x✝ : ιa ⊕ ιb → Mᵢ σ✝ : Perm.ModSumCongr ιa ιb σ : Perm (ιa ⊕ ιb) ⊢ ↑Perm.sign σ • ↑(MultilinearMap.domDomCongr σ (↑MultilinearMap.domCoprod' ((c • ↑m) ⊗ₜ[R'] ↑n))) x✝ = c • ↑Perm.sign σ • ↑(MultilinearMap.domDomCongr σ (↑MultilinearMap.domCoprod' (↑m ⊗ₜ[R'] ↑n))) x✝ [PROOFSTEP] simp only [TensorProduct.add_tmul, ← TensorProduct.smul_tmul', TensorProduct.tmul_add, TensorProduct.tmul_smul, LinearMap.map_add, LinearMap.map_smul] [GOAL] case refine'_2.H.e_f.h R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb c : R' m : AlternatingMap R' Mᵢ N₁ ιa n : AlternatingMap R' Mᵢ N₂ ιb x✝ : ιa ⊕ ιb → Mᵢ σ✝ : Perm.ModSumCongr ιa ιb σ : Perm (ιa ⊕ ιb) ⊢ ↑Perm.sign σ • ↑(MultilinearMap.domDomCongr σ (c • ↑MultilinearMap.domCoprod' (↑m ⊗ₜ[R'] ↑n))) x✝ = c • ↑Perm.sign σ • ↑(MultilinearMap.domDomCongr σ (↑MultilinearMap.domCoprod' (↑m ⊗ₜ[R'] ↑n))) x✝ [PROOFSTEP] first | rw [← smul_add] | rw [smul_comm] [GOAL] case refine'_2.H.e_f.h R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb c : R' m : AlternatingMap R' Mᵢ N₁ ιa n : AlternatingMap R' Mᵢ N₂ ιb x✝ : ιa ⊕ ιb → Mᵢ σ✝ : Perm.ModSumCongr ιa ιb σ : Perm (ιa ⊕ ιb) ⊢ ↑Perm.sign σ • ↑(MultilinearMap.domDomCongr σ (c • ↑MultilinearMap.domCoprod' (↑m ⊗ₜ[R'] ↑n))) x✝ = c • ↑Perm.sign σ • ↑(MultilinearMap.domDomCongr σ (↑MultilinearMap.domCoprod' (↑m ⊗ₜ[R'] ↑n))) x✝ [PROOFSTEP] rw [← smul_add] [GOAL] case refine'_2.H.e_f.h R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb c : R' m : AlternatingMap R' Mᵢ N₁ ιa n : AlternatingMap R' Mᵢ N₂ ιb x✝ : ιa ⊕ ιb → Mᵢ σ✝ : Perm.ModSumCongr ιa ιb σ : Perm (ιa ⊕ ιb) ⊢ ↑Perm.sign σ • ↑(MultilinearMap.domDomCongr σ (c • ↑MultilinearMap.domCoprod' (↑m ⊗ₜ[R'] ↑n))) x✝ = c • ↑Perm.sign σ • ↑(MultilinearMap.domDomCongr σ (↑MultilinearMap.domCoprod' (↑m ⊗ₜ[R'] ↑n))) x✝ [PROOFSTEP] rw [smul_comm] [GOAL] case refine'_2.H.e_f.h R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb c : R' m : AlternatingMap R' Mᵢ N₁ ιa n : AlternatingMap R' Mᵢ N₂ ιb x✝ : ιa ⊕ ιb → Mᵢ σ✝ : Perm.ModSumCongr ιa ιb σ : Perm (ιa ⊕ ιb) ⊢ ↑Perm.sign σ • ↑(MultilinearMap.domDomCongr σ (c • ↑MultilinearMap.domCoprod' (↑m ⊗ₜ[R'] ↑n))) x✝ = ↑Perm.sign σ • c • ↑(MultilinearMap.domDomCongr σ (↑MultilinearMap.domCoprod' (↑m ⊗ₜ[R'] ↑n))) x✝ [PROOFSTEP] rfl [GOAL] case refine'_3 R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb m : AlternatingMap R' Mᵢ N₁ ιa n₁ n₂ : AlternatingMap R' Mᵢ N₂ ιb ⊢ domCoprod m (n₁ + n₂) = domCoprod m n₁ + domCoprod m n₂ [PROOFSTEP] ext [GOAL] case refine'_3.H R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb m : AlternatingMap R' Mᵢ N₁ ιa n₁ n₂ : AlternatingMap R' Mᵢ N₂ ιb x✝ : ιa ⊕ ιb → Mᵢ ⊢ ↑(domCoprod m (n₁ + n₂)) x✝ = ↑(domCoprod m n₁ + domCoprod m n₂) x✝ [PROOFSTEP] simp only [domCoprod_apply, add_apply, smul_apply, ← Finset.sum_add_distrib, Finset.smul_sum, MultilinearMap.sum_apply, domCoprod.summand] [GOAL] case refine'_3.H R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb m : AlternatingMap R' Mᵢ N₁ ιa n₁ n₂ : AlternatingMap R' Mᵢ N₂ ιb x✝ : ιa ⊕ ιb → Mᵢ ⊢ ∑ x : Perm.ModSumCongr ιa ιb, ↑(Quotient.liftOn' x (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑(n₁ + n₂))) (_ : ∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)), Setoid.r σ₁ σ₂ → (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑(n₁ + n₂))) σ₁ = (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑(n₁ + n₂))) σ₂)) x✝ = ∑ x : Perm.ModSumCongr ιa ιb, (↑(Quotient.liftOn' x (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n₁)) (_ : ∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)), Setoid.r σ₁ σ₂ → (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n₁)) σ₁ = (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n₁)) σ₂)) x✝ + ↑(Quotient.liftOn' x (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n₂)) (_ : ∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)), Setoid.r σ₁ σ₂ → (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n₂)) σ₁ = (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n₂)) σ₂)) x✝) [PROOFSTEP] congr [GOAL] case refine'_3.H.e_f R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb m : AlternatingMap R' Mᵢ N₁ ιa n₁ n₂ : AlternatingMap R' Mᵢ N₂ ιb x✝ : ιa ⊕ ιb → Mᵢ ⊢ (fun x => ↑(Quotient.liftOn' x (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑(n₁ + n₂))) (_ : ∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)), Setoid.r σ₁ σ₂ → (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑(n₁ + n₂))) σ₁ = (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑(n₁ + n₂))) σ₂)) x✝) = fun x => ↑(Quotient.liftOn' x (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n₁)) (_ : ∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)), Setoid.r σ₁ σ₂ → (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n₁)) σ₁ = (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n₁)) σ₂)) x✝ + ↑(Quotient.liftOn' x (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n₂)) (_ : ∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)), Setoid.r σ₁ σ₂ → (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n₂)) σ₁ = (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n₂)) σ₂)) x✝ [PROOFSTEP] ext σ [GOAL] case refine'_3.H.e_f.h R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb m : AlternatingMap R' Mᵢ N₁ ιa n₁ n₂ : AlternatingMap R' Mᵢ N₂ ιb x✝ : ιa ⊕ ιb → Mᵢ σ : Perm.ModSumCongr ιa ιb ⊢ ↑(Quotient.liftOn' σ (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑(n₁ + n₂))) (_ : ∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)), Setoid.r σ₁ σ₂ → (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑(n₁ + n₂))) σ₁ = (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑(n₁ + n₂))) σ₂)) x✝ = ↑(Quotient.liftOn' σ (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n₁)) (_ : ∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)), Setoid.r σ₁ σ₂ → (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n₁)) σ₁ = (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n₁)) σ₂)) x✝ + ↑(Quotient.liftOn' σ (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n₂)) (_ : ∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)), Setoid.r σ₁ σ₂ → (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n₂)) σ₁ = (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n₂)) σ₂)) x✝ [PROOFSTEP] refine Quotient.inductionOn' σ fun σ => ?_ [GOAL] case refine'_3.H.e_f.h R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb m : AlternatingMap R' Mᵢ N₁ ιa n₁ n₂ : AlternatingMap R' Mᵢ N₂ ιb x✝ : ιa ⊕ ιb → Mᵢ σ✝ : Perm.ModSumCongr ιa ιb σ : Perm (ιa ⊕ ιb) ⊢ ↑(Quotient.liftOn' (Quotient.mk'' σ) (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑(n₁ + n₂))) (_ : ∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)), Setoid.r σ₁ σ₂ → (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑(n₁ + n₂))) σ₁ = (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑(n₁ + n₂))) σ₂)) x✝ = ↑(Quotient.liftOn' (Quotient.mk'' σ) (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n₁)) (_ : ∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)), Setoid.r σ₁ σ₂ → (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n₁)) σ₁ = (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n₁)) σ₂)) x✝ + ↑(Quotient.liftOn' (Quotient.mk'' σ) (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n₂)) (_ : ∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)), Setoid.r σ₁ σ₂ → (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n₂)) σ₁ = (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n₂)) σ₂)) x✝ [PROOFSTEP] simp only [Quotient.liftOn'_mk'', coe_add, coe_smul, MultilinearMap.smul_apply, ← MultilinearMap.domCoprod'_apply] [GOAL] case refine'_3.H.e_f.h R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb m : AlternatingMap R' Mᵢ N₁ ιa n₁ n₂ : AlternatingMap R' Mᵢ N₂ ιb x✝ : ιa ⊕ ιb → Mᵢ σ✝ : Perm.ModSumCongr ιa ιb σ : Perm (ιa ⊕ ιb) ⊢ ↑Perm.sign σ • ↑(MultilinearMap.domDomCongr σ (↑MultilinearMap.domCoprod' (↑m ⊗ₜ[R'] (↑n₁ + ↑n₂)))) x✝ = ↑Perm.sign σ • ↑(MultilinearMap.domDomCongr σ (↑MultilinearMap.domCoprod' (↑m ⊗ₜ[R'] ↑n₁))) x✝ + ↑Perm.sign σ • ↑(MultilinearMap.domDomCongr σ (↑MultilinearMap.domCoprod' (↑m ⊗ₜ[R'] ↑n₂))) x✝ [PROOFSTEP] simp only [TensorProduct.add_tmul, ← TensorProduct.smul_tmul', TensorProduct.tmul_add, TensorProduct.tmul_smul, LinearMap.map_add, LinearMap.map_smul] [GOAL] case refine'_3.H.e_f.h R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb m : AlternatingMap R' Mᵢ N₁ ιa n₁ n₂ : AlternatingMap R' Mᵢ N₂ ιb x✝ : ιa ⊕ ιb → Mᵢ σ✝ : Perm.ModSumCongr ιa ιb σ : Perm (ιa ⊕ ιb) ⊢ ↑Perm.sign σ • ↑(MultilinearMap.domDomCongr σ (↑MultilinearMap.domCoprod' (↑m ⊗ₜ[R'] ↑n₁) + ↑MultilinearMap.domCoprod' (↑m ⊗ₜ[R'] ↑n₂))) x✝ = ↑Perm.sign σ • ↑(MultilinearMap.domDomCongr σ (↑MultilinearMap.domCoprod' (↑m ⊗ₜ[R'] ↑n₁))) x✝ + ↑Perm.sign σ • ↑(MultilinearMap.domDomCongr σ (↑MultilinearMap.domCoprod' (↑m ⊗ₜ[R'] ↑n₂))) x✝ [PROOFSTEP] first | rw [← smul_add] | rw [smul_comm] [GOAL] case refine'_3.H.e_f.h R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb m : AlternatingMap R' Mᵢ N₁ ιa n₁ n₂ : AlternatingMap R' Mᵢ N₂ ιb x✝ : ιa ⊕ ιb → Mᵢ σ✝ : Perm.ModSumCongr ιa ιb σ : Perm (ιa ⊕ ιb) ⊢ ↑Perm.sign σ • ↑(MultilinearMap.domDomCongr σ (↑MultilinearMap.domCoprod' (↑m ⊗ₜ[R'] ↑n₁) + ↑MultilinearMap.domCoprod' (↑m ⊗ₜ[R'] ↑n₂))) x✝ = ↑Perm.sign σ • ↑(MultilinearMap.domDomCongr σ (↑MultilinearMap.domCoprod' (↑m ⊗ₜ[R'] ↑n₁))) x✝ + ↑Perm.sign σ • ↑(MultilinearMap.domDomCongr σ (↑MultilinearMap.domCoprod' (↑m ⊗ₜ[R'] ↑n₂))) x✝ [PROOFSTEP] rw [← smul_add] [GOAL] case refine'_3.H.e_f.h R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb m : AlternatingMap R' Mᵢ N₁ ιa n₁ n₂ : AlternatingMap R' Mᵢ N₂ ιb x✝ : ιa ⊕ ιb → Mᵢ σ✝ : Perm.ModSumCongr ιa ιb σ : Perm (ιa ⊕ ιb) ⊢ ↑Perm.sign σ • ↑(MultilinearMap.domDomCongr σ (↑MultilinearMap.domCoprod' (↑m ⊗ₜ[R'] ↑n₁) + ↑MultilinearMap.domCoprod' (↑m ⊗ₜ[R'] ↑n₂))) x✝ = ↑Perm.sign σ • (↑(MultilinearMap.domDomCongr σ (↑MultilinearMap.domCoprod' (↑m ⊗ₜ[R'] ↑n₁))) x✝ + ↑(MultilinearMap.domDomCongr σ (↑MultilinearMap.domCoprod' (↑m ⊗ₜ[R'] ↑n₂))) x✝) [PROOFSTEP] rfl [GOAL] case refine'_4 R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb c : R' m : AlternatingMap R' Mᵢ N₁ ιa n : AlternatingMap R' Mᵢ N₂ ιb ⊢ domCoprod m (c • n) = c • domCoprod m n [PROOFSTEP] ext [GOAL] case refine'_4.H R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb c : R' m : AlternatingMap R' Mᵢ N₁ ιa n : AlternatingMap R' Mᵢ N₂ ιb x✝ : ιa ⊕ ιb → Mᵢ ⊢ ↑(domCoprod m (c • n)) x✝ = ↑(c • domCoprod m n) x✝ [PROOFSTEP] simp only [domCoprod_apply, add_apply, smul_apply, ← Finset.sum_add_distrib, Finset.smul_sum, MultilinearMap.sum_apply, domCoprod.summand] [GOAL] case refine'_4.H R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb c : R' m : AlternatingMap R' Mᵢ N₁ ιa n : AlternatingMap R' Mᵢ N₂ ιb x✝ : ιa ⊕ ιb → Mᵢ ⊢ ∑ x : Perm.ModSumCongr ιa ιb, ↑(Quotient.liftOn' x (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑(c • n))) (_ : ∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)), Setoid.r σ₁ σ₂ → (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑(c • n))) σ₁ = (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑(c • n))) σ₂)) x✝ = ∑ x : Perm.ModSumCongr ιa ιb, c • ↑(Quotient.liftOn' x (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n)) (_ : ∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)), Setoid.r σ₁ σ₂ → (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n)) σ₁ = (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n)) σ₂)) x✝ [PROOFSTEP] congr [GOAL] case refine'_4.H.e_f R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb c : R' m : AlternatingMap R' Mᵢ N₁ ιa n : AlternatingMap R' Mᵢ N₂ ιb x✝ : ιa ⊕ ιb → Mᵢ ⊢ (fun x => ↑(Quotient.liftOn' x (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑(c • n))) (_ : ∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)), Setoid.r σ₁ σ₂ → (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑(c • n))) σ₁ = (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑(c • n))) σ₂)) x✝) = fun x => c • ↑(Quotient.liftOn' x (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n)) (_ : ∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)), Setoid.r σ₁ σ₂ → (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n)) σ₁ = (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n)) σ₂)) x✝ [PROOFSTEP] ext σ [GOAL] case refine'_4.H.e_f.h R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb c : R' m : AlternatingMap R' Mᵢ N₁ ιa n : AlternatingMap R' Mᵢ N₂ ιb x✝ : ιa ⊕ ιb → Mᵢ σ : Perm.ModSumCongr ιa ιb ⊢ ↑(Quotient.liftOn' σ (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑(c • n))) (_ : ∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)), Setoid.r σ₁ σ₂ → (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑(c • n))) σ₁ = (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑(c • n))) σ₂)) x✝ = c • ↑(Quotient.liftOn' σ (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n)) (_ : ∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)), Setoid.r σ₁ σ₂ → (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n)) σ₁ = (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n)) σ₂)) x✝ [PROOFSTEP] refine Quotient.inductionOn' σ fun σ => ?_ [GOAL] case refine'_4.H.e_f.h R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb c : R' m : AlternatingMap R' Mᵢ N₁ ιa n : AlternatingMap R' Mᵢ N₂ ιb x✝ : ιa ⊕ ιb → Mᵢ σ✝ : Perm.ModSumCongr ιa ιb σ : Perm (ιa ⊕ ιb) ⊢ ↑(Quotient.liftOn' (Quotient.mk'' σ) (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑(c • n))) (_ : ∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)), Setoid.r σ₁ σ₂ → (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑(c • n))) σ₁ = (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑(c • n))) σ₂)) x✝ = c • ↑(Quotient.liftOn' (Quotient.mk'' σ) (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n)) (_ : ∀ (σ₁ σ₂ : Perm (ιa ⊕ ιb)), Setoid.r σ₁ σ₂ → (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n)) σ₁ = (fun σ => ↑Perm.sign σ • MultilinearMap.domDomCongr σ (MultilinearMap.domCoprod ↑m ↑n)) σ₂)) x✝ [PROOFSTEP] simp only [Quotient.liftOn'_mk'', coe_add, coe_smul, MultilinearMap.smul_apply, ← MultilinearMap.domCoprod'_apply] [GOAL] case refine'_4.H.e_f.h R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb c : R' m : AlternatingMap R' Mᵢ N₁ ιa n : AlternatingMap R' Mᵢ N₂ ιb x✝ : ιa ⊕ ιb → Mᵢ σ✝ : Perm.ModSumCongr ιa ιb σ : Perm (ιa ⊕ ιb) ⊢ ↑Perm.sign σ • ↑(MultilinearMap.domDomCongr σ (↑MultilinearMap.domCoprod' (↑m ⊗ₜ[R'] (c • ↑n)))) x✝ = c • ↑Perm.sign σ • ↑(MultilinearMap.domDomCongr σ (↑MultilinearMap.domCoprod' (↑m ⊗ₜ[R'] ↑n))) x✝ [PROOFSTEP] simp only [TensorProduct.add_tmul, ← TensorProduct.smul_tmul', TensorProduct.tmul_add, TensorProduct.tmul_smul, LinearMap.map_add, LinearMap.map_smul] [GOAL] case refine'_4.H.e_f.h R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb c : R' m : AlternatingMap R' Mᵢ N₁ ιa n : AlternatingMap R' Mᵢ N₂ ιb x✝ : ιa ⊕ ιb → Mᵢ σ✝ : Perm.ModSumCongr ιa ιb σ : Perm (ιa ⊕ ιb) ⊢ ↑Perm.sign σ • ↑(MultilinearMap.domDomCongr σ (c • ↑MultilinearMap.domCoprod' (↑m ⊗ₜ[R'] ↑n))) x✝ = c • ↑Perm.sign σ • ↑(MultilinearMap.domDomCongr σ (↑MultilinearMap.domCoprod' (↑m ⊗ₜ[R'] ↑n))) x✝ [PROOFSTEP] first | rw [← smul_add] | rw [smul_comm] [GOAL] case refine'_4.H.e_f.h R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb c : R' m : AlternatingMap R' Mᵢ N₁ ιa n : AlternatingMap R' Mᵢ N₂ ιb x✝ : ιa ⊕ ιb → Mᵢ σ✝ : Perm.ModSumCongr ιa ιb σ : Perm (ιa ⊕ ιb) ⊢ ↑Perm.sign σ • ↑(MultilinearMap.domDomCongr σ (c • ↑MultilinearMap.domCoprod' (↑m ⊗ₜ[R'] ↑n))) x✝ = c • ↑Perm.sign σ • ↑(MultilinearMap.domDomCongr σ (↑MultilinearMap.domCoprod' (↑m ⊗ₜ[R'] ↑n))) x✝ [PROOFSTEP] rw [← smul_add] [GOAL] case refine'_4.H.e_f.h R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb c : R' m : AlternatingMap R' Mᵢ N₁ ιa n : AlternatingMap R' Mᵢ N₂ ιb x✝ : ιa ⊕ ιb → Mᵢ σ✝ : Perm.ModSumCongr ιa ιb σ : Perm (ιa ⊕ ιb) ⊢ ↑Perm.sign σ • ↑(MultilinearMap.domDomCongr σ (c • ↑MultilinearMap.domCoprod' (↑m ⊗ₜ[R'] ↑n))) x✝ = c • ↑Perm.sign σ • ↑(MultilinearMap.domDomCongr σ (↑MultilinearMap.domCoprod' (↑m ⊗ₜ[R'] ↑n))) x✝ [PROOFSTEP] rw [smul_comm] [GOAL] case refine'_4.H.e_f.h R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb c : R' m : AlternatingMap R' Mᵢ N₁ ιa n : AlternatingMap R' Mᵢ N₂ ιb x✝ : ιa ⊕ ιb → Mᵢ σ✝ : Perm.ModSumCongr ιa ιb σ : Perm (ιa ⊕ ιb) ⊢ ↑Perm.sign σ • ↑(MultilinearMap.domDomCongr σ (c • ↑MultilinearMap.domCoprod' (↑m ⊗ₜ[R'] ↑n))) x✝ = ↑Perm.sign σ • c • ↑(MultilinearMap.domDomCongr σ (↑MultilinearMap.domCoprod' (↑m ⊗ₜ[R'] ↑n))) x✝ [PROOFSTEP] rfl [GOAL] R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : MultilinearMap R' (fun x => Mᵢ) N₁ b : MultilinearMap R' (fun x => Mᵢ) N₂ ⊢ domCoprod ↑(↑alternatization a) ↑(↑alternatization b) = ∑ σa : Perm ιa, ∑ σb : Perm ιb, ↑Perm.sign σa • ↑Perm.sign σb • domCoprod (domDomCongr σa a) (domDomCongr σb b) [PROOFSTEP] simp_rw [← MultilinearMap.domCoprod'_apply, MultilinearMap.alternatization_coe] [GOAL] R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : MultilinearMap R' (fun x => Mᵢ) N₁ b : MultilinearMap R' (fun x => Mᵢ) N₂ ⊢ ↑domCoprod' ((∑ x : Perm ιa, ↑Perm.sign x • domDomCongr x a) ⊗ₜ[R'] ∑ x : Perm ιb, ↑Perm.sign x • domDomCongr x b) = ∑ x : Perm ιa, ∑ x_1 : Perm ιb, ↑Perm.sign x • ↑Perm.sign x_1 • ↑domCoprod' (domDomCongr x a ⊗ₜ[R'] domDomCongr x_1 b) [PROOFSTEP] simp_rw [TensorProduct.sum_tmul, TensorProduct.tmul_sum, LinearMap.map_sum, ← TensorProduct.smul_tmul', TensorProduct.tmul_smul] [GOAL] R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : MultilinearMap R' (fun x => Mᵢ) N₁ b : MultilinearMap R' (fun x => Mᵢ) N₂ ⊢ ∑ x : Perm ιa, ∑ x_1 : Perm ιb, ↑domCoprod' (↑Perm.sign x • ↑Perm.sign x_1 • domDomCongr x a ⊗ₜ[R'] domDomCongr x_1 b) = ∑ x : Perm ιa, ∑ x_1 : Perm ιb, ↑Perm.sign x • ↑Perm.sign x_1 • ↑domCoprod' (domDomCongr x a ⊗ₜ[R'] domDomCongr x_1 b) [PROOFSTEP] rfl [GOAL] R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : MultilinearMap R' (fun x => Mᵢ) N₁ b : MultilinearMap R' (fun x => Mᵢ) N₂ ⊢ ↑alternatization (domCoprod a b) = AlternatingMap.domCoprod (↑alternatization a) (↑alternatization b) [PROOFSTEP] apply coe_multilinearMap_injective [GOAL] case a R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : MultilinearMap R' (fun x => Mᵢ) N₁ b : MultilinearMap R' (fun x => Mᵢ) N₂ ⊢ ↑(↑alternatization (domCoprod a b)) = ↑(AlternatingMap.domCoprod (↑alternatization a) (↑alternatization b)) [PROOFSTEP] rw [domCoprod_coe, MultilinearMap.alternatization_coe, Finset.sum_partition (QuotientGroup.leftRel (Perm.sumCongrHom ιa ιb).range)] [GOAL] case a R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : MultilinearMap R' (fun x => Mᵢ) N₁ b : MultilinearMap R' (fun x => Mᵢ) N₂ ⊢ ∑ xbar in Finset.image Quotient.mk'' Finset.univ, ∑ y in Finset.filter (fun x => Quotient.mk (QuotientGroup.leftRel (MonoidHom.range (Perm.sumCongrHom ιa ιb))) x = xbar) Finset.univ, ↑Perm.sign y • domDomCongr y (domCoprod a b) = ∑ σ : Perm.ModSumCongr ιa ιb, domCoprod.summand (↑alternatization a) (↑alternatization b) σ [PROOFSTEP] congr 1 [GOAL] case a.e_f R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : MultilinearMap R' (fun x => Mᵢ) N₁ b : MultilinearMap R' (fun x => Mᵢ) N₂ ⊢ (fun xbar => ∑ y in Finset.filter (fun x => Quotient.mk (QuotientGroup.leftRel (MonoidHom.range (Perm.sumCongrHom ιa ιb))) x = xbar) Finset.univ, ↑Perm.sign y • domDomCongr y (domCoprod a b)) = fun σ => domCoprod.summand (↑alternatization a) (↑alternatization b) σ [PROOFSTEP] ext1 σ [GOAL] case a.e_f.h R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : MultilinearMap R' (fun x => Mᵢ) N₁ b : MultilinearMap R' (fun x => Mᵢ) N₂ σ : Quotient (QuotientGroup.leftRel (MonoidHom.range (Perm.sumCongrHom ιa ιb))) ⊢ ∑ y in Finset.filter (fun x => Quotient.mk (QuotientGroup.leftRel (MonoidHom.range (Perm.sumCongrHom ιa ιb))) x = σ) Finset.univ, ↑Perm.sign y • domDomCongr y (domCoprod a b) = domCoprod.summand (↑alternatization a) (↑alternatization b) σ [PROOFSTEP] refine Quotient.inductionOn' σ fun σ => ?_ -- unfold the quotient mess left by `Finset.sum_partition` -- Porting note: Was `conv in .. => ..`. [GOAL] case a.e_f.h R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : MultilinearMap R' (fun x => Mᵢ) N₁ b : MultilinearMap R' (fun x => Mᵢ) N₂ σ✝ : Quotient (QuotientGroup.leftRel (MonoidHom.range (Perm.sumCongrHom ιa ιb))) σ : Perm (ιa ⊕ ιb) ⊢ ∑ y in Finset.filter (fun x => Quotient.mk (QuotientGroup.leftRel (MonoidHom.range (Perm.sumCongrHom ιa ιb))) x = Quotient.mk'' σ) Finset.univ, ↑Perm.sign y • domDomCongr y (domCoprod a b) = domCoprod.summand (↑alternatization a) (↑alternatization b) (Quotient.mk'' σ) [PROOFSTEP] erw [@Finset.filter_congr _ _ (fun a => @Quotient.decidableEq _ _ (QuotientGroup.leftRelDecidable (MonoidHom.range (Perm.sumCongrHom ιa ιb))) (Quotient.mk (QuotientGroup.leftRel (MonoidHom.range (Perm.sumCongrHom ιa ιb))) a) (Quotient.mk'' σ)) _ (s := Finset.univ) fun x _ => QuotientGroup.eq' (s := MonoidHom.range (Perm.sumCongrHom ιa ιb)) (a := x) (b := σ)] -- eliminate a multiplication [GOAL] case a.e_f.h R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : MultilinearMap R' (fun x => Mᵢ) N₁ b : MultilinearMap R' (fun x => Mᵢ) N₂ σ✝ : Quotient (QuotientGroup.leftRel (MonoidHom.range (Perm.sumCongrHom ιa ιb))) σ : Perm (ιa ⊕ ιb) ⊢ ∑ y in Finset.filter (fun x => x⁻¹ * σ ∈ MonoidHom.range (Perm.sumCongrHom ιa ιb)) Finset.univ, ↑Perm.sign y • domDomCongr y (domCoprod a b) = domCoprod.summand (↑alternatization a) (↑alternatization b) (Quotient.mk'' σ) [PROOFSTEP] rw [← Finset.map_univ_equiv (Equiv.mulLeft σ), Finset.filter_map, Finset.sum_map] [GOAL] case a.e_f.h R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : MultilinearMap R' (fun x => Mᵢ) N₁ b : MultilinearMap R' (fun x => Mᵢ) N₂ σ✝ : Quotient (QuotientGroup.leftRel (MonoidHom.range (Perm.sumCongrHom ιa ιb))) σ : Perm (ιa ⊕ ιb) ⊢ ∑ x in Finset.filter ((fun x => x⁻¹ * σ ∈ MonoidHom.range (Perm.sumCongrHom ιa ιb)) ∘ ↑(Equiv.toEmbedding (Equiv.mulLeft σ))) Finset.univ, ↑Perm.sign (↑(Equiv.toEmbedding (Equiv.mulLeft σ)) x) • domDomCongr (↑(Equiv.toEmbedding (Equiv.mulLeft σ)) x) (domCoprod a b) = domCoprod.summand (↑alternatization a) (↑alternatization b) (Quotient.mk'' σ) [PROOFSTEP] simp_rw [Equiv.coe_toEmbedding, Equiv.coe_mulLeft, (· ∘ ·), mul_inv_rev, inv_mul_cancel_right, Subgroup.inv_mem_iff, MonoidHom.mem_range, Finset.univ_filter_exists, Finset.sum_image (Perm.sumCongrHom_injective.injOn _)] -- now we're ready to clean up the RHS, pulling out the summation [GOAL] case a.e_f.h R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : MultilinearMap R' (fun x => Mᵢ) N₁ b : MultilinearMap R' (fun x => Mᵢ) N₂ σ✝ : Quotient (QuotientGroup.leftRel (MonoidHom.range (Perm.sumCongrHom ιa ιb))) σ : Perm (ιa ⊕ ιb) ⊢ ∑ x : Perm ιa × Perm ιb, ↑Perm.sign (σ * ↑(Perm.sumCongrHom ιa ιb) x) • domDomCongr (σ * ↑(Perm.sumCongrHom ιa ιb) x) (domCoprod a b) = domCoprod.summand (↑alternatization a) (↑alternatization b) (Quotient.mk'' σ) [PROOFSTEP] rw [domCoprod.summand_mk'', MultilinearMap.domCoprod_alternization_coe, ← Finset.sum_product', Finset.univ_product_univ, ← MultilinearMap.domDomCongrEquiv_apply, _root_.map_sum, Finset.smul_sum] [GOAL] case a.e_f.h R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : MultilinearMap R' (fun x => Mᵢ) N₁ b : MultilinearMap R' (fun x => Mᵢ) N₂ σ✝ : Quotient (QuotientGroup.leftRel (MonoidHom.range (Perm.sumCongrHom ιa ιb))) σ : Perm (ιa ⊕ ιb) ⊢ ∑ x : Perm ιa × Perm ιb, ↑Perm.sign (σ * ↑(Perm.sumCongrHom ιa ιb) x) • domDomCongr (σ * ↑(Perm.sumCongrHom ιa ιb) x) (domCoprod a b) = ∑ x : Perm ιa × Perm ιb, ↑Perm.sign σ • ↑(domDomCongrEquiv σ) (↑Perm.sign x.fst • ↑Perm.sign x.snd • domCoprod (domDomCongr x.fst a) (domDomCongr x.snd b)) [PROOFSTEP] congr 1 [GOAL] case a.e_f.h.e_f R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : MultilinearMap R' (fun x => Mᵢ) N₁ b : MultilinearMap R' (fun x => Mᵢ) N₂ σ✝ : Quotient (QuotientGroup.leftRel (MonoidHom.range (Perm.sumCongrHom ιa ιb))) σ : Perm (ιa ⊕ ιb) ⊢ (fun x => ↑Perm.sign (σ * ↑(Perm.sumCongrHom ιa ιb) x) • domDomCongr (σ * ↑(Perm.sumCongrHom ιa ιb) x) (domCoprod a b)) = fun x => ↑Perm.sign σ • ↑(domDomCongrEquiv σ) (↑Perm.sign x.fst • ↑Perm.sign x.snd • domCoprod (domDomCongr x.fst a) (domDomCongr x.snd b)) [PROOFSTEP] ext1 ⟨al, ar⟩ [GOAL] case a.e_f.h.e_f.h.mk R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : MultilinearMap R' (fun x => Mᵢ) N₁ b : MultilinearMap R' (fun x => Mᵢ) N₂ σ✝ : Quotient (QuotientGroup.leftRel (MonoidHom.range (Perm.sumCongrHom ιa ιb))) σ : Perm (ιa ⊕ ιb) al : Perm ιa ar : Perm ιb ⊢ ↑Perm.sign (σ * ↑(Perm.sumCongrHom ιa ιb) (al, ar)) • domDomCongr (σ * ↑(Perm.sumCongrHom ιa ιb) (al, ar)) (domCoprod a b) = ↑Perm.sign σ • ↑(domDomCongrEquiv σ) (↑Perm.sign (al, ar).fst • ↑Perm.sign (al, ar).snd • domCoprod (domDomCongr (al, ar).fst a) (domDomCongr (al, ar).snd b)) [PROOFSTEP] dsimp only -- pull out the pair of smuls on the RHS, by rewriting to `_ →ₗ[ℤ] _` and back [GOAL] case a.e_f.h.e_f.h.mk R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : MultilinearMap R' (fun x => Mᵢ) N₁ b : MultilinearMap R' (fun x => Mᵢ) N₂ σ✝ : Quotient (QuotientGroup.leftRel (MonoidHom.range (Perm.sumCongrHom ιa ιb))) σ : Perm (ιa ⊕ ιb) al : Perm ιa ar : Perm ιb ⊢ ↑Perm.sign (σ * ↑(Perm.sumCongrHom ιa ιb) (al, ar)) • domDomCongr (σ * ↑(Perm.sumCongrHom ιa ιb) (al, ar)) (domCoprod a b) = ↑Perm.sign σ • ↑(domDomCongrEquiv σ) (↑Perm.sign al • ↑Perm.sign ar • domCoprod (domDomCongr al a) (domDomCongr ar b)) [PROOFSTEP] rw [← AddEquiv.coe_toAddMonoidHom, ← AddMonoidHom.coe_toIntLinearMap, LinearMap.map_smul_of_tower, LinearMap.map_smul_of_tower, AddMonoidHom.coe_toIntLinearMap, AddEquiv.coe_toAddMonoidHom, MultilinearMap.domDomCongrEquiv_apply] -- pick up the pieces [GOAL] case a.e_f.h.e_f.h.mk R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : MultilinearMap R' (fun x => Mᵢ) N₁ b : MultilinearMap R' (fun x => Mᵢ) N₂ σ✝ : Quotient (QuotientGroup.leftRel (MonoidHom.range (Perm.sumCongrHom ιa ιb))) σ : Perm (ιa ⊕ ιb) al : Perm ιa ar : Perm ιb ⊢ ↑Perm.sign (σ * ↑(Perm.sumCongrHom ιa ιb) (al, ar)) • domDomCongr (σ * ↑(Perm.sumCongrHom ιa ιb) (al, ar)) (domCoprod a b) = ↑Perm.sign σ • ↑Perm.sign al • ↑Perm.sign ar • domDomCongr σ (domCoprod (domDomCongr al a) (domDomCongr ar b)) [PROOFSTEP] rw [MultilinearMap.domDomCongr_mul, Perm.sign_mul, Perm.sumCongrHom_apply, MultilinearMap.domCoprod_domDomCongr_sumCongr, Perm.sign_sumCongr, mul_smul, mul_smul] [GOAL] R : Type u_1 inst✝²¹ : Semiring R M : Type u_2 inst✝²⁰ : AddCommMonoid M inst✝¹⁹ : Module R M N : Type u_3 inst✝¹⁸ : AddCommMonoid N inst✝¹⁷ : Module R N P : Type u_4 inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : Module R P M' : Type u_5 inst✝¹⁴ : AddCommGroup M' inst✝¹³ : Module R M' N' : Type u_6 inst✝¹² : AddCommGroup N' inst✝¹¹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ιa : Type u_10 ιb : Type u_11 inst✝¹⁰ : Fintype ιa inst✝⁹ : Fintype ιb R' : Type u_12 Mᵢ : Type u_13 N₁ : Type u_14 N₂ : Type u_15 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommGroup N₁ inst✝⁶ : Module R' N₁ inst✝⁵ : AddCommGroup N₂ inst✝⁴ : Module R' N₂ inst✝³ : AddCommMonoid Mᵢ inst✝² : Module R' Mᵢ inst✝¹ : DecidableEq ιa inst✝ : DecidableEq ιb a : AlternatingMap R' Mᵢ N₁ ιa b : AlternatingMap R' Mᵢ N₂ ιb ⊢ ↑alternatization (domCoprod ↑a ↑b) = (Nat.factorial (Fintype.card ιa) * Nat.factorial (Fintype.card ιb)) • AlternatingMap.domCoprod a b [PROOFSTEP] rw [MultilinearMap.domCoprod_alternization, coe_alternatization, coe_alternatization, mul_smul, ← AlternatingMap.domCoprod'_apply, ← AlternatingMap.domCoprod'_apply, ← TensorProduct.smul_tmul', TensorProduct.tmul_smul, LinearMap.map_smul_of_tower AlternatingMap.domCoprod', LinearMap.map_smul_of_tower AlternatingMap.domCoprod'] [GOAL] R : Type u_1 inst✝¹⁶ : Semiring R M : Type u_2 inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M N : Type u_3 inst✝¹³ : AddCommMonoid N inst✝¹² : Module R N P : Type u_4 inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : Module R P M' : Type u_5 inst✝⁹ : AddCommGroup M' inst✝⁸ : Module R M' N' : Type u_6 inst✝⁷ : AddCommGroup N' inst✝⁶ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ι₁ : Type u_10 inst✝⁵ : Finite ι R' : Type u_11 N₁ : Type u_12 N₂ : Type u_13 inst✝⁴ : CommSemiring R' inst✝³ : AddCommMonoid N₁ inst✝² : AddCommMonoid N₂ inst✝¹ : Module R' N₁ inst✝ : Module R' N₂ f g : AlternatingMap R' N₁ N₂ ι e : Basis ι₁ R' N₁ h : ∀ (v : ι → ι₁), Function.Injective v → (↑f fun i => ↑e (v i)) = ↑g fun i => ↑e (v i) ⊢ f = g [PROOFSTEP] classical refine' AlternatingMap.coe_multilinearMap_injective (Basis.ext_multilinear e fun v => _) by_cases hi : Function.Injective v · exact h v hi · have : ¬Function.Injective fun i => e (v i) := hi.imp Function.Injective.of_comp rw [coe_multilinearMap, coe_multilinearMap, f.map_eq_zero_of_not_injective _ this, g.map_eq_zero_of_not_injective _ this] [GOAL] R : Type u_1 inst✝¹⁶ : Semiring R M : Type u_2 inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M N : Type u_3 inst✝¹³ : AddCommMonoid N inst✝¹² : Module R N P : Type u_4 inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : Module R P M' : Type u_5 inst✝⁹ : AddCommGroup M' inst✝⁸ : Module R M' N' : Type u_6 inst✝⁷ : AddCommGroup N' inst✝⁶ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ι₁ : Type u_10 inst✝⁵ : Finite ι R' : Type u_11 N₁ : Type u_12 N₂ : Type u_13 inst✝⁴ : CommSemiring R' inst✝³ : AddCommMonoid N₁ inst✝² : AddCommMonoid N₂ inst✝¹ : Module R' N₁ inst✝ : Module R' N₂ f g : AlternatingMap R' N₁ N₂ ι e : Basis ι₁ R' N₁ h : ∀ (v : ι → ι₁), Function.Injective v → (↑f fun i => ↑e (v i)) = ↑g fun i => ↑e (v i) ⊢ f = g [PROOFSTEP] refine' AlternatingMap.coe_multilinearMap_injective (Basis.ext_multilinear e fun v => _) [GOAL] R : Type u_1 inst✝¹⁶ : Semiring R M : Type u_2 inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M N : Type u_3 inst✝¹³ : AddCommMonoid N inst✝¹² : Module R N P : Type u_4 inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : Module R P M' : Type u_5 inst✝⁹ : AddCommGroup M' inst✝⁸ : Module R M' N' : Type u_6 inst✝⁷ : AddCommGroup N' inst✝⁶ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ι₁ : Type u_10 inst✝⁵ : Finite ι R' : Type u_11 N₁ : Type u_12 N₂ : Type u_13 inst✝⁴ : CommSemiring R' inst✝³ : AddCommMonoid N₁ inst✝² : AddCommMonoid N₂ inst✝¹ : Module R' N₁ inst✝ : Module R' N₂ f g : AlternatingMap R' N₁ N₂ ι e : Basis ι₁ R' N₁ h : ∀ (v : ι → ι₁), Function.Injective v → (↑f fun i => ↑e (v i)) = ↑g fun i => ↑e (v i) v : ι → ι₁ ⊢ (↑↑f fun i => ↑e (v i)) = ↑↑g fun i => ↑e (v i) [PROOFSTEP] by_cases hi : Function.Injective v [GOAL] case pos R : Type u_1 inst✝¹⁶ : Semiring R M : Type u_2 inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M N : Type u_3 inst✝¹³ : AddCommMonoid N inst✝¹² : Module R N P : Type u_4 inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : Module R P M' : Type u_5 inst✝⁹ : AddCommGroup M' inst✝⁸ : Module R M' N' : Type u_6 inst✝⁷ : AddCommGroup N' inst✝⁶ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ι₁ : Type u_10 inst✝⁵ : Finite ι R' : Type u_11 N₁ : Type u_12 N₂ : Type u_13 inst✝⁴ : CommSemiring R' inst✝³ : AddCommMonoid N₁ inst✝² : AddCommMonoid N₂ inst✝¹ : Module R' N₁ inst✝ : Module R' N₂ f g : AlternatingMap R' N₁ N₂ ι e : Basis ι₁ R' N₁ h : ∀ (v : ι → ι₁), Function.Injective v → (↑f fun i => ↑e (v i)) = ↑g fun i => ↑e (v i) v : ι → ι₁ hi : Function.Injective v ⊢ (↑↑f fun i => ↑e (v i)) = ↑↑g fun i => ↑e (v i) [PROOFSTEP] exact h v hi [GOAL] case neg R : Type u_1 inst✝¹⁶ : Semiring R M : Type u_2 inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M N : Type u_3 inst✝¹³ : AddCommMonoid N inst✝¹² : Module R N P : Type u_4 inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : Module R P M' : Type u_5 inst✝⁹ : AddCommGroup M' inst✝⁸ : Module R M' N' : Type u_6 inst✝⁷ : AddCommGroup N' inst✝⁶ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ι₁ : Type u_10 inst✝⁵ : Finite ι R' : Type u_11 N₁ : Type u_12 N₂ : Type u_13 inst✝⁴ : CommSemiring R' inst✝³ : AddCommMonoid N₁ inst✝² : AddCommMonoid N₂ inst✝¹ : Module R' N₁ inst✝ : Module R' N₂ f g : AlternatingMap R' N₁ N₂ ι e : Basis ι₁ R' N₁ h : ∀ (v : ι → ι₁), Function.Injective v → (↑f fun i => ↑e (v i)) = ↑g fun i => ↑e (v i) v : ι → ι₁ hi : ¬Function.Injective v ⊢ (↑↑f fun i => ↑e (v i)) = ↑↑g fun i => ↑e (v i) [PROOFSTEP] have : ¬Function.Injective fun i => e (v i) := hi.imp Function.Injective.of_comp [GOAL] case neg R : Type u_1 inst✝¹⁶ : Semiring R M : Type u_2 inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : Module R M N : Type u_3 inst✝¹³ : AddCommMonoid N inst✝¹² : Module R N P : Type u_4 inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : Module R P M' : Type u_5 inst✝⁹ : AddCommGroup M' inst✝⁸ : Module R M' N' : Type u_6 inst✝⁷ : AddCommGroup N' inst✝⁶ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 ι₁ : Type u_10 inst✝⁵ : Finite ι R' : Type u_11 N₁ : Type u_12 N₂ : Type u_13 inst✝⁴ : CommSemiring R' inst✝³ : AddCommMonoid N₁ inst✝² : AddCommMonoid N₂ inst✝¹ : Module R' N₁ inst✝ : Module R' N₂ f g : AlternatingMap R' N₁ N₂ ι e : Basis ι₁ R' N₁ h : ∀ (v : ι → ι₁), Function.Injective v → (↑f fun i => ↑e (v i)) = ↑g fun i => ↑e (v i) v : ι → ι₁ hi : ¬Function.Injective v this : ¬Function.Injective fun i => ↑e (v i) ⊢ (↑↑f fun i => ↑e (v i)) = ↑↑g fun i => ↑e (v i) [PROOFSTEP] rw [coe_multilinearMap, coe_multilinearMap, f.map_eq_zero_of_not_injective _ this, g.map_eq_zero_of_not_injective _ this] [GOAL] R : Type u_1 inst✝¹⁹ : Semiring R M : Type u_2 inst✝¹⁸ : AddCommMonoid M inst✝¹⁷ : Module R M N : Type u_3 inst✝¹⁶ : AddCommMonoid N inst✝¹⁵ : Module R N P : Type u_4 inst✝¹⁴ : AddCommMonoid P inst✝¹³ : Module R P M' : Type u_5 inst✝¹² : AddCommGroup M' inst✝¹¹ : Module R M' N' : Type u_6 inst✝¹⁰ : AddCommGroup N' inst✝⁹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 R' : Type u_10 M'' : Type u_11 M₂'' : Type u_12 N'' : Type u_13 N₂'' : Type u_14 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommMonoid M'' inst✝⁶ : AddCommMonoid M₂'' inst✝⁵ : AddCommMonoid N'' inst✝⁴ : AddCommMonoid N₂'' inst✝³ : Module R' M'' inst✝² : Module R' M₂'' inst✝¹ : Module R' N'' inst✝ : Module R' N₂'' n : ℕ f : AlternatingMap R' M'' N'' (Fin (Nat.succ n)) m : M'' src✝ : (fun x => MultilinearMap R' (fun i => M'') N'') m := ↑(MultilinearMap.curryLeft ↑f) m v : Fin n → M'' i j : Fin n hv : v i = v j hij : i ≠ j ⊢ Matrix.vecCons m v (Fin.succ i) = Matrix.vecCons m v (Fin.succ j) [PROOFSTEP] rwa [Matrix.cons_val_succ, Matrix.cons_val_succ] [GOAL] R : Type u_1 inst✝¹⁹ : Semiring R M : Type u_2 inst✝¹⁸ : AddCommMonoid M inst✝¹⁷ : Module R M N : Type u_3 inst✝¹⁶ : AddCommMonoid N inst✝¹⁵ : Module R N P : Type u_4 inst✝¹⁴ : AddCommMonoid P inst✝¹³ : Module R P M' : Type u_5 inst✝¹² : AddCommGroup M' inst✝¹¹ : Module R M' N' : Type u_6 inst✝¹⁰ : AddCommGroup N' inst✝⁹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 R' : Type u_10 M'' : Type u_11 M₂'' : Type u_12 N'' : Type u_13 N₂'' : Type u_14 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommMonoid M'' inst✝⁶ : AddCommMonoid M₂'' inst✝⁵ : AddCommMonoid N'' inst✝⁴ : AddCommMonoid N₂'' inst✝³ : Module R' M'' inst✝² : Module R' M₂'' inst✝¹ : Module R' N'' inst✝ : Module R' N₂'' n : ℕ f : AlternatingMap R' M'' N'' (Fin (Nat.succ (Nat.succ n))) m : M'' x : Fin n → M'' ⊢ Matrix.vecCons m (Matrix.vecCons m x) 0 = Matrix.vecCons m (Matrix.vecCons m x) 1 [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝¹⁹ : Semiring R M : Type u_2 inst✝¹⁸ : AddCommMonoid M inst✝¹⁷ : Module R M N : Type u_3 inst✝¹⁶ : AddCommMonoid N inst✝¹⁵ : Module R N P : Type u_4 inst✝¹⁴ : AddCommMonoid P inst✝¹³ : Module R P M' : Type u_5 inst✝¹² : AddCommGroup M' inst✝¹¹ : Module R M' N' : Type u_6 inst✝¹⁰ : AddCommGroup N' inst✝⁹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 R' : Type u_10 M'' : Type u_11 M₂'' : Type u_12 N'' : Type u_13 N₂'' : Type u_14 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommMonoid M'' inst✝⁶ : AddCommMonoid M₂'' inst✝⁵ : AddCommMonoid N'' inst✝⁴ : AddCommMonoid N₂'' inst✝³ : Module R' M'' inst✝² : Module R' M₂'' inst✝¹ : Module R' N'' inst✝ : Module R' N₂'' n : ℕ g : M₂'' →ₗ[R'] M'' f : AlternatingMap R' M'' N'' (Fin (Nat.succ n)) m : M₂'' v : Fin n → M₂'' ⊢ ∀ (x : Fin (Nat.succ n)), ↑((fun x => g) x) (Matrix.vecCons m v x) = Matrix.vecCons (↑g m) (fun i => ↑((fun x => g) i) (v i)) x [PROOFSTEP] refine' Fin.cases _ _ [GOAL] case refine'_1 R : Type u_1 inst✝¹⁹ : Semiring R M : Type u_2 inst✝¹⁸ : AddCommMonoid M inst✝¹⁷ : Module R M N : Type u_3 inst✝¹⁶ : AddCommMonoid N inst✝¹⁵ : Module R N P : Type u_4 inst✝¹⁴ : AddCommMonoid P inst✝¹³ : Module R P M' : Type u_5 inst✝¹² : AddCommGroup M' inst✝¹¹ : Module R M' N' : Type u_6 inst✝¹⁰ : AddCommGroup N' inst✝⁹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 R' : Type u_10 M'' : Type u_11 M₂'' : Type u_12 N'' : Type u_13 N₂'' : Type u_14 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommMonoid M'' inst✝⁶ : AddCommMonoid M₂'' inst✝⁵ : AddCommMonoid N'' inst✝⁴ : AddCommMonoid N₂'' inst✝³ : Module R' M'' inst✝² : Module R' M₂'' inst✝¹ : Module R' N'' inst✝ : Module R' N₂'' n : ℕ g : M₂'' →ₗ[R'] M'' f : AlternatingMap R' M'' N'' (Fin (Nat.succ n)) m : M₂'' v : Fin n → M₂'' ⊢ ↑((fun x => g) 0) (Matrix.vecCons m v 0) = Matrix.vecCons (↑g m) (fun i => ↑((fun x => g) i) (v i)) 0 [PROOFSTEP] rfl [GOAL] case refine'_2 R : Type u_1 inst✝¹⁹ : Semiring R M : Type u_2 inst✝¹⁸ : AddCommMonoid M inst✝¹⁷ : Module R M N : Type u_3 inst✝¹⁶ : AddCommMonoid N inst✝¹⁵ : Module R N P : Type u_4 inst✝¹⁴ : AddCommMonoid P inst✝¹³ : Module R P M' : Type u_5 inst✝¹² : AddCommGroup M' inst✝¹¹ : Module R M' N' : Type u_6 inst✝¹⁰ : AddCommGroup N' inst✝⁹ : Module R N' ι : Type u_7 ι' : Type u_8 ι'' : Type u_9 R' : Type u_10 M'' : Type u_11 M₂'' : Type u_12 N'' : Type u_13 N₂'' : Type u_14 inst✝⁸ : CommSemiring R' inst✝⁷ : AddCommMonoid M'' inst✝⁶ : AddCommMonoid M₂'' inst✝⁵ : AddCommMonoid N'' inst✝⁴ : AddCommMonoid N₂'' inst✝³ : Module R' M'' inst✝² : Module R' M₂'' inst✝¹ : Module R' N'' inst✝ : Module R' N₂'' n : ℕ g : M₂'' →ₗ[R'] M'' f : AlternatingMap R' M'' N'' (Fin (Nat.succ n)) m : M₂'' v : Fin n → M₂'' ⊢ ∀ (i : Fin n), ↑((fun x => g) (Fin.succ i)) (Matrix.vecCons m v (Fin.succ i)) = Matrix.vecCons (↑g m) (fun i => ↑((fun x => g) i) (v i)) (Fin.succ i) [PROOFSTEP] simp
{"mathlib_filename": "Mathlib.LinearAlgebra.Alternating", "llama_tokens": 145617}
[GOAL] ι : Type u₁ k : Type u₂ V : Type u₃ P : Type u₄ inst✝⁴ : AddCommGroup V inst✝³ : AffineSpace V P inst✝² : Ring k inst✝¹ : Module k V b : AffineBasis ι k P inst✝ : DecidableEq ι ⊢ toMatrix b ↑b = 1 [PROOFSTEP] ext i j [GOAL] case a.h ι : Type u₁ k : Type u₂ V : Type u₃ P : Type u₄ inst✝⁴ : AddCommGroup V inst✝³ : AffineSpace V P inst✝² : Ring k inst✝¹ : Module k V b : AffineBasis ι k P inst✝ : DecidableEq ι i j : ι ⊢ toMatrix b (↑b) i j = OfNat.ofNat 1 i j [PROOFSTEP] rw [toMatrix_apply, coord_apply, Matrix.one_eq_pi_single, Pi.single_apply] [GOAL] ι : Type u₁ k : Type u₂ V : Type u₃ P : Type u₄ inst✝⁵ : AddCommGroup V inst✝⁴ : AffineSpace V P inst✝³ : Ring k inst✝² : Module k V b : AffineBasis ι k P ι'✝ : Type u_1 inst✝¹ : Fintype ι'✝ inst✝ : Fintype ι b₂ : AffineBasis ι k P ι' : Type u_2 q : ι' → P i : ι' ⊢ ∑ j : ι, toMatrix b q i j = 1 [PROOFSTEP] simp [GOAL] ι : Type u₁ k : Type u₂ V : Type u₃ P : Type u₄ inst✝⁶ : AddCommGroup V inst✝⁵ : AffineSpace V P inst✝⁴ : Ring k inst✝³ : Module k V b : AffineBasis ι k P ι' : Type u_1 inst✝² : Fintype ι' inst✝¹ : Fintype ι b₂ : AffineBasis ι k P inst✝ : DecidableEq ι' p : ι' → P A : Matrix ι ι' k hA : toMatrix b p * A = 1 ⊢ AffineIndependent k p [PROOFSTEP] rw [affineIndependent_iff_eq_of_fintype_affineCombination_eq] [GOAL] ι : Type u₁ k : Type u₂ V : Type u₃ P : Type u₄ inst✝⁶ : AddCommGroup V inst✝⁵ : AffineSpace V P inst✝⁴ : Ring k inst✝³ : Module k V b : AffineBasis ι k P ι' : Type u_1 inst✝² : Fintype ι' inst✝¹ : Fintype ι b₂ : AffineBasis ι k P inst✝ : DecidableEq ι' p : ι' → P A : Matrix ι ι' k hA : toMatrix b p * A = 1 ⊢ ∀ (w1 w2 : ι' → k), ∑ i : ι', w1 i = 1 → ∑ i : ι', w2 i = 1 → ↑(Finset.affineCombination k Finset.univ p) w1 = ↑(Finset.affineCombination k Finset.univ p) w2 → w1 = w2 [PROOFSTEP] intro w₁ w₂ hw₁ hw₂ hweq [GOAL] ι : Type u₁ k : Type u₂ V : Type u₃ P : Type u₄ inst✝⁶ : AddCommGroup V inst✝⁵ : AffineSpace V P inst✝⁴ : Ring k inst✝³ : Module k V b : AffineBasis ι k P ι' : Type u_1 inst✝² : Fintype ι' inst✝¹ : Fintype ι b₂ : AffineBasis ι k P inst✝ : DecidableEq ι' p : ι' → P A : Matrix ι ι' k hA : toMatrix b p * A = 1 w₁ w₂ : ι' → k hw₁ : ∑ i : ι', w₁ i = 1 hw₂ : ∑ i : ι', w₂ i = 1 hweq : ↑(Finset.affineCombination k Finset.univ p) w₁ = ↑(Finset.affineCombination k Finset.univ p) w₂ ⊢ w₁ = w₂ [PROOFSTEP] have hweq' : (b.toMatrix p).vecMul w₁ = (b.toMatrix p).vecMul w₂ := by ext j change (∑ i, w₁ i • b.coord j (p i)) = ∑ i, w₂ i • b.coord j (p i) -- Porting note: Added `u` because `∘` was causing trouble have u : (fun i => b.coord j (p i)) = b.coord j ∘ p := by simp only [(· ∘ ·)] rw [← Finset.univ.affineCombination_eq_linear_combination _ _ hw₁, ← Finset.univ.affineCombination_eq_linear_combination _ _ hw₂, u, ← Finset.univ.map_affineCombination p w₁ hw₁, ← Finset.univ.map_affineCombination p w₂ hw₂, hweq] [GOAL] ι : Type u₁ k : Type u₂ V : Type u₃ P : Type u₄ inst✝⁶ : AddCommGroup V inst✝⁵ : AffineSpace V P inst✝⁴ : Ring k inst✝³ : Module k V b : AffineBasis ι k P ι' : Type u_1 inst✝² : Fintype ι' inst✝¹ : Fintype ι b₂ : AffineBasis ι k P inst✝ : DecidableEq ι' p : ι' → P A : Matrix ι ι' k hA : toMatrix b p * A = 1 w₁ w₂ : ι' → k hw₁ : ∑ i : ι', w₁ i = 1 hw₂ : ∑ i : ι', w₂ i = 1 hweq : ↑(Finset.affineCombination k Finset.univ p) w₁ = ↑(Finset.affineCombination k Finset.univ p) w₂ ⊢ vecMul w₁ (toMatrix b p) = vecMul w₂ (toMatrix b p) [PROOFSTEP] ext j [GOAL] case h ι : Type u₁ k : Type u₂ V : Type u₃ P : Type u₄ inst✝⁶ : AddCommGroup V inst✝⁵ : AffineSpace V P inst✝⁴ : Ring k inst✝³ : Module k V b : AffineBasis ι k P ι' : Type u_1 inst✝² : Fintype ι' inst✝¹ : Fintype ι b₂ : AffineBasis ι k P inst✝ : DecidableEq ι' p : ι' → P A : Matrix ι ι' k hA : toMatrix b p * A = 1 w₁ w₂ : ι' → k hw₁ : ∑ i : ι', w₁ i = 1 hw₂ : ∑ i : ι', w₂ i = 1 hweq : ↑(Finset.affineCombination k Finset.univ p) w₁ = ↑(Finset.affineCombination k Finset.univ p) w₂ j : ι ⊢ vecMul w₁ (toMatrix b p) j = vecMul w₂ (toMatrix b p) j [PROOFSTEP] change (∑ i, w₁ i • b.coord j (p i)) = ∑ i, w₂ i • b.coord j (p i) -- Porting note: Added `u` because `∘` was causing trouble [GOAL] case h ι : Type u₁ k : Type u₂ V : Type u₃ P : Type u₄ inst✝⁶ : AddCommGroup V inst✝⁵ : AffineSpace V P inst✝⁴ : Ring k inst✝³ : Module k V b : AffineBasis ι k P ι' : Type u_1 inst✝² : Fintype ι' inst✝¹ : Fintype ι b₂ : AffineBasis ι k P inst✝ : DecidableEq ι' p : ι' → P A : Matrix ι ι' k hA : toMatrix b p * A = 1 w₁ w₂ : ι' → k hw₁ : ∑ i : ι', w₁ i = 1 hw₂ : ∑ i : ι', w₂ i = 1 hweq : ↑(Finset.affineCombination k Finset.univ p) w₁ = ↑(Finset.affineCombination k Finset.univ p) w₂ j : ι ⊢ ∑ i : ι', w₁ i • ↑(coord b j) (p i) = ∑ i : ι', w₂ i • ↑(coord b j) (p i) [PROOFSTEP] have u : (fun i => b.coord j (p i)) = b.coord j ∘ p := by simp only [(· ∘ ·)] [GOAL] ι : Type u₁ k : Type u₂ V : Type u₃ P : Type u₄ inst✝⁶ : AddCommGroup V inst✝⁵ : AffineSpace V P inst✝⁴ : Ring k inst✝³ : Module k V b : AffineBasis ι k P ι' : Type u_1 inst✝² : Fintype ι' inst✝¹ : Fintype ι b₂ : AffineBasis ι k P inst✝ : DecidableEq ι' p : ι' → P A : Matrix ι ι' k hA : toMatrix b p * A = 1 w₁ w₂ : ι' → k hw₁ : ∑ i : ι', w₁ i = 1 hw₂ : ∑ i : ι', w₂ i = 1 hweq : ↑(Finset.affineCombination k Finset.univ p) w₁ = ↑(Finset.affineCombination k Finset.univ p) w₂ j : ι ⊢ (fun i => ↑(coord b j) (p i)) = ↑(coord b j) ∘ p [PROOFSTEP] simp only [(· ∘ ·)] [GOAL] case h ι : Type u₁ k : Type u₂ V : Type u₃ P : Type u₄ inst✝⁶ : AddCommGroup V inst✝⁵ : AffineSpace V P inst✝⁴ : Ring k inst✝³ : Module k V b : AffineBasis ι k P ι' : Type u_1 inst✝² : Fintype ι' inst✝¹ : Fintype ι b₂ : AffineBasis ι k P inst✝ : DecidableEq ι' p : ι' → P A : Matrix ι ι' k hA : toMatrix b p * A = 1 w₁ w₂ : ι' → k hw₁ : ∑ i : ι', w₁ i = 1 hw₂ : ∑ i : ι', w₂ i = 1 hweq : ↑(Finset.affineCombination k Finset.univ p) w₁ = ↑(Finset.affineCombination k Finset.univ p) w₂ j : ι u : (fun i => ↑(coord b j) (p i)) = ↑(coord b j) ∘ p ⊢ ∑ i : ι', w₁ i • ↑(coord b j) (p i) = ∑ i : ι', w₂ i • ↑(coord b j) (p i) [PROOFSTEP] rw [← Finset.univ.affineCombination_eq_linear_combination _ _ hw₁, ← Finset.univ.affineCombination_eq_linear_combination _ _ hw₂, u, ← Finset.univ.map_affineCombination p w₁ hw₁, ← Finset.univ.map_affineCombination p w₂ hw₂, hweq] [GOAL] ι : Type u₁ k : Type u₂ V : Type u₃ P : Type u₄ inst✝⁶ : AddCommGroup V inst✝⁵ : AffineSpace V P inst✝⁴ : Ring k inst✝³ : Module k V b : AffineBasis ι k P ι' : Type u_1 inst✝² : Fintype ι' inst✝¹ : Fintype ι b₂ : AffineBasis ι k P inst✝ : DecidableEq ι' p : ι' → P A : Matrix ι ι' k hA : toMatrix b p * A = 1 w₁ w₂ : ι' → k hw₁ : ∑ i : ι', w₁ i = 1 hw₂ : ∑ i : ι', w₂ i = 1 hweq : ↑(Finset.affineCombination k Finset.univ p) w₁ = ↑(Finset.affineCombination k Finset.univ p) w₂ hweq' : vecMul w₁ (toMatrix b p) = vecMul w₂ (toMatrix b p) ⊢ w₁ = w₂ [PROOFSTEP] replace hweq' := congr_arg (fun w => A.vecMul w) hweq' [GOAL] ι : Type u₁ k : Type u₂ V : Type u₃ P : Type u₄ inst✝⁶ : AddCommGroup V inst✝⁵ : AffineSpace V P inst✝⁴ : Ring k inst✝³ : Module k V b : AffineBasis ι k P ι' : Type u_1 inst✝² : Fintype ι' inst✝¹ : Fintype ι b₂ : AffineBasis ι k P inst✝ : DecidableEq ι' p : ι' → P A : Matrix ι ι' k hA : toMatrix b p * A = 1 w₁ w₂ : ι' → k hw₁ : ∑ i : ι', w₁ i = 1 hw₂ : ∑ i : ι', w₂ i = 1 hweq : ↑(Finset.affineCombination k Finset.univ p) w₁ = ↑(Finset.affineCombination k Finset.univ p) w₂ hweq' : (fun w => vecMul w A) (vecMul w₁ (toMatrix b p)) = (fun w => vecMul w A) (vecMul w₂ (toMatrix b p)) ⊢ w₁ = w₂ [PROOFSTEP] simpa only [Matrix.vecMul_vecMul, hA, Matrix.vecMul_one] using hweq' [GOAL] ι : Type u₁ k : Type u₂ V : Type u₃ P : Type u₄ inst✝⁷ : AddCommGroup V inst✝⁶ : AffineSpace V P inst✝⁵ : Ring k inst✝⁴ : Module k V b : AffineBasis ι k P ι' : Type u_1 inst✝³ : Fintype ι' inst✝² : Fintype ι b₂ : AffineBasis ι k P inst✝¹ : DecidableEq ι inst✝ : Nontrivial k p : ι' → P A : Matrix ι ι' k hA : A * toMatrix b p = 1 ⊢ affineSpan k (range p) = ⊤ [PROOFSTEP] suffices ∀ i, b i ∈ affineSpan k (range p) by rw [eq_top_iff, ← b.tot, affineSpan_le] rintro q ⟨i, rfl⟩ exact this i [GOAL] ι : Type u₁ k : Type u₂ V : Type u₃ P : Type u₄ inst✝⁷ : AddCommGroup V inst✝⁶ : AffineSpace V P inst✝⁵ : Ring k inst✝⁴ : Module k V b : AffineBasis ι k P ι' : Type u_1 inst✝³ : Fintype ι' inst✝² : Fintype ι b₂ : AffineBasis ι k P inst✝¹ : DecidableEq ι inst✝ : Nontrivial k p : ι' → P A : Matrix ι ι' k hA : A * toMatrix b p = 1 this : ∀ (i : ι), ↑b i ∈ affineSpan k (range p) ⊢ affineSpan k (range p) = ⊤ [PROOFSTEP] rw [eq_top_iff, ← b.tot, affineSpan_le] [GOAL] ι : Type u₁ k : Type u₂ V : Type u₃ P : Type u₄ inst✝⁷ : AddCommGroup V inst✝⁶ : AffineSpace V P inst✝⁵ : Ring k inst✝⁴ : Module k V b : AffineBasis ι k P ι' : Type u_1 inst✝³ : Fintype ι' inst✝² : Fintype ι b₂ : AffineBasis ι k P inst✝¹ : DecidableEq ι inst✝ : Nontrivial k p : ι' → P A : Matrix ι ι' k hA : A * toMatrix b p = 1 this : ∀ (i : ι), ↑b i ∈ affineSpan k (range p) ⊢ range ↑b ⊆ ↑(affineSpan k (range p)) [PROOFSTEP] rintro q ⟨i, rfl⟩ [GOAL] case intro ι : Type u₁ k : Type u₂ V : Type u₃ P : Type u₄ inst✝⁷ : AddCommGroup V inst✝⁶ : AffineSpace V P inst✝⁵ : Ring k inst✝⁴ : Module k V b : AffineBasis ι k P ι' : Type u_1 inst✝³ : Fintype ι' inst✝² : Fintype ι b₂ : AffineBasis ι k P inst✝¹ : DecidableEq ι inst✝ : Nontrivial k p : ι' → P A : Matrix ι ι' k hA : A * toMatrix b p = 1 this : ∀ (i : ι), ↑b i ∈ affineSpan k (range p) i : ι ⊢ ↑b i ∈ ↑(affineSpan k (range p)) [PROOFSTEP] exact this i [GOAL] ι : Type u₁ k : Type u₂ V : Type u₃ P : Type u₄ inst✝⁷ : AddCommGroup V inst✝⁶ : AffineSpace V P inst✝⁵ : Ring k inst✝⁴ : Module k V b : AffineBasis ι k P ι' : Type u_1 inst✝³ : Fintype ι' inst✝² : Fintype ι b₂ : AffineBasis ι k P inst✝¹ : DecidableEq ι inst✝ : Nontrivial k p : ι' → P A : Matrix ι ι' k hA : A * toMatrix b p = 1 ⊢ ∀ (i : ι), ↑b i ∈ affineSpan k (range p) [PROOFSTEP] intro i [GOAL] ι : Type u₁ k : Type u₂ V : Type u₃ P : Type u₄ inst✝⁷ : AddCommGroup V inst✝⁶ : AffineSpace V P inst✝⁵ : Ring k inst✝⁴ : Module k V b : AffineBasis ι k P ι' : Type u_1 inst✝³ : Fintype ι' inst✝² : Fintype ι b₂ : AffineBasis ι k P inst✝¹ : DecidableEq ι inst✝ : Nontrivial k p : ι' → P A : Matrix ι ι' k hA : A * toMatrix b p = 1 i : ι ⊢ ↑b i ∈ affineSpan k (range p) [PROOFSTEP] have hAi : ∑ j, A i j = 1 := by calc ∑ j, A i j = ∑ j, A i j * ∑ l, b.toMatrix p j l := by simp _ = ∑ j, ∑ l, A i j * b.toMatrix p j l := by simp_rw [Finset.mul_sum] _ = ∑ l, ∑ j, A i j * b.toMatrix p j l := by rw [Finset.sum_comm] _ = ∑ l, (A * b.toMatrix p) i l := rfl _ = 1 := by simp [hA, Matrix.one_apply, Finset.filter_eq] [GOAL] ι : Type u₁ k : Type u₂ V : Type u₃ P : Type u₄ inst✝⁷ : AddCommGroup V inst✝⁶ : AffineSpace V P inst✝⁵ : Ring k inst✝⁴ : Module k V b : AffineBasis ι k P ι' : Type u_1 inst✝³ : Fintype ι' inst✝² : Fintype ι b₂ : AffineBasis ι k P inst✝¹ : DecidableEq ι inst✝ : Nontrivial k p : ι' → P A : Matrix ι ι' k hA : A * toMatrix b p = 1 i : ι ⊢ ∑ j : ι', A i j = 1 [PROOFSTEP] calc ∑ j, A i j = ∑ j, A i j * ∑ l, b.toMatrix p j l := by simp _ = ∑ j, ∑ l, A i j * b.toMatrix p j l := by simp_rw [Finset.mul_sum] _ = ∑ l, ∑ j, A i j * b.toMatrix p j l := by rw [Finset.sum_comm] _ = ∑ l, (A * b.toMatrix p) i l := rfl _ = 1 := by simp [hA, Matrix.one_apply, Finset.filter_eq] [GOAL] ι : Type u₁ k : Type u₂ V : Type u₃ P : Type u₄ inst✝⁷ : AddCommGroup V inst✝⁶ : AffineSpace V P inst✝⁵ : Ring k inst✝⁴ : Module k V b : AffineBasis ι k P ι' : Type u_1 inst✝³ : Fintype ι' inst✝² : Fintype ι b₂ : AffineBasis ι k P inst✝¹ : DecidableEq ι inst✝ : Nontrivial k p : ι' → P A : Matrix ι ι' k hA : A * toMatrix b p = 1 i : ι ⊢ ∑ j : ι', A i j = ∑ j : ι', A i j * ∑ l : ι, toMatrix b p j l [PROOFSTEP] simp [GOAL] ι : Type u₁ k : Type u₂ V : Type u₃ P : Type u₄ inst✝⁷ : AddCommGroup V inst✝⁶ : AffineSpace V P inst✝⁵ : Ring k inst✝⁴ : Module k V b : AffineBasis ι k P ι' : Type u_1 inst✝³ : Fintype ι' inst✝² : Fintype ι b₂ : AffineBasis ι k P inst✝¹ : DecidableEq ι inst✝ : Nontrivial k p : ι' → P A : Matrix ι ι' k hA : A * toMatrix b p = 1 i : ι ⊢ ∑ j : ι', A i j * ∑ l : ι, toMatrix b p j l = ∑ j : ι', ∑ l : ι, A i j * toMatrix b p j l [PROOFSTEP] simp_rw [Finset.mul_sum] [GOAL] ι : Type u₁ k : Type u₂ V : Type u₃ P : Type u₄ inst✝⁷ : AddCommGroup V inst✝⁶ : AffineSpace V P inst✝⁵ : Ring k inst✝⁴ : Module k V b : AffineBasis ι k P ι' : Type u_1 inst✝³ : Fintype ι' inst✝² : Fintype ι b₂ : AffineBasis ι k P inst✝¹ : DecidableEq ι inst✝ : Nontrivial k p : ι' → P A : Matrix ι ι' k hA : A * toMatrix b p = 1 i : ι ⊢ ∑ j : ι', ∑ l : ι, A i j * toMatrix b p j l = ∑ l : ι, ∑ j : ι', A i j * toMatrix b p j l [PROOFSTEP] rw [Finset.sum_comm] [GOAL] ι : Type u₁ k : Type u₂ V : Type u₃ P : Type u₄ inst✝⁷ : AddCommGroup V inst✝⁶ : AffineSpace V P inst✝⁵ : Ring k inst✝⁴ : Module k V b : AffineBasis ι k P ι' : Type u_1 inst✝³ : Fintype ι' inst✝² : Fintype ι b₂ : AffineBasis ι k P inst✝¹ : DecidableEq ι inst✝ : Nontrivial k p : ι' → P A : Matrix ι ι' k hA : A * toMatrix b p = 1 i : ι ⊢ ∑ l : ι, (A * toMatrix b p) i l = 1 [PROOFSTEP] simp [hA, Matrix.one_apply, Finset.filter_eq] [GOAL] ι : Type u₁ k : Type u₂ V : Type u₃ P : Type u₄ inst✝⁷ : AddCommGroup V inst✝⁶ : AffineSpace V P inst✝⁵ : Ring k inst✝⁴ : Module k V b : AffineBasis ι k P ι' : Type u_1 inst✝³ : Fintype ι' inst✝² : Fintype ι b₂ : AffineBasis ι k P inst✝¹ : DecidableEq ι inst✝ : Nontrivial k p : ι' → P A : Matrix ι ι' k hA : A * toMatrix b p = 1 i : ι hAi : ∑ j : ι', A i j = 1 ⊢ ↑b i ∈ affineSpan k (range p) [PROOFSTEP] have hbi : b i = Finset.univ.affineCombination k p (A i) := by apply b.ext_elem intro j rw [b.coord_apply, Finset.univ.map_affineCombination _ _ hAi, Finset.univ.affineCombination_eq_linear_combination _ _ hAi] change _ = (A * b.toMatrix p) i j simp_rw [hA, Matrix.one_apply, @eq_comm _ i j] [GOAL] ι : Type u₁ k : Type u₂ V : Type u₃ P : Type u₄ inst✝⁷ : AddCommGroup V inst✝⁶ : AffineSpace V P inst✝⁵ : Ring k inst✝⁴ : Module k V b : AffineBasis ι k P ι' : Type u_1 inst✝³ : Fintype ι' inst✝² : Fintype ι b₂ : AffineBasis ι k P inst✝¹ : DecidableEq ι inst✝ : Nontrivial k p : ι' → P A : Matrix ι ι' k hA : A * toMatrix b p = 1 i : ι hAi : ∑ j : ι', A i j = 1 ⊢ ↑b i = ↑(Finset.affineCombination k Finset.univ p) (A i) [PROOFSTEP] apply b.ext_elem [GOAL] ι : Type u₁ k : Type u₂ V : Type u₃ P : Type u₄ inst✝⁷ : AddCommGroup V inst✝⁶ : AffineSpace V P inst✝⁵ : Ring k inst✝⁴ : Module k V b : AffineBasis ι k P ι' : Type u_1 inst✝³ : Fintype ι' inst✝² : Fintype ι b₂ : AffineBasis ι k P inst✝¹ : DecidableEq ι inst✝ : Nontrivial k p : ι' → P A : Matrix ι ι' k hA : A * toMatrix b p = 1 i : ι hAi : ∑ j : ι', A i j = 1 ⊢ ∀ (i_1 : ι), ↑(coord b i_1) (↑b i) = ↑(coord b i_1) (↑(Finset.affineCombination k Finset.univ p) (A i)) [PROOFSTEP] intro j [GOAL] ι : Type u₁ k : Type u₂ V : Type u₃ P : Type u₄ inst✝⁷ : AddCommGroup V inst✝⁶ : AffineSpace V P inst✝⁵ : Ring k inst✝⁴ : Module k V b : AffineBasis ι k P ι' : Type u_1 inst✝³ : Fintype ι' inst✝² : Fintype ι b₂ : AffineBasis ι k P inst✝¹ : DecidableEq ι inst✝ : Nontrivial k p : ι' → P A : Matrix ι ι' k hA : A * toMatrix b p = 1 i : ι hAi : ∑ j : ι', A i j = 1 j : ι ⊢ ↑(coord b j) (↑b i) = ↑(coord b j) (↑(Finset.affineCombination k Finset.univ p) (A i)) [PROOFSTEP] rw [b.coord_apply, Finset.univ.map_affineCombination _ _ hAi, Finset.univ.affineCombination_eq_linear_combination _ _ hAi] [GOAL] ι : Type u₁ k : Type u₂ V : Type u₃ P : Type u₄ inst✝⁷ : AddCommGroup V inst✝⁶ : AffineSpace V P inst✝⁵ : Ring k inst✝⁴ : Module k V b : AffineBasis ι k P ι' : Type u_1 inst✝³ : Fintype ι' inst✝² : Fintype ι b₂ : AffineBasis ι k P inst✝¹ : DecidableEq ι inst✝ : Nontrivial k p : ι' → P A : Matrix ι ι' k hA : A * toMatrix b p = 1 i : ι hAi : ∑ j : ι', A i j = 1 j : ι ⊢ (if j = i then 1 else 0) = ∑ i_1 : ι', A i i_1 • (↑(coord b j) ∘ p) i_1 [PROOFSTEP] change _ = (A * b.toMatrix p) i j [GOAL] ι : Type u₁ k : Type u₂ V : Type u₃ P : Type u₄ inst✝⁷ : AddCommGroup V inst✝⁶ : AffineSpace V P inst✝⁵ : Ring k inst✝⁴ : Module k V b : AffineBasis ι k P ι' : Type u_1 inst✝³ : Fintype ι' inst✝² : Fintype ι b₂ : AffineBasis ι k P inst✝¹ : DecidableEq ι inst✝ : Nontrivial k p : ι' → P A : Matrix ι ι' k hA : A * toMatrix b p = 1 i : ι hAi : ∑ j : ι', A i j = 1 j : ι ⊢ (if j = i then 1 else 0) = (A * toMatrix b p) i j [PROOFSTEP] simp_rw [hA, Matrix.one_apply, @eq_comm _ i j] [GOAL] ι : Type u₁ k : Type u₂ V : Type u₃ P : Type u₄ inst✝⁷ : AddCommGroup V inst✝⁶ : AffineSpace V P inst✝⁵ : Ring k inst✝⁴ : Module k V b : AffineBasis ι k P ι' : Type u_1 inst✝³ : Fintype ι' inst✝² : Fintype ι b₂ : AffineBasis ι k P inst✝¹ : DecidableEq ι inst✝ : Nontrivial k p : ι' → P A : Matrix ι ι' k hA : A * toMatrix b p = 1 i : ι hAi : ∑ j : ι', A i j = 1 hbi : ↑b i = ↑(Finset.affineCombination k Finset.univ p) (A i) ⊢ ↑b i ∈ affineSpan k (range p) [PROOFSTEP] rw [hbi] [GOAL] ι : Type u₁ k : Type u₂ V : Type u₃ P : Type u₄ inst✝⁷ : AddCommGroup V inst✝⁶ : AffineSpace V P inst✝⁵ : Ring k inst✝⁴ : Module k V b : AffineBasis ι k P ι' : Type u_1 inst✝³ : Fintype ι' inst✝² : Fintype ι b₂ : AffineBasis ι k P inst✝¹ : DecidableEq ι inst✝ : Nontrivial k p : ι' → P A : Matrix ι ι' k hA : A * toMatrix b p = 1 i : ι hAi : ∑ j : ι', A i j = 1 hbi : ↑b i = ↑(Finset.affineCombination k Finset.univ p) (A i) ⊢ ↑(Finset.affineCombination k Finset.univ p) (A i) ∈ affineSpan k (range p) [PROOFSTEP] exact affineCombination_mem_affineSpan hAi p [GOAL] ι : Type u₁ k : Type u₂ V : Type u₃ P : Type u₄ inst✝⁵ : AddCommGroup V inst✝⁴ : AffineSpace V P inst✝³ : Ring k inst✝² : Module k V b : AffineBasis ι k P ι' : Type u_1 inst✝¹ : Fintype ι' inst✝ : Fintype ι b₂ : AffineBasis ι k P x : P ⊢ vecMul (↑(coords b₂) x) (toMatrix b ↑b₂) = ↑(coords b) x [PROOFSTEP] ext j [GOAL] case h ι : Type u₁ k : Type u₂ V : Type u₃ P : Type u₄ inst✝⁵ : AddCommGroup V inst✝⁴ : AffineSpace V P inst✝³ : Ring k inst✝² : Module k V b : AffineBasis ι k P ι' : Type u_1 inst✝¹ : Fintype ι' inst✝ : Fintype ι b₂ : AffineBasis ι k P x : P j : ι ⊢ vecMul (↑(coords b₂) x) (toMatrix b ↑b₂) j = ↑(coords b) x j [PROOFSTEP] change _ = b.coord j x [GOAL] case h ι : Type u₁ k : Type u₂ V : Type u₃ P : Type u₄ inst✝⁵ : AddCommGroup V inst✝⁴ : AffineSpace V P inst✝³ : Ring k inst✝² : Module k V b : AffineBasis ι k P ι' : Type u_1 inst✝¹ : Fintype ι' inst✝ : Fintype ι b₂ : AffineBasis ι k P x : P j : ι ⊢ vecMul (↑(coords b₂) x) (toMatrix b ↑b₂) j = ↑(coord b j) x [PROOFSTEP] conv_rhs => rw [← b₂.affineCombination_coord_eq_self x] [GOAL] ι : Type u₁ k : Type u₂ V : Type u₃ P : Type u₄ inst✝⁵ : AddCommGroup V inst✝⁴ : AffineSpace V P inst✝³ : Ring k inst✝² : Module k V b : AffineBasis ι k P ι' : Type u_1 inst✝¹ : Fintype ι' inst✝ : Fintype ι b₂ : AffineBasis ι k P x : P j : ι | ↑(coord b j) x [PROOFSTEP] rw [← b₂.affineCombination_coord_eq_self x] [GOAL] ι : Type u₁ k : Type u₂ V : Type u₃ P : Type u₄ inst✝⁵ : AddCommGroup V inst✝⁴ : AffineSpace V P inst✝³ : Ring k inst✝² : Module k V b : AffineBasis ι k P ι' : Type u_1 inst✝¹ : Fintype ι' inst✝ : Fintype ι b₂ : AffineBasis ι k P x : P j : ι | ↑(coord b j) x [PROOFSTEP] rw [← b₂.affineCombination_coord_eq_self x] [GOAL] ι : Type u₁ k : Type u₂ V : Type u₃ P : Type u₄ inst✝⁵ : AddCommGroup V inst✝⁴ : AffineSpace V P inst✝³ : Ring k inst✝² : Module k V b : AffineBasis ι k P ι' : Type u_1 inst✝¹ : Fintype ι' inst✝ : Fintype ι b₂ : AffineBasis ι k P x : P j : ι | ↑(coord b j) x [PROOFSTEP] rw [← b₂.affineCombination_coord_eq_self x] [GOAL] case h ι : Type u₁ k : Type u₂ V : Type u₃ P : Type u₄ inst✝⁵ : AddCommGroup V inst✝⁴ : AffineSpace V P inst✝³ : Ring k inst✝² : Module k V b : AffineBasis ι k P ι' : Type u_1 inst✝¹ : Fintype ι' inst✝ : Fintype ι b₂ : AffineBasis ι k P x : P j : ι ⊢ vecMul (↑(coords b₂) x) (toMatrix b ↑b₂) j = ↑(coord b j) (↑(Finset.affineCombination k Finset.univ ↑b₂) fun i => ↑(coord b₂ i) x) [PROOFSTEP] rw [Finset.map_affineCombination _ _ _ (b₂.sum_coord_apply_eq_one x)] [GOAL] case h ι : Type u₁ k : Type u₂ V : Type u₃ P : Type u₄ inst✝⁵ : AddCommGroup V inst✝⁴ : AffineSpace V P inst✝³ : Ring k inst✝² : Module k V b : AffineBasis ι k P ι' : Type u_1 inst✝¹ : Fintype ι' inst✝ : Fintype ι b₂ : AffineBasis ι k P x : P j : ι ⊢ vecMul (↑(coords b₂) x) (toMatrix b ↑b₂) j = ↑(Finset.affineCombination ((fun a => k) x) Finset.univ (↑(coord b j) ∘ ↑b₂)) fun i => ↑(coord b₂ i) x [PROOFSTEP] simp [Matrix.vecMul, Matrix.dotProduct, toMatrix_apply, coords] [GOAL] ι : Type u₁ k : Type u₂ V : Type u₃ P : Type u₄ inst✝⁶ : AddCommGroup V inst✝⁵ : AffineSpace V P inst✝⁴ : Ring k inst✝³ : Module k V b : AffineBasis ι k P ι' : Type u_1 inst✝² : Fintype ι' inst✝¹ : Fintype ι b₂ : AffineBasis ι k P inst✝ : DecidableEq ι ⊢ toMatrix b ↑b₂ * toMatrix b₂ ↑b = 1 [PROOFSTEP] ext l m [GOAL] case a.h ι : Type u₁ k : Type u₂ V : Type u₃ P : Type u₄ inst✝⁶ : AddCommGroup V inst✝⁵ : AffineSpace V P inst✝⁴ : Ring k inst✝³ : Module k V b : AffineBasis ι k P ι' : Type u_1 inst✝² : Fintype ι' inst✝¹ : Fintype ι b₂ : AffineBasis ι k P inst✝ : DecidableEq ι l m : ι ⊢ (toMatrix b ↑b₂ * toMatrix b₂ ↑b) l m = OfNat.ofNat 1 l m [PROOFSTEP] change (b₂.toMatrix b).vecMul (b.coords (b₂ l)) m = _ [GOAL] case a.h ι : Type u₁ k : Type u₂ V : Type u₃ P : Type u₄ inst✝⁶ : AddCommGroup V inst✝⁵ : AffineSpace V P inst✝⁴ : Ring k inst✝³ : Module k V b : AffineBasis ι k P ι' : Type u_1 inst✝² : Fintype ι' inst✝¹ : Fintype ι b₂ : AffineBasis ι k P inst✝ : DecidableEq ι l m : ι ⊢ vecMul (↑(coords b) (↑b₂ l)) (toMatrix b₂ ↑b) m = OfNat.ofNat 1 l m [PROOFSTEP] rw [toMatrix_vecMul_coords, coords_apply, ← toMatrix_apply, toMatrix_self] [GOAL] ι : Type u₁ k : Type u₂ V : Type u₃ P : Type u₄ inst✝⁷ : AddCommGroup V inst✝⁶ : AffineSpace V P inst✝⁵ : Ring k inst✝⁴ : Module k V b : AffineBasis ι k P ι' : Type u_1 inst✝³ : Fintype ι' inst✝² : Fintype ι b₂ : AffineBasis ι k P inst✝¹ : DecidableEq ι inst✝ : Nontrivial k p : ι → P ⊢ IsUnit (toMatrix b p) ↔ AffineIndependent k p ∧ affineSpan k (range p) = ⊤ [PROOFSTEP] constructor [GOAL] case mp ι : Type u₁ k : Type u₂ V : Type u₃ P : Type u₄ inst✝⁷ : AddCommGroup V inst✝⁶ : AffineSpace V P inst✝⁵ : Ring k inst✝⁴ : Module k V b : AffineBasis ι k P ι' : Type u_1 inst✝³ : Fintype ι' inst✝² : Fintype ι b₂ : AffineBasis ι k P inst✝¹ : DecidableEq ι inst✝ : Nontrivial k p : ι → P ⊢ IsUnit (toMatrix b p) → AffineIndependent k p ∧ affineSpan k (range p) = ⊤ [PROOFSTEP] rintro ⟨⟨B, A, hA, hA'⟩, rfl : B = b.toMatrix p⟩ [GOAL] case mp.intro.mk ι : Type u₁ k : Type u₂ V : Type u₃ P : Type u₄ inst✝⁷ : AddCommGroup V inst✝⁶ : AffineSpace V P inst✝⁵ : Ring k inst✝⁴ : Module k V b : AffineBasis ι k P ι' : Type u_1 inst✝³ : Fintype ι' inst✝² : Fintype ι b₂ : AffineBasis ι k P inst✝¹ : DecidableEq ι inst✝ : Nontrivial k p : ι → P A : Matrix ι ι k hA : toMatrix b p * A = 1 hA' : A * toMatrix b p = 1 ⊢ AffineIndependent k p ∧ affineSpan k (range p) = ⊤ [PROOFSTEP] exact ⟨b.affineIndependent_of_toMatrix_right_inv p hA, b.affineSpan_eq_top_of_toMatrix_left_inv p hA'⟩ [GOAL] case mpr ι : Type u₁ k : Type u₂ V : Type u₃ P : Type u₄ inst✝⁷ : AddCommGroup V inst✝⁶ : AffineSpace V P inst✝⁵ : Ring k inst✝⁴ : Module k V b : AffineBasis ι k P ι' : Type u_1 inst✝³ : Fintype ι' inst✝² : Fintype ι b₂ : AffineBasis ι k P inst✝¹ : DecidableEq ι inst✝ : Nontrivial k p : ι → P ⊢ AffineIndependent k p ∧ affineSpan k (range p) = ⊤ → IsUnit (toMatrix b p) [PROOFSTEP] rintro ⟨h_tot, h_ind⟩ [GOAL] case mpr.intro ι : Type u₁ k : Type u₂ V : Type u₃ P : Type u₄ inst✝⁷ : AddCommGroup V inst✝⁶ : AffineSpace V P inst✝⁵ : Ring k inst✝⁴ : Module k V b : AffineBasis ι k P ι' : Type u_1 inst✝³ : Fintype ι' inst✝² : Fintype ι b₂ : AffineBasis ι k P inst✝¹ : DecidableEq ι inst✝ : Nontrivial k p : ι → P h_tot : AffineIndependent k p h_ind : affineSpan k (range p) = ⊤ ⊢ IsUnit (toMatrix b p) [PROOFSTEP] let b' : AffineBasis ι k P := ⟨p, h_tot, h_ind⟩ [GOAL] case mpr.intro ι : Type u₁ k : Type u₂ V : Type u₃ P : Type u₄ inst✝⁷ : AddCommGroup V inst✝⁶ : AffineSpace V P inst✝⁵ : Ring k inst✝⁴ : Module k V b : AffineBasis ι k P ι' : Type u_1 inst✝³ : Fintype ι' inst✝² : Fintype ι b₂ : AffineBasis ι k P inst✝¹ : DecidableEq ι inst✝ : Nontrivial k p : ι → P h_tot : AffineIndependent k p h_ind : affineSpan k (range p) = ⊤ b' : AffineBasis ι k P := { toFun := p, ind' := h_tot, tot' := h_ind } ⊢ IsUnit (toMatrix b p) [PROOFSTEP] change IsUnit (b.toMatrix b') [GOAL] case mpr.intro ι : Type u₁ k : Type u₂ V : Type u₃ P : Type u₄ inst✝⁷ : AddCommGroup V inst✝⁶ : AffineSpace V P inst✝⁵ : Ring k inst✝⁴ : Module k V b : AffineBasis ι k P ι' : Type u_1 inst✝³ : Fintype ι' inst✝² : Fintype ι b₂ : AffineBasis ι k P inst✝¹ : DecidableEq ι inst✝ : Nontrivial k p : ι → P h_tot : AffineIndependent k p h_ind : affineSpan k (range p) = ⊤ b' : AffineBasis ι k P := { toFun := p, ind' := h_tot, tot' := h_ind } ⊢ IsUnit (toMatrix b ↑b') [PROOFSTEP] exact b.isUnit_toMatrix b' [GOAL] ι : Type u₁ k : Type u₂ V : Type u₃ P : Type u₄ inst✝⁵ : AddCommGroup V inst✝⁴ : AffineSpace V P inst✝³ : CommRing k inst✝² : Module k V inst✝¹ : DecidableEq ι inst✝ : Fintype ι b b₂ : AffineBasis ι k P x : P ⊢ vecMul (↑(coords b) x) (toMatrix b ↑b₂)⁻¹ = ↑(coords b₂) x [PROOFSTEP] have hu := b.isUnit_toMatrix b₂ [GOAL] ι : Type u₁ k : Type u₂ V : Type u₃ P : Type u₄ inst✝⁵ : AddCommGroup V inst✝⁴ : AffineSpace V P inst✝³ : CommRing k inst✝² : Module k V inst✝¹ : DecidableEq ι inst✝ : Fintype ι b b₂ : AffineBasis ι k P x : P hu : IsUnit (toMatrix b ↑b₂) ⊢ vecMul (↑(coords b) x) (toMatrix b ↑b₂)⁻¹ = ↑(coords b₂) x [PROOFSTEP] rw [Matrix.isUnit_iff_isUnit_det] at hu [GOAL] ι : Type u₁ k : Type u₂ V : Type u₃ P : Type u₄ inst✝⁵ : AddCommGroup V inst✝⁴ : AffineSpace V P inst✝³ : CommRing k inst✝² : Module k V inst✝¹ : DecidableEq ι inst✝ : Fintype ι b b₂ : AffineBasis ι k P x : P hu : IsUnit (det (toMatrix b ↑b₂)) ⊢ vecMul (↑(coords b) x) (toMatrix b ↑b₂)⁻¹ = ↑(coords b₂) x [PROOFSTEP] rw [← b.toMatrix_vecMul_coords b₂, Matrix.vecMul_vecMul, Matrix.mul_nonsing_inv _ hu, Matrix.vecMul_one] [GOAL] ι : Type u₁ k : Type u₂ V : Type u₃ P : Type u₄ inst✝⁵ : AddCommGroup V inst✝⁴ : AffineSpace V P inst✝³ : CommRing k inst✝² : Module k V inst✝¹ : DecidableEq ι inst✝ : Fintype ι b b₂ : AffineBasis ι k P x : P ⊢ det (toMatrix b ↑b₂) • ↑(coords b₂) x = ↑(cramer (toMatrix b ↑b₂)ᵀ) (↑(coords b) x) [PROOFSTEP] have hu := b.isUnit_toMatrix b₂ [GOAL] ι : Type u₁ k : Type u₂ V : Type u₃ P : Type u₄ inst✝⁵ : AddCommGroup V inst✝⁴ : AffineSpace V P inst✝³ : CommRing k inst✝² : Module k V inst✝¹ : DecidableEq ι inst✝ : Fintype ι b b₂ : AffineBasis ι k P x : P hu : IsUnit (toMatrix b ↑b₂) ⊢ det (toMatrix b ↑b₂) • ↑(coords b₂) x = ↑(cramer (toMatrix b ↑b₂)ᵀ) (↑(coords b) x) [PROOFSTEP] rw [Matrix.isUnit_iff_isUnit_det] at hu [GOAL] ι : Type u₁ k : Type u₂ V : Type u₃ P : Type u₄ inst✝⁵ : AddCommGroup V inst✝⁴ : AffineSpace V P inst✝³ : CommRing k inst✝² : Module k V inst✝¹ : DecidableEq ι inst✝ : Fintype ι b b₂ : AffineBasis ι k P x : P hu : IsUnit (det (toMatrix b ↑b₂)) ⊢ det (toMatrix b ↑b₂) • ↑(coords b₂) x = ↑(cramer (toMatrix b ↑b₂)ᵀ) (↑(coords b) x) [PROOFSTEP] rw [← b.toMatrix_inv_vecMul_toMatrix, Matrix.det_smul_inv_vecMul_eq_cramer_transpose _ _ hu]
{"mathlib_filename": "Mathlib.LinearAlgebra.AffineSpace.Matrix", "llama_tokens": 14293}
[GOAL] R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M motive : M ⊗[R] N → Prop z : M ⊗[R] N zero : motive 0 tmul : ∀ (x : M) (y : N), motive (x ⊗ₜ[R] y) add : ∀ (x y : M ⊗[R] N), motive x → motive y → motive (x + y) x : FreeAddMonoid (M × N) x✝ : M × N y : FreeAddMonoid (M × N) ih : motive ↑y m : M n : N ⊢ motive ↑(FreeAddMonoid.of (m, n) + y) [PROOFSTEP] rw [AddCon.coe_add] [GOAL] R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M motive : M ⊗[R] N → Prop z : M ⊗[R] N zero : motive 0 tmul : ∀ (x : M) (y : N), motive (x ⊗ₜ[R] y) add : ∀ (x y : M ⊗[R] N), motive x → motive y → motive (x + y) x : FreeAddMonoid (M × N) x✝ : M × N y : FreeAddMonoid (M × N) ih : motive ↑y m : M n : N ⊢ motive (↑(FreeAddMonoid.of (m, n)) + ↑y) [PROOFSTEP] exact add _ _ (tmul ..) ih [GOAL] R : Type u_1 inst✝¹⁸ : CommSemiring R R' : Type u_2 inst✝¹⁷ : Monoid R' R'' : Type u_3 inst✝¹⁶ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : AddCommMonoid N inst✝¹³ : AddCommMonoid P inst✝¹² : AddCommMonoid Q inst✝¹¹ : AddCommMonoid S inst✝¹⁰ : Module R M inst✝⁹ : Module R N inst✝⁸ : Module R P inst✝⁷ : Module R Q inst✝⁶ : Module R S inst✝⁵ : DistribMulAction R' M inst✝⁴ : Module R'' M inst✝³ : SMul R' R inst✝² : IsScalarTower R' R M inst✝¹ : DistribMulAction R' N inst✝ : IsScalarTower R' R N r : R' m : M n : N ⊢ (r • m) ⊗ₜ[R] n = m ⊗ₜ[R] (r • n) [PROOFSTEP] conv_lhs => rw [← one_smul R m] [GOAL] R : Type u_1 inst✝¹⁸ : CommSemiring R R' : Type u_2 inst✝¹⁷ : Monoid R' R'' : Type u_3 inst✝¹⁶ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : AddCommMonoid N inst✝¹³ : AddCommMonoid P inst✝¹² : AddCommMonoid Q inst✝¹¹ : AddCommMonoid S inst✝¹⁰ : Module R M inst✝⁹ : Module R N inst✝⁸ : Module R P inst✝⁷ : Module R Q inst✝⁶ : Module R S inst✝⁵ : DistribMulAction R' M inst✝⁴ : Module R'' M inst✝³ : SMul R' R inst✝² : IsScalarTower R' R M inst✝¹ : DistribMulAction R' N inst✝ : IsScalarTower R' R N r : R' m : M n : N | (r • m) ⊗ₜ[R] n [PROOFSTEP] rw [← one_smul R m] [GOAL] R : Type u_1 inst✝¹⁸ : CommSemiring R R' : Type u_2 inst✝¹⁷ : Monoid R' R'' : Type u_3 inst✝¹⁶ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : AddCommMonoid N inst✝¹³ : AddCommMonoid P inst✝¹² : AddCommMonoid Q inst✝¹¹ : AddCommMonoid S inst✝¹⁰ : Module R M inst✝⁹ : Module R N inst✝⁸ : Module R P inst✝⁷ : Module R Q inst✝⁶ : Module R S inst✝⁵ : DistribMulAction R' M inst✝⁴ : Module R'' M inst✝³ : SMul R' R inst✝² : IsScalarTower R' R M inst✝¹ : DistribMulAction R' N inst✝ : IsScalarTower R' R N r : R' m : M n : N | (r • m) ⊗ₜ[R] n [PROOFSTEP] rw [← one_smul R m] [GOAL] R : Type u_1 inst✝¹⁸ : CommSemiring R R' : Type u_2 inst✝¹⁷ : Monoid R' R'' : Type u_3 inst✝¹⁶ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : AddCommMonoid N inst✝¹³ : AddCommMonoid P inst✝¹² : AddCommMonoid Q inst✝¹¹ : AddCommMonoid S inst✝¹⁰ : Module R M inst✝⁹ : Module R N inst✝⁸ : Module R P inst✝⁷ : Module R Q inst✝⁶ : Module R S inst✝⁵ : DistribMulAction R' M inst✝⁴ : Module R'' M inst✝³ : SMul R' R inst✝² : IsScalarTower R' R M inst✝¹ : DistribMulAction R' N inst✝ : IsScalarTower R' R N r : R' m : M n : N | (r • m) ⊗ₜ[R] n [PROOFSTEP] rw [← one_smul R m] [GOAL] R : Type u_1 inst✝¹⁸ : CommSemiring R R' : Type u_2 inst✝¹⁷ : Monoid R' R'' : Type u_3 inst✝¹⁶ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : AddCommMonoid N inst✝¹³ : AddCommMonoid P inst✝¹² : AddCommMonoid Q inst✝¹¹ : AddCommMonoid S inst✝¹⁰ : Module R M inst✝⁹ : Module R N inst✝⁸ : Module R P inst✝⁷ : Module R Q inst✝⁶ : Module R S inst✝⁵ : DistribMulAction R' M inst✝⁴ : Module R'' M inst✝³ : SMul R' R inst✝² : IsScalarTower R' R M inst✝¹ : DistribMulAction R' N inst✝ : IsScalarTower R' R N r : R' m : M n : N ⊢ (r • 1 • m) ⊗ₜ[R] n = m ⊗ₜ[R] (r • n) [PROOFSTEP] conv_rhs => rw [← one_smul R n] [GOAL] R : Type u_1 inst✝¹⁸ : CommSemiring R R' : Type u_2 inst✝¹⁷ : Monoid R' R'' : Type u_3 inst✝¹⁶ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : AddCommMonoid N inst✝¹³ : AddCommMonoid P inst✝¹² : AddCommMonoid Q inst✝¹¹ : AddCommMonoid S inst✝¹⁰ : Module R M inst✝⁹ : Module R N inst✝⁸ : Module R P inst✝⁷ : Module R Q inst✝⁶ : Module R S inst✝⁵ : DistribMulAction R' M inst✝⁴ : Module R'' M inst✝³ : SMul R' R inst✝² : IsScalarTower R' R M inst✝¹ : DistribMulAction R' N inst✝ : IsScalarTower R' R N r : R' m : M n : N | m ⊗ₜ[R] (r • n) [PROOFSTEP] rw [← one_smul R n] [GOAL] R : Type u_1 inst✝¹⁸ : CommSemiring R R' : Type u_2 inst✝¹⁷ : Monoid R' R'' : Type u_3 inst✝¹⁶ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : AddCommMonoid N inst✝¹³ : AddCommMonoid P inst✝¹² : AddCommMonoid Q inst✝¹¹ : AddCommMonoid S inst✝¹⁰ : Module R M inst✝⁹ : Module R N inst✝⁸ : Module R P inst✝⁷ : Module R Q inst✝⁶ : Module R S inst✝⁵ : DistribMulAction R' M inst✝⁴ : Module R'' M inst✝³ : SMul R' R inst✝² : IsScalarTower R' R M inst✝¹ : DistribMulAction R' N inst✝ : IsScalarTower R' R N r : R' m : M n : N | m ⊗ₜ[R] (r • n) [PROOFSTEP] rw [← one_smul R n] [GOAL] R : Type u_1 inst✝¹⁸ : CommSemiring R R' : Type u_2 inst✝¹⁷ : Monoid R' R'' : Type u_3 inst✝¹⁶ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : AddCommMonoid N inst✝¹³ : AddCommMonoid P inst✝¹² : AddCommMonoid Q inst✝¹¹ : AddCommMonoid S inst✝¹⁰ : Module R M inst✝⁹ : Module R N inst✝⁸ : Module R P inst✝⁷ : Module R Q inst✝⁶ : Module R S inst✝⁵ : DistribMulAction R' M inst✝⁴ : Module R'' M inst✝³ : SMul R' R inst✝² : IsScalarTower R' R M inst✝¹ : DistribMulAction R' N inst✝ : IsScalarTower R' R N r : R' m : M n : N | m ⊗ₜ[R] (r • n) [PROOFSTEP] rw [← one_smul R n] [GOAL] R : Type u_1 inst✝¹⁸ : CommSemiring R R' : Type u_2 inst✝¹⁷ : Monoid R' R'' : Type u_3 inst✝¹⁶ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : AddCommMonoid N inst✝¹³ : AddCommMonoid P inst✝¹² : AddCommMonoid Q inst✝¹¹ : AddCommMonoid S inst✝¹⁰ : Module R M inst✝⁹ : Module R N inst✝⁸ : Module R P inst✝⁷ : Module R Q inst✝⁶ : Module R S inst✝⁵ : DistribMulAction R' M inst✝⁴ : Module R'' M inst✝³ : SMul R' R inst✝² : IsScalarTower R' R M inst✝¹ : DistribMulAction R' N inst✝ : IsScalarTower R' R N r : R' m : M n : N ⊢ (r • 1 • m) ⊗ₜ[R] n = m ⊗ₜ[R] (r • 1 • n) [PROOFSTEP] rw [← smul_assoc, ← smul_assoc] [GOAL] R : Type u_1 inst✝¹⁸ : CommSemiring R R' : Type u_2 inst✝¹⁷ : Monoid R' R'' : Type u_3 inst✝¹⁶ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : AddCommMonoid N inst✝¹³ : AddCommMonoid P inst✝¹² : AddCommMonoid Q inst✝¹¹ : AddCommMonoid S inst✝¹⁰ : Module R M inst✝⁹ : Module R N inst✝⁸ : Module R P inst✝⁷ : Module R Q inst✝⁶ : Module R S inst✝⁵ : DistribMulAction R' M inst✝⁴ : Module R'' M inst✝³ : SMul R' R inst✝² : IsScalarTower R' R M inst✝¹ : DistribMulAction R' N inst✝ : IsScalarTower R' R N r : R' m : M n : N ⊢ ((r • 1) • m) ⊗ₜ[R] n = m ⊗ₜ[R] ((r • 1) • n) [PROOFSTEP] exact Quotient.sound' <| AddConGen.Rel.of _ _ <| Eqv.of_smul _ _ _ [GOAL] R : Type u_1 inst✝¹⁶ : CommSemiring R R' : Type u_2 inst✝¹⁵ : Monoid R' R'' : Type u_3 inst✝¹⁴ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid N inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : AddCommMonoid Q inst✝⁹ : AddCommMonoid S inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Module R S inst✝³ : DistribMulAction R' M inst✝² : Module R'' M inst✝¹ : SMulCommClass R R' M inst✝ : SMulCommClass R R'' M r : R' x y : FreeAddMonoid (M × N) hxy : Eqv R M N x y n : N ⊢ ↑(SMul.aux r) (FreeAddMonoid.of (0, n)) = ↑(SMul.aux r) 0 [PROOFSTEP] simp_rw [map_zero, SMul.aux_of, smul_zero, zero_tmul] [GOAL] R : Type u_1 inst✝¹⁶ : CommSemiring R R' : Type u_2 inst✝¹⁵ : Monoid R' R'' : Type u_3 inst✝¹⁴ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid N inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : AddCommMonoid Q inst✝⁹ : AddCommMonoid S inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Module R S inst✝³ : DistribMulAction R' M inst✝² : Module R'' M inst✝¹ : SMulCommClass R R' M inst✝ : SMulCommClass R R'' M r : R' x y : FreeAddMonoid (M × N) hxy : Eqv R M N x y m : M ⊢ ↑(SMul.aux r) (FreeAddMonoid.of (m, 0)) = ↑(SMul.aux r) 0 [PROOFSTEP] simp_rw [map_zero, SMul.aux_of, tmul_zero] [GOAL] R : Type u_1 inst✝¹⁶ : CommSemiring R R' : Type u_2 inst✝¹⁵ : Monoid R' R'' : Type u_3 inst✝¹⁴ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid N inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : AddCommMonoid Q inst✝⁹ : AddCommMonoid S inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Module R S inst✝³ : DistribMulAction R' M inst✝² : Module R'' M inst✝¹ : SMulCommClass R R' M inst✝ : SMulCommClass R R'' M r : R' x y : FreeAddMonoid (M × N) hxy : Eqv R M N x y m₁ m₂ : M n : N ⊢ ↑(SMul.aux r) (FreeAddMonoid.of (m₁, n) + FreeAddMonoid.of (m₂, n)) = ↑(SMul.aux r) (FreeAddMonoid.of (m₁ + m₂, n)) [PROOFSTEP] simp_rw [map_add, SMul.aux_of, smul_add, add_tmul] [GOAL] R : Type u_1 inst✝¹⁶ : CommSemiring R R' : Type u_2 inst✝¹⁵ : Monoid R' R'' : Type u_3 inst✝¹⁴ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid N inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : AddCommMonoid Q inst✝⁹ : AddCommMonoid S inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Module R S inst✝³ : DistribMulAction R' M inst✝² : Module R'' M inst✝¹ : SMulCommClass R R' M inst✝ : SMulCommClass R R'' M r : R' x y : FreeAddMonoid (M × N) hxy : Eqv R M N x y m : M n₁ n₂ : N ⊢ ↑(SMul.aux r) (FreeAddMonoid.of (m, n₁) + FreeAddMonoid.of (m, n₂)) = ↑(SMul.aux r) (FreeAddMonoid.of (m, n₁ + n₂)) [PROOFSTEP] simp_rw [map_add, SMul.aux_of, tmul_add] [GOAL] R : Type u_1 inst✝¹⁶ : CommSemiring R R' : Type u_2 inst✝¹⁵ : Monoid R' R'' : Type u_3 inst✝¹⁴ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid N inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : AddCommMonoid Q inst✝⁹ : AddCommMonoid S inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Module R S inst✝³ : DistribMulAction R' M inst✝² : Module R'' M inst✝¹ : SMulCommClass R R' M inst✝ : SMulCommClass R R'' M r : R' x y : FreeAddMonoid (M × N) hxy : Eqv R M N x y s : R m : M n : N ⊢ ↑(SMul.aux r) (FreeAddMonoid.of (s • m, n)) = ↑(SMul.aux r) (FreeAddMonoid.of (m, s • n)) [PROOFSTEP] rw [SMul.aux_of, SMul.aux_of, ← smul_comm, smul_tmul] [GOAL] R : Type u_1 inst✝¹⁶ : CommSemiring R R' : Type u_2 inst✝¹⁵ : Monoid R' R'' : Type u_3 inst✝¹⁴ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid N inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : AddCommMonoid Q inst✝⁹ : AddCommMonoid S inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Module R S inst✝³ : DistribMulAction R' M inst✝² : Module R'' M inst✝¹ : SMulCommClass R R' M inst✝ : SMulCommClass R R'' M r : R' x✝ y✝ : FreeAddMonoid (M × N) hxy : Eqv R M N x✝ y✝ x y : FreeAddMonoid (M × N) ⊢ ↑(SMul.aux r) (x + y) = ↑(SMul.aux r) (y + x) [PROOFSTEP] simp_rw [map_add, add_comm] [GOAL] R : Type u_1 inst✝¹⁶ : CommSemiring R R' : Type u_2 inst✝¹⁵ : Monoid R' R'' : Type u_3 inst✝¹⁴ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid N inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : AddCommMonoid Q inst✝⁹ : AddCommMonoid S inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Module R S inst✝³ : DistribMulAction R' M inst✝² : Module R'' M inst✝¹ : SMulCommClass R R' M inst✝ : SMulCommClass R R'' M x : M ⊗[R] N this : ∀ (r : R'') (m : M) (n : N), r • m ⊗ₜ[R] n = (r • m) ⊗ₜ[R] n ⊢ 0 • 0 = 0 [PROOFSTEP] rw [TensorProduct.smul_zero] [GOAL] R : Type u_1 inst✝¹⁶ : CommSemiring R R' : Type u_2 inst✝¹⁵ : Monoid R' R'' : Type u_3 inst✝¹⁴ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid N inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : AddCommMonoid Q inst✝⁹ : AddCommMonoid S inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Module R S inst✝³ : DistribMulAction R' M inst✝² : Module R'' M inst✝¹ : SMulCommClass R R' M inst✝ : SMulCommClass R R'' M x : M ⊗[R] N this : ∀ (r : R'') (m : M) (n : N), r • m ⊗ₜ[R] n = (r • m) ⊗ₜ[R] n m : M n : N ⊢ 0 • m ⊗ₜ[R] n = 0 [PROOFSTEP] rw [this, zero_smul, zero_tmul] [GOAL] R : Type u_1 inst✝¹⁶ : CommSemiring R R' : Type u_2 inst✝¹⁵ : Monoid R' R'' : Type u_3 inst✝¹⁴ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid N inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : AddCommMonoid Q inst✝⁹ : AddCommMonoid S inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Module R S inst✝³ : DistribMulAction R' M inst✝² : Module R'' M inst✝¹ : SMulCommClass R R' M inst✝ : SMulCommClass R R'' M x✝ : M ⊗[R] N this : ∀ (r : R'') (m : M) (n : N), r • m ⊗ₜ[R] n = (r • m) ⊗ₜ[R] n x y : M ⊗[R] N ihx : 0 • x = 0 ihy : 0 • y = 0 ⊢ 0 • (x + y) = 0 [PROOFSTEP] rw [TensorProduct.smul_add, ihx, ihy, add_zero] [GOAL] R : Type u_1 inst✝¹⁶ : CommSemiring R R' : Type u_2 inst✝¹⁵ : Monoid R' R'' : Type u_3 inst✝¹⁴ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid N inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : AddCommMonoid Q inst✝⁹ : AddCommMonoid S inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Module R S inst✝³ : DistribMulAction R' M inst✝² : Module R'' M inst✝¹ : SMulCommClass R R' M inst✝ : SMulCommClass R R'' M x : M ⊗[R] N this : ∀ (r : R') (m : M) (n : N), r • m ⊗ₜ[R] n = (r • m) ⊗ₜ[R] n ⊢ 1 • 0 = 0 [PROOFSTEP] rw [TensorProduct.smul_zero] [GOAL] R : Type u_1 inst✝¹⁶ : CommSemiring R R' : Type u_2 inst✝¹⁵ : Monoid R' R'' : Type u_3 inst✝¹⁴ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid N inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : AddCommMonoid Q inst✝⁹ : AddCommMonoid S inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Module R S inst✝³ : DistribMulAction R' M inst✝² : Module R'' M inst✝¹ : SMulCommClass R R' M inst✝ : SMulCommClass R R'' M x : M ⊗[R] N this : ∀ (r : R') (m : M) (n : N), r • m ⊗ₜ[R] n = (r • m) ⊗ₜ[R] n m : M n : N ⊢ 1 • m ⊗ₜ[R] n = m ⊗ₜ[R] n [PROOFSTEP] rw [this, one_smul] [GOAL] R : Type u_1 inst✝¹⁶ : CommSemiring R R' : Type u_2 inst✝¹⁵ : Monoid R' R'' : Type u_3 inst✝¹⁴ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid N inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : AddCommMonoid Q inst✝⁹ : AddCommMonoid S inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Module R S inst✝³ : DistribMulAction R' M inst✝² : Module R'' M inst✝¹ : SMulCommClass R R' M inst✝ : SMulCommClass R R'' M x✝ : M ⊗[R] N this : ∀ (r : R') (m : M) (n : N), r • m ⊗ₜ[R] n = (r • m) ⊗ₜ[R] n x y : M ⊗[R] N ihx : 1 • x = x ihy : 1 • y = y ⊢ 1 • (x + y) = x + y [PROOFSTEP] rw [TensorProduct.smul_add, ihx, ihy] [GOAL] R : Type u_1 inst✝¹⁶ : CommSemiring R R' : Type u_2 inst✝¹⁵ : Monoid R' R'' : Type u_3 inst✝¹⁴ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid N inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : AddCommMonoid Q inst✝⁹ : AddCommMonoid S inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Module R S inst✝³ : DistribMulAction R' M inst✝² : Module R'' M inst✝¹ : SMulCommClass R R' M inst✝ : SMulCommClass R R'' M r s : R'' x : M ⊗[R] N this : ∀ (r : R'') (m : M) (n : N), r • m ⊗ₜ[R] n = (r • m) ⊗ₜ[R] n ⊢ (r + s) • 0 = r • 0 + s • 0 [PROOFSTEP] simp_rw [TensorProduct.smul_zero, add_zero] [GOAL] R : Type u_1 inst✝¹⁶ : CommSemiring R R' : Type u_2 inst✝¹⁵ : Monoid R' R'' : Type u_3 inst✝¹⁴ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid N inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : AddCommMonoid Q inst✝⁹ : AddCommMonoid S inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Module R S inst✝³ : DistribMulAction R' M inst✝² : Module R'' M inst✝¹ : SMulCommClass R R' M inst✝ : SMulCommClass R R'' M r s : R'' x : M ⊗[R] N this : ∀ (r : R'') (m : M) (n : N), r • m ⊗ₜ[R] n = (r • m) ⊗ₜ[R] n m : M n : N ⊢ (r + s) • m ⊗ₜ[R] n = r • m ⊗ₜ[R] n + s • m ⊗ₜ[R] n [PROOFSTEP] simp_rw [this, add_smul, add_tmul] [GOAL] R : Type u_1 inst✝¹⁶ : CommSemiring R R' : Type u_2 inst✝¹⁵ : Monoid R' R'' : Type u_3 inst✝¹⁴ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid N inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : AddCommMonoid Q inst✝⁹ : AddCommMonoid S inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Module R S inst✝³ : DistribMulAction R' M inst✝² : Module R'' M inst✝¹ : SMulCommClass R R' M inst✝ : SMulCommClass R R'' M r s : R'' x✝ : M ⊗[R] N this : ∀ (r : R'') (m : M) (n : N), r • m ⊗ₜ[R] n = (r • m) ⊗ₜ[R] n x y : M ⊗[R] N ihx : (r + s) • x = r • x + s • x ihy : (r + s) • y = r • y + s • y ⊢ (r + s) • (x + y) = r • (x + y) + s • (x + y) [PROOFSTEP] simp_rw [TensorProduct.smul_add] [GOAL] R : Type u_1 inst✝¹⁶ : CommSemiring R R' : Type u_2 inst✝¹⁵ : Monoid R' R'' : Type u_3 inst✝¹⁴ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid N inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : AddCommMonoid Q inst✝⁹ : AddCommMonoid S inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Module R S inst✝³ : DistribMulAction R' M inst✝² : Module R'' M inst✝¹ : SMulCommClass R R' M inst✝ : SMulCommClass R R'' M r s : R'' x✝ : M ⊗[R] N this : ∀ (r : R'') (m : M) (n : N), r • m ⊗ₜ[R] n = (r • m) ⊗ₜ[R] n x y : M ⊗[R] N ihx : (r + s) • x = r • x + s • x ihy : (r + s) • y = r • y + s • y ⊢ (r + s) • x + (r + s) • y = r • x + r • y + (s • x + s • y) [PROOFSTEP] rw [ihx, ihy, add_add_add_comm] [GOAL] R : Type u_1 inst✝¹⁶ : CommSemiring R R' : Type u_2 inst✝¹⁵ : Monoid R' R'' : Type u_3 inst✝¹⁴ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid N inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : AddCommMonoid Q inst✝⁹ : AddCommMonoid S inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Module R S inst✝³ : DistribMulAction R' M inst✝² : Module R'' M inst✝¹ : SMulCommClass R R' M inst✝ : SMulCommClass R R'' M src✝¹ : AddCommSemigroup (M ⊗[R] N) := addCommSemigroup M N src✝ : AddZeroClass (M ⊗[R] N) := addZeroClass M N ⊢ ∀ (x : M ⊗[R] N), (fun n v => n • v) 0 x = 0 [PROOFSTEP] simp [TensorProduct.zero_smul] [GOAL] R : Type u_1 inst✝¹⁶ : CommSemiring R R' : Type u_2 inst✝¹⁵ : Monoid R' R'' : Type u_3 inst✝¹⁴ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid N inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : AddCommMonoid Q inst✝⁹ : AddCommMonoid S inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Module R S inst✝³ : DistribMulAction R' M inst✝² : Module R'' M inst✝¹ : SMulCommClass R R' M inst✝ : SMulCommClass R R'' M src✝¹ : AddCommSemigroup (M ⊗[R] N) := addCommSemigroup M N src✝ : AddZeroClass (M ⊗[R] N) := addZeroClass M N ⊢ ∀ (n : ℕ) (x : M ⊗[R] N), (fun n v => n • v) (n + 1) x = x + (fun n v => n • v) n x [PROOFSTEP] simp only [TensorProduct.one_smul, TensorProduct.add_smul, add_comm, forall_const] [GOAL] R : Type u_1 inst✝¹⁶ : CommSemiring R R' : Type u_2 inst✝¹⁵ : Monoid R' R'' : Type u_3 inst✝¹⁴ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid N inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : AddCommMonoid Q inst✝⁹ : AddCommMonoid S inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Module R S inst✝³ : DistribMulAction R' M inst✝² : Module R'' M inst✝¹ : SMulCommClass R R' M inst✝ : SMulCommClass R R'' M this : ∀ (r : R') (m : M) (n : N), r • m ⊗ₜ[R] n = (r • m) ⊗ₜ[R] n r s : R' x : M ⊗[R] N ⊢ (r * s) • 0 = r • s • 0 [PROOFSTEP] simp_rw [TensorProduct.smul_zero] [GOAL] R : Type u_1 inst✝¹⁶ : CommSemiring R R' : Type u_2 inst✝¹⁵ : Monoid R' R'' : Type u_3 inst✝¹⁴ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid N inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : AddCommMonoid Q inst✝⁹ : AddCommMonoid S inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Module R S inst✝³ : DistribMulAction R' M inst✝² : Module R'' M inst✝¹ : SMulCommClass R R' M inst✝ : SMulCommClass R R'' M this : ∀ (r : R') (m : M) (n : N), r • m ⊗ₜ[R] n = (r • m) ⊗ₜ[R] n r s : R' x : M ⊗[R] N m : M n : N ⊢ (r * s) • m ⊗ₜ[R] n = r • s • m ⊗ₜ[R] n [PROOFSTEP] simp_rw [this, mul_smul] [GOAL] R : Type u_1 inst✝¹⁶ : CommSemiring R R' : Type u_2 inst✝¹⁵ : Monoid R' R'' : Type u_3 inst✝¹⁴ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid N inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : AddCommMonoid Q inst✝⁹ : AddCommMonoid S inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Module R S inst✝³ : DistribMulAction R' M inst✝² : Module R'' M inst✝¹ : SMulCommClass R R' M inst✝ : SMulCommClass R R'' M this : ∀ (r : R') (m : M) (n : N), r • m ⊗ₜ[R] n = (r • m) ⊗ₜ[R] n r s : R' x✝ x y : M ⊗[R] N ihx : (r * s) • x = r • s • x ihy : (r * s) • y = r • s • y ⊢ (r * s) • (x + y) = r • s • (x + y) [PROOFSTEP] simp_rw [TensorProduct.smul_add] [GOAL] R : Type u_1 inst✝¹⁶ : CommSemiring R R' : Type u_2 inst✝¹⁵ : Monoid R' R'' : Type u_3 inst✝¹⁴ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid N inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : AddCommMonoid Q inst✝⁹ : AddCommMonoid S inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Module R S inst✝³ : DistribMulAction R' M inst✝² : Module R'' M inst✝¹ : SMulCommClass R R' M inst✝ : SMulCommClass R R'' M this : ∀ (r : R') (m : M) (n : N), r • m ⊗ₜ[R] n = (r • m) ⊗ₜ[R] n r s : R' x✝ x y : M ⊗[R] N ihx : (r * s) • x = r • s • x ihy : (r * s) • y = r • s • y ⊢ (r * s) • x + (r * s) • y = r • s • x + r • s • y [PROOFSTEP] rw [ihx, ihy] [GOAL] R : Type u_1 inst✝¹⁶ : CommSemiring R R' : Type u_2 inst✝¹⁵ : Monoid R' R'' : Type u_3 inst✝¹⁴ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid N inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : AddCommMonoid Q inst✝⁹ : AddCommMonoid S inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Module R S inst✝³ : DistribMulAction R' M inst✝² : Module R'' M inst✝¹ : SMulCommClass R R' M inst✝ : SMulCommClass R R'' M r s : R m : M n : N ⊢ (r • m) ⊗ₜ[R] (s • n) = (r * s) • m ⊗ₜ[R] n [PROOFSTEP] simp_rw [smul_tmul, tmul_smul, mul_smul] [GOAL] R : Type u_1 inst✝¹⁸ : CommSemiring R R' : Type u_2 inst✝¹⁷ : Monoid R' R'' : Type u_3 inst✝¹⁶ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : AddCommMonoid N inst✝¹³ : AddCommMonoid P inst✝¹² : AddCommMonoid Q inst✝¹¹ : AddCommMonoid S inst✝¹⁰ : Module R M inst✝⁹ : Module R N inst✝⁸ : Module R P inst✝⁷ : Module R Q inst✝⁶ : Module R S inst✝⁵ : DistribMulAction R' M inst✝⁴ : Module R'' M inst✝³ : SMulCommClass R R' M inst✝² : SMulCommClass R R'' M inst✝¹ : Module R''ᵐᵒᵖ M inst✝ : IsCentralScalar R'' M r : R'' x : M ⊗[R] N ⊢ MulOpposite.op r • 0 = r • 0 [PROOFSTEP] rw [smul_zero, smul_zero] [GOAL] R : Type u_1 inst✝¹⁸ : CommSemiring R R' : Type u_2 inst✝¹⁷ : Monoid R' R'' : Type u_3 inst✝¹⁶ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : AddCommMonoid N inst✝¹³ : AddCommMonoid P inst✝¹² : AddCommMonoid Q inst✝¹¹ : AddCommMonoid S inst✝¹⁰ : Module R M inst✝⁹ : Module R N inst✝⁸ : Module R P inst✝⁷ : Module R Q inst✝⁶ : Module R S inst✝⁵ : DistribMulAction R' M inst✝⁴ : Module R'' M inst✝³ : SMulCommClass R R' M inst✝² : SMulCommClass R R'' M inst✝¹ : Module R''ᵐᵒᵖ M inst✝ : IsCentralScalar R'' M r : R'' x✝ : M ⊗[R] N x : M y : N ⊢ MulOpposite.op r • x ⊗ₜ[R] y = r • x ⊗ₜ[R] y [PROOFSTEP] rw [smul_tmul', smul_tmul', op_smul_eq_smul] [GOAL] R : Type u_1 inst✝¹⁸ : CommSemiring R R' : Type u_2 inst✝¹⁷ : Monoid R' R'' : Type u_3 inst✝¹⁶ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : AddCommMonoid N inst✝¹³ : AddCommMonoid P inst✝¹² : AddCommMonoid Q inst✝¹¹ : AddCommMonoid S inst✝¹⁰ : Module R M inst✝⁹ : Module R N inst✝⁸ : Module R P inst✝⁷ : Module R Q inst✝⁶ : Module R S inst✝⁵ : DistribMulAction R' M inst✝⁴ : Module R'' M inst✝³ : SMulCommClass R R' M inst✝² : SMulCommClass R R'' M inst✝¹ : Module R''ᵐᵒᵖ M inst✝ : IsCentralScalar R'' M r : R'' x✝ x y : M ⊗[R] N hx : MulOpposite.op r • x = r • x hy : MulOpposite.op r • y = r • y ⊢ MulOpposite.op r • (x + y) = r • (x + y) [PROOFSTEP] rw [smul_add, smul_add, hx, hy] [GOAL] R : Type u_1 inst✝²⁰ : CommSemiring R R' : Type u_2 inst✝¹⁹ : Monoid R' R'' : Type u_3 inst✝¹⁸ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹⁷ : AddCommMonoid M inst✝¹⁶ : AddCommMonoid N inst✝¹⁵ : AddCommMonoid P inst✝¹⁴ : AddCommMonoid Q inst✝¹³ : AddCommMonoid S inst✝¹² : Module R M inst✝¹¹ : Module R N inst✝¹⁰ : Module R P inst✝⁹ : Module R Q inst✝⁸ : Module R S inst✝⁷ : DistribMulAction R' M inst✝⁶ : Module R'' M inst✝⁵ : SMulCommClass R R' M inst✝⁴ : SMulCommClass R R'' M R'₂ : Type u_9 inst✝³ : Monoid R'₂ inst✝² : DistribMulAction R'₂ M inst✝¹ : SMulCommClass R R'₂ M inst✝ : SMulCommClass R' R'₂ M r' : R' r'₂ : R'₂ x : M ⊗[R] N ⊢ r' • r'₂ • 0 = r'₂ • r' • 0 [PROOFSTEP] simp_rw [TensorProduct.smul_zero] [GOAL] R : Type u_1 inst✝²⁰ : CommSemiring R R' : Type u_2 inst✝¹⁹ : Monoid R' R'' : Type u_3 inst✝¹⁸ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹⁷ : AddCommMonoid M inst✝¹⁶ : AddCommMonoid N inst✝¹⁵ : AddCommMonoid P inst✝¹⁴ : AddCommMonoid Q inst✝¹³ : AddCommMonoid S inst✝¹² : Module R M inst✝¹¹ : Module R N inst✝¹⁰ : Module R P inst✝⁹ : Module R Q inst✝⁸ : Module R S inst✝⁷ : DistribMulAction R' M inst✝⁶ : Module R'' M inst✝⁵ : SMulCommClass R R' M inst✝⁴ : SMulCommClass R R'' M R'₂ : Type u_9 inst✝³ : Monoid R'₂ inst✝² : DistribMulAction R'₂ M inst✝¹ : SMulCommClass R R'₂ M inst✝ : SMulCommClass R' R'₂ M r' : R' r'₂ : R'₂ x : M ⊗[R] N m : M n : N ⊢ r' • r'₂ • m ⊗ₜ[R] n = r'₂ • r' • m ⊗ₜ[R] n [PROOFSTEP] simp_rw [smul_tmul', smul_comm] [GOAL] R : Type u_1 inst✝²⁰ : CommSemiring R R' : Type u_2 inst✝¹⁹ : Monoid R' R'' : Type u_3 inst✝¹⁸ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹⁷ : AddCommMonoid M inst✝¹⁶ : AddCommMonoid N inst✝¹⁵ : AddCommMonoid P inst✝¹⁴ : AddCommMonoid Q inst✝¹³ : AddCommMonoid S inst✝¹² : Module R M inst✝¹¹ : Module R N inst✝¹⁰ : Module R P inst✝⁹ : Module R Q inst✝⁸ : Module R S inst✝⁷ : DistribMulAction R' M inst✝⁶ : Module R'' M inst✝⁵ : SMulCommClass R R' M inst✝⁴ : SMulCommClass R R'' M R'₂ : Type u_9 inst✝³ : Monoid R'₂ inst✝² : DistribMulAction R'₂ M inst✝¹ : SMulCommClass R R'₂ M inst✝ : SMulCommClass R' R'₂ M r' : R' r'₂ : R'₂ x✝ x y : M ⊗[R] N ihx : r' • r'₂ • x = r'₂ • r' • x ihy : r' • r'₂ • y = r'₂ • r' • y ⊢ r' • r'₂ • (x + y) = r'₂ • r' • (x + y) [PROOFSTEP] simp_rw [TensorProduct.smul_add] [GOAL] R : Type u_1 inst✝²⁰ : CommSemiring R R' : Type u_2 inst✝¹⁹ : Monoid R' R'' : Type u_3 inst✝¹⁸ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹⁷ : AddCommMonoid M inst✝¹⁶ : AddCommMonoid N inst✝¹⁵ : AddCommMonoid P inst✝¹⁴ : AddCommMonoid Q inst✝¹³ : AddCommMonoid S inst✝¹² : Module R M inst✝¹¹ : Module R N inst✝¹⁰ : Module R P inst✝⁹ : Module R Q inst✝⁸ : Module R S inst✝⁷ : DistribMulAction R' M inst✝⁶ : Module R'' M inst✝⁵ : SMulCommClass R R' M inst✝⁴ : SMulCommClass R R'' M R'₂ : Type u_9 inst✝³ : Monoid R'₂ inst✝² : DistribMulAction R'₂ M inst✝¹ : SMulCommClass R R'₂ M inst✝ : SMulCommClass R' R'₂ M r' : R' r'₂ : R'₂ x✝ x y : M ⊗[R] N ihx : r' • r'₂ • x = r'₂ • r' • x ihy : r' • r'₂ • y = r'₂ • r' • y ⊢ r' • r'₂ • x + r' • r'₂ • y = r'₂ • r' • x + r'₂ • r' • y [PROOFSTEP] rw [ihx, ihy] [GOAL] R : Type u_1 inst✝²¹ : CommSemiring R R' : Type u_2 inst✝²⁰ : Monoid R' R'' : Type u_3 inst✝¹⁹ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹⁸ : AddCommMonoid M inst✝¹⁷ : AddCommMonoid N inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : AddCommMonoid Q inst✝¹⁴ : AddCommMonoid S inst✝¹³ : Module R M inst✝¹² : Module R N inst✝¹¹ : Module R P inst✝¹⁰ : Module R Q inst✝⁹ : Module R S inst✝⁸ : DistribMulAction R' M inst✝⁷ : Module R'' M inst✝⁶ : SMulCommClass R R' M inst✝⁵ : SMulCommClass R R'' M R'₂ : Type u_9 inst✝⁴ : Monoid R'₂ inst✝³ : DistribMulAction R'₂ M inst✝² : SMulCommClass R R'₂ M inst✝¹ : SMul R'₂ R' inst✝ : IsScalarTower R'₂ R' M s : R'₂ r : R' x : M ⊗[R] N ⊢ (s • r) • 0 = s • r • 0 [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝²¹ : CommSemiring R R' : Type u_2 inst✝²⁰ : Monoid R' R'' : Type u_3 inst✝¹⁹ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹⁸ : AddCommMonoid M inst✝¹⁷ : AddCommMonoid N inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : AddCommMonoid Q inst✝¹⁴ : AddCommMonoid S inst✝¹³ : Module R M inst✝¹² : Module R N inst✝¹¹ : Module R P inst✝¹⁰ : Module R Q inst✝⁹ : Module R S inst✝⁸ : DistribMulAction R' M inst✝⁷ : Module R'' M inst✝⁶ : SMulCommClass R R' M inst✝⁵ : SMulCommClass R R'' M R'₂ : Type u_9 inst✝⁴ : Monoid R'₂ inst✝³ : DistribMulAction R'₂ M inst✝² : SMulCommClass R R'₂ M inst✝¹ : SMul R'₂ R' inst✝ : IsScalarTower R'₂ R' M s : R'₂ r : R' x : M ⊗[R] N m : M n : N ⊢ (s • r) • m ⊗ₜ[R] n = s • r • m ⊗ₜ[R] n [PROOFSTEP] rw [smul_tmul', smul_tmul', smul_tmul', smul_assoc] [GOAL] R : Type u_1 inst✝²¹ : CommSemiring R R' : Type u_2 inst✝²⁰ : Monoid R' R'' : Type u_3 inst✝¹⁹ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹⁸ : AddCommMonoid M inst✝¹⁷ : AddCommMonoid N inst✝¹⁶ : AddCommMonoid P inst✝¹⁵ : AddCommMonoid Q inst✝¹⁴ : AddCommMonoid S inst✝¹³ : Module R M inst✝¹² : Module R N inst✝¹¹ : Module R P inst✝¹⁰ : Module R Q inst✝⁹ : Module R S inst✝⁸ : DistribMulAction R' M inst✝⁷ : Module R'' M inst✝⁶ : SMulCommClass R R' M inst✝⁵ : SMulCommClass R R'' M R'₂ : Type u_9 inst✝⁴ : Monoid R'₂ inst✝³ : DistribMulAction R'₂ M inst✝² : SMulCommClass R R'₂ M inst✝¹ : SMul R'₂ R' inst✝ : IsScalarTower R'₂ R' M s : R'₂ r : R' x✝ x y : M ⊗[R] N ihx : (s • r) • x = s • r • x ihy : (s • r) • y = s • r • y ⊢ (s • r) • (x + y) = s • r • (x + y) [PROOFSTEP] rw [smul_add, smul_add, smul_add, ihx, ihy] [GOAL] R : Type u_1 inst✝²⁵ : CommSemiring R R' : Type u_2 inst✝²⁴ : Monoid R' R'' : Type u_3 inst✝²³ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝²² : AddCommMonoid M inst✝²¹ : AddCommMonoid N inst✝²⁰ : AddCommMonoid P inst✝¹⁹ : AddCommMonoid Q inst✝¹⁸ : AddCommMonoid S inst✝¹⁷ : Module R M inst✝¹⁶ : Module R N inst✝¹⁵ : Module R P inst✝¹⁴ : Module R Q inst✝¹³ : Module R S inst✝¹² : DistribMulAction R' M inst✝¹¹ : Module R'' M inst✝¹⁰ : SMulCommClass R R' M inst✝⁹ : SMulCommClass R R'' M R'₂ : Type u_9 inst✝⁸ : Monoid R'₂ inst✝⁷ : DistribMulAction R'₂ M inst✝⁶ : SMulCommClass R R'₂ M inst✝⁵ : SMul R'₂ R' inst✝⁴ : DistribMulAction R'₂ N inst✝³ : DistribMulAction R' N inst✝² : CompatibleSMul R R'₂ M N inst✝¹ : CompatibleSMul R R' M N inst✝ : IsScalarTower R'₂ R' N s : R'₂ r : R' x : M ⊗[R] N ⊢ (s • r) • 0 = s • r • 0 [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝²⁵ : CommSemiring R R' : Type u_2 inst✝²⁴ : Monoid R' R'' : Type u_3 inst✝²³ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝²² : AddCommMonoid M inst✝²¹ : AddCommMonoid N inst✝²⁰ : AddCommMonoid P inst✝¹⁹ : AddCommMonoid Q inst✝¹⁸ : AddCommMonoid S inst✝¹⁷ : Module R M inst✝¹⁶ : Module R N inst✝¹⁵ : Module R P inst✝¹⁴ : Module R Q inst✝¹³ : Module R S inst✝¹² : DistribMulAction R' M inst✝¹¹ : Module R'' M inst✝¹⁰ : SMulCommClass R R' M inst✝⁹ : SMulCommClass R R'' M R'₂ : Type u_9 inst✝⁸ : Monoid R'₂ inst✝⁷ : DistribMulAction R'₂ M inst✝⁶ : SMulCommClass R R'₂ M inst✝⁵ : SMul R'₂ R' inst✝⁴ : DistribMulAction R'₂ N inst✝³ : DistribMulAction R' N inst✝² : CompatibleSMul R R'₂ M N inst✝¹ : CompatibleSMul R R' M N inst✝ : IsScalarTower R'₂ R' N s : R'₂ r : R' x : M ⊗[R] N m : M n : N ⊢ (s • r) • m ⊗ₜ[R] n = s • r • m ⊗ₜ[R] n [PROOFSTEP] rw [← tmul_smul, ← tmul_smul, ← tmul_smul, smul_assoc] [GOAL] R : Type u_1 inst✝²⁵ : CommSemiring R R' : Type u_2 inst✝²⁴ : Monoid R' R'' : Type u_3 inst✝²³ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝²² : AddCommMonoid M inst✝²¹ : AddCommMonoid N inst✝²⁰ : AddCommMonoid P inst✝¹⁹ : AddCommMonoid Q inst✝¹⁸ : AddCommMonoid S inst✝¹⁷ : Module R M inst✝¹⁶ : Module R N inst✝¹⁵ : Module R P inst✝¹⁴ : Module R Q inst✝¹³ : Module R S inst✝¹² : DistribMulAction R' M inst✝¹¹ : Module R'' M inst✝¹⁰ : SMulCommClass R R' M inst✝⁹ : SMulCommClass R R'' M R'₂ : Type u_9 inst✝⁸ : Monoid R'₂ inst✝⁷ : DistribMulAction R'₂ M inst✝⁶ : SMulCommClass R R'₂ M inst✝⁵ : SMul R'₂ R' inst✝⁴ : DistribMulAction R'₂ N inst✝³ : DistribMulAction R' N inst✝² : CompatibleSMul R R'₂ M N inst✝¹ : CompatibleSMul R R' M N inst✝ : IsScalarTower R'₂ R' N s : R'₂ r : R' x✝ x y : M ⊗[R] N ihx : (s • r) • x = s • r • x ihy : (s • r) • y = s • r • y ⊢ (s • r) • (x + y) = s • r • (x + y) [PROOFSTEP] rw [smul_add, smul_add, smul_add, ihx, ihy] [GOAL] R : Type u_1 inst✝¹⁶ : CommSemiring R R' : Type u_2 inst✝¹⁵ : Monoid R' R'' : Type u_3 inst✝¹⁴ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid N inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : AddCommMonoid Q inst✝⁹ : AddCommMonoid S inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Module R S inst✝³ : DistribMulAction R' M inst✝² : Module R'' M inst✝¹ : SMulCommClass R R' M inst✝ : SMulCommClass R R'' M c : R m : M n : N ⊢ (fun x x_1 => x ⊗ₜ[R] x_1) (c • m) n = c • (fun x x_1 => x ⊗ₜ[R] x_1) m n [PROOFSTEP] simp_rw [smul_tmul, tmul_smul] [GOAL] R : Type u_1 inst✝¹⁷ : CommSemiring R R' : Type u_2 inst✝¹⁶ : Monoid R' R'' : Type u_3 inst✝¹⁵ : Semiring R'' M : Type u_4 N : Type u_5 P✝ : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹⁴ : AddCommMonoid M inst✝¹³ : AddCommMonoid N inst✝¹² : AddCommMonoid P✝ inst✝¹¹ : AddCommMonoid Q inst✝¹⁰ : AddCommMonoid S inst✝⁹ : Module R M inst✝⁸ : Module R N inst✝⁷ : Module R P✝ inst✝⁶ : Module R Q inst✝⁵ : Module R S inst✝⁴ : DistribMulAction R' M inst✝³ : Module R'' M inst✝² : SMulCommClass R R' M inst✝¹ : SMulCommClass R R'' M x₁ : M x₂ : N P : Prop inst✝ : Decidable P ⊢ (if P then x₁ else 0) ⊗ₜ[R] x₂ = if P then x₁ ⊗ₜ[R] x₂ else 0 [PROOFSTEP] split_ifs [GOAL] case pos R : Type u_1 inst✝¹⁷ : CommSemiring R R' : Type u_2 inst✝¹⁶ : Monoid R' R'' : Type u_3 inst✝¹⁵ : Semiring R'' M : Type u_4 N : Type u_5 P✝ : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹⁴ : AddCommMonoid M inst✝¹³ : AddCommMonoid N inst✝¹² : AddCommMonoid P✝ inst✝¹¹ : AddCommMonoid Q inst✝¹⁰ : AddCommMonoid S inst✝⁹ : Module R M inst✝⁸ : Module R N inst✝⁷ : Module R P✝ inst✝⁶ : Module R Q inst✝⁵ : Module R S inst✝⁴ : DistribMulAction R' M inst✝³ : Module R'' M inst✝² : SMulCommClass R R' M inst✝¹ : SMulCommClass R R'' M x₁ : M x₂ : N P : Prop inst✝ : Decidable P h✝ : P ⊢ x₁ ⊗ₜ[R] x₂ = x₁ ⊗ₜ[R] x₂ [PROOFSTEP] simp [GOAL] case neg R : Type u_1 inst✝¹⁷ : CommSemiring R R' : Type u_2 inst✝¹⁶ : Monoid R' R'' : Type u_3 inst✝¹⁵ : Semiring R'' M : Type u_4 N : Type u_5 P✝ : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹⁴ : AddCommMonoid M inst✝¹³ : AddCommMonoid N inst✝¹² : AddCommMonoid P✝ inst✝¹¹ : AddCommMonoid Q inst✝¹⁰ : AddCommMonoid S inst✝⁹ : Module R M inst✝⁸ : Module R N inst✝⁷ : Module R P✝ inst✝⁶ : Module R Q inst✝⁵ : Module R S inst✝⁴ : DistribMulAction R' M inst✝³ : Module R'' M inst✝² : SMulCommClass R R' M inst✝¹ : SMulCommClass R R'' M x₁ : M x₂ : N P : Prop inst✝ : Decidable P h✝ : ¬P ⊢ 0 ⊗ₜ[R] x₂ = 0 [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝¹⁷ : CommSemiring R R' : Type u_2 inst✝¹⁶ : Monoid R' R'' : Type u_3 inst✝¹⁵ : Semiring R'' M : Type u_4 N : Type u_5 P✝ : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹⁴ : AddCommMonoid M inst✝¹³ : AddCommMonoid N inst✝¹² : AddCommMonoid P✝ inst✝¹¹ : AddCommMonoid Q inst✝¹⁰ : AddCommMonoid S inst✝⁹ : Module R M inst✝⁸ : Module R N inst✝⁷ : Module R P✝ inst✝⁶ : Module R Q inst✝⁵ : Module R S inst✝⁴ : DistribMulAction R' M inst✝³ : Module R'' M inst✝² : SMulCommClass R R' M inst✝¹ : SMulCommClass R R'' M x₁ : M x₂ : N P : Prop inst✝ : Decidable P ⊢ (x₁ ⊗ₜ[R] if P then x₂ else 0) = if P then x₁ ⊗ₜ[R] x₂ else 0 [PROOFSTEP] split_ifs [GOAL] case pos R : Type u_1 inst✝¹⁷ : CommSemiring R R' : Type u_2 inst✝¹⁶ : Monoid R' R'' : Type u_3 inst✝¹⁵ : Semiring R'' M : Type u_4 N : Type u_5 P✝ : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹⁴ : AddCommMonoid M inst✝¹³ : AddCommMonoid N inst✝¹² : AddCommMonoid P✝ inst✝¹¹ : AddCommMonoid Q inst✝¹⁰ : AddCommMonoid S inst✝⁹ : Module R M inst✝⁸ : Module R N inst✝⁷ : Module R P✝ inst✝⁶ : Module R Q inst✝⁵ : Module R S inst✝⁴ : DistribMulAction R' M inst✝³ : Module R'' M inst✝² : SMulCommClass R R' M inst✝¹ : SMulCommClass R R'' M x₁ : M x₂ : N P : Prop inst✝ : Decidable P h✝ : P ⊢ x₁ ⊗ₜ[R] x₂ = x₁ ⊗ₜ[R] x₂ [PROOFSTEP] simp [GOAL] case neg R : Type u_1 inst✝¹⁷ : CommSemiring R R' : Type u_2 inst✝¹⁶ : Monoid R' R'' : Type u_3 inst✝¹⁵ : Semiring R'' M : Type u_4 N : Type u_5 P✝ : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹⁴ : AddCommMonoid M inst✝¹³ : AddCommMonoid N inst✝¹² : AddCommMonoid P✝ inst✝¹¹ : AddCommMonoid Q inst✝¹⁰ : AddCommMonoid S inst✝⁹ : Module R M inst✝⁸ : Module R N inst✝⁷ : Module R P✝ inst✝⁶ : Module R Q inst✝⁵ : Module R S inst✝⁴ : DistribMulAction R' M inst✝³ : Module R'' M inst✝² : SMulCommClass R R' M inst✝¹ : SMulCommClass R R'' M x₁ : M x₂ : N P : Prop inst✝ : Decidable P h✝ : ¬P ⊢ x₁ ⊗ₜ[R] 0 = 0 [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝¹⁶ : CommSemiring R R' : Type u_2 inst✝¹⁵ : Monoid R' R'' : Type u_3 inst✝¹⁴ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid N inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : AddCommMonoid Q inst✝⁹ : AddCommMonoid S inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Module R S inst✝³ : DistribMulAction R' M inst✝² : Module R'' M inst✝¹ : SMulCommClass R R' M inst✝ : SMulCommClass R R'' M α : Type u_9 s : Finset α m : α → M n : N ⊢ (∑ a in s, m a) ⊗ₜ[R] n = ∑ a in s, m a ⊗ₜ[R] n [PROOFSTEP] classical induction' s using Finset.induction with a s has ih h · simp · simp [Finset.sum_insert has, add_tmul, ih] [GOAL] R : Type u_1 inst✝¹⁶ : CommSemiring R R' : Type u_2 inst✝¹⁵ : Monoid R' R'' : Type u_3 inst✝¹⁴ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid N inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : AddCommMonoid Q inst✝⁹ : AddCommMonoid S inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Module R S inst✝³ : DistribMulAction R' M inst✝² : Module R'' M inst✝¹ : SMulCommClass R R' M inst✝ : SMulCommClass R R'' M α : Type u_9 s : Finset α m : α → M n : N ⊢ (∑ a in s, m a) ⊗ₜ[R] n = ∑ a in s, m a ⊗ₜ[R] n [PROOFSTEP] induction' s using Finset.induction with a s has ih h [GOAL] case empty R : Type u_1 inst✝¹⁶ : CommSemiring R R' : Type u_2 inst✝¹⁵ : Monoid R' R'' : Type u_3 inst✝¹⁴ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid N inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : AddCommMonoid Q inst✝⁹ : AddCommMonoid S inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Module R S inst✝³ : DistribMulAction R' M inst✝² : Module R'' M inst✝¹ : SMulCommClass R R' M inst✝ : SMulCommClass R R'' M α : Type u_9 m : α → M n : N ⊢ (∑ a in ∅, m a) ⊗ₜ[R] n = ∑ a in ∅, m a ⊗ₜ[R] n [PROOFSTEP] simp [GOAL] case insert R : Type u_1 inst✝¹⁶ : CommSemiring R R' : Type u_2 inst✝¹⁵ : Monoid R' R'' : Type u_3 inst✝¹⁴ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid N inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : AddCommMonoid Q inst✝⁹ : AddCommMonoid S inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Module R S inst✝³ : DistribMulAction R' M inst✝² : Module R'' M inst✝¹ : SMulCommClass R R' M inst✝ : SMulCommClass R R'' M α : Type u_9 m : α → M n : N a : α s : Finset α has : ¬a ∈ s ih : (∑ a in s, m a) ⊗ₜ[R] n = ∑ a in s, m a ⊗ₜ[R] n ⊢ (∑ a in insert a s, m a) ⊗ₜ[R] n = ∑ a in insert a s, m a ⊗ₜ[R] n [PROOFSTEP] simp [Finset.sum_insert has, add_tmul, ih] [GOAL] R : Type u_1 inst✝¹⁶ : CommSemiring R R' : Type u_2 inst✝¹⁵ : Monoid R' R'' : Type u_3 inst✝¹⁴ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid N inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : AddCommMonoid Q inst✝⁹ : AddCommMonoid S inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Module R S inst✝³ : DistribMulAction R' M inst✝² : Module R'' M inst✝¹ : SMulCommClass R R' M inst✝ : SMulCommClass R R'' M m : M α : Type u_9 s : Finset α n : α → N ⊢ m ⊗ₜ[R] ∑ a in s, n a = ∑ a in s, m ⊗ₜ[R] n a [PROOFSTEP] classical induction' s using Finset.induction with a s has ih h · simp · simp [Finset.sum_insert has, tmul_add, ih] [GOAL] R : Type u_1 inst✝¹⁶ : CommSemiring R R' : Type u_2 inst✝¹⁵ : Monoid R' R'' : Type u_3 inst✝¹⁴ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid N inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : AddCommMonoid Q inst✝⁹ : AddCommMonoid S inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Module R S inst✝³ : DistribMulAction R' M inst✝² : Module R'' M inst✝¹ : SMulCommClass R R' M inst✝ : SMulCommClass R R'' M m : M α : Type u_9 s : Finset α n : α → N ⊢ m ⊗ₜ[R] ∑ a in s, n a = ∑ a in s, m ⊗ₜ[R] n a [PROOFSTEP] induction' s using Finset.induction with a s has ih h [GOAL] case empty R : Type u_1 inst✝¹⁶ : CommSemiring R R' : Type u_2 inst✝¹⁵ : Monoid R' R'' : Type u_3 inst✝¹⁴ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid N inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : AddCommMonoid Q inst✝⁹ : AddCommMonoid S inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Module R S inst✝³ : DistribMulAction R' M inst✝² : Module R'' M inst✝¹ : SMulCommClass R R' M inst✝ : SMulCommClass R R'' M m : M α : Type u_9 n : α → N ⊢ m ⊗ₜ[R] ∑ a in ∅, n a = ∑ a in ∅, m ⊗ₜ[R] n a [PROOFSTEP] simp [GOAL] case insert R : Type u_1 inst✝¹⁶ : CommSemiring R R' : Type u_2 inst✝¹⁵ : Monoid R' R'' : Type u_3 inst✝¹⁴ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid N inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : AddCommMonoid Q inst✝⁹ : AddCommMonoid S inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Module R S inst✝³ : DistribMulAction R' M inst✝² : Module R'' M inst✝¹ : SMulCommClass R R' M inst✝ : SMulCommClass R R'' M m : M α : Type u_9 n : α → N a : α s : Finset α has : ¬a ∈ s ih : m ⊗ₜ[R] ∑ a in s, n a = ∑ a in s, m ⊗ₜ[R] n a ⊢ m ⊗ₜ[R] ∑ a in insert a s, n a = ∑ a in insert a s, m ⊗ₜ[R] n a [PROOFSTEP] simp [Finset.sum_insert has, tmul_add, ih] [GOAL] R : Type u_1 inst✝¹⁶ : CommSemiring R R' : Type u_2 inst✝¹⁵ : Monoid R' R'' : Type u_3 inst✝¹⁴ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid N inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : AddCommMonoid Q inst✝⁹ : AddCommMonoid S inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Module R S inst✝³ : DistribMulAction R' M inst✝² : Module R'' M inst✝¹ : SMulCommClass R R' M inst✝ : SMulCommClass R R'' M ⊢ Submodule.span R {t | ∃ m n, m ⊗ₜ[R] n = t} = ⊤ [PROOFSTEP] ext t [GOAL] case h R : Type u_1 inst✝¹⁶ : CommSemiring R R' : Type u_2 inst✝¹⁵ : Monoid R' R'' : Type u_3 inst✝¹⁴ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid N inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : AddCommMonoid Q inst✝⁹ : AddCommMonoid S inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Module R S inst✝³ : DistribMulAction R' M inst✝² : Module R'' M inst✝¹ : SMulCommClass R R' M inst✝ : SMulCommClass R R'' M t : M ⊗[R] N ⊢ t ∈ Submodule.span R {t | ∃ m n, m ⊗ₜ[R] n = t} ↔ t ∈ ⊤ [PROOFSTEP] simp only [Submodule.mem_top, iff_true_iff] [GOAL] case h R : Type u_1 inst✝¹⁶ : CommSemiring R R' : Type u_2 inst✝¹⁵ : Monoid R' R'' : Type u_3 inst✝¹⁴ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid N inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : AddCommMonoid Q inst✝⁹ : AddCommMonoid S inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Module R S inst✝³ : DistribMulAction R' M inst✝² : Module R'' M inst✝¹ : SMulCommClass R R' M inst✝ : SMulCommClass R R'' M t : M ⊗[R] N ⊢ t ∈ Submodule.span R {t | ∃ m n, m ⊗ₜ[R] n = t} [PROOFSTEP] refine t.induction_on ?_ ?_ ?_ [GOAL] case h.refine_1 R : Type u_1 inst✝¹⁶ : CommSemiring R R' : Type u_2 inst✝¹⁵ : Monoid R' R'' : Type u_3 inst✝¹⁴ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid N inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : AddCommMonoid Q inst✝⁹ : AddCommMonoid S inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Module R S inst✝³ : DistribMulAction R' M inst✝² : Module R'' M inst✝¹ : SMulCommClass R R' M inst✝ : SMulCommClass R R'' M t : M ⊗[R] N ⊢ 0 ∈ Submodule.span R {t | ∃ m n, m ⊗ₜ[R] n = t} [PROOFSTEP] exact Submodule.zero_mem _ [GOAL] case h.refine_2 R : Type u_1 inst✝¹⁶ : CommSemiring R R' : Type u_2 inst✝¹⁵ : Monoid R' R'' : Type u_3 inst✝¹⁴ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid N inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : AddCommMonoid Q inst✝⁹ : AddCommMonoid S inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Module R S inst✝³ : DistribMulAction R' M inst✝² : Module R'' M inst✝¹ : SMulCommClass R R' M inst✝ : SMulCommClass R R'' M t : M ⊗[R] N ⊢ ∀ (x : M) (y : N), x ⊗ₜ[R] y ∈ Submodule.span R {t | ∃ m n, m ⊗ₜ[R] n = t} [PROOFSTEP] intro m n [GOAL] case h.refine_2 R : Type u_1 inst✝¹⁶ : CommSemiring R R' : Type u_2 inst✝¹⁵ : Monoid R' R'' : Type u_3 inst✝¹⁴ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid N inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : AddCommMonoid Q inst✝⁹ : AddCommMonoid S inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Module R S inst✝³ : DistribMulAction R' M inst✝² : Module R'' M inst✝¹ : SMulCommClass R R' M inst✝ : SMulCommClass R R'' M t : M ⊗[R] N m : M n : N ⊢ m ⊗ₜ[R] n ∈ Submodule.span R {t | ∃ m n, m ⊗ₜ[R] n = t} [PROOFSTEP] apply Submodule.subset_span [GOAL] case h.refine_2.a R : Type u_1 inst✝¹⁶ : CommSemiring R R' : Type u_2 inst✝¹⁵ : Monoid R' R'' : Type u_3 inst✝¹⁴ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid N inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : AddCommMonoid Q inst✝⁹ : AddCommMonoid S inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Module R S inst✝³ : DistribMulAction R' M inst✝² : Module R'' M inst✝¹ : SMulCommClass R R' M inst✝ : SMulCommClass R R'' M t : M ⊗[R] N m : M n : N ⊢ m ⊗ₜ[R] n ∈ {t | ∃ m n, m ⊗ₜ[R] n = t} [PROOFSTEP] use m, n [GOAL] case h.refine_3 R : Type u_1 inst✝¹⁶ : CommSemiring R R' : Type u_2 inst✝¹⁵ : Monoid R' R'' : Type u_3 inst✝¹⁴ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid N inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : AddCommMonoid Q inst✝⁹ : AddCommMonoid S inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Module R S inst✝³ : DistribMulAction R' M inst✝² : Module R'' M inst✝¹ : SMulCommClass R R' M inst✝ : SMulCommClass R R'' M t : M ⊗[R] N ⊢ ∀ (x y : M ⊗[R] N), x ∈ Submodule.span R {t | ∃ m n, m ⊗ₜ[R] n = t} → y ∈ Submodule.span R {t | ∃ m n, m ⊗ₜ[R] n = t} → x + y ∈ Submodule.span R {t | ∃ m n, m ⊗ₜ[R] n = t} [PROOFSTEP] intro t₁ t₂ ht₁ ht₂ [GOAL] case h.refine_3 R : Type u_1 inst✝¹⁶ : CommSemiring R R' : Type u_2 inst✝¹⁵ : Monoid R' R'' : Type u_3 inst✝¹⁴ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid N inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : AddCommMonoid Q inst✝⁹ : AddCommMonoid S inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Module R S inst✝³ : DistribMulAction R' M inst✝² : Module R'' M inst✝¹ : SMulCommClass R R' M inst✝ : SMulCommClass R R'' M t t₁ t₂ : M ⊗[R] N ht₁ : t₁ ∈ Submodule.span R {t | ∃ m n, m ⊗ₜ[R] n = t} ht₂ : t₂ ∈ Submodule.span R {t | ∃ m n, m ⊗ₜ[R] n = t} ⊢ t₁ + t₂ ∈ Submodule.span R {t | ∃ m n, m ⊗ₜ[R] n = t} [PROOFSTEP] exact Submodule.add_mem _ ht₁ ht₂ [GOAL] R : Type u_1 inst✝¹⁶ : CommSemiring R R' : Type u_2 inst✝¹⁵ : Monoid R' R'' : Type u_3 inst✝¹⁴ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid N inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : AddCommMonoid Q inst✝⁹ : AddCommMonoid S inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Module R S inst✝³ : DistribMulAction R' M inst✝² : Module R'' M inst✝¹ : SMulCommClass R R' M inst✝ : SMulCommClass R R'' M ⊢ Submodule.map₂ (mk R M N) ⊤ ⊤ = ⊤ [PROOFSTEP] rw [← top_le_iff, ← span_tmul_eq_top, Submodule.map₂_eq_span_image2] [GOAL] R : Type u_1 inst✝¹⁶ : CommSemiring R R' : Type u_2 inst✝¹⁵ : Monoid R' R'' : Type u_3 inst✝¹⁴ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid N inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : AddCommMonoid Q inst✝⁹ : AddCommMonoid S inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Module R S inst✝³ : DistribMulAction R' M inst✝² : Module R'' M inst✝¹ : SMulCommClass R R' M inst✝ : SMulCommClass R R'' M ⊢ Submodule.span R {t | ∃ m n, m ⊗ₜ[R] n = t} ≤ Submodule.span R (Set.image2 (fun m n => ↑(↑(mk R M N) m) n) ↑⊤ ↑⊤) [PROOFSTEP] exact Submodule.span_mono fun _ ⟨m, n, h⟩ => ⟨m, n, trivial, trivial, h⟩ [GOAL] R : Type u_1 inst✝¹⁶ : CommSemiring R R' : Type u_2 inst✝¹⁵ : Monoid R' R'' : Type u_3 inst✝¹⁴ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid N inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : AddCommMonoid Q inst✝⁹ : AddCommMonoid S inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Module R S inst✝³ : DistribMulAction R' M inst✝² : Module R'' M inst✝¹ : SMulCommClass R R' M inst✝ : SMulCommClass R R'' M x : M ⊗[R] N h : ∀ (m₁ m₂ : M) (n₁ n₂ : N), ∃ m n, m₁ ⊗ₜ[R] n₁ + m₂ ⊗ₜ[R] n₂ = m ⊗ₜ[R] n ⊢ ∃ m n, x = m ⊗ₜ[R] n [PROOFSTEP] induction x using TensorProduct.induction_on with | zero => use 0, 0 rw [TensorProduct.zero_tmul] | tmul m n => use m, n | add x y h₁ h₂ => obtain ⟨m₁, n₁, rfl⟩ := h₁ obtain ⟨m₂, n₂, rfl⟩ := h₂ apply h [GOAL] R : Type u_1 inst✝¹⁶ : CommSemiring R R' : Type u_2 inst✝¹⁵ : Monoid R' R'' : Type u_3 inst✝¹⁴ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid N inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : AddCommMonoid Q inst✝⁹ : AddCommMonoid S inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Module R S inst✝³ : DistribMulAction R' M inst✝² : Module R'' M inst✝¹ : SMulCommClass R R' M inst✝ : SMulCommClass R R'' M x : M ⊗[R] N h : ∀ (m₁ m₂ : M) (n₁ n₂ : N), ∃ m n, m₁ ⊗ₜ[R] n₁ + m₂ ⊗ₜ[R] n₂ = m ⊗ₜ[R] n ⊢ ∃ m n, x = m ⊗ₜ[R] n [PROOFSTEP] induction x using TensorProduct.induction_on with | zero => use 0, 0 rw [TensorProduct.zero_tmul] | tmul m n => use m, n | add x y h₁ h₂ => obtain ⟨m₁, n₁, rfl⟩ := h₁ obtain ⟨m₂, n₂, rfl⟩ := h₂ apply h [GOAL] case zero R : Type u_1 inst✝¹⁶ : CommSemiring R R' : Type u_2 inst✝¹⁵ : Monoid R' R'' : Type u_3 inst✝¹⁴ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid N inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : AddCommMonoid Q inst✝⁹ : AddCommMonoid S inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Module R S inst✝³ : DistribMulAction R' M inst✝² : Module R'' M inst✝¹ : SMulCommClass R R' M inst✝ : SMulCommClass R R'' M h : ∀ (m₁ m₂ : M) (n₁ n₂ : N), ∃ m n, m₁ ⊗ₜ[R] n₁ + m₂ ⊗ₜ[R] n₂ = m ⊗ₜ[R] n ⊢ ∃ m n, 0 = m ⊗ₜ[R] n [PROOFSTEP] | zero => use 0, 0 rw [TensorProduct.zero_tmul] [GOAL] case zero R : Type u_1 inst✝¹⁶ : CommSemiring R R' : Type u_2 inst✝¹⁵ : Monoid R' R'' : Type u_3 inst✝¹⁴ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid N inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : AddCommMonoid Q inst✝⁹ : AddCommMonoid S inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Module R S inst✝³ : DistribMulAction R' M inst✝² : Module R'' M inst✝¹ : SMulCommClass R R' M inst✝ : SMulCommClass R R'' M h : ∀ (m₁ m₂ : M) (n₁ n₂ : N), ∃ m n, m₁ ⊗ₜ[R] n₁ + m₂ ⊗ₜ[R] n₂ = m ⊗ₜ[R] n ⊢ ∃ m n, 0 = m ⊗ₜ[R] n [PROOFSTEP] use 0, 0 [GOAL] case h R : Type u_1 inst✝¹⁶ : CommSemiring R R' : Type u_2 inst✝¹⁵ : Monoid R' R'' : Type u_3 inst✝¹⁴ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid N inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : AddCommMonoid Q inst✝⁹ : AddCommMonoid S inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Module R S inst✝³ : DistribMulAction R' M inst✝² : Module R'' M inst✝¹ : SMulCommClass R R' M inst✝ : SMulCommClass R R'' M h : ∀ (m₁ m₂ : M) (n₁ n₂ : N), ∃ m n, m₁ ⊗ₜ[R] n₁ + m₂ ⊗ₜ[R] n₂ = m ⊗ₜ[R] n ⊢ 0 = 0 ⊗ₜ[R] 0 [PROOFSTEP] rw [TensorProduct.zero_tmul] [GOAL] case tmul R : Type u_1 inst✝¹⁶ : CommSemiring R R' : Type u_2 inst✝¹⁵ : Monoid R' R'' : Type u_3 inst✝¹⁴ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid N inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : AddCommMonoid Q inst✝⁹ : AddCommMonoid S inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Module R S inst✝³ : DistribMulAction R' M inst✝² : Module R'' M inst✝¹ : SMulCommClass R R' M inst✝ : SMulCommClass R R'' M h : ∀ (m₁ m₂ : M) (n₁ n₂ : N), ∃ m n, m₁ ⊗ₜ[R] n₁ + m₂ ⊗ₜ[R] n₂ = m ⊗ₜ[R] n m : M n : N ⊢ ∃ m_1 n_1, m ⊗ₜ[R] n = m_1 ⊗ₜ[R] n_1 [PROOFSTEP] | tmul m n => use m, n [GOAL] case tmul R : Type u_1 inst✝¹⁶ : CommSemiring R R' : Type u_2 inst✝¹⁵ : Monoid R' R'' : Type u_3 inst✝¹⁴ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid N inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : AddCommMonoid Q inst✝⁹ : AddCommMonoid S inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Module R S inst✝³ : DistribMulAction R' M inst✝² : Module R'' M inst✝¹ : SMulCommClass R R' M inst✝ : SMulCommClass R R'' M h : ∀ (m₁ m₂ : M) (n₁ n₂ : N), ∃ m n, m₁ ⊗ₜ[R] n₁ + m₂ ⊗ₜ[R] n₂ = m ⊗ₜ[R] n m : M n : N ⊢ ∃ m_1 n_1, m ⊗ₜ[R] n = m_1 ⊗ₜ[R] n_1 [PROOFSTEP] use m, n [GOAL] case add R : Type u_1 inst✝¹⁶ : CommSemiring R R' : Type u_2 inst✝¹⁵ : Monoid R' R'' : Type u_3 inst✝¹⁴ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid N inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : AddCommMonoid Q inst✝⁹ : AddCommMonoid S inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Module R S inst✝³ : DistribMulAction R' M inst✝² : Module R'' M inst✝¹ : SMulCommClass R R' M inst✝ : SMulCommClass R R'' M h : ∀ (m₁ m₂ : M) (n₁ n₂ : N), ∃ m n, m₁ ⊗ₜ[R] n₁ + m₂ ⊗ₜ[R] n₂ = m ⊗ₜ[R] n x y : M ⊗[R] N h₁ : ∃ m n, x = m ⊗ₜ[R] n h₂ : ∃ m n, y = m ⊗ₜ[R] n ⊢ ∃ m n, x + y = m ⊗ₜ[R] n [PROOFSTEP] | add x y h₁ h₂ => obtain ⟨m₁, n₁, rfl⟩ := h₁ obtain ⟨m₂, n₂, rfl⟩ := h₂ apply h [GOAL] case add R : Type u_1 inst✝¹⁶ : CommSemiring R R' : Type u_2 inst✝¹⁵ : Monoid R' R'' : Type u_3 inst✝¹⁴ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid N inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : AddCommMonoid Q inst✝⁹ : AddCommMonoid S inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Module R S inst✝³ : DistribMulAction R' M inst✝² : Module R'' M inst✝¹ : SMulCommClass R R' M inst✝ : SMulCommClass R R'' M h : ∀ (m₁ m₂ : M) (n₁ n₂ : N), ∃ m n, m₁ ⊗ₜ[R] n₁ + m₂ ⊗ₜ[R] n₂ = m ⊗ₜ[R] n x y : M ⊗[R] N h₁ : ∃ m n, x = m ⊗ₜ[R] n h₂ : ∃ m n, y = m ⊗ₜ[R] n ⊢ ∃ m n, x + y = m ⊗ₜ[R] n [PROOFSTEP] obtain ⟨m₁, n₁, rfl⟩ := h₁ [GOAL] case add.intro.intro R : Type u_1 inst✝¹⁶ : CommSemiring R R' : Type u_2 inst✝¹⁵ : Monoid R' R'' : Type u_3 inst✝¹⁴ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid N inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : AddCommMonoid Q inst✝⁹ : AddCommMonoid S inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Module R S inst✝³ : DistribMulAction R' M inst✝² : Module R'' M inst✝¹ : SMulCommClass R R' M inst✝ : SMulCommClass R R'' M h : ∀ (m₁ m₂ : M) (n₁ n₂ : N), ∃ m n, m₁ ⊗ₜ[R] n₁ + m₂ ⊗ₜ[R] n₂ = m ⊗ₜ[R] n y : M ⊗[R] N h₂ : ∃ m n, y = m ⊗ₜ[R] n m₁ : M n₁ : N ⊢ ∃ m n, m₁ ⊗ₜ[R] n₁ + y = m ⊗ₜ[R] n [PROOFSTEP] obtain ⟨m₂, n₂, rfl⟩ := h₂ [GOAL] case add.intro.intro.intro.intro R : Type u_1 inst✝¹⁶ : CommSemiring R R' : Type u_2 inst✝¹⁵ : Monoid R' R'' : Type u_3 inst✝¹⁴ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid N inst✝¹¹ : AddCommMonoid P inst✝¹⁰ : AddCommMonoid Q inst✝⁹ : AddCommMonoid S inst✝⁸ : Module R M inst✝⁷ : Module R N inst✝⁶ : Module R P inst✝⁵ : Module R Q inst✝⁴ : Module R S inst✝³ : DistribMulAction R' M inst✝² : Module R'' M inst✝¹ : SMulCommClass R R' M inst✝ : SMulCommClass R R'' M h : ∀ (m₁ m₂ : M) (n₁ n₂ : N), ∃ m n, m₁ ⊗ₜ[R] n₁ + m₂ ⊗ₜ[R] n₂ = m ⊗ₜ[R] n m₁ : M n₁ : N m₂ : M n₂ : N ⊢ ∃ m n, m₁ ⊗ₜ[R] n₁ + m₂ ⊗ₜ[R] n₂ = m ⊗ₜ[R] n [PROOFSTEP] apply h [GOAL] R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M f : M →ₗ[R] N →ₗ[R] P x y : FreeAddMonoid (M × N) hxy : Eqv R M N x y n : N ⊢ ↑(↑FreeAddMonoid.lift fun p => ↑(↑f p.fst) p.snd) (FreeAddMonoid.of (0, n)) = ↑(↑FreeAddMonoid.lift fun p => ↑(↑f p.fst) p.snd) 0 [PROOFSTEP] simp_rw [map_zero, FreeAddMonoid.lift_eval_of, f.map_zero₂] [GOAL] R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M f : M →ₗ[R] N →ₗ[R] P x y : FreeAddMonoid (M × N) hxy : Eqv R M N x y m : M ⊢ ↑(↑FreeAddMonoid.lift fun p => ↑(↑f p.fst) p.snd) (FreeAddMonoid.of (m, 0)) = ↑(↑FreeAddMonoid.lift fun p => ↑(↑f p.fst) p.snd) 0 [PROOFSTEP] simp_rw [map_zero, FreeAddMonoid.lift_eval_of, (f m).map_zero] [GOAL] R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M f : M →ₗ[R] N →ₗ[R] P x y : FreeAddMonoid (M × N) hxy : Eqv R M N x y m₁ m₂ : M n : N ⊢ ↑(↑FreeAddMonoid.lift fun p => ↑(↑f p.fst) p.snd) (FreeAddMonoid.of (m₁, n) + FreeAddMonoid.of (m₂, n)) = ↑(↑FreeAddMonoid.lift fun p => ↑(↑f p.fst) p.snd) (FreeAddMonoid.of (m₁ + m₂, n)) [PROOFSTEP] simp_rw [map_add, FreeAddMonoid.lift_eval_of, f.map_add₂] [GOAL] R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M f : M →ₗ[R] N →ₗ[R] P x y : FreeAddMonoid (M × N) hxy : Eqv R M N x y m : M n₁ n₂ : N ⊢ ↑(↑FreeAddMonoid.lift fun p => ↑(↑f p.fst) p.snd) (FreeAddMonoid.of (m, n₁) + FreeAddMonoid.of (m, n₂)) = ↑(↑FreeAddMonoid.lift fun p => ↑(↑f p.fst) p.snd) (FreeAddMonoid.of (m, n₁ + n₂)) [PROOFSTEP] simp_rw [map_add, FreeAddMonoid.lift_eval_of, (f m).map_add] [GOAL] R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M f : M →ₗ[R] N →ₗ[R] P x y : FreeAddMonoid (M × N) hxy : Eqv R M N x y r : R m : M n : N ⊢ ↑(↑FreeAddMonoid.lift fun p => ↑(↑f p.fst) p.snd) (FreeAddMonoid.of (r • m, n)) = ↑(↑FreeAddMonoid.lift fun p => ↑(↑f p.fst) p.snd) (FreeAddMonoid.of (m, r • n)) [PROOFSTEP] simp_rw [FreeAddMonoid.lift_eval_of, f.map_smul₂, (f m).map_smul] [GOAL] R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M f : M →ₗ[R] N →ₗ[R] P x✝ y✝ : FreeAddMonoid (M × N) hxy : Eqv R M N x✝ y✝ x y : FreeAddMonoid (M × N) ⊢ ↑(↑FreeAddMonoid.lift fun p => ↑(↑f p.fst) p.snd) (x + y) = ↑(↑FreeAddMonoid.lift fun p => ↑(↑f p.fst) p.snd) (y + x) [PROOFSTEP] simp_rw [map_add, add_comm] [GOAL] R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M f : M →ₗ[R] N →ₗ[R] P r : R x : M ⊗[R] N p : M q : N ⊢ ↑(liftAux f) (r • p ⊗ₜ[R] q) = r • ↑(liftAux f) (p ⊗ₜ[R] q) [PROOFSTEP] simp_rw [← tmul_smul, liftAux_tmul, (f p).map_smul] [GOAL] R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M f : M →ₗ[R] N →ₗ[R] P r : R x p q : M ⊗[R] N ih1 : ↑(liftAux f) (r • p) = r • ↑(liftAux f) p ih2 : ↑(liftAux f) (r • q) = r • ↑(liftAux f) q ⊢ ↑(liftAux f) (r • (p + q)) = r • ↑(liftAux f) (p + q) [PROOFSTEP] simp_rw [smul_add, (liftAux f).map_add, ih1, ih2, smul_add] [GOAL] R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M f : M →ₗ[R] N →ₗ[R] P g h : M ⊗[R] N →ₗ[R] P H : ∀ (x : M) (y : N), ↑g (x ⊗ₜ[R] y) = ↑h (x ⊗ₜ[R] y) z : M ⊗[R] N ⊢ ↑g 0 = ↑h 0 [PROOFSTEP] simp_rw [LinearMap.map_zero] [GOAL] R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M f : M →ₗ[R] N →ₗ[R] P g h : M ⊗[R] N →ₗ[R] P H : ∀ (x : M) (y : N), ↑g (x ⊗ₜ[R] y) = ↑h (x ⊗ₜ[R] y) z x y : M ⊗[R] N ihx : ↑g x = ↑h x ihy : ↑g y = ↑h y ⊢ ↑g (x + y) = ↑h (x + y) [PROOFSTEP] rw [g.map_add, h.map_add, ihx, ihy] [GOAL] R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M f : M →ₗ[R] N →ₗ[R] P g : M ⊗[R] N →ₗ[R] P H : ∀ (x : M) (y : N), ↑g (x ⊗ₜ[R] y) = ↑(↑f x) y m : M n : N ⊢ ↑g (m ⊗ₜ[R] n) = ↑(lift f) (m ⊗ₜ[R] n) [PROOFSTEP] rw [H, lift.tmul] [GOAL] R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M f : M →ₗ[R] N →ₗ[R] P g : P →ₗ[R] Q x✝¹ : M x✝ : N ⊢ ↑(LinearMap.comp g (lift f)) (x✝¹ ⊗ₜ[R] x✝) = ↑(↑(LinearMap.compr₂ f g) x✝¹) x✝ [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M f✝ : M →ₗ[R] N →ₗ[R] P f : M ⊗[R] N →ₗ[R] P ⊢ lift (LinearMap.compr₂ (mk R M N) f) = f [PROOFSTEP] rw [lift_compr₂ f, lift_mk, LinearMap.comp_id] [GOAL] R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M f : M →ₗ[R] N →ₗ[R] P g h : M ⊗[R] N →ₗ[R] P H : LinearMap.compr₂ (mk R M N) g = LinearMap.compr₂ (mk R M N) h ⊢ g = h [PROOFSTEP] rw [← lift_mk_compr₂ g, H, lift_mk_compr₂] [GOAL] R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M f✝ f : M →ₗ[R] N →ₗ[R] P m : M n : N ⊢ ↑(↑(uncurry R M N P) f) (m ⊗ₜ[R] n) = ↑(↑f m) n [PROOFSTEP] rw [uncurry, LinearMap.flip_apply, lift.tmul] [GOAL] R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M f✝ f : M →ₗ[R] N →ₗ[R] P m : M n : N ⊢ ↑(↑(↑(LinearMap.comp LinearMap.lflip (LinearMap.flip LinearMap.id)) m) n) f = ↑(↑f m) n [PROOFSTEP] rfl [GOAL] R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M f : M →ₗ[R] N →ₗ[R] P g h : (M ⊗[R] N) ⊗[R] P →ₗ[R] Q H : ∀ (x : M) (y : N) (z : P), ↑g ((x ⊗ₜ[R] y) ⊗ₜ[R] z) = ↑h ((x ⊗ₜ[R] y) ⊗ₜ[R] z) ⊢ g = h [PROOFSTEP] ext x y z [GOAL] case H.H.h.h.h R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M f : M →ₗ[R] N →ₗ[R] P g h : (M ⊗[R] N) ⊗[R] P →ₗ[R] Q H : ∀ (x : M) (y : N) (z : P), ↑g ((x ⊗ₜ[R] y) ⊗ₜ[R] z) = ↑h ((x ⊗ₜ[R] y) ⊗ₜ[R] z) x : M y : N z : P ⊢ ↑(↑(↑(LinearMap.compr₂ (mk R M N) (LinearMap.compr₂ (mk R (M ⊗[R] N) P) g)) x) y) z = ↑(↑(↑(LinearMap.compr₂ (mk R M N) (LinearMap.compr₂ (mk R (M ⊗[R] N) P) h)) x) y) z [PROOFSTEP] exact H x y z [GOAL] R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M f : M →ₗ[R] N →ₗ[R] P g h : ((M ⊗[R] N) ⊗[R] P) ⊗[R] Q →ₗ[R] S H : ∀ (w : M) (x : N) (y : P) (z : Q), ↑g (((w ⊗ₜ[R] x) ⊗ₜ[R] y) ⊗ₜ[R] z) = ↑h (((w ⊗ₜ[R] x) ⊗ₜ[R] y) ⊗ₜ[R] z) ⊢ g = h [PROOFSTEP] ext w x y z [GOAL] case H.H.H.h.h.h.h R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M f : M →ₗ[R] N →ₗ[R] P g h : ((M ⊗[R] N) ⊗[R] P) ⊗[R] Q →ₗ[R] S H : ∀ (w : M) (x : N) (y : P) (z : Q), ↑g (((w ⊗ₜ[R] x) ⊗ₜ[R] y) ⊗ₜ[R] z) = ↑h (((w ⊗ₜ[R] x) ⊗ₜ[R] y) ⊗ₜ[R] z) w : M x : N y : P z : Q ⊢ ↑(↑(↑(↑(LinearMap.compr₂ (mk R M N) (LinearMap.compr₂ (mk R (M ⊗[R] N) P) (LinearMap.compr₂ (mk R ((M ⊗[R] N) ⊗[R] P) Q) g))) w) x) y) z = ↑(↑(↑(↑(LinearMap.compr₂ (mk R M N) (LinearMap.compr₂ (mk R (M ⊗[R] N) P) (LinearMap.compr₂ (mk R ((M ⊗[R] N) ⊗[R] P) Q) h))) w) x) y) z [PROOFSTEP] exact H w x y z [GOAL] R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M f : M →ₗ[R] N →ₗ[R] P φ ψ : (M ⊗[R] N) ⊗[R] P ⊗[R] Q →ₗ[R] S H : ∀ (w : M) (x : N) (y : P) (z : Q), ↑φ ((w ⊗ₜ[R] x) ⊗ₜ[R] y ⊗ₜ[R] z) = ↑ψ ((w ⊗ₜ[R] x) ⊗ₜ[R] y ⊗ₜ[R] z) ⊢ φ = ψ [PROOFSTEP] ext m n p q [GOAL] case H.H.h.h.H.h.h R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M f : M →ₗ[R] N →ₗ[R] P φ ψ : (M ⊗[R] N) ⊗[R] P ⊗[R] Q →ₗ[R] S H : ∀ (w : M) (x : N) (y : P) (z : Q), ↑φ ((w ⊗ₜ[R] x) ⊗ₜ[R] y ⊗ₜ[R] z) = ↑ψ ((w ⊗ₜ[R] x) ⊗ₜ[R] y ⊗ₜ[R] z) m : M n : N p : P q : Q ⊢ ↑(↑(LinearMap.compr₂ (mk R P Q) (↑(↑(LinearMap.compr₂ (mk R M N) (LinearMap.compr₂ (mk R (M ⊗[R] N) (P ⊗[R] Q)) φ)) m) n)) p) q = ↑(↑(LinearMap.compr₂ (mk R P Q) (↑(↑(LinearMap.compr₂ (mk R M N) (LinearMap.compr₂ (mk R (M ⊗[R] N) (P ⊗[R] Q)) ψ)) m) n)) p) q [PROOFSTEP] exact H m n p q [GOAL] R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M x✝ : M ⊢ ↑(LinearMap.comp (lift (LinearMap.lsmul R M)) (↑(mk R R M) 1)) x✝ = ↑LinearMap.id x✝ [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M r : R m : M ⊢ ↑(LinearMap.comp (↑(mk R R M) 1) (lift (LinearMap.lsmul R M))) (r ⊗ₜ[R] m) = ↑LinearMap.id (r ⊗ₜ[R] m) [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M r : R m : M ⊢ r • 1 ⊗ₜ[R] m = r ⊗ₜ[R] m [PROOFSTEP] rw [← tmul_smul, ← smul_tmul, smul_eq_mul, mul_one] [GOAL] R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M ⊢ (M ⊗[R] N) ⊗[R] P ≃ₗ[R] M ⊗[R] N ⊗[R] P [PROOFSTEP] refine LinearEquiv.ofLinear (lift <| lift <| comp (lcurry R _ _ _) <| mk _ _ _) (lift <| comp (uncurry R _ _ _) <| curry <| mk _ _ _) (ext <| LinearMap.ext fun m => ext' fun n p => ?_) (ext <| flip_inj <| LinearMap.ext fun p => ext' fun m n => ?_) [GOAL] case refine_1 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M m : M n : N p : P ⊢ ↑(↑(compr₂ (mk R M (N ⊗[R] P)) (comp (lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))))) (lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))))) m) (n ⊗ₜ[R] p) = ↑(↑(compr₂ (mk R M (N ⊗[R] P)) LinearMap.id) m) (n ⊗ₜ[R] p) [PROOFSTEP] repeat' first | rw [lift.tmul] | rw [compr₂_apply] | rw [comp_apply] | rw [mk_apply] | rw [flip_apply] | rw [lcurry_apply] | rw [uncurry_apply] | rw [curry_apply] | rw [id_apply] [GOAL] case refine_1 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M m : M n : N p : P ⊢ ↑(↑(compr₂ (mk R M (N ⊗[R] P)) (comp (lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))))) (lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))))) m) (n ⊗ₜ[R] p) = ↑(↑(compr₂ (mk R M (N ⊗[R] P)) LinearMap.id) m) (n ⊗ₜ[R] p) [PROOFSTEP] first | rw [lift.tmul] | rw [compr₂_apply] | rw [comp_apply] | rw [mk_apply] | rw [flip_apply] | rw [lcurry_apply] | rw [uncurry_apply] | rw [curry_apply] | rw [id_apply] [GOAL] case refine_1 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M m : M n : N p : P ⊢ ↑(↑(compr₂ (mk R M (N ⊗[R] P)) (comp (lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))))) (lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))))) m) (n ⊗ₜ[R] p) = ↑(↑(compr₂ (mk R M (N ⊗[R] P)) LinearMap.id) m) (n ⊗ₜ[R] p) [PROOFSTEP] rw [lift.tmul] [GOAL] case refine_1 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M m : M n : N p : P ⊢ ↑(↑(compr₂ (mk R M (N ⊗[R] P)) (comp (lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))))) (lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))))) m) (n ⊗ₜ[R] p) = ↑(↑(compr₂ (mk R M (N ⊗[R] P)) LinearMap.id) m) (n ⊗ₜ[R] p) [PROOFSTEP] rw [compr₂_apply] [GOAL] case refine_1 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M m : M n : N p : P ⊢ ↑(comp (lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))))) (lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))))) (↑(↑(mk R M (N ⊗[R] P)) m) (n ⊗ₜ[R] p)) = ↑(↑(compr₂ (mk R M (N ⊗[R] P)) LinearMap.id) m) (n ⊗ₜ[R] p) [PROOFSTEP] first | rw [lift.tmul] | rw [compr₂_apply] | rw [comp_apply] | rw [mk_apply] | rw [flip_apply] | rw [lcurry_apply] | rw [uncurry_apply] | rw [curry_apply] | rw [id_apply] [GOAL] case refine_1 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M m : M n : N p : P ⊢ ↑(comp (lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))))) (lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))))) (↑(↑(mk R M (N ⊗[R] P)) m) (n ⊗ₜ[R] p)) = ↑(↑(compr₂ (mk R M (N ⊗[R] P)) LinearMap.id) m) (n ⊗ₜ[R] p) [PROOFSTEP] rw [lift.tmul] [GOAL] case refine_1 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M m : M n : N p : P ⊢ ↑(comp (lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))))) (lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))))) (↑(↑(mk R M (N ⊗[R] P)) m) (n ⊗ₜ[R] p)) = ↑(↑(compr₂ (mk R M (N ⊗[R] P)) LinearMap.id) m) (n ⊗ₜ[R] p) [PROOFSTEP] rw [compr₂_apply] [GOAL] case refine_1 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M m : M n : N p : P ⊢ ↑(comp (lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))))) (lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))))) (↑(↑(mk R M (N ⊗[R] P)) m) (n ⊗ₜ[R] p)) = ↑LinearMap.id (↑(↑(mk R M (N ⊗[R] P)) m) (n ⊗ₜ[R] p)) [PROOFSTEP] first | rw [lift.tmul] | rw [compr₂_apply] | rw [comp_apply] | rw [mk_apply] | rw [flip_apply] | rw [lcurry_apply] | rw [uncurry_apply] | rw [curry_apply] | rw [id_apply] [GOAL] case refine_1 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M m : M n : N p : P ⊢ ↑(comp (lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))))) (lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))))) (↑(↑(mk R M (N ⊗[R] P)) m) (n ⊗ₜ[R] p)) = ↑LinearMap.id (↑(↑(mk R M (N ⊗[R] P)) m) (n ⊗ₜ[R] p)) [PROOFSTEP] rw [lift.tmul] [GOAL] case refine_1 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M m : M n : N p : P ⊢ ↑(comp (lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))))) (lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))))) (↑(↑(mk R M (N ⊗[R] P)) m) (n ⊗ₜ[R] p)) = ↑LinearMap.id (↑(↑(mk R M (N ⊗[R] P)) m) (n ⊗ₜ[R] p)) [PROOFSTEP] rw [compr₂_apply] [GOAL] case refine_1 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M m : M n : N p : P ⊢ ↑(comp (lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))))) (lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))))) (↑(↑(mk R M (N ⊗[R] P)) m) (n ⊗ₜ[R] p)) = ↑LinearMap.id (↑(↑(mk R M (N ⊗[R] P)) m) (n ⊗ₜ[R] p)) [PROOFSTEP] rw [comp_apply] [GOAL] case refine_1 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M m : M n : N p : P ⊢ ↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))))) (↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))) (↑(↑(mk R M (N ⊗[R] P)) m) (n ⊗ₜ[R] p))) = ↑LinearMap.id (↑(↑(mk R M (N ⊗[R] P)) m) (n ⊗ₜ[R] p)) [PROOFSTEP] first | rw [lift.tmul] | rw [compr₂_apply] | rw [comp_apply] | rw [mk_apply] | rw [flip_apply] | rw [lcurry_apply] | rw [uncurry_apply] | rw [curry_apply] | rw [id_apply] [GOAL] case refine_1 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M m : M n : N p : P ⊢ ↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))))) (↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))) (↑(↑(mk R M (N ⊗[R] P)) m) (n ⊗ₜ[R] p))) = ↑LinearMap.id (↑(↑(mk R M (N ⊗[R] P)) m) (n ⊗ₜ[R] p)) [PROOFSTEP] rw [lift.tmul] [GOAL] case refine_1 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M m : M n : N p : P ⊢ ↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))))) (↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))) (↑(↑(mk R M (N ⊗[R] P)) m) (n ⊗ₜ[R] p))) = ↑LinearMap.id (↑(↑(mk R M (N ⊗[R] P)) m) (n ⊗ₜ[R] p)) [PROOFSTEP] rw [compr₂_apply] [GOAL] case refine_1 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M m : M n : N p : P ⊢ ↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))))) (↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))) (↑(↑(mk R M (N ⊗[R] P)) m) (n ⊗ₜ[R] p))) = ↑LinearMap.id (↑(↑(mk R M (N ⊗[R] P)) m) (n ⊗ₜ[R] p)) [PROOFSTEP] rw [comp_apply] [GOAL] case refine_1 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M m : M n : N p : P ⊢ ↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))))) (↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))) (↑(↑(mk R M (N ⊗[R] P)) m) (n ⊗ₜ[R] p))) = ↑LinearMap.id (↑(↑(mk R M (N ⊗[R] P)) m) (n ⊗ₜ[R] p)) [PROOFSTEP] rw [mk_apply] [GOAL] case refine_1 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M m : M n : N p : P ⊢ ↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))))) (↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))) (m ⊗ₜ[R] n ⊗ₜ[R] p)) = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p) [PROOFSTEP] first | rw [lift.tmul] | rw [compr₂_apply] | rw [comp_apply] | rw [mk_apply] | rw [flip_apply] | rw [lcurry_apply] | rw [uncurry_apply] | rw [curry_apply] | rw [id_apply] [GOAL] case refine_1 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M m : M n : N p : P ⊢ ↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))))) (↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))) (m ⊗ₜ[R] n ⊗ₜ[R] p)) = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p) [PROOFSTEP] rw [lift.tmul] [GOAL] case refine_1 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M m : M n : N p : P ⊢ ↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))))) (↑(↑(comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))) m) (n ⊗ₜ[R] p)) = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p) [PROOFSTEP] first | rw [lift.tmul] | rw [compr₂_apply] | rw [comp_apply] | rw [mk_apply] | rw [flip_apply] | rw [lcurry_apply] | rw [uncurry_apply] | rw [curry_apply] | rw [id_apply] [GOAL] case refine_1 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M m : M n : N p : P ⊢ ↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))))) (↑(↑(comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))) m) (n ⊗ₜ[R] p)) = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p) [PROOFSTEP] rw [lift.tmul] [GOAL] case refine_1 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M m : M n : N p : P ⊢ ↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))))) (↑(↑(comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))) m) (n ⊗ₜ[R] p)) = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p) [PROOFSTEP] rw [compr₂_apply] [GOAL] case refine_1 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M m : M n : N p : P ⊢ ↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))))) (↑(↑(comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))) m) (n ⊗ₜ[R] p)) = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p) [PROOFSTEP] rw [comp_apply] [GOAL] case refine_1 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M m : M n : N p : P ⊢ ↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))))) (↑(↑(uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (↑(curry (mk R (M ⊗[R] N) P)) m)) (n ⊗ₜ[R] p)) = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p) [PROOFSTEP] first | rw [lift.tmul] | rw [compr₂_apply] | rw [comp_apply] | rw [mk_apply] | rw [flip_apply] | rw [lcurry_apply] | rw [uncurry_apply] | rw [curry_apply] | rw [id_apply] [GOAL] case refine_1 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M m : M n : N p : P ⊢ ↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))))) (↑(↑(uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (↑(curry (mk R (M ⊗[R] N) P)) m)) (n ⊗ₜ[R] p)) = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p) [PROOFSTEP] rw [lift.tmul] [GOAL] case refine_1 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M m : M n : N p : P ⊢ ↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))))) (↑(↑(uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (↑(curry (mk R (M ⊗[R] N) P)) m)) (n ⊗ₜ[R] p)) = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p) [PROOFSTEP] rw [compr₂_apply] [GOAL] case refine_1 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M m : M n : N p : P ⊢ ↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))))) (↑(↑(uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (↑(curry (mk R (M ⊗[R] N) P)) m)) (n ⊗ₜ[R] p)) = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p) [PROOFSTEP] rw [comp_apply] [GOAL] case refine_1 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M m : M n : N p : P ⊢ ↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))))) (↑(↑(uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (↑(curry (mk R (M ⊗[R] N) P)) m)) (n ⊗ₜ[R] p)) = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p) [PROOFSTEP] rw [mk_apply] [GOAL] case refine_1 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M m : M n : N p : P ⊢ ↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))))) (↑(↑(uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (↑(curry (mk R (M ⊗[R] N) P)) m)) (n ⊗ₜ[R] p)) = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p) [PROOFSTEP] rw [flip_apply] [GOAL] case refine_1 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M m : M n : N p : P ⊢ ↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))))) (↑(↑(uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (↑(curry (mk R (M ⊗[R] N) P)) m)) (n ⊗ₜ[R] p)) = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p) [PROOFSTEP] rw [lcurry_apply] [GOAL] case refine_1 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M m : M n : N p : P ⊢ ↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))))) (↑(↑(uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (↑(curry (mk R (M ⊗[R] N) P)) m)) (n ⊗ₜ[R] p)) = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p) [PROOFSTEP] rw [uncurry_apply] [GOAL] case refine_1 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M m : M n : N p : P ⊢ ↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))))) (↑(↑(↑(curry (mk R (M ⊗[R] N) P)) m) n) p) = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p) [PROOFSTEP] first | rw [lift.tmul] | rw [compr₂_apply] | rw [comp_apply] | rw [mk_apply] | rw [flip_apply] | rw [lcurry_apply] | rw [uncurry_apply] | rw [curry_apply] | rw [id_apply] [GOAL] case refine_1 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M m : M n : N p : P ⊢ ↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))))) (↑(↑(↑(curry (mk R (M ⊗[R] N) P)) m) n) p) = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p) [PROOFSTEP] rw [lift.tmul] [GOAL] case refine_1 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M m : M n : N p : P ⊢ ↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))))) (↑(↑(↑(curry (mk R (M ⊗[R] N) P)) m) n) p) = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p) [PROOFSTEP] rw [compr₂_apply] [GOAL] case refine_1 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M m : M n : N p : P ⊢ ↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))))) (↑(↑(↑(curry (mk R (M ⊗[R] N) P)) m) n) p) = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p) [PROOFSTEP] rw [comp_apply] [GOAL] case refine_1 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M m : M n : N p : P ⊢ ↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))))) (↑(↑(↑(curry (mk R (M ⊗[R] N) P)) m) n) p) = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p) [PROOFSTEP] rw [mk_apply] [GOAL] case refine_1 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M m : M n : N p : P ⊢ ↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))))) (↑(↑(↑(curry (mk R (M ⊗[R] N) P)) m) n) p) = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p) [PROOFSTEP] rw [flip_apply] [GOAL] case refine_1 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M m : M n : N p : P ⊢ ↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))))) (↑(↑(↑(curry (mk R (M ⊗[R] N) P)) m) n) p) = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p) [PROOFSTEP] rw [lcurry_apply] [GOAL] case refine_1 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M m : M n : N p : P ⊢ ↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))))) (↑(↑(↑(curry (mk R (M ⊗[R] N) P)) m) n) p) = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p) [PROOFSTEP] rw [uncurry_apply] [GOAL] case refine_1 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M m : M n : N p : P ⊢ ↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))))) (↑(↑(↑(curry (mk R (M ⊗[R] N) P)) m) n) p) = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p) [PROOFSTEP] rw [curry_apply] [GOAL] case refine_1 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M m : M n : N p : P ⊢ ↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))))) (↑(↑(mk R (M ⊗[R] N) P) (m ⊗ₜ[R] n)) p) = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p) [PROOFSTEP] first | rw [lift.tmul] | rw [compr₂_apply] | rw [comp_apply] | rw [mk_apply] | rw [flip_apply] | rw [lcurry_apply] | rw [uncurry_apply] | rw [curry_apply] | rw [id_apply] [GOAL] case refine_1 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M m : M n : N p : P ⊢ ↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))))) (↑(↑(mk R (M ⊗[R] N) P) (m ⊗ₜ[R] n)) p) = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p) [PROOFSTEP] rw [lift.tmul] [GOAL] case refine_1 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M m : M n : N p : P ⊢ ↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))))) (↑(↑(mk R (M ⊗[R] N) P) (m ⊗ₜ[R] n)) p) = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p) [PROOFSTEP] rw [compr₂_apply] [GOAL] case refine_1 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M m : M n : N p : P ⊢ ↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))))) (↑(↑(mk R (M ⊗[R] N) P) (m ⊗ₜ[R] n)) p) = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p) [PROOFSTEP] rw [comp_apply] [GOAL] case refine_1 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M m : M n : N p : P ⊢ ↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))))) (↑(↑(mk R (M ⊗[R] N) P) (m ⊗ₜ[R] n)) p) = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p) [PROOFSTEP] rw [mk_apply] [GOAL] case refine_1 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M m : M n : N p : P ⊢ ↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))))) ((m ⊗ₜ[R] n) ⊗ₜ[R] p) = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p) [PROOFSTEP] first | rw [lift.tmul] | rw [compr₂_apply] | rw [comp_apply] | rw [mk_apply] | rw [flip_apply] | rw [lcurry_apply] | rw [uncurry_apply] | rw [curry_apply] | rw [id_apply] [GOAL] case refine_1 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M m : M n : N p : P ⊢ ↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))))) ((m ⊗ₜ[R] n) ⊗ₜ[R] p) = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p) [PROOFSTEP] rw [lift.tmul] [GOAL] case refine_1 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M m : M n : N p : P ⊢ ↑(↑(lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P)))) (m ⊗ₜ[R] n)) p = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p) [PROOFSTEP] first | rw [lift.tmul] | rw [compr₂_apply] | rw [comp_apply] | rw [mk_apply] | rw [flip_apply] | rw [lcurry_apply] | rw [uncurry_apply] | rw [curry_apply] | rw [id_apply] [GOAL] case refine_1 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M m : M n : N p : P ⊢ ↑(↑(lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P)))) (m ⊗ₜ[R] n)) p = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p) [PROOFSTEP] rw [lift.tmul] [GOAL] case refine_1 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M m : M n : N p : P ⊢ ↑(↑(↑(comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))) m) n) p = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p) [PROOFSTEP] first | rw [lift.tmul] | rw [compr₂_apply] | rw [comp_apply] | rw [mk_apply] | rw [flip_apply] | rw [lcurry_apply] | rw [uncurry_apply] | rw [curry_apply] | rw [id_apply] [GOAL] case refine_1 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M m : M n : N p : P ⊢ ↑(↑(↑(comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))) m) n) p = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p) [PROOFSTEP] rw [lift.tmul] [GOAL] case refine_1 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M m : M n : N p : P ⊢ ↑(↑(↑(comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))) m) n) p = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p) [PROOFSTEP] rw [compr₂_apply] [GOAL] case refine_1 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M m : M n : N p : P ⊢ ↑(↑(↑(comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))) m) n) p = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p) [PROOFSTEP] rw [comp_apply] [GOAL] case refine_1 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M m : M n : N p : P ⊢ ↑(↑(↑(lcurry R N P (M ⊗[R] N ⊗[R] P)) (↑(mk R M (N ⊗[R] P)) m)) n) p = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p) [PROOFSTEP] first | rw [lift.tmul] | rw [compr₂_apply] | rw [comp_apply] | rw [mk_apply] | rw [flip_apply] | rw [lcurry_apply] | rw [uncurry_apply] | rw [curry_apply] | rw [id_apply] [GOAL] case refine_1 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M m : M n : N p : P ⊢ ↑(↑(↑(lcurry R N P (M ⊗[R] N ⊗[R] P)) (↑(mk R M (N ⊗[R] P)) m)) n) p = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p) [PROOFSTEP] rw [lift.tmul] [GOAL] case refine_1 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M m : M n : N p : P ⊢ ↑(↑(↑(lcurry R N P (M ⊗[R] N ⊗[R] P)) (↑(mk R M (N ⊗[R] P)) m)) n) p = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p) [PROOFSTEP] rw [compr₂_apply] [GOAL] case refine_1 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M m : M n : N p : P ⊢ ↑(↑(↑(lcurry R N P (M ⊗[R] N ⊗[R] P)) (↑(mk R M (N ⊗[R] P)) m)) n) p = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p) [PROOFSTEP] rw [comp_apply] [GOAL] case refine_1 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M m : M n : N p : P ⊢ ↑(↑(↑(lcurry R N P (M ⊗[R] N ⊗[R] P)) (↑(mk R M (N ⊗[R] P)) m)) n) p = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p) [PROOFSTEP] rw [mk_apply] [GOAL] case refine_1 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M m : M n : N p : P ⊢ ↑(↑(↑(lcurry R N P (M ⊗[R] N ⊗[R] P)) (↑(mk R M (N ⊗[R] P)) m)) n) p = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p) [PROOFSTEP] rw [flip_apply] [GOAL] case refine_1 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M m : M n : N p : P ⊢ ↑(↑(↑(lcurry R N P (M ⊗[R] N ⊗[R] P)) (↑(mk R M (N ⊗[R] P)) m)) n) p = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p) [PROOFSTEP] rw [lcurry_apply] [GOAL] case refine_1 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M m : M n : N p : P ⊢ ↑(↑(mk R M (N ⊗[R] P)) m) (n ⊗ₜ[R] p) = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p) [PROOFSTEP] first | rw [lift.tmul] | rw [compr₂_apply] | rw [comp_apply] | rw [mk_apply] | rw [flip_apply] | rw [lcurry_apply] | rw [uncurry_apply] | rw [curry_apply] | rw [id_apply] [GOAL] case refine_1 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M m : M n : N p : P ⊢ ↑(↑(mk R M (N ⊗[R] P)) m) (n ⊗ₜ[R] p) = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p) [PROOFSTEP] rw [lift.tmul] [GOAL] case refine_1 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M m : M n : N p : P ⊢ ↑(↑(mk R M (N ⊗[R] P)) m) (n ⊗ₜ[R] p) = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p) [PROOFSTEP] rw [compr₂_apply] [GOAL] case refine_1 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M m : M n : N p : P ⊢ ↑(↑(mk R M (N ⊗[R] P)) m) (n ⊗ₜ[R] p) = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p) [PROOFSTEP] rw [comp_apply] [GOAL] case refine_1 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M m : M n : N p : P ⊢ ↑(↑(mk R M (N ⊗[R] P)) m) (n ⊗ₜ[R] p) = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p) [PROOFSTEP] rw [mk_apply] [GOAL] case refine_1 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M m : M n : N p : P ⊢ m ⊗ₜ[R] n ⊗ₜ[R] p = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p) [PROOFSTEP] first | rw [lift.tmul] | rw [compr₂_apply] | rw [comp_apply] | rw [mk_apply] | rw [flip_apply] | rw [lcurry_apply] | rw [uncurry_apply] | rw [curry_apply] | rw [id_apply] [GOAL] case refine_1 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M m : M n : N p : P ⊢ m ⊗ₜ[R] n ⊗ₜ[R] p = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p) [PROOFSTEP] rw [lift.tmul] [GOAL] case refine_1 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M m : M n : N p : P ⊢ m ⊗ₜ[R] n ⊗ₜ[R] p = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p) [PROOFSTEP] rw [compr₂_apply] [GOAL] case refine_1 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M m : M n : N p : P ⊢ m ⊗ₜ[R] n ⊗ₜ[R] p = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p) [PROOFSTEP] rw [comp_apply] [GOAL] case refine_1 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M m : M n : N p : P ⊢ m ⊗ₜ[R] n ⊗ₜ[R] p = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p) [PROOFSTEP] rw [mk_apply] [GOAL] case refine_1 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M m : M n : N p : P ⊢ m ⊗ₜ[R] n ⊗ₜ[R] p = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p) [PROOFSTEP] rw [flip_apply] [GOAL] case refine_1 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M m : M n : N p : P ⊢ m ⊗ₜ[R] n ⊗ₜ[R] p = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p) [PROOFSTEP] rw [lcurry_apply] [GOAL] case refine_1 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M m : M n : N p : P ⊢ m ⊗ₜ[R] n ⊗ₜ[R] p = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p) [PROOFSTEP] rw [uncurry_apply] [GOAL] case refine_1 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M m : M n : N p : P ⊢ m ⊗ₜ[R] n ⊗ₜ[R] p = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p) [PROOFSTEP] rw [curry_apply] [GOAL] case refine_1 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M m : M n : N p : P ⊢ m ⊗ₜ[R] n ⊗ₜ[R] p = ↑LinearMap.id (m ⊗ₜ[R] n ⊗ₜ[R] p) [PROOFSTEP] rw [id_apply] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(↑(LinearMap.flip (compr₂ (mk R (M ⊗[R] N) P) (comp (lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))) (lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P)))))))) p) (m ⊗ₜ[R] n) = ↑(↑(LinearMap.flip (compr₂ (mk R (M ⊗[R] N) P) LinearMap.id)) p) (m ⊗ₜ[R] n) [PROOFSTEP] repeat' first | rw [lift.tmul] | rw [compr₂_apply] | rw [comp_apply] | rw [mk_apply] | rw [flip_apply] | rw [lcurry_apply] | rw [uncurry_apply] | rw [curry_apply] | rw [id_apply] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(↑(LinearMap.flip (compr₂ (mk R (M ⊗[R] N) P) (comp (lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))) (lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P)))))))) p) (m ⊗ₜ[R] n) = ↑(↑(LinearMap.flip (compr₂ (mk R (M ⊗[R] N) P) LinearMap.id)) p) (m ⊗ₜ[R] n) [PROOFSTEP] first | rw [lift.tmul] | rw [compr₂_apply] | rw [comp_apply] | rw [mk_apply] | rw [flip_apply] | rw [lcurry_apply] | rw [uncurry_apply] | rw [curry_apply] | rw [id_apply] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(↑(LinearMap.flip (compr₂ (mk R (M ⊗[R] N) P) (comp (lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))) (lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P)))))))) p) (m ⊗ₜ[R] n) = ↑(↑(LinearMap.flip (compr₂ (mk R (M ⊗[R] N) P) LinearMap.id)) p) (m ⊗ₜ[R] n) [PROOFSTEP] rw [lift.tmul] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(↑(LinearMap.flip (compr₂ (mk R (M ⊗[R] N) P) (comp (lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))) (lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P)))))))) p) (m ⊗ₜ[R] n) = ↑(↑(LinearMap.flip (compr₂ (mk R (M ⊗[R] N) P) LinearMap.id)) p) (m ⊗ₜ[R] n) [PROOFSTEP] rw [compr₂_apply] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(↑(LinearMap.flip (compr₂ (mk R (M ⊗[R] N) P) (comp (lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))) (lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P)))))))) p) (m ⊗ₜ[R] n) = ↑(↑(LinearMap.flip (compr₂ (mk R (M ⊗[R] N) P) LinearMap.id)) p) (m ⊗ₜ[R] n) [PROOFSTEP] rw [comp_apply] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(↑(LinearMap.flip (compr₂ (mk R (M ⊗[R] N) P) (comp (lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))) (lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P)))))))) p) (m ⊗ₜ[R] n) = ↑(↑(LinearMap.flip (compr₂ (mk R (M ⊗[R] N) P) LinearMap.id)) p) (m ⊗ₜ[R] n) [PROOFSTEP] rw [mk_apply] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(↑(LinearMap.flip (compr₂ (mk R (M ⊗[R] N) P) (comp (lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))) (lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P)))))))) p) (m ⊗ₜ[R] n) = ↑(↑(LinearMap.flip (compr₂ (mk R (M ⊗[R] N) P) LinearMap.id)) p) (m ⊗ₜ[R] n) [PROOFSTEP] rw [flip_apply] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(↑(compr₂ (mk R (M ⊗[R] N) P) (comp (lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))) (lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))))))) (m ⊗ₜ[R] n)) p = ↑(↑(LinearMap.flip (compr₂ (mk R (M ⊗[R] N) P) LinearMap.id)) p) (m ⊗ₜ[R] n) [PROOFSTEP] first | rw [lift.tmul] | rw [compr₂_apply] | rw [comp_apply] | rw [mk_apply] | rw [flip_apply] | rw [lcurry_apply] | rw [uncurry_apply] | rw [curry_apply] | rw [id_apply] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(↑(compr₂ (mk R (M ⊗[R] N) P) (comp (lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))) (lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))))))) (m ⊗ₜ[R] n)) p = ↑(↑(LinearMap.flip (compr₂ (mk R (M ⊗[R] N) P) LinearMap.id)) p) (m ⊗ₜ[R] n) [PROOFSTEP] rw [lift.tmul] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(↑(compr₂ (mk R (M ⊗[R] N) P) (comp (lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))) (lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))))))) (m ⊗ₜ[R] n)) p = ↑(↑(LinearMap.flip (compr₂ (mk R (M ⊗[R] N) P) LinearMap.id)) p) (m ⊗ₜ[R] n) [PROOFSTEP] rw [compr₂_apply] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(comp (lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))) (lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P)))))) (↑(↑(mk R (M ⊗[R] N) P) (m ⊗ₜ[R] n)) p) = ↑(↑(LinearMap.flip (compr₂ (mk R (M ⊗[R] N) P) LinearMap.id)) p) (m ⊗ₜ[R] n) [PROOFSTEP] first | rw [lift.tmul] | rw [compr₂_apply] | rw [comp_apply] | rw [mk_apply] | rw [flip_apply] | rw [lcurry_apply] | rw [uncurry_apply] | rw [curry_apply] | rw [id_apply] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(comp (lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))) (lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P)))))) (↑(↑(mk R (M ⊗[R] N) P) (m ⊗ₜ[R] n)) p) = ↑(↑(LinearMap.flip (compr₂ (mk R (M ⊗[R] N) P) LinearMap.id)) p) (m ⊗ₜ[R] n) [PROOFSTEP] rw [lift.tmul] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(comp (lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))) (lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P)))))) (↑(↑(mk R (M ⊗[R] N) P) (m ⊗ₜ[R] n)) p) = ↑(↑(LinearMap.flip (compr₂ (mk R (M ⊗[R] N) P) LinearMap.id)) p) (m ⊗ₜ[R] n) [PROOFSTEP] rw [compr₂_apply] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(comp (lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))) (lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P)))))) (↑(↑(mk R (M ⊗[R] N) P) (m ⊗ₜ[R] n)) p) = ↑(↑(LinearMap.flip (compr₂ (mk R (M ⊗[R] N) P) LinearMap.id)) p) (m ⊗ₜ[R] n) [PROOFSTEP] rw [comp_apply] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))) (↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))))) (↑(↑(mk R (M ⊗[R] N) P) (m ⊗ₜ[R] n)) p)) = ↑(↑(LinearMap.flip (compr₂ (mk R (M ⊗[R] N) P) LinearMap.id)) p) (m ⊗ₜ[R] n) [PROOFSTEP] first | rw [lift.tmul] | rw [compr₂_apply] | rw [comp_apply] | rw [mk_apply] | rw [flip_apply] | rw [lcurry_apply] | rw [uncurry_apply] | rw [curry_apply] | rw [id_apply] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))) (↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))))) (↑(↑(mk R (M ⊗[R] N) P) (m ⊗ₜ[R] n)) p)) = ↑(↑(LinearMap.flip (compr₂ (mk R (M ⊗[R] N) P) LinearMap.id)) p) (m ⊗ₜ[R] n) [PROOFSTEP] rw [lift.tmul] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))) (↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))))) (↑(↑(mk R (M ⊗[R] N) P) (m ⊗ₜ[R] n)) p)) = ↑(↑(LinearMap.flip (compr₂ (mk R (M ⊗[R] N) P) LinearMap.id)) p) (m ⊗ₜ[R] n) [PROOFSTEP] rw [compr₂_apply] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))) (↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))))) (↑(↑(mk R (M ⊗[R] N) P) (m ⊗ₜ[R] n)) p)) = ↑(↑(LinearMap.flip (compr₂ (mk R (M ⊗[R] N) P) LinearMap.id)) p) (m ⊗ₜ[R] n) [PROOFSTEP] rw [comp_apply] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))) (↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))))) (↑(↑(mk R (M ⊗[R] N) P) (m ⊗ₜ[R] n)) p)) = ↑(↑(LinearMap.flip (compr₂ (mk R (M ⊗[R] N) P) LinearMap.id)) p) (m ⊗ₜ[R] n) [PROOFSTEP] rw [mk_apply] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))) (↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))))) ((m ⊗ₜ[R] n) ⊗ₜ[R] p)) = ↑(↑(LinearMap.flip (compr₂ (mk R (M ⊗[R] N) P) LinearMap.id)) p) (m ⊗ₜ[R] n) [PROOFSTEP] first | rw [lift.tmul] | rw [compr₂_apply] | rw [comp_apply] | rw [mk_apply] | rw [flip_apply] | rw [lcurry_apply] | rw [uncurry_apply] | rw [curry_apply] | rw [id_apply] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))) (↑(lift (lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))))) ((m ⊗ₜ[R] n) ⊗ₜ[R] p)) = ↑(↑(LinearMap.flip (compr₂ (mk R (M ⊗[R] N) P) LinearMap.id)) p) (m ⊗ₜ[R] n) [PROOFSTEP] rw [lift.tmul] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))) (↑(↑(lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P)))) (m ⊗ₜ[R] n)) p) = ↑(↑(LinearMap.flip (compr₂ (mk R (M ⊗[R] N) P) LinearMap.id)) p) (m ⊗ₜ[R] n) [PROOFSTEP] first | rw [lift.tmul] | rw [compr₂_apply] | rw [comp_apply] | rw [mk_apply] | rw [flip_apply] | rw [lcurry_apply] | rw [uncurry_apply] | rw [curry_apply] | rw [id_apply] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))) (↑(↑(lift (comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P)))) (m ⊗ₜ[R] n)) p) = ↑(↑(LinearMap.flip (compr₂ (mk R (M ⊗[R] N) P) LinearMap.id)) p) (m ⊗ₜ[R] n) [PROOFSTEP] rw [lift.tmul] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))) (↑(↑(↑(comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))) m) n) p) = ↑(↑(LinearMap.flip (compr₂ (mk R (M ⊗[R] N) P) LinearMap.id)) p) (m ⊗ₜ[R] n) [PROOFSTEP] first | rw [lift.tmul] | rw [compr₂_apply] | rw [comp_apply] | rw [mk_apply] | rw [flip_apply] | rw [lcurry_apply] | rw [uncurry_apply] | rw [curry_apply] | rw [id_apply] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))) (↑(↑(↑(comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))) m) n) p) = ↑(↑(LinearMap.flip (compr₂ (mk R (M ⊗[R] N) P) LinearMap.id)) p) (m ⊗ₜ[R] n) [PROOFSTEP] rw [lift.tmul] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))) (↑(↑(↑(comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))) m) n) p) = ↑(↑(LinearMap.flip (compr₂ (mk R (M ⊗[R] N) P) LinearMap.id)) p) (m ⊗ₜ[R] n) [PROOFSTEP] rw [compr₂_apply] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))) (↑(↑(↑(comp (lcurry R N P (M ⊗[R] N ⊗[R] P)) (mk R M (N ⊗[R] P))) m) n) p) = ↑(↑(LinearMap.flip (compr₂ (mk R (M ⊗[R] N) P) LinearMap.id)) p) (m ⊗ₜ[R] n) [PROOFSTEP] rw [comp_apply] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))) (↑(↑(↑(lcurry R N P (M ⊗[R] N ⊗[R] P)) (↑(mk R M (N ⊗[R] P)) m)) n) p) = ↑(↑(LinearMap.flip (compr₂ (mk R (M ⊗[R] N) P) LinearMap.id)) p) (m ⊗ₜ[R] n) [PROOFSTEP] first | rw [lift.tmul] | rw [compr₂_apply] | rw [comp_apply] | rw [mk_apply] | rw [flip_apply] | rw [lcurry_apply] | rw [uncurry_apply] | rw [curry_apply] | rw [id_apply] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))) (↑(↑(↑(lcurry R N P (M ⊗[R] N ⊗[R] P)) (↑(mk R M (N ⊗[R] P)) m)) n) p) = ↑(↑(LinearMap.flip (compr₂ (mk R (M ⊗[R] N) P) LinearMap.id)) p) (m ⊗ₜ[R] n) [PROOFSTEP] rw [lift.tmul] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))) (↑(↑(↑(lcurry R N P (M ⊗[R] N ⊗[R] P)) (↑(mk R M (N ⊗[R] P)) m)) n) p) = ↑(↑(LinearMap.flip (compr₂ (mk R (M ⊗[R] N) P) LinearMap.id)) p) (m ⊗ₜ[R] n) [PROOFSTEP] rw [compr₂_apply] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))) (↑(↑(↑(lcurry R N P (M ⊗[R] N ⊗[R] P)) (↑(mk R M (N ⊗[R] P)) m)) n) p) = ↑(↑(LinearMap.flip (compr₂ (mk R (M ⊗[R] N) P) LinearMap.id)) p) (m ⊗ₜ[R] n) [PROOFSTEP] rw [comp_apply] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))) (↑(↑(↑(lcurry R N P (M ⊗[R] N ⊗[R] P)) (↑(mk R M (N ⊗[R] P)) m)) n) p) = ↑(↑(LinearMap.flip (compr₂ (mk R (M ⊗[R] N) P) LinearMap.id)) p) (m ⊗ₜ[R] n) [PROOFSTEP] rw [mk_apply] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))) (↑(↑(↑(lcurry R N P (M ⊗[R] N ⊗[R] P)) (↑(mk R M (N ⊗[R] P)) m)) n) p) = ↑(↑(LinearMap.flip (compr₂ (mk R (M ⊗[R] N) P) LinearMap.id)) p) (m ⊗ₜ[R] n) [PROOFSTEP] rw [flip_apply] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))) (↑(↑(↑(lcurry R N P (M ⊗[R] N ⊗[R] P)) (↑(mk R M (N ⊗[R] P)) m)) n) p) = ↑(↑(compr₂ (mk R (M ⊗[R] N) P) LinearMap.id) (m ⊗ₜ[R] n)) p [PROOFSTEP] first | rw [lift.tmul] | rw [compr₂_apply] | rw [comp_apply] | rw [mk_apply] | rw [flip_apply] | rw [lcurry_apply] | rw [uncurry_apply] | rw [curry_apply] | rw [id_apply] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))) (↑(↑(↑(lcurry R N P (M ⊗[R] N ⊗[R] P)) (↑(mk R M (N ⊗[R] P)) m)) n) p) = ↑(↑(compr₂ (mk R (M ⊗[R] N) P) LinearMap.id) (m ⊗ₜ[R] n)) p [PROOFSTEP] rw [lift.tmul] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))) (↑(↑(↑(lcurry R N P (M ⊗[R] N ⊗[R] P)) (↑(mk R M (N ⊗[R] P)) m)) n) p) = ↑(↑(compr₂ (mk R (M ⊗[R] N) P) LinearMap.id) (m ⊗ₜ[R] n)) p [PROOFSTEP] rw [compr₂_apply] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))) (↑(↑(↑(lcurry R N P (M ⊗[R] N ⊗[R] P)) (↑(mk R M (N ⊗[R] P)) m)) n) p) = ↑LinearMap.id (↑(↑(mk R (M ⊗[R] N) P) (m ⊗ₜ[R] n)) p) [PROOFSTEP] first | rw [lift.tmul] | rw [compr₂_apply] | rw [comp_apply] | rw [mk_apply] | rw [flip_apply] | rw [lcurry_apply] | rw [uncurry_apply] | rw [curry_apply] | rw [id_apply] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))) (↑(↑(↑(lcurry R N P (M ⊗[R] N ⊗[R] P)) (↑(mk R M (N ⊗[R] P)) m)) n) p) = ↑LinearMap.id (↑(↑(mk R (M ⊗[R] N) P) (m ⊗ₜ[R] n)) p) [PROOFSTEP] rw [lift.tmul] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))) (↑(↑(↑(lcurry R N P (M ⊗[R] N ⊗[R] P)) (↑(mk R M (N ⊗[R] P)) m)) n) p) = ↑LinearMap.id (↑(↑(mk R (M ⊗[R] N) P) (m ⊗ₜ[R] n)) p) [PROOFSTEP] rw [compr₂_apply] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))) (↑(↑(↑(lcurry R N P (M ⊗[R] N ⊗[R] P)) (↑(mk R M (N ⊗[R] P)) m)) n) p) = ↑LinearMap.id (↑(↑(mk R (M ⊗[R] N) P) (m ⊗ₜ[R] n)) p) [PROOFSTEP] rw [comp_apply] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))) (↑(↑(↑(lcurry R N P (M ⊗[R] N ⊗[R] P)) (↑(mk R M (N ⊗[R] P)) m)) n) p) = ↑LinearMap.id (↑(↑(mk R (M ⊗[R] N) P) (m ⊗ₜ[R] n)) p) [PROOFSTEP] rw [mk_apply] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))) (↑(↑(↑(lcurry R N P (M ⊗[R] N ⊗[R] P)) (↑(mk R M (N ⊗[R] P)) m)) n) p) = ↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p) [PROOFSTEP] first | rw [lift.tmul] | rw [compr₂_apply] | rw [comp_apply] | rw [mk_apply] | rw [flip_apply] | rw [lcurry_apply] | rw [uncurry_apply] | rw [curry_apply] | rw [id_apply] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))) (↑(↑(↑(lcurry R N P (M ⊗[R] N ⊗[R] P)) (↑(mk R M (N ⊗[R] P)) m)) n) p) = ↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p) [PROOFSTEP] rw [lift.tmul] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))) (↑(↑(↑(lcurry R N P (M ⊗[R] N ⊗[R] P)) (↑(mk R M (N ⊗[R] P)) m)) n) p) = ↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p) [PROOFSTEP] rw [compr₂_apply] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))) (↑(↑(↑(lcurry R N P (M ⊗[R] N ⊗[R] P)) (↑(mk R M (N ⊗[R] P)) m)) n) p) = ↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p) [PROOFSTEP] rw [comp_apply] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))) (↑(↑(↑(lcurry R N P (M ⊗[R] N ⊗[R] P)) (↑(mk R M (N ⊗[R] P)) m)) n) p) = ↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p) [PROOFSTEP] rw [mk_apply] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))) (↑(↑(↑(lcurry R N P (M ⊗[R] N ⊗[R] P)) (↑(mk R M (N ⊗[R] P)) m)) n) p) = ↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p) [PROOFSTEP] rw [flip_apply] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))) (↑(↑(↑(lcurry R N P (M ⊗[R] N ⊗[R] P)) (↑(mk R M (N ⊗[R] P)) m)) n) p) = ↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p) [PROOFSTEP] rw [lcurry_apply] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))) (↑(↑(mk R M (N ⊗[R] P)) m) (n ⊗ₜ[R] p)) = ↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p) [PROOFSTEP] first | rw [lift.tmul] | rw [compr₂_apply] | rw [comp_apply] | rw [mk_apply] | rw [flip_apply] | rw [lcurry_apply] | rw [uncurry_apply] | rw [curry_apply] | rw [id_apply] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))) (↑(↑(mk R M (N ⊗[R] P)) m) (n ⊗ₜ[R] p)) = ↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p) [PROOFSTEP] rw [lift.tmul] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))) (↑(↑(mk R M (N ⊗[R] P)) m) (n ⊗ₜ[R] p)) = ↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p) [PROOFSTEP] rw [compr₂_apply] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))) (↑(↑(mk R M (N ⊗[R] P)) m) (n ⊗ₜ[R] p)) = ↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p) [PROOFSTEP] rw [comp_apply] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))) (↑(↑(mk R M (N ⊗[R] P)) m) (n ⊗ₜ[R] p)) = ↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p) [PROOFSTEP] rw [mk_apply] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))) (m ⊗ₜ[R] n ⊗ₜ[R] p) = ↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p) [PROOFSTEP] first | rw [lift.tmul] | rw [compr₂_apply] | rw [comp_apply] | rw [mk_apply] | rw [flip_apply] | rw [lcurry_apply] | rw [uncurry_apply] | rw [curry_apply] | rw [id_apply] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(lift (comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P)))) (m ⊗ₜ[R] n ⊗ₜ[R] p) = ↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p) [PROOFSTEP] rw [lift.tmul] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(↑(comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))) m) (n ⊗ₜ[R] p) = ↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p) [PROOFSTEP] first | rw [lift.tmul] | rw [compr₂_apply] | rw [comp_apply] | rw [mk_apply] | rw [flip_apply] | rw [lcurry_apply] | rw [uncurry_apply] | rw [curry_apply] | rw [id_apply] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(↑(comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))) m) (n ⊗ₜ[R] p) = ↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p) [PROOFSTEP] rw [lift.tmul] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(↑(comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))) m) (n ⊗ₜ[R] p) = ↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p) [PROOFSTEP] rw [compr₂_apply] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(↑(comp (uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (curry (mk R (M ⊗[R] N) P))) m) (n ⊗ₜ[R] p) = ↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p) [PROOFSTEP] rw [comp_apply] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(↑(uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (↑(curry (mk R (M ⊗[R] N) P)) m)) (n ⊗ₜ[R] p) = ↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p) [PROOFSTEP] first | rw [lift.tmul] | rw [compr₂_apply] | rw [comp_apply] | rw [mk_apply] | rw [flip_apply] | rw [lcurry_apply] | rw [uncurry_apply] | rw [curry_apply] | rw [id_apply] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(↑(uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (↑(curry (mk R (M ⊗[R] N) P)) m)) (n ⊗ₜ[R] p) = ↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p) [PROOFSTEP] rw [lift.tmul] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(↑(uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (↑(curry (mk R (M ⊗[R] N) P)) m)) (n ⊗ₜ[R] p) = ↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p) [PROOFSTEP] rw [compr₂_apply] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(↑(uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (↑(curry (mk R (M ⊗[R] N) P)) m)) (n ⊗ₜ[R] p) = ↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p) [PROOFSTEP] rw [comp_apply] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(↑(uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (↑(curry (mk R (M ⊗[R] N) P)) m)) (n ⊗ₜ[R] p) = ↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p) [PROOFSTEP] rw [mk_apply] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(↑(uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (↑(curry (mk R (M ⊗[R] N) P)) m)) (n ⊗ₜ[R] p) = ↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p) [PROOFSTEP] rw [flip_apply] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(↑(uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (↑(curry (mk R (M ⊗[R] N) P)) m)) (n ⊗ₜ[R] p) = ↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p) [PROOFSTEP] rw [lcurry_apply] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(↑(uncurry R N P ((M ⊗[R] N) ⊗[R] P)) (↑(curry (mk R (M ⊗[R] N) P)) m)) (n ⊗ₜ[R] p) = ↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p) [PROOFSTEP] rw [uncurry_apply] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(↑(↑(curry (mk R (M ⊗[R] N) P)) m) n) p = ↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p) [PROOFSTEP] first | rw [lift.tmul] | rw [compr₂_apply] | rw [comp_apply] | rw [mk_apply] | rw [flip_apply] | rw [lcurry_apply] | rw [uncurry_apply] | rw [curry_apply] | rw [id_apply] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(↑(↑(curry (mk R (M ⊗[R] N) P)) m) n) p = ↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p) [PROOFSTEP] rw [lift.tmul] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(↑(↑(curry (mk R (M ⊗[R] N) P)) m) n) p = ↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p) [PROOFSTEP] rw [compr₂_apply] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(↑(↑(curry (mk R (M ⊗[R] N) P)) m) n) p = ↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p) [PROOFSTEP] rw [comp_apply] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(↑(↑(curry (mk R (M ⊗[R] N) P)) m) n) p = ↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p) [PROOFSTEP] rw [mk_apply] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(↑(↑(curry (mk R (M ⊗[R] N) P)) m) n) p = ↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p) [PROOFSTEP] rw [flip_apply] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(↑(↑(curry (mk R (M ⊗[R] N) P)) m) n) p = ↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p) [PROOFSTEP] rw [lcurry_apply] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(↑(↑(curry (mk R (M ⊗[R] N) P)) m) n) p = ↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p) [PROOFSTEP] rw [uncurry_apply] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(↑(↑(curry (mk R (M ⊗[R] N) P)) m) n) p = ↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p) [PROOFSTEP] rw [curry_apply] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(↑(mk R (M ⊗[R] N) P) (m ⊗ₜ[R] n)) p = ↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p) [PROOFSTEP] first | rw [lift.tmul] | rw [compr₂_apply] | rw [comp_apply] | rw [mk_apply] | rw [flip_apply] | rw [lcurry_apply] | rw [uncurry_apply] | rw [curry_apply] | rw [id_apply] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(↑(mk R (M ⊗[R] N) P) (m ⊗ₜ[R] n)) p = ↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p) [PROOFSTEP] rw [lift.tmul] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(↑(mk R (M ⊗[R] N) P) (m ⊗ₜ[R] n)) p = ↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p) [PROOFSTEP] rw [compr₂_apply] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(↑(mk R (M ⊗[R] N) P) (m ⊗ₜ[R] n)) p = ↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p) [PROOFSTEP] rw [comp_apply] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ ↑(↑(mk R (M ⊗[R] N) P) (m ⊗ₜ[R] n)) p = ↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p) [PROOFSTEP] rw [mk_apply] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ (m ⊗ₜ[R] n) ⊗ₜ[R] p = ↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p) [PROOFSTEP] first | rw [lift.tmul] | rw [compr₂_apply] | rw [comp_apply] | rw [mk_apply] | rw [flip_apply] | rw [lcurry_apply] | rw [uncurry_apply] | rw [curry_apply] | rw [id_apply] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ (m ⊗ₜ[R] n) ⊗ₜ[R] p = ↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p) [PROOFSTEP] rw [lift.tmul] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ (m ⊗ₜ[R] n) ⊗ₜ[R] p = ↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p) [PROOFSTEP] rw [compr₂_apply] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ (m ⊗ₜ[R] n) ⊗ₜ[R] p = ↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p) [PROOFSTEP] rw [comp_apply] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ (m ⊗ₜ[R] n) ⊗ₜ[R] p = ↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p) [PROOFSTEP] rw [mk_apply] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ (m ⊗ₜ[R] n) ⊗ₜ[R] p = ↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p) [PROOFSTEP] rw [flip_apply] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ (m ⊗ₜ[R] n) ⊗ₜ[R] p = ↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p) [PROOFSTEP] rw [lcurry_apply] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ (m ⊗ₜ[R] n) ⊗ₜ[R] p = ↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p) [PROOFSTEP] rw [uncurry_apply] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ (m ⊗ₜ[R] n) ⊗ₜ[R] p = ↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p) [PROOFSTEP] rw [curry_apply] [GOAL] case refine_2 R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M p : P m : M n : N ⊢ (m ⊗ₜ[R] n) ⊗ₜ[R] p = ↑LinearMap.id ((m ⊗ₜ[R] n) ⊗ₜ[R] p) [PROOFSTEP] rw [id_apply] [GOAL] R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M f : M →ₗ[R] P g : N →ₗ[R] Q ⊢ range (map f g) = Submodule.span R {t | ∃ m n, ↑f m ⊗ₜ[R] ↑g n = t} [PROOFSTEP] simp only [← Submodule.map_top, ← span_tmul_eq_top, Submodule.map_span, Set.mem_image, Set.mem_setOf_eq] [GOAL] R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M f : M →ₗ[R] P g : N →ₗ[R] Q ⊢ Submodule.span R ((fun a => ↑(map f g) a) '' {t | ∃ m n, m ⊗ₜ[R] n = t}) = Submodule.span R {t | ∃ m n, ↑f m ⊗ₜ[R] ↑g n = t} [PROOFSTEP] congr [GOAL] case e_s R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M f : M →ₗ[R] P g : N →ₗ[R] Q ⊢ (fun a => ↑(map f g) a) '' {t | ∃ m n, m ⊗ₜ[R] n = t} = {t | ∃ m n, ↑f m ⊗ₜ[R] ↑g n = t} [PROOFSTEP] ext t [GOAL] case e_s.h R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M f : M →ₗ[R] P g : N →ₗ[R] Q t : P ⊗[R] Q ⊢ t ∈ (fun a => ↑(map f g) a) '' {t | ∃ m n, m ⊗ₜ[R] n = t} ↔ t ∈ {t | ∃ m n, ↑f m ⊗ₜ[R] ↑g n = t} [PROOFSTEP] constructor [GOAL] case e_s.h.mp R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M f : M →ₗ[R] P g : N →ₗ[R] Q t : P ⊗[R] Q ⊢ t ∈ (fun a => ↑(map f g) a) '' {t | ∃ m n, m ⊗ₜ[R] n = t} → t ∈ {t | ∃ m n, ↑f m ⊗ₜ[R] ↑g n = t} [PROOFSTEP] rintro ⟨_, ⟨⟨m, n, rfl⟩, rfl⟩⟩ [GOAL] case e_s.h.mp.intro.intro.intro.intro R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M f : M →ₗ[R] P g : N →ₗ[R] Q m : M n : N ⊢ (fun a => ↑(map f g) a) (m ⊗ₜ[R] n) ∈ {t | ∃ m n, ↑f m ⊗ₜ[R] ↑g n = t} [PROOFSTEP] use m, n [GOAL] case h R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M f : M →ₗ[R] P g : N →ₗ[R] Q m : M n : N ⊢ ↑f m ⊗ₜ[R] ↑g n = (fun a => ↑(map f g) a) (m ⊗ₜ[R] n) [PROOFSTEP] simp only [map_tmul] [GOAL] case e_s.h.mpr R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M f : M →ₗ[R] P g : N →ₗ[R] Q t : P ⊗[R] Q ⊢ t ∈ {t | ∃ m n, ↑f m ⊗ₜ[R] ↑g n = t} → t ∈ (fun a => ↑(map f g) a) '' {t | ∃ m n, m ⊗ₜ[R] n = t} [PROOFSTEP] rintro ⟨m, n, rfl⟩ [GOAL] case e_s.h.mpr.intro.intro R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M f : M →ₗ[R] P g : N →ₗ[R] Q m : M n : N ⊢ ↑f m ⊗ₜ[R] ↑g n ∈ (fun a => ↑(map f g) a) '' {t | ∃ m n, m ⊗ₜ[R] n = t} [PROOFSTEP] refine ⟨_, ⟨⟨m, n, rfl⟩, ?_⟩⟩ [GOAL] case e_s.h.mpr.intro.intro R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M f : M →ₗ[R] P g : N →ₗ[R] Q m : M n : N ⊢ (fun a => ↑(map f g) a) (m ⊗ₜ[R] n) = ↑f m ⊗ₜ[R] ↑g n [PROOFSTEP] simp only [map_tmul] [GOAL] R : Type u_1 inst✝¹⁸ : CommSemiring R R' : Type u_2 inst✝¹⁷ : Monoid R' R'' : Type u_3 inst✝¹⁶ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : AddCommMonoid N inst✝¹³ : AddCommMonoid P inst✝¹² : AddCommMonoid Q inst✝¹¹ : AddCommMonoid S inst✝¹⁰ : Module R M inst✝⁹ : Module R N inst✝⁸ : Module R P inst✝⁷ : Module R Q inst✝⁶ : Module R S inst✝⁵ : DistribMulAction R' M inst✝⁴ : Module R'' M P' : Type u_9 Q' : Type u_10 inst✝³ : AddCommMonoid P' inst✝² : Module R P' inst✝¹ : AddCommMonoid Q' inst✝ : Module R Q' ⊢ map LinearMap.id LinearMap.id = LinearMap.id [PROOFSTEP] ext [GOAL] case H.h.h R : Type u_1 inst✝¹⁸ : CommSemiring R R' : Type u_2 inst✝¹⁷ : Monoid R' R'' : Type u_3 inst✝¹⁶ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : AddCommMonoid N inst✝¹³ : AddCommMonoid P inst✝¹² : AddCommMonoid Q inst✝¹¹ : AddCommMonoid S inst✝¹⁰ : Module R M inst✝⁹ : Module R N inst✝⁸ : Module R P inst✝⁷ : Module R Q inst✝⁶ : Module R S inst✝⁵ : DistribMulAction R' M inst✝⁴ : Module R'' M P' : Type u_9 Q' : Type u_10 inst✝³ : AddCommMonoid P' inst✝² : Module R P' inst✝¹ : AddCommMonoid Q' inst✝ : Module R Q' x✝¹ : M x✝ : N ⊢ ↑(↑(compr₂ (mk R M N) (map LinearMap.id LinearMap.id)) x✝¹) x✝ = ↑(↑(compr₂ (mk R M N) LinearMap.id) x✝¹) x✝ [PROOFSTEP] simp only [mk_apply, id_coe, compr₂_apply, id.def, map_tmul] [GOAL] R : Type u_1 inst✝¹⁸ : CommSemiring R R' : Type u_2 inst✝¹⁷ : Monoid R' R'' : Type u_3 inst✝¹⁶ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : AddCommMonoid N inst✝¹³ : AddCommMonoid P inst✝¹² : AddCommMonoid Q inst✝¹¹ : AddCommMonoid S inst✝¹⁰ : Module R M inst✝⁹ : Module R N inst✝⁸ : Module R P inst✝⁷ : Module R Q inst✝⁶ : Module R S inst✝⁵ : DistribMulAction R' M inst✝⁴ : Module R'' M P' : Type u_9 Q' : Type u_10 inst✝³ : AddCommMonoid P' inst✝² : Module R P' inst✝¹ : AddCommMonoid Q' inst✝ : Module R Q' f : M →ₗ[R] M g : N →ₗ[R] N n : ℕ ⊢ map f g ^ n = map (f ^ n) (g ^ n) [PROOFSTEP] induction' n with n ih [GOAL] case zero R : Type u_1 inst✝¹⁸ : CommSemiring R R' : Type u_2 inst✝¹⁷ : Monoid R' R'' : Type u_3 inst✝¹⁶ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : AddCommMonoid N inst✝¹³ : AddCommMonoid P inst✝¹² : AddCommMonoid Q inst✝¹¹ : AddCommMonoid S inst✝¹⁰ : Module R M inst✝⁹ : Module R N inst✝⁸ : Module R P inst✝⁷ : Module R Q inst✝⁶ : Module R S inst✝⁵ : DistribMulAction R' M inst✝⁴ : Module R'' M P' : Type u_9 Q' : Type u_10 inst✝³ : AddCommMonoid P' inst✝² : Module R P' inst✝¹ : AddCommMonoid Q' inst✝ : Module R Q' f : M →ₗ[R] M g : N →ₗ[R] N ⊢ map f g ^ Nat.zero = map (f ^ Nat.zero) (g ^ Nat.zero) [PROOFSTEP] simp only [Nat.zero_eq, pow_zero, map_one] [GOAL] case succ R : Type u_1 inst✝¹⁸ : CommSemiring R R' : Type u_2 inst✝¹⁷ : Monoid R' R'' : Type u_3 inst✝¹⁶ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : AddCommMonoid N inst✝¹³ : AddCommMonoid P inst✝¹² : AddCommMonoid Q inst✝¹¹ : AddCommMonoid S inst✝¹⁰ : Module R M inst✝⁹ : Module R N inst✝⁸ : Module R P inst✝⁷ : Module R Q inst✝⁶ : Module R S inst✝⁵ : DistribMulAction R' M inst✝⁴ : Module R'' M P' : Type u_9 Q' : Type u_10 inst✝³ : AddCommMonoid P' inst✝² : Module R P' inst✝¹ : AddCommMonoid Q' inst✝ : Module R Q' f : M →ₗ[R] M g : N →ₗ[R] N n : ℕ ih : map f g ^ n = map (f ^ n) (g ^ n) ⊢ map f g ^ Nat.succ n = map (f ^ Nat.succ n) (g ^ Nat.succ n) [PROOFSTEP] simp only [pow_succ', ih, map_mul] [GOAL] R : Type u_1 inst✝¹⁸ : CommSemiring R R' : Type u_2 inst✝¹⁷ : Monoid R' R'' : Type u_3 inst✝¹⁶ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : AddCommMonoid N inst✝¹³ : AddCommMonoid P inst✝¹² : AddCommMonoid Q inst✝¹¹ : AddCommMonoid S inst✝¹⁰ : Module R M inst✝⁹ : Module R N inst✝⁸ : Module R P inst✝⁷ : Module R Q inst✝⁶ : Module R S inst✝⁵ : DistribMulAction R' M inst✝⁴ : Module R'' M P' : Type u_9 Q' : Type u_10 inst✝³ : AddCommMonoid P' inst✝² : Module R P' inst✝¹ : AddCommMonoid Q' inst✝ : Module R Q' f₁ f₂ : M →ₗ[R] P g : N →ₗ[R] Q ⊢ map (f₁ + f₂) g = map f₁ g + map f₂ g [PROOFSTEP] ext [GOAL] case H.h.h R : Type u_1 inst✝¹⁸ : CommSemiring R R' : Type u_2 inst✝¹⁷ : Monoid R' R'' : Type u_3 inst✝¹⁶ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : AddCommMonoid N inst✝¹³ : AddCommMonoid P inst✝¹² : AddCommMonoid Q inst✝¹¹ : AddCommMonoid S inst✝¹⁰ : Module R M inst✝⁹ : Module R N inst✝⁸ : Module R P inst✝⁷ : Module R Q inst✝⁶ : Module R S inst✝⁵ : DistribMulAction R' M inst✝⁴ : Module R'' M P' : Type u_9 Q' : Type u_10 inst✝³ : AddCommMonoid P' inst✝² : Module R P' inst✝¹ : AddCommMonoid Q' inst✝ : Module R Q' f₁ f₂ : M →ₗ[R] P g : N →ₗ[R] Q x✝¹ : M x✝ : N ⊢ ↑(↑(compr₂ (mk R M N) (map (f₁ + f₂) g)) x✝¹) x✝ = ↑(↑(compr₂ (mk R M N) (map f₁ g + map f₂ g)) x✝¹) x✝ [PROOFSTEP] simp only [add_tmul, compr₂_apply, mk_apply, map_tmul, add_apply] [GOAL] R : Type u_1 inst✝¹⁸ : CommSemiring R R' : Type u_2 inst✝¹⁷ : Monoid R' R'' : Type u_3 inst✝¹⁶ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : AddCommMonoid N inst✝¹³ : AddCommMonoid P inst✝¹² : AddCommMonoid Q inst✝¹¹ : AddCommMonoid S inst✝¹⁰ : Module R M inst✝⁹ : Module R N inst✝⁸ : Module R P inst✝⁷ : Module R Q inst✝⁶ : Module R S inst✝⁵ : DistribMulAction R' M inst✝⁴ : Module R'' M P' : Type u_9 Q' : Type u_10 inst✝³ : AddCommMonoid P' inst✝² : Module R P' inst✝¹ : AddCommMonoid Q' inst✝ : Module R Q' f : M →ₗ[R] P g₁ g₂ : N →ₗ[R] Q ⊢ map f (g₁ + g₂) = map f g₁ + map f g₂ [PROOFSTEP] ext [GOAL] case H.h.h R : Type u_1 inst✝¹⁸ : CommSemiring R R' : Type u_2 inst✝¹⁷ : Monoid R' R'' : Type u_3 inst✝¹⁶ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : AddCommMonoid N inst✝¹³ : AddCommMonoid P inst✝¹² : AddCommMonoid Q inst✝¹¹ : AddCommMonoid S inst✝¹⁰ : Module R M inst✝⁹ : Module R N inst✝⁸ : Module R P inst✝⁷ : Module R Q inst✝⁶ : Module R S inst✝⁵ : DistribMulAction R' M inst✝⁴ : Module R'' M P' : Type u_9 Q' : Type u_10 inst✝³ : AddCommMonoid P' inst✝² : Module R P' inst✝¹ : AddCommMonoid Q' inst✝ : Module R Q' f : M →ₗ[R] P g₁ g₂ : N →ₗ[R] Q x✝¹ : M x✝ : N ⊢ ↑(↑(compr₂ (mk R M N) (map f (g₁ + g₂))) x✝¹) x✝ = ↑(↑(compr₂ (mk R M N) (map f g₁ + map f g₂)) x✝¹) x✝ [PROOFSTEP] simp only [tmul_add, compr₂_apply, mk_apply, map_tmul, add_apply] [GOAL] R : Type u_1 inst✝¹⁸ : CommSemiring R R' : Type u_2 inst✝¹⁷ : Monoid R' R'' : Type u_3 inst✝¹⁶ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : AddCommMonoid N inst✝¹³ : AddCommMonoid P inst✝¹² : AddCommMonoid Q inst✝¹¹ : AddCommMonoid S inst✝¹⁰ : Module R M inst✝⁹ : Module R N inst✝⁸ : Module R P inst✝⁷ : Module R Q inst✝⁶ : Module R S inst✝⁵ : DistribMulAction R' M inst✝⁴ : Module R'' M P' : Type u_9 Q' : Type u_10 inst✝³ : AddCommMonoid P' inst✝² : Module R P' inst✝¹ : AddCommMonoid Q' inst✝ : Module R Q' r : R f : M →ₗ[R] P g : N →ₗ[R] Q ⊢ map (r • f) g = r • map f g [PROOFSTEP] ext [GOAL] case H.h.h R : Type u_1 inst✝¹⁸ : CommSemiring R R' : Type u_2 inst✝¹⁷ : Monoid R' R'' : Type u_3 inst✝¹⁶ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : AddCommMonoid N inst✝¹³ : AddCommMonoid P inst✝¹² : AddCommMonoid Q inst✝¹¹ : AddCommMonoid S inst✝¹⁰ : Module R M inst✝⁹ : Module R N inst✝⁸ : Module R P inst✝⁷ : Module R Q inst✝⁶ : Module R S inst✝⁵ : DistribMulAction R' M inst✝⁴ : Module R'' M P' : Type u_9 Q' : Type u_10 inst✝³ : AddCommMonoid P' inst✝² : Module R P' inst✝¹ : AddCommMonoid Q' inst✝ : Module R Q' r : R f : M →ₗ[R] P g : N →ₗ[R] Q x✝¹ : M x✝ : N ⊢ ↑(↑(compr₂ (mk R M N) (map (r • f) g)) x✝¹) x✝ = ↑(↑(compr₂ (mk R M N) (r • map f g)) x✝¹) x✝ [PROOFSTEP] simp only [smul_tmul, compr₂_apply, mk_apply, map_tmul, smul_apply, tmul_smul] [GOAL] R : Type u_1 inst✝¹⁸ : CommSemiring R R' : Type u_2 inst✝¹⁷ : Monoid R' R'' : Type u_3 inst✝¹⁶ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : AddCommMonoid N inst✝¹³ : AddCommMonoid P inst✝¹² : AddCommMonoid Q inst✝¹¹ : AddCommMonoid S inst✝¹⁰ : Module R M inst✝⁹ : Module R N inst✝⁸ : Module R P inst✝⁷ : Module R Q inst✝⁶ : Module R S inst✝⁵ : DistribMulAction R' M inst✝⁴ : Module R'' M P' : Type u_9 Q' : Type u_10 inst✝³ : AddCommMonoid P' inst✝² : Module R P' inst✝¹ : AddCommMonoid Q' inst✝ : Module R Q' r : R f : M →ₗ[R] P g : N →ₗ[R] Q ⊢ map f (r • g) = r • map f g [PROOFSTEP] ext [GOAL] case H.h.h R : Type u_1 inst✝¹⁸ : CommSemiring R R' : Type u_2 inst✝¹⁷ : Monoid R' R'' : Type u_3 inst✝¹⁶ : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : AddCommMonoid N inst✝¹³ : AddCommMonoid P inst✝¹² : AddCommMonoid Q inst✝¹¹ : AddCommMonoid S inst✝¹⁰ : Module R M inst✝⁹ : Module R N inst✝⁸ : Module R P inst✝⁷ : Module R Q inst✝⁶ : Module R S inst✝⁵ : DistribMulAction R' M inst✝⁴ : Module R'' M P' : Type u_9 Q' : Type u_10 inst✝³ : AddCommMonoid P' inst✝² : Module R P' inst✝¹ : AddCommMonoid Q' inst✝ : Module R Q' r : R f : M →ₗ[R] P g : N →ₗ[R] Q x✝¹ : M x✝ : N ⊢ ↑(↑(compr₂ (mk R M N) (map f (r • g))) x✝¹) x✝ = ↑(↑(compr₂ (mk R M N) (r • map f g)) x✝¹) x✝ [PROOFSTEP] simp only [smul_tmul, compr₂_apply, mk_apply, map_tmul, smul_apply, tmul_smul] [GOAL] R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M f : M ≃ₗ[R] P g : N ≃ₗ[R] Q m : P n : Q ⊢ ↑(comp (map ↑f ↑g) (map ↑(LinearEquiv.symm f) ↑(LinearEquiv.symm g))) (m ⊗ₜ[R] n) = ↑LinearMap.id (m ⊗ₜ[R] n) [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M f : M ≃ₗ[R] P g : N ≃ₗ[R] Q m : M n : N ⊢ ↑(comp (map ↑(LinearEquiv.symm f) ↑(LinearEquiv.symm g)) (map ↑f ↑g)) (m ⊗ₜ[R] n) = ↑LinearMap.id (m ⊗ₜ[R] n) [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M ⊢ LinearEquiv.symm (tensorTensorTensorComm R M N P Q) = tensorTensorTensorComm R M P N Q [PROOFSTEP] ext [GOAL] case h R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M x✝ : (M ⊗[R] P) ⊗[R] N ⊗[R] Q ⊢ ↑(LinearEquiv.symm (tensorTensorTensorComm R M N P Q)) x✝ = ↑(tensorTensorTensorComm R M P N Q) x✝ [PROOFSTEP] rfl [GOAL] R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M g✝ : P →ₗ[R] Q f✝ f g : N →ₗ[R] P ⊢ lTensor M (f + g) = lTensor M f + lTensor M g [PROOFSTEP] ext x y [GOAL] case H.h.h R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M g✝ : P →ₗ[R] Q f✝ f g : N →ₗ[R] P x : M y : N ⊢ ↑(↑(compr₂ (TensorProduct.mk R M N) (lTensor M (f + g))) x) y = ↑(↑(compr₂ (TensorProduct.mk R M N) (lTensor M f + lTensor M g)) x) y [PROOFSTEP] simp only [compr₂_apply, mk_apply, add_apply, lTensor_tmul, tmul_add] [GOAL] R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M g : P →ₗ[R] Q f✝ : N →ₗ[R] P r : R f : N →ₗ[R] P ⊢ AddHom.toFun { toFun := lTensor M, map_add' := (_ : ∀ (f g : N →ₗ[R] P), lTensor M (f + g) = lTensor M f + lTensor M g) } (r • f) = ↑(RingHom.id R) r • AddHom.toFun { toFun := lTensor M, map_add' := (_ : ∀ (f g : N →ₗ[R] P), lTensor M (f + g) = lTensor M f + lTensor M g) } f [PROOFSTEP] dsimp [GOAL] R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M g : P →ₗ[R] Q f✝ : N →ₗ[R] P r : R f : N →ₗ[R] P ⊢ lTensor M (r • f) = r • lTensor M f [PROOFSTEP] ext x y [GOAL] case H.h.h R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M g : P →ₗ[R] Q f✝ : N →ₗ[R] P r : R f : N →ₗ[R] P x : M y : N ⊢ ↑(↑(compr₂ (TensorProduct.mk R M N) (lTensor M (r • f))) x) y = ↑(↑(compr₂ (TensorProduct.mk R M N) (r • lTensor M f)) x) y [PROOFSTEP] simp only [compr₂_apply, mk_apply, tmul_smul, smul_apply, lTensor_tmul] [GOAL] R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M g✝ : P →ₗ[R] Q f✝ f g : N →ₗ[R] P ⊢ (fun f => rTensor M f) (f + g) = (fun f => rTensor M f) f + (fun f => rTensor M f) g [PROOFSTEP] ext x y [GOAL] case H.h.h R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M g✝ : P →ₗ[R] Q f✝ f g : N →ₗ[R] P x : N y : M ⊢ ↑(↑(compr₂ (TensorProduct.mk R N M) ((fun f => rTensor M f) (f + g))) x) y = ↑(↑(compr₂ (TensorProduct.mk R N M) ((fun f => rTensor M f) f + (fun f => rTensor M f) g)) x) y [PROOFSTEP] simp only [compr₂_apply, mk_apply, add_apply, rTensor_tmul, add_tmul] [GOAL] R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M g : P →ₗ[R] Q f✝ : N →ₗ[R] P r : R f : N →ₗ[R] P ⊢ AddHom.toFun { toFun := fun f => rTensor M f, map_add' := (_ : ∀ (f g : N →ₗ[R] P), (fun f => rTensor M f) (f + g) = (fun f => rTensor M f) f + (fun f => rTensor M f) g) } (r • f) = ↑(RingHom.id R) r • AddHom.toFun { toFun := fun f => rTensor M f, map_add' := (_ : ∀ (f g : N →ₗ[R] P), (fun f => rTensor M f) (f + g) = (fun f => rTensor M f) f + (fun f => rTensor M f) g) } f [PROOFSTEP] dsimp [GOAL] R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M g : P →ₗ[R] Q f✝ : N →ₗ[R] P r : R f : N →ₗ[R] P ⊢ rTensor M (r • f) = r • rTensor M f [PROOFSTEP] ext x y [GOAL] case H.h.h R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M g : P →ₗ[R] Q f✝ : N →ₗ[R] P r : R f : N →ₗ[R] P x : N y : M ⊢ ↑(↑(compr₂ (TensorProduct.mk R N M) (rTensor M (r • f))) x) y = ↑(↑(compr₂ (TensorProduct.mk R N M) (r • rTensor M f)) x) y [PROOFSTEP] simp only [compr₂_apply, mk_apply, smul_tmul, tmul_smul, smul_apply, rTensor_tmul] [GOAL] R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M g : P →ₗ[R] Q f : N →ₗ[R] P ⊢ lTensor M (comp g f) = comp (lTensor M g) (lTensor M f) [PROOFSTEP] ext m n [GOAL] case H.h.h R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M g : P →ₗ[R] Q f : N →ₗ[R] P m : M n : N ⊢ ↑(↑(compr₂ (TensorProduct.mk R M N) (lTensor M (comp g f))) m) n = ↑(↑(compr₂ (TensorProduct.mk R M N) (comp (lTensor M g) (lTensor M f))) m) n [PROOFSTEP] simp only [compr₂_apply, mk_apply, comp_apply, lTensor_tmul] [GOAL] R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M g : P →ₗ[R] Q f : N →ₗ[R] P x : M ⊗[R] N ⊢ ↑(lTensor M (comp g f)) x = ↑(lTensor M g) (↑(lTensor M f) x) [PROOFSTEP] rw [lTensor_comp, coe_comp] [GOAL] R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M g : P →ₗ[R] Q f : N →ₗ[R] P x : M ⊗[R] N ⊢ (↑(lTensor M g) ∘ ↑(lTensor M f)) x = ↑(lTensor M g) (↑(lTensor M f) x) [PROOFSTEP] rfl [GOAL] R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M g : P →ₗ[R] Q f : N →ₗ[R] P ⊢ rTensor M (comp g f) = comp (rTensor M g) (rTensor M f) [PROOFSTEP] ext m n [GOAL] case H.h.h R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M g : P →ₗ[R] Q f : N →ₗ[R] P m : N n : M ⊢ ↑(↑(compr₂ (TensorProduct.mk R N M) (rTensor M (comp g f))) m) n = ↑(↑(compr₂ (TensorProduct.mk R N M) (comp (rTensor M g) (rTensor M f))) m) n [PROOFSTEP] simp only [compr₂_apply, mk_apply, comp_apply, rTensor_tmul] [GOAL] R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M g : P →ₗ[R] Q f : N →ₗ[R] P x : N ⊗[R] M ⊢ ↑(rTensor M (comp g f)) x = ↑(rTensor M g) (↑(rTensor M f) x) [PROOFSTEP] rw [rTensor_comp, coe_comp] [GOAL] R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M g : P →ₗ[R] Q f : N →ₗ[R] P x : N ⊗[R] M ⊢ (↑(rTensor M g) ∘ ↑(rTensor M f)) x = ↑(rTensor M g) (↑(rTensor M f) x) [PROOFSTEP] rfl [GOAL] R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M g : P →ₗ[R] Q f : N →ₗ[R] P x : M ⊗[R] N ⊢ ↑(lTensor M id) x = x [PROOFSTEP] rw [lTensor_id, id_coe, id.def] [GOAL] R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M g : P →ₗ[R] Q f : N →ₗ[R] P x : N ⊗[R] M ⊢ ↑(rTensor M id) x = x [PROOFSTEP] rw [rTensor_id, id_coe, id.def] [GOAL] R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M g✝ : P →ₗ[R] Q f✝ : N →ₗ[R] P f : M →ₗ[R] P g : N →ₗ[R] Q ⊢ comp (lTensor P g) (rTensor N f) = map f g [PROOFSTEP] simp only [lTensor, rTensor, ← map_comp, id_comp, comp_id] [GOAL] R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M g✝ : P →ₗ[R] Q f✝ : N →ₗ[R] P f : M →ₗ[R] P g : N →ₗ[R] Q ⊢ comp (rTensor Q f) (lTensor M g) = map f g [PROOFSTEP] simp only [lTensor, rTensor, ← map_comp, id_comp, comp_id] [GOAL] R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M g✝ : P →ₗ[R] Q f✝ : N →ₗ[R] P f : M →ₗ[R] P g : N →ₗ[R] Q f' : S →ₗ[R] M ⊢ comp (map f g) (rTensor N f') = map (comp f f') g [PROOFSTEP] simp only [lTensor, rTensor, ← map_comp, id_comp, comp_id] [GOAL] R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M g✝ : P →ₗ[R] Q f✝ : N →ₗ[R] P f : M →ₗ[R] P g : N →ₗ[R] Q g' : S →ₗ[R] N ⊢ comp (map f g) (lTensor M g') = map f (comp g g') [PROOFSTEP] simp only [lTensor, rTensor, ← map_comp, id_comp, comp_id] [GOAL] R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M g✝ : P →ₗ[R] Q f✝ : N →ₗ[R] P f' : P →ₗ[R] S f : M →ₗ[R] P g : N →ₗ[R] Q ⊢ comp (rTensor Q f') (map f g) = map (comp f' f) g [PROOFSTEP] simp only [lTensor, rTensor, ← map_comp, id_comp, comp_id] [GOAL] R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M g✝ : P →ₗ[R] Q f✝ : N →ₗ[R] P g' : Q →ₗ[R] S f : M →ₗ[R] P g : N →ₗ[R] Q ⊢ comp (lTensor P g') (map f g) = map f (comp g' g) [PROOFSTEP] simp only [lTensor, rTensor, ← map_comp, id_comp, comp_id] [GOAL] R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M g : P →ₗ[R] Q f✝ : N →ₗ[R] P f : M →ₗ[R] M n : ℕ ⊢ rTensor N f ^ n = rTensor N (f ^ n) [PROOFSTEP] have h := TensorProduct.map_pow f (id : N →ₗ[R] N) n [GOAL] R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M g : P →ₗ[R] Q f✝ : N →ₗ[R] P f : M →ₗ[R] M n : ℕ h : map f id ^ n = map (f ^ n) (id ^ n) ⊢ rTensor N f ^ n = rTensor N (f ^ n) [PROOFSTEP] rwa [id_pow] at h [GOAL] R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M g : P →ₗ[R] Q f✝ : N →ₗ[R] P f : N →ₗ[R] N n : ℕ ⊢ lTensor M f ^ n = lTensor M (f ^ n) [PROOFSTEP] have h := TensorProduct.map_pow (id : M →ₗ[R] M) f n [GOAL] R : Type u_1 inst✝¹⁴ : CommSemiring R R' : Type u_2 inst✝¹³ : Monoid R' R'' : Type u_3 inst✝¹² : Semiring R'' M : Type u_4 N : Type u_5 P : Type u_6 Q : Type u_7 S : Type u_8 inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid N inst✝⁹ : AddCommMonoid P inst✝⁸ : AddCommMonoid Q inst✝⁷ : AddCommMonoid S inst✝⁶ : Module R M inst✝⁵ : Module R N inst✝⁴ : Module R P inst✝³ : Module R Q inst✝² : Module R S inst✝¹ : DistribMulAction R' M inst✝ : Module R'' M g : P →ₗ[R] Q f✝ : N →ₗ[R] P f : N →ₗ[R] N n : ℕ h : map id f ^ n = map (id ^ n) (f ^ n) ⊢ lTensor M f ^ n = lTensor M (f ^ n) [PROOFSTEP] rwa [id_pow] at h [GOAL] R : Type u_1 inst✝¹⁰ : CommSemiring R M : Type u_2 N : Type u_3 P : Type u_4 Q : Type u_5 S : Type u_6 inst✝⁹ : AddCommGroup M inst✝⁸ : AddCommGroup N inst✝⁷ : AddCommGroup P inst✝⁶ : AddCommGroup Q inst✝⁵ : AddCommGroup S inst✝⁴ : Module R M inst✝³ : Module R N inst✝² : Module R P inst✝¹ : Module R Q inst✝ : Module R S x y : FreeAddMonoid (M × N) hxy : Eqv R M N x y n : N ⊢ ↑(Neg.aux R) (FreeAddMonoid.of (0, n)) = ↑(Neg.aux R) 0 [PROOFSTEP] simp_rw [map_zero, Neg.aux_of, neg_zero, zero_tmul] [GOAL] R : Type u_1 inst✝¹⁰ : CommSemiring R M : Type u_2 N : Type u_3 P : Type u_4 Q : Type u_5 S : Type u_6 inst✝⁹ : AddCommGroup M inst✝⁸ : AddCommGroup N inst✝⁷ : AddCommGroup P inst✝⁶ : AddCommGroup Q inst✝⁵ : AddCommGroup S inst✝⁴ : Module R M inst✝³ : Module R N inst✝² : Module R P inst✝¹ : Module R Q inst✝ : Module R S x y : FreeAddMonoid (M × N) hxy : Eqv R M N x y m : M ⊢ ↑(Neg.aux R) (FreeAddMonoid.of (m, 0)) = ↑(Neg.aux R) 0 [PROOFSTEP] simp_rw [map_zero, Neg.aux_of, tmul_zero] [GOAL] R : Type u_1 inst✝¹⁰ : CommSemiring R M : Type u_2 N : Type u_3 P : Type u_4 Q : Type u_5 S : Type u_6 inst✝⁹ : AddCommGroup M inst✝⁸ : AddCommGroup N inst✝⁷ : AddCommGroup P inst✝⁶ : AddCommGroup Q inst✝⁵ : AddCommGroup S inst✝⁴ : Module R M inst✝³ : Module R N inst✝² : Module R P inst✝¹ : Module R Q inst✝ : Module R S x y : FreeAddMonoid (M × N) hxy : Eqv R M N x y m₁ m₂ : M n : N ⊢ ↑(Neg.aux R) (FreeAddMonoid.of (m₁, n) + FreeAddMonoid.of (m₂, n)) = ↑(Neg.aux R) (FreeAddMonoid.of (m₁ + m₂, n)) [PROOFSTEP] simp_rw [map_add, Neg.aux_of, neg_add, add_tmul] [GOAL] R : Type u_1 inst✝¹⁰ : CommSemiring R M : Type u_2 N : Type u_3 P : Type u_4 Q : Type u_5 S : Type u_6 inst✝⁹ : AddCommGroup M inst✝⁸ : AddCommGroup N inst✝⁷ : AddCommGroup P inst✝⁶ : AddCommGroup Q inst✝⁵ : AddCommGroup S inst✝⁴ : Module R M inst✝³ : Module R N inst✝² : Module R P inst✝¹ : Module R Q inst✝ : Module R S x y : FreeAddMonoid (M × N) hxy : Eqv R M N x y m : M n₁ n₂ : N ⊢ ↑(Neg.aux R) (FreeAddMonoid.of (m, n₁) + FreeAddMonoid.of (m, n₂)) = ↑(Neg.aux R) (FreeAddMonoid.of (m, n₁ + n₂)) [PROOFSTEP] simp_rw [map_add, Neg.aux_of, tmul_add] [GOAL] R : Type u_1 inst✝¹⁰ : CommSemiring R M : Type u_2 N : Type u_3 P : Type u_4 Q : Type u_5 S : Type u_6 inst✝⁹ : AddCommGroup M inst✝⁸ : AddCommGroup N inst✝⁷ : AddCommGroup P inst✝⁶ : AddCommGroup Q inst✝⁵ : AddCommGroup S inst✝⁴ : Module R M inst✝³ : Module R N inst✝² : Module R P inst✝¹ : Module R Q inst✝ : Module R S x y : FreeAddMonoid (M × N) hxy : Eqv R M N x y s : R m : M n : N ⊢ ↑(Neg.aux R) (FreeAddMonoid.of (s • m, n)) = ↑(Neg.aux R) (FreeAddMonoid.of (m, s • n)) [PROOFSTEP] simp_rw [Neg.aux_of, ← smul_neg, ← smul_tmul] [GOAL] R : Type u_1 inst✝¹⁰ : CommSemiring R M : Type u_2 N : Type u_3 P : Type u_4 Q : Type u_5 S : Type u_6 inst✝⁹ : AddCommGroup M inst✝⁸ : AddCommGroup N inst✝⁷ : AddCommGroup P inst✝⁶ : AddCommGroup Q inst✝⁵ : AddCommGroup S inst✝⁴ : Module R M inst✝³ : Module R N inst✝² : Module R P inst✝¹ : Module R Q inst✝ : Module R S x✝ y✝ : FreeAddMonoid (M × N) hxy : Eqv R M N x✝ y✝ x y : FreeAddMonoid (M × N) ⊢ ↑(Neg.aux R) (x + y) = ↑(Neg.aux R) (y + x) [PROOFSTEP] simp_rw [map_add, add_comm] [GOAL] R : Type u_1 inst✝¹⁰ : CommSemiring R M : Type u_2 N : Type u_3 P : Type u_4 Q : Type u_5 S : Type u_6 inst✝⁹ : AddCommGroup M inst✝⁸ : AddCommGroup N inst✝⁷ : AddCommGroup P inst✝⁶ : AddCommGroup Q inst✝⁵ : AddCommGroup S inst✝⁴ : Module R M inst✝³ : Module R N inst✝² : Module R P inst✝¹ : Module R Q inst✝ : Module R S x : M ⊗[R] N ⊢ -0 + 0 = 0 [PROOFSTEP] rw [add_zero] [GOAL] R : Type u_1 inst✝¹⁰ : CommSemiring R M : Type u_2 N : Type u_3 P : Type u_4 Q : Type u_5 S : Type u_6 inst✝⁹ : AddCommGroup M inst✝⁸ : AddCommGroup N inst✝⁷ : AddCommGroup P inst✝⁶ : AddCommGroup Q inst✝⁵ : AddCommGroup S inst✝⁴ : Module R M inst✝³ : Module R N inst✝² : Module R P inst✝¹ : Module R Q inst✝ : Module R S x : M ⊗[R] N ⊢ -0 = 0 [PROOFSTEP] apply (Neg.aux R).map_zero [GOAL] R : Type u_1 inst✝¹⁰ : CommSemiring R M : Type u_2 N : Type u_3 P : Type u_4 Q : Type u_5 S : Type u_6 inst✝⁹ : AddCommGroup M inst✝⁸ : AddCommGroup N inst✝⁷ : AddCommGroup P inst✝⁶ : AddCommGroup Q inst✝⁵ : AddCommGroup S inst✝⁴ : Module R M inst✝³ : Module R N inst✝² : Module R P inst✝¹ : Module R Q inst✝ : Module R S x✝ : M ⊗[R] N x : M y : N ⊢ -x ⊗ₜ[R] y + x ⊗ₜ[R] y = 0 [PROOFSTEP] convert (add_tmul (R := R) (-x) x y).symm [GOAL] case h.e'_3 R : Type u_1 inst✝¹⁰ : CommSemiring R M : Type u_2 N : Type u_3 P : Type u_4 Q : Type u_5 S : Type u_6 inst✝⁹ : AddCommGroup M inst✝⁸ : AddCommGroup N inst✝⁷ : AddCommGroup P inst✝⁶ : AddCommGroup Q inst✝⁵ : AddCommGroup S inst✝⁴ : Module R M inst✝³ : Module R N inst✝² : Module R P inst✝¹ : Module R Q inst✝ : Module R S x✝ : M ⊗[R] N x : M y : N ⊢ 0 = (-x + x) ⊗ₜ[R] y [PROOFSTEP] rw [add_left_neg, zero_tmul] [GOAL] R : Type u_1 inst✝¹⁰ : CommSemiring R M : Type u_2 N : Type u_3 P : Type u_4 Q : Type u_5 S : Type u_6 inst✝⁹ : AddCommGroup M inst✝⁸ : AddCommGroup N inst✝⁷ : AddCommGroup P inst✝⁶ : AddCommGroup Q inst✝⁵ : AddCommGroup S inst✝⁴ : Module R M inst✝³ : Module R N inst✝² : Module R P inst✝¹ : Module R Q inst✝ : Module R S x✝ x y : M ⊗[R] N hx : -x + x = 0 hy : -y + y = 0 ⊢ -(x + y) + (x + y) = 0 [PROOFSTEP] suffices : -x + x + (-y + y) = 0 [GOAL] R : Type u_1 inst✝¹⁰ : CommSemiring R M : Type u_2 N : Type u_3 P : Type u_4 Q : Type u_5 S : Type u_6 inst✝⁹ : AddCommGroup M inst✝⁸ : AddCommGroup N inst✝⁷ : AddCommGroup P inst✝⁶ : AddCommGroup Q inst✝⁵ : AddCommGroup S inst✝⁴ : Module R M inst✝³ : Module R N inst✝² : Module R P inst✝¹ : Module R Q inst✝ : Module R S x✝ x y : M ⊗[R] N hx : -x + x = 0 hy : -y + y = 0 this : -x + x + (-y + y) = 0 ⊢ -(x + y) + (x + y) = 0 [PROOFSTEP] rw [← this] [GOAL] R : Type u_1 inst✝¹⁰ : CommSemiring R M : Type u_2 N : Type u_3 P : Type u_4 Q : Type u_5 S : Type u_6 inst✝⁹ : AddCommGroup M inst✝⁸ : AddCommGroup N inst✝⁷ : AddCommGroup P inst✝⁶ : AddCommGroup Q inst✝⁵ : AddCommGroup S inst✝⁴ : Module R M inst✝³ : Module R N inst✝² : Module R P inst✝¹ : Module R Q inst✝ : Module R S x✝ x y : M ⊗[R] N hx : -x + x = 0 hy : -y + y = 0 this : -x + x + (-y + y) = 0 ⊢ -(x + y) + (x + y) = -x + x + (-y + y) [PROOFSTEP] unfold Neg.neg neg [GOAL] R : Type u_1 inst✝¹⁰ : CommSemiring R M : Type u_2 N : Type u_3 P : Type u_4 Q : Type u_5 S : Type u_6 inst✝⁹ : AddCommGroup M inst✝⁸ : AddCommGroup N inst✝⁷ : AddCommGroup P inst✝⁶ : AddCommGroup Q inst✝⁵ : AddCommGroup S inst✝⁴ : Module R M inst✝³ : Module R N inst✝² : Module R P inst✝¹ : Module R Q inst✝ : Module R S x✝ x y : M ⊗[R] N hx : -x + x = 0 hy : -y + y = 0 this : -x + x + (-y + y) = 0 ⊢ { neg := ↑(AddCon.lift (addConGen (Eqv R M N)) (Neg.aux R) (_ : addConGen (Eqv R M N) ≤ AddCon.ker (Neg.aux R))) }.1 (x + y) + (x + y) = { neg := ↑(AddCon.lift (addConGen (Eqv R M N)) (Neg.aux R) (_ : addConGen (Eqv R M N) ≤ AddCon.ker (Neg.aux R))) }.1 x + x + ({ neg := ↑(AddCon.lift (addConGen (Eqv R M N)) (Neg.aux R) (_ : addConGen (Eqv R M N) ≤ AddCon.ker (Neg.aux R))) }.1 y + y) [PROOFSTEP] simp only [GOAL] R : Type u_1 inst✝¹⁰ : CommSemiring R M : Type u_2 N : Type u_3 P : Type u_4 Q : Type u_5 S : Type u_6 inst✝⁹ : AddCommGroup M inst✝⁸ : AddCommGroup N inst✝⁷ : AddCommGroup P inst✝⁶ : AddCommGroup Q inst✝⁵ : AddCommGroup S inst✝⁴ : Module R M inst✝³ : Module R N inst✝² : Module R P inst✝¹ : Module R Q inst✝ : Module R S x✝ x y : M ⊗[R] N hx : -x + x = 0 hy : -y + y = 0 this : -x + x + (-y + y) = 0 ⊢ ↑(AddCon.lift (addConGen (Eqv R M N)) (Neg.aux R) (_ : addConGen (Eqv R M N) ≤ AddCon.ker (Neg.aux R))) (x + y) + (x + y) = ↑(AddCon.lift (addConGen (Eqv R M N)) (Neg.aux R) (_ : addConGen (Eqv R M N) ≤ AddCon.ker (Neg.aux R))) x + x + (↑(AddCon.lift (addConGen (Eqv R M N)) (Neg.aux R) (_ : addConGen (Eqv R M N) ≤ AddCon.ker (Neg.aux R))) y + y) [PROOFSTEP] rw [AddMonoidHom.map_add] [GOAL] R : Type u_1 inst✝¹⁰ : CommSemiring R M : Type u_2 N : Type u_3 P : Type u_4 Q : Type u_5 S : Type u_6 inst✝⁹ : AddCommGroup M inst✝⁸ : AddCommGroup N inst✝⁷ : AddCommGroup P inst✝⁶ : AddCommGroup Q inst✝⁵ : AddCommGroup S inst✝⁴ : Module R M inst✝³ : Module R N inst✝² : Module R P inst✝¹ : Module R Q inst✝ : Module R S x✝ x y : M ⊗[R] N hx : -x + x = 0 hy : -y + y = 0 this : -x + x + (-y + y) = 0 ⊢ ↑(AddCon.lift (addConGen (Eqv R M N)) (Neg.aux R) (_ : addConGen (Eqv R M N) ≤ AddCon.ker (Neg.aux R))) x + ↑(AddCon.lift (addConGen (Eqv R M N)) (Neg.aux R) (_ : addConGen (Eqv R M N) ≤ AddCon.ker (Neg.aux R))) y + (x + y) = ↑(AddCon.lift (addConGen (Eqv R M N)) (Neg.aux R) (_ : addConGen (Eqv R M N) ≤ AddCon.ker (Neg.aux R))) x + x + (↑(AddCon.lift (addConGen (Eqv R M N)) (Neg.aux R) (_ : addConGen (Eqv R M N) ≤ AddCon.ker (Neg.aux R))) y + y) [PROOFSTEP] abel [GOAL] R : Type u_1 inst✝¹⁰ : CommSemiring R M : Type u_2 N : Type u_3 P : Type u_4 Q : Type u_5 S : Type u_6 inst✝⁹ : AddCommGroup M inst✝⁸ : AddCommGroup N inst✝⁷ : AddCommGroup P inst✝⁶ : AddCommGroup Q inst✝⁵ : AddCommGroup S inst✝⁴ : Module R M inst✝³ : Module R N inst✝² : Module R P inst✝¹ : Module R Q inst✝ : Module R S x✝ x y : M ⊗[R] N hx : -x + x = 0 hy : -y + y = 0 this : -x + x + (-y + y) = 0 ⊢ ↑(AddCon.lift (addConGen (Eqv R M N)) (Neg.aux R) (_ : addConGen (Eqv R M N) ≤ AddCon.ker (Neg.aux R))) x + ↑(AddCon.lift (addConGen (Eqv R M N)) (Neg.aux R) (_ : addConGen (Eqv R M N) ≤ AddCon.ker (Neg.aux R))) y + (x + y) = ↑(AddCon.lift (addConGen (Eqv R M N)) (Neg.aux R) (_ : addConGen (Eqv R M N) ≤ AddCon.ker (Neg.aux R))) x + x + (↑(AddCon.lift (addConGen (Eqv R M N)) (Neg.aux R) (_ : addConGen (Eqv R M N) ≤ AddCon.ker (Neg.aux R))) y + y) [PROOFSTEP] abel [GOAL] case this R : Type u_1 inst✝¹⁰ : CommSemiring R M : Type u_2 N : Type u_3 P : Type u_4 Q : Type u_5 S : Type u_6 inst✝⁹ : AddCommGroup M inst✝⁸ : AddCommGroup N inst✝⁷ : AddCommGroup P inst✝⁶ : AddCommGroup Q inst✝⁵ : AddCommGroup S inst✝⁴ : Module R M inst✝³ : Module R N inst✝² : Module R P inst✝¹ : Module R Q inst✝ : Module R S x✝ x y : M ⊗[R] N hx : -x + x = 0 hy : -y + y = 0 ⊢ -x + x + (-y + y) = 0 [PROOFSTEP] rw [hx, hy, add_zero] [GOAL] R : Type u_1 inst✝¹⁰ : CommSemiring R M : Type u_2 N : Type u_3 P : Type u_4 Q : Type u_5 S : Type u_6 inst✝⁹ : AddCommGroup M inst✝⁸ : AddCommGroup N inst✝⁷ : AddCommGroup P inst✝⁶ : AddCommGroup Q inst✝⁵ : AddCommGroup S inst✝⁴ : Module R M inst✝³ : Module R N inst✝² : Module R P inst✝¹ : Module R Q inst✝ : Module R S src✝ : AddCommMonoid (M ⊗[R] N) := addCommMonoid ⊢ ∀ (a : M ⊗[R] N), (fun n v => n • v) 0 a = 0 [PROOFSTEP] simp [TensorProduct.zero_smul] [GOAL] R : Type u_1 inst✝¹⁰ : CommSemiring R M : Type u_2 N : Type u_3 P : Type u_4 Q : Type u_5 S : Type u_6 inst✝⁹ : AddCommGroup M inst✝⁸ : AddCommGroup N inst✝⁷ : AddCommGroup P inst✝⁶ : AddCommGroup Q inst✝⁵ : AddCommGroup S inst✝⁴ : Module R M inst✝³ : Module R N inst✝² : Module R P inst✝¹ : Module R Q inst✝ : Module R S src✝ : AddCommMonoid (M ⊗[R] N) := addCommMonoid ⊢ ∀ (n : ℕ) (a : M ⊗[R] N), (fun n v => n • v) (Int.ofNat (Nat.succ n)) a = a + (fun n v => n • v) (Int.ofNat n) a [PROOFSTEP] simp [Nat.succ_eq_one_add, TensorProduct.one_smul, TensorProduct.add_smul] [GOAL] R : Type u_1 inst✝¹⁰ : CommSemiring R M : Type u_2 N : Type u_3 P : Type u_4 Q : Type u_5 S : Type u_6 inst✝⁹ : AddCommGroup M inst✝⁸ : AddCommGroup N inst✝⁷ : AddCommGroup P inst✝⁶ : AddCommGroup Q inst✝⁵ : AddCommGroup S inst✝⁴ : Module R M inst✝³ : Module R N inst✝² : Module R P inst✝¹ : Module R Q inst✝ : Module R S src✝ : AddCommMonoid (M ⊗[R] N) := addCommMonoid n : ℕ x : M ⊗[R] N ⊢ (fun n v => n • v) (Int.negSucc n) x = -(fun n v => n • v) (↑(Nat.succ n)) x [PROOFSTEP] change (-n.succ : ℤ) • x = -(((n : ℤ) + 1) • x) [GOAL] R : Type u_1 inst✝¹⁰ : CommSemiring R M : Type u_2 N : Type u_3 P : Type u_4 Q : Type u_5 S : Type u_6 inst✝⁹ : AddCommGroup M inst✝⁸ : AddCommGroup N inst✝⁷ : AddCommGroup P inst✝⁶ : AddCommGroup Q inst✝⁵ : AddCommGroup S inst✝⁴ : Module R M inst✝³ : Module R N inst✝² : Module R P inst✝¹ : Module R Q inst✝ : Module R S src✝ : AddCommMonoid (M ⊗[R] N) := addCommMonoid n : ℕ x : M ⊗[R] N ⊢ -↑(Nat.succ n) • x = -((↑n + 1) • x) [PROOFSTEP] rw [← zero_add (_ • x), ← TensorProduct.add_left_neg ((n.succ : ℤ) • x), add_assoc, ← add_smul, ← sub_eq_add_neg, sub_self, zero_smul, add_zero] [GOAL] R : Type u_1 inst✝¹⁰ : CommSemiring R M : Type u_2 N : Type u_3 P : Type u_4 Q : Type u_5 S : Type u_6 inst✝⁹ : AddCommGroup M inst✝⁸ : AddCommGroup N inst✝⁷ : AddCommGroup P inst✝⁶ : AddCommGroup Q inst✝⁵ : AddCommGroup S inst✝⁴ : Module R M inst✝³ : Module R N inst✝² : Module R P inst✝¹ : Module R Q inst✝ : Module R S src✝ : AddCommMonoid (M ⊗[R] N) := addCommMonoid n : ℕ x : M ⊗[R] N ⊢ -(↑(Nat.succ n) • x) = -((↑n + 1) • x) [PROOFSTEP] rfl [GOAL] R : Type u_1 inst✝¹⁰ : CommSemiring R M : Type u_2 N : Type u_3 P : Type u_4 Q : Type u_5 S : Type u_6 inst✝⁹ : AddCommGroup M inst✝⁸ : AddCommGroup N inst✝⁷ : AddCommGroup P inst✝⁶ : AddCommGroup Q inst✝⁵ : AddCommGroup S inst✝⁴ : Module R M inst✝³ : Module R N inst✝² : Module R P inst✝¹ : Module R Q inst✝ : Module R S r : ℤ m : M n : N ⊢ (0 • m) ⊗ₜ[R] n = m ⊗ₜ[R] (0 • n) [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝¹⁰ : CommSemiring R M : Type u_2 N : Type u_3 P : Type u_4 Q : Type u_5 S : Type u_6 inst✝⁹ : AddCommGroup M inst✝⁸ : AddCommGroup N inst✝⁷ : AddCommGroup P inst✝⁶ : AddCommGroup Q inst✝⁵ : AddCommGroup S inst✝⁴ : Module R M inst✝³ : Module R N inst✝² : Module R P inst✝¹ : Module R Q inst✝ : Module R S r✝ : ℤ m : M n : N r : ℕ ih : (↑r • m) ⊗ₜ[R] n = m ⊗ₜ[R] (↑r • n) ⊢ ((↑r + 1) • m) ⊗ₜ[R] n = m ⊗ₜ[R] ((↑r + 1) • n) [PROOFSTEP] simpa [add_smul, tmul_add, add_tmul] using ih [GOAL] R : Type u_1 inst✝¹⁰ : CommSemiring R M : Type u_2 N : Type u_3 P : Type u_4 Q : Type u_5 S : Type u_6 inst✝⁹ : AddCommGroup M inst✝⁸ : AddCommGroup N inst✝⁷ : AddCommGroup P inst✝⁶ : AddCommGroup Q inst✝⁵ : AddCommGroup S inst✝⁴ : Module R M inst✝³ : Module R N inst✝² : Module R P inst✝¹ : Module R Q inst✝ : Module R S r✝ : ℤ m : M n : N r : ℕ ih : (-↑r • m) ⊗ₜ[R] n = m ⊗ₜ[R] (-↑r • n) ⊢ ((-↑r - 1) • m) ⊗ₜ[R] n = m ⊗ₜ[R] ((-↑r - 1) • n) [PROOFSTEP] simpa [sub_smul, tmul_sub, sub_tmul] using ih [GOAL] R : Type u_1 inst✝¹⁰ : CommSemiring R M : Type u_2 N : Type u_3 P : Type u_4 Q : Type u_5 S : Type u_6 inst✝⁹ : AddCommGroup M inst✝⁸ : AddCommGroup N inst✝⁷ : AddCommGroup P inst✝⁶ : AddCommGroup Q inst✝⁵ : AddCommGroup S inst✝⁴ : Module R M inst✝³ : Module R N inst✝² : Module R P inst✝¹ : Module R Q inst✝ : Module R S f g : N →ₗ[R] P ⊢ lTensor M (f - g) = lTensor M f - lTensor M g [PROOFSTEP] simp_rw [← coe_lTensorHom] [GOAL] R : Type u_1 inst✝¹⁰ : CommSemiring R M : Type u_2 N : Type u_3 P : Type u_4 Q : Type u_5 S : Type u_6 inst✝⁹ : AddCommGroup M inst✝⁸ : AddCommGroup N inst✝⁷ : AddCommGroup P inst✝⁶ : AddCommGroup Q inst✝⁵ : AddCommGroup S inst✝⁴ : Module R M inst✝³ : Module R N inst✝² : Module R P inst✝¹ : Module R Q inst✝ : Module R S f g : N →ₗ[R] P ⊢ ↑(lTensorHom M) (f - g) = ↑(lTensorHom M) f - ↑(lTensorHom M) g [PROOFSTEP] exact (lTensorHom (R := R) (N := N) (P := P) M).map_sub f g [GOAL] R : Type u_1 inst✝¹⁰ : CommSemiring R M : Type u_2 N : Type u_3 P : Type u_4 Q : Type u_5 S : Type u_6 inst✝⁹ : AddCommGroup M inst✝⁸ : AddCommGroup N inst✝⁷ : AddCommGroup P inst✝⁶ : AddCommGroup Q inst✝⁵ : AddCommGroup S inst✝⁴ : Module R M inst✝³ : Module R N inst✝² : Module R P inst✝¹ : Module R Q inst✝ : Module R S f g : N →ₗ[R] P ⊢ rTensor M (f - g) = rTensor M f - rTensor M g [PROOFSTEP] simp only [← coe_rTensorHom] [GOAL] R : Type u_1 inst✝¹⁰ : CommSemiring R M : Type u_2 N : Type u_3 P : Type u_4 Q : Type u_5 S : Type u_6 inst✝⁹ : AddCommGroup M inst✝⁸ : AddCommGroup N inst✝⁷ : AddCommGroup P inst✝⁶ : AddCommGroup Q inst✝⁵ : AddCommGroup S inst✝⁴ : Module R M inst✝³ : Module R N inst✝² : Module R P inst✝¹ : Module R Q inst✝ : Module R S f g : N →ₗ[R] P ⊢ ↑(rTensorHom M) (f - g) = ↑(rTensorHom M) f - ↑(rTensorHom M) g [PROOFSTEP] exact (rTensorHom (R := R) (N := N) (P := P) M).map_sub f g [GOAL] R : Type u_1 inst✝¹⁰ : CommSemiring R M : Type u_2 N : Type u_3 P : Type u_4 Q : Type u_5 S : Type u_6 inst✝⁹ : AddCommGroup M inst✝⁸ : AddCommGroup N inst✝⁷ : AddCommGroup P inst✝⁶ : AddCommGroup Q inst✝⁵ : AddCommGroup S inst✝⁴ : Module R M inst✝³ : Module R N inst✝² : Module R P inst✝¹ : Module R Q inst✝ : Module R S f : N →ₗ[R] P ⊢ lTensor M (-f) = -lTensor M f [PROOFSTEP] simp only [← coe_lTensorHom] [GOAL] R : Type u_1 inst✝¹⁰ : CommSemiring R M : Type u_2 N : Type u_3 P : Type u_4 Q : Type u_5 S : Type u_6 inst✝⁹ : AddCommGroup M inst✝⁸ : AddCommGroup N inst✝⁷ : AddCommGroup P inst✝⁶ : AddCommGroup Q inst✝⁵ : AddCommGroup S inst✝⁴ : Module R M inst✝³ : Module R N inst✝² : Module R P inst✝¹ : Module R Q inst✝ : Module R S f : N →ₗ[R] P ⊢ ↑(lTensorHom M) (-f) = -↑(lTensorHom M) f [PROOFSTEP] exact (lTensorHom (R := R) (N := N) (P := P) M).map_neg f [GOAL] R : Type u_1 inst✝¹⁰ : CommSemiring R M : Type u_2 N : Type u_3 P : Type u_4 Q : Type u_5 S : Type u_6 inst✝⁹ : AddCommGroup M inst✝⁸ : AddCommGroup N inst✝⁷ : AddCommGroup P inst✝⁶ : AddCommGroup Q inst✝⁵ : AddCommGroup S inst✝⁴ : Module R M inst✝³ : Module R N inst✝² : Module R P inst✝¹ : Module R Q inst✝ : Module R S f : N →ₗ[R] P ⊢ rTensor M (-f) = -rTensor M f [PROOFSTEP] simp only [← coe_rTensorHom] [GOAL] R : Type u_1 inst✝¹⁰ : CommSemiring R M : Type u_2 N : Type u_3 P : Type u_4 Q : Type u_5 S : Type u_6 inst✝⁹ : AddCommGroup M inst✝⁸ : AddCommGroup N inst✝⁷ : AddCommGroup P inst✝⁶ : AddCommGroup Q inst✝⁵ : AddCommGroup S inst✝⁴ : Module R M inst✝³ : Module R N inst✝² : Module R P inst✝¹ : Module R Q inst✝ : Module R S f : N →ₗ[R] P ⊢ ↑(rTensorHom M) (-f) = -↑(rTensorHom M) f [PROOFSTEP] exact (rTensorHom (R := R) (N := N) (P := P) M).map_neg f
{"mathlib_filename": "Mathlib.LinearAlgebra.TensorProduct", "llama_tokens": 141057}
[GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁷ : Ring R inst✝⁶ : Invertible 2 inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x✝ y✝ z x y : P ⊢ ↑(pointReflection R (midpoint R x y)) x = y [PROOFSTEP] rw [midpoint, pointReflection_apply, lineMap_apply, vadd_vsub, vadd_vadd, ← add_smul, ← two_mul, mul_invOf_self, one_smul, vsub_vadd] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁷ : Ring R inst✝⁶ : Invertible 2 inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x✝ y✝ z x y : P ⊢ ↑(pointReflection (midpoint R x y)) x = y [PROOFSTEP] rw [midpoint, pointReflection_apply, lineMap_apply, vadd_vsub, vadd_vadd, ← add_smul, ← two_mul, mul_invOf_self, one_smul, vsub_vadd] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁷ : Ring R inst✝⁶ : Invertible 2 inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x✝ y✝ z x y : P ⊢ midpoint R x y = midpoint R y x [PROOFSTEP] rw [midpoint, ← lineMap_apply_one_sub, one_sub_invOf_two, midpoint] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁷ : Ring R inst✝⁶ : Invertible 2 inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x✝ y✝ z x y : P ⊢ ↑(pointReflection R (midpoint R x y)) y = x [PROOFSTEP] rw [midpoint_comm, AffineEquiv.pointReflection_midpoint_left] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁷ : Ring R inst✝⁶ : Invertible 2 inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x✝ y✝ z x y : P ⊢ ↑(pointReflection (midpoint R x y)) y = x [PROOFSTEP] rw [midpoint_comm, Equiv.pointReflection_midpoint_left] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁷ : Ring R inst✝⁶ : Invertible 2 inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x y z p₁ p₂ : P ⊢ midpoint R p₁ p₂ -ᵥ p₂ = ⅟2 • (p₁ -ᵥ p₂) [PROOFSTEP] rw [midpoint_comm, midpoint_vsub_left] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁷ : Ring R inst✝⁶ : Invertible 2 inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x y z p₁ p₂ : P ⊢ p₂ -ᵥ midpoint R p₁ p₂ = ⅟2 • (p₂ -ᵥ p₁) [PROOFSTEP] rw [midpoint_comm, left_vsub_midpoint] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁷ : Ring R inst✝⁶ : Invertible 2 inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x y z p₁ p₂ p : P ⊢ midpoint R p₁ p₂ -ᵥ p = ⅟2 • (p₁ -ᵥ p) + ⅟2 • (p₂ -ᵥ p) [PROOFSTEP] rw [← vsub_sub_vsub_cancel_right p₁ p p₂, smul_sub, sub_eq_add_neg, ← smul_neg, neg_vsub_eq_vsub_rev, add_assoc, invOf_two_smul_add_invOf_two_smul, ← vadd_vsub_assoc, midpoint_comm, midpoint, lineMap_apply] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁷ : Ring R inst✝⁶ : Invertible 2 inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x y z p₁ p₂ p : P ⊢ p -ᵥ midpoint R p₁ p₂ = ⅟2 • (p -ᵥ p₁) + ⅟2 • (p -ᵥ p₂) [PROOFSTEP] rw [← neg_vsub_eq_vsub_rev, midpoint_vsub, neg_add, ← smul_neg, ← smul_neg, neg_vsub_eq_vsub_rev, neg_vsub_eq_vsub_rev] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁷ : Ring R inst✝⁶ : Invertible 2 inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x✝ y✝ z x y : P ⊢ midpoint R x y = x ↔ x = y [PROOFSTEP] rw [midpoint_eq_iff, pointReflection_self] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁷ : Ring R inst✝⁶ : Invertible 2 inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x✝ y✝ z x y : P ⊢ x = midpoint R x y ↔ x = y [PROOFSTEP] rw [eq_comm, midpoint_eq_left_iff] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁷ : Ring R inst✝⁶ : Invertible 2 inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x✝ y✝ z x y : P ⊢ midpoint R x y = y ↔ x = y [PROOFSTEP] rw [midpoint_comm, midpoint_eq_left_iff, eq_comm] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁷ : Ring R inst✝⁶ : Invertible 2 inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x✝ y✝ z x y : P ⊢ y = midpoint R x y ↔ x = y [PROOFSTEP] rw [eq_comm, midpoint_eq_right_iff] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁷ : Ring R inst✝⁶ : Invertible 2 inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x✝ y✝ z x x' y y' : P ⊢ midpoint R x y = midpoint R x' y' ↔ x -ᵥ x' = y' -ᵥ y [PROOFSTEP] rw [← @vsub_eq_zero_iff_eq V, midpoint_vsub_midpoint, midpoint_eq_iff, pointReflection_apply, vsub_eq_sub, zero_sub, vadd_eq_add, add_zero, neg_eq_iff_eq_neg, neg_vsub_eq_vsub_rev] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁷ : Ring R inst✝⁶ : Invertible 2 inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x✝ y✝ z : P x y : V ⊢ midpoint R x y +ᵥ midpoint R x y = midpoint R x y +ᵥ midpoint R y x [PROOFSTEP] rw [midpoint_comm] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁷ : Ring R inst✝⁶ : Invertible 2 inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x✝ y✝ z : P x y : V ⊢ midpoint R x y +ᵥ midpoint R y x = x + y [PROOFSTEP] rw [midpoint_vadd_midpoint, vadd_eq_add, vadd_eq_add, add_comm, midpoint_self] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁷ : Ring R inst✝⁶ : Invertible 2 inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x✝ y✝ z : P x y : V ⊢ 0 -ᵥ x = y -ᵥ (x + y) [PROOFSTEP] simp [sub_add_eq_sub_sub_swap] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁷ : Ring R inst✝⁶ : Invertible 2 inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x✝ y✝ z : P x y : V ⊢ midpoint R x y = ⅟2 • (x + y) [PROOFSTEP] rw [midpoint_eq_iff, pointReflection_apply, vsub_eq_sub, vadd_eq_add, sub_add_eq_add_sub, ← two_smul R, smul_smul, mul_invOf_self, one_smul, add_sub_cancel'] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁷ : Ring R inst✝⁶ : Invertible 2 inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x✝ y z : P x : V ⊢ midpoint R x (-x) = 0 [PROOFSTEP] rw [midpoint_eq_smul_add, add_neg_self, smul_zero] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁷ : Ring R inst✝⁶ : Invertible 2 inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x✝ y z : P x : V ⊢ midpoint R (-x) x = 0 [PROOFSTEP] simpa using midpoint_self_neg R (-x) [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁷ : Ring R inst✝⁶ : Invertible 2 inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x✝ y✝ z : P x y : V ⊢ midpoint R (x - y) (x + y) = x [PROOFSTEP] rw [sub_eq_add_neg, ← vadd_eq_add, ← vadd_eq_add, ← midpoint_vadd_midpoint] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁷ : Ring R inst✝⁶ : Invertible 2 inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x✝ y✝ z : P x y : V ⊢ midpoint R x x +ᵥ midpoint R (-y) y = x [PROOFSTEP] simp [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁷ : Ring R inst✝⁶ : Invertible 2 inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x✝ y✝ z : P x y : V ⊢ midpoint R (x + y) (x - y) = x [PROOFSTEP] rw [midpoint_comm] [GOAL] R : Type u_1 V : Type u_2 V' : Type u_3 P : Type u_4 P' : Type u_5 inst✝⁷ : Ring R inst✝⁶ : Invertible 2 inst✝⁵ : AddCommGroup V inst✝⁴ : Module R V inst✝³ : AddTorsor V P inst✝² : AddCommGroup V' inst✝¹ : Module R V' inst✝ : AddTorsor V' P' x✝ y✝ z : P x y : V ⊢ midpoint R (x - y) (x + y) = x [PROOFSTEP] simp [GOAL] R : Type u_1 R' : Type u_2 E : Type u_3 F : Type u_4 inst✝⁷ : Ring R inst✝⁶ : Invertible 2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E inst✝³ : Ring R' inst✝² : Invertible 2 inst✝¹ : AddCommGroup F inst✝ : Module R' F f : E → F h0 : f 0 = 0 hm : ∀ (x y : E), f (midpoint R x y) = midpoint R' (f x) (f y) x y : E ⊢ f (x + y) = f 0 + f (x + y) [PROOFSTEP] rw [h0, zero_add] [GOAL] R : Type u_1 R' : Type u_2 E : Type u_3 F : Type u_4 inst✝⁷ : Ring R inst✝⁶ : Invertible 2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E inst✝³ : Ring R' inst✝² : Invertible 2 inst✝¹ : AddCommGroup F inst✝ : Module R' F f : E → F h0 : f 0 = 0 hm : ∀ (x y : E), f (midpoint R x y) = midpoint R' (f x) (f y) x y : E ⊢ midpoint R' (f 0) (f (x + y)) + midpoint R' (f 0) (f (x + y)) = f (midpoint R x y) + f (midpoint R x y) [PROOFSTEP] rw [← hm, midpoint_zero_add] [GOAL] R : Type u_1 R' : Type u_2 E : Type u_3 F : Type u_4 inst✝⁷ : Ring R inst✝⁶ : Invertible 2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E inst✝³ : Ring R' inst✝² : Invertible 2 inst✝¹ : AddCommGroup F inst✝ : Module R' F f : E → F h0 : f 0 = 0 hm : ∀ (x y : E), f (midpoint R x y) = midpoint R' (f x) (f y) x y : E ⊢ f (midpoint R x y) + f (midpoint R x y) = f x + f y [PROOFSTEP] rw [hm, midpoint_add_self]
{"mathlib_filename": "Mathlib.LinearAlgebra.AffineSpace.Midpoint", "llama_tokens": 5685}
[GOAL] R✝ : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M✝ : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂✝ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 α : Type u_20 R : Type u_21 M : Type u_22 M₂ : Type u_23 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M₂ inst✝ : Module R M₂ v : α →₀ M c : R h : α → M →ₗ[R] M₂ ⊢ (sum (c • v) fun a => ↑(h a)) = c • sum v fun a => ↑(h a) [PROOFSTEP] rw [Finsupp.sum_smul_index', Finsupp.smul_sum] [GOAL] R✝ : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M✝ : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂✝ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 α : Type u_20 R : Type u_21 M : Type u_22 M₂ : Type u_23 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M₂ inst✝ : Module R M₂ v : α →₀ M c : R h : α → M →ₗ[R] M₂ ⊢ (sum v fun i c_1 => ↑(h i) (c • c_1)) = sum v fun a b => c • ↑(h a) b [PROOFSTEP] simp only [map_smul] [GOAL] R✝ : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M✝ : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂✝ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 α : Type u_20 R : Type u_21 M : Type u_22 M₂ : Type u_23 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M₂ inst✝ : Module R M₂ v : α →₀ M c : R h : α → M →ₗ[R] M₂ ⊢ ∀ (i : α), ↑(h i) 0 = 0 [PROOFSTEP] intro i [GOAL] R✝ : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M✝ : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂✝ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 α : Type u_20 R : Type u_21 M : Type u_22 M₂ : Type u_23 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : AddCommMonoid M₂ inst✝ : Module R M₂ v : α →₀ M c : R h : α → M →ₗ[R] M₂ i : α ⊢ ↑(h i) 0 = 0 [PROOFSTEP] exact (h i).map_zero [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 α✝ : Type u_20 inst✝⁴ : Finite α✝ inst✝³ : AddCommMonoid M inst✝² : Semiring R inst✝¹ : Module R M α : Type u_21 inst✝ : Unique α m : M ⊢ ↑(LinearEquiv.symm (finsuppUnique R M α)) m = single default m [PROOFSTEP] ext [GOAL] case h R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 α✝ : Type u_20 inst✝⁴ : Finite α✝ inst✝³ : AddCommMonoid M inst✝² : Semiring R inst✝¹ : Module R M α : Type u_21 inst✝ : Unique α m : M ⊢ ↑(↑(LinearEquiv.symm (finsuppUnique R M α)) m) default = ↑(single default m) default [PROOFSTEP] simp [LinearEquiv.finsuppUnique, Equiv.funUnique, single, Pi.single, equivFunOnFinite, Function.update] [GOAL] R✝ : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι✝ : Type u_17 V : Type u_18 V₂ : Type u_19 ι : Type u_20 inst✝² : Fintype ι inst✝¹ : DecidableEq ι R : Type u_21 inst✝ : Semiring R x : ι → R ⊢ x = ∑ i : ι, x i • fun j => if i = j then 1 else 0 [PROOFSTEP] ext [GOAL] case h R✝ : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι✝ : Type u_17 V : Type u_18 V₂ : Type u_19 ι : Type u_20 inst✝² : Fintype ι inst✝¹ : DecidableEq ι R : Type u_21 inst✝ : Semiring R x : ι → R x✝ : ι ⊢ x x✝ = Finset.sum Finset.univ (fun i => x i • fun j => if i = j then 1 else 0) x✝ [PROOFSTEP] simp [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁷ : Semiring R inst✝¹⁶ : Semiring R₂ inst✝¹⁵ : Semiring R₃ inst✝¹⁴ : Semiring R₄ inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid M₁ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : AddCommMonoid M₃ inst✝⁹ : AddCommMonoid M₄ inst✝⁸ : Module R M inst✝⁷ : Module R M₁ inst✝⁶ : Module R₂ M₂ inst✝⁵ : Module R₃ M₃ inst✝⁴ : Module R₄ M₄ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₃₄ : R₃ →+* R₄ σ₁₃ : R →+* R₃ σ₂₄ : R₂ →+* R₄ σ₁₄ : R →+* R₄ inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄ inst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄ inst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄ f✝ : M →ₛₗ[σ₁₂] M₂ g : M₂ →ₛₗ[σ₂₃] M₃ p : Submodule R₂ M₂ f : M →ₛₗ[σ₁₂] M₂ h : ∀ (c : M), ↑f c ∈ p ⊢ M →ₛₗ[σ₁₂] { x // x ∈ p } [PROOFSTEP] refine' { toFun := fun c => ⟨f c, h c⟩ .. } [GOAL] case refine'_1 R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁷ : Semiring R inst✝¹⁶ : Semiring R₂ inst✝¹⁵ : Semiring R₃ inst✝¹⁴ : Semiring R₄ inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid M₁ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : AddCommMonoid M₃ inst✝⁹ : AddCommMonoid M₄ inst✝⁸ : Module R M inst✝⁷ : Module R M₁ inst✝⁶ : Module R₂ M₂ inst✝⁵ : Module R₃ M₃ inst✝⁴ : Module R₄ M₄ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₃₄ : R₃ →+* R₄ σ₁₃ : R →+* R₃ σ₂₄ : R₂ →+* R₄ σ₁₄ : R →+* R₄ inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄ inst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄ inst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄ f✝ : M →ₛₗ[σ₁₂] M₂ g : M₂ →ₛₗ[σ₂₃] M₃ p : Submodule R₂ M₂ f : M →ₛₗ[σ₁₂] M₂ h : ∀ (c : M), ↑f c ∈ p ⊢ ∀ (x y : M), (fun c => { val := ↑f c, property := (_ : ↑f c ∈ p) }) (x + y) = (fun c => { val := ↑f c, property := (_ : ↑f c ∈ p) }) x + (fun c => { val := ↑f c, property := (_ : ↑f c ∈ p) }) y [PROOFSTEP] intros [GOAL] case refine'_2 R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁷ : Semiring R inst✝¹⁶ : Semiring R₂ inst✝¹⁵ : Semiring R₃ inst✝¹⁴ : Semiring R₄ inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid M₁ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : AddCommMonoid M₃ inst✝⁹ : AddCommMonoid M₄ inst✝⁸ : Module R M inst✝⁷ : Module R M₁ inst✝⁶ : Module R₂ M₂ inst✝⁵ : Module R₃ M₃ inst✝⁴ : Module R₄ M₄ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₃₄ : R₃ →+* R₄ σ₁₃ : R →+* R₃ σ₂₄ : R₂ →+* R₄ σ₁₄ : R →+* R₄ inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄ inst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄ inst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄ f✝ : M →ₛₗ[σ₁₂] M₂ g : M₂ →ₛₗ[σ₂₃] M₃ p : Submodule R₂ M₂ f : M →ₛₗ[σ₁₂] M₂ h : ∀ (c : M), ↑f c ∈ p ⊢ ∀ (r : R) (x : M), AddHom.toFun { toFun := fun c => { val := ↑f c, property := (_ : ↑f c ∈ p) }, map_add' := (_ : ∀ (x y : M), (fun c => { val := ↑f c, property := (_ : ↑f c ∈ p) }) (x + y) = (fun c => { val := ↑f c, property := (_ : ↑f c ∈ p) }) x + (fun c => { val := ↑f c, property := (_ : ↑f c ∈ p) }) y) } (r • x) = ↑σ₁₂ r • AddHom.toFun { toFun := fun c => { val := ↑f c, property := (_ : ↑f c ∈ p) }, map_add' := (_ : ∀ (x y : M), (fun c => { val := ↑f c, property := (_ : ↑f c ∈ p) }) (x + y) = (fun c => { val := ↑f c, property := (_ : ↑f c ∈ p) }) x + (fun c => { val := ↑f c, property := (_ : ↑f c ∈ p) }) y) } x [PROOFSTEP] intros [GOAL] case refine'_1 R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁷ : Semiring R inst✝¹⁶ : Semiring R₂ inst✝¹⁵ : Semiring R₃ inst✝¹⁴ : Semiring R₄ inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid M₁ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : AddCommMonoid M₃ inst✝⁹ : AddCommMonoid M₄ inst✝⁸ : Module R M inst✝⁷ : Module R M₁ inst✝⁶ : Module R₂ M₂ inst✝⁵ : Module R₃ M₃ inst✝⁴ : Module R₄ M₄ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₃₄ : R₃ →+* R₄ σ₁₃ : R →+* R₃ σ₂₄ : R₂ →+* R₄ σ₁₄ : R →+* R₄ inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄ inst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄ inst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄ f✝ : M →ₛₗ[σ₁₂] M₂ g : M₂ →ₛₗ[σ₂₃] M₃ p : Submodule R₂ M₂ f : M →ₛₗ[σ₁₂] M₂ h : ∀ (c : M), ↑f c ∈ p x✝ y✝ : M ⊢ (fun c => { val := ↑f c, property := (_ : ↑f c ∈ p) }) (x✝ + y✝) = (fun c => { val := ↑f c, property := (_ : ↑f c ∈ p) }) x✝ + (fun c => { val := ↑f c, property := (_ : ↑f c ∈ p) }) y✝ [PROOFSTEP] apply SetCoe.ext [GOAL] case refine'_2 R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁷ : Semiring R inst✝¹⁶ : Semiring R₂ inst✝¹⁵ : Semiring R₃ inst✝¹⁴ : Semiring R₄ inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid M₁ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : AddCommMonoid M₃ inst✝⁹ : AddCommMonoid M₄ inst✝⁸ : Module R M inst✝⁷ : Module R M₁ inst✝⁶ : Module R₂ M₂ inst✝⁵ : Module R₃ M₃ inst✝⁴ : Module R₄ M₄ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₃₄ : R₃ →+* R₄ σ₁₃ : R →+* R₃ σ₂₄ : R₂ →+* R₄ σ₁₄ : R →+* R₄ inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄ inst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄ inst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄ f✝ : M →ₛₗ[σ₁₂] M₂ g : M₂ →ₛₗ[σ₂₃] M₃ p : Submodule R₂ M₂ f : M →ₛₗ[σ₁₂] M₂ h : ∀ (c : M), ↑f c ∈ p r✝ : R x✝ : M ⊢ AddHom.toFun { toFun := fun c => { val := ↑f c, property := (_ : ↑f c ∈ p) }, map_add' := (_ : ∀ (x y : M), (fun c => { val := ↑f c, property := (_ : ↑f c ∈ p) }) (x + y) = (fun c => { val := ↑f c, property := (_ : ↑f c ∈ p) }) x + (fun c => { val := ↑f c, property := (_ : ↑f c ∈ p) }) y) } (r✝ • x✝) = ↑σ₁₂ r✝ • AddHom.toFun { toFun := fun c => { val := ↑f c, property := (_ : ↑f c ∈ p) }, map_add' := (_ : ∀ (x y : M), (fun c => { val := ↑f c, property := (_ : ↑f c ∈ p) }) (x + y) = (fun c => { val := ↑f c, property := (_ : ↑f c ∈ p) }) x + (fun c => { val := ↑f c, property := (_ : ↑f c ∈ p) }) y) } x✝ [PROOFSTEP] apply SetCoe.ext [GOAL] case refine'_1.a R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁷ : Semiring R inst✝¹⁶ : Semiring R₂ inst✝¹⁵ : Semiring R₃ inst✝¹⁴ : Semiring R₄ inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid M₁ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : AddCommMonoid M₃ inst✝⁹ : AddCommMonoid M₄ inst✝⁸ : Module R M inst✝⁷ : Module R M₁ inst✝⁶ : Module R₂ M₂ inst✝⁵ : Module R₃ M₃ inst✝⁴ : Module R₄ M₄ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₃₄ : R₃ →+* R₄ σ₁₃ : R →+* R₃ σ₂₄ : R₂ →+* R₄ σ₁₄ : R →+* R₄ inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄ inst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄ inst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄ f✝ : M →ₛₗ[σ₁₂] M₂ g : M₂ →ₛₗ[σ₂₃] M₃ p : Submodule R₂ M₂ f : M →ₛₗ[σ₁₂] M₂ h : ∀ (c : M), ↑f c ∈ p x✝ y✝ : M ⊢ ↑((fun c => { val := ↑f c, property := (_ : ↑f c ∈ p) }) (x✝ + y✝)) = ↑((fun c => { val := ↑f c, property := (_ : ↑f c ∈ p) }) x✝ + (fun c => { val := ↑f c, property := (_ : ↑f c ∈ p) }) y✝) [PROOFSTEP] simp [GOAL] case refine'_2.a R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁷ : Semiring R inst✝¹⁶ : Semiring R₂ inst✝¹⁵ : Semiring R₃ inst✝¹⁴ : Semiring R₄ inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid M₁ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : AddCommMonoid M₃ inst✝⁹ : AddCommMonoid M₄ inst✝⁸ : Module R M inst✝⁷ : Module R M₁ inst✝⁶ : Module R₂ M₂ inst✝⁵ : Module R₃ M₃ inst✝⁴ : Module R₄ M₄ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₃₄ : R₃ →+* R₄ σ₁₃ : R →+* R₃ σ₂₄ : R₂ →+* R₄ σ₁₄ : R →+* R₄ inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄ inst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄ inst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄ f✝ : M →ₛₗ[σ₁₂] M₂ g : M₂ →ₛₗ[σ₂₃] M₃ p : Submodule R₂ M₂ f : M →ₛₗ[σ₁₂] M₂ h : ∀ (c : M), ↑f c ∈ p r✝ : R x✝ : M ⊢ ↑(AddHom.toFun { toFun := fun c => { val := ↑f c, property := (_ : ↑f c ∈ p) }, map_add' := (_ : ∀ (x y : M), (fun c => { val := ↑f c, property := (_ : ↑f c ∈ p) }) (x + y) = (fun c => { val := ↑f c, property := (_ : ↑f c ∈ p) }) x + (fun c => { val := ↑f c, property := (_ : ↑f c ∈ p) }) y) } (r✝ • x✝)) = ↑(↑σ₁₂ r✝ • AddHom.toFun { toFun := fun c => { val := ↑f c, property := (_ : ↑f c ∈ p) }, map_add' := (_ : ∀ (x y : M), (fun c => { val := ↑f c, property := (_ : ↑f c ∈ p) }) (x + y) = (fun c => { val := ↑f c, property := (_ : ↑f c ∈ p) }) x + (fun c => { val := ↑f c, property := (_ : ↑f c ∈ p) }) y) } x✝) [PROOFSTEP] simp [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁸ : Semiring R inst✝¹⁷ : Semiring R₂ inst✝¹⁶ : Semiring R₃ inst✝¹⁵ : Semiring R₄ inst✝¹⁴ : AddCommMonoid M inst✝¹³ : AddCommMonoid M₁ inst✝¹² : AddCommMonoid M₂ inst✝¹¹ : AddCommMonoid M₃ inst✝¹⁰ : AddCommMonoid M₄ inst✝⁹ : Module R M inst✝⁸ : Module R M₁ inst✝⁷ : Module R₂ M₂ inst✝⁶ : Module R₃ M₃ inst✝⁵ : Module R₄ M₄ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₃₄ : R₃ →+* R₄ σ₁₃ : R →+* R₃ σ₂₄ : R₂ →+* R₄ σ₁₄ : R →+* R₄ inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝³ : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄ inst✝² : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄ inst✝¹ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄ f✝ : M →ₛₗ[σ₁₂] M₂ g : M₂ →ₛₗ[σ₂₃] M₃ inst✝ : Subsingleton M src✝ : Inhabited (M →ₛₗ[σ₁₂] M₂) := inferInstanceAs (Inhabited (M →ₛₗ[σ₁₂] M₂)) f : M →ₛₗ[σ₁₂] M₂ x : M ⊢ ↑f x = ↑default x [PROOFSTEP] rw [Subsingleton.elim x 0, map_zero, map_zero] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁷ : Semiring R inst✝¹⁶ : Semiring R₂ inst✝¹⁵ : Semiring R₃ inst✝¹⁴ : Semiring R₄ inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid M₁ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : AddCommMonoid M₃ inst✝⁹ : AddCommMonoid M₄ inst✝⁸ : Module R M inst✝⁷ : Module R M₁ inst✝⁶ : Module R₂ M₂ inst✝⁵ : Module R₃ M₃ inst✝⁴ : Module R₄ M₄ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₃₄ : R₃ →+* R₄ σ₁₃ : R →+* R₃ σ₂₄ : R₂ →+* R₄ σ₁₄ : R →+* R₄ inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄ inst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄ inst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄ f : M →ₛₗ[σ₁₂] M₂ g : M₂ →ₛₗ[σ₂₃] M₃ ⊢ toAddMonoidHom 0 = 0 [PROOFSTEP] ext [GOAL] case h R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁷ : Semiring R inst✝¹⁶ : Semiring R₂ inst✝¹⁵ : Semiring R₃ inst✝¹⁴ : Semiring R₄ inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid M₁ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : AddCommMonoid M₃ inst✝⁹ : AddCommMonoid M₄ inst✝⁸ : Module R M inst✝⁷ : Module R M₁ inst✝⁶ : Module R₂ M₂ inst✝⁵ : Module R₃ M₃ inst✝⁴ : Module R₄ M₄ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₃₄ : R₃ →+* R₄ σ₁₃ : R →+* R₃ σ₂₄ : R₂ →+* R₄ σ₁₄ : R →+* R₄ inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄ inst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄ inst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄ f : M →ₛₗ[σ₁₂] M₂ g : M₂ →ₛₗ[σ₂₃] M₃ x✝ : M ⊢ ↑(toAddMonoidHom 0) x✝ = ↑0 x✝ [PROOFSTEP] rfl [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁷ : Semiring R inst✝¹⁶ : Semiring R₂ inst✝¹⁵ : Semiring R₃ inst✝¹⁴ : Semiring R₄ inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid M₁ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : AddCommMonoid M₃ inst✝⁹ : AddCommMonoid M₄ inst✝⁸ : Module R M inst✝⁷ : Module R M₁ inst✝⁶ : Module R₂ M₂ inst✝⁵ : Module R₃ M₃ inst✝⁴ : Module R₄ M₄ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₃₄ : R₃ →+* R₄ σ₁₃ : R →+* R₃ σ₂₄ : R₂ →+* R₄ σ₁₄ : R →+* R₄ inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄ inst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄ inst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄ f : M →ₛₗ[σ₁₂] M₂ g : M₂ →ₛₗ[σ₂₃] M₃ ⊢ ∀ (x y : M →ₛₗ[σ₁₂] M₂), ZeroHom.toFun { toFun := toAddMonoidHom, map_zero' := (_ : toAddMonoidHom 0 = 0) } (x + y) = ZeroHom.toFun { toFun := toAddMonoidHom, map_zero' := (_ : toAddMonoidHom 0 = 0) } x + ZeroHom.toFun { toFun := toAddMonoidHom, map_zero' := (_ : toAddMonoidHom 0 = 0) } y [PROOFSTEP] intros [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁷ : Semiring R inst✝¹⁶ : Semiring R₂ inst✝¹⁵ : Semiring R₃ inst✝¹⁴ : Semiring R₄ inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid M₁ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : AddCommMonoid M₃ inst✝⁹ : AddCommMonoid M₄ inst✝⁸ : Module R M inst✝⁷ : Module R M₁ inst✝⁶ : Module R₂ M₂ inst✝⁵ : Module R₃ M₃ inst✝⁴ : Module R₄ M₄ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₃₄ : R₃ →+* R₄ σ₁₃ : R →+* R₃ σ₂₄ : R₂ →+* R₄ σ₁₄ : R →+* R₄ inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄ inst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄ inst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄ f : M →ₛₗ[σ₁₂] M₂ g : M₂ →ₛₗ[σ₂₃] M₃ x✝ y✝ : M →ₛₗ[σ₁₂] M₂ ⊢ ZeroHom.toFun { toFun := toAddMonoidHom, map_zero' := (_ : toAddMonoidHom 0 = 0) } (x✝ + y✝) = ZeroHom.toFun { toFun := toAddMonoidHom, map_zero' := (_ : toAddMonoidHom 0 = 0) } x✝ + ZeroHom.toFun { toFun := toAddMonoidHom, map_zero' := (_ : toAddMonoidHom 0 = 0) } y✝ [PROOFSTEP] ext [GOAL] case h R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁷ : Semiring R inst✝¹⁶ : Semiring R₂ inst✝¹⁵ : Semiring R₃ inst✝¹⁴ : Semiring R₄ inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid M₁ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : AddCommMonoid M₃ inst✝⁹ : AddCommMonoid M₄ inst✝⁸ : Module R M inst✝⁷ : Module R M₁ inst✝⁶ : Module R₂ M₂ inst✝⁵ : Module R₃ M₃ inst✝⁴ : Module R₄ M₄ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₃₄ : R₃ →+* R₄ σ₁₃ : R →+* R₃ σ₂₄ : R₂ →+* R₄ σ₁₄ : R →+* R₄ inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄ inst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄ inst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄ f : M →ₛₗ[σ₁₂] M₂ g : M₂ →ₛₗ[σ₂₃] M₃ x✝¹ y✝ : M →ₛₗ[σ₁₂] M₂ x✝ : M ⊢ ↑(ZeroHom.toFun { toFun := toAddMonoidHom, map_zero' := (_ : toAddMonoidHom 0 = 0) } (x✝¹ + y✝)) x✝ = ↑(ZeroHom.toFun { toFun := toAddMonoidHom, map_zero' := (_ : toAddMonoidHom 0 = 0) } x✝¹ + ZeroHom.toFun { toFun := toAddMonoidHom, map_zero' := (_ : toAddMonoidHom 0 = 0) } y✝) x✝ [PROOFSTEP] rfl [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝²¹ : Semiring R inst✝²⁰ : Semiring R₂ inst✝¹⁹ : Semiring R₃ inst✝¹⁸ : Semiring R₄ inst✝¹⁷ : AddCommMonoid M inst✝¹⁶ : AddCommMonoid M₁ inst✝¹⁵ : AddCommMonoid M₂ inst✝¹⁴ : AddCommMonoid M₃ inst✝¹³ : AddCommMonoid M₄ inst✝¹² : Module R M inst✝¹¹ : Module R M₁ inst✝¹⁰ : Module R₂ M₂ inst✝⁹ : Module R₃ M₃ inst✝⁸ : Module R₄ M₄ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₃₄ : R₃ →+* R₄ σ₁₃ : R →+* R₃ σ₂₄ : R₂ →+* R₄ σ₁₄ : R →+* R₄ inst✝⁷ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝⁶ : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄ inst✝⁵ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄ inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄ f✝ : M →ₛₗ[σ₁₂] M₂ g : M₂ →ₛₗ[σ₂₃] M₃ inst✝³ : Semiring S inst✝² : Module R S inst✝¹ : Module S M inst✝ : IsScalarTower R S M f : M₁ →ₗ[R] S x✝ : M x y : M₁ ⊢ (fun b => ↑f b • x✝) (x + y) = (fun b => ↑f b • x✝) x + (fun b => ↑f b • x✝) y [PROOFSTEP] dsimp only [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝²¹ : Semiring R inst✝²⁰ : Semiring R₂ inst✝¹⁹ : Semiring R₃ inst✝¹⁸ : Semiring R₄ inst✝¹⁷ : AddCommMonoid M inst✝¹⁶ : AddCommMonoid M₁ inst✝¹⁵ : AddCommMonoid M₂ inst✝¹⁴ : AddCommMonoid M₃ inst✝¹³ : AddCommMonoid M₄ inst✝¹² : Module R M inst✝¹¹ : Module R M₁ inst✝¹⁰ : Module R₂ M₂ inst✝⁹ : Module R₃ M₃ inst✝⁸ : Module R₄ M₄ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₃₄ : R₃ →+* R₄ σ₁₃ : R →+* R₃ σ₂₄ : R₂ →+* R₄ σ₁₄ : R →+* R₄ inst✝⁷ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝⁶ : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄ inst✝⁵ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄ inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄ f✝ : M →ₛₗ[σ₁₂] M₂ g : M₂ →ₛₗ[σ₂₃] M₃ inst✝³ : Semiring S inst✝² : Module R S inst✝¹ : Module S M inst✝ : IsScalarTower R S M f : M₁ →ₗ[R] S x✝ : M x y : M₁ ⊢ ↑f (x + y) • x✝ = ↑f x • x✝ + ↑f y • x✝ [PROOFSTEP] rw [f.map_add, add_smul] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝²¹ : Semiring R inst✝²⁰ : Semiring R₂ inst✝¹⁹ : Semiring R₃ inst✝¹⁸ : Semiring R₄ inst✝¹⁷ : AddCommMonoid M inst✝¹⁶ : AddCommMonoid M₁ inst✝¹⁵ : AddCommMonoid M₂ inst✝¹⁴ : AddCommMonoid M₃ inst✝¹³ : AddCommMonoid M₄ inst✝¹² : Module R M inst✝¹¹ : Module R M₁ inst✝¹⁰ : Module R₂ M₂ inst✝⁹ : Module R₃ M₃ inst✝⁸ : Module R₄ M₄ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₃₄ : R₃ →+* R₄ σ₁₃ : R →+* R₃ σ₂₄ : R₂ →+* R₄ σ₁₄ : R →+* R₄ inst✝⁷ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝⁶ : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄ inst✝⁵ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄ inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄ f✝ : M →ₛₗ[σ₁₂] M₂ g : M₂ →ₛₗ[σ₂₃] M₃ inst✝³ : Semiring S inst✝² : Module R S inst✝¹ : Module S M inst✝ : IsScalarTower R S M f : M₁ →ₗ[R] S x : M b : R y : M₁ ⊢ AddHom.toFun { toFun := fun b => ↑f b • x, map_add' := (_ : ∀ (x_1 y : M₁), (fun b => ↑f b • x) (x_1 + y) = (fun b => ↑f b • x) x_1 + (fun b => ↑f b • x) y) } (b • y) = ↑(RingHom.id R) b • AddHom.toFun { toFun := fun b => ↑f b • x, map_add' := (_ : ∀ (x_1 y : M₁), (fun b => ↑f b • x) (x_1 + y) = (fun b => ↑f b • x) x_1 + (fun b => ↑f b • x) y) } y [PROOFSTEP] dsimp [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝²¹ : Semiring R inst✝²⁰ : Semiring R₂ inst✝¹⁹ : Semiring R₃ inst✝¹⁸ : Semiring R₄ inst✝¹⁷ : AddCommMonoid M inst✝¹⁶ : AddCommMonoid M₁ inst✝¹⁵ : AddCommMonoid M₂ inst✝¹⁴ : AddCommMonoid M₃ inst✝¹³ : AddCommMonoid M₄ inst✝¹² : Module R M inst✝¹¹ : Module R M₁ inst✝¹⁰ : Module R₂ M₂ inst✝⁹ : Module R₃ M₃ inst✝⁸ : Module R₄ M₄ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₃₄ : R₃ →+* R₄ σ₁₃ : R →+* R₃ σ₂₄ : R₂ →+* R₄ σ₁₄ : R →+* R₄ inst✝⁷ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝⁶ : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄ inst✝⁵ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄ inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄ f✝ : M →ₛₗ[σ₁₂] M₂ g : M₂ →ₛₗ[σ₂₃] M₃ inst✝³ : Semiring S inst✝² : Module R S inst✝¹ : Module S M inst✝ : IsScalarTower R S M f : M₁ →ₗ[R] S x : M b : R y : M₁ ⊢ ↑f (b • y) • x = b • ↑f y • x [PROOFSTEP] rw [map_smul, smul_assoc] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁸ : Semiring R inst✝¹⁷ : Semiring R₂ inst✝¹⁶ : Semiring R₃ inst✝¹⁵ : Semiring R₄ inst✝¹⁴ : AddCommMonoid M inst✝¹³ : AddCommMonoid M₁ inst✝¹² : AddCommMonoid M₂ inst✝¹¹ : AddCommMonoid M₃ inst✝¹⁰ : AddCommMonoid M₄ inst✝⁹ : Module R M inst✝⁸ : Module R M₁ inst✝⁷ : Module R₂ M₂ inst✝⁶ : Module R₃ M₃ inst✝⁵ : Module R₄ M₄ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₃₄ : R₃ →+* R₄ σ₁₃ : R →+* R₃ σ₂₄ : R₂ →+* R₄ σ₁₄ : R →+* R₄ inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝³ : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄ inst✝² : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄ inst✝¹ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄ f : M →ₛₗ[σ₁₂] M₂ g : M₂ →ₛₗ[σ₂₃] M₃ inst✝ : Nontrivial M ⊢ Nontrivial (Module.End R M) [PROOFSTEP] obtain ⟨m, ne⟩ := (nontrivial_iff_exists_ne (0 : M)).mp inferInstance [GOAL] case intro R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁸ : Semiring R inst✝¹⁷ : Semiring R₂ inst✝¹⁶ : Semiring R₃ inst✝¹⁵ : Semiring R₄ inst✝¹⁴ : AddCommMonoid M inst✝¹³ : AddCommMonoid M₁ inst✝¹² : AddCommMonoid M₂ inst✝¹¹ : AddCommMonoid M₃ inst✝¹⁰ : AddCommMonoid M₄ inst✝⁹ : Module R M inst✝⁸ : Module R M₁ inst✝⁷ : Module R₂ M₂ inst✝⁶ : Module R₃ M₃ inst✝⁵ : Module R₄ M₄ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₃₄ : R₃ →+* R₄ σ₁₃ : R →+* R₃ σ₂₄ : R₂ →+* R₄ σ₁₄ : R →+* R₄ inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝³ : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄ inst✝² : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄ inst✝¹ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄ f : M →ₛₗ[σ₁₂] M₂ g : M₂ →ₛₗ[σ₂₃] M₃ inst✝ : Nontrivial M m : M ne : m ≠ 0 ⊢ Nontrivial (Module.End R M) [PROOFSTEP] exact nontrivial_of_ne 1 0 fun p => ne (LinearMap.congr_fun p m) [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁷ : Semiring R inst✝¹⁶ : Semiring R₂ inst✝¹⁵ : Semiring R₃ inst✝¹⁴ : Semiring R₄ inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid M₁ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : AddCommMonoid M₃ inst✝⁹ : AddCommMonoid M₄ inst✝⁸ : Module R M inst✝⁷ : Module R M₁ inst✝⁶ : Module R₂ M₂ inst✝⁵ : Module R₃ M₃ inst✝⁴ : Module R₄ M₄ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₃₄ : R₃ →+* R₄ σ₁₃ : R →+* R₃ σ₂₄ : R₂ →+* R₄ σ₁₄ : R →+* R₄ inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄ inst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄ inst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄ f✝ : M →ₛₗ[σ₁₂] M₂ g : M₂ →ₛₗ[σ₂₃] M₃ f : Module.End R M m : M k l : ℕ hk : k ≤ l hm : ↑(f ^ k) m = 0 ⊢ ↑(f ^ l) m = 0 [PROOFSTEP] rw [← tsub_add_cancel_of_le hk, pow_add, mul_apply, hm, map_zero] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁷ : Semiring R inst✝¹⁶ : Semiring R₂ inst✝¹⁵ : Semiring R₃ inst✝¹⁴ : Semiring R₄ inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid M₁ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : AddCommMonoid M₃ inst✝⁹ : AddCommMonoid M₄ inst✝⁸ : Module R M inst✝⁷ : Module R M₁ inst✝⁶ : Module R₂ M₂ inst✝⁵ : Module R₃ M₃ inst✝⁴ : Module R₄ M₄ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₃₄ : R₃ →+* R₄ σ₁₃ : R →+* R₃ σ₂₄ : R₂ →+* R₄ σ₁₄ : R →+* R₄ inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄ inst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄ inst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄ f✝ : M →ₛₗ[σ₁₂] M₂ g✝ : M₂ →ₛₗ[σ₂₃] M₃ f : M →ₛₗ[σ₁₂] M₂ g : Module.End R M g₂ : Module.End R₂ M₂ h : comp g₂ f = comp f g k : ℕ ⊢ comp (g₂ ^ k) f = comp f (g ^ k) [PROOFSTEP] induction' k with k ih [GOAL] case zero R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁷ : Semiring R inst✝¹⁶ : Semiring R₂ inst✝¹⁵ : Semiring R₃ inst✝¹⁴ : Semiring R₄ inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid M₁ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : AddCommMonoid M₃ inst✝⁹ : AddCommMonoid M₄ inst✝⁸ : Module R M inst✝⁷ : Module R M₁ inst✝⁶ : Module R₂ M₂ inst✝⁵ : Module R₃ M₃ inst✝⁴ : Module R₄ M₄ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₃₄ : R₃ →+* R₄ σ₁₃ : R →+* R₃ σ₂₄ : R₂ →+* R₄ σ₁₄ : R →+* R₄ inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄ inst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄ inst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄ f✝ : M →ₛₗ[σ₁₂] M₂ g✝ : M₂ →ₛₗ[σ₂₃] M₃ f : M →ₛₗ[σ₁₂] M₂ g : Module.End R M g₂ : Module.End R₂ M₂ h : comp g₂ f = comp f g ⊢ comp (g₂ ^ Nat.zero) f = comp f (g ^ Nat.zero) [PROOFSTEP] simp only [pow_zero, Nat.zero_eq] [GOAL] case zero R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁷ : Semiring R inst✝¹⁶ : Semiring R₂ inst✝¹⁵ : Semiring R₃ inst✝¹⁴ : Semiring R₄ inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid M₁ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : AddCommMonoid M₃ inst✝⁹ : AddCommMonoid M₄ inst✝⁸ : Module R M inst✝⁷ : Module R M₁ inst✝⁶ : Module R₂ M₂ inst✝⁵ : Module R₃ M₃ inst✝⁴ : Module R₄ M₄ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₃₄ : R₃ →+* R₄ σ₁₃ : R →+* R₃ σ₂₄ : R₂ →+* R₄ σ₁₄ : R →+* R₄ inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄ inst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄ inst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄ f✝ : M →ₛₗ[σ₁₂] M₂ g✝ : M₂ →ₛₗ[σ₂₃] M₃ f : M →ₛₗ[σ₁₂] M₂ g : Module.End R M g₂ : Module.End R₂ M₂ h : comp g₂ f = comp f g ⊢ comp 1 f = comp f 1 [PROOFSTEP] rfl [GOAL] case succ R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁷ : Semiring R inst✝¹⁶ : Semiring R₂ inst✝¹⁵ : Semiring R₃ inst✝¹⁴ : Semiring R₄ inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid M₁ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : AddCommMonoid M₃ inst✝⁹ : AddCommMonoid M₄ inst✝⁸ : Module R M inst✝⁷ : Module R M₁ inst✝⁶ : Module R₂ M₂ inst✝⁵ : Module R₃ M₃ inst✝⁴ : Module R₄ M₄ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₃₄ : R₃ →+* R₄ σ₁₃ : R →+* R₃ σ₂₄ : R₂ →+* R₄ σ₁₄ : R →+* R₄ inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄ inst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄ inst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄ f✝ : M →ₛₗ[σ₁₂] M₂ g✝ : M₂ →ₛₗ[σ₂₃] M₃ f : M →ₛₗ[σ₁₂] M₂ g : Module.End R M g₂ : Module.End R₂ M₂ h : comp g₂ f = comp f g k : ℕ ih : comp (g₂ ^ k) f = comp f (g ^ k) ⊢ comp (g₂ ^ Nat.succ k) f = comp f (g ^ Nat.succ k) [PROOFSTEP] rw [pow_succ, pow_succ, LinearMap.mul_eq_comp, LinearMap.comp_assoc, ih, ← LinearMap.comp_assoc, h, LinearMap.comp_assoc, LinearMap.mul_eq_comp] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N✝ : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁷ : Semiring R inst✝¹⁶ : Semiring R₂ inst✝¹⁵ : Semiring R₃ inst✝¹⁴ : Semiring R₄ inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid M₁ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : AddCommMonoid M₃ inst✝⁹ : AddCommMonoid M₄ inst✝⁸ : Module R M inst✝⁷ : Module R M₁ inst✝⁶ : Module R₂ M₂ inst✝⁵ : Module R₃ M₃ inst✝⁴ : Module R₄ M₄ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₃₄ : R₃ →+* R₄ σ₁₃ : R →+* R₃ σ₂₄ : R₂ →+* R₄ σ₁₄ : R →+* R₄ inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄ inst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄ inst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄ f : M →ₛₗ[σ₁₂] M₂ g✝ : M₂ →ₛₗ[σ₂₃] M₃ N : Submodule R M g : Module.End R { x // x ∈ N } G : Module.End R M h : comp G (Submodule.subtype N) = comp (Submodule.subtype N) g k : ℕ hG : G ^ k = 0 ⊢ g ^ k = 0 [PROOFSTEP] ext m [GOAL] case h.a R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N✝ : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁷ : Semiring R inst✝¹⁶ : Semiring R₂ inst✝¹⁵ : Semiring R₃ inst✝¹⁴ : Semiring R₄ inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid M₁ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : AddCommMonoid M₃ inst✝⁹ : AddCommMonoid M₄ inst✝⁸ : Module R M inst✝⁷ : Module R M₁ inst✝⁶ : Module R₂ M₂ inst✝⁵ : Module R₃ M₃ inst✝⁴ : Module R₄ M₄ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₃₄ : R₃ →+* R₄ σ₁₃ : R →+* R₃ σ₂₄ : R₂ →+* R₄ σ₁₄ : R →+* R₄ inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄ inst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄ inst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄ f : M →ₛₗ[σ₁₂] M₂ g✝ : M₂ →ₛₗ[σ₂₃] M₃ N : Submodule R M g : Module.End R { x // x ∈ N } G : Module.End R M h : comp G (Submodule.subtype N) = comp (Submodule.subtype N) g k : ℕ hG : G ^ k = 0 m : { x // x ∈ N } ⊢ ↑(↑(g ^ k) m) = ↑(↑0 m) [PROOFSTEP] have hg : N.subtype.comp (g ^ k) m = 0 := by rw [← commute_pow_left_of_commute h, hG, zero_comp, zero_apply] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N✝ : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁷ : Semiring R inst✝¹⁶ : Semiring R₂ inst✝¹⁵ : Semiring R₃ inst✝¹⁴ : Semiring R₄ inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid M₁ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : AddCommMonoid M₃ inst✝⁹ : AddCommMonoid M₄ inst✝⁸ : Module R M inst✝⁷ : Module R M₁ inst✝⁶ : Module R₂ M₂ inst✝⁵ : Module R₃ M₃ inst✝⁴ : Module R₄ M₄ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₃₄ : R₃ →+* R₄ σ₁₃ : R →+* R₃ σ₂₄ : R₂ →+* R₄ σ₁₄ : R →+* R₄ inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄ inst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄ inst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄ f : M →ₛₗ[σ₁₂] M₂ g✝ : M₂ →ₛₗ[σ₂₃] M₃ N : Submodule R M g : Module.End R { x // x ∈ N } G : Module.End R M h : comp G (Submodule.subtype N) = comp (Submodule.subtype N) g k : ℕ hG : G ^ k = 0 m : { x // x ∈ N } ⊢ ↑(comp (Submodule.subtype N) (g ^ k)) m = 0 [PROOFSTEP] rw [← commute_pow_left_of_commute h, hG, zero_comp, zero_apply] [GOAL] case h.a R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N✝ : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁷ : Semiring R inst✝¹⁶ : Semiring R₂ inst✝¹⁵ : Semiring R₃ inst✝¹⁴ : Semiring R₄ inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid M₁ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : AddCommMonoid M₃ inst✝⁹ : AddCommMonoid M₄ inst✝⁸ : Module R M inst✝⁷ : Module R M₁ inst✝⁶ : Module R₂ M₂ inst✝⁵ : Module R₃ M₃ inst✝⁴ : Module R₄ M₄ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₃₄ : R₃ →+* R₄ σ₁₃ : R →+* R₃ σ₂₄ : R₂ →+* R₄ σ₁₄ : R →+* R₄ inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄ inst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄ inst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄ f : M →ₛₗ[σ₁₂] M₂ g✝ : M₂ →ₛₗ[σ₂₃] M₃ N : Submodule R M g : Module.End R { x // x ∈ N } G : Module.End R M h : comp G (Submodule.subtype N) = comp (Submodule.subtype N) g k : ℕ hG : G ^ k = 0 m : { x // x ∈ N } hg : ↑(comp (Submodule.subtype N) (g ^ k)) m = 0 ⊢ ↑(↑(g ^ k) m) = ↑(↑0 m) [PROOFSTEP] simpa using hg [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁷ : Semiring R inst✝¹⁶ : Semiring R₂ inst✝¹⁵ : Semiring R₃ inst✝¹⁴ : Semiring R₄ inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid M₁ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : AddCommMonoid M₃ inst✝⁹ : AddCommMonoid M₄ inst✝⁸ : Module R M inst✝⁷ : Module R M₁ inst✝⁶ : Module R₂ M₂ inst✝⁵ : Module R₃ M₃ inst✝⁴ : Module R₄ M₄ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₃₄ : R₃ →+* R₄ σ₁₃ : R →+* R₃ σ₂₄ : R₂ →+* R₄ σ₁₄ : R →+* R₄ inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄ inst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄ inst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄ f : M →ₛₗ[σ₁₂] M₂ g : M₂ →ₛₗ[σ₂₃] M₃ f' : M →ₗ[R] M n : ℕ ⊢ f' ^ (n + 1) = comp (f' ^ n) f' [PROOFSTEP] rw [pow_succ', mul_eq_comp] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁷ : Semiring R inst✝¹⁶ : Semiring R₂ inst✝¹⁵ : Semiring R₃ inst✝¹⁴ : Semiring R₄ inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid M₁ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : AddCommMonoid M₃ inst✝⁹ : AddCommMonoid M₄ inst✝⁸ : Module R M inst✝⁷ : Module R M₁ inst✝⁶ : Module R₂ M₂ inst✝⁵ : Module R₃ M₃ inst✝⁴ : Module R₄ M₄ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₃₄ : R₃ →+* R₄ σ₁₃ : R →+* R₃ σ₂₄ : R₂ →+* R₄ σ₁₄ : R →+* R₄ inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄ inst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄ inst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄ f : M →ₛₗ[σ₁₂] M₂ g : M₂ →ₛₗ[σ₂₃] M₃ f' : M →ₗ[R] M h : Surjective ↑f' n : ℕ ⊢ Surjective ↑(f' ^ (n + 1)) [PROOFSTEP] rw [iterate_succ] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁷ : Semiring R inst✝¹⁶ : Semiring R₂ inst✝¹⁵ : Semiring R₃ inst✝¹⁴ : Semiring R₄ inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid M₁ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : AddCommMonoid M₃ inst✝⁹ : AddCommMonoid M₄ inst✝⁸ : Module R M inst✝⁷ : Module R M₁ inst✝⁶ : Module R₂ M₂ inst✝⁵ : Module R₃ M₃ inst✝⁴ : Module R₄ M₄ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₃₄ : R₃ →+* R₄ σ₁₃ : R →+* R₃ σ₂₄ : R₂ →+* R₄ σ₁₄ : R →+* R₄ inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄ inst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄ inst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄ f : M →ₛₗ[σ₁₂] M₂ g : M₂ →ₛₗ[σ₂₃] M₃ f' : M →ₗ[R] M h : Surjective ↑f' n : ℕ ⊢ Surjective ↑(comp (f' ^ n) f') [PROOFSTEP] exact (iterate_surjective h n).comp h [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁷ : Semiring R inst✝¹⁶ : Semiring R₂ inst✝¹⁵ : Semiring R₃ inst✝¹⁴ : Semiring R₄ inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid M₁ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : AddCommMonoid M₃ inst✝⁹ : AddCommMonoid M₄ inst✝⁸ : Module R M inst✝⁷ : Module R M₁ inst✝⁶ : Module R₂ M₂ inst✝⁵ : Module R₃ M₃ inst✝⁴ : Module R₄ M₄ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₃₄ : R₃ →+* R₄ σ₁₃ : R →+* R₃ σ₂₄ : R₂ →+* R₄ σ₁₄ : R →+* R₄ inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄ inst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄ inst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄ f : M →ₛₗ[σ₁₂] M₂ g : M₂ →ₛₗ[σ₂₃] M₃ f' : M →ₗ[R] M h : Injective ↑f' n : ℕ ⊢ Injective ↑(f' ^ (n + 1)) [PROOFSTEP] rw [iterate_succ] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁷ : Semiring R inst✝¹⁶ : Semiring R₂ inst✝¹⁵ : Semiring R₃ inst✝¹⁴ : Semiring R₄ inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid M₁ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : AddCommMonoid M₃ inst✝⁹ : AddCommMonoid M₄ inst✝⁸ : Module R M inst✝⁷ : Module R M₁ inst✝⁶ : Module R₂ M₂ inst✝⁵ : Module R₃ M₃ inst✝⁴ : Module R₄ M₄ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₃₄ : R₃ →+* R₄ σ₁₃ : R →+* R₃ σ₂₄ : R₂ →+* R₄ σ₁₄ : R →+* R₄ inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄ inst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄ inst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄ f : M →ₛₗ[σ₁₂] M₂ g : M₂ →ₛₗ[σ₂₃] M₃ f' : M →ₗ[R] M h : Injective ↑f' n : ℕ ⊢ Injective ↑(comp (f' ^ n) f') [PROOFSTEP] exact (iterate_injective h n).comp h [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁷ : Semiring R inst✝¹⁶ : Semiring R₂ inst✝¹⁵ : Semiring R₃ inst✝¹⁴ : Semiring R₄ inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid M₁ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : AddCommMonoid M₃ inst✝⁹ : AddCommMonoid M₄ inst✝⁸ : Module R M inst✝⁷ : Module R M₁ inst✝⁶ : Module R₂ M₂ inst✝⁵ : Module R₃ M₃ inst✝⁴ : Module R₄ M₄ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₃₄ : R₃ →+* R₄ σ₁₃ : R →+* R₃ σ₂₄ : R₂ →+* R₄ σ₁₄ : R →+* R₄ inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄ inst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄ inst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄ f : M →ₛₗ[σ₁₂] M₂ g : M₂ →ₛₗ[σ₂₃] M₃ f' : M →ₗ[R] M h : Bijective ↑f' n : ℕ ⊢ Bijective ↑(f' ^ (n + 1)) [PROOFSTEP] rw [iterate_succ] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁷ : Semiring R inst✝¹⁶ : Semiring R₂ inst✝¹⁵ : Semiring R₃ inst✝¹⁴ : Semiring R₄ inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid M₁ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : AddCommMonoid M₃ inst✝⁹ : AddCommMonoid M₄ inst✝⁸ : Module R M inst✝⁷ : Module R M₁ inst✝⁶ : Module R₂ M₂ inst✝⁵ : Module R₃ M₃ inst✝⁴ : Module R₄ M₄ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₃₄ : R₃ →+* R₄ σ₁₃ : R →+* R₃ σ₂₄ : R₂ →+* R₄ σ₁₄ : R →+* R₄ inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄ inst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄ inst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄ f : M →ₛₗ[σ₁₂] M₂ g : M₂ →ₛₗ[σ₂₃] M₃ f' : M →ₗ[R] M h : Bijective ↑f' n : ℕ ⊢ Bijective ↑(comp (f' ^ n) f') [PROOFSTEP] exact (iterate_bijective h n).comp h [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁷ : Semiring R inst✝¹⁶ : Semiring R₂ inst✝¹⁵ : Semiring R₃ inst✝¹⁴ : Semiring R₄ inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid M₁ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : AddCommMonoid M₃ inst✝⁹ : AddCommMonoid M₄ inst✝⁸ : Module R M inst✝⁷ : Module R M₁ inst✝⁶ : Module R₂ M₂ inst✝⁵ : Module R₃ M₃ inst✝⁴ : Module R₄ M₄ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₃₄ : R₃ →+* R₄ σ₁₃ : R →+* R₃ σ₂₄ : R₂ →+* R₄ σ₁₄ : R →+* R₄ inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄ inst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄ inst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄ f : M →ₛₗ[σ₁₂] M₂ g : M₂ →ₛₗ[σ₂₃] M₃ f' : M →ₗ[R] M n : ℕ hn : n ≠ 0 h : Injective ↑(f' ^ n) ⊢ Injective ↑f' [PROOFSTEP] rw [← Nat.succ_pred_eq_of_pos (pos_iff_ne_zero.mpr hn), iterate_succ, coe_comp] at h [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁷ : Semiring R inst✝¹⁶ : Semiring R₂ inst✝¹⁵ : Semiring R₃ inst✝¹⁴ : Semiring R₄ inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid M₁ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : AddCommMonoid M₃ inst✝⁹ : AddCommMonoid M₄ inst✝⁸ : Module R M inst✝⁷ : Module R M₁ inst✝⁶ : Module R₂ M₂ inst✝⁵ : Module R₃ M₃ inst✝⁴ : Module R₄ M₄ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₃₄ : R₃ →+* R₄ σ₁₃ : R →+* R₃ σ₂₄ : R₂ →+* R₄ σ₁₄ : R →+* R₄ inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄ inst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄ inst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄ f : M →ₛₗ[σ₁₂] M₂ g : M₂ →ₛₗ[σ₂₃] M₃ f' : M →ₗ[R] M n : ℕ hn : n ≠ 0 h : Injective (↑(f' ^ Nat.pred n) ∘ ↑f') ⊢ Injective ↑f' [PROOFSTEP] exact h.of_comp [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁷ : Semiring R inst✝¹⁶ : Semiring R₂ inst✝¹⁵ : Semiring R₃ inst✝¹⁴ : Semiring R₄ inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid M₁ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : AddCommMonoid M₃ inst✝⁹ : AddCommMonoid M₄ inst✝⁸ : Module R M inst✝⁷ : Module R M₁ inst✝⁶ : Module R₂ M₂ inst✝⁵ : Module R₃ M₃ inst✝⁴ : Module R₄ M₄ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₃₄ : R₃ →+* R₄ σ₁₃ : R →+* R₃ σ₂₄ : R₂ →+* R₄ σ₁₄ : R →+* R₄ inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄ inst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄ inst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄ f : M →ₛₗ[σ₁₂] M₂ g : M₂ →ₛₗ[σ₂₃] M₃ f' : M →ₗ[R] M n : ℕ hn : n ≠ 0 h : Surjective ↑(f' ^ n) ⊢ Surjective ↑f' [PROOFSTEP] rw [← Nat.succ_pred_eq_of_pos (pos_iff_ne_zero.mpr hn), Nat.succ_eq_add_one, add_comm, pow_add] at h [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁷ : Semiring R inst✝¹⁶ : Semiring R₂ inst✝¹⁵ : Semiring R₃ inst✝¹⁴ : Semiring R₄ inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid M₁ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : AddCommMonoid M₃ inst✝⁹ : AddCommMonoid M₄ inst✝⁸ : Module R M inst✝⁷ : Module R M₁ inst✝⁶ : Module R₂ M₂ inst✝⁵ : Module R₃ M₃ inst✝⁴ : Module R₄ M₄ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₃₄ : R₃ →+* R₄ σ₁₃ : R →+* R₃ σ₂₄ : R₂ →+* R₄ σ₁₄ : R →+* R₄ inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄ inst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄ inst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄ f : M →ₛₗ[σ₁₂] M₂ g : M₂ →ₛₗ[σ₂₃] M₃ f' : M →ₗ[R] M n : ℕ hn : n ≠ 0 h : Surjective ↑(f' ^ 1 * f' ^ Nat.pred n) ⊢ Surjective ↑f' [PROOFSTEP] exact Surjective.of_comp h [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁷ : Semiring R inst✝¹⁶ : Semiring R₂ inst✝¹⁵ : Semiring R₃ inst✝¹⁴ : Semiring R₄ inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid M₁ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : AddCommMonoid M₃ inst✝⁹ : AddCommMonoid M₄ inst✝⁸ : Module R M inst✝⁷ : Module R M₁ inst✝⁶ : Module R₂ M₂ inst✝⁵ : Module R₃ M₃ inst✝⁴ : Module R₄ M₄ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₃₄ : R₃ →+* R₄ σ₁₃ : R →+* R₃ σ₂₄ : R₂ →+* R₄ σ₁₄ : R →+* R₄ inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄ inst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄ inst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄ f : M →ₛₗ[σ₁₂] M₂ g : M₂ →ₛₗ[σ₂₃] M₃ f' : M →ₗ[R] M p : Submodule R M n : ℕ h : ∀ (x : M), x ∈ p → ↑f' x ∈ p x : M hx : x ∈ p ⊢ ↑(f' ^ n) x ∈ p [PROOFSTEP] induction' n with n ih generalizing x [GOAL] case zero R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁷ : Semiring R inst✝¹⁶ : Semiring R₂ inst✝¹⁵ : Semiring R₃ inst✝¹⁴ : Semiring R₄ inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid M₁ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : AddCommMonoid M₃ inst✝⁹ : AddCommMonoid M₄ inst✝⁸ : Module R M inst✝⁷ : Module R M₁ inst✝⁶ : Module R₂ M₂ inst✝⁵ : Module R₃ M₃ inst✝⁴ : Module R₄ M₄ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₃₄ : R₃ →+* R₄ σ₁₃ : R →+* R₃ σ₂₄ : R₂ →+* R₄ σ₁₄ : R →+* R₄ inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄ inst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄ inst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄ f : M →ₛₗ[σ₁₂] M₂ g : M₂ →ₛₗ[σ₂₃] M₃ f' : M →ₗ[R] M p : Submodule R M h : ∀ (x : M), x ∈ p → ↑f' x ∈ p x✝ : M hx✝ : x✝ ∈ p x : M hx : x ∈ p ⊢ ↑(f' ^ Nat.zero) x ∈ p [PROOFSTEP] simpa [GOAL] case succ R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁷ : Semiring R inst✝¹⁶ : Semiring R₂ inst✝¹⁵ : Semiring R₃ inst✝¹⁴ : Semiring R₄ inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid M₁ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : AddCommMonoid M₃ inst✝⁹ : AddCommMonoid M₄ inst✝⁸ : Module R M inst✝⁷ : Module R M₁ inst✝⁶ : Module R₂ M₂ inst✝⁵ : Module R₃ M₃ inst✝⁴ : Module R₄ M₄ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₃₄ : R₃ →+* R₄ σ₁₃ : R →+* R₃ σ₂₄ : R₂ →+* R₄ σ₁₄ : R →+* R₄ inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄ inst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄ inst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄ f : M →ₛₗ[σ₁₂] M₂ g : M₂ →ₛₗ[σ₂₃] M₃ f' : M →ₗ[R] M p : Submodule R M h : ∀ (x : M), x ∈ p → ↑f' x ∈ p x✝ : M hx✝ : x✝ ∈ p n : ℕ ih : ∀ (x : M), x ∈ p → ↑(f' ^ n) x ∈ p x : M hx : x ∈ p ⊢ ↑(f' ^ Nat.succ n) x ∈ p [PROOFSTEP] simpa only [iterate_succ, coe_comp, Function.comp_apply, restrict_apply] using ih _ (h _ hx) [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁷ : Semiring R inst✝¹⁶ : Semiring R₂ inst✝¹⁵ : Semiring R₃ inst✝¹⁴ : Semiring R₄ inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid M₁ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : AddCommMonoid M₃ inst✝⁹ : AddCommMonoid M₄ inst✝⁸ : Module R M inst✝⁷ : Module R M₁ inst✝⁶ : Module R₂ M₂ inst✝⁵ : Module R₃ M₃ inst✝⁴ : Module R₄ M₄ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₃₄ : R₃ →+* R₄ σ₁₃ : R →+* R₃ σ₂₄ : R₂ →+* R₄ σ₁₄ : R →+* R₄ inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄ inst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄ inst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄ f : M →ₛₗ[σ₁₂] M₂ g : M₂ →ₛₗ[σ₂₃] M₃ f' : M →ₗ[R] M p : Submodule R M n : ℕ h : ∀ (x : M), x ∈ p → ↑f' x ∈ p h' : optParam (∀ (x : M), x ∈ p → ↑(f' ^ n) x ∈ p) (_ : ∀ (x : M), x ∈ p → ↑(f' ^ n) x ∈ p) ⊢ restrict f' h ^ n = restrict (f' ^ n) h' [PROOFSTEP] ext x [GOAL] case h.a R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁷ : Semiring R inst✝¹⁶ : Semiring R₂ inst✝¹⁵ : Semiring R₃ inst✝¹⁴ : Semiring R₄ inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid M₁ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : AddCommMonoid M₃ inst✝⁹ : AddCommMonoid M₄ inst✝⁸ : Module R M inst✝⁷ : Module R M₁ inst✝⁶ : Module R₂ M₂ inst✝⁵ : Module R₃ M₃ inst✝⁴ : Module R₄ M₄ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₃₄ : R₃ →+* R₄ σ₁₃ : R →+* R₃ σ₂₄ : R₂ →+* R₄ σ₁₄ : R →+* R₄ inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄ inst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄ inst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄ f : M →ₛₗ[σ₁₂] M₂ g : M₂ →ₛₗ[σ₂₃] M₃ f' : M →ₗ[R] M p : Submodule R M n : ℕ h : ∀ (x : M), x ∈ p → ↑f' x ∈ p h' : optParam (∀ (x : M), x ∈ p → ↑(f' ^ n) x ∈ p) (_ : ∀ (x : M), x ∈ p → ↑(f' ^ n) x ∈ p) x : { x // x ∈ p } ⊢ ↑(↑(restrict f' h ^ n) x) = ↑(↑(restrict (f' ^ n) h') x) [PROOFSTEP] have : Semiconj (↑) (f'.restrict h) f' := fun _ ↦ rfl [GOAL] case h.a R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁷ : Semiring R inst✝¹⁶ : Semiring R₂ inst✝¹⁵ : Semiring R₃ inst✝¹⁴ : Semiring R₄ inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid M₁ inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : AddCommMonoid M₃ inst✝⁹ : AddCommMonoid M₄ inst✝⁸ : Module R M inst✝⁷ : Module R M₁ inst✝⁶ : Module R₂ M₂ inst✝⁵ : Module R₃ M₃ inst✝⁴ : Module R₄ M₄ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₃₄ : R₃ →+* R₄ σ₁₃ : R →+* R₃ σ₂₄ : R₂ →+* R₄ σ₁₄ : R →+* R₄ inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄ inst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄ inst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄ f : M →ₛₗ[σ₁₂] M₂ g : M₂ →ₛₗ[σ₂₃] M₃ f' : M →ₗ[R] M p : Submodule R M n : ℕ h : ∀ (x : M), x ∈ p → ↑f' x ∈ p h' : optParam (∀ (x : M), x ∈ p → ↑(f' ^ n) x ∈ p) (_ : ∀ (x : M), x ∈ p → ↑(f' ^ n) x ∈ p) x : { x // x ∈ p } this : Semiconj Subtype.val ↑(restrict f' h) ↑f' ⊢ ↑(↑(restrict f' h ^ n) x) = ↑(↑(restrict (f' ^ n) h') x) [PROOFSTEP] simp [coe_pow, this.iterate_right _ _] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁹ : Semiring R inst✝¹⁸ : Semiring R₂ inst✝¹⁷ : Semiring R₃ inst✝¹⁶ : Semiring R₄ inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : AddCommMonoid M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : AddCommMonoid M₃ inst✝¹¹ : AddCommMonoid M₄ inst✝¹⁰ : Module R M inst✝⁹ : Module R M₁ inst✝⁸ : Module R₂ M₂ inst✝⁷ : Module R₃ M₃ inst✝⁶ : Module R₄ M₄ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₃₄ : R₃ →+* R₄ σ₁₃ : R →+* R₃ σ₂₄ : R₂ →+* R₄ σ₁₄ : R →+* R₄ inst✝⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝⁴ : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄ inst✝³ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄ inst✝² : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄ f✝ : M →ₛₗ[σ₁₂] M₂ g : M₂ →ₛₗ[σ₂₃] M₃ inst✝¹ : Fintype ι inst✝ : DecidableEq ι f : (ι → R) →ₗ[R] M x : ι → R ⊢ ↑f x = ∑ i : ι, x i • ↑f fun j => if i = j then 1 else 0 [PROOFSTEP] conv_lhs => rw [pi_eq_sum_univ x, f.map_sum] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁹ : Semiring R inst✝¹⁸ : Semiring R₂ inst✝¹⁷ : Semiring R₃ inst✝¹⁶ : Semiring R₄ inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : AddCommMonoid M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : AddCommMonoid M₃ inst✝¹¹ : AddCommMonoid M₄ inst✝¹⁰ : Module R M inst✝⁹ : Module R M₁ inst✝⁸ : Module R₂ M₂ inst✝⁷ : Module R₃ M₃ inst✝⁶ : Module R₄ M₄ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₃₄ : R₃ →+* R₄ σ₁₃ : R →+* R₃ σ₂₄ : R₂ →+* R₄ σ₁₄ : R →+* R₄ inst✝⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝⁴ : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄ inst✝³ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄ inst✝² : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄ f✝ : M →ₛₗ[σ₁₂] M₂ g : M₂ →ₛₗ[σ₂₃] M₃ inst✝¹ : Fintype ι inst✝ : DecidableEq ι f : (ι → R) →ₗ[R] M x : ι → R | ↑f x [PROOFSTEP] rw [pi_eq_sum_univ x, f.map_sum] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁹ : Semiring R inst✝¹⁸ : Semiring R₂ inst✝¹⁷ : Semiring R₃ inst✝¹⁶ : Semiring R₄ inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : AddCommMonoid M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : AddCommMonoid M₃ inst✝¹¹ : AddCommMonoid M₄ inst✝¹⁰ : Module R M inst✝⁹ : Module R M₁ inst✝⁸ : Module R₂ M₂ inst✝⁷ : Module R₃ M₃ inst✝⁶ : Module R₄ M₄ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₃₄ : R₃ →+* R₄ σ₁₃ : R →+* R₃ σ₂₄ : R₂ →+* R₄ σ₁₄ : R →+* R₄ inst✝⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝⁴ : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄ inst✝³ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄ inst✝² : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄ f✝ : M →ₛₗ[σ₁₂] M₂ g : M₂ →ₛₗ[σ₂₃] M₃ inst✝¹ : Fintype ι inst✝ : DecidableEq ι f : (ι → R) →ₗ[R] M x : ι → R | ↑f x [PROOFSTEP] rw [pi_eq_sum_univ x, f.map_sum] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁹ : Semiring R inst✝¹⁸ : Semiring R₂ inst✝¹⁷ : Semiring R₃ inst✝¹⁶ : Semiring R₄ inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : AddCommMonoid M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : AddCommMonoid M₃ inst✝¹¹ : AddCommMonoid M₄ inst✝¹⁰ : Module R M inst✝⁹ : Module R M₁ inst✝⁸ : Module R₂ M₂ inst✝⁷ : Module R₃ M₃ inst✝⁶ : Module R₄ M₄ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₃₄ : R₃ →+* R₄ σ₁₃ : R →+* R₃ σ₂₄ : R₂ →+* R₄ σ₁₄ : R →+* R₄ inst✝⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝⁴ : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄ inst✝³ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄ inst✝² : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄ f✝ : M →ₛₗ[σ₁₂] M₂ g : M₂ →ₛₗ[σ₂₃] M₃ inst✝¹ : Fintype ι inst✝ : DecidableEq ι f : (ι → R) →ₗ[R] M x : ι → R | ↑f x [PROOFSTEP] rw [pi_eq_sum_univ x, f.map_sum] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁹ : Semiring R inst✝¹⁸ : Semiring R₂ inst✝¹⁷ : Semiring R₃ inst✝¹⁶ : Semiring R₄ inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : AddCommMonoid M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : AddCommMonoid M₃ inst✝¹¹ : AddCommMonoid M₄ inst✝¹⁰ : Module R M inst✝⁹ : Module R M₁ inst✝⁸ : Module R₂ M₂ inst✝⁷ : Module R₃ M₃ inst✝⁶ : Module R₄ M₄ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₃₄ : R₃ →+* R₄ σ₁₃ : R →+* R₃ σ₂₄ : R₂ →+* R₄ σ₁₄ : R →+* R₄ inst✝⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝⁴ : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄ inst✝³ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄ inst✝² : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄ f✝ : M →ₛₗ[σ₁₂] M₂ g : M₂ →ₛₗ[σ₂₃] M₃ inst✝¹ : Fintype ι inst✝ : DecidableEq ι f : (ι → R) →ₗ[R] M x : ι → R ⊢ ∑ i : ι, ↑f (x i • fun j => if i = j then 1 else 0) = ∑ i : ι, x i • ↑f fun j => if i = j then 1 else 0 [PROOFSTEP] refine Finset.sum_congr rfl (fun _ _ => ?_) [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁹ : Semiring R inst✝¹⁸ : Semiring R₂ inst✝¹⁷ : Semiring R₃ inst✝¹⁶ : Semiring R₄ inst✝¹⁵ : AddCommMonoid M inst✝¹⁴ : AddCommMonoid M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : AddCommMonoid M₃ inst✝¹¹ : AddCommMonoid M₄ inst✝¹⁰ : Module R M inst✝⁹ : Module R M₁ inst✝⁸ : Module R₂ M₂ inst✝⁷ : Module R₃ M₃ inst✝⁶ : Module R₄ M₄ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₃₄ : R₃ →+* R₄ σ₁₃ : R →+* R₃ σ₂₄ : R₂ →+* R₄ σ₁₄ : R →+* R₄ inst✝⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝⁴ : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄ inst✝³ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄ inst✝² : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄ f✝ : M →ₛₗ[σ₁₂] M₂ g : M₂ →ₛₗ[σ₂₃] M₃ inst✝¹ : Fintype ι inst✝ : DecidableEq ι f : (ι → R) →ₗ[R] M x : ι → R x✝¹ : ι x✝ : x✝¹ ∈ Finset.univ ⊢ ↑f (x x✝¹ • fun j => if x✝¹ = j then 1 else 0) = x x✝¹ • ↑f fun j => if x✝¹ = j then 1 else 0 [PROOFSTEP] rw [map_smul] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹³ : Semiring R inst✝¹² : Semiring S inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : AddCommMonoid M₃ inst✝⁸ : Module R M inst✝⁷ : Module R M₂ inst✝⁶ : Module R M₃ inst✝⁵ : Module S M₂ inst✝⁴ : Module S M₃ inst✝³ : SMulCommClass R S M₂ inst✝² : SMulCommClass R S M₃ f✝ : M →ₗ[R] M₂ inst✝¹ : Module S M inst✝ : SMulCommClass R S M src✝ : (fun x => (R →ₗ[R] M) →ₗ[S] M) 1 := ↑(applyₗ' S) 1 f : R →ₗ[R] M ⊢ smulRight 1 (AddHom.toFun { toAddHom := { toFun := fun f => ↑f 1, map_add' := (_ : ∀ (x y : R →ₗ[R] M), AddHom.toFun src✝.toAddHom (x + y) = AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) }, map_smul' := (_ : ∀ (r : S) (x : R →ₗ[R] M), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id S) r • AddHom.toFun src✝.toAddHom x) }.toAddHom f) = f [PROOFSTEP] ext [GOAL] case h R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹³ : Semiring R inst✝¹² : Semiring S inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : AddCommMonoid M₃ inst✝⁸ : Module R M inst✝⁷ : Module R M₂ inst✝⁶ : Module R M₃ inst✝⁵ : Module S M₂ inst✝⁴ : Module S M₃ inst✝³ : SMulCommClass R S M₂ inst✝² : SMulCommClass R S M₃ f✝ : M →ₗ[R] M₂ inst✝¹ : Module S M inst✝ : SMulCommClass R S M src✝ : (fun x => (R →ₗ[R] M) →ₗ[S] M) 1 := ↑(applyₗ' S) 1 f : R →ₗ[R] M ⊢ ↑(smulRight 1 (AddHom.toFun { toAddHom := { toFun := fun f => ↑f 1, map_add' := (_ : ∀ (x y : R →ₗ[R] M), AddHom.toFun src✝.toAddHom (x + y) = AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) }, map_smul' := (_ : ∀ (r : S) (x : R →ₗ[R] M), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id S) r • AddHom.toFun src✝.toAddHom x) }.toAddHom f)) 1 = ↑f 1 [PROOFSTEP] simp only [coe_smulRight, one_apply, smul_eq_mul, ← map_smul f, mul_one] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹³ : Semiring R inst✝¹² : Semiring S inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : AddCommMonoid M₃ inst✝⁸ : Module R M inst✝⁷ : Module R M₂ inst✝⁶ : Module R M₃ inst✝⁵ : Module S M₂ inst✝⁴ : Module S M₃ inst✝³ : SMulCommClass R S M₂ inst✝² : SMulCommClass R S M₃ f : M →ₗ[R] M₂ inst✝¹ : Module S M inst✝ : SMulCommClass R S M src✝ : (fun x => (R →ₗ[R] M) →ₗ[S] M) 1 := ↑(applyₗ' S) 1 x : M ⊢ AddHom.toFun { toAddHom := { toFun := fun f => ↑f 1, map_add' := (_ : ∀ (x y : R →ₗ[R] M), AddHom.toFun src✝.toAddHom (x + y) = AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) }, map_smul' := (_ : ∀ (r : S) (x : R →ₗ[R] M), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id S) r • AddHom.toFun src✝.toAddHom x) }.toAddHom (smulRight 1 x) = x [PROOFSTEP] simp [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝⁶ : CommSemiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M₂ inst✝³ : AddCommMonoid M₃ inst✝² : Module R M inst✝¹ : Module R M₂ inst✝ : Module R M₃ f g : M →ₗ[R] M₂ p : Submodule R M ⊢ ∀ (x y : M →ₗ[R] M₂), (fun φ => domRestrict φ p) (x + y) = (fun φ => domRestrict φ p) x + (fun φ => domRestrict φ p) y [PROOFSTEP] simp [LinearMap.ext_iff] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝⁶ : CommSemiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M₂ inst✝³ : AddCommMonoid M₃ inst✝² : Module R M inst✝¹ : Module R M₂ inst✝ : Module R M₃ f g : M →ₗ[R] M₂ p : Submodule R M ⊢ ∀ (r : R) (x : M →ₗ[R] M₂), AddHom.toFun { toFun := fun φ => domRestrict φ p, map_add' := (_ : ∀ (a a_1 : M →ₗ[R] M₂), domRestrict (a + a_1) p = domRestrict a p + domRestrict a_1 p) } (r • x) = ↑(RingHom.id R) r • AddHom.toFun { toFun := fun φ => domRestrict φ p, map_add' := (_ : ∀ (a a_1 : M →ₗ[R] M₂), domRestrict (a + a_1) p = domRestrict a p + domRestrict a_1 p) } x [PROOFSTEP] simp [LinearMap.ext_iff] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝⁶ : CommSemiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M₂ inst✝³ : AddCommMonoid M₃ inst✝² : Module R M inst✝¹ : Module R M₂ inst✝ : Module R M₃ f✝ g : M →ₗ[R] M₂ f : M₂ →ₗ[R] R m m' : M ⊢ smulRight f (m + m') = smulRight f m + smulRight f m' [PROOFSTEP] ext [GOAL] case h R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝⁶ : CommSemiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M₂ inst✝³ : AddCommMonoid M₃ inst✝² : Module R M inst✝¹ : Module R M₂ inst✝ : Module R M₃ f✝ g : M →ₗ[R] M₂ f : M₂ →ₗ[R] R m m' : M x✝ : M₂ ⊢ ↑(smulRight f (m + m')) x✝ = ↑(smulRight f m + smulRight f m') x✝ [PROOFSTEP] apply smul_add [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝⁶ : CommSemiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M₂ inst✝³ : AddCommMonoid M₃ inst✝² : Module R M inst✝¹ : Module R M₂ inst✝ : Module R M₃ f✝ g : M →ₗ[R] M₂ f : M₂ →ₗ[R] R c : R m : M ⊢ AddHom.toFun { toFun := smulRight f, map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') } (c • m) = ↑(RingHom.id R) c • AddHom.toFun { toFun := smulRight f, map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') } m [PROOFSTEP] ext [GOAL] case h R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝⁶ : CommSemiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M₂ inst✝³ : AddCommMonoid M₃ inst✝² : Module R M inst✝¹ : Module R M₂ inst✝ : Module R M₃ f✝ g : M →ₗ[R] M₂ f : M₂ →ₗ[R] R c : R m : M x✝ : M₂ ⊢ ↑(AddHom.toFun { toFun := smulRight f, map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') } (c • m)) x✝ = ↑(↑(RingHom.id R) c • AddHom.toFun { toFun := smulRight f, map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') } m) x✝ [PROOFSTEP] apply smul_comm [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝⁶ : CommSemiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M₂ inst✝³ : AddCommMonoid M₃ inst✝² : Module R M inst✝¹ : Module R M₂ inst✝ : Module R M₃ f✝ g : M →ₗ[R] M₂ f f' : M₂ →ₗ[R] R ⊢ (fun f => { toAddHom := { toFun := smulRight f, map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') }, map_smul' := (_ : ∀ (c : R) (m : M), AddHom.toFun { toFun := smulRight f, map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') } (c • m) = ↑(RingHom.id R) c • AddHom.toFun { toFun := smulRight f, map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') } m) }) (f + f') = (fun f => { toAddHom := { toFun := smulRight f, map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') }, map_smul' := (_ : ∀ (c : R) (m : M), AddHom.toFun { toFun := smulRight f, map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') } (c • m) = ↑(RingHom.id R) c • AddHom.toFun { toFun := smulRight f, map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') } m) }) f + (fun f => { toAddHom := { toFun := smulRight f, map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') }, map_smul' := (_ : ∀ (c : R) (m : M), AddHom.toFun { toFun := smulRight f, map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') } (c • m) = ↑(RingHom.id R) c • AddHom.toFun { toFun := smulRight f, map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') } m) }) f' [PROOFSTEP] ext [GOAL] case h.h R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝⁶ : CommSemiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M₂ inst✝³ : AddCommMonoid M₃ inst✝² : Module R M inst✝¹ : Module R M₂ inst✝ : Module R M₃ f✝ g : M →ₗ[R] M₂ f f' : M₂ →ₗ[R] R x✝¹ : M x✝ : M₂ ⊢ ↑(↑((fun f => { toAddHom := { toFun := smulRight f, map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') }, map_smul' := (_ : ∀ (c : R) (m : M), AddHom.toFun { toFun := smulRight f, map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') } (c • m) = ↑(RingHom.id R) c • AddHom.toFun { toFun := smulRight f, map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') } m) }) (f + f')) x✝¹) x✝ = ↑(↑((fun f => { toAddHom := { toFun := smulRight f, map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') }, map_smul' := (_ : ∀ (c : R) (m : M), AddHom.toFun { toFun := smulRight f, map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') } (c • m) = ↑(RingHom.id R) c • AddHom.toFun { toFun := smulRight f, map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') } m) }) f + (fun f => { toAddHom := { toFun := smulRight f, map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') }, map_smul' := (_ : ∀ (c : R) (m : M), AddHom.toFun { toFun := smulRight f, map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') } (c • m) = ↑(RingHom.id R) c • AddHom.toFun { toFun := smulRight f, map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') } m) }) f') x✝¹) x✝ [PROOFSTEP] apply add_smul [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝⁶ : CommSemiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M₂ inst✝³ : AddCommMonoid M₃ inst✝² : Module R M inst✝¹ : Module R M₂ inst✝ : Module R M₃ f✝ g : M →ₗ[R] M₂ c : R f : M₂ →ₗ[R] R ⊢ AddHom.toFun { toFun := fun f => { toAddHom := { toFun := smulRight f, map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') }, map_smul' := (_ : ∀ (c : R) (m : M), AddHom.toFun { toFun := smulRight f, map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') } (c • m) = ↑(RingHom.id R) c • AddHom.toFun { toFun := smulRight f, map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') } m) }, map_add' := (_ : ∀ (f f' : M₂ →ₗ[R] R), (fun f => { toAddHom := { toFun := smulRight f, map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') }, map_smul' := (_ : ∀ (c : R) (m : M), AddHom.toFun { toFun := smulRight f, map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') } (c • m) = ↑(RingHom.id R) c • AddHom.toFun { toFun := smulRight f, map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') } m) }) (f + f') = (fun f => { toAddHom := { toFun := smulRight f, map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') }, map_smul' := (_ : ∀ (c : R) (m : M), AddHom.toFun { toFun := smulRight f, map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') } (c • m) = ↑(RingHom.id R) c • AddHom.toFun { toFun := smulRight f, map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') } m) }) f + (fun f => { toAddHom := { toFun := smulRight f, map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') }, map_smul' := (_ : ∀ (c : R) (m : M), AddHom.toFun { toFun := smulRight f, map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') } (c • m) = ↑(RingHom.id R) c • AddHom.toFun { toFun := smulRight f, map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') } m) }) f') } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := fun f => { toAddHom := { toFun := smulRight f, map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') }, map_smul' := (_ : ∀ (c : R) (m : M), AddHom.toFun { toFun := smulRight f, map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') } (c • m) = ↑(RingHom.id R) c • AddHom.toFun { toFun := smulRight f, map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') } m) }, map_add' := (_ : ∀ (f f' : M₂ →ₗ[R] R), (fun f => { toAddHom := { toFun := smulRight f, map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') }, map_smul' := (_ : ∀ (c : R) (m : M), AddHom.toFun { toFun := smulRight f, map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') } (c • m) = ↑(RingHom.id R) c • AddHom.toFun { toFun := smulRight f, map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') } m) }) (f + f') = (fun f => { toAddHom := { toFun := smulRight f, map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') }, map_smul' := (_ : ∀ (c : R) (m : M), AddHom.toFun { toFun := smulRight f, map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') } (c • m) = ↑(RingHom.id R) c • AddHom.toFun { toFun := smulRight f, map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') } m) }) f + (fun f => { toAddHom := { toFun := smulRight f, map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') }, map_smul' := (_ : ∀ (c : R) (m : M), AddHom.toFun { toFun := smulRight f, map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') } (c • m) = ↑(RingHom.id R) c • AddHom.toFun { toFun := smulRight f, map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') } m) }) f') } f [PROOFSTEP] ext [GOAL] case h.h R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝⁶ : CommSemiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M₂ inst✝³ : AddCommMonoid M₃ inst✝² : Module R M inst✝¹ : Module R M₂ inst✝ : Module R M₃ f✝ g : M →ₗ[R] M₂ c : R f : M₂ →ₗ[R] R x✝¹ : M x✝ : M₂ ⊢ ↑(↑(AddHom.toFun { toFun := fun f => { toAddHom := { toFun := smulRight f, map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') }, map_smul' := (_ : ∀ (c : R) (m : M), AddHom.toFun { toFun := smulRight f, map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') } (c • m) = ↑(RingHom.id R) c • AddHom.toFun { toFun := smulRight f, map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') } m) }, map_add' := (_ : ∀ (f f' : M₂ →ₗ[R] R), (fun f => { toAddHom := { toFun := smulRight f, map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') }, map_smul' := (_ : ∀ (c : R) (m : M), AddHom.toFun { toFun := smulRight f, map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') } (c • m) = ↑(RingHom.id R) c • AddHom.toFun { toFun := smulRight f, map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') } m) }) (f + f') = (fun f => { toAddHom := { toFun := smulRight f, map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') }, map_smul' := (_ : ∀ (c : R) (m : M), AddHom.toFun { toFun := smulRight f, map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') } (c • m) = ↑(RingHom.id R) c • AddHom.toFun { toFun := smulRight f, map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') } m) }) f + (fun f => { toAddHom := { toFun := smulRight f, map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') }, map_smul' := (_ : ∀ (c : R) (m : M), AddHom.toFun { toFun := smulRight f, map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') } (c • m) = ↑(RingHom.id R) c • AddHom.toFun { toFun := smulRight f, map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') } m) }) f') } (c • f)) x✝¹) x✝ = ↑(↑(↑(RingHom.id R) c • AddHom.toFun { toFun := fun f => { toAddHom := { toFun := smulRight f, map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') }, map_smul' := (_ : ∀ (c : R) (m : M), AddHom.toFun { toFun := smulRight f, map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') } (c • m) = ↑(RingHom.id R) c • AddHom.toFun { toFun := smulRight f, map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') } m) }, map_add' := (_ : ∀ (f f' : M₂ →ₗ[R] R), (fun f => { toAddHom := { toFun := smulRight f, map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') }, map_smul' := (_ : ∀ (c : R) (m : M), AddHom.toFun { toFun := smulRight f, map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') } (c • m) = ↑(RingHom.id R) c • AddHom.toFun { toFun := smulRight f, map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') } m) }) (f + f') = (fun f => { toAddHom := { toFun := smulRight f, map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') }, map_smul' := (_ : ∀ (c : R) (m : M), AddHom.toFun { toFun := smulRight f, map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') } (c • m) = ↑(RingHom.id R) c • AddHom.toFun { toFun := smulRight f, map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') } m) }) f + (fun f => { toAddHom := { toFun := smulRight f, map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') }, map_smul' := (_ : ∀ (c : R) (m : M), AddHom.toFun { toFun := smulRight f, map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') } (c • m) = ↑(RingHom.id R) c • AddHom.toFun { toFun := smulRight f, map_add' := (_ : ∀ (m m' : M), smulRight f (m + m') = smulRight f m + smulRight f m') } m) }) f') } f) x✝¹) x✝ [PROOFSTEP] apply mul_smul [GOAL] R✝ : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 A : Type u_20 B : Type u_21 R : Type u_22 inst✝³ : Semiring R inst✝² : AddCommMonoid A inst✝¹ : AddCommMonoid B inst✝ : Module R B ⊢ ∀ (x y : A →+ B), AddMonoidHom.toNatLinearMap (x + y) = AddMonoidHom.toNatLinearMap x + AddMonoidHom.toNatLinearMap y [PROOFSTEP] intros [GOAL] R✝ : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 A : Type u_20 B : Type u_21 R : Type u_22 inst✝³ : Semiring R inst✝² : AddCommMonoid A inst✝¹ : AddCommMonoid B inst✝ : Module R B x✝ y✝ : A →+ B ⊢ AddMonoidHom.toNatLinearMap (x✝ + y✝) = AddMonoidHom.toNatLinearMap x✝ + AddMonoidHom.toNatLinearMap y✝ [PROOFSTEP] ext [GOAL] case h R✝ : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 A : Type u_20 B : Type u_21 R : Type u_22 inst✝³ : Semiring R inst✝² : AddCommMonoid A inst✝¹ : AddCommMonoid B inst✝ : Module R B x✝¹ y✝ : A →+ B x✝ : A ⊢ ↑(AddMonoidHom.toNatLinearMap (x✝¹ + y✝)) x✝ = ↑(AddMonoidHom.toNatLinearMap x✝¹ + AddMonoidHom.toNatLinearMap y✝) x✝ [PROOFSTEP] rfl [GOAL] R✝ : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 A : Type u_20 B : Type u_21 R : Type u_22 inst✝³ : Semiring R inst✝² : AddCommMonoid A inst✝¹ : AddCommMonoid B inst✝ : Module R B ⊢ ∀ (r : R) (x : A →+ B), AddHom.toFun { toFun := AddMonoidHom.toNatLinearMap, map_add' := (_ : ∀ (x y : A →+ B), AddMonoidHom.toNatLinearMap (x + y) = AddMonoidHom.toNatLinearMap x + AddMonoidHom.toNatLinearMap y) } (r • x) = ↑(RingHom.id R) r • AddHom.toFun { toFun := AddMonoidHom.toNatLinearMap, map_add' := (_ : ∀ (x y : A →+ B), AddMonoidHom.toNatLinearMap (x + y) = AddMonoidHom.toNatLinearMap x + AddMonoidHom.toNatLinearMap y) } x [PROOFSTEP] intros [GOAL] R✝ : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 A : Type u_20 B : Type u_21 R : Type u_22 inst✝³ : Semiring R inst✝² : AddCommMonoid A inst✝¹ : AddCommMonoid B inst✝ : Module R B r✝ : R x✝ : A →+ B ⊢ AddHom.toFun { toFun := AddMonoidHom.toNatLinearMap, map_add' := (_ : ∀ (x y : A →+ B), AddMonoidHom.toNatLinearMap (x + y) = AddMonoidHom.toNatLinearMap x + AddMonoidHom.toNatLinearMap y) } (r✝ • x✝) = ↑(RingHom.id R) r✝ • AddHom.toFun { toFun := AddMonoidHom.toNatLinearMap, map_add' := (_ : ∀ (x y : A →+ B), AddMonoidHom.toNatLinearMap (x + y) = AddMonoidHom.toNatLinearMap x + AddMonoidHom.toNatLinearMap y) } x✝ [PROOFSTEP] ext [GOAL] case h R✝ : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 A : Type u_20 B : Type u_21 R : Type u_22 inst✝³ : Semiring R inst✝² : AddCommMonoid A inst✝¹ : AddCommMonoid B inst✝ : Module R B r✝ : R x✝¹ : A →+ B x✝ : A ⊢ ↑(AddHom.toFun { toFun := AddMonoidHom.toNatLinearMap, map_add' := (_ : ∀ (x y : A →+ B), AddMonoidHom.toNatLinearMap (x + y) = AddMonoidHom.toNatLinearMap x + AddMonoidHom.toNatLinearMap y) } (r✝ • x✝¹)) x✝ = ↑(↑(RingHom.id R) r✝ • AddHom.toFun { toFun := AddMonoidHom.toNatLinearMap, map_add' := (_ : ∀ (x y : A →+ B), AddMonoidHom.toNatLinearMap (x + y) = AddMonoidHom.toNatLinearMap x + AddMonoidHom.toNatLinearMap y) } x✝¹) x✝ [PROOFSTEP] rfl [GOAL] R✝ : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 A : Type u_20 B : Type u_21 R : Type u_22 inst✝³ : Semiring R inst✝² : AddCommMonoid A inst✝¹ : AddCommMonoid B inst✝ : Module R B ⊢ LeftInverse LinearMap.toAddMonoidHom { toAddHom := { toFun := AddMonoidHom.toNatLinearMap, map_add' := (_ : ∀ (x y : A →+ B), AddMonoidHom.toNatLinearMap (x + y) = AddMonoidHom.toNatLinearMap x + AddMonoidHom.toNatLinearMap y) }, map_smul' := (_ : ∀ (r : R) (x : A →+ B), AddHom.toFun { toFun := AddMonoidHom.toNatLinearMap, map_add' := (_ : ∀ (x y : A →+ B), AddMonoidHom.toNatLinearMap (x + y) = AddMonoidHom.toNatLinearMap x + AddMonoidHom.toNatLinearMap y) } (r • x) = ↑(RingHom.id R) r • AddHom.toFun { toFun := AddMonoidHom.toNatLinearMap, map_add' := (_ : ∀ (x y : A →+ B), AddMonoidHom.toNatLinearMap (x + y) = AddMonoidHom.toNatLinearMap x + AddMonoidHom.toNatLinearMap y) } x) }.toAddHom.toFun [PROOFSTEP] intro f [GOAL] R✝ : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 A : Type u_20 B : Type u_21 R : Type u_22 inst✝³ : Semiring R inst✝² : AddCommMonoid A inst✝¹ : AddCommMonoid B inst✝ : Module R B f : A →+ B ⊢ LinearMap.toAddMonoidHom (AddHom.toFun { toAddHom := { toFun := AddMonoidHom.toNatLinearMap, map_add' := (_ : ∀ (x y : A →+ B), AddMonoidHom.toNatLinearMap (x + y) = AddMonoidHom.toNatLinearMap x + AddMonoidHom.toNatLinearMap y) }, map_smul' := (_ : ∀ (r : R) (x : A →+ B), AddHom.toFun { toFun := AddMonoidHom.toNatLinearMap, map_add' := (_ : ∀ (x y : A →+ B), AddMonoidHom.toNatLinearMap (x + y) = AddMonoidHom.toNatLinearMap x + AddMonoidHom.toNatLinearMap y) } (r • x) = ↑(RingHom.id R) r • AddHom.toFun { toFun := AddMonoidHom.toNatLinearMap, map_add' := (_ : ∀ (x y : A →+ B), AddMonoidHom.toNatLinearMap (x + y) = AddMonoidHom.toNatLinearMap x + AddMonoidHom.toNatLinearMap y) } x) }.toAddHom f) = f [PROOFSTEP] ext [GOAL] case h R✝ : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 A : Type u_20 B : Type u_21 R : Type u_22 inst✝³ : Semiring R inst✝² : AddCommMonoid A inst✝¹ : AddCommMonoid B inst✝ : Module R B f : A →+ B x✝ : A ⊢ ↑(LinearMap.toAddMonoidHom (AddHom.toFun { toAddHom := { toFun := AddMonoidHom.toNatLinearMap, map_add' := (_ : ∀ (x y : A →+ B), AddMonoidHom.toNatLinearMap (x + y) = AddMonoidHom.toNatLinearMap x + AddMonoidHom.toNatLinearMap y) }, map_smul' := (_ : ∀ (r : R) (x : A →+ B), AddHom.toFun { toFun := AddMonoidHom.toNatLinearMap, map_add' := (_ : ∀ (x y : A →+ B), AddMonoidHom.toNatLinearMap (x + y) = AddMonoidHom.toNatLinearMap x + AddMonoidHom.toNatLinearMap y) } (r • x) = ↑(RingHom.id R) r • AddHom.toFun { toFun := AddMonoidHom.toNatLinearMap, map_add' := (_ : ∀ (x y : A →+ B), AddMonoidHom.toNatLinearMap (x + y) = AddMonoidHom.toNatLinearMap x + AddMonoidHom.toNatLinearMap y) } x) }.toAddHom f)) x✝ = ↑f x✝ [PROOFSTEP] rfl [GOAL] R✝ : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 A : Type u_20 B : Type u_21 R : Type u_22 inst✝³ : Semiring R inst✝² : AddCommMonoid A inst✝¹ : AddCommMonoid B inst✝ : Module R B ⊢ Function.RightInverse LinearMap.toAddMonoidHom { toAddHom := { toFun := AddMonoidHom.toNatLinearMap, map_add' := (_ : ∀ (x y : A →+ B), AddMonoidHom.toNatLinearMap (x + y) = AddMonoidHom.toNatLinearMap x + AddMonoidHom.toNatLinearMap y) }, map_smul' := (_ : ∀ (r : R) (x : A →+ B), AddHom.toFun { toFun := AddMonoidHom.toNatLinearMap, map_add' := (_ : ∀ (x y : A →+ B), AddMonoidHom.toNatLinearMap (x + y) = AddMonoidHom.toNatLinearMap x + AddMonoidHom.toNatLinearMap y) } (r • x) = ↑(RingHom.id R) r • AddHom.toFun { toFun := AddMonoidHom.toNatLinearMap, map_add' := (_ : ∀ (x y : A →+ B), AddMonoidHom.toNatLinearMap (x + y) = AddMonoidHom.toNatLinearMap x + AddMonoidHom.toNatLinearMap y) } x) }.toAddHom.toFun [PROOFSTEP] intro f [GOAL] R✝ : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 A : Type u_20 B : Type u_21 R : Type u_22 inst✝³ : Semiring R inst✝² : AddCommMonoid A inst✝¹ : AddCommMonoid B inst✝ : Module R B f : A →ₗ[ℕ] B ⊢ AddHom.toFun { toAddHom := { toFun := AddMonoidHom.toNatLinearMap, map_add' := (_ : ∀ (x y : A →+ B), AddMonoidHom.toNatLinearMap (x + y) = AddMonoidHom.toNatLinearMap x + AddMonoidHom.toNatLinearMap y) }, map_smul' := (_ : ∀ (r : R) (x : A →+ B), AddHom.toFun { toFun := AddMonoidHom.toNatLinearMap, map_add' := (_ : ∀ (x y : A →+ B), AddMonoidHom.toNatLinearMap (x + y) = AddMonoidHom.toNatLinearMap x + AddMonoidHom.toNatLinearMap y) } (r • x) = ↑(RingHom.id R) r • AddHom.toFun { toFun := AddMonoidHom.toNatLinearMap, map_add' := (_ : ∀ (x y : A →+ B), AddMonoidHom.toNatLinearMap (x + y) = AddMonoidHom.toNatLinearMap x + AddMonoidHom.toNatLinearMap y) } x) }.toAddHom (LinearMap.toAddMonoidHom f) = f [PROOFSTEP] ext [GOAL] case h R✝ : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 A : Type u_20 B : Type u_21 R : Type u_22 inst✝³ : Semiring R inst✝² : AddCommMonoid A inst✝¹ : AddCommMonoid B inst✝ : Module R B f : A →ₗ[ℕ] B x✝ : A ⊢ ↑(AddHom.toFun { toAddHom := { toFun := AddMonoidHom.toNatLinearMap, map_add' := (_ : ∀ (x y : A →+ B), AddMonoidHom.toNatLinearMap (x + y) = AddMonoidHom.toNatLinearMap x + AddMonoidHom.toNatLinearMap y) }, map_smul' := (_ : ∀ (r : R) (x : A →+ B), AddHom.toFun { toFun := AddMonoidHom.toNatLinearMap, map_add' := (_ : ∀ (x y : A →+ B), AddMonoidHom.toNatLinearMap (x + y) = AddMonoidHom.toNatLinearMap x + AddMonoidHom.toNatLinearMap y) } (r • x) = ↑(RingHom.id R) r • AddHom.toFun { toFun := AddMonoidHom.toNatLinearMap, map_add' := (_ : ∀ (x y : A →+ B), AddMonoidHom.toNatLinearMap (x + y) = AddMonoidHom.toNatLinearMap x + AddMonoidHom.toNatLinearMap y) } x) }.toAddHom (LinearMap.toAddMonoidHom f)) x✝ = ↑f x✝ [PROOFSTEP] rfl [GOAL] R✝ : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 A : Type u_20 B : Type u_21 R : Type u_22 inst✝³ : Semiring R inst✝² : AddCommGroup A inst✝¹ : AddCommGroup B inst✝ : Module R B ⊢ ∀ (x y : A →+ B), AddMonoidHom.toIntLinearMap (x + y) = AddMonoidHom.toIntLinearMap x + AddMonoidHom.toIntLinearMap y [PROOFSTEP] intros [GOAL] R✝ : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 A : Type u_20 B : Type u_21 R : Type u_22 inst✝³ : Semiring R inst✝² : AddCommGroup A inst✝¹ : AddCommGroup B inst✝ : Module R B x✝ y✝ : A →+ B ⊢ AddMonoidHom.toIntLinearMap (x✝ + y✝) = AddMonoidHom.toIntLinearMap x✝ + AddMonoidHom.toIntLinearMap y✝ [PROOFSTEP] ext [GOAL] case h R✝ : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 A : Type u_20 B : Type u_21 R : Type u_22 inst✝³ : Semiring R inst✝² : AddCommGroup A inst✝¹ : AddCommGroup B inst✝ : Module R B x✝¹ y✝ : A →+ B x✝ : A ⊢ ↑(AddMonoidHom.toIntLinearMap (x✝¹ + y✝)) x✝ = ↑(AddMonoidHom.toIntLinearMap x✝¹ + AddMonoidHom.toIntLinearMap y✝) x✝ [PROOFSTEP] rfl [GOAL] R✝ : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 A : Type u_20 B : Type u_21 R : Type u_22 inst✝³ : Semiring R inst✝² : AddCommGroup A inst✝¹ : AddCommGroup B inst✝ : Module R B ⊢ ∀ (r : R) (x : A →+ B), AddHom.toFun { toFun := AddMonoidHom.toIntLinearMap, map_add' := (_ : ∀ (x y : A →+ B), AddMonoidHom.toIntLinearMap (x + y) = AddMonoidHom.toIntLinearMap x + AddMonoidHom.toIntLinearMap y) } (r • x) = ↑(RingHom.id R) r • AddHom.toFun { toFun := AddMonoidHom.toIntLinearMap, map_add' := (_ : ∀ (x y : A →+ B), AddMonoidHom.toIntLinearMap (x + y) = AddMonoidHom.toIntLinearMap x + AddMonoidHom.toIntLinearMap y) } x [PROOFSTEP] intros [GOAL] R✝ : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 A : Type u_20 B : Type u_21 R : Type u_22 inst✝³ : Semiring R inst✝² : AddCommGroup A inst✝¹ : AddCommGroup B inst✝ : Module R B r✝ : R x✝ : A →+ B ⊢ AddHom.toFun { toFun := AddMonoidHom.toIntLinearMap, map_add' := (_ : ∀ (x y : A →+ B), AddMonoidHom.toIntLinearMap (x + y) = AddMonoidHom.toIntLinearMap x + AddMonoidHom.toIntLinearMap y) } (r✝ • x✝) = ↑(RingHom.id R) r✝ • AddHom.toFun { toFun := AddMonoidHom.toIntLinearMap, map_add' := (_ : ∀ (x y : A →+ B), AddMonoidHom.toIntLinearMap (x + y) = AddMonoidHom.toIntLinearMap x + AddMonoidHom.toIntLinearMap y) } x✝ [PROOFSTEP] ext [GOAL] case h R✝ : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 A : Type u_20 B : Type u_21 R : Type u_22 inst✝³ : Semiring R inst✝² : AddCommGroup A inst✝¹ : AddCommGroup B inst✝ : Module R B r✝ : R x✝¹ : A →+ B x✝ : A ⊢ ↑(AddHom.toFun { toFun := AddMonoidHom.toIntLinearMap, map_add' := (_ : ∀ (x y : A →+ B), AddMonoidHom.toIntLinearMap (x + y) = AddMonoidHom.toIntLinearMap x + AddMonoidHom.toIntLinearMap y) } (r✝ • x✝¹)) x✝ = ↑(↑(RingHom.id R) r✝ • AddHom.toFun { toFun := AddMonoidHom.toIntLinearMap, map_add' := (_ : ∀ (x y : A →+ B), AddMonoidHom.toIntLinearMap (x + y) = AddMonoidHom.toIntLinearMap x + AddMonoidHom.toIntLinearMap y) } x✝¹) x✝ [PROOFSTEP] rfl [GOAL] R✝ : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 A : Type u_20 B : Type u_21 R : Type u_22 inst✝³ : Semiring R inst✝² : AddCommGroup A inst✝¹ : AddCommGroup B inst✝ : Module R B ⊢ LeftInverse LinearMap.toAddMonoidHom { toAddHom := { toFun := AddMonoidHom.toIntLinearMap, map_add' := (_ : ∀ (x y : A →+ B), AddMonoidHom.toIntLinearMap (x + y) = AddMonoidHom.toIntLinearMap x + AddMonoidHom.toIntLinearMap y) }, map_smul' := (_ : ∀ (r : R) (x : A →+ B), AddHom.toFun { toFun := AddMonoidHom.toIntLinearMap, map_add' := (_ : ∀ (x y : A →+ B), AddMonoidHom.toIntLinearMap (x + y) = AddMonoidHom.toIntLinearMap x + AddMonoidHom.toIntLinearMap y) } (r • x) = ↑(RingHom.id R) r • AddHom.toFun { toFun := AddMonoidHom.toIntLinearMap, map_add' := (_ : ∀ (x y : A →+ B), AddMonoidHom.toIntLinearMap (x + y) = AddMonoidHom.toIntLinearMap x + AddMonoidHom.toIntLinearMap y) } x) }.toAddHom.toFun [PROOFSTEP] intro f [GOAL] R✝ : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 A : Type u_20 B : Type u_21 R : Type u_22 inst✝³ : Semiring R inst✝² : AddCommGroup A inst✝¹ : AddCommGroup B inst✝ : Module R B f : A →+ B ⊢ LinearMap.toAddMonoidHom (AddHom.toFun { toAddHom := { toFun := AddMonoidHom.toIntLinearMap, map_add' := (_ : ∀ (x y : A →+ B), AddMonoidHom.toIntLinearMap (x + y) = AddMonoidHom.toIntLinearMap x + AddMonoidHom.toIntLinearMap y) }, map_smul' := (_ : ∀ (r : R) (x : A →+ B), AddHom.toFun { toFun := AddMonoidHom.toIntLinearMap, map_add' := (_ : ∀ (x y : A →+ B), AddMonoidHom.toIntLinearMap (x + y) = AddMonoidHom.toIntLinearMap x + AddMonoidHom.toIntLinearMap y) } (r • x) = ↑(RingHom.id R) r • AddHom.toFun { toFun := AddMonoidHom.toIntLinearMap, map_add' := (_ : ∀ (x y : A →+ B), AddMonoidHom.toIntLinearMap (x + y) = AddMonoidHom.toIntLinearMap x + AddMonoidHom.toIntLinearMap y) } x) }.toAddHom f) = f [PROOFSTEP] ext [GOAL] case h R✝ : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 A : Type u_20 B : Type u_21 R : Type u_22 inst✝³ : Semiring R inst✝² : AddCommGroup A inst✝¹ : AddCommGroup B inst✝ : Module R B f : A →+ B x✝ : A ⊢ ↑(LinearMap.toAddMonoidHom (AddHom.toFun { toAddHom := { toFun := AddMonoidHom.toIntLinearMap, map_add' := (_ : ∀ (x y : A →+ B), AddMonoidHom.toIntLinearMap (x + y) = AddMonoidHom.toIntLinearMap x + AddMonoidHom.toIntLinearMap y) }, map_smul' := (_ : ∀ (r : R) (x : A →+ B), AddHom.toFun { toFun := AddMonoidHom.toIntLinearMap, map_add' := (_ : ∀ (x y : A →+ B), AddMonoidHom.toIntLinearMap (x + y) = AddMonoidHom.toIntLinearMap x + AddMonoidHom.toIntLinearMap y) } (r • x) = ↑(RingHom.id R) r • AddHom.toFun { toFun := AddMonoidHom.toIntLinearMap, map_add' := (_ : ∀ (x y : A →+ B), AddMonoidHom.toIntLinearMap (x + y) = AddMonoidHom.toIntLinearMap x + AddMonoidHom.toIntLinearMap y) } x) }.toAddHom f)) x✝ = ↑f x✝ [PROOFSTEP] rfl [GOAL] R✝ : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 A : Type u_20 B : Type u_21 R : Type u_22 inst✝³ : Semiring R inst✝² : AddCommGroup A inst✝¹ : AddCommGroup B inst✝ : Module R B ⊢ Function.RightInverse LinearMap.toAddMonoidHom { toAddHom := { toFun := AddMonoidHom.toIntLinearMap, map_add' := (_ : ∀ (x y : A →+ B), AddMonoidHom.toIntLinearMap (x + y) = AddMonoidHom.toIntLinearMap x + AddMonoidHom.toIntLinearMap y) }, map_smul' := (_ : ∀ (r : R) (x : A →+ B), AddHom.toFun { toFun := AddMonoidHom.toIntLinearMap, map_add' := (_ : ∀ (x y : A →+ B), AddMonoidHom.toIntLinearMap (x + y) = AddMonoidHom.toIntLinearMap x + AddMonoidHom.toIntLinearMap y) } (r • x) = ↑(RingHom.id R) r • AddHom.toFun { toFun := AddMonoidHom.toIntLinearMap, map_add' := (_ : ∀ (x y : A →+ B), AddMonoidHom.toIntLinearMap (x + y) = AddMonoidHom.toIntLinearMap x + AddMonoidHom.toIntLinearMap y) } x) }.toAddHom.toFun [PROOFSTEP] intro f [GOAL] R✝ : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 A : Type u_20 B : Type u_21 R : Type u_22 inst✝³ : Semiring R inst✝² : AddCommGroup A inst✝¹ : AddCommGroup B inst✝ : Module R B f : A →ₗ[ℤ] B ⊢ AddHom.toFun { toAddHom := { toFun := AddMonoidHom.toIntLinearMap, map_add' := (_ : ∀ (x y : A →+ B), AddMonoidHom.toIntLinearMap (x + y) = AddMonoidHom.toIntLinearMap x + AddMonoidHom.toIntLinearMap y) }, map_smul' := (_ : ∀ (r : R) (x : A →+ B), AddHom.toFun { toFun := AddMonoidHom.toIntLinearMap, map_add' := (_ : ∀ (x y : A →+ B), AddMonoidHom.toIntLinearMap (x + y) = AddMonoidHom.toIntLinearMap x + AddMonoidHom.toIntLinearMap y) } (r • x) = ↑(RingHom.id R) r • AddHom.toFun { toFun := AddMonoidHom.toIntLinearMap, map_add' := (_ : ∀ (x y : A →+ B), AddMonoidHom.toIntLinearMap (x + y) = AddMonoidHom.toIntLinearMap x + AddMonoidHom.toIntLinearMap y) } x) }.toAddHom (LinearMap.toAddMonoidHom f) = f [PROOFSTEP] ext [GOAL] case h R✝ : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 A : Type u_20 B : Type u_21 R : Type u_22 inst✝³ : Semiring R inst✝² : AddCommGroup A inst✝¹ : AddCommGroup B inst✝ : Module R B f : A →ₗ[ℤ] B x✝ : A ⊢ ↑(AddHom.toFun { toAddHom := { toFun := AddMonoidHom.toIntLinearMap, map_add' := (_ : ∀ (x y : A →+ B), AddMonoidHom.toIntLinearMap (x + y) = AddMonoidHom.toIntLinearMap x + AddMonoidHom.toIntLinearMap y) }, map_smul' := (_ : ∀ (r : R) (x : A →+ B), AddHom.toFun { toFun := AddMonoidHom.toIntLinearMap, map_add' := (_ : ∀ (x y : A →+ B), AddMonoidHom.toIntLinearMap (x + y) = AddMonoidHom.toIntLinearMap x + AddMonoidHom.toIntLinearMap y) } (r • x) = ↑(RingHom.id R) r • AddHom.toFun { toFun := AddMonoidHom.toIntLinearMap, map_add' := (_ : ∀ (x y : A →+ B), AddMonoidHom.toIntLinearMap (x + y) = AddMonoidHom.toIntLinearMap x + AddMonoidHom.toIntLinearMap y) } x) }.toAddHom (LinearMap.toAddMonoidHom f)) x✝ = ↑f x✝ [PROOFSTEP] rfl [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹³ : Semiring R inst✝¹² : Semiring R₂ inst✝¹¹ : Semiring R₃ inst✝¹⁰ : AddCommMonoid M inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : Module R M inst✝⁵ : Module R M' inst✝⁴ : Module R₂ M₂ inst✝³ : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ σ₂₁ : R₂ →+* R inst✝² : RingHomInvPair σ₁₂ σ₂₁ inst✝¹ : RingHomInvPair σ₂₁ σ₁₂ inst✝ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ p✝ p' : Submodule R M q✝ q' : Submodule R₂ M₂ q₁ q₁' : Submodule R M' r : R x y : M p q : Submodule R M h : p ≤ q ⊢ LinearMap.comp (Submodule.subtype q) (ofLe h) = Submodule.subtype p [PROOFSTEP] ext ⟨b, hb⟩ [GOAL] case h.mk R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹³ : Semiring R inst✝¹² : Semiring R₂ inst✝¹¹ : Semiring R₃ inst✝¹⁰ : AddCommMonoid M inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : Module R M inst✝⁵ : Module R M' inst✝⁴ : Module R₂ M₂ inst✝³ : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ σ₂₁ : R₂ →+* R inst✝² : RingHomInvPair σ₁₂ σ₂₁ inst✝¹ : RingHomInvPair σ₂₁ σ₁₂ inst✝ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ p✝ p' : Submodule R M q✝ q' : Submodule R₂ M₂ q₁ q₁' : Submodule R M' r : R x y : M p q : Submodule R M h : p ≤ q b : M hb : b ∈ p ⊢ ↑(LinearMap.comp (Submodule.subtype q) (ofLe h)) { val := b, property := hb } = ↑(Submodule.subtype p) { val := b, property := hb } [PROOFSTEP] rfl [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹³ : Semiring R inst✝¹² : Semiring R₂ inst✝¹¹ : Semiring R₃ inst✝¹⁰ : AddCommMonoid M inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : Module R M inst✝⁵ : Module R M' inst✝⁴ : Module R₂ M₂ inst✝³ : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ σ₂₁ : R₂ →+* R inst✝² : RingHomInvPair σ₁₂ σ₂₁ inst✝¹ : RingHomInvPair σ₂₁ σ₁₂ inst✝ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ p p' : Submodule R M q q' : Submodule R₂ M₂ q₁ q₁' : Submodule R M' r : R x y : M ⊢ Subsingleton (Submodule R M) ↔ Subsingleton (AddSubmonoid M) [PROOFSTEP] rw [← subsingleton_iff_bot_eq_top, ← subsingleton_iff_bot_eq_top, ← toAddSubmonoid_eq] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹³ : Semiring R inst✝¹² : Semiring R₂ inst✝¹¹ : Semiring R₃ inst✝¹⁰ : AddCommMonoid M inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : Module R M inst✝⁵ : Module R M' inst✝⁴ : Module R₂ M₂ inst✝³ : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ σ₂₁ : R₂ →+* R inst✝² : RingHomInvPair σ₁₂ σ₂₁ inst✝¹ : RingHomInvPair σ₂₁ σ₁₂ inst✝ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ p p' : Submodule R M q q' : Submodule R₂ M₂ q₁ q₁' : Submodule R M' r : R x y : M ⊢ ⊥.toAddSubmonoid = ⊤.toAddSubmonoid ↔ ⊥ = ⊤ [PROOFSTEP] rfl [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁴ : Semiring R inst✝¹³ : Semiring R₂ inst✝¹² : Semiring R₃ inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : AddCommMonoid M₃ inst✝⁸ : AddCommMonoid M' inst✝⁷ : Module R M inst✝⁶ : Module R M' inst✝⁵ : Module R₂ M₂ inst✝⁴ : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ σ₂₁ : R₂ →+* R inst✝³ : RingHomInvPair σ₁₂ σ₂₁ inst✝² : RingHomInvPair σ₂₁ σ₁₂ inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ p p' : Submodule R M q q' : Submodule R₂ M₂ q₁ q₁' : Submodule R M' r : R x y : M inst✝ : Subsingleton R ⊢ Unique (Submodule R M) [PROOFSTEP] haveI := Module.subsingleton R M [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁴ : Semiring R inst✝¹³ : Semiring R₂ inst✝¹² : Semiring R₃ inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : AddCommMonoid M₃ inst✝⁸ : AddCommMonoid M' inst✝⁷ : Module R M inst✝⁶ : Module R M' inst✝⁵ : Module R₂ M₂ inst✝⁴ : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ σ₂₁ : R₂ →+* R inst✝³ : RingHomInvPair σ₁₂ σ₂₁ inst✝² : RingHomInvPair σ₂₁ σ₁₂ inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ p p' : Submodule R M q q' : Submodule R₂ M₂ q₁ q₁' : Submodule R M' r : R x y : M inst✝ : Subsingleton R this : Subsingleton M ⊢ Unique (Submodule R M) [PROOFSTEP] infer_instance [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁴ : Semiring R inst✝¹³ : Semiring R₂ inst✝¹² : Semiring R₃ inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : AddCommMonoid M₃ inst✝⁸ : AddCommMonoid M' inst✝⁷ : Module R M inst✝⁶ : Module R M' inst✝⁵ : Module R₂ M₂ inst✝⁴ : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ σ₂₁ : R₂ →+* R inst✝³ : RingHomInvPair σ₁₂ σ₂₁ inst✝² : RingHomInvPair σ₂₁ σ₁₂ inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ p✝ p' : Submodule R M q q' : Submodule R₂ M₂ q₁ q₁' : Submodule R M' r : R x y : M inst✝ : RingHomSurjective σ₁₂ F : Type u_20 sc : SemilinearMapClass F σ₁₂ M M₂ f : F p : Submodule R M src✝ : AddSubmonoid M₂ := AddSubmonoid.map f p.toAddSubmonoid ⊢ ∀ (c : R₂) {x : M₂}, x ∈ { toAddSubsemigroup := { carrier := ↑f '' ↑p, add_mem' := (_ : ∀ {a b : M₂}, a ∈ src✝.carrier → b ∈ src✝.carrier → a + b ∈ src✝.carrier) }, zero_mem' := (_ : 0 ∈ src✝.carrier) }.toAddSubsemigroup.carrier → c • x ∈ { toAddSubsemigroup := { carrier := ↑f '' ↑p, add_mem' := (_ : ∀ {a b : M₂}, a ∈ src✝.carrier → b ∈ src✝.carrier → a + b ∈ src✝.carrier) }, zero_mem' := (_ : 0 ∈ src✝.carrier) }.toAddSubsemigroup.carrier [PROOFSTEP] rintro c x ⟨y, hy, rfl⟩ [GOAL] case intro.intro R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁴ : Semiring R inst✝¹³ : Semiring R₂ inst✝¹² : Semiring R₃ inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : AddCommMonoid M₃ inst✝⁸ : AddCommMonoid M' inst✝⁷ : Module R M inst✝⁶ : Module R M' inst✝⁵ : Module R₂ M₂ inst✝⁴ : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ σ₂₁ : R₂ →+* R inst✝³ : RingHomInvPair σ₁₂ σ₂₁ inst✝² : RingHomInvPair σ₂₁ σ₁₂ inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ p✝ p' : Submodule R M q q' : Submodule R₂ M₂ q₁ q₁' : Submodule R M' r : R x y✝ : M inst✝ : RingHomSurjective σ₁₂ F : Type u_20 sc : SemilinearMapClass F σ₁₂ M M₂ f : F p : Submodule R M src✝ : AddSubmonoid M₂ := AddSubmonoid.map f p.toAddSubmonoid c : R₂ y : M hy : y ∈ ↑p ⊢ c • ↑f y ∈ { toAddSubsemigroup := { carrier := ↑f '' ↑p, add_mem' := (_ : ∀ {a b : M₂}, a ∈ src✝.carrier → b ∈ src✝.carrier → a + b ∈ src✝.carrier) }, zero_mem' := (_ : 0 ∈ src✝.carrier) }.toAddSubsemigroup.carrier [PROOFSTEP] obtain ⟨a, rfl⟩ := σ₁₂.surjective c [GOAL] case intro.intro.intro R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁴ : Semiring R inst✝¹³ : Semiring R₂ inst✝¹² : Semiring R₃ inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : AddCommMonoid M₃ inst✝⁸ : AddCommMonoid M' inst✝⁷ : Module R M inst✝⁶ : Module R M' inst✝⁵ : Module R₂ M₂ inst✝⁴ : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ σ₂₁ : R₂ →+* R inst✝³ : RingHomInvPair σ₁₂ σ₂₁ inst✝² : RingHomInvPair σ₂₁ σ₁₂ inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ p✝ p' : Submodule R M q q' : Submodule R₂ M₂ q₁ q₁' : Submodule R M' r : R x y✝ : M inst✝ : RingHomSurjective σ₁₂ F : Type u_20 sc : SemilinearMapClass F σ₁₂ M M₂ f : F p : Submodule R M src✝ : AddSubmonoid M₂ := AddSubmonoid.map f p.toAddSubmonoid y : M hy : y ∈ ↑p a : R ⊢ ↑σ₁₂ a • ↑f y ∈ { toAddSubsemigroup := { carrier := ↑f '' ↑p, add_mem' := (_ : ∀ {a b : M₂}, a ∈ src✝.carrier → b ∈ src✝.carrier → a + b ∈ src✝.carrier) }, zero_mem' := (_ : 0 ∈ src✝.carrier) }.toAddSubsemigroup.carrier [PROOFSTEP] exact ⟨_, p.smul_mem a hy, map_smulₛₗ f _ _⟩ [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁴ : Semiring R inst✝¹³ : Semiring R₂ inst✝¹² : Semiring R₃ inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : AddCommMonoid M₃ inst✝⁸ : AddCommMonoid M' inst✝⁷ : Module R M inst✝⁶ : Module R M' inst✝⁵ : Module R₂ M₂ inst✝⁴ : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ σ₂₁ : R₂ →+* R inst✝³ : RingHomInvPair σ₁₂ σ₂₁ inst✝² : RingHomInvPair σ₂₁ σ₁₂ inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ p p' : Submodule R M q q' : Submodule R₂ M₂ q₁ q₁' : Submodule R M' r : R x y : M inst✝ : RingHomSurjective σ₁₂ F : Type u_20 sc : SemilinearMapClass F σ₁₂ M M₂ a : M ⊢ a ∈ map LinearMap.id p ↔ a ∈ p [PROOFSTEP] simp [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁶ : Semiring R inst✝¹⁵ : Semiring R₂ inst✝¹⁴ : Semiring R₃ inst✝¹³ : AddCommMonoid M inst✝¹² : AddCommMonoid M₂ inst✝¹¹ : AddCommMonoid M₃ inst✝¹⁰ : AddCommMonoid M' inst✝⁹ : Module R M inst✝⁸ : Module R M' inst✝⁷ : Module R₂ M₂ inst✝⁶ : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ σ₂₁ : R₂ →+* R inst✝⁵ : RingHomInvPair σ₁₂ σ₂₁ inst✝⁴ : RingHomInvPair σ₂₁ σ₁₂ inst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ p✝ p' : Submodule R M q q' : Submodule R₂ M₂ q₁ q₁' : Submodule R M' r : R x y : M inst✝² : RingHomSurjective σ₁₂ F : Type u_20 sc : SemilinearMapClass F σ₁₂ M M₂ inst✝¹ : RingHomSurjective σ₂₃ inst✝ : RingHomSurjective σ₁₃ f : M →ₛₗ[σ₁₂] M₂ g : M₂ →ₛₗ[σ₂₃] M₃ p : Submodule R M ⊢ ↑(map (LinearMap.comp g f) p) = ↑(map g (map f p)) [PROOFSTEP] simp only [← image_comp, map_coe, LinearMap.coe_comp, comp_apply] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁴ : Semiring R inst✝¹³ : Semiring R₂ inst✝¹² : Semiring R₃ inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : AddCommMonoid M₃ inst✝⁸ : AddCommMonoid M' inst✝⁷ : Module R M inst✝⁶ : Module R M' inst✝⁵ : Module R₂ M₂ inst✝⁴ : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ σ₂₁ : R₂ →+* R inst✝³ : RingHomInvPair σ₁₂ σ₂₁ inst✝² : RingHomInvPair σ₂₁ σ₁₂ inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ p p' : Submodule R M q q' : Submodule R₂ M₂ q₁ q₁' : Submodule R M' r : R x y : M inst✝ : RingHomSurjective σ₁₂ F : Type u_20 sc : SemilinearMapClass F σ₁₂ M M₂ this : ∃ x, x ∈ p ⊢ ∀ (x : M₂), x ∈ map 0 p ↔ x ∈ ⊥ [PROOFSTEP] simp [this, eq_comm] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁴ : Semiring R inst✝¹³ : Semiring R₂ inst✝¹² : Semiring R₃ inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : AddCommMonoid M₃ inst✝⁸ : AddCommMonoid M' inst✝⁷ : Module R M inst✝⁶ : Module R M' inst✝⁵ : Module R₂ M₂ inst✝⁴ : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ σ₂₁ : R₂ →+* R inst✝³ : RingHomInvPair σ₁₂ σ₂₁ inst✝² : RingHomInvPair σ₂₁ σ₁₂ inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ p p' : Submodule R M q q' : Submodule R₂ M₂ q₁ q₁' : Submodule R M' r : R x y : M inst✝ : RingHomSurjective σ₁₂ F : Type u_20 sc : SemilinearMapClass F σ₁₂ M M₂ f g : M →ₛₗ[σ₁₂] M₂ ⊢ map (f + g) p ≤ map f p ⊔ map g p [PROOFSTEP] rintro x ⟨m, hm, rfl⟩ [GOAL] case intro.intro R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁴ : Semiring R inst✝¹³ : Semiring R₂ inst✝¹² : Semiring R₃ inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : AddCommMonoid M₃ inst✝⁸ : AddCommMonoid M' inst✝⁷ : Module R M inst✝⁶ : Module R M' inst✝⁵ : Module R₂ M₂ inst✝⁴ : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ σ₂₁ : R₂ →+* R inst✝³ : RingHomInvPair σ₁₂ σ₂₁ inst✝² : RingHomInvPair σ₂₁ σ₁₂ inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ p p' : Submodule R M q q' : Submodule R₂ M₂ q₁ q₁' : Submodule R M' r : R x y : M inst✝ : RingHomSurjective σ₁₂ F : Type u_20 sc : SemilinearMapClass F σ₁₂ M M₂ f g : M →ₛₗ[σ₁₂] M₂ m : M hm : m ∈ ↑p ⊢ ↑(f + g) m ∈ map f p ⊔ map g p [PROOFSTEP] exact add_mem_sup (mem_map_of_mem hm) (mem_map_of_mem hm) [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹³ : Semiring R inst✝¹² : Semiring R₂ inst✝¹¹ : Semiring R₃ inst✝¹⁰ : AddCommMonoid M inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : Module R M inst✝⁵ : Module R M' inst✝⁴ : Module R₂ M₂ inst✝³ : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ σ₂₁ : R₂ →+* R inst✝² : RingHomInvPair σ₁₂ σ₂₁ inst✝¹ : RingHomInvPair σ₂₁ σ₁₂ inst✝ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ p✝ p' : Submodule R M q q' : Submodule R₂ M₂ q₁ q₁' : Submodule R M' r : R x y : M F : Type u_20 sc : SemilinearMapClass F σ₁₂ M M₂ f : F i : Injective ↑f p : Submodule R M src✝ : ↑↑p ≃ ↑(↑f '' ↑p) := Equiv.Set.image (↑f) (↑p) i ⊢ ∀ (x y : { x // x ∈ p }), Equiv.toFun src✝ (x + y) = Equiv.toFun src✝ x + Equiv.toFun src✝ y [PROOFSTEP] intros [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹³ : Semiring R inst✝¹² : Semiring R₂ inst✝¹¹ : Semiring R₃ inst✝¹⁰ : AddCommMonoid M inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : Module R M inst✝⁵ : Module R M' inst✝⁴ : Module R₂ M₂ inst✝³ : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ σ₂₁ : R₂ →+* R inst✝² : RingHomInvPair σ₁₂ σ₂₁ inst✝¹ : RingHomInvPair σ₂₁ σ₁₂ inst✝ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ p✝ p' : Submodule R M q q' : Submodule R₂ M₂ q₁ q₁' : Submodule R M' r : R x y : M F : Type u_20 sc : SemilinearMapClass F σ₁₂ M M₂ f : F i : Injective ↑f p : Submodule R M src✝ : ↑↑p ≃ ↑(↑f '' ↑p) := Equiv.Set.image (↑f) (↑p) i x✝ y✝ : { x // x ∈ p } ⊢ Equiv.toFun src✝ (x✝ + y✝) = Equiv.toFun src✝ x✝ + Equiv.toFun src✝ y✝ [PROOFSTEP] simp only [coe_add, map_add, Equiv.toFun_as_coe, Equiv.Set.image_apply] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹³ : Semiring R inst✝¹² : Semiring R₂ inst✝¹¹ : Semiring R₃ inst✝¹⁰ : AddCommMonoid M inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : Module R M inst✝⁵ : Module R M' inst✝⁴ : Module R₂ M₂ inst✝³ : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ σ₂₁ : R₂ →+* R inst✝² : RingHomInvPair σ₁₂ σ₂₁ inst✝¹ : RingHomInvPair σ₂₁ σ₁₂ inst✝ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ p✝ p' : Submodule R M q q' : Submodule R₂ M₂ q₁ q₁' : Submodule R M' r : R x y : M F : Type u_20 sc : SemilinearMapClass F σ₁₂ M M₂ f : F i : Injective ↑f p : Submodule R M src✝ : ↑↑p ≃ ↑(↑f '' ↑p) := Equiv.Set.image (↑f) (↑p) i x✝ y✝ : { x // x ∈ p } ⊢ { val := ↑f ↑x✝ + ↑f ↑y✝, property := (_ : (fun x => x ∈ ↑f '' ↑p) (↑f ↑x✝ + ↑f ↑y✝)) } = { val := ↑f ↑x✝, property := (_ : ↑f ↑x✝ ∈ ↑f '' ↑p) } + { val := ↑f ↑y✝, property := (_ : ↑f ↑y✝ ∈ ↑f '' ↑p) } [PROOFSTEP] rfl [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹³ : Semiring R inst✝¹² : Semiring R₂ inst✝¹¹ : Semiring R₃ inst✝¹⁰ : AddCommMonoid M inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : Module R M inst✝⁵ : Module R M' inst✝⁴ : Module R₂ M₂ inst✝³ : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ σ₂₁ : R₂ →+* R inst✝² : RingHomInvPair σ₁₂ σ₂₁ inst✝¹ : RingHomInvPair σ₂₁ σ₁₂ inst✝ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ p✝ p' : Submodule R M q q' : Submodule R₂ M₂ q₁ q₁' : Submodule R M' r : R x y : M F : Type u_20 sc : SemilinearMapClass F σ₁₂ M M₂ f : F i : Injective ↑f p : Submodule R M src✝ : ↑↑p ≃ ↑(↑f '' ↑p) := Equiv.Set.image (↑f) (↑p) i ⊢ ∀ (r : R) (x : { x // x ∈ p }), AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (x y : { x // x ∈ p }), Equiv.toFun src✝ (x + y) = Equiv.toFun src✝ x + Equiv.toFun src✝ y) } (r • x) = ↑σ₁₂ r • AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (x y : { x // x ∈ p }), Equiv.toFun src✝ (x + y) = Equiv.toFun src✝ x + Equiv.toFun src✝ y) } x [PROOFSTEP] intros [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹³ : Semiring R inst✝¹² : Semiring R₂ inst✝¹¹ : Semiring R₃ inst✝¹⁰ : AddCommMonoid M inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : Module R M inst✝⁵ : Module R M' inst✝⁴ : Module R₂ M₂ inst✝³ : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ σ₂₁ : R₂ →+* R inst✝² : RingHomInvPair σ₁₂ σ₂₁ inst✝¹ : RingHomInvPair σ₂₁ σ₁₂ inst✝ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ p✝ p' : Submodule R M q q' : Submodule R₂ M₂ q₁ q₁' : Submodule R M' r : R x y : M F : Type u_20 sc : SemilinearMapClass F σ₁₂ M M₂ f : F i : Injective ↑f p : Submodule R M src✝ : ↑↑p ≃ ↑(↑f '' ↑p) := Equiv.Set.image (↑f) (↑p) i r✝ : R x✝ : { x // x ∈ p } ⊢ AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (x y : { x // x ∈ p }), Equiv.toFun src✝ (x + y) = Equiv.toFun src✝ x + Equiv.toFun src✝ y) } (r✝ • x✝) = ↑σ₁₂ r✝ • AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (x y : { x // x ∈ p }), Equiv.toFun src✝ (x + y) = Equiv.toFun src✝ x + Equiv.toFun src✝ y) } x✝ [PROOFSTEP] simp only [coe_smul_of_tower, map_smulₛₗ, Equiv.toFun_as_coe, Equiv.Set.image_apply] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹³ : Semiring R inst✝¹² : Semiring R₂ inst✝¹¹ : Semiring R₃ inst✝¹⁰ : AddCommMonoid M inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : Module R M inst✝⁵ : Module R M' inst✝⁴ : Module R₂ M₂ inst✝³ : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ σ₂₁ : R₂ →+* R inst✝² : RingHomInvPair σ₁₂ σ₂₁ inst✝¹ : RingHomInvPair σ₂₁ σ₁₂ inst✝ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ p✝ p' : Submodule R M q q' : Submodule R₂ M₂ q₁ q₁' : Submodule R M' r : R x y : M F : Type u_20 sc : SemilinearMapClass F σ₁₂ M M₂ f : F i : Injective ↑f p : Submodule R M src✝ : ↑↑p ≃ ↑(↑f '' ↑p) := Equiv.Set.image (↑f) (↑p) i r✝ : R x✝ : { x // x ∈ p } ⊢ { val := ↑σ₁₂ r✝ • ↑f ↑x✝, property := (_ : (fun x => x ∈ ↑f '' ↑p) (↑σ₁₂ r✝ • ↑f ↑x✝)) } = ↑σ₁₂ r✝ • { val := ↑f ↑x✝, property := (_ : ↑f ↑x✝ ∈ ↑f '' ↑p) } [PROOFSTEP] rfl [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹³ : Semiring R inst✝¹² : Semiring R₂ inst✝¹¹ : Semiring R₃ inst✝¹⁰ : AddCommMonoid M inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : Module R M inst✝⁵ : Module R M' inst✝⁴ : Module R₂ M₂ inst✝³ : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ σ₂₁ : R₂ →+* R inst✝² : RingHomInvPair σ₁₂ σ₂₁ inst✝¹ : RingHomInvPair σ₂₁ σ₁₂ inst✝ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ p✝ p' : Submodule R M q q' : Submodule R₂ M₂ q₁ q₁' : Submodule R M' r : R x✝ y : M F : Type u_20 sc : SemilinearMapClass F σ₁₂ M M₂ f : F p : Submodule R₂ M₂ src✝ : AddSubmonoid M := AddSubmonoid.comap f p.toAddSubmonoid a : R x : M h : x ∈ { toAddSubsemigroup := { carrier := ↑f ⁻¹' ↑p, add_mem' := (_ : ∀ {a b : M}, a ∈ src✝.carrier → b ∈ src✝.carrier → a + b ∈ src✝.carrier) }, zero_mem' := (_ : 0 ∈ src✝.carrier) }.toAddSubsemigroup.carrier ⊢ a • x ∈ { toAddSubsemigroup := { carrier := ↑f ⁻¹' ↑p, add_mem' := (_ : ∀ {a b : M}, a ∈ src✝.carrier → b ∈ src✝.carrier → a + b ∈ src✝.carrier) }, zero_mem' := (_ : 0 ∈ src✝.carrier) }.toAddSubsemigroup.carrier [PROOFSTEP] simp [p.smul_mem (σ₁₂ a) h] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹³ : Semiring R inst✝¹² : Semiring R₂ inst✝¹¹ : Semiring R₃ inst✝¹⁰ : AddCommMonoid M inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : Module R M inst✝⁵ : Module R M' inst✝⁴ : Module R₂ M₂ inst✝³ : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ σ₂₁ : R₂ →+* R inst✝² : RingHomInvPair σ₁₂ σ₂₁ inst✝¹ : RingHomInvPair σ₂₁ σ₁₂ inst✝ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ p✝ p' : Submodule R M q q' : Submodule R₂ M₂ q₁ q₁' : Submodule R M' r : R x y : M F : Type u_20 sc : SemilinearMapClass F σ₁₂ M M₂ p : Submodule R M f : M →ₗ[R] M h : p ≤ comap f p k : ℕ ⊢ p ≤ comap (f ^ k) p [PROOFSTEP] induction' k with k ih [GOAL] case zero R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹³ : Semiring R inst✝¹² : Semiring R₂ inst✝¹¹ : Semiring R₃ inst✝¹⁰ : AddCommMonoid M inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : Module R M inst✝⁵ : Module R M' inst✝⁴ : Module R₂ M₂ inst✝³ : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ σ₂₁ : R₂ →+* R inst✝² : RingHomInvPair σ₁₂ σ₂₁ inst✝¹ : RingHomInvPair σ₂₁ σ₁₂ inst✝ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ p✝ p' : Submodule R M q q' : Submodule R₂ M₂ q₁ q₁' : Submodule R M' r : R x y : M F : Type u_20 sc : SemilinearMapClass F σ₁₂ M M₂ p : Submodule R M f : M →ₗ[R] M h : p ≤ comap f p ⊢ p ≤ comap (f ^ Nat.zero) p [PROOFSTEP] simp [LinearMap.one_eq_id] [GOAL] case succ R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹³ : Semiring R inst✝¹² : Semiring R₂ inst✝¹¹ : Semiring R₃ inst✝¹⁰ : AddCommMonoid M inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : Module R M inst✝⁵ : Module R M' inst✝⁴ : Module R₂ M₂ inst✝³ : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ σ₂₁ : R₂ →+* R inst✝² : RingHomInvPair σ₁₂ σ₂₁ inst✝¹ : RingHomInvPair σ₂₁ σ₁₂ inst✝ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ p✝ p' : Submodule R M q q' : Submodule R₂ M₂ q₁ q₁' : Submodule R M' r : R x y : M F : Type u_20 sc : SemilinearMapClass F σ₁₂ M M₂ p : Submodule R M f : M →ₗ[R] M h : p ≤ comap f p k : ℕ ih : p ≤ comap (f ^ k) p ⊢ p ≤ comap (f ^ Nat.succ k) p [PROOFSTEP] simp [LinearMap.iterate_succ, comap_comp, h.trans (comap_mono ih)] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹³ : Semiring R inst✝¹² : Semiring R₂ inst✝¹¹ : Semiring R₃ inst✝¹⁰ : AddCommMonoid M inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : Module R M inst✝⁵ : Module R M' inst✝⁴ : Module R₂ M₂ inst✝³ : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ σ₂₁ : R₂ →+* R inst✝² : RingHomInvPair σ₁₂ σ₂₁ inst✝¹ : RingHomInvPair σ₂₁ σ₁₂ inst✝ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ p p' : Submodule R M q q' : Submodule R₂ M₂ q₁ q₁' : Submodule R M' r : R x y : M F : Type u_20 sc : SemilinearMapClass F σ₁₂ M M₂ ⊢ ∀ (x : M), x ∈ comap 0 q ↔ x ∈ ⊤ [PROOFSTEP] simp [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S✝ : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁴ : Semiring R inst✝¹³ : Semiring R₂ inst✝¹² : Semiring R₃ inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : AddCommMonoid M₃ inst✝⁸ : AddCommMonoid M' inst✝⁷ : Module R M inst✝⁶ : Module R M' inst✝⁵ : Module R₂ M₂ inst✝⁴ : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ σ₂₁ : R₂ →+* R inst✝³ : RingHomInvPair σ₁₂ σ₂₁ inst✝² : RingHomInvPair σ₂₁ σ₁₂ inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ p p' : Submodule R M q q' : Submodule R₂ M₂ q₁ q₁' : Submodule R M' r : R x✝ y : M F : Type u_20 sc : SemilinearMapClass F σ₁₂ M M₂ f : F hf : Surjective ↑f inst✝ : RingHomSurjective σ₁₂ S : Submodule R₂ M₂ x : M₂ hx : x ∈ S ⊢ x ∈ map f (comap f S) [PROOFSTEP] rcases hf x with ⟨y, rfl⟩ [GOAL] case intro R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S✝ : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁴ : Semiring R inst✝¹³ : Semiring R₂ inst✝¹² : Semiring R₃ inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : AddCommMonoid M₃ inst✝⁸ : AddCommMonoid M' inst✝⁷ : Module R M inst✝⁶ : Module R M' inst✝⁵ : Module R₂ M₂ inst✝⁴ : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ σ₂₁ : R₂ →+* R inst✝³ : RingHomInvPair σ₁₂ σ₂₁ inst✝² : RingHomInvPair σ₂₁ σ₁₂ inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ p p' : Submodule R M q q' : Submodule R₂ M₂ q₁ q₁' : Submodule R M' r : R x y✝ : M F : Type u_20 sc : SemilinearMapClass F σ₁₂ M M₂ f : F hf : Surjective ↑f inst✝ : RingHomSurjective σ₁₂ S : Submodule R₂ M₂ y : M hx : ↑f y ∈ S ⊢ ↑f y ∈ map f (comap f S) [PROOFSTEP] simp only [mem_map, mem_comap] [GOAL] case intro R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S✝ : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁴ : Semiring R inst✝¹³ : Semiring R₂ inst✝¹² : Semiring R₃ inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : AddCommMonoid M₃ inst✝⁸ : AddCommMonoid M' inst✝⁷ : Module R M inst✝⁶ : Module R M' inst✝⁵ : Module R₂ M₂ inst✝⁴ : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ σ₂₁ : R₂ →+* R inst✝³ : RingHomInvPair σ₁₂ σ₂₁ inst✝² : RingHomInvPair σ₂₁ σ₁₂ inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ p p' : Submodule R M q q' : Submodule R₂ M₂ q₁ q₁' : Submodule R M' r : R x y✝ : M F : Type u_20 sc : SemilinearMapClass F σ₁₂ M M₂ f : F hf : Surjective ↑f inst✝ : RingHomSurjective σ₁₂ S : Submodule R₂ M₂ y : M hx : ↑f y ∈ S ⊢ ∃ y_1, ↑f y_1 ∈ S ∧ ↑f y_1 = ↑f y [PROOFSTEP] exact ⟨y, hx, rfl⟩ [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S✝ : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁴ : Semiring R inst✝¹³ : Semiring R₂ inst✝¹² : Semiring R₃ inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : AddCommMonoid M₃ inst✝⁸ : AddCommMonoid M' inst✝⁷ : Module R M inst✝⁶ : Module R M' inst✝⁵ : Module R₂ M₂ inst✝⁴ : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ σ₂₁ : R₂ →+* R inst✝³ : RingHomInvPair σ₁₂ σ₂₁ inst✝² : RingHomInvPair σ₂₁ σ₁₂ inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ p p' : Submodule R M q q' : Submodule R₂ M₂ q₁ q₁' : Submodule R M' r : R x✝ y : M F : Type u_20 sc : SemilinearMapClass F σ₁₂ M M₂ inst✝ : RingHomSurjective σ₁₂ f : F hf : Injective ↑f S : Submodule R M x : M ⊢ x ∈ comap f (map f S) → x ∈ S [PROOFSTEP] simp [mem_comap, mem_map, forall_exists_index, and_imp] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S✝ : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁴ : Semiring R inst✝¹³ : Semiring R₂ inst✝¹² : Semiring R₃ inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : AddCommMonoid M₃ inst✝⁸ : AddCommMonoid M' inst✝⁷ : Module R M inst✝⁶ : Module R M' inst✝⁵ : Module R₂ M₂ inst✝⁴ : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ σ₂₁ : R₂ →+* R inst✝³ : RingHomInvPair σ₁₂ σ₂₁ inst✝² : RingHomInvPair σ₂₁ σ₁₂ inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ p p' : Submodule R M q q' : Submodule R₂ M₂ q₁ q₁' : Submodule R M' r : R x✝ y : M F : Type u_20 sc : SemilinearMapClass F σ₁₂ M M₂ inst✝ : RingHomSurjective σ₁₂ f : F hf : Injective ↑f S : Submodule R M x : M ⊢ ∀ (x_1 : M), x_1 ∈ S → ↑f x_1 = ↑f x → x ∈ S [PROOFSTEP] intro y hy hxy [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S✝ : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁴ : Semiring R inst✝¹³ : Semiring R₂ inst✝¹² : Semiring R₃ inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : AddCommMonoid M₃ inst✝⁸ : AddCommMonoid M' inst✝⁷ : Module R M inst✝⁶ : Module R M' inst✝⁵ : Module R₂ M₂ inst✝⁴ : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ σ₂₁ : R₂ →+* R inst✝³ : RingHomInvPair σ₁₂ σ₂₁ inst✝² : RingHomInvPair σ₂₁ σ₁₂ inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ p p' : Submodule R M q q' : Submodule R₂ M₂ q₁ q₁' : Submodule R M' r : R x✝ y✝ : M F : Type u_20 sc : SemilinearMapClass F σ₁₂ M M₂ inst✝ : RingHomSurjective σ₁₂ f : F hf : Injective ↑f S : Submodule R M x y : M hy : y ∈ S hxy : ↑f y = ↑f x ⊢ x ∈ S [PROOFSTEP] rw [hf.eq_iff] at hxy [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S✝ : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁴ : Semiring R inst✝¹³ : Semiring R₂ inst✝¹² : Semiring R₃ inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : AddCommMonoid M₃ inst✝⁸ : AddCommMonoid M' inst✝⁷ : Module R M inst✝⁶ : Module R M' inst✝⁵ : Module R₂ M₂ inst✝⁴ : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ σ₂₁ : R₂ →+* R inst✝³ : RingHomInvPair σ₁₂ σ₂₁ inst✝² : RingHomInvPair σ₂₁ σ₁₂ inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ p p' : Submodule R M q q' : Submodule R₂ M₂ q₁ q₁' : Submodule R M' r : R x✝ y✝ : M F : Type u_20 sc : SemilinearMapClass F σ₁₂ M M₂ inst✝ : RingHomSurjective σ₁₂ f : F hf : Injective ↑f S : Submodule R M x y : M hy : y ∈ S hxy : y = x ⊢ x ∈ S [PROOFSTEP] rwa [← hxy] [GOAL] F : Type u_20 R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁴ : Semiring R inst✝¹³ : Semiring R₂ inst✝¹² : Semiring R₃ inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : AddCommMonoid M₃ inst✝⁸ : AddCommMonoid M' inst✝⁷ : Module R M inst✝⁶ : Module R M' inst✝⁵ : Module R₂ M₂ inst✝⁴ : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ σ₂₁ : R₂ →+* R inst✝³ : RingHomInvPair σ₁₂ σ₂₁ inst✝² : RingHomInvPair σ₂₁ σ₁₂ inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ p✝ p'✝ : Submodule R M q q' : Submodule R₂ M₂ q₁ q₁' : Submodule R M' r : R x y : M sc : SemilinearMapClass F σ₁₂ M M₂ inst✝ : RingHomSurjective σ₁₂ f : F p : Submodule R M p' : Submodule R₂ M₂ ⊢ map f p ⊓ p' ≤ map f (p ⊓ comap f p') [PROOFSTEP] rintro _ ⟨⟨x, h₁, rfl⟩, h₂⟩ [GOAL] case intro.intro.intro F : Type u_20 R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁴ : Semiring R inst✝¹³ : Semiring R₂ inst✝¹² : Semiring R₃ inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : AddCommMonoid M₃ inst✝⁸ : AddCommMonoid M' inst✝⁷ : Module R M inst✝⁶ : Module R M' inst✝⁵ : Module R₂ M₂ inst✝⁴ : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ σ₂₁ : R₂ →+* R inst✝³ : RingHomInvPair σ₁₂ σ₂₁ inst✝² : RingHomInvPair σ₂₁ σ₁₂ inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ p✝ p'✝ : Submodule R M q q' : Submodule R₂ M₂ q₁ q₁' : Submodule R M' r : R x✝ y : M sc : SemilinearMapClass F σ₁₂ M M₂ inst✝ : RingHomSurjective σ₁₂ f : F p : Submodule R M p' : Submodule R₂ M₂ x : M h₁ : x ∈ ↑p h₂ : ↑f x ∈ ↑p' ⊢ ↑f x ∈ map f (p ⊓ comap f p') [PROOFSTEP] exact ⟨_, ⟨h₁, h₂⟩, rfl⟩ [GOAL] F : Type ?u.972060 R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹³ : Semiring R inst✝¹² : Semiring R₂ inst✝¹¹ : Semiring R₃ inst✝¹⁰ : AddCommMonoid M inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : Module R M inst✝⁵ : Module R M' inst✝⁴ : Module R₂ M₂ inst✝³ : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ σ₂₁ : R₂ →+* R inst✝² : RingHomInvPair σ₁₂ σ₂₁ inst✝¹ : RingHomInvPair σ₂₁ σ₁₂ inst✝ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ p p' : Submodule R M q q' : Submodule R₂ M₂ q₁ q₁' : Submodule R M' r : R x✝ y : M sc : SemilinearMapClass F σ₁₂ M M₂ x : M ⊢ x ∈ map (Submodule.subtype p) (comap (Submodule.subtype p) p') → x ∈ p ⊓ p' [PROOFSTEP] rintro ⟨⟨_, h₁⟩, h₂, rfl⟩ [GOAL] case intro.mk.intro F : Type ?u.972060 R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹³ : Semiring R inst✝¹² : Semiring R₂ inst✝¹¹ : Semiring R₃ inst✝¹⁰ : AddCommMonoid M inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : Module R M inst✝⁵ : Module R M' inst✝⁴ : Module R₂ M₂ inst✝³ : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ σ₂₁ : R₂ →+* R inst✝² : RingHomInvPair σ₁₂ σ₂₁ inst✝¹ : RingHomInvPair σ₂₁ σ₁₂ inst✝ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ p p' : Submodule R M q q' : Submodule R₂ M₂ q₁ q₁' : Submodule R M' r : R x y : M sc : SemilinearMapClass F σ₁₂ M M₂ val✝ : M h₁ : val✝ ∈ p h₂ : { val := val✝, property := h₁ } ∈ ↑(comap (Submodule.subtype p) p') ⊢ ↑(Submodule.subtype p) { val := val✝, property := h₁ } ∈ p ⊓ p' [PROOFSTEP] exact ⟨h₁, h₂⟩ [GOAL] F : Type ?u.976655 R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι✝ : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁴ : Semiring R inst✝¹³ : Semiring R₂ inst✝¹² : Semiring R₃ inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : AddCommMonoid M₃ inst✝⁸ : AddCommMonoid M' inst✝⁷ : Module R M inst✝⁶ : Module R M' inst✝⁵ : Module R₂ M₂ inst✝⁴ : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ σ₂₁ : R₂ →+* R inst✝³ : RingHomInvPair σ₁₂ σ₂₁ inst✝² : RingHomInvPair σ₂₁ σ₁₂ inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ p✝ p' : Submodule R M q q' : Submodule R₂ M₂ q₁ q₁' : Submodule R M' r : R x y : M sc : SemilinearMapClass F σ₁₂ M M₂ σ : R →+* R inst✝ : RingHomSurjective σ ι : Sort u_20 f : M →ₛₗ[σ] M p : ι → Submodule R M hf : ∀ (i : ι) (v : M), v ∈ p i → ↑f v ∈ p i ⊢ ∀ (v : M), v ∈ iInf p → ↑f v ∈ iInf p [PROOFSTEP] have : ∀ i, (p i).map f ≤ p i := by rintro i - ⟨v, hv, rfl⟩ exact hf i v hv [GOAL] F : Type ?u.976655 R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι✝ : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁴ : Semiring R inst✝¹³ : Semiring R₂ inst✝¹² : Semiring R₃ inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : AddCommMonoid M₃ inst✝⁸ : AddCommMonoid M' inst✝⁷ : Module R M inst✝⁶ : Module R M' inst✝⁵ : Module R₂ M₂ inst✝⁴ : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ σ₂₁ : R₂ →+* R inst✝³ : RingHomInvPair σ₁₂ σ₂₁ inst✝² : RingHomInvPair σ₂₁ σ₁₂ inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ p✝ p' : Submodule R M q q' : Submodule R₂ M₂ q₁ q₁' : Submodule R M' r : R x y : M sc : SemilinearMapClass F σ₁₂ M M₂ σ : R →+* R inst✝ : RingHomSurjective σ ι : Sort u_20 f : M →ₛₗ[σ] M p : ι → Submodule R M hf : ∀ (i : ι) (v : M), v ∈ p i → ↑f v ∈ p i ⊢ ∀ (i : ι), map f (p i) ≤ p i [PROOFSTEP] rintro i - ⟨v, hv, rfl⟩ [GOAL] case intro.intro F : Type ?u.976655 R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι✝ : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁴ : Semiring R inst✝¹³ : Semiring R₂ inst✝¹² : Semiring R₃ inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : AddCommMonoid M₃ inst✝⁸ : AddCommMonoid M' inst✝⁷ : Module R M inst✝⁶ : Module R M' inst✝⁵ : Module R₂ M₂ inst✝⁴ : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ σ₂₁ : R₂ →+* R inst✝³ : RingHomInvPair σ₁₂ σ₂₁ inst✝² : RingHomInvPair σ₂₁ σ₁₂ inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ p✝ p' : Submodule R M q q' : Submodule R₂ M₂ q₁ q₁' : Submodule R M' r : R x y : M sc : SemilinearMapClass F σ₁₂ M M₂ σ : R →+* R inst✝ : RingHomSurjective σ ι : Sort u_20 f : M →ₛₗ[σ] M p : ι → Submodule R M hf : ∀ (i : ι) (v : M), v ∈ p i → ↑f v ∈ p i i : ι v : M hv : v ∈ ↑(p i) ⊢ ↑f v ∈ p i [PROOFSTEP] exact hf i v hv [GOAL] F : Type ?u.976655 R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι✝ : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁴ : Semiring R inst✝¹³ : Semiring R₂ inst✝¹² : Semiring R₃ inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : AddCommMonoid M₃ inst✝⁸ : AddCommMonoid M' inst✝⁷ : Module R M inst✝⁶ : Module R M' inst✝⁵ : Module R₂ M₂ inst✝⁴ : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ σ₂₁ : R₂ →+* R inst✝³ : RingHomInvPair σ₁₂ σ₂₁ inst✝² : RingHomInvPair σ₂₁ σ₁₂ inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ p✝ p' : Submodule R M q q' : Submodule R₂ M₂ q₁ q₁' : Submodule R M' r : R x y : M sc : SemilinearMapClass F σ₁₂ M M₂ σ : R →+* R inst✝ : RingHomSurjective σ ι : Sort u_20 f : M →ₛₗ[σ] M p : ι → Submodule R M hf : ∀ (i : ι) (v : M), v ∈ p i → ↑f v ∈ p i this : ∀ (i : ι), map f (p i) ≤ p i ⊢ ∀ (v : M), v ∈ iInf p → ↑f v ∈ iInf p [PROOFSTEP] suffices (iInf p).map f ≤ iInf p by exact fun v hv => this ⟨v, hv, rfl⟩ [GOAL] F : Type ?u.976655 R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι✝ : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁴ : Semiring R inst✝¹³ : Semiring R₂ inst✝¹² : Semiring R₃ inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : AddCommMonoid M₃ inst✝⁸ : AddCommMonoid M' inst✝⁷ : Module R M inst✝⁶ : Module R M' inst✝⁵ : Module R₂ M₂ inst✝⁴ : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ σ₂₁ : R₂ →+* R inst✝³ : RingHomInvPair σ₁₂ σ₂₁ inst✝² : RingHomInvPair σ₂₁ σ₁₂ inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ p✝ p' : Submodule R M q q' : Submodule R₂ M₂ q₁ q₁' : Submodule R M' r : R x y : M sc : SemilinearMapClass F σ₁₂ M M₂ σ : R →+* R inst✝ : RingHomSurjective σ ι : Sort u_20 f : M →ₛₗ[σ] M p : ι → Submodule R M hf : ∀ (i : ι) (v : M), v ∈ p i → ↑f v ∈ p i this✝ : ∀ (i : ι), map f (p i) ≤ p i this : map f (iInf p) ≤ iInf p ⊢ ∀ (v : M), v ∈ iInf p → ↑f v ∈ iInf p [PROOFSTEP] exact fun v hv => this ⟨v, hv, rfl⟩ [GOAL] F : Type ?u.976655 R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι✝ : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁴ : Semiring R inst✝¹³ : Semiring R₂ inst✝¹² : Semiring R₃ inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : AddCommMonoid M₃ inst✝⁸ : AddCommMonoid M' inst✝⁷ : Module R M inst✝⁶ : Module R M' inst✝⁵ : Module R₂ M₂ inst✝⁴ : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ σ₂₁ : R₂ →+* R inst✝³ : RingHomInvPair σ₁₂ σ₂₁ inst✝² : RingHomInvPair σ₂₁ σ₁₂ inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ p✝ p' : Submodule R M q q' : Submodule R₂ M₂ q₁ q₁' : Submodule R M' r : R x y : M sc : SemilinearMapClass F σ₁₂ M M₂ σ : R →+* R inst✝ : RingHomSurjective σ ι : Sort u_20 f : M →ₛₗ[σ] M p : ι → Submodule R M hf : ∀ (i : ι) (v : M), v ∈ p i → ↑f v ∈ p i this : ∀ (i : ι), map f (p i) ≤ p i ⊢ map f (iInf p) ≤ iInf p [PROOFSTEP] exact le_iInf fun i => (Submodule.map_mono (iInf_le p i)).trans (this i) [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝⁴ : Semifield K inst✝³ : AddCommMonoid V inst✝² : Module K V inst✝¹ : AddCommMonoid V₂ inst✝ : Module K V₂ f : V →ₗ[K] V₂ p : Submodule K V₂ a : K h : a ≠ 0 ⊢ comap (a • f) p = comap f p [PROOFSTEP] ext b [GOAL] case h R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝⁴ : Semifield K inst✝³ : AddCommMonoid V inst✝² : Module K V inst✝¹ : AddCommMonoid V₂ inst✝ : Module K V₂ f : V →ₗ[K] V₂ p : Submodule K V₂ a : K h : a ≠ 0 b : V ⊢ b ∈ comap (a • f) p ↔ b ∈ comap f p [PROOFSTEP] simp only [Submodule.mem_comap, p.smul_mem_iff h, LinearMap.smul_apply] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝⁴ : Semifield K inst✝³ : AddCommMonoid V inst✝² : Module K V inst✝¹ : AddCommMonoid V₂ inst✝ : Module K V₂ f : V →ₗ[K] V₂ p : Submodule K V a : K h : a ≠ 0 ⊢ map (a • f) p ≤ map f p [PROOFSTEP] rw [map_le_iff_le_comap, comap_smul f _ a h, ← map_le_iff_le_comap] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝⁴ : Semifield K inst✝³ : AddCommMonoid V inst✝² : Module K V inst✝¹ : AddCommMonoid V₂ inst✝ : Module K V₂ f : V →ₗ[K] V₂ p : Submodule K V a : K h : a ≠ 0 ⊢ map f p ≤ map (a • f) p [PROOFSTEP] rw [map_le_iff_le_comap, ← comap_smul f _ a h, ← map_le_iff_le_comap] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝⁴ : Semifield K inst✝³ : AddCommMonoid V inst✝² : Module K V inst✝¹ : AddCommMonoid V₂ inst✝ : Module K V₂ f : V →ₗ[K] V₂ p : Submodule K V₂ a : K ⊢ comap (a • f) p = ⨅ (_ : a ≠ 0), comap f p [PROOFSTEP] classical by_cases h : a = 0 <;> simp [h, comap_smul] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝⁴ : Semifield K inst✝³ : AddCommMonoid V inst✝² : Module K V inst✝¹ : AddCommMonoid V₂ inst✝ : Module K V₂ f : V →ₗ[K] V₂ p : Submodule K V₂ a : K ⊢ comap (a • f) p = ⨅ (_ : a ≠ 0), comap f p [PROOFSTEP] by_cases h : a = 0 [GOAL] case pos R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝⁴ : Semifield K inst✝³ : AddCommMonoid V inst✝² : Module K V inst✝¹ : AddCommMonoid V₂ inst✝ : Module K V₂ f : V →ₗ[K] V₂ p : Submodule K V₂ a : K h : a = 0 ⊢ comap (a • f) p = ⨅ (_ : a ≠ 0), comap f p [PROOFSTEP] simp [h, comap_smul] [GOAL] case neg R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝⁴ : Semifield K inst✝³ : AddCommMonoid V inst✝² : Module K V inst✝¹ : AddCommMonoid V₂ inst✝ : Module K V₂ f : V →ₗ[K] V₂ p : Submodule K V₂ a : K h : ¬a = 0 ⊢ comap (a • f) p = ⨅ (_ : a ≠ 0), comap f p [PROOFSTEP] simp [h, comap_smul] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝⁴ : Semifield K inst✝³ : AddCommMonoid V inst✝² : Module K V inst✝¹ : AddCommMonoid V₂ inst✝ : Module K V₂ f : V →ₗ[K] V₂ p : Submodule K V a : K ⊢ map (a • f) p = ⨆ (_ : a ≠ 0), map f p [PROOFSTEP] classical by_cases h : a = 0 <;> simp [h, Submodule.map_smul] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝⁴ : Semifield K inst✝³ : AddCommMonoid V inst✝² : Module K V inst✝¹ : AddCommMonoid V₂ inst✝ : Module K V₂ f : V →ₗ[K] V₂ p : Submodule K V a : K ⊢ map (a • f) p = ⨆ (_ : a ≠ 0), map f p [PROOFSTEP] by_cases h : a = 0 [GOAL] case pos R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝⁴ : Semifield K inst✝³ : AddCommMonoid V inst✝² : Module K V inst✝¹ : AddCommMonoid V₂ inst✝ : Module K V₂ f : V →ₗ[K] V₂ p : Submodule K V a : K h : a = 0 ⊢ map (a • f) p = ⨆ (_ : a ≠ 0), map f p [PROOFSTEP] simp [h, Submodule.map_smul] [GOAL] case neg R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝⁴ : Semifield K inst✝³ : AddCommMonoid V inst✝² : Module K V inst✝¹ : AddCommMonoid V₂ inst✝ : Module K V₂ f : V →ₗ[K] V₂ p : Submodule K V a : K h : ¬a = 0 ⊢ map (a • f) p = ⨆ (_ : a ≠ 0), map f p [PROOFSTEP] simp [h, Submodule.map_smul] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹¹ : Semiring R inst✝¹⁰ : Semiring R₂ inst✝⁹ : Semiring R₃ inst✝⁸ : AddCommMonoid M inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝⁴ : Module R M inst✝³ : Module R₂ M₂ inst✝² : Module R₃ M₃ σ₂₁ : R₂ →+* R τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ inst✝ : RingHomSurjective σ₂₁ p : Submodule R M f : M₂ →ₛₗ[σ₂₁] M h : ∀ (c : M₂), ↑f c ∈ p p' : Submodule R₂ M₂ x✝ : { x // x ∈ p } x : M hx : x ∈ p ⊢ { val := x, property := hx } ∈ map (codRestrict p f h) p' ↔ { val := x, property := hx } ∈ comap (Submodule.subtype p) (map f p') [PROOFSTEP] simp [Subtype.ext_iff_val] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁰ : Semiring R inst✝⁹ : Semiring R₂ inst✝⁸ : Semiring R₃ inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommMonoid M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝³ : Module R M inst✝² : Module R₂ M₂ inst✝¹ : Module R₃ M₃ σ₂₁ : R₂ →+* R τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ p : Submodule R M f : M₂ →ₛₗ[σ₂₁] M hf : ∀ (c : M₂), ↑f c ∈ p p' : Submodule R { x // x ∈ p } x : M₂ ⊢ x ∈ comap f (map (Submodule.subtype p) p') → x ∈ comap (codRestrict p f hf) p' [PROOFSTEP] rintro ⟨⟨_, _⟩, h, ⟨⟩⟩ [GOAL] case intro.mk.intro.refl R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁰ : Semiring R inst✝⁹ : Semiring R₂ inst✝⁸ : Semiring R₃ inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommMonoid M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝³ : Module R M inst✝² : Module R₂ M₂ inst✝¹ : Module R₃ M₃ σ₂₁ : R₂ →+* R τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ p : Submodule R M f : M₂ →ₛₗ[σ₂₁] M hf : ∀ (c : M₂), ↑f c ∈ p p' : Submodule R { x // x ∈ p } x : M₂ property✝ : f.toAddHom.1 x ∈ p h : { val := f.toAddHom.1 x, property := property✝ } ∈ ↑p' ⊢ x ∈ comap (codRestrict p f hf) p' [PROOFSTEP] exact h [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹¹ : Semiring R inst✝¹⁰ : Semiring R₂ inst✝⁹ : Semiring R₃ inst✝⁸ : AddCommMonoid M inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝⁴ : Module R M inst✝³ : Module R₂ M₂ inst✝² : Module R₃ M₃ σ₂₁ : R₂ →+* R τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ F : Type u_20 sc : SemilinearMapClass F τ₁₂ M M₂ inst✝ : RingHomSurjective τ₁₂ f : F ⊢ range f = map f ⊤ [PROOFSTEP] ext [GOAL] case h R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹¹ : Semiring R inst✝¹⁰ : Semiring R₂ inst✝⁹ : Semiring R₃ inst✝⁸ : AddCommMonoid M inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝⁴ : Module R M inst✝³ : Module R₂ M₂ inst✝² : Module R₃ M₃ σ₂₁ : R₂ →+* R τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ F : Type u_20 sc : SemilinearMapClass F τ₁₂ M M₂ inst✝ : RingHomSurjective τ₁₂ f : F x✝ : M₂ ⊢ x✝ ∈ range f ↔ x✝ ∈ map f ⊤ [PROOFSTEP] simp [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹¹ : Semiring R inst✝¹⁰ : Semiring R₂ inst✝⁹ : Semiring R₃ inst✝⁸ : AddCommMonoid M inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝⁴ : Module R M inst✝³ : Module R₂ M₂ inst✝² : Module R₃ M₃ σ₂₁ : R₂ →+* R τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ F : Type u_20 sc : SemilinearMapClass F τ₁₂ M M₂ inst✝ : RingHomSurjective τ₁₂ f : F ⊢ range f = ⊤ ↔ Surjective ↑f [PROOFSTEP] rw [SetLike.ext'_iff, range_coe, top_coe, Set.range_iff_surjective] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹¹ : Semiring R inst✝¹⁰ : Semiring R₂ inst✝⁹ : Semiring R₃ inst✝⁸ : AddCommMonoid M inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝⁴ : Module R M inst✝³ : Module R₂ M₂ inst✝² : Module R₃ M₃ σ₂₁ : R₂ →+* R τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ F : Type u_20 sc : SemilinearMapClass F τ₁₂ M M₂ inst✝ : RingHomSurjective τ₁₂ f : F p : Submodule R₂ M₂ ⊢ range f ≤ p ↔ comap f p = ⊤ [PROOFSTEP] rw [range_eq_map, map_le_iff_le_comap, eq_top_iff] [GOAL] R✝ : Type u_1 R₁ : Type u_2 R₂✝ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M✝ : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂✝ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁷ : Semiring R✝ inst✝¹⁶ : Semiring R₂✝ inst✝¹⁵ : Semiring R₃ inst✝¹⁴ : AddCommMonoid M✝ inst✝¹³ : AddCommMonoid M₂✝ inst✝¹² : AddCommMonoid M₃ σ₁₂ : R✝ →+* R₂✝ σ₂₃ : R₂✝ →+* R₃ σ₁₃ : R✝ →+* R₃ inst✝¹¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁰ : Module R✝ M✝ inst✝⁹ : Module R₂✝ M₂✝ inst✝⁸ : Module R₃ M₃ σ₂₁ : R₂✝ →+* R✝ τ₁₂✝ : R✝ →+* R₂✝ τ₂₃ : R₂✝ →+* R₃ τ₁₃ : R✝ →+* R₃ inst✝⁷ : RingHomCompTriple τ₁₂✝ τ₂₃ τ₁₃ F : Type u_20 sc : SemilinearMapClass F τ₁₂✝ M✝ M₂✝ R : Type u_21 R₂ : Type u_22 M : Type u_23 M₂ : Type u_24 inst✝⁶ : Semiring R inst✝⁵ : Ring R₂ inst✝⁴ : AddCommMonoid M inst✝³ : AddCommGroup M₂ inst✝² : Module R M inst✝¹ : Module R₂ M₂ τ₁₂ : R →+* R₂ inst✝ : RingHomSurjective τ₁₂ f : M →ₛₗ[τ₁₂] M₂ ⊢ range (-f) = range f [PROOFSTEP] change range ((-LinearMap.id : M₂ →ₗ[R₂] M₂).comp f) = _ [GOAL] R✝ : Type u_1 R₁ : Type u_2 R₂✝ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M✝ : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂✝ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁷ : Semiring R✝ inst✝¹⁶ : Semiring R₂✝ inst✝¹⁵ : Semiring R₃ inst✝¹⁴ : AddCommMonoid M✝ inst✝¹³ : AddCommMonoid M₂✝ inst✝¹² : AddCommMonoid M₃ σ₁₂ : R✝ →+* R₂✝ σ₂₃ : R₂✝ →+* R₃ σ₁₃ : R✝ →+* R₃ inst✝¹¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝¹⁰ : Module R✝ M✝ inst✝⁹ : Module R₂✝ M₂✝ inst✝⁸ : Module R₃ M₃ σ₂₁ : R₂✝ →+* R✝ τ₁₂✝ : R✝ →+* R₂✝ τ₂₃ : R₂✝ →+* R₃ τ₁₃ : R✝ →+* R₃ inst✝⁷ : RingHomCompTriple τ₁₂✝ τ₂₃ τ₁₃ F : Type u_20 sc : SemilinearMapClass F τ₁₂✝ M✝ M₂✝ R : Type u_21 R₂ : Type u_22 M : Type u_23 M₂ : Type u_24 inst✝⁶ : Semiring R inst✝⁵ : Ring R₂ inst✝⁴ : AddCommMonoid M inst✝³ : AddCommGroup M₂ inst✝² : Module R M inst✝¹ : Module R₂ M₂ τ₁₂ : R →+* R₂ inst✝ : RingHomSurjective τ₁₂ f : M →ₛₗ[τ₁₂] M₂ ⊢ range (comp (-id) f) = range f [PROOFSTEP] rw [range_comp, Submodule.map_neg, Submodule.map_id] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁰ : Semiring R inst✝⁹ : Semiring R₂ inst✝⁸ : Semiring R₃ inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommMonoid M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝³ : Module R M inst✝² : Module R₂ M₂ inst✝¹ : Module R₃ M₃ σ₂₁ : R₂ →+* R τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ F : Type u_20 sc : SemilinearMapClass F τ₁₂ M M₂ f g : F src✝ : AddSubmonoid M := AddMonoidHom.eqLocusM ↑f ↑g r : R x : M hx : ↑f x = ↑g x ⊢ ↑f (r • x) = ↑g (r • x) [PROOFSTEP] simpa only [map_smulₛₗ] using congr_arg ((· • ·) (τ₁₂ r)) hx [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁰ : Semiring R inst✝⁹ : Semiring R₂ inst✝⁸ : Semiring R₃ inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommMonoid M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝³ : Module R M inst✝² : Module R₂ M₂ inst✝¹ : Module R₃ M₃ σ₂₁ : R₂ →+* R τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ F : Type u_20 sc : SemilinearMapClass F τ₁₂ M M₂ f g : F ⊢ eqLocus f g = ⊤ ↔ f = g [PROOFSTEP] simp [SetLike.ext_iff, FunLike.ext_iff] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S✝ : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁰ : Semiring R inst✝⁹ : Semiring R₂ inst✝⁸ : Semiring R₃ inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommMonoid M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝³ : Module R M inst✝² : Module R₂ M₂ inst✝¹ : Module R₃ M₃ σ₂₁ : R₂ →+* R τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ F : Type u_20 sc : SemilinearMapClass F τ₁₂ M M₂ f g : F S T : Submodule R M hS : Set.EqOn ↑f ↑g ↑S hT : Set.EqOn ↑f ↑g ↑T ⊢ Set.EqOn ↑f ↑g ↑(S ⊔ T) [PROOFSTEP] rw [← le_eqLocus] at hS hT ⊢ [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S✝ : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁰ : Semiring R inst✝⁹ : Semiring R₂ inst✝⁸ : Semiring R₃ inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommMonoid M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝³ : Module R M inst✝² : Module R₂ M₂ inst✝¹ : Module R₃ M₃ σ₂₁ : R₂ →+* R τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ F : Type u_20 sc : SemilinearMapClass F τ₁₂ M M₂ f g : F S T : Submodule R M hS : S ≤ eqLocus f g hT : T ≤ eqLocus f g ⊢ S ⊔ T ≤ eqLocus f g [PROOFSTEP] exact sup_le hS hT [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁰ : Semiring R inst✝⁹ : Semiring R₂ inst✝⁸ : Semiring R₃ inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommMonoid M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝³ : Module R M inst✝² : Module R₂ M₂ inst✝¹ : Module R₃ M₃ σ₂₁ : R₂ →+* R τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ f : M →ₗ[R] M n m : ℕ w : n ≤ m x : M h : x ∈ (fun n => range (f ^ n)) m ⊢ x ∈ (fun n => range (f ^ n)) n [PROOFSTEP] obtain ⟨c, rfl⟩ := le_iff_exists_add.mp w [GOAL] case intro R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁰ : Semiring R inst✝⁹ : Semiring R₂ inst✝⁸ : Semiring R₃ inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommMonoid M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝³ : Module R M inst✝² : Module R₂ M₂ inst✝¹ : Module R₃ M₃ σ₂₁ : R₂ →+* R τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ f : M →ₗ[R] M n : ℕ x : M c : ℕ w : n ≤ n + c h : x ∈ (fun n => range (f ^ n)) (n + c) ⊢ x ∈ (fun n => range (f ^ n)) n [PROOFSTEP] rw [LinearMap.mem_range] at h [GOAL] case intro R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁰ : Semiring R inst✝⁹ : Semiring R₂ inst✝⁸ : Semiring R₃ inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommMonoid M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝³ : Module R M inst✝² : Module R₂ M₂ inst✝¹ : Module R₃ M₃ σ₂₁ : R₂ →+* R τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ f : M →ₗ[R] M n : ℕ x : M c : ℕ w : n ≤ n + c h : ∃ y, ↑(f ^ (n + c)) y = x ⊢ x ∈ (fun n => range (f ^ n)) n [PROOFSTEP] obtain ⟨m, rfl⟩ := h [GOAL] case intro.intro R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁰ : Semiring R inst✝⁹ : Semiring R₂ inst✝⁸ : Semiring R₃ inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommMonoid M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝³ : Module R M inst✝² : Module R₂ M₂ inst✝¹ : Module R₃ M₃ σ₂₁ : R₂ →+* R τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ f : M →ₗ[R] M n c : ℕ w : n ≤ n + c m : M ⊢ ↑(f ^ (n + c)) m ∈ (fun n => range (f ^ n)) n [PROOFSTEP] rw [LinearMap.mem_range] [GOAL] case intro.intro R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁰ : Semiring R inst✝⁹ : Semiring R₂ inst✝⁸ : Semiring R₃ inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommMonoid M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝³ : Module R M inst✝² : Module R₂ M₂ inst✝¹ : Module R₃ M₃ σ₂₁ : R₂ →+* R τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ f : M →ₗ[R] M n c : ℕ w : n ≤ n + c m : M ⊢ ∃ y, ↑(f ^ n) y = ↑(f ^ (n + c)) m [PROOFSTEP] use(f ^ c) m [GOAL] case h R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁰ : Semiring R inst✝⁹ : Semiring R₂ inst✝⁸ : Semiring R₃ inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommMonoid M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝³ : Module R M inst✝² : Module R₂ M₂ inst✝¹ : Module R₃ M₃ σ₂₁ : R₂ →+* R τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ f : M →ₗ[R] M n c : ℕ w : n ≤ n + c m : M ⊢ ↑(f ^ n) (↑(f ^ c) m) = ↑(f ^ (n + c)) m [PROOFSTEP] rw [pow_add, LinearMap.mul_apply] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁰ : Semiring R inst✝⁹ : Semiring R₂ inst✝⁸ : Semiring R₃ inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommMonoid M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝³ : Module R M inst✝² : Module R₂ M₂ inst✝¹ : Module R₃ M₃ σ₂₁ : R₂ →+* R τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ F : Type u_20 sc : SemilinearMapClass F τ₁₂ M M₂ f : M →ₛₗ[τ₁₂] M₂ g : M₂ →ₛₗ[τ₂₃] M₃ ⊢ ker f ≤ ker (comp g f) [PROOFSTEP] rw [ker_comp] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁰ : Semiring R inst✝⁹ : Semiring R₂ inst✝⁸ : Semiring R₃ inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommMonoid M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝³ : Module R M inst✝² : Module R₂ M₂ inst✝¹ : Module R₃ M₃ σ₂₁ : R₂ →+* R τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ F : Type u_20 sc : SemilinearMapClass F τ₁₂ M M₂ f : M →ₛₗ[τ₁₂] M₂ g : M₂ →ₛₗ[τ₂₃] M₃ ⊢ ker f ≤ comap f (ker g) [PROOFSTEP] exact comap_mono bot_le [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁰ : Semiring R inst✝⁹ : Semiring R₂ inst✝⁸ : Semiring R₃ inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommMonoid M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝³ : Module R M inst✝² : Module R₂ M₂ inst✝¹ : Module R₃ M₃ σ₂₁ : R₂ →+* R τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ F : Type u_20 sc : SemilinearMapClass F τ₁₂ M M₂ f : F p : Submodule R M ⊢ Disjoint p (ker f) ↔ ∀ (x : M), x ∈ p → ↑f x = 0 → x = 0 [PROOFSTEP] simp [disjoint_def] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁰ : Semiring R inst✝⁹ : Semiring R₂ inst✝⁸ : Semiring R₃ inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommMonoid M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝³ : Module R M inst✝² : Module R₂ M₂ inst✝¹ : Module R₃ M₃ σ₂₁ : R₂ →+* R τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ F : Type u_20 sc : SemilinearMapClass F τ₁₂ M M₂ f : F ⊢ ker f = ⊥ ↔ ∀ (m : M), ↑f m = 0 → m = 0 [PROOFSTEP] simpa [disjoint_iff_inf_le] using @disjoint_ker _ _ _ _ _ _ _ _ _ _ _ _ _ f ⊤ [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹¹ : Semiring R inst✝¹⁰ : Semiring R₂ inst✝⁹ : Semiring R₃ inst✝⁸ : AddCommMonoid M inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝⁴ : Module R M inst✝³ : Module R₂ M₂ inst✝² : Module R₃ M₃ σ₂₁ : R₂ →+* R τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ F : Type u_20 sc : SemilinearMapClass F τ₁₂ M M₂ τ₂₁ : R₂ →+* R inst✝ : RingHomInvPair τ₁₂ τ₂₁ f : M →ₛₗ[τ₁₂] M₂ g : M₂ →ₛₗ[τ₂₁] M h : comp g f = id m : M hm : ↑f m = 0 ⊢ m = 0 [PROOFSTEP] rw [← id_apply (R := R) m, ← h, comp_apply, hm, g.map_zero] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹¹ : Semiring R inst✝¹⁰ : Semiring R₂ inst✝⁹ : Semiring R₃ inst✝⁸ : AddCommMonoid M inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝⁴ : Module R M inst✝³ : Module R₂ M₂ inst✝² : Module R₃ M₃ σ₂₁ : R₂ →+* R τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ F : Type u_20 sc : SemilinearMapClass F τ₁₂ M M₂ inst✝ : RingHomSurjective τ₁₂ f : F p : Submodule R M ⊢ p ≤ ker f ↔ map f p = ⊥ [PROOFSTEP] rw [ker, eq_bot_iff, map_le_iff_le_comap] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁰ : Semiring R inst✝⁹ : Semiring R₂ inst✝⁸ : Semiring R₃ inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommMonoid M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝³ : Module R M inst✝² : Module R₂ M₂ inst✝¹ : Module R₃ M₃ σ₂₁ : R₂ →+* R τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ F : Type u_20 sc : SemilinearMapClass F τ₁₂ M M₂ τ₂₁ : R₂ →+* R p : Submodule R M f : M₂ →ₛₗ[τ₂₁] M hf : ∀ (c : M₂), ↑f c ∈ p ⊢ ker (codRestrict p f hf) = ker f [PROOFSTEP] rw [ker, comap_codRestrict, Submodule.map_bot] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁰ : Semiring R inst✝⁹ : Semiring R₂ inst✝⁸ : Semiring R₃ inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommMonoid M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝³ : Module R M inst✝² : Module R₂ M₂ inst✝¹ : Module R₃ M₃ σ₂₁ : R₂ →+* R τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ F : Type u_20 sc : SemilinearMapClass F τ₁₂ M M₂ τ₂₁ : R₂ →+* R p : Submodule R M f : M₂ →ₛₗ[τ₂₁] M hf : ∀ (c : M₂), ↑f c ∈ p ⊢ comap f ⊥ = ker f [PROOFSTEP] rfl [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹¹ : Semiring R inst✝¹⁰ : Semiring R₂ inst✝⁹ : Semiring R₃ inst✝⁸ : AddCommMonoid M inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝⁴ : Module R M inst✝³ : Module R₂ M₂ inst✝² : Module R₃ M₃ σ₂₁ : R₂ →+* R τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ F : Type u_20 sc : SemilinearMapClass F τ₁₂ M M₂ τ₂₁ : R₂ →+* R inst✝ : RingHomSurjective τ₂₁ p : Submodule R M f : M₂ →ₛₗ[τ₂₁] M hf : ∀ (c : M₂), ↑f c ∈ p ⊢ range (codRestrict p f hf) = comap (Submodule.subtype p) (range f) [PROOFSTEP] simpa only [range_eq_map] using map_codRestrict _ _ _ _ [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹² : Semiring R inst✝¹¹ : Semiring R₂ inst✝¹⁰ : Semiring R₃ inst✝⁹ : AddCommMonoid M inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : AddCommMonoid M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝⁶ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝⁵ : Module R M inst✝⁴ : Module R₂ M₂ inst✝³ : Module R₃ M₃ σ₂₁ : R₂ →+* R τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝² : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ F : Type u_20 sc : SemilinearMapClass F τ₁₂ M M₂ inst✝¹ : AddCommMonoid M₁ inst✝ : Module R M₁ p : Submodule R M q : Submodule R M₁ f : M →ₗ[R] M₁ hf : ∀ (x : M), x ∈ p → ↑f x ∈ q ⊢ ker (restrict f hf) = ker (domRestrict f p) [PROOFSTEP] rw [restrict_eq_codRestrict_domRestrict, ker_codRestrict] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹¹ : Semiring R inst✝¹⁰ : Semiring R₂ inst✝⁹ : Semiring R₃ inst✝⁸ : AddCommMonoid M inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝⁴ : Module R M inst✝³ : Module R₂ M₂ inst✝² : Module R₃ M₃ σ₂₁ : R₂ →+* R τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ F : Type u_20 sc : SemilinearMapClass F τ₁₂ M M₂ inst✝ : RingHomSurjective τ₁₂ f : F q : Submodule R₂ M₂ ⊢ range f ⊓ q ≤ map f (comap f q) [PROOFSTEP] rintro _ ⟨⟨x, _, rfl⟩, hx⟩ [GOAL] case intro.intro.refl R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹¹ : Semiring R inst✝¹⁰ : Semiring R₂ inst✝⁹ : Semiring R₃ inst✝⁸ : AddCommMonoid M inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝⁴ : Module R M inst✝³ : Module R₂ M₂ inst✝² : Module R₃ M₃ σ₂₁ : R₂ →+* R τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ F : Type u_20 sc : SemilinearMapClass F τ₁₂ M M₂ inst✝ : RingHomSurjective τ₁₂ f : F q : Submodule R₂ M₂ x : M hx : ↑f x ∈ ↑q ⊢ ↑f x ∈ map f (comap f q) [PROOFSTEP] exact ⟨x, hx, rfl⟩ [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹¹ : Semiring R inst✝¹⁰ : Semiring R₂ inst✝⁹ : Semiring R₃ inst✝⁸ : AddCommMonoid M inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝⁴ : Module R M inst✝³ : Module R₂ M₂ inst✝² : Module R₃ M₃ σ₂₁ : R₂ →+* R τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ F : Type u_20 sc : SemilinearMapClass F τ₁₂ M M₂ inst✝ : RingHomSurjective τ₁₂ f : F q : Submodule R₂ M₂ h : q ≤ range f ⊢ map f (comap f q) = q [PROOFSTEP] rwa [Submodule.map_comap_eq, inf_eq_right] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁰ : Semiring R inst✝⁹ : Semiring R₂ inst✝⁸ : Semiring R₃ inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommMonoid M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝³ : Module R M inst✝² : Module R₂ M₂ inst✝¹ : Module R₃ M₃ σ₂₁ : R₂ →+* R τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ F : Type u_20 sc : SemilinearMapClass F τ₁₂ M M₂ x : M ⊢ x ∈ ker 0 [PROOFSTEP] simp [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹¹ : Semiring R inst✝¹⁰ : Semiring R₂ inst✝⁹ : Semiring R₃ inst✝⁸ : AddCommMonoid M inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝⁴ : Module R M inst✝³ : Module R₂ M₂ inst✝² : Module R₃ M₃ σ₂₁ : R₂ →+* R τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ F : Type u_20 sc : SemilinearMapClass F τ₁₂ M M₂ inst✝ : RingHomSurjective τ₁₂ ⊢ range 0 = ⊥ [PROOFSTEP] simpa only [range_eq_map] using Submodule.map_zero _ [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹¹ : Semiring R inst✝¹⁰ : Semiring R₂ inst✝⁹ : Semiring R₃ inst✝⁸ : AddCommMonoid M inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝⁴ : Module R M inst✝³ : Module R₂ M₂ inst✝² : Module R₃ M₃ σ₂₁ : R₂ →+* R τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ F : Type u_20 sc : SemilinearMapClass F τ₁₂ M M₂ inst✝ : RingHomSurjective τ₁₂ f : M →ₛₗ[τ₁₂] M₂ ⊢ range f ≤ ⊥ ↔ f = 0 [PROOFSTEP] rw [range_le_iff_comap] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹¹ : Semiring R inst✝¹⁰ : Semiring R₂ inst✝⁹ : Semiring R₃ inst✝⁸ : AddCommMonoid M inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝⁴ : Module R M inst✝³ : Module R₂ M₂ inst✝² : Module R₃ M₃ σ₂₁ : R₂ →+* R τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ F : Type u_20 sc : SemilinearMapClass F τ₁₂ M M₂ inst✝ : RingHomSurjective τ₁₂ f : M →ₛₗ[τ₁₂] M₂ ⊢ comap f ⊥ = ⊤ ↔ f = 0 [PROOFSTEP] exact ker_eq_top [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹¹ : Semiring R inst✝¹⁰ : Semiring R₂ inst✝⁹ : Semiring R₃ inst✝⁸ : AddCommMonoid M inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝⁴ : Module R M inst✝³ : Module R₂ M₂ inst✝² : Module R₃ M₃ σ₂₁ : R₂ →+* R τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ F : Type u_20 sc : SemilinearMapClass F τ₁₂ M M₂ inst✝ : RingHomSurjective τ₁₂ f : M →ₛₗ[τ₁₂] M₂ ⊢ range f = ⊥ ↔ f = 0 [PROOFSTEP] rw [← range_le_bot_iff, le_bot_iff] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹¹ : Semiring R inst✝¹⁰ : Semiring R₂ inst✝⁹ : Semiring R₃ inst✝⁸ : AddCommMonoid M inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝⁴ : Module R M inst✝³ : Module R₂ M₂ inst✝² : Module R₃ M₃ σ₂₁ : R₂ →+* R τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ F : Type u_20 sc : SemilinearMapClass F τ₁₂ M M₂ inst✝ : RingHomSurjective τ₁₂ f : M →ₛₗ[τ₁₂] M₂ g : M₂ →ₛₗ[τ₂₃] M₃ h : comp g f = 0 x : M₂ hx : x ∈ range f y : M hy : ↑f y = x ⊢ ↑g x = 0 [PROOFSTEP] rw [← hy, ← comp_apply, h, zero_apply] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹¹ : Semiring R inst✝¹⁰ : Semiring R₂ inst✝⁹ : Semiring R₃ inst✝⁸ : AddCommMonoid M inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝⁴ : Module R M inst✝³ : Module R₂ M₂ inst✝² : Module R₃ M₃ σ₂₁ : R₂ →+* R τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ F : Type u_20 sc : SemilinearMapClass F τ₁₂ M M₂ inst✝ : RingHomSurjective τ₁₂ f : F hf : range f = ⊤ p p' : Submodule R₂ M₂ H : comap f p ≤ comap f p' x : M₂ hx : x ∈ p ⊢ x ∈ p' [PROOFSTEP] rcases range_eq_top.1 hf x with ⟨y, hy, rfl⟩ [GOAL] case intro.refl R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹¹ : Semiring R inst✝¹⁰ : Semiring R₂ inst✝⁹ : Semiring R₃ inst✝⁸ : AddCommMonoid M inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝⁴ : Module R M inst✝³ : Module R₂ M₂ inst✝² : Module R₃ M₃ σ₂₁ : R₂ →+* R τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ F : Type u_20 sc : SemilinearMapClass F τ₁₂ M M₂ inst✝ : RingHomSurjective τ₁₂ f : F hf : range f = ⊤ p p' : Submodule R₂ M₂ H : comap f p ≤ comap f p' y : M hx : ↑f y ∈ p ⊢ ↑f y ∈ p' [PROOFSTEP] exact H hx [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁰ : Semiring R inst✝⁹ : Semiring R₂ inst✝⁸ : Semiring R₃ inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommMonoid M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝³ : Module R M inst✝² : Module R₂ M₂ inst✝¹ : Module R₃ M₃ σ₂₁ : R₂ →+* R τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ F : Type u_20 sc : SemilinearMapClass F τ₁₂ M M₂ f : F hf : Injective ↑f ⊢ ker f = ⊥ [PROOFSTEP] have : Disjoint ⊤ (ker f) := by -- Porting note: `← map_zero f` should work here, but it needs to be directly applied to H. rw [disjoint_ker] intros _ _ H rw [← map_zero f] at H exact hf H [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁰ : Semiring R inst✝⁹ : Semiring R₂ inst✝⁸ : Semiring R₃ inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommMonoid M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝³ : Module R M inst✝² : Module R₂ M₂ inst✝¹ : Module R₃ M₃ σ₂₁ : R₂ →+* R τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ F : Type u_20 sc : SemilinearMapClass F τ₁₂ M M₂ f : F hf : Injective ↑f ⊢ Disjoint ⊤ (ker f) [PROOFSTEP] rw [disjoint_ker] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁰ : Semiring R inst✝⁹ : Semiring R₂ inst✝⁸ : Semiring R₃ inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommMonoid M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝³ : Module R M inst✝² : Module R₂ M₂ inst✝¹ : Module R₃ M₃ σ₂₁ : R₂ →+* R τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ F : Type u_20 sc : SemilinearMapClass F τ₁₂ M M₂ f : F hf : Injective ↑f ⊢ ∀ (x : M), x ∈ ⊤ → ↑f x = 0 → x = 0 [PROOFSTEP] intros _ _ H [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁰ : Semiring R inst✝⁹ : Semiring R₂ inst✝⁸ : Semiring R₃ inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommMonoid M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝³ : Module R M inst✝² : Module R₂ M₂ inst✝¹ : Module R₃ M₃ σ₂₁ : R₂ →+* R τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ F : Type u_20 sc : SemilinearMapClass F τ₁₂ M M₂ f : F hf : Injective ↑f x✝ : M a✝ : x✝ ∈ ⊤ H : ↑f x✝ = 0 ⊢ x✝ = 0 [PROOFSTEP] rw [← map_zero f] at H [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁰ : Semiring R inst✝⁹ : Semiring R₂ inst✝⁸ : Semiring R₃ inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommMonoid M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝³ : Module R M inst✝² : Module R₂ M₂ inst✝¹ : Module R₃ M₃ σ₂₁ : R₂ →+* R τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ F : Type u_20 sc : SemilinearMapClass F τ₁₂ M M₂ f : F hf : Injective ↑f x✝ : M a✝ : x✝ ∈ ⊤ H : ↑f x✝ = ↑f 0 ⊢ x✝ = 0 [PROOFSTEP] exact hf H [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁰ : Semiring R inst✝⁹ : Semiring R₂ inst✝⁸ : Semiring R₃ inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommMonoid M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝³ : Module R M inst✝² : Module R₂ M₂ inst✝¹ : Module R₃ M₃ σ₂₁ : R₂ →+* R τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ F : Type u_20 sc : SemilinearMapClass F τ₁₂ M M₂ f : F hf : Injective ↑f this : Disjoint ⊤ (ker f) ⊢ ker f = ⊥ [PROOFSTEP] rw [disjoint_iff_inf_le, top_inf_eq, le_bot_iff] at this [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁰ : Semiring R inst✝⁹ : Semiring R₂ inst✝⁸ : Semiring R₃ inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommMonoid M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝³ : Module R M inst✝² : Module R₂ M₂ inst✝¹ : Module R₃ M₃ σ₂₁ : R₂ →+* R τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ F : Type u_20 sc : SemilinearMapClass F τ₁₂ M M₂ f : F hf : Injective ↑f this : ker f = ⊥ ⊢ ker f = ⊥ [PROOFSTEP] assumption [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁰ : Semiring R inst✝⁹ : Semiring R₂ inst✝⁸ : Semiring R₃ inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommMonoid M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝³ : Module R M inst✝² : Module R₂ M₂ inst✝¹ : Module R₃ M₃ σ₂₁ : R₂ →+* R τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ F : Type u_20 sc : SemilinearMapClass F τ₁₂ M M₂ f : M →ₗ[R] M n m : ℕ w : n ≤ m x : M h : x ∈ (fun n => ker (f ^ n)) n ⊢ x ∈ (fun n => ker (f ^ n)) m [PROOFSTEP] obtain ⟨c, rfl⟩ := le_iff_exists_add.mp w [GOAL] case intro R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁰ : Semiring R inst✝⁹ : Semiring R₂ inst✝⁸ : Semiring R₃ inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommMonoid M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝³ : Module R M inst✝² : Module R₂ M₂ inst✝¹ : Module R₃ M₃ σ₂₁ : R₂ →+* R τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ F : Type u_20 sc : SemilinearMapClass F τ₁₂ M M₂ f : M →ₗ[R] M n : ℕ x : M h : x ∈ (fun n => ker (f ^ n)) n c : ℕ w : n ≤ n + c ⊢ x ∈ (fun n => ker (f ^ n)) (n + c) [PROOFSTEP] rw [LinearMap.mem_ker] at h [GOAL] case intro R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁰ : Semiring R inst✝⁹ : Semiring R₂ inst✝⁸ : Semiring R₃ inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommMonoid M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝⁴ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ inst✝³ : Module R M inst✝² : Module R₂ M₂ inst✝¹ : Module R₃ M₃ σ₂₁ : R₂ →+* R τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ F : Type u_20 sc : SemilinearMapClass F τ₁₂ M M₂ f : M →ₗ[R] M n : ℕ x : M h : ↑(f ^ n) x = 0 c : ℕ w : n ≤ n + c ⊢ x ∈ (fun n => ker (f ^ n)) (n + c) [PROOFSTEP] rw [LinearMap.mem_ker, add_comm, pow_add, LinearMap.mul_apply, h, LinearMap.map_zero] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝⁹ : Ring R inst✝⁸ : Ring R₂ inst✝⁷ : Ring R₃ inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M₂ inst✝⁴ : AddCommGroup M₃ inst✝³ : Module R M inst✝² : Module R₂ M₂ inst✝¹ : Module R₃ M₃ τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ F : Type u_20 sc : SemilinearMapClass F τ₁₂ M M₂ f : F x y : M ⊢ x - y ∈ ker f ↔ ↑f x = ↑f y [PROOFSTEP] rw [mem_ker, map_sub, sub_eq_zero] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝⁹ : Ring R inst✝⁸ : Ring R₂ inst✝⁷ : Ring R₃ inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M₂ inst✝⁴ : AddCommGroup M₃ inst✝³ : Module R M inst✝² : Module R₂ M₂ inst✝¹ : Module R₃ M₃ τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ F : Type u_20 sc : SemilinearMapClass F τ₁₂ M M₂ f : F p : Submodule R M H : ∀ (x : M), x ∈ p → ↑f x = 0 → x = 0 x : M hx : x ∈ p y : M hy : y ∈ p h : ↑f x = ↑f y ⊢ ↑f (x - y) = 0 [PROOFSTEP] simp [h] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝⁹ : Ring R inst✝⁸ : Ring R₂ inst✝⁷ : Ring R₃ inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M₂ inst✝⁴ : AddCommGroup M₃ inst✝³ : Module R M inst✝² : Module R₂ M₂ inst✝¹ : Module R₃ M₃ τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ F : Type u_20 sc : SemilinearMapClass F τ₁₂ M M₂ f : F p : Submodule R M H : ∀ (x : M), x ∈ p → ∀ (y : M), y ∈ p → ↑f x = ↑f y → x = y x : M h₁ : x ∈ p h₂ : ↑f x = 0 ⊢ ↑f x = ↑f 0 [PROOFSTEP] simpa using h₂ [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝⁹ : Ring R inst✝⁸ : Ring R₂ inst✝⁷ : Ring R₃ inst✝⁶ : AddCommGroup M inst✝⁵ : AddCommGroup M₂ inst✝⁴ : AddCommGroup M₃ inst✝³ : Module R M inst✝² : Module R₂ M₂ inst✝¹ : Module R₃ M₃ τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ F : Type u_20 sc : SemilinearMapClass F τ₁₂ M M₂ f : F ⊢ ker f = ⊥ ↔ Injective ↑f [PROOFSTEP] simpa [disjoint_iff_inf_le] using @disjoint_ker' _ _ _ _ _ _ _ _ _ _ _ _ _ f ⊤ [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁰ : Ring R inst✝⁹ : Ring R₂ inst✝⁸ : Ring R₃ inst✝⁷ : AddCommGroup M inst✝⁶ : AddCommGroup M₂ inst✝⁵ : AddCommGroup M₃ inst✝⁴ : Module R M inst✝³ : Module R₂ M₂ inst✝² : Module R₃ M₃ τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ F : Type u_20 sc : SemilinearMapClass F τ₁₂ M M₂ f : F inst✝ : RingHomSurjective τ₁₂ p : Submodule R M ⊢ ker f ≤ p ↔ ∃ y, y ∈ range f ∧ ↑f ⁻¹' {y} ⊆ ↑p [PROOFSTEP] constructor [GOAL] case mp R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁰ : Ring R inst✝⁹ : Ring R₂ inst✝⁸ : Ring R₃ inst✝⁷ : AddCommGroup M inst✝⁶ : AddCommGroup M₂ inst✝⁵ : AddCommGroup M₃ inst✝⁴ : Module R M inst✝³ : Module R₂ M₂ inst✝² : Module R₃ M₃ τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ F : Type u_20 sc : SemilinearMapClass F τ₁₂ M M₂ f : F inst✝ : RingHomSurjective τ₁₂ p : Submodule R M ⊢ ker f ≤ p → ∃ y, y ∈ range f ∧ ↑f ⁻¹' {y} ⊆ ↑p [PROOFSTEP] intro h [GOAL] case mp R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁰ : Ring R inst✝⁹ : Ring R₂ inst✝⁸ : Ring R₃ inst✝⁷ : AddCommGroup M inst✝⁶ : AddCommGroup M₂ inst✝⁵ : AddCommGroup M₃ inst✝⁴ : Module R M inst✝³ : Module R₂ M₂ inst✝² : Module R₃ M₃ τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ F : Type u_20 sc : SemilinearMapClass F τ₁₂ M M₂ f : F inst✝ : RingHomSurjective τ₁₂ p : Submodule R M h : ker f ≤ p ⊢ ∃ y, y ∈ range f ∧ ↑f ⁻¹' {y} ⊆ ↑p [PROOFSTEP] use 0 [GOAL] case h R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁰ : Ring R inst✝⁹ : Ring R₂ inst✝⁸ : Ring R₃ inst✝⁷ : AddCommGroup M inst✝⁶ : AddCommGroup M₂ inst✝⁵ : AddCommGroup M₃ inst✝⁴ : Module R M inst✝³ : Module R₂ M₂ inst✝² : Module R₃ M₃ τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ F : Type u_20 sc : SemilinearMapClass F τ₁₂ M M₂ f : F inst✝ : RingHomSurjective τ₁₂ p : Submodule R M h : ker f ≤ p ⊢ 0 ∈ range f ∧ ↑f ⁻¹' {0} ⊆ ↑p [PROOFSTEP] rw [← SetLike.mem_coe, range_coe] [GOAL] case h R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁰ : Ring R inst✝⁹ : Ring R₂ inst✝⁸ : Ring R₃ inst✝⁷ : AddCommGroup M inst✝⁶ : AddCommGroup M₂ inst✝⁵ : AddCommGroup M₃ inst✝⁴ : Module R M inst✝³ : Module R₂ M₂ inst✝² : Module R₃ M₃ τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ F : Type u_20 sc : SemilinearMapClass F τ₁₂ M M₂ f : F inst✝ : RingHomSurjective τ₁₂ p : Submodule R M h : ker f ≤ p ⊢ 0 ∈ Set.range ↑f ∧ ↑f ⁻¹' {0} ⊆ ↑p [PROOFSTEP] exact ⟨⟨0, map_zero f⟩, h⟩ [GOAL] case mpr R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁰ : Ring R inst✝⁹ : Ring R₂ inst✝⁸ : Ring R₃ inst✝⁷ : AddCommGroup M inst✝⁶ : AddCommGroup M₂ inst✝⁵ : AddCommGroup M₃ inst✝⁴ : Module R M inst✝³ : Module R₂ M₂ inst✝² : Module R₃ M₃ τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ F : Type u_20 sc : SemilinearMapClass F τ₁₂ M M₂ f : F inst✝ : RingHomSurjective τ₁₂ p : Submodule R M ⊢ (∃ y, y ∈ range f ∧ ↑f ⁻¹' {y} ⊆ ↑p) → ker f ≤ p [PROOFSTEP] rintro ⟨y, h₁, h₂⟩ [GOAL] case mpr.intro.intro R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁰ : Ring R inst✝⁹ : Ring R₂ inst✝⁸ : Ring R₃ inst✝⁷ : AddCommGroup M inst✝⁶ : AddCommGroup M₂ inst✝⁵ : AddCommGroup M₃ inst✝⁴ : Module R M inst✝³ : Module R₂ M₂ inst✝² : Module R₃ M₃ τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ F : Type u_20 sc : SemilinearMapClass F τ₁₂ M M₂ f : F inst✝ : RingHomSurjective τ₁₂ p : Submodule R M y : M₂ h₁ : y ∈ range f h₂ : ↑f ⁻¹' {y} ⊆ ↑p ⊢ ker f ≤ p [PROOFSTEP] rw [SetLike.le_def] [GOAL] case mpr.intro.intro R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁰ : Ring R inst✝⁹ : Ring R₂ inst✝⁸ : Ring R₃ inst✝⁷ : AddCommGroup M inst✝⁶ : AddCommGroup M₂ inst✝⁵ : AddCommGroup M₃ inst✝⁴ : Module R M inst✝³ : Module R₂ M₂ inst✝² : Module R₃ M₃ τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ F : Type u_20 sc : SemilinearMapClass F τ₁₂ M M₂ f : F inst✝ : RingHomSurjective τ₁₂ p : Submodule R M y : M₂ h₁ : y ∈ range f h₂ : ↑f ⁻¹' {y} ⊆ ↑p ⊢ ∀ ⦃x : M⦄, x ∈ ker f → x ∈ p [PROOFSTEP] intro z hz [GOAL] case mpr.intro.intro R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁰ : Ring R inst✝⁹ : Ring R₂ inst✝⁸ : Ring R₃ inst✝⁷ : AddCommGroup M inst✝⁶ : AddCommGroup M₂ inst✝⁵ : AddCommGroup M₃ inst✝⁴ : Module R M inst✝³ : Module R₂ M₂ inst✝² : Module R₃ M₃ τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ F : Type u_20 sc : SemilinearMapClass F τ₁₂ M M₂ f : F inst✝ : RingHomSurjective τ₁₂ p : Submodule R M y : M₂ h₁ : y ∈ range f h₂ : ↑f ⁻¹' {y} ⊆ ↑p z : M hz : z ∈ ker f ⊢ z ∈ p [PROOFSTEP] simp only [mem_ker, SetLike.mem_coe] at hz [GOAL] case mpr.intro.intro R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁰ : Ring R inst✝⁹ : Ring R₂ inst✝⁸ : Ring R₃ inst✝⁷ : AddCommGroup M inst✝⁶ : AddCommGroup M₂ inst✝⁵ : AddCommGroup M₃ inst✝⁴ : Module R M inst✝³ : Module R₂ M₂ inst✝² : Module R₃ M₃ τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ F : Type u_20 sc : SemilinearMapClass F τ₁₂ M M₂ f : F inst✝ : RingHomSurjective τ₁₂ p : Submodule R M y : M₂ h₁ : y ∈ range f h₂ : ↑f ⁻¹' {y} ⊆ ↑p z : M hz : ↑f z = 0 ⊢ z ∈ p [PROOFSTEP] rw [← SetLike.mem_coe, range_coe, Set.mem_range] at h₁ [GOAL] case mpr.intro.intro R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁰ : Ring R inst✝⁹ : Ring R₂ inst✝⁸ : Ring R₃ inst✝⁷ : AddCommGroup M inst✝⁶ : AddCommGroup M₂ inst✝⁵ : AddCommGroup M₃ inst✝⁴ : Module R M inst✝³ : Module R₂ M₂ inst✝² : Module R₃ M₃ τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ F : Type u_20 sc : SemilinearMapClass F τ₁₂ M M₂ f : F inst✝ : RingHomSurjective τ₁₂ p : Submodule R M y : M₂ h₁ : ∃ y_1, ↑f y_1 = y h₂ : ↑f ⁻¹' {y} ⊆ ↑p z : M hz : ↑f z = 0 ⊢ z ∈ p [PROOFSTEP] obtain ⟨x, hx⟩ := h₁ [GOAL] case mpr.intro.intro.intro R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁰ : Ring R inst✝⁹ : Ring R₂ inst✝⁸ : Ring R₃ inst✝⁷ : AddCommGroup M inst✝⁶ : AddCommGroup M₂ inst✝⁵ : AddCommGroup M₃ inst✝⁴ : Module R M inst✝³ : Module R₂ M₂ inst✝² : Module R₃ M₃ τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ F : Type u_20 sc : SemilinearMapClass F τ₁₂ M M₂ f : F inst✝ : RingHomSurjective τ₁₂ p : Submodule R M y : M₂ h₂ : ↑f ⁻¹' {y} ⊆ ↑p z : M hz : ↑f z = 0 x : M hx : ↑f x = y ⊢ z ∈ p [PROOFSTEP] have hx' : x ∈ p := h₂ hx [GOAL] case mpr.intro.intro.intro R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁰ : Ring R inst✝⁹ : Ring R₂ inst✝⁸ : Ring R₃ inst✝⁷ : AddCommGroup M inst✝⁶ : AddCommGroup M₂ inst✝⁵ : AddCommGroup M₃ inst✝⁴ : Module R M inst✝³ : Module R₂ M₂ inst✝² : Module R₃ M₃ τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ F : Type u_20 sc : SemilinearMapClass F τ₁₂ M M₂ f : F inst✝ : RingHomSurjective τ₁₂ p : Submodule R M y : M₂ h₂ : ↑f ⁻¹' {y} ⊆ ↑p z : M hz : ↑f z = 0 x : M hx : ↑f x = y hx' : x ∈ p ⊢ z ∈ p [PROOFSTEP] have hxz : z + x ∈ p := by apply h₂ simp [hx, hz] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁰ : Ring R inst✝⁹ : Ring R₂ inst✝⁸ : Ring R₃ inst✝⁷ : AddCommGroup M inst✝⁶ : AddCommGroup M₂ inst✝⁵ : AddCommGroup M₃ inst✝⁴ : Module R M inst✝³ : Module R₂ M₂ inst✝² : Module R₃ M₃ τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ F : Type u_20 sc : SemilinearMapClass F τ₁₂ M M₂ f : F inst✝ : RingHomSurjective τ₁₂ p : Submodule R M y : M₂ h₂ : ↑f ⁻¹' {y} ⊆ ↑p z : M hz : ↑f z = 0 x : M hx : ↑f x = y hx' : x ∈ p ⊢ z + x ∈ p [PROOFSTEP] apply h₂ [GOAL] case a R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁰ : Ring R inst✝⁹ : Ring R₂ inst✝⁸ : Ring R₃ inst✝⁷ : AddCommGroup M inst✝⁶ : AddCommGroup M₂ inst✝⁵ : AddCommGroup M₃ inst✝⁴ : Module R M inst✝³ : Module R₂ M₂ inst✝² : Module R₃ M₃ τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ F : Type u_20 sc : SemilinearMapClass F τ₁₂ M M₂ f : F inst✝ : RingHomSurjective τ₁₂ p : Submodule R M y : M₂ h₂ : ↑f ⁻¹' {y} ⊆ ↑p z : M hz : ↑f z = 0 x : M hx : ↑f x = y hx' : x ∈ p ⊢ z + x ∈ ↑f ⁻¹' {y} [PROOFSTEP] simp [hx, hz] [GOAL] case mpr.intro.intro.intro R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁰ : Ring R inst✝⁹ : Ring R₂ inst✝⁸ : Ring R₃ inst✝⁷ : AddCommGroup M inst✝⁶ : AddCommGroup M₂ inst✝⁵ : AddCommGroup M₃ inst✝⁴ : Module R M inst✝³ : Module R₂ M₂ inst✝² : Module R₃ M₃ τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ F : Type u_20 sc : SemilinearMapClass F τ₁₂ M M₂ f : F inst✝ : RingHomSurjective τ₁₂ p : Submodule R M y : M₂ h₂ : ↑f ⁻¹' {y} ⊆ ↑p z : M hz : ↑f z = 0 x : M hx : ↑f x = y hx' : x ∈ p hxz : z + x ∈ p ⊢ z ∈ p [PROOFSTEP] suffices z + x - x ∈ p by simpa only [this, add_sub_cancel] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁰ : Ring R inst✝⁹ : Ring R₂ inst✝⁸ : Ring R₃ inst✝⁷ : AddCommGroup M inst✝⁶ : AddCommGroup M₂ inst✝⁵ : AddCommGroup M₃ inst✝⁴ : Module R M inst✝³ : Module R₂ M₂ inst✝² : Module R₃ M₃ τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ F : Type u_20 sc : SemilinearMapClass F τ₁₂ M M₂ f : F inst✝ : RingHomSurjective τ₁₂ p : Submodule R M y : M₂ h₂ : ↑f ⁻¹' {y} ⊆ ↑p z : M hz : ↑f z = 0 x : M hx : ↑f x = y hx' : x ∈ p hxz : z + x ∈ p this : z + x - x ∈ p ⊢ z ∈ p [PROOFSTEP] simpa only [this, add_sub_cancel] [GOAL] case mpr.intro.intro.intro R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁰ : Ring R inst✝⁹ : Ring R₂ inst✝⁸ : Ring R₃ inst✝⁷ : AddCommGroup M inst✝⁶ : AddCommGroup M₂ inst✝⁵ : AddCommGroup M₃ inst✝⁴ : Module R M inst✝³ : Module R₂ M₂ inst✝² : Module R₃ M₃ τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ F : Type u_20 sc : SemilinearMapClass F τ₁₂ M M₂ f : F inst✝ : RingHomSurjective τ₁₂ p : Submodule R M y : M₂ h₂ : ↑f ⁻¹' {y} ⊆ ↑p z : M hz : ↑f z = 0 x : M hx : ↑f x = y hx' : x ∈ p hxz : z + x ∈ p ⊢ z + x - x ∈ p [PROOFSTEP] exact p.sub_mem hxz hx' [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝⁵ : Semifield K inst✝⁴ : Semifield K₂ inst✝³ : AddCommMonoid V inst✝² : Module K V inst✝¹ : AddCommMonoid V₂ inst✝ : Module K V₂ f : V →ₗ[K] V₂ a : K h : a ≠ 0 ⊢ range (a • f) = range f [PROOFSTEP] simpa only [range_eq_map] using Submodule.map_smul f _ a h [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝⁵ : Semifield K inst✝⁴ : Semifield K₂ inst✝³ : AddCommMonoid V inst✝² : Module K V inst✝¹ : AddCommMonoid V₂ inst✝ : Module K V₂ f : V →ₗ[K] V₂ a : K ⊢ range (a • f) = ⨆ (_ : a ≠ 0), range f [PROOFSTEP] simpa only [range_eq_map] using Submodule.map_smul' f _ a [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M ⊢ IsLinearMap R fun x => x.fst + x.snd [PROOFSTEP] apply IsLinearMap.mk [GOAL] case map_add R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M ⊢ ∀ (x y : M × M), (x + y).fst + (x + y).snd = x.fst + x.snd + (y.fst + y.snd) [PROOFSTEP] intro x y [GOAL] case map_add R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M x y : M × M ⊢ (x + y).fst + (x + y).snd = x.fst + x.snd + (y.fst + y.snd) [PROOFSTEP] simp only [Prod.fst_add, Prod.snd_add] [GOAL] case map_add R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M x y : M × M ⊢ x.fst + y.fst + (x.snd + y.snd) = x.fst + x.snd + (y.fst + y.snd) [PROOFSTEP] abel -- Porting Note: was cc [GOAL] case map_add R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M x y : M × M ⊢ x.fst + y.fst + (x.snd + y.snd) = x.fst + x.snd + (y.fst + y.snd) [PROOFSTEP] abel -- Porting Note: was cc [GOAL] case map_smul R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M ⊢ ∀ (c : R) (x : M × M), (c • x).fst + (c • x).snd = c • (x.fst + x.snd) [PROOFSTEP] intro x y [GOAL] case map_smul R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M x : R y : M × M ⊢ (x • y).fst + (x • y).snd = x • (y.fst + y.snd) [PROOFSTEP] simp [smul_add] [GOAL] R✝ : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M✝ : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 R : Type u_20 M : Type u_21 inst✝² : Semiring R inst✝¹ : AddCommGroup M inst✝ : Module R M ⊢ IsLinearMap R fun x => x.fst - x.snd [PROOFSTEP] apply IsLinearMap.mk [GOAL] case map_add R✝ : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M✝ : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 R : Type u_20 M : Type u_21 inst✝² : Semiring R inst✝¹ : AddCommGroup M inst✝ : Module R M ⊢ ∀ (x y : M × M), (x + y).fst - (x + y).snd = x.fst - x.snd + (y.fst - y.snd) [PROOFSTEP] intro x y [GOAL] case map_add R✝ : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M✝ : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 R : Type u_20 M : Type u_21 inst✝² : Semiring R inst✝¹ : AddCommGroup M inst✝ : Module R M x y : M × M ⊢ (x + y).fst - (x + y).snd = x.fst - x.snd + (y.fst - y.snd) [PROOFSTEP] rw [Prod.fst_add, Prod.snd_add] [GOAL] case map_add R✝ : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M✝ : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 R : Type u_20 M : Type u_21 inst✝² : Semiring R inst✝¹ : AddCommGroup M inst✝ : Module R M x y : M × M ⊢ x.fst + y.fst - (x.snd + y.snd) = x.fst - x.snd + (y.fst - y.snd) [PROOFSTEP] abel [GOAL] case map_add R✝ : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M✝ : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 R : Type u_20 M : Type u_21 inst✝² : Semiring R inst✝¹ : AddCommGroup M inst✝ : Module R M x y : M × M ⊢ x.fst + y.fst - (x.snd + y.snd) = x.fst - x.snd + (y.fst - y.snd) [PROOFSTEP] abel [GOAL] case map_smul R✝ : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M✝ : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 R : Type u_20 M : Type u_21 inst✝² : Semiring R inst✝¹ : AddCommGroup M inst✝ : Module R M ⊢ ∀ (c : R) (x : M × M), (c • x).fst - (c • x).snd = c • (x.fst - x.snd) [PROOFSTEP] intro x y [GOAL] case map_smul R✝ : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M✝ : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 R : Type u_20 M : Type u_21 inst✝² : Semiring R inst✝¹ : AddCommGroup M inst✝ : Module R M x : R y : M × M ⊢ (x • y).fst - (x • y).snd = x • (y.fst - y.snd) [PROOFSTEP] simp [smul_sub] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝⁵ : Semiring R inst✝⁴ : Semiring R₂ inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R₂ M₂ p p' : Submodule R M q : Submodule R₂ M₂ τ₁₂ : R →+* R₂ F : Type u_20 sc : SemilinearMapClass F τ₁₂ M M₂ ⊢ range (Submodule.subtype p) = p [PROOFSTEP] simpa using map_comap_subtype p ⊤ [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝⁵ : Semiring R inst✝⁴ : Semiring R₂ inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R₂ M₂ p p'✝ : Submodule R M q : Submodule R₂ M₂ τ₁₂ : R →+* R₂ F : Type u_20 sc : SemilinearMapClass F τ₁₂ M M₂ p' : Submodule R { x // x ∈ p } ⊢ map (Submodule.subtype p) p' ≤ p [PROOFSTEP] simpa using (map_le_range : map p.subtype p' ≤ range p.subtype) [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝⁵ : Semiring R inst✝⁴ : Semiring R₂ inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R₂ M₂ p p' : Submodule R M q : Submodule R₂ M₂ τ₁₂ : R →+* R₂ F : Type u_20 sc : SemilinearMapClass F τ₁₂ M M₂ ⊢ map (Submodule.subtype p) ⊤ = p [PROOFSTEP] simp [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝⁵ : Semiring R inst✝⁴ : Semiring R₂ inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R₂ M₂ p✝ p'✝ : Submodule R M q : Submodule R₂ M₂ τ₁₂ : R →+* R₂ F : Type u_20 sc : SemilinearMapClass F τ₁₂ M M₂ p p' : Submodule R M ⊢ map (Submodule.subtype p) ⊤ ≤ p' ↔ p ≤ p' [PROOFSTEP] rw [map_subtype_top] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝⁵ : Semiring R inst✝⁴ : Semiring R₂ inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R₂ M₂ p✝ p'✝ : Submodule R M q : Submodule R₂ M₂ τ₁₂ : R →+* R₂ F : Type u_20 sc : SemilinearMapClass F τ₁₂ M M₂ p p' : Submodule R M h : p ≤ p' ⊢ ker (ofLe h) = ⊥ [PROOFSTEP] rw [ofLe, ker_codRestrict, ker_subtype] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝⁵ : Semiring R inst✝⁴ : Semiring R₂ inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R₂ M₂ p✝ p' : Submodule R M q✝ : Submodule R₂ M₂ τ₁₂ : R →+* R₂ F : Type u_20 sc : SemilinearMapClass F τ₁₂ M M₂ p q : Submodule R M h : p ≤ q ⊢ range (ofLe h) = comap (Submodule.subtype q) p [PROOFSTEP] rw [← map_top, ofLe, LinearMap.map_codRestrict, map_top, range_subtype] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝⁵ : Semiring R inst✝⁴ : Semiring R₂ inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R₂ M₂ p✝ p'✝ : Submodule R M q : Submodule R₂ M₂ τ₁₂ : R →+* R₂ F : Type u_20 sc : SemilinearMapClass F τ₁₂ M M₂ p p' : Submodule R M h : p ≤ p' ⊢ map (Submodule.subtype p') (range (ofLe h)) = p [PROOFSTEP] simp [range_ofLe, map_comap_eq, h] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝⁵ : Semiring R inst✝⁴ : Semiring R₂ inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R₂ M₂ p✝ p' : Submodule R M q✝ : Submodule R₂ M₂ τ₁₂ : R →+* R₂ F : Type u_20 sc : SemilinearMapClass F τ₁₂ M M₂ p q : Submodule R M ⊢ Disjoint p q ↔ comap (Submodule.subtype p) q = ⊥ [PROOFSTEP] rw [← (map_injective_of_injective (show Injective p.subtype from Subtype.coe_injective)).eq_iff, map_comap_subtype, map_bot, disjoint_iff] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝⁵ : Semiring R inst✝⁴ : Semiring R₂ inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R₂ M₂ p p'✝ : Submodule R M q : Submodule R₂ M₂ τ₁₂ : R →+* R₂ F : Type u_20 sc : SemilinearMapClass F τ₁₂ M M₂ p' : Submodule R { x // x ∈ p } ⊢ Injective ↑(Submodule.subtype p) [PROOFSTEP] exact Subtype.val_injective [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝⁵ : Semiring R inst✝⁴ : Semiring R₂ inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R₂ M₂ p p' : Submodule R M q✝ : Submodule R₂ M₂ τ₁₂ : R →+* R₂ F : Type u_20 sc : SemilinearMapClass F τ₁₂ M M₂ x✝ : { p' // p' ≤ p } q : Submodule R M hq : q ≤ p ⊢ ↑((fun p' => { val := map (Submodule.subtype p) p', property := (_ : map (Submodule.subtype p) p' ≤ p) }) ((fun q => comap (Submodule.subtype p) ↑q) { val := q, property := hq })) = ↑{ val := q, property := hq } [PROOFSTEP] simp [map_comap_subtype p, inf_of_le_right hq] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝⁵ : Semiring R inst✝⁴ : Semiring R₂ inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R₂ M₂ p p' : Submodule R M q : Submodule R₂ M₂ τ₁₂ : R →+* R₂ F : Type u_20 sc : SemilinearMapClass F τ₁₂ M M₂ p₁ p₂ : Submodule R { x // x ∈ p } ⊢ ↑(↑{ toFun := fun p' => { val := map (Submodule.subtype p) p', property := (_ : map (Submodule.subtype p) p' ≤ p) }, invFun := fun q => comap (Submodule.subtype p) ↑q, left_inv := (_ : ∀ (p' : Submodule R { x // x ∈ p }), comap (Submodule.subtype p) (map (Submodule.subtype p) p') = p'), right_inv := (_ : ∀ (x : { p' // p' ≤ p }), (fun p' => { val := map (Submodule.subtype p) p', property := (_ : map (Submodule.subtype p) p' ≤ p) }) ((fun q => comap (Submodule.subtype p) ↑q) x) = x) } p₁) ≤ ↑(↑{ toFun := fun p' => { val := map (Submodule.subtype p) p', property := (_ : map (Submodule.subtype p) p' ≤ p) }, invFun := fun q => comap (Submodule.subtype p) ↑q, left_inv := (_ : ∀ (p' : Submodule R { x // x ∈ p }), comap (Submodule.subtype p) (map (Submodule.subtype p) p') = p'), right_inv := (_ : ∀ (x : { p' // p' ≤ p }), (fun p' => { val := map (Submodule.subtype p) p', property := (_ : map (Submodule.subtype p) p' ≤ p) }) ((fun q => comap (Submodule.subtype p) ↑q) x) = x) } p₂) ↔ p₁ ≤ p₂ [PROOFSTEP] dsimp [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝⁵ : Semiring R inst✝⁴ : Semiring R₂ inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R₂ M₂ p p' : Submodule R M q : Submodule R₂ M₂ τ₁₂ : R →+* R₂ F : Type u_20 sc : SemilinearMapClass F τ₁₂ M M₂ p₁ p₂ : Submodule R { x // x ∈ p } ⊢ map (Submodule.subtype p) p₁ ≤ map (Submodule.subtype p) p₂ ↔ p₁ ≤ p₂ [PROOFSTEP] rw [map_le_iff_le_comap, comap_map_eq_of_injective (show Injective p.subtype from Subtype.coe_injective) p₂] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝⁹ : Semiring R inst✝⁸ : Semiring R₂ inst✝⁷ : Semiring R₃ inst✝⁶ : AddCommMonoid M inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : AddCommMonoid M₃ inst✝³ : Module R M inst✝² : Module R₂ M₂ inst✝¹ : Module R₃ M₃ τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ f : M →ₛₗ[τ₁₂] M₂ h : ∀ (u v : { x // x ∈ ker f } →ₗ[R] M), comp f u = comp f v → u = v ⊢ ker f = ⊥ [PROOFSTEP] have h₁ : f.comp (0 : ker f →ₗ[R] M) = 0 := comp_zero _ [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝⁹ : Semiring R inst✝⁸ : Semiring R₂ inst✝⁷ : Semiring R₃ inst✝⁶ : AddCommMonoid M inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : AddCommMonoid M₃ inst✝³ : Module R M inst✝² : Module R₂ M₂ inst✝¹ : Module R₃ M₃ τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ f : M →ₛₗ[τ₁₂] M₂ h : ∀ (u v : { x // x ∈ ker f } →ₗ[R] M), comp f u = comp f v → u = v h₁ : comp f 0 = 0 ⊢ ker f = ⊥ [PROOFSTEP] rw [← Submodule.range_subtype (ker f), ← h 0 f.ker.subtype (Eq.trans h₁ (comp_ker_subtype f).symm)] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝⁹ : Semiring R inst✝⁸ : Semiring R₂ inst✝⁷ : Semiring R₃ inst✝⁶ : AddCommMonoid M inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : AddCommMonoid M₃ inst✝³ : Module R M inst✝² : Module R₂ M₂ inst✝¹ : Module R₃ M₃ τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ f : M →ₛₗ[τ₁₂] M₂ h : ∀ (u v : { x // x ∈ ker f } →ₗ[R] M), comp f u = comp f v → u = v h₁ : comp f 0 = 0 ⊢ range 0 = ⊥ [PROOFSTEP] exact range_zero [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹² : Semiring R inst✝¹¹ : Semiring R₂ inst✝¹⁰ : Semiring R₃ inst✝⁹ : AddCommMonoid M inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : AddCommMonoid M₃ inst✝⁶ : Module R M inst✝⁵ : Module R₂ M₂ inst✝⁴ : Module R₃ M₃ τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝³ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ inst✝² : RingHomSurjective τ₁₂ inst✝¹ : RingHomSurjective τ₂₃ inst✝ : RingHomSurjective τ₁₃ f : M →ₛₗ[τ₁₂] M₂ g : M₂ →ₛₗ[τ₂₃] M₃ hf : range f = ⊤ ⊢ range (comp g f) = range g [PROOFSTEP] rw [range_comp, hf, Submodule.map_top] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝⁹ : Semiring R inst✝⁸ : Semiring R₂ inst✝⁷ : Semiring R₃ inst✝⁶ : AddCommMonoid M inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : AddCommMonoid M₃ inst✝³ : Module R M inst✝² : Module R₂ M₂ inst✝¹ : Module R₃ M₃ τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ f : M →ₛₗ[τ₁₂] M₂ g : M₂ →ₛₗ[τ₂₃] M₃ hg : ker g = ⊥ ⊢ ker (comp g f) = ker f [PROOFSTEP] rw [ker_comp, hg, Submodule.comap_bot] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M'✝ : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N✝ : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹¹ : Semiring R inst✝¹⁰ : Semiring R₂ inst✝⁹ : Semiring R₃ inst✝⁸ : AddCommMonoid M inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ inst✝⁵ : Module R M inst✝⁴ : Module R₂ M₂ inst✝³ : Module R₃ M₃ τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝² : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ M' : Type u_20 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' O : Submodule R M ϕ : { x // x ∈ O } →ₗ[R] M' N : Submodule R M x : M' ⊢ x ∈ submoduleImage ϕ N ↔ ∃ y yO x_1, ↑ϕ { val := y, property := yO } = x [PROOFSTEP] refine' Submodule.mem_map.trans ⟨_, _⟩ [GOAL] case refine'_1 R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M'✝ : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N✝ : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹¹ : Semiring R inst✝¹⁰ : Semiring R₂ inst✝⁹ : Semiring R₃ inst✝⁸ : AddCommMonoid M inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ inst✝⁵ : Module R M inst✝⁴ : Module R₂ M₂ inst✝³ : Module R₃ M₃ τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝² : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ M' : Type u_20 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' O : Submodule R M ϕ : { x // x ∈ O } →ₗ[R] M' N : Submodule R M x : M' ⊢ (∃ y, y ∈ Submodule.comap (Submodule.subtype O) N ∧ ↑ϕ y = x) → ∃ y yO x_1, ↑ϕ { val := y, property := yO } = x [PROOFSTEP] simp_rw [Submodule.mem_comap] [GOAL] case refine'_2 R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M'✝ : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N✝ : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹¹ : Semiring R inst✝¹⁰ : Semiring R₂ inst✝⁹ : Semiring R₃ inst✝⁸ : AddCommMonoid M inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ inst✝⁵ : Module R M inst✝⁴ : Module R₂ M₂ inst✝³ : Module R₃ M₃ τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝² : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ M' : Type u_20 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' O : Submodule R M ϕ : { x // x ∈ O } →ₗ[R] M' N : Submodule R M x : M' ⊢ (∃ y yO x_1, ↑ϕ { val := y, property := yO } = x) → ∃ y, y ∈ Submodule.comap (Submodule.subtype O) N ∧ ↑ϕ y = x [PROOFSTEP] simp_rw [Submodule.mem_comap] [GOAL] case refine'_1 R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M'✝ : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N✝ : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹¹ : Semiring R inst✝¹⁰ : Semiring R₂ inst✝⁹ : Semiring R₃ inst✝⁸ : AddCommMonoid M inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ inst✝⁵ : Module R M inst✝⁴ : Module R₂ M₂ inst✝³ : Module R₃ M₃ τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝² : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ M' : Type u_20 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' O : Submodule R M ϕ : { x // x ∈ O } →ₗ[R] M' N : Submodule R M x : M' ⊢ (∃ y, ↑(Submodule.subtype O) y ∈ N ∧ ↑ϕ y = x) → ∃ y h h_1, ↑ϕ { val := y, property := (_ : y ∈ O) } = x [PROOFSTEP] rintro ⟨⟨y, yO⟩, yN : y ∈ N, h⟩ [GOAL] case refine'_1.intro.mk.intro R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M'✝ : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N✝ : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹¹ : Semiring R inst✝¹⁰ : Semiring R₂ inst✝⁹ : Semiring R₃ inst✝⁸ : AddCommMonoid M inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ inst✝⁵ : Module R M inst✝⁴ : Module R₂ M₂ inst✝³ : Module R₃ M₃ τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝² : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ M' : Type u_20 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' O : Submodule R M ϕ : { x // x ∈ O } →ₗ[R] M' N : Submodule R M x : M' y : M yO : y ∈ O yN : y ∈ N h : ↑ϕ { val := y, property := yO } = x ⊢ ∃ y h h_1, ↑ϕ { val := y, property := (_ : y ∈ O) } = x [PROOFSTEP] exact ⟨y, yO, yN, h⟩ [GOAL] case refine'_2 R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M'✝ : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N✝ : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹¹ : Semiring R inst✝¹⁰ : Semiring R₂ inst✝⁹ : Semiring R₃ inst✝⁸ : AddCommMonoid M inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ inst✝⁵ : Module R M inst✝⁴ : Module R₂ M₂ inst✝³ : Module R₃ M₃ τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝² : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ M' : Type u_20 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' O : Submodule R M ϕ : { x // x ∈ O } →ₗ[R] M' N : Submodule R M x : M' ⊢ (∃ y h h_1, ↑ϕ { val := y, property := (_ : y ∈ O) } = x) → ∃ y, ↑(Submodule.subtype O) y ∈ N ∧ ↑ϕ y = x [PROOFSTEP] rintro ⟨y, yO, yN, h⟩ [GOAL] case refine'_2.intro.intro.intro R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M'✝ : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N✝ : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹¹ : Semiring R inst✝¹⁰ : Semiring R₂ inst✝⁹ : Semiring R₃ inst✝⁸ : AddCommMonoid M inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ inst✝⁵ : Module R M inst✝⁴ : Module R₂ M₂ inst✝³ : Module R₃ M₃ τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝² : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ M' : Type u_20 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' O : Submodule R M ϕ : { x // x ∈ O } →ₗ[R] M' N : Submodule R M x : M' y : M yO : y ∈ O yN : y ∈ N h : ↑ϕ { val := y, property := (_ : y ∈ O) } = x ⊢ ∃ y, ↑(Submodule.subtype O) y ∈ N ∧ ↑ϕ y = x [PROOFSTEP] exact ⟨⟨y, yO⟩, yN, h⟩ [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M'✝ : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N✝ : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹¹ : Semiring R inst✝¹⁰ : Semiring R₂ inst✝⁹ : Semiring R₃ inst✝⁸ : AddCommMonoid M inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ inst✝⁵ : Module R M inst✝⁴ : Module R₂ M₂ inst✝³ : Module R₃ M₃ τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝² : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ M' : Type u_20 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' O : Submodule R M ϕ : { x // x ∈ O } →ₗ[R] M' N : Submodule R M hNO : N ≤ O x : M' ⊢ x ∈ submoduleImage ϕ N ↔ ∃ y yN, ↑ϕ { val := y, property := (_ : y ∈ O) } = x [PROOFSTEP] refine' mem_submoduleImage.trans ⟨_, _⟩ [GOAL] case refine'_1 R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M'✝ : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N✝ : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹¹ : Semiring R inst✝¹⁰ : Semiring R₂ inst✝⁹ : Semiring R₃ inst✝⁸ : AddCommMonoid M inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ inst✝⁵ : Module R M inst✝⁴ : Module R₂ M₂ inst✝³ : Module R₃ M₃ τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝² : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ M' : Type u_20 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' O : Submodule R M ϕ : { x // x ∈ O } →ₗ[R] M' N : Submodule R M hNO : N ≤ O x : M' ⊢ (∃ y yO x_1, ↑ϕ { val := y, property := yO } = x) → ∃ y yN, ↑ϕ { val := y, property := (_ : y ∈ O) } = x [PROOFSTEP] rintro ⟨y, yO, yN, h⟩ [GOAL] case refine'_1.intro.intro.intro R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M'✝ : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N✝ : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹¹ : Semiring R inst✝¹⁰ : Semiring R₂ inst✝⁹ : Semiring R₃ inst✝⁸ : AddCommMonoid M inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ inst✝⁵ : Module R M inst✝⁴ : Module R₂ M₂ inst✝³ : Module R₃ M₃ τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝² : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ M' : Type u_20 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' O : Submodule R M ϕ : { x // x ∈ O } →ₗ[R] M' N : Submodule R M hNO : N ≤ O x : M' y : M yO : y ∈ O yN : y ∈ N h : ↑ϕ { val := y, property := yO } = x ⊢ ∃ y yN, ↑ϕ { val := y, property := (_ : y ∈ O) } = x [PROOFSTEP] exact ⟨y, yN, h⟩ [GOAL] case refine'_2 R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M'✝ : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N✝ : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹¹ : Semiring R inst✝¹⁰ : Semiring R₂ inst✝⁹ : Semiring R₃ inst✝⁸ : AddCommMonoid M inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ inst✝⁵ : Module R M inst✝⁴ : Module R₂ M₂ inst✝³ : Module R₃ M₃ τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝² : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ M' : Type u_20 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' O : Submodule R M ϕ : { x // x ∈ O } →ₗ[R] M' N : Submodule R M hNO : N ≤ O x : M' ⊢ (∃ y yN, ↑ϕ { val := y, property := (_ : y ∈ O) } = x) → ∃ y yO x_1, ↑ϕ { val := y, property := yO } = x [PROOFSTEP] rintro ⟨y, yN, h⟩ [GOAL] case refine'_2.intro.intro R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M'✝ : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N✝ : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹¹ : Semiring R inst✝¹⁰ : Semiring R₂ inst✝⁹ : Semiring R₃ inst✝⁸ : AddCommMonoid M inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ inst✝⁵ : Module R M inst✝⁴ : Module R₂ M₂ inst✝³ : Module R₃ M₃ τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝² : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ M' : Type u_20 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' O : Submodule R M ϕ : { x // x ∈ O } →ₗ[R] M' N : Submodule R M hNO : N ≤ O x : M' y : M yN : y ∈ N h : ↑ϕ { val := y, property := (_ : y ∈ O) } = x ⊢ ∃ y yO x_1, ↑ϕ { val := y, property := yO } = x [PROOFSTEP] exact ⟨y, hNO yN, yN, h⟩ [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M'✝ : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N✝ : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹¹ : Semiring R inst✝¹⁰ : Semiring R₂ inst✝⁹ : Semiring R₃ inst✝⁸ : AddCommMonoid M inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ inst✝⁵ : Module R M inst✝⁴ : Module R₂ M₂ inst✝³ : Module R₃ M₃ τ₁₂ : R →+* R₂ τ₂₃ : R₂ →+* R₃ τ₁₃ : R →+* R₃ inst✝² : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃ M' : Type u_20 inst✝¹ : AddCommGroup M' inst✝ : Module R M' O : Submodule R M ϕ : { x // x ∈ O } →ₗ[R] M' N : Submodule R M hNO : N ≤ O ⊢ submoduleImage ϕ N = range (comp ϕ (Submodule.ofLe hNO)) [PROOFSTEP] rw [submoduleImage, range_comp, Submodule.range_ofLe] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M inst✝ : Module R M₂ f : M →ₗ[R] M₂ ⊢ range (rangeRestrict f) = ⊤ [PROOFSTEP] simp [f.range_codRestrict _] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝⁹ : Semiring R inst✝⁸ : Semiring R₂ inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : Module R M inst✝⁴ : Module R₂ M₂ σ₁₂ : R →+* R₂ σ₂₁ : R₂ →+* R inst✝³ : RingHomInvPair σ₁₂ σ₂₁ inst✝² : RingHomInvPair σ₂₁ σ₁₂ inst✝¹ : Subsingleton R inst✝ : Subsingleton R₂ ⊢ Unique (M ≃ₛₗ[σ₁₂] M₂) [PROOFSTEP] haveI := Module.subsingleton R M [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝⁹ : Semiring R inst✝⁸ : Semiring R₂ inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : Module R M inst✝⁴ : Module R₂ M₂ σ₁₂ : R →+* R₂ σ₂₁ : R₂ →+* R inst✝³ : RingHomInvPair σ₁₂ σ₂₁ inst✝² : RingHomInvPair σ₂₁ σ₁₂ inst✝¹ : Subsingleton R inst✝ : Subsingleton R₂ this : Subsingleton M ⊢ Unique (M ≃ₛₗ[σ₁₂] M₂) [PROOFSTEP] haveI := Module.subsingleton R₂ M₂ [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝⁹ : Semiring R inst✝⁸ : Semiring R₂ inst✝⁷ : AddCommMonoid M inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : Module R M inst✝⁴ : Module R₂ M₂ σ₁₂ : R →+* R₂ σ₂₁ : R₂ →+* R inst✝³ : RingHomInvPair σ₁₂ σ₂₁ inst✝² : RingHomInvPair σ₂₁ σ₁₂ inst✝¹ : Subsingleton R inst✝ : Subsingleton R₂ this✝ : Subsingleton M this : Subsingleton M₂ ⊢ Unique (M ≃ₛₗ[σ₁₂] M₂) [PROOFSTEP] infer_instance [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝⁷ : Semiring R inst✝⁶ : Semiring R₂ inst✝⁵ : Semiring R₃ inst✝⁴ : Semiring R₄ inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : AddCommMonoid M₃ inst✝ : AddCommMonoid M₄ module_M : Module R M module_M₂ : Module R₂ M₂ σ₁₂ : R →+* R₂ σ₂₁ : R₂ →+* R re₁₂ : RingHomInvPair σ₁₂ σ₂₁ re₂₁ : RingHomInvPair σ₂₁ σ₁₂ e e' : M ≃ₛₗ[σ₁₂] M₂ p : Submodule R M ⊢ ↑(Submodule.map (↑e) p) = ↑(Submodule.comap (↑(symm e)) p) [PROOFSTEP] simp [e.image_eq_preimage] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝⁷ : Semiring R inst✝⁶ : Semiring R₂ inst✝⁵ : Semiring R₃ inst✝⁴ : Semiring R₄ inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : AddCommMonoid M₃ inst✝ : AddCommMonoid M₄ module_M : Module R M module_M₂ : Module R₂ M₂ σ₁₂ : R →+* R₂ σ₂₁ : R₂ →+* R re₁₂ : RingHomInvPair σ₁₂ σ₂₁ re₂₁ : RingHomInvPair σ₂₁ σ₁₂ e e' : M ≃ₛₗ[σ₁₂] M₂ p : Submodule R M x : { x // x ∈ p } ⊢ ↑x ∈ ↑p ∧ ↑↑e ↑x = ↑(LinearMap.domRestrict (↑e) p) x [PROOFSTEP] simp only [LinearMap.domRestrict_apply, eq_self_iff_true, and_true_iff, SetLike.coe_mem, SetLike.mem_coe] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝⁷ : Semiring R inst✝⁶ : Semiring R₂ inst✝⁵ : Semiring R₃ inst✝⁴ : Semiring R₄ inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : AddCommMonoid M₃ inst✝ : AddCommMonoid M₄ module_M : Module R M module_M₂ : Module R₂ M₂ σ₁₂ : R →+* R₂ σ₂₁ : R₂ →+* R re₁₂ : RingHomInvPair σ₁₂ σ₂₁ re₂₁ : RingHomInvPair σ₂₁ σ₁₂ e e' : M ≃ₛₗ[σ₁₂] M₂ p : Submodule R M src✝ : { x // x ∈ p } →ₛₗ[σ₁₂] { x // x ∈ Submodule.map (↑e) p } := LinearMap.codRestrict (Submodule.map (↑e) p) (LinearMap.domRestrict (↑e) p) (_ : ∀ (x : { x // x ∈ p }), ∃ a, a ∈ ↑p ∧ ↑↑e a = ↑(LinearMap.domRestrict (↑e) p) x) y : { x // x ∈ Submodule.map (↑e) p } ⊢ ↑↑(symm e) ↑y ∈ p [PROOFSTEP] rcases y with ⟨y', hy⟩ [GOAL] case mk R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝⁷ : Semiring R inst✝⁶ : Semiring R₂ inst✝⁵ : Semiring R₃ inst✝⁴ : Semiring R₄ inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : AddCommMonoid M₃ inst✝ : AddCommMonoid M₄ module_M : Module R M module_M₂ : Module R₂ M₂ σ₁₂ : R →+* R₂ σ₂₁ : R₂ →+* R re₁₂ : RingHomInvPair σ₁₂ σ₂₁ re₂₁ : RingHomInvPair σ₂₁ σ₁₂ e e' : M ≃ₛₗ[σ₁₂] M₂ p : Submodule R M src✝ : { x // x ∈ p } →ₛₗ[σ₁₂] { x // x ∈ Submodule.map (↑e) p } := LinearMap.codRestrict (Submodule.map (↑e) p) (LinearMap.domRestrict (↑e) p) (_ : ∀ (x : { x // x ∈ p }), ∃ a, a ∈ ↑p ∧ ↑↑e a = ↑(LinearMap.domRestrict (↑e) p) x) y' : M₂ hy : y' ∈ Submodule.map (↑e) p ⊢ ↑↑(symm e) ↑{ val := y', property := hy } ∈ p [PROOFSTEP] rw [Submodule.mem_map] at hy [GOAL] case mk R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝⁷ : Semiring R inst✝⁶ : Semiring R₂ inst✝⁵ : Semiring R₃ inst✝⁴ : Semiring R₄ inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : AddCommMonoid M₃ inst✝ : AddCommMonoid M₄ module_M : Module R M module_M₂ : Module R₂ M₂ σ₁₂ : R →+* R₂ σ₂₁ : R₂ →+* R re₁₂ : RingHomInvPair σ₁₂ σ₂₁ re₂₁ : RingHomInvPair σ₂₁ σ₁₂ e e' : M ≃ₛₗ[σ₁₂] M₂ p : Submodule R M src✝ : { x // x ∈ p } →ₛₗ[σ₁₂] { x // x ∈ Submodule.map (↑e) p } := LinearMap.codRestrict (Submodule.map (↑e) p) (LinearMap.domRestrict (↑e) p) (_ : ∀ (x : { x // x ∈ p }), ∃ a, a ∈ ↑p ∧ ↑↑e a = ↑(LinearMap.domRestrict (↑e) p) x) y' : M₂ hy✝ : y' ∈ Submodule.map (↑e) p hy : ∃ y, y ∈ p ∧ ↑↑e y = y' ⊢ ↑↑(symm e) ↑{ val := y', property := hy✝ } ∈ p [PROOFSTEP] rcases hy with ⟨x, hx, hxy⟩ [GOAL] case mk.intro.intro R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝⁷ : Semiring R inst✝⁶ : Semiring R₂ inst✝⁵ : Semiring R₃ inst✝⁴ : Semiring R₄ inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : AddCommMonoid M₃ inst✝ : AddCommMonoid M₄ module_M : Module R M module_M₂ : Module R₂ M₂ σ₁₂ : R →+* R₂ σ₂₁ : R₂ →+* R re₁₂ : RingHomInvPair σ₁₂ σ₂₁ re₂₁ : RingHomInvPair σ₂₁ σ₁₂ e e' : M ≃ₛₗ[σ₁₂] M₂ p : Submodule R M src✝ : { x // x ∈ p } →ₛₗ[σ₁₂] { x // x ∈ Submodule.map (↑e) p } := LinearMap.codRestrict (Submodule.map (↑e) p) (LinearMap.domRestrict (↑e) p) (_ : ∀ (x : { x // x ∈ p }), ∃ a, a ∈ ↑p ∧ ↑↑e a = ↑(LinearMap.domRestrict (↑e) p) x) y' : M₂ hy : y' ∈ Submodule.map (↑e) p x : M hx : x ∈ p hxy : ↑↑e x = y' ⊢ ↑↑(symm e) ↑{ val := y', property := hy } ∈ p [PROOFSTEP] subst hxy [GOAL] case mk.intro.intro R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝⁷ : Semiring R inst✝⁶ : Semiring R₂ inst✝⁵ : Semiring R₃ inst✝⁴ : Semiring R₄ inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : AddCommMonoid M₃ inst✝ : AddCommMonoid M₄ module_M : Module R M module_M₂ : Module R₂ M₂ σ₁₂ : R →+* R₂ σ₂₁ : R₂ →+* R re₁₂ : RingHomInvPair σ₁₂ σ₂₁ re₂₁ : RingHomInvPair σ₂₁ σ₁₂ e e' : M ≃ₛₗ[σ₁₂] M₂ p : Submodule R M src✝ : { x // x ∈ p } →ₛₗ[σ₁₂] { x // x ∈ Submodule.map (↑e) p } := LinearMap.codRestrict (Submodule.map (↑e) p) (LinearMap.domRestrict (↑e) p) (_ : ∀ (x : { x // x ∈ p }), ∃ a, a ∈ ↑p ∧ ↑↑e a = ↑(LinearMap.domRestrict (↑e) p) x) x : M hx : x ∈ p hy : ↑↑e x ∈ Submodule.map (↑e) p ⊢ ↑↑(symm e) ↑{ val := ↑↑e x, property := hy } ∈ p [PROOFSTEP] simp only [symm_apply_apply, Submodule.coe_mk, coe_coe, hx] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝⁷ : Semiring R inst✝⁶ : Semiring R₂ inst✝⁵ : Semiring R₃ inst✝⁴ : Semiring R₄ inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : AddCommMonoid M₃ inst✝ : AddCommMonoid M₄ module_M : Module R M module_M₂ : Module R₂ M₂ σ₁₂ : R →+* R₂ σ₂₁ : R₂ →+* R re₁₂ : RingHomInvPair σ₁₂ σ₂₁ re₂₁ : RingHomInvPair σ₂₁ σ₁₂ e e' : M ≃ₛₗ[σ₁₂] M₂ p : Submodule R M src✝ : { x // x ∈ p } →ₛₗ[σ₁₂] { x // x ∈ Submodule.map (↑e) p } := LinearMap.codRestrict (Submodule.map (↑e) p) (LinearMap.domRestrict (↑e) p) (_ : ∀ (x : { x // x ∈ p }), ∃ a, a ∈ ↑p ∧ ↑↑e a = ↑(LinearMap.domRestrict (↑e) p) x) x : { x // x ∈ p } ⊢ (fun y => { val := ↑↑(symm e) ↑y, property := (_ : ↑↑(symm e) ↑y ∈ p) }) (AddHom.toFun { toAddHom := src✝.toAddHom, map_smul' := (_ : ∀ (r : R) (x : { x // x ∈ p }), AddHom.toFun src✝.toAddHom (r • x) = ↑σ₁₂ r • AddHom.toFun src✝.toAddHom x) }.toAddHom x) = x [PROOFSTEP] simp only [LinearMap.domRestrict_apply, LinearMap.codRestrict_apply, LinearMap.toFun_eq_coe, LinearEquiv.coe_coe, LinearEquiv.symm_apply_apply, SetLike.eta] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝⁷ : Semiring R inst✝⁶ : Semiring R₂ inst✝⁵ : Semiring R₃ inst✝⁴ : Semiring R₄ inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : AddCommMonoid M₃ inst✝ : AddCommMonoid M₄ module_M : Module R M module_M₂ : Module R₂ M₂ σ₁₂ : R →+* R₂ σ₂₁ : R₂ →+* R re₁₂ : RingHomInvPair σ₁₂ σ₂₁ re₂₁ : RingHomInvPair σ₂₁ σ₁₂ e e' : M ≃ₛₗ[σ₁₂] M₂ p : Submodule R M src✝ : { x // x ∈ p } →ₛₗ[σ₁₂] { x // x ∈ Submodule.map (↑e) p } := LinearMap.codRestrict (Submodule.map (↑e) p) (LinearMap.domRestrict (↑e) p) (_ : ∀ (x : { x // x ∈ p }), ∃ a, a ∈ ↑p ∧ ↑↑e a = ↑(LinearMap.domRestrict (↑e) p) x) y : { x // x ∈ Submodule.map (↑e) p } ⊢ AddHom.toFun { toAddHom := src✝.toAddHom, map_smul' := (_ : ∀ (r : R) (x : { x // x ∈ p }), AddHom.toFun src✝.toAddHom (r • x) = ↑σ₁₂ r • AddHom.toFun src✝.toAddHom x) }.toAddHom ((fun y => { val := ↑↑(symm e) ↑y, property := (_ : ↑↑(symm e) ↑y ∈ p) }) y) = y [PROOFSTEP] apply SetCoe.ext [GOAL] case a R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝⁷ : Semiring R inst✝⁶ : Semiring R₂ inst✝⁵ : Semiring R₃ inst✝⁴ : Semiring R₄ inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : AddCommMonoid M₃ inst✝ : AddCommMonoid M₄ module_M : Module R M module_M₂ : Module R₂ M₂ σ₁₂ : R →+* R₂ σ₂₁ : R₂ →+* R re₁₂ : RingHomInvPair σ₁₂ σ₂₁ re₂₁ : RingHomInvPair σ₂₁ σ₁₂ e e' : M ≃ₛₗ[σ₁₂] M₂ p : Submodule R M src✝ : { x // x ∈ p } →ₛₗ[σ₁₂] { x // x ∈ Submodule.map (↑e) p } := LinearMap.codRestrict (Submodule.map (↑e) p) (LinearMap.domRestrict (↑e) p) (_ : ∀ (x : { x // x ∈ p }), ∃ a, a ∈ ↑p ∧ ↑↑e a = ↑(LinearMap.domRestrict (↑e) p) x) y : { x // x ∈ Submodule.map (↑e) p } ⊢ ↑(AddHom.toFun { toAddHom := src✝.toAddHom, map_smul' := (_ : ∀ (r : R) (x : { x // x ∈ p }), AddHom.toFun src✝.toAddHom (r • x) = ↑σ₁₂ r • AddHom.toFun src✝.toAddHom x) }.toAddHom ((fun y => { val := ↑↑(symm e) ↑y, property := (_ : ↑↑(symm e) ↑y ∈ p) }) y)) = ↑y [PROOFSTEP] simp only [LinearMap.domRestrict_apply, LinearMap.codRestrict_apply, LinearMap.toFun_eq_coe, LinearEquiv.coe_coe, LinearEquiv.apply_symm_apply] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝⁷ : Semiring R inst✝⁶ : Semiring R₂ inst✝⁵ : Semiring R₃ inst✝⁴ : Semiring R₄ inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : AddCommMonoid M₃ inst✝ : AddCommMonoid M₄ src✝ : (V × V₂ → R) ≃ (V → V₂ → R) := Equiv.curry V V₂ R x✝¹ x✝ : V × V₂ → R ⊢ Equiv.toFun src✝ (x✝¹ + x✝) = Equiv.toFun src✝ x✝¹ + Equiv.toFun src✝ x✝ [PROOFSTEP] ext [GOAL] case h.h R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝⁷ : Semiring R inst✝⁶ : Semiring R₂ inst✝⁵ : Semiring R₃ inst✝⁴ : Semiring R₄ inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : AddCommMonoid M₃ inst✝ : AddCommMonoid M₄ src✝ : (V × V₂ → R) ≃ (V → V₂ → R) := Equiv.curry V V₂ R x✝³ x✝² : V × V₂ → R x✝¹ : V x✝ : V₂ ⊢ Equiv.toFun src✝ (x✝³ + x✝²) x✝¹ x✝ = (Equiv.toFun src✝ x✝³ + Equiv.toFun src✝ x✝²) x✝¹ x✝ [PROOFSTEP] rfl [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝⁷ : Semiring R inst✝⁶ : Semiring R₂ inst✝⁵ : Semiring R₃ inst✝⁴ : Semiring R₄ inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : AddCommMonoid M₃ inst✝ : AddCommMonoid M₄ src✝ : (V × V₂ → R) ≃ (V → V₂ → R) := Equiv.curry V V₂ R x✝¹ : R x✝ : V × V₂ → R ⊢ AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (x x_1 : V × V₂ → R), Equiv.toFun src✝ (x + x_1) = Equiv.toFun src✝ x + Equiv.toFun src✝ x_1) } (x✝¹ • x✝) = ↑(RingHom.id R) x✝¹ • AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (x x_1 : V × V₂ → R), Equiv.toFun src✝ (x + x_1) = Equiv.toFun src✝ x + Equiv.toFun src✝ x_1) } x✝ [PROOFSTEP] ext [GOAL] case h.h R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝⁷ : Semiring R inst✝⁶ : Semiring R₂ inst✝⁵ : Semiring R₃ inst✝⁴ : Semiring R₄ inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid M₂ inst✝¹ : AddCommMonoid M₃ inst✝ : AddCommMonoid M₄ src✝ : (V × V₂ → R) ≃ (V → V₂ → R) := Equiv.curry V V₂ R x✝³ : R x✝² : V × V₂ → R x✝¹ : V x✝ : V₂ ⊢ AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (x x_1 : V × V₂ → R), Equiv.toFun src✝ (x + x_1) = Equiv.toFun src✝ x + Equiv.toFun src✝ x_1) } (x✝³ • x✝²) x✝¹ x✝ = (↑(RingHom.id R) x✝³ • AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (x x_1 : V × V₂ → R), Equiv.toFun src✝ (x + x_1) = Equiv.toFun src✝ x + Equiv.toFun src✝ x_1) } x✝²) x✝¹ x✝ [PROOFSTEP] rfl [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝⁸ : Semiring R inst✝⁷ : Semiring R₂ inst✝⁶ : Semiring R₃ inst✝⁵ : Semiring R₄ inst✝⁴ : AddCommMonoid M inst✝³ : AddCommMonoid M₂ inst✝² : AddCommMonoid M₃ inst✝¹ : AddCommMonoid M₄ module_M : Module R M module_M₂ : Module R₂ M₂ module_M₃ : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₁ : R₂ →+* R σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ σ₃₂ : R₃ →+* R₂ re₁₂ : RingHomInvPair σ₁₂ σ₂₁ re₂₁ : RingHomInvPair σ₂₁ σ₁₂ re₂₃ : RingHomInvPair σ₂₃ σ₃₂ re₃₂ : RingHomInvPair σ₃₂ σ₂₃ f : M →ₛₗ[σ₁₂] M₂ g : M₂ →ₛₗ[σ₂₁] M e : M ≃ₛₗ[σ₁₂] M₂ h : M₂ →ₛₗ[σ₂₃] M₃ e'' : M₂ ≃ₛₗ[σ₂₃] M₃ p q : Submodule R M ⊢ ofEq p p (_ : p = p) = refl R { x // x ∈ p } [PROOFSTEP] ext [GOAL] case h.a R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝⁸ : Semiring R inst✝⁷ : Semiring R₂ inst✝⁶ : Semiring R₃ inst✝⁵ : Semiring R₄ inst✝⁴ : AddCommMonoid M inst✝³ : AddCommMonoid M₂ inst✝² : AddCommMonoid M₃ inst✝¹ : AddCommMonoid M₄ module_M : Module R M module_M₂ : Module R₂ M₂ module_M₃ : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₁ : R₂ →+* R σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ σ₃₂ : R₃ →+* R₂ re₁₂ : RingHomInvPair σ₁₂ σ₂₁ re₂₁ : RingHomInvPair σ₂₁ σ₁₂ re₂₃ : RingHomInvPair σ₂₃ σ₃₂ re₃₂ : RingHomInvPair σ₃₂ σ₂₃ f : M →ₛₗ[σ₁₂] M₂ g : M₂ →ₛₗ[σ₂₁] M e : M ≃ₛₗ[σ₁₂] M₂ h : M₂ →ₛₗ[σ₂₃] M₃ e'' : M₂ ≃ₛₗ[σ₂₃] M₃ p q : Submodule R M x✝ : { x // x ∈ p } ⊢ ↑(↑(ofEq p p (_ : p = p)) x✝) = ↑(↑(refl R { x // x ∈ p }) x✝) [PROOFSTEP] rfl [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁰ : Semiring R inst✝⁹ : Semiring R₂ inst✝⁸ : Semiring R₃ inst✝⁷ : Semiring R₄ inst✝⁶ : AddCommMonoid M inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : AddCommMonoid M₃ inst✝³ : AddCommMonoid M₄ module_M : Module R M module_M₂ : Module R₂ M₂ module_M₃ : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₁ : R₂ →+* R σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ σ₃₂ : R₃ →+* R₂ re₁₂ : RingHomInvPair σ₁₂ σ₂₁ re₂₁ : RingHomInvPair σ₂₁ σ₁₂ re₂₃ : RingHomInvPair σ₂₃ σ₃₂ re₃₂ : RingHomInvPair σ₃₂ σ₂₃ f✝ : M →ₛₗ[σ₁₂] M₂ g : M₂ →ₛₗ[σ₂₁] M e : M ≃ₛₗ[σ₁₂] M₂ h : M₂ →ₛₗ[σ₂₃] M₃ e'' : M₂ ≃ₛₗ[σ₂₃] M₃ p q : Submodule R M inst✝¹ : Module R M inst✝ : Module R₂ M₂ f : M ≃ₛₗ[σ₁₂] M₂ U : Submodule R₂ M₂ ⊢ ↑(ofSubmodule' f U) = LinearMap.codRestrict U (LinearMap.domRestrict (↑f) (Submodule.comap (↑f) U)) (_ : ∀ (x : { x // x ∈ Submodule.comap (↑f) U }), ↑x ∈ Submodule.comap (↑f) U) [PROOFSTEP] ext [GOAL] case h.a R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁰ : Semiring R inst✝⁹ : Semiring R₂ inst✝⁸ : Semiring R₃ inst✝⁷ : Semiring R₄ inst✝⁶ : AddCommMonoid M inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : AddCommMonoid M₃ inst✝³ : AddCommMonoid M₄ module_M : Module R M module_M₂ : Module R₂ M₂ module_M₃ : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₁ : R₂ →+* R σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ σ₃₂ : R₃ →+* R₂ re₁₂ : RingHomInvPair σ₁₂ σ₂₁ re₂₁ : RingHomInvPair σ₂₁ σ₁₂ re₂₃ : RingHomInvPair σ₂₃ σ₃₂ re₃₂ : RingHomInvPair σ₃₂ σ₂₃ f✝ : M →ₛₗ[σ₁₂] M₂ g : M₂ →ₛₗ[σ₂₁] M e : M ≃ₛₗ[σ₁₂] M₂ h : M₂ →ₛₗ[σ₂₃] M₃ e'' : M₂ ≃ₛₗ[σ₂₃] M₃ p q : Submodule R M inst✝¹ : Module R M inst✝ : Module R₂ M₂ f : M ≃ₛₗ[σ₁₂] M₂ U : Submodule R₂ M₂ x✝ : { x // x ∈ Submodule.comap (↑f) U } ⊢ ↑(↑↑(ofSubmodule' f U) x✝) = ↑(↑(LinearMap.codRestrict U (LinearMap.domRestrict (↑f) (Submodule.comap (↑f) U)) (_ : ∀ (x : { x // x ∈ Submodule.comap (↑f) U }), ↑x ∈ Submodule.comap (↑f) U)) x✝) [PROOFSTEP] rfl [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝⁹ : Semiring R inst✝⁸ : Semiring R₂ inst✝⁷ : Semiring R₃ inst✝⁶ : Semiring R₄ inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M₂ inst✝³ : AddCommMonoid M₃ inst✝² : AddCommMonoid M₄ module_M : Module R M module_M₂ : Module R₂ M₂ module_M₃ : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₁ : R₂ →+* R σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ σ₃₂ : R₃ →+* R₂ re₁₂ : RingHomInvPair σ₁₂ σ₂₁ re₂₁ : RingHomInvPair σ₂₁ σ₁₂ re₂₃ : RingHomInvPair σ₂₃ σ₃₂ re₃₂ : RingHomInvPair σ₃₂ σ₂₃ f : M →ₛₗ[σ₁₂] M₂ g : M₂ →ₛₗ[σ₂₁] M e✝ : M ≃ₛₗ[σ₁₂] M₂ h : M₂ →ₛₗ[σ₂₃] M₃ e'' : M₂ ≃ₛₗ[σ₂₃] M₃ p q : Submodule R M inst✝ : Module R₂ M₂ e : { x // x ∈ p } ≃ₛₗ[σ₁₂] { x // x ∈ ⊥ } ⊢ p = ⊥ [PROOFSTEP] refine' bot_unique (SetLike.le_def.2 fun b hb => (Submodule.mem_bot R).2 _) [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝⁹ : Semiring R inst✝⁸ : Semiring R₂ inst✝⁷ : Semiring R₃ inst✝⁶ : Semiring R₄ inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M₂ inst✝³ : AddCommMonoid M₃ inst✝² : AddCommMonoid M₄ module_M : Module R M module_M₂ : Module R₂ M₂ module_M₃ : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₁ : R₂ →+* R σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ σ₃₂ : R₃ →+* R₂ re₁₂ : RingHomInvPair σ₁₂ σ₂₁ re₂₁ : RingHomInvPair σ₂₁ σ₁₂ re₂₃ : RingHomInvPair σ₂₃ σ₃₂ re₃₂ : RingHomInvPair σ₃₂ σ₂₃ f : M →ₛₗ[σ₁₂] M₂ g : M₂ →ₛₗ[σ₂₁] M e✝ : M ≃ₛₗ[σ₁₂] M₂ h : M₂ →ₛₗ[σ₂₃] M₃ e'' : M₂ ≃ₛₗ[σ₂₃] M₃ p q : Submodule R M inst✝ : Module R₂ M₂ e : { x // x ∈ p } ≃ₛₗ[σ₁₂] { x // x ∈ ⊥ } b : M hb : b ∈ p ⊢ b = 0 [PROOFSTEP] rw [← p.mk_eq_zero hb, ← e.map_eq_zero_iff] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝⁹ : Semiring R inst✝⁸ : Semiring R₂ inst✝⁷ : Semiring R₃ inst✝⁶ : Semiring R₄ inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M₂ inst✝³ : AddCommMonoid M₃ inst✝² : AddCommMonoid M₄ module_M : Module R M module_M₂ : Module R₂ M₂ module_M₃ : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₁ : R₂ →+* R σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝¹ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ σ₃₂ : R₃ →+* R₂ re₁₂ : RingHomInvPair σ₁₂ σ₂₁ re₂₁ : RingHomInvPair σ₂₁ σ₁₂ re₂₃ : RingHomInvPair σ₂₃ σ₃₂ re₃₂ : RingHomInvPair σ₃₂ σ₂₃ f : M →ₛₗ[σ₁₂] M₂ g : M₂ →ₛₗ[σ₂₁] M e✝ : M ≃ₛₗ[σ₁₂] M₂ h : M₂ →ₛₗ[σ₂₃] M₃ e'' : M₂ ≃ₛₗ[σ₂₃] M₃ p q : Submodule R M inst✝ : Module R₂ M₂ e : { x // x ∈ p } ≃ₛₗ[σ₁₂] { x // x ∈ ⊥ } b : M hb : b ∈ p ⊢ ↑e { val := b, property := hb } = 0 [PROOFSTEP] apply Submodule.eq_zero_of_bot_submodule [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁰ : Semiring R inst✝⁹ : Semiring R₂ inst✝⁸ : Semiring R₃ inst✝⁷ : Semiring R₄ inst✝⁶ : AddCommMonoid M inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : AddCommMonoid M₃ inst✝³ : AddCommMonoid M₄ module_M : Module R M module_M₂ : Module R₂ M₂ module_M₃ : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₁ : R₂ →+* R σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝² : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃ σ₃₂ : R₃ →+* R₂ re₁₂ : RingHomInvPair σ₁₂ σ₂₁ re₂₁ : RingHomInvPair σ₂₁ σ₁₂ re₂₃ : RingHomInvPair σ₂₃ σ₃₂ re₃₂ : RingHomInvPair σ₃₂ σ₂₃ f : M →ₛₗ[σ₁₂] M₂ g✝ : M₂ →ₛₗ[σ₂₁] M e : M ≃ₛₗ[σ₁₂] M₂ h✝ : M₂ →ₛₗ[σ₂₃] M₃ e'' : M₂ ≃ₛₗ[σ₂₃] M₃ p q : Submodule R M inst✝¹ : RingHomInvPair σ₁₂ σ₂₁ inst✝ : RingHomInvPair σ₂₁ σ₁₂ g : M₂ → M h : LeftInverse g ↑f src✝ : M →ₛₗ[σ₁₂] { x // x ∈ LinearMap.range f } := LinearMap.rangeRestrict f x : { x // x ∈ LinearMap.range f } x' : M hx' : ↑f x' = ↑x ⊢ ↑f (g ↑x) = ↑x [PROOFSTEP] rw [← hx', h x'] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝² : Semiring R inst✝¹ : AddCommGroup M inst✝ : Module R M x : M ⊢ ↑(neg R) x = -x [PROOFSTEP] simp [GOAL] R✝ : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁✝ : Type u_11 M₂✝ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁵ : CommSemiring R✝ inst✝¹⁴ : AddCommMonoid M inst✝¹³ : AddCommMonoid M₂✝ inst✝¹² : AddCommMonoid M₃ inst✝¹¹ : Module R✝ M inst✝¹⁰ : Module R✝ M₂✝ inst✝⁹ : Module R✝ M₃ R : Type ?u.2478657 M₁ : Type ?u.2478660 M₂ : Type ?u.2478663 M₂₁ : Type ?u.2478666 M₂₂ : Type ?u.2478669 inst✝⁸ : CommSemiring R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommMonoid M₂₁ inst✝⁴ : AddCommMonoid M₂₂ inst✝³ : Module R M₁ inst✝² : Module R M₂ inst✝¹ : Module R M₂₁ inst✝ : Module R M₂₂ e₁ : M₁ ≃ₗ[R] M₂ e₂ : M₂₁ ≃ₗ[R] M₂₂ f g : M₁ →ₗ[R] M₂₁ ⊢ (fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) (f + g) = (fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) f + (fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) g [PROOFSTEP] ext x [GOAL] case h R✝ : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁✝ : Type u_11 M₂✝ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁵ : CommSemiring R✝ inst✝¹⁴ : AddCommMonoid M inst✝¹³ : AddCommMonoid M₂✝ inst✝¹² : AddCommMonoid M₃ inst✝¹¹ : Module R✝ M inst✝¹⁰ : Module R✝ M₂✝ inst✝⁹ : Module R✝ M₃ R : Type ?u.2478657 M₁ : Type ?u.2478660 M₂ : Type ?u.2478663 M₂₁ : Type ?u.2478666 M₂₂ : Type ?u.2478669 inst✝⁸ : CommSemiring R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommMonoid M₂₁ inst✝⁴ : AddCommMonoid M₂₂ inst✝³ : Module R M₁ inst✝² : Module R M₂ inst✝¹ : Module R M₂₁ inst✝ : Module R M₂₂ e₁ : M₁ ≃ₗ[R] M₂ e₂ : M₂₁ ≃ₗ[R] M₂₂ f g : M₁ →ₗ[R] M₂₁ x : M₂ ⊢ ↑((fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) (f + g)) x = ↑((fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) f + (fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) g) x [PROOFSTEP] simp only [map_add, add_apply, Function.comp_apply, coe_comp, coe_coe] [GOAL] R✝ : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁✝ : Type u_11 M₂✝ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁵ : CommSemiring R✝ inst✝¹⁴ : AddCommMonoid M inst✝¹³ : AddCommMonoid M₂✝ inst✝¹² : AddCommMonoid M₃ inst✝¹¹ : Module R✝ M inst✝¹⁰ : Module R✝ M₂✝ inst✝⁹ : Module R✝ M₃ R : Type ?u.2478657 M₁ : Type ?u.2478660 M₂ : Type ?u.2478663 M₂₁ : Type ?u.2478666 M₂₂ : Type ?u.2478669 inst✝⁸ : CommSemiring R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommMonoid M₂₁ inst✝⁴ : AddCommMonoid M₂₂ inst✝³ : Module R M₁ inst✝² : Module R M₂ inst✝¹ : Module R M₂₁ inst✝ : Module R M₂₂ e₁ : M₁ ≃ₗ[R] M₂ e₂ : M₂₁ ≃ₗ[R] M₂₂ c : R f : M₁ →ₗ[R] M₂₁ ⊢ AddHom.toFun { toFun := fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁)), map_add' := (_ : ∀ (f g : M₁ →ₗ[R] M₂₁), (fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) (f + g) = (fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) f + (fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) g) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁)), map_add' := (_ : ∀ (f g : M₁ →ₗ[R] M₂₁), (fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) (f + g) = (fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) f + (fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) g) } f [PROOFSTEP] ext x [GOAL] case h R✝ : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁✝ : Type u_11 M₂✝ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁵ : CommSemiring R✝ inst✝¹⁴ : AddCommMonoid M inst✝¹³ : AddCommMonoid M₂✝ inst✝¹² : AddCommMonoid M₃ inst✝¹¹ : Module R✝ M inst✝¹⁰ : Module R✝ M₂✝ inst✝⁹ : Module R✝ M₃ R : Type ?u.2478657 M₁ : Type ?u.2478660 M₂ : Type ?u.2478663 M₂₁ : Type ?u.2478666 M₂₂ : Type ?u.2478669 inst✝⁸ : CommSemiring R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommMonoid M₂₁ inst✝⁴ : AddCommMonoid M₂₂ inst✝³ : Module R M₁ inst✝² : Module R M₂ inst✝¹ : Module R M₂₁ inst✝ : Module R M₂₂ e₁ : M₁ ≃ₗ[R] M₂ e₂ : M₂₁ ≃ₗ[R] M₂₂ c : R f : M₁ →ₗ[R] M₂₁ x : M₂ ⊢ ↑(AddHom.toFun { toFun := fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁)), map_add' := (_ : ∀ (f g : M₁ →ₗ[R] M₂₁), (fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) (f + g) = (fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) f + (fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) g) } (c • f)) x = ↑(↑(RingHom.id R) c • AddHom.toFun { toFun := fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁)), map_add' := (_ : ∀ (f g : M₁ →ₗ[R] M₂₁), (fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) (f + g) = (fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) f + (fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) g) } f) x [PROOFSTEP] simp only [smul_apply, Function.comp_apply, coe_comp, map_smulₛₗ e₂, coe_coe] [GOAL] R✝ : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁✝ : Type u_11 M₂✝ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁵ : CommSemiring R✝ inst✝¹⁴ : AddCommMonoid M inst✝¹³ : AddCommMonoid M₂✝ inst✝¹² : AddCommMonoid M₃ inst✝¹¹ : Module R✝ M inst✝¹⁰ : Module R✝ M₂✝ inst✝⁹ : Module R✝ M₃ R : Type ?u.2478657 M₁ : Type ?u.2478660 M₂ : Type ?u.2478663 M₂₁ : Type ?u.2478666 M₂₂ : Type ?u.2478669 inst✝⁸ : CommSemiring R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommMonoid M₂₁ inst✝⁴ : AddCommMonoid M₂₂ inst✝³ : Module R M₁ inst✝² : Module R M₂ inst✝¹ : Module R M₂₁ inst✝ : Module R M₂₂ e₁ : M₁ ≃ₗ[R] M₂ e₂ : M₂₁ ≃ₗ[R] M₂₂ f : M₁ →ₗ[R] M₂₁ ⊢ (fun f => LinearMap.comp (↑(symm e₂)) (LinearMap.comp f ↑e₁)) (AddHom.toFun { toAddHom := { toFun := fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁)), map_add' := (_ : ∀ (f g : M₁ →ₗ[R] M₂₁), (fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) (f + g) = (fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) f + (fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) g) }, map_smul' := (_ : ∀ (c : R) (f : M₁ →ₗ[R] M₂₁), AddHom.toFun { toFun := fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁)), map_add' := (_ : ∀ (f g : M₁ →ₗ[R] M₂₁), (fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) (f + g) = (fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) f + (fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) g) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁)), map_add' := (_ : ∀ (f g : M₁ →ₗ[R] M₂₁), (fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) (f + g) = (fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) f + (fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) g) } f) }.toAddHom f) = f [PROOFSTEP] ext x [GOAL] case h R✝ : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁✝ : Type u_11 M₂✝ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁵ : CommSemiring R✝ inst✝¹⁴ : AddCommMonoid M inst✝¹³ : AddCommMonoid M₂✝ inst✝¹² : AddCommMonoid M₃ inst✝¹¹ : Module R✝ M inst✝¹⁰ : Module R✝ M₂✝ inst✝⁹ : Module R✝ M₃ R : Type ?u.2478657 M₁ : Type ?u.2478660 M₂ : Type ?u.2478663 M₂₁ : Type ?u.2478666 M₂₂ : Type ?u.2478669 inst✝⁸ : CommSemiring R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommMonoid M₂₁ inst✝⁴ : AddCommMonoid M₂₂ inst✝³ : Module R M₁ inst✝² : Module R M₂ inst✝¹ : Module R M₂₁ inst✝ : Module R M₂₂ e₁ : M₁ ≃ₗ[R] M₂ e₂ : M₂₁ ≃ₗ[R] M₂₂ f : M₁ →ₗ[R] M₂₁ x : M₁ ⊢ ↑((fun f => LinearMap.comp (↑(symm e₂)) (LinearMap.comp f ↑e₁)) (AddHom.toFun { toAddHom := { toFun := fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁)), map_add' := (_ : ∀ (f g : M₁ →ₗ[R] M₂₁), (fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) (f + g) = (fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) f + (fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) g) }, map_smul' := (_ : ∀ (c : R) (f : M₁ →ₗ[R] M₂₁), AddHom.toFun { toFun := fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁)), map_add' := (_ : ∀ (f g : M₁ →ₗ[R] M₂₁), (fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) (f + g) = (fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) f + (fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) g) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁)), map_add' := (_ : ∀ (f g : M₁ →ₗ[R] M₂₁), (fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) (f + g) = (fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) f + (fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) g) } f) }.toAddHom f)) x = ↑f x [PROOFSTEP] simp only [symm_apply_apply, Function.comp_apply, coe_comp, coe_coe] [GOAL] R✝ : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁✝ : Type u_11 M₂✝ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁵ : CommSemiring R✝ inst✝¹⁴ : AddCommMonoid M inst✝¹³ : AddCommMonoid M₂✝ inst✝¹² : AddCommMonoid M₃ inst✝¹¹ : Module R✝ M inst✝¹⁰ : Module R✝ M₂✝ inst✝⁹ : Module R✝ M₃ R : Type ?u.2478657 M₁ : Type ?u.2478660 M₂ : Type ?u.2478663 M₂₁ : Type ?u.2478666 M₂₂ : Type ?u.2478669 inst✝⁸ : CommSemiring R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommMonoid M₂₁ inst✝⁴ : AddCommMonoid M₂₂ inst✝³ : Module R M₁ inst✝² : Module R M₂ inst✝¹ : Module R M₂₁ inst✝ : Module R M₂₂ e₁ : M₁ ≃ₗ[R] M₂ e₂ : M₂₁ ≃ₗ[R] M₂₂ f : M₂ →ₗ[R] M₂₂ ⊢ AddHom.toFun { toAddHom := { toFun := fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁)), map_add' := (_ : ∀ (f g : M₁ →ₗ[R] M₂₁), (fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) (f + g) = (fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) f + (fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) g) }, map_smul' := (_ : ∀ (c : R) (f : M₁ →ₗ[R] M₂₁), AddHom.toFun { toFun := fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁)), map_add' := (_ : ∀ (f g : M₁ →ₗ[R] M₂₁), (fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) (f + g) = (fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) f + (fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) g) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁)), map_add' := (_ : ∀ (f g : M₁ →ₗ[R] M₂₁), (fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) (f + g) = (fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) f + (fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) g) } f) }.toAddHom ((fun f => LinearMap.comp (↑(symm e₂)) (LinearMap.comp f ↑e₁)) f) = f [PROOFSTEP] ext x [GOAL] case h R✝ : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁✝ : Type u_11 M₂✝ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹⁵ : CommSemiring R✝ inst✝¹⁴ : AddCommMonoid M inst✝¹³ : AddCommMonoid M₂✝ inst✝¹² : AddCommMonoid M₃ inst✝¹¹ : Module R✝ M inst✝¹⁰ : Module R✝ M₂✝ inst✝⁹ : Module R✝ M₃ R : Type ?u.2478657 M₁ : Type ?u.2478660 M₂ : Type ?u.2478663 M₂₁ : Type ?u.2478666 M₂₂ : Type ?u.2478669 inst✝⁸ : CommSemiring R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommMonoid M₂₁ inst✝⁴ : AddCommMonoid M₂₂ inst✝³ : Module R M₁ inst✝² : Module R M₂ inst✝¹ : Module R M₂₁ inst✝ : Module R M₂₂ e₁ : M₁ ≃ₗ[R] M₂ e₂ : M₂₁ ≃ₗ[R] M₂₂ f : M₂ →ₗ[R] M₂₂ x : M₂ ⊢ ↑(AddHom.toFun { toAddHom := { toFun := fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁)), map_add' := (_ : ∀ (f g : M₁ →ₗ[R] M₂₁), (fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) (f + g) = (fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) f + (fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) g) }, map_smul' := (_ : ∀ (c : R) (f : M₁ →ₗ[R] M₂₁), AddHom.toFun { toFun := fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁)), map_add' := (_ : ∀ (f g : M₁ →ₗ[R] M₂₁), (fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) (f + g) = (fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) f + (fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) g) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁)), map_add' := (_ : ∀ (f g : M₁ →ₗ[R] M₂₁), (fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) (f + g) = (fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) f + (fun f => LinearMap.comp (↑e₂) (LinearMap.comp f ↑(symm e₁))) g) } f) }.toAddHom ((fun f => LinearMap.comp (↑(symm e₂)) (LinearMap.comp f ↑e₁)) f)) x = ↑f x [PROOFSTEP] simp only [Function.comp_apply, apply_symm_apply, coe_comp, coe_coe] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N✝ : Type u_15 N₂✝ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹² : CommSemiring R inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : AddCommMonoid M₃ inst✝⁸ : Module R M inst✝⁷ : Module R M₂ inst✝⁶ : Module R M₃ N : Type u_20 N₂ : Type u_21 N₃ : Type u_22 inst✝⁵ : AddCommMonoid N inst✝⁴ : AddCommMonoid N₂ inst✝³ : AddCommMonoid N₃ inst✝² : Module R N inst✝¹ : Module R N₂ inst✝ : Module R N₃ e₁ : M ≃ₗ[R] N e₂ : M₂ ≃ₗ[R] N₂ e₃ : M₃ ≃ₗ[R] N₃ f : M →ₗ[R] M₂ g : M₂ →ₗ[R] M₃ ⊢ ↑(arrowCongr e₁ e₃) (LinearMap.comp g f) = LinearMap.comp (↑(arrowCongr e₂ e₃) g) (↑(arrowCongr e₁ e₂) f) [PROOFSTEP] ext [GOAL] case h R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N✝ : Type u_15 N₂✝ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹² : CommSemiring R inst✝¹¹ : AddCommMonoid M inst✝¹⁰ : AddCommMonoid M₂ inst✝⁹ : AddCommMonoid M₃ inst✝⁸ : Module R M inst✝⁷ : Module R M₂ inst✝⁶ : Module R M₃ N : Type u_20 N₂ : Type u_21 N₃ : Type u_22 inst✝⁵ : AddCommMonoid N inst✝⁴ : AddCommMonoid N₂ inst✝³ : AddCommMonoid N₃ inst✝² : Module R N inst✝¹ : Module R N₂ inst✝ : Module R N₃ e₁ : M ≃ₗ[R] N e₂ : M₂ ≃ₗ[R] N₂ e₃ : M₃ ≃ₗ[R] N₃ f : M →ₗ[R] M₂ g : M₂ →ₗ[R] M₃ x✝ : N ⊢ ↑(↑(arrowCongr e₁ e₃) (LinearMap.comp g f)) x✝ = ↑(LinearMap.comp (↑(arrowCongr e₂ e₃) g) (↑(arrowCongr e₁ e₂) f)) x✝ [PROOFSTEP] simp only [symm_apply_apply, arrowCongr_apply, LinearMap.comp_apply] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝⁶ : CommSemiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M₂ inst✝³ : AddCommMonoid M₃ inst✝² : Module R M inst✝¹ : Module R M₂ inst✝ : Module R M₃ e₁ : M ≃ₗ[R] M₂ e₂ : M₂ ≃ₗ[R] M₃ ⊢ trans (conj e₁) (conj e₂) = conj (trans e₁ e₂) [PROOFSTEP] ext f x [GOAL] case h.h R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝⁶ : CommSemiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M₂ inst✝³ : AddCommMonoid M₃ inst✝² : Module R M inst✝¹ : Module R M₂ inst✝ : Module R M₃ e₁ : M ≃ₗ[R] M₂ e₂ : M₂ ≃ₗ[R] M₃ f : Module.End R M x : M₃ ⊢ ↑(↑(trans (conj e₁) (conj e₂)) f) x = ↑(↑(conj (trans e₁ e₂)) f) x [PROOFSTEP] rfl [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝⁶ : CommSemiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M₂ inst✝³ : AddCommMonoid M₃ inst✝² : Module R M inst✝¹ : Module R M₂ inst✝ : Module R M₃ e : M ≃ₗ[R] M₂ ⊢ ↑(conj e) LinearMap.id = LinearMap.id [PROOFSTEP] ext [GOAL] case h R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝⁶ : CommSemiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : AddCommMonoid M₂ inst✝³ : AddCommMonoid M₃ inst✝² : Module R M inst✝¹ : Module R M₂ inst✝ : Module R M₃ e : M ≃ₗ[R] M₂ x✝ : M₂ ⊢ ↑(↑(conj e) LinearMap.id) x✝ = ↑LinearMap.id x✝ [PROOFSTEP] simp [conj_apply] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M p : Submodule R M q : Submodule R { x // x ∈ p } ⊢ ∀ (c : { x // x ∈ q }), ↑(LinearMap.domRestrict (Submodule.subtype p) q) c ∈ map (Submodule.subtype p) q [PROOFSTEP] rintro ⟨x, hx⟩ [GOAL] case mk R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M p : Submodule R M q : Submodule R { x // x ∈ p } x : { x // x ∈ p } hx : x ∈ q ⊢ ↑(LinearMap.domRestrict (Submodule.subtype p) q) { val := x, property := hx } ∈ map (Submodule.subtype p) q [PROOFSTEP] exact ⟨x, hx, rfl⟩ [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M p : Submodule R M q : Submodule R { x // x ∈ p } src✝ : { x // x ∈ q } →ₗ[R] { x // x ∈ map (Submodule.subtype p) q } := LinearMap.codRestrict (map (Submodule.subtype p) q) (LinearMap.domRestrict (Submodule.subtype p) q) (_ : ∀ (c : { x // x ∈ q }), ↑(LinearMap.domRestrict (Submodule.subtype p) q) c ∈ map (Submodule.subtype p) q) ⊢ { x // x ∈ map (Submodule.subtype p) q } → { x // x ∈ q } [PROOFSTEP] rintro ⟨x, hx⟩ [GOAL] case mk R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M p : Submodule R M q : Submodule R { x // x ∈ p } src✝ : { x // x ∈ q } →ₗ[R] { x // x ∈ map (Submodule.subtype p) q } := LinearMap.codRestrict (map (Submodule.subtype p) q) (LinearMap.domRestrict (Submodule.subtype p) q) (_ : ∀ (c : { x // x ∈ q }), ↑(LinearMap.domRestrict (Submodule.subtype p) q) c ∈ map (Submodule.subtype p) q) x : M hx : x ∈ map (Submodule.subtype p) q ⊢ { x // x ∈ q } [PROOFSTEP] refine' ⟨⟨x, _⟩, _⟩ [GOAL] case mk.refine'_1 R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M p : Submodule R M q : Submodule R { x // x ∈ p } src✝ : { x // x ∈ q } →ₗ[R] { x // x ∈ map (Submodule.subtype p) q } := LinearMap.codRestrict (map (Submodule.subtype p) q) (LinearMap.domRestrict (Submodule.subtype p) q) (_ : ∀ (c : { x // x ∈ q }), ↑(LinearMap.domRestrict (Submodule.subtype p) q) c ∈ map (Submodule.subtype p) q) x : M hx : x ∈ map (Submodule.subtype p) q ⊢ x ∈ p [PROOFSTEP] rcases hx with ⟨⟨_, h⟩, _, rfl⟩ [GOAL] case mk.refine'_2 R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M p : Submodule R M q : Submodule R { x // x ∈ p } src✝ : { x // x ∈ q } →ₗ[R] { x // x ∈ map (Submodule.subtype p) q } := LinearMap.codRestrict (map (Submodule.subtype p) q) (LinearMap.domRestrict (Submodule.subtype p) q) (_ : ∀ (c : { x // x ∈ q }), ↑(LinearMap.domRestrict (Submodule.subtype p) q) c ∈ map (Submodule.subtype p) q) x : M hx : x ∈ map (Submodule.subtype p) q ⊢ { val := x, property := (_ : x ∈ p) } ∈ q [PROOFSTEP] rcases hx with ⟨⟨_, h⟩, _, rfl⟩ [GOAL] case mk.refine'_1.intro.mk.intro R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M p : Submodule R M q : Submodule R { x // x ∈ p } src✝ : { x // x ∈ q } →ₗ[R] { x // x ∈ map (Submodule.subtype p) q } := LinearMap.codRestrict (map (Submodule.subtype p) q) (LinearMap.domRestrict (Submodule.subtype p) q) (_ : ∀ (c : { x // x ∈ q }), ↑(LinearMap.domRestrict (Submodule.subtype p) q) c ∈ map (Submodule.subtype p) q) val✝ : M h : val✝ ∈ p left✝ : { val := val✝, property := h } ∈ ↑q ⊢ ↑(Submodule.subtype p) { val := val✝, property := h } ∈ p [PROOFSTEP] assumption [GOAL] case mk.refine'_2.intro.mk.intro R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M p : Submodule R M q : Submodule R { x // x ∈ p } src✝ : { x // x ∈ q } →ₗ[R] { x // x ∈ map (Submodule.subtype p) q } := LinearMap.codRestrict (map (Submodule.subtype p) q) (LinearMap.domRestrict (Submodule.subtype p) q) (_ : ∀ (c : { x // x ∈ q }), ↑(LinearMap.domRestrict (Submodule.subtype p) q) c ∈ map (Submodule.subtype p) q) val✝ : M h : val✝ ∈ p left✝ : { val := val✝, property := h } ∈ ↑q ⊢ { val := ↑(Submodule.subtype p) { val := val✝, property := h }, property := (_ : ↑(Submodule.subtype p) { val := val✝, property := h } ∈ p) } ∈ q [PROOFSTEP] assumption [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M p : Submodule R M q : Submodule R { x // x ∈ p } src✝ : { x // x ∈ q } →ₗ[R] { x // x ∈ map (Submodule.subtype p) q } := LinearMap.codRestrict (map (Submodule.subtype p) q) (LinearMap.domRestrict (Submodule.subtype p) q) (_ : ∀ (c : { x // x ∈ q }), ↑(LinearMap.domRestrict (Submodule.subtype p) q) c ∈ map (Submodule.subtype p) q) x✝ : { x // x ∈ map (Submodule.subtype p) q } x : M h : x ∈ p left✝ : { val := x, property := h } ∈ ↑q ⊢ AddHom.toFun { toAddHom := src✝.toAddHom, map_smul' := (_ : ∀ (r : R) (x : { x // x ∈ q }), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom (Subtype.casesOn { val := x, property := (_ : ∃ a, a ∈ ↑q ∧ ↑(Submodule.subtype p) a = x) } fun x hx => { val := { val := x, property := (_ : x ∈ p) }, property := (_ : { val := x, property := (_ : x ∈ p) } ∈ q) }) = { val := x, property := (_ : ∃ a, a ∈ ↑q ∧ ↑(Submodule.subtype p) a = x) } [PROOFSTEP] ext [GOAL] case a R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M p : Submodule R M q : Submodule R { x // x ∈ p } src✝ : { x // x ∈ q } →ₗ[R] { x // x ∈ map (Submodule.subtype p) q } := LinearMap.codRestrict (map (Submodule.subtype p) q) (LinearMap.domRestrict (Submodule.subtype p) q) (_ : ∀ (c : { x // x ∈ q }), ↑(LinearMap.domRestrict (Submodule.subtype p) q) c ∈ map (Submodule.subtype p) q) x✝ : { x // x ∈ map (Submodule.subtype p) q } x : M h : x ∈ p left✝ : { val := x, property := h } ∈ ↑q ⊢ ↑(AddHom.toFun { toAddHom := src✝.toAddHom, map_smul' := (_ : ∀ (r : R) (x : { x // x ∈ q }), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom (Subtype.casesOn { val := x, property := (_ : ∃ a, a ∈ ↑q ∧ ↑(Submodule.subtype p) a = x) } fun x hx => { val := { val := x, property := (_ : x ∈ p) }, property := (_ : { val := x, property := (_ : x ∈ p) } ∈ q) })) = ↑{ val := x, property := (_ : ∃ a, a ∈ ↑q ∧ ↑(Submodule.subtype p) a = x) } [PROOFSTEP] rfl [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M p : Submodule R M q : Submodule R { x // x ∈ p } x : { x // x ∈ map (Submodule.subtype p) q } ⊢ ↑↑(↑(LinearEquiv.symm (equivSubtypeMap p q)) x) = ↑x [PROOFSTEP] cases x [GOAL] case mk R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M p : Submodule R M q : Submodule R { x // x ∈ p } val✝ : M property✝ : val✝ ∈ map (Submodule.subtype p) q ⊢ ↑↑(↑(LinearEquiv.symm (equivSubtypeMap p q)) { val := val✝, property := property✝ }) = ↑{ val := val✝, property := property✝ } [PROOFSTEP] rfl [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M p q : Submodule R M hpq : p ≤ q x : { x // x ∈ comap (Submodule.subtype q) p } ⊢ (fun x => { val := { val := ↑x, property := (_ : ↑x ∈ q) }, property := (_ : ↑x ∈ p) }) (AddHom.toFun { toAddHom := { toFun := fun x => { val := ↑↑x, property := (_ : ↑x ∈ comap (Submodule.subtype q) p) }, map_add' := (_ : ∀ (x y : { x // x ∈ comap (Submodule.subtype q) p }), (fun x => { val := ↑↑x, property := (_ : ↑x ∈ comap (Submodule.subtype q) p) }) (x + y) = (fun x => { val := ↑↑x, property := (_ : ↑x ∈ comap (Submodule.subtype q) p) }) (x + y)) }, map_smul' := (_ : ∀ (c : R) (x : { x // x ∈ comap (Submodule.subtype q) p }), AddHom.toFun { toFun := fun x => { val := ↑↑x, property := (_ : ↑x ∈ comap (Submodule.subtype q) p) }, map_add' := (_ : ∀ (x y : { x // x ∈ comap (Submodule.subtype q) p }), (fun x => { val := ↑↑x, property := (_ : ↑x ∈ comap (Submodule.subtype q) p) }) (x + y) = (fun x => { val := ↑↑x, property := (_ : ↑x ∈ comap (Submodule.subtype q) p) }) (x + y)) } (c • x) = AddHom.toFun { toFun := fun x => { val := ↑↑x, property := (_ : ↑x ∈ comap (Submodule.subtype q) p) }, map_add' := (_ : ∀ (x y : { x // x ∈ comap (Submodule.subtype q) p }), (fun x => { val := ↑↑x, property := (_ : ↑x ∈ comap (Submodule.subtype q) p) }) (x + y) = (fun x => { val := ↑↑x, property := (_ : ↑x ∈ comap (Submodule.subtype q) p) }) (x + y)) } (c • x)) }.toAddHom x) = x [PROOFSTEP] simp only [coe_mk, SetLike.eta, LinearEquiv.coe_coe] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M p q : Submodule R M hpq : p ≤ q x : { x // x ∈ p } ⊢ AddHom.toFun { toAddHom := { toFun := fun x => { val := ↑↑x, property := (_ : ↑x ∈ comap (Submodule.subtype q) p) }, map_add' := (_ : ∀ (x y : { x // x ∈ comap (Submodule.subtype q) p }), (fun x => { val := ↑↑x, property := (_ : ↑x ∈ comap (Submodule.subtype q) p) }) (x + y) = (fun x => { val := ↑↑x, property := (_ : ↑x ∈ comap (Submodule.subtype q) p) }) (x + y)) }, map_smul' := (_ : ∀ (c : R) (x : { x // x ∈ comap (Submodule.subtype q) p }), AddHom.toFun { toFun := fun x => { val := ↑↑x, property := (_ : ↑x ∈ comap (Submodule.subtype q) p) }, map_add' := (_ : ∀ (x y : { x // x ∈ comap (Submodule.subtype q) p }), (fun x => { val := ↑↑x, property := (_ : ↑x ∈ comap (Submodule.subtype q) p) }) (x + y) = (fun x => { val := ↑↑x, property := (_ : ↑x ∈ comap (Submodule.subtype q) p) }) (x + y)) } (c • x) = AddHom.toFun { toFun := fun x => { val := ↑↑x, property := (_ : ↑x ∈ comap (Submodule.subtype q) p) }, map_add' := (_ : ∀ (x y : { x // x ∈ comap (Submodule.subtype q) p }), (fun x => { val := ↑↑x, property := (_ : ↑x ∈ comap (Submodule.subtype q) p) }) (x + y) = (fun x => { val := ↑↑x, property := (_ : ↑x ∈ comap (Submodule.subtype q) p) }) (x + y)) } (c • x)) }.toAddHom ((fun x => { val := { val := ↑x, property := (_ : ↑x ∈ q) }, property := (_ : ↑x ∈ p) }) x) = x [PROOFSTEP] simp only [Subtype.coe_mk, SetLike.eta, LinearEquiv.coe_coe] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹¹ : CommSemiring R inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : Module R M inst✝⁶ : Module R₂ M₂ inst✝⁵ : AddCommMonoid N inst✝⁴ : AddCommMonoid N₂ inst✝³ : Module R N inst✝² : Module R N₂ τ₁₂ : R →+* R₂ τ₂₁ : R₂ →+* R inst✝¹ : RingHomInvPair τ₁₂ τ₂₁ inst✝ : RingHomInvPair τ₂₁ τ₁₂ p : Submodule R M q : Submodule R₂ M₂ pₗ : Submodule R N qₗ : Submodule R N₂ e : M ≃ₛₗ[τ₁₂] M₂ x : M₂ ⊢ x ∈ map (↑e) p ↔ ↑(LinearEquiv.symm e) x ∈ p [PROOFSTEP] rw [Submodule.mem_map] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹¹ : CommSemiring R inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : Module R M inst✝⁶ : Module R₂ M₂ inst✝⁵ : AddCommMonoid N inst✝⁴ : AddCommMonoid N₂ inst✝³ : Module R N inst✝² : Module R N₂ τ₁₂ : R →+* R₂ τ₂₁ : R₂ →+* R inst✝¹ : RingHomInvPair τ₁₂ τ₂₁ inst✝ : RingHomInvPair τ₂₁ τ₁₂ p : Submodule R M q : Submodule R₂ M₂ pₗ : Submodule R N qₗ : Submodule R N₂ e : M ≃ₛₗ[τ₁₂] M₂ x : M₂ ⊢ (∃ y, y ∈ p ∧ ↑↑e y = x) ↔ ↑(LinearEquiv.symm e) x ∈ p [PROOFSTEP] constructor [GOAL] case mp R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹¹ : CommSemiring R inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : Module R M inst✝⁶ : Module R₂ M₂ inst✝⁵ : AddCommMonoid N inst✝⁴ : AddCommMonoid N₂ inst✝³ : Module R N inst✝² : Module R N₂ τ₁₂ : R →+* R₂ τ₂₁ : R₂ →+* R inst✝¹ : RingHomInvPair τ₁₂ τ₂₁ inst✝ : RingHomInvPair τ₂₁ τ₁₂ p : Submodule R M q : Submodule R₂ M₂ pₗ : Submodule R N qₗ : Submodule R N₂ e : M ≃ₛₗ[τ₁₂] M₂ x : M₂ ⊢ (∃ y, y ∈ p ∧ ↑↑e y = x) → ↑(LinearEquiv.symm e) x ∈ p [PROOFSTEP] rintro ⟨y, hy, hx⟩ [GOAL] case mp.intro.intro R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹¹ : CommSemiring R inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : Module R M inst✝⁶ : Module R₂ M₂ inst✝⁵ : AddCommMonoid N inst✝⁴ : AddCommMonoid N₂ inst✝³ : Module R N inst✝² : Module R N₂ τ₁₂ : R →+* R₂ τ₂₁ : R₂ →+* R inst✝¹ : RingHomInvPair τ₁₂ τ₂₁ inst✝ : RingHomInvPair τ₂₁ τ₁₂ p : Submodule R M q : Submodule R₂ M₂ pₗ : Submodule R N qₗ : Submodule R N₂ e : M ≃ₛₗ[τ₁₂] M₂ x : M₂ y : M hy : y ∈ p hx : ↑↑e y = x ⊢ ↑(LinearEquiv.symm e) x ∈ p [PROOFSTEP] simp [← hx, hy] [GOAL] case mpr R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹¹ : CommSemiring R inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : Module R M inst✝⁶ : Module R₂ M₂ inst✝⁵ : AddCommMonoid N inst✝⁴ : AddCommMonoid N₂ inst✝³ : Module R N inst✝² : Module R N₂ τ₁₂ : R →+* R₂ τ₂₁ : R₂ →+* R inst✝¹ : RingHomInvPair τ₁₂ τ₂₁ inst✝ : RingHomInvPair τ₂₁ τ₁₂ p : Submodule R M q : Submodule R₂ M₂ pₗ : Submodule R N qₗ : Submodule R N₂ e : M ≃ₛₗ[τ₁₂] M₂ x : M₂ ⊢ ↑(LinearEquiv.symm e) x ∈ p → ∃ y, y ∈ p ∧ ↑↑e y = x [PROOFSTEP] intro hx [GOAL] case mpr R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹¹ : CommSemiring R inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : Module R M inst✝⁶ : Module R₂ M₂ inst✝⁵ : AddCommMonoid N inst✝⁴ : AddCommMonoid N₂ inst✝³ : Module R N inst✝² : Module R N₂ τ₁₂ : R →+* R₂ τ₂₁ : R₂ →+* R inst✝¹ : RingHomInvPair τ₁₂ τ₂₁ inst✝ : RingHomInvPair τ₂₁ τ₁₂ p : Submodule R M q : Submodule R₂ M₂ pₗ : Submodule R N qₗ : Submodule R N₂ e : M ≃ₛₗ[τ₁₂] M₂ x : M₂ hx : ↑(LinearEquiv.symm e) x ∈ p ⊢ ∃ y, y ∈ p ∧ ↑↑e y = x [PROOFSTEP] refine' ⟨e.symm x, hx, by simp⟩ [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹¹ : CommSemiring R inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : Module R M inst✝⁶ : Module R₂ M₂ inst✝⁵ : AddCommMonoid N inst✝⁴ : AddCommMonoid N₂ inst✝³ : Module R N inst✝² : Module R N₂ τ₁₂ : R →+* R₂ τ₂₁ : R₂ →+* R inst✝¹ : RingHomInvPair τ₁₂ τ₂₁ inst✝ : RingHomInvPair τ₂₁ τ₁₂ p : Submodule R M q : Submodule R₂ M₂ pₗ : Submodule R N qₗ : Submodule R N₂ e : M ≃ₛₗ[τ₁₂] M₂ x : M₂ hx : ↑(LinearEquiv.symm e) x ∈ p ⊢ ↑↑e (↑(LinearEquiv.symm e) x) = x [PROOFSTEP] simp [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K✝ : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹¹ : CommSemiring R inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : Module R M inst✝⁶ : Module R₂ M₂ inst✝⁵ : AddCommMonoid N inst✝⁴ : AddCommMonoid N₂ inst✝³ : Module R N inst✝² : Module R N₂ τ₁₂ : R →+* R₂ τ₂₁ : R₂ →+* R inst✝¹ : RingHomInvPair τ₁₂ τ₂₁ inst✝ : RingHomInvPair τ₂₁ τ₁₂ p : Submodule R M q : Submodule R₂ M₂ pₗ : Submodule R N qₗ : Submodule R N₂ e : M ≃ₛₗ[τ₁₂] M₂ K : Submodule R M x✝ : M₂ ⊢ x✝ ∈ map (↑e) K ↔ x✝ ∈ comap (↑(LinearEquiv.symm e)) K [PROOFSTEP] rw [mem_map_equiv, mem_comap, LinearEquiv.coe_coe] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K✝ : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹¹ : CommSemiring R inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : Module R M inst✝⁶ : Module R₂ M₂ inst✝⁵ : AddCommMonoid N inst✝⁴ : AddCommMonoid N₂ inst✝³ : Module R N inst✝² : Module R N₂ τ₁₂ : R →+* R₂ τ₂₁ : R₂ →+* R inst✝¹ : RingHomInvPair τ₁₂ τ₂₁ inst✝ : RingHomInvPair τ₂₁ τ₁₂ p : Submodule R M q : Submodule R₂ M₂ pₗ : Submodule R N qₗ : Submodule R N₂ e : M ≃ₛₗ[τ₁₂] M₂ K : Submodule R₂ M₂ ⊢ map (LinearEquiv.symm e) K = p ↔ map e p = K [PROOFSTEP] constructor [GOAL] case mp R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K✝ : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹¹ : CommSemiring R inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : Module R M inst✝⁶ : Module R₂ M₂ inst✝⁵ : AddCommMonoid N inst✝⁴ : AddCommMonoid N₂ inst✝³ : Module R N inst✝² : Module R N₂ τ₁₂ : R →+* R₂ τ₂₁ : R₂ →+* R inst✝¹ : RingHomInvPair τ₁₂ τ₂₁ inst✝ : RingHomInvPair τ₂₁ τ₁₂ p : Submodule R M q : Submodule R₂ M₂ pₗ : Submodule R N qₗ : Submodule R N₂ e : M ≃ₛₗ[τ₁₂] M₂ K : Submodule R₂ M₂ ⊢ map (LinearEquiv.symm e) K = p → map e p = K [PROOFSTEP] rintro rfl [GOAL] case mpr R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K✝ : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹¹ : CommSemiring R inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : Module R M inst✝⁶ : Module R₂ M₂ inst✝⁵ : AddCommMonoid N inst✝⁴ : AddCommMonoid N₂ inst✝³ : Module R N inst✝² : Module R N₂ τ₁₂ : R →+* R₂ τ₂₁ : R₂ →+* R inst✝¹ : RingHomInvPair τ₁₂ τ₂₁ inst✝ : RingHomInvPair τ₂₁ τ₁₂ p : Submodule R M q : Submodule R₂ M₂ pₗ : Submodule R N qₗ : Submodule R N₂ e : M ≃ₛₗ[τ₁₂] M₂ K : Submodule R₂ M₂ ⊢ map e p = K → map (LinearEquiv.symm e) K = p [PROOFSTEP] rintro rfl [GOAL] case mp R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K✝ : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹¹ : CommSemiring R inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : Module R M inst✝⁶ : Module R₂ M₂ inst✝⁵ : AddCommMonoid N inst✝⁴ : AddCommMonoid N₂ inst✝³ : Module R N inst✝² : Module R N₂ τ₁₂ : R →+* R₂ τ₂₁ : R₂ →+* R inst✝¹ : RingHomInvPair τ₁₂ τ₂₁ inst✝ : RingHomInvPair τ₂₁ τ₁₂ q : Submodule R₂ M₂ pₗ : Submodule R N qₗ : Submodule R N₂ e : M ≃ₛₗ[τ₁₂] M₂ K : Submodule R₂ M₂ ⊢ map e (map (LinearEquiv.symm e) K) = K [PROOFSTEP] calc map e (map e.symm K) = comap e.symm (map e.symm K) := map_equiv_eq_comap_symm _ _ _ = K := comap_map_eq_of_injective e.symm.injective _ [GOAL] case mpr R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹¹ : CommSemiring R inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : Module R M inst✝⁶ : Module R₂ M₂ inst✝⁵ : AddCommMonoid N inst✝⁴ : AddCommMonoid N₂ inst✝³ : Module R N inst✝² : Module R N₂ τ₁₂ : R →+* R₂ τ₂₁ : R₂ →+* R inst✝¹ : RingHomInvPair τ₁₂ τ₂₁ inst✝ : RingHomInvPair τ₂₁ τ₁₂ p : Submodule R M q : Submodule R₂ M₂ pₗ : Submodule R N qₗ : Submodule R N₂ e : M ≃ₛₗ[τ₁₂] M₂ ⊢ map (LinearEquiv.symm e) (map e p) = p [PROOFSTEP] calc map e.symm (map e p) = comap e (map e p) := (comap_equiv_eq_map_symm _ _).symm _ = p := comap_map_eq_of_injective e.injective _ [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹¹ : CommSemiring R inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : Module R M inst✝⁶ : Module R₂ M₂ inst✝⁵ : AddCommMonoid N inst✝⁴ : AddCommMonoid N₂ inst✝³ : Module R N inst✝² : Module R N₂ τ₁₂ : R →+* R₂ τ₂₁ : R₂ →+* R inst✝¹ : RingHomInvPair τ₁₂ τ₂₁ inst✝ : RingHomInvPair τ₂₁ τ₁₂ p : Submodule R M q : Submodule R₂ M₂ pₗ : Submodule R N qₗ : Submodule R N₂ fₗ : N →ₗ[R] N₂ c : R ⊢ comap fₗ qₗ ≤ comap (c • fₗ) qₗ [PROOFSTEP] rw [SetLike.le_def] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹¹ : CommSemiring R inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : Module R M inst✝⁶ : Module R₂ M₂ inst✝⁵ : AddCommMonoid N inst✝⁴ : AddCommMonoid N₂ inst✝³ : Module R N inst✝² : Module R N₂ τ₁₂ : R →+* R₂ τ₂₁ : R₂ →+* R inst✝¹ : RingHomInvPair τ₁₂ τ₂₁ inst✝ : RingHomInvPair τ₂₁ τ₁₂ p : Submodule R M q : Submodule R₂ M₂ pₗ : Submodule R N qₗ : Submodule R N₂ fₗ : N →ₗ[R] N₂ c : R ⊢ ∀ ⦃x : N⦄, x ∈ comap fₗ qₗ → x ∈ comap (c • fₗ) qₗ [PROOFSTEP] intro m h [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹¹ : CommSemiring R inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : Module R M inst✝⁶ : Module R₂ M₂ inst✝⁵ : AddCommMonoid N inst✝⁴ : AddCommMonoid N₂ inst✝³ : Module R N inst✝² : Module R N₂ τ₁₂ : R →+* R₂ τ₂₁ : R₂ →+* R inst✝¹ : RingHomInvPair τ₁₂ τ₂₁ inst✝ : RingHomInvPair τ₂₁ τ₁₂ p : Submodule R M q : Submodule R₂ M₂ pₗ : Submodule R N qₗ : Submodule R N₂ fₗ : N →ₗ[R] N₂ c : R m : N h : m ∈ comap fₗ qₗ ⊢ m ∈ comap (c • fₗ) qₗ [PROOFSTEP] change c • fₗ m ∈ qₗ [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹¹ : CommSemiring R inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : Module R M inst✝⁶ : Module R₂ M₂ inst✝⁵ : AddCommMonoid N inst✝⁴ : AddCommMonoid N₂ inst✝³ : Module R N inst✝² : Module R N₂ τ₁₂ : R →+* R₂ τ₂₁ : R₂ →+* R inst✝¹ : RingHomInvPair τ₁₂ τ₂₁ inst✝ : RingHomInvPair τ₂₁ τ₁₂ p : Submodule R M q : Submodule R₂ M₂ pₗ : Submodule R N qₗ : Submodule R N₂ fₗ : N →ₗ[R] N₂ c : R m : N h : m ∈ comap fₗ qₗ ⊢ c • ↑fₗ m ∈ qₗ [PROOFSTEP] replace h : fₗ m ∈ qₗ := h [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹¹ : CommSemiring R inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : Module R M inst✝⁶ : Module R₂ M₂ inst✝⁵ : AddCommMonoid N inst✝⁴ : AddCommMonoid N₂ inst✝³ : Module R N inst✝² : Module R N₂ τ₁₂ : R →+* R₂ τ₂₁ : R₂ →+* R inst✝¹ : RingHomInvPair τ₁₂ τ₂₁ inst✝ : RingHomInvPair τ₂₁ τ₁₂ p : Submodule R M q : Submodule R₂ M₂ pₗ : Submodule R N qₗ : Submodule R N₂ fₗ : N →ₗ[R] N₂ c : R m : N h : ↑fₗ m ∈ qₗ ⊢ c • ↑fₗ m ∈ qₗ [PROOFSTEP] apply qₗ.smul_mem _ h [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹¹ : CommSemiring R inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : Module R M inst✝⁶ : Module R₂ M₂ inst✝⁵ : AddCommMonoid N inst✝⁴ : AddCommMonoid N₂ inst✝³ : Module R N inst✝² : Module R N₂ τ₁₂ : R →+* R₂ τ₂₁ : R₂ →+* R inst✝¹ : RingHomInvPair τ₁₂ τ₂₁ inst✝ : RingHomInvPair τ₂₁ τ₁₂ p : Submodule R M q : Submodule R₂ M₂ pₗ : Submodule R N qₗ : Submodule R N₂ f₁ f₂ : M →ₛₗ[τ₁₂] M₂ ⊢ comap f₁ q ⊓ comap f₂ q ≤ comap (f₁ + f₂) q [PROOFSTEP] rw [SetLike.le_def] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹¹ : CommSemiring R inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : Module R M inst✝⁶ : Module R₂ M₂ inst✝⁵ : AddCommMonoid N inst✝⁴ : AddCommMonoid N₂ inst✝³ : Module R N inst✝² : Module R N₂ τ₁₂ : R →+* R₂ τ₂₁ : R₂ →+* R inst✝¹ : RingHomInvPair τ₁₂ τ₂₁ inst✝ : RingHomInvPair τ₂₁ τ₁₂ p : Submodule R M q : Submodule R₂ M₂ pₗ : Submodule R N qₗ : Submodule R N₂ f₁ f₂ : M →ₛₗ[τ₁₂] M₂ ⊢ ∀ ⦃x : M⦄, x ∈ comap f₁ q ⊓ comap f₂ q → x ∈ comap (f₁ + f₂) q [PROOFSTEP] intro m h [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹¹ : CommSemiring R inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : Module R M inst✝⁶ : Module R₂ M₂ inst✝⁵ : AddCommMonoid N inst✝⁴ : AddCommMonoid N₂ inst✝³ : Module R N inst✝² : Module R N₂ τ₁₂ : R →+* R₂ τ₂₁ : R₂ →+* R inst✝¹ : RingHomInvPair τ₁₂ τ₂₁ inst✝ : RingHomInvPair τ₂₁ τ₁₂ p : Submodule R M q : Submodule R₂ M₂ pₗ : Submodule R N qₗ : Submodule R N₂ f₁ f₂ : M →ₛₗ[τ₁₂] M₂ m : M h : m ∈ comap f₁ q ⊓ comap f₂ q ⊢ m ∈ comap (f₁ + f₂) q [PROOFSTEP] change f₁ m + f₂ m ∈ q [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹¹ : CommSemiring R inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : Module R M inst✝⁶ : Module R₂ M₂ inst✝⁵ : AddCommMonoid N inst✝⁴ : AddCommMonoid N₂ inst✝³ : Module R N inst✝² : Module R N₂ τ₁₂ : R →+* R₂ τ₂₁ : R₂ →+* R inst✝¹ : RingHomInvPair τ₁₂ τ₂₁ inst✝ : RingHomInvPair τ₂₁ τ₁₂ p : Submodule R M q : Submodule R₂ M₂ pₗ : Submodule R N qₗ : Submodule R N₂ f₁ f₂ : M →ₛₗ[τ₁₂] M₂ m : M h : m ∈ comap f₁ q ⊓ comap f₂ q ⊢ ↑f₁ m + ↑f₂ m ∈ q [PROOFSTEP] replace h : f₁ m ∈ q ∧ f₂ m ∈ q := h [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹¹ : CommSemiring R inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : Module R M inst✝⁶ : Module R₂ M₂ inst✝⁵ : AddCommMonoid N inst✝⁴ : AddCommMonoid N₂ inst✝³ : Module R N inst✝² : Module R N₂ τ₁₂ : R →+* R₂ τ₂₁ : R₂ →+* R inst✝¹ : RingHomInvPair τ₁₂ τ₂₁ inst✝ : RingHomInvPair τ₂₁ τ₁₂ p : Submodule R M q : Submodule R₂ M₂ pₗ : Submodule R N qₗ : Submodule R N₂ f₁ f₂ : M →ₛₗ[τ₁₂] M₂ m : M h : ↑f₁ m ∈ q ∧ ↑f₂ m ∈ q ⊢ ↑f₁ m + ↑f₂ m ∈ q [PROOFSTEP] apply q.add_mem h.1 h.2 [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹¹ : CommSemiring R inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : Module R M inst✝⁶ : Module R₂ M₂ inst✝⁵ : AddCommMonoid N inst✝⁴ : AddCommMonoid N₂ inst✝³ : Module R N inst✝² : Module R N₂ τ₁₂ : R →+* R₂ τ₂₁ : R₂ →+* R inst✝¹ : RingHomInvPair τ₁₂ τ₂₁ inst✝ : RingHomInvPair τ₂₁ τ₁₂ p : Submodule R M q : Submodule R₂ M₂ pₗ : Submodule R N qₗ : Submodule R N₂ f₁ f₂ : N →ₗ[R] N₂ h₁ : f₁ ∈ {fₗ | pₗ ≤ comap fₗ qₗ} h₂ : f₂ ∈ {fₗ | pₗ ≤ comap fₗ qₗ} ⊢ f₁ + f₂ ∈ {fₗ | pₗ ≤ comap fₗ qₗ} [PROOFSTEP] apply le_trans _ (inf_comap_le_comap_add qₗ f₁ f₂) [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹¹ : CommSemiring R inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : Module R M inst✝⁶ : Module R₂ M₂ inst✝⁵ : AddCommMonoid N inst✝⁴ : AddCommMonoid N₂ inst✝³ : Module R N inst✝² : Module R N₂ τ₁₂ : R →+* R₂ τ₂₁ : R₂ →+* R inst✝¹ : RingHomInvPair τ₁₂ τ₂₁ inst✝ : RingHomInvPair τ₂₁ τ₁₂ p : Submodule R M q : Submodule R₂ M₂ pₗ : Submodule R N qₗ : Submodule R N₂ f₁ f₂ : N →ₗ[R] N₂ h₁ : f₁ ∈ {fₗ | pₗ ≤ comap fₗ qₗ} h₂ : f₂ ∈ {fₗ | pₗ ≤ comap fₗ qₗ} ⊢ pₗ ≤ comap f₁ qₗ ⊓ comap f₂ qₗ [PROOFSTEP] rw [le_inf_iff] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹¹ : CommSemiring R inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : Module R M inst✝⁶ : Module R₂ M₂ inst✝⁵ : AddCommMonoid N inst✝⁴ : AddCommMonoid N₂ inst✝³ : Module R N inst✝² : Module R N₂ τ₁₂ : R →+* R₂ τ₂₁ : R₂ →+* R inst✝¹ : RingHomInvPair τ₁₂ τ₂₁ inst✝ : RingHomInvPair τ₂₁ τ₁₂ p : Submodule R M q : Submodule R₂ M₂ pₗ : Submodule R N qₗ : Submodule R N₂ f₁ f₂ : N →ₗ[R] N₂ h₁ : f₁ ∈ {fₗ | pₗ ≤ comap fₗ qₗ} h₂ : f₂ ∈ {fₗ | pₗ ≤ comap fₗ qₗ} ⊢ pₗ ≤ comap f₁ qₗ ∧ pₗ ≤ comap f₂ qₗ [PROOFSTEP] exact ⟨h₁, h₂⟩ [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹¹ : CommSemiring R inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : Module R M inst✝⁶ : Module R₂ M₂ inst✝⁵ : AddCommMonoid N inst✝⁴ : AddCommMonoid N₂ inst✝³ : Module R N inst✝² : Module R N₂ τ₁₂ : R →+* R₂ τ₂₁ : R₂ →+* R inst✝¹ : RingHomInvPair τ₁₂ τ₂₁ inst✝ : RingHomInvPair τ₂₁ τ₁₂ p : Submodule R M q : Submodule R₂ M₂ pₗ : Submodule R N qₗ : Submodule R N₂ ⊢ 0 ∈ { carrier := {fₗ | pₗ ≤ comap fₗ qₗ}, add_mem' := (_ : ∀ {f₁ f₂ : N →ₗ[R] N₂}, f₁ ∈ {fₗ | pₗ ≤ comap fₗ qₗ} → f₂ ∈ {fₗ | pₗ ≤ comap fₗ qₗ} → pₗ ≤ comap (f₁ + f₂) qₗ) }.carrier [PROOFSTEP] change pₗ ≤ comap (0 : N →ₗ[R] N₂) qₗ [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹¹ : CommSemiring R inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : Module R M inst✝⁶ : Module R₂ M₂ inst✝⁵ : AddCommMonoid N inst✝⁴ : AddCommMonoid N₂ inst✝³ : Module R N inst✝² : Module R N₂ τ₁₂ : R →+* R₂ τ₂₁ : R₂ →+* R inst✝¹ : RingHomInvPair τ₁₂ τ₂₁ inst✝ : RingHomInvPair τ₂₁ τ₁₂ p : Submodule R M q : Submodule R₂ M₂ pₗ : Submodule R N qₗ : Submodule R N₂ ⊢ pₗ ≤ comap 0 qₗ [PROOFSTEP] rw [comap_zero] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹¹ : CommSemiring R inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : Module R M inst✝⁶ : Module R₂ M₂ inst✝⁵ : AddCommMonoid N inst✝⁴ : AddCommMonoid N₂ inst✝³ : Module R N inst✝² : Module R N₂ τ₁₂ : R →+* R₂ τ₂₁ : R₂ →+* R inst✝¹ : RingHomInvPair τ₁₂ τ₂₁ inst✝ : RingHomInvPair τ₂₁ τ₁₂ p : Submodule R M q : Submodule R₂ M₂ pₗ : Submodule R N qₗ : Submodule R N₂ ⊢ pₗ ≤ ⊤ [PROOFSTEP] refine' le_top [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹¹ : CommSemiring R inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : Module R M inst✝⁶ : Module R₂ M₂ inst✝⁵ : AddCommMonoid N inst✝⁴ : AddCommMonoid N₂ inst✝³ : Module R N inst✝² : Module R N₂ τ₁₂ : R →+* R₂ τ₂₁ : R₂ →+* R inst✝¹ : RingHomInvPair τ₁₂ τ₂₁ inst✝ : RingHomInvPair τ₂₁ τ₁₂ p : Submodule R M q : Submodule R₂ M₂ pₗ : Submodule R N qₗ : Submodule R N₂ c : R fₗ : N →ₗ[R] N₂ h : fₗ ∈ { toAddSubsemigroup := { carrier := {fₗ | pₗ ≤ comap fₗ qₗ}, add_mem' := (_ : ∀ {f₁ f₂ : N →ₗ[R] N₂}, f₁ ∈ {fₗ | pₗ ≤ comap fₗ qₗ} → f₂ ∈ {fₗ | pₗ ≤ comap fₗ qₗ} → pₗ ≤ comap (f₁ + f₂) qₗ) }, zero_mem' := (_ : pₗ ≤ comap 0 qₗ) }.toAddSubsemigroup.carrier ⊢ c • fₗ ∈ { toAddSubsemigroup := { carrier := {fₗ | pₗ ≤ comap fₗ qₗ}, add_mem' := (_ : ∀ {f₁ f₂ : N →ₗ[R] N₂}, f₁ ∈ {fₗ | pₗ ≤ comap fₗ qₗ} → f₂ ∈ {fₗ | pₗ ≤ comap fₗ qₗ} → pₗ ≤ comap (f₁ + f₂) qₗ) }, zero_mem' := (_ : pₗ ≤ comap 0 qₗ) }.toAddSubsemigroup.carrier [PROOFSTEP] dsimp at h [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝¹¹ : CommSemiring R inst✝¹⁰ : CommSemiring R₂ inst✝⁹ : AddCommMonoid M inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : Module R M inst✝⁶ : Module R₂ M₂ inst✝⁵ : AddCommMonoid N inst✝⁴ : AddCommMonoid N₂ inst✝³ : Module R N inst✝² : Module R N₂ τ₁₂ : R →+* R₂ τ₂₁ : R₂ →+* R inst✝¹ : RingHomInvPair τ₁₂ τ₂₁ inst✝ : RingHomInvPair τ₂₁ τ₁₂ p : Submodule R M q : Submodule R₂ M₂ pₗ : Submodule R N qₗ : Submodule R N₂ c : R fₗ : N →ₗ[R] N₂ h : pₗ ≤ comap fₗ qₗ ⊢ c • fₗ ∈ { toAddSubsemigroup := { carrier := {fₗ | pₗ ≤ comap fₗ qₗ}, add_mem' := (_ : ∀ {f₁ f₂ : N →ₗ[R] N₂}, f₁ ∈ {fₗ | pₗ ≤ comap fₗ qₗ} → f₂ ∈ {fₗ | pₗ ≤ comap fₗ qₗ} → pₗ ≤ comap (f₁ + f₂) qₗ) }, zero_mem' := (_ : pₗ ≤ comap 0 qₗ) }.toAddSubsemigroup.carrier [PROOFSTEP] exact le_trans h (comap_le_comap_smul qₗ fₗ c) [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M m : Type u_20 n : Type u_21 p : Type u_22 f : m → n hf : Injective f ⊢ Surjective ↑(funLeft R M f) [PROOFSTEP] classical intro g refine' ⟨fun x => if h : ∃ y, f y = x then g h.choose else 0, _⟩ · ext dsimp only [funLeft_apply] split_ifs with w · congr exact hf w.choose_spec · simp only [not_true, exists_apply_eq_apply] at w [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M m : Type u_20 n : Type u_21 p : Type u_22 f : m → n hf : Injective f ⊢ Surjective ↑(funLeft R M f) [PROOFSTEP] intro g [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M m : Type u_20 n : Type u_21 p : Type u_22 f : m → n hf : Injective f g : m → M ⊢ ∃ a, ↑(funLeft R M f) a = g [PROOFSTEP] refine' ⟨fun x => if h : ∃ y, f y = x then g h.choose else 0, _⟩ [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M m : Type u_20 n : Type u_21 p : Type u_22 f : m → n hf : Injective f g : m → M ⊢ (↑(funLeft R M f) fun x => if h : ∃ y, f y = x then g (Exists.choose h) else 0) = g [PROOFSTEP] ext [GOAL] case h R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M m : Type u_20 n : Type u_21 p : Type u_22 f : m → n hf : Injective f g : m → M x✝ : m ⊢ ↑(funLeft R M f) (fun x => if h : ∃ y, f y = x then g (Exists.choose h) else 0) x✝ = g x✝ [PROOFSTEP] dsimp only [funLeft_apply] [GOAL] case h R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M m : Type u_20 n : Type u_21 p : Type u_22 f : m → n hf : Injective f g : m → M x✝ : m ⊢ (if h : ∃ y, f y = f x✝ then g (Exists.choose h) else 0) = g x✝ [PROOFSTEP] split_ifs with w [GOAL] case pos R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M m : Type u_20 n : Type u_21 p : Type u_22 f : m → n hf : Injective f g : m → M x✝ : m w : ∃ y, f y = f x✝ ⊢ g (Exists.choose w) = g x✝ [PROOFSTEP] congr [GOAL] case pos.e_a R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M m : Type u_20 n : Type u_21 p : Type u_22 f : m → n hf : Injective f g : m → M x✝ : m w : ∃ y, f y = f x✝ ⊢ Exists.choose w = x✝ [PROOFSTEP] exact hf w.choose_spec [GOAL] case neg R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M m : Type u_20 n : Type u_21 p : Type u_22 f : m → n hf : Injective f g : m → M x✝ : m w : ¬∃ y, f y = f x✝ ⊢ 0 = g x✝ [PROOFSTEP] simp only [not_true, exists_apply_eq_apply] at w [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M m : Type u_20 n : Type u_21 p : Type u_22 f : m → n hf : Surjective f ⊢ Injective ↑(funLeft R M f) [PROOFSTEP] obtain ⟨g, hg⟩ := hf.hasRightInverse [GOAL] case intro R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M m : Type u_20 n : Type u_21 p : Type u_22 f : m → n hf : Surjective f g : n → m hg : Function.RightInverse g f ⊢ Injective ↑(funLeft R M f) [PROOFSTEP] suffices LeftInverse (funLeft R M g) (funLeft R M f) by exact this.injective [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M m : Type u_20 n : Type u_21 p : Type u_22 f : m → n hf : Surjective f g : n → m hg : Function.RightInverse g f this : LeftInverse ↑(funLeft R M g) ↑(funLeft R M f) ⊢ Injective ↑(funLeft R M f) [PROOFSTEP] exact this.injective [GOAL] case intro R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M m : Type u_20 n : Type u_21 p : Type u_22 f : m → n hf : Surjective f g : n → m hg : Function.RightInverse g f ⊢ LeftInverse ↑(funLeft R M g) ↑(funLeft R M f) [PROOFSTEP] intro x [GOAL] case intro R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M m : Type u_20 n : Type u_21 p : Type u_22 f : m → n hf : Surjective f g : n → m hg : Function.RightInverse g f x : n → M ⊢ ↑(funLeft R M g) (↑(funLeft R M f) x) = x [PROOFSTEP] rw [← LinearMap.comp_apply, ← funLeft_comp, hg.id, funLeft_id] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M m : Type u_20 n : Type u_21 p : Type u_22 e : m ≃ n x : m → M i : m ⊢ ↑(LinearMap.comp (funLeft R M ↑e) (funLeft R M ↑e.symm)) x i = ↑LinearMap.id x i [PROOFSTEP] rw [id_apply, ← funLeft_comp, Equiv.symm_comp_self, LinearMap.funLeft_id] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 R₃ : Type u_4 R₄ : Type u_5 S : Type u_6 K : Type u_7 K₂ : Type u_8 M : Type u_9 M' : Type u_10 M₁ : Type u_11 M₂ : Type u_12 M₃ : Type u_13 M₄ : Type u_14 N : Type u_15 N₂ : Type u_16 ι : Type u_17 V : Type u_18 V₂ : Type u_19 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M m : Type u_20 n : Type u_21 p : Type u_22 e : m ≃ n x : n → M i : n ⊢ ↑(LinearMap.comp (funLeft R M ↑e.symm) (funLeft R M ↑e)) x i = ↑LinearMap.id x i [PROOFSTEP] rw [id_apply, ← funLeft_comp, Equiv.self_comp_symm, LinearMap.funLeft_id]
{"mathlib_filename": "Mathlib.LinearAlgebra.Basic", "llama_tokens": 192002}
[GOAL] R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : AddCommGroup N inst✝¹ : Module R M inst✝ : Module R N Q : QuadraticForm R M l : List M f : M →ₗ[R] N →ₗ[R] N hf : ∀ (m : M) (x : N), ↑(↑f m) (↑(↑f m) x) = ↑Q m • x n : N ⊢ ↑(↑(foldr Q f hf) n) (List.prod (List.map (↑(ι Q)) l)) = List.foldr (fun m n => ↑(↑f m) n) n l [PROOFSTEP] induction' l with hd tl ih [GOAL] case nil R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : AddCommGroup N inst✝¹ : Module R M inst✝ : Module R N Q : QuadraticForm R M f : M →ₗ[R] N →ₗ[R] N hf : ∀ (m : M) (x : N), ↑(↑f m) (↑(↑f m) x) = ↑Q m • x n : N ⊢ ↑(↑(foldr Q f hf) n) (List.prod (List.map ↑(ι Q) [])) = List.foldr (fun m n => ↑(↑f m) n) n [] [PROOFSTEP] rw [List.map_nil, List.prod_nil, List.foldr_nil, foldr_one] [GOAL] case cons R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : AddCommGroup N inst✝¹ : Module R M inst✝ : Module R N Q : QuadraticForm R M f : M →ₗ[R] N →ₗ[R] N hf : ∀ (m : M) (x : N), ↑(↑f m) (↑(↑f m) x) = ↑Q m • x n : N hd : M tl : List M ih : ↑(↑(foldr Q f hf) n) (List.prod (List.map (↑(ι Q)) tl)) = List.foldr (fun m n => ↑(↑f m) n) n tl ⊢ ↑(↑(foldr Q f hf) n) (List.prod (List.map (↑(ι Q)) (hd :: tl))) = List.foldr (fun m n => ↑(↑f m) n) n (hd :: tl) [PROOFSTEP] rw [List.map_cons, List.prod_cons, List.foldr_cons, foldr_mul, foldr_ι, ih] [GOAL] R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : AddCommGroup N inst✝¹ : Module R M inst✝ : Module R N Q : QuadraticForm R M f : M →ₗ[R] N →ₗ[R] N hf : ∀ (m : M) (x : N), ↑(↑f m) (↑(↑f m) x) = ↑Q m • x n : N m : M ⊢ ↑(↑(foldl Q f hf) n) (↑(ι Q) m) = ↑(↑f m) n [PROOFSTEP] rw [← foldr_reverse, reverse_ι, foldr_ι] [GOAL] R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : AddCommGroup N inst✝¹ : Module R M inst✝ : Module R N Q : QuadraticForm R M f : M →ₗ[R] N →ₗ[R] N hf : ∀ (m : M) (x : N), ↑(↑f m) (↑(↑f m) x) = ↑Q m • x n : N r : R ⊢ ↑(↑(foldl Q f hf) n) (↑(algebraMap R (CliffordAlgebra Q)) r) = r • n [PROOFSTEP] rw [← foldr_reverse, reverse.commutes, foldr_algebraMap] [GOAL] R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : AddCommGroup N inst✝¹ : Module R M inst✝ : Module R N Q : QuadraticForm R M f : M →ₗ[R] N →ₗ[R] N hf : ∀ (m : M) (x : N), ↑(↑f m) (↑(↑f m) x) = ↑Q m • x n : N ⊢ ↑(↑(foldl Q f hf) n) 1 = n [PROOFSTEP] rw [← foldr_reverse, reverse.map_one, foldr_one] [GOAL] R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : AddCommGroup N inst✝¹ : Module R M inst✝ : Module R N Q : QuadraticForm R M f : M →ₗ[R] N →ₗ[R] N hf : ∀ (m : M) (x : N), ↑(↑f m) (↑(↑f m) x) = ↑Q m • x n : N a b : CliffordAlgebra Q ⊢ ↑(↑(foldl Q f hf) n) (a * b) = ↑(↑(foldl Q f hf) (↑(↑(foldl Q f hf) n) a)) b [PROOFSTEP] rw [← foldr_reverse, ← foldr_reverse, ← foldr_reverse, reverse.map_mul, foldr_mul] [GOAL] R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : AddCommGroup N inst✝¹ : Module R M inst✝ : Module R N Q : QuadraticForm R M l : List M f : M →ₗ[R] N →ₗ[R] N hf : ∀ (m : M) (x : N), ↑(↑f m) (↑(↑f m) x) = ↑Q m • x n : N ⊢ ↑(↑(foldl Q f hf) n) (List.prod (List.map (↑(ι Q)) l)) = List.foldl (fun m n => ↑(↑f n) m) n l [PROOFSTEP] rw [← foldr_reverse, reverse_prod_map_ι, ← List.map_reverse, foldr_prod_map_ι, List.foldr_reverse] [GOAL] R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : AddCommGroup N inst✝¹ : Module R M inst✝ : Module R N Q : QuadraticForm R M P : CliffordAlgebra Q → Prop hr : ∀ (r : R), P (↑(algebraMap R (CliffordAlgebra Q)) r) h_add : ∀ (x y : CliffordAlgebra Q), P x → P y → P (x + y) h_ι_mul : ∀ (m : M) (x : CliffordAlgebra Q), P x → P (x * ↑(ι Q) m) ⊢ ∀ (x : CliffordAlgebra Q), P x [PROOFSTEP] intro x [GOAL] R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : AddCommGroup N inst✝¹ : Module R M inst✝ : Module R N Q : QuadraticForm R M P : CliffordAlgebra Q → Prop hr : ∀ (r : R), P (↑(algebraMap R (CliffordAlgebra Q)) r) h_add : ∀ (x y : CliffordAlgebra Q), P x → P y → P (x + y) h_ι_mul : ∀ (m : M) (x : CliffordAlgebra Q), P x → P (x * ↑(ι Q) m) x : CliffordAlgebra Q ⊢ P x [PROOFSTEP] have : x ∈ ⊤ := Submodule.mem_top (R := R) [GOAL] R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : AddCommGroup N inst✝¹ : Module R M inst✝ : Module R N Q : QuadraticForm R M P : CliffordAlgebra Q → Prop hr : ∀ (r : R), P (↑(algebraMap R (CliffordAlgebra Q)) r) h_add : ∀ (x y : CliffordAlgebra Q), P x → P y → P (x + y) h_ι_mul : ∀ (m : M) (x : CliffordAlgebra Q), P x → P (x * ↑(ι Q) m) x : CliffordAlgebra Q this : x ∈ ⊤ ⊢ P x [PROOFSTEP] rw [← iSup_ι_range_eq_top] at this [GOAL] R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : AddCommGroup N inst✝¹ : Module R M inst✝ : Module R N Q : QuadraticForm R M P : CliffordAlgebra Q → Prop hr : ∀ (r : R), P (↑(algebraMap R (CliffordAlgebra Q)) r) h_add : ∀ (x y : CliffordAlgebra Q), P x → P y → P (x + y) h_ι_mul : ∀ (m : M) (x : CliffordAlgebra Q), P x → P (x * ↑(ι Q) m) x : CliffordAlgebra Q this : x ∈ ⨆ (i : ℕ), LinearMap.range (ι Q) ^ i ⊢ P x [PROOFSTEP] induction this using Submodule.iSup_induction' with -- _ this (fun i x hx => ?_) _ h_add | hp i x hx => induction hx using Submodule.pow_induction_on_right' with | hr r => exact hr r | hadd _x _y _i _ _ ihx ihy => exact h_add _ _ ihx ihy | hmul _i x _hx px m hm => obtain ⟨m, rfl⟩ := hm exact h_ι_mul _ _ px | h0 => simpa only [map_zero] using hr 0 | hadd _x _y _ _ ihx ihy => exact h_add _ _ ihx ihy [GOAL] R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : AddCommGroup N inst✝¹ : Module R M inst✝ : Module R N Q : QuadraticForm R M P : CliffordAlgebra Q → Prop hr : ∀ (r : R), P (↑(algebraMap R (CliffordAlgebra Q)) r) h_add : ∀ (x y : CliffordAlgebra Q), P x → P y → P (x + y) h_ι_mul : ∀ (m : M) (x : CliffordAlgebra Q), P x → P (x * ↑(ι Q) m) x : CliffordAlgebra Q this : x ∈ ⨆ (i : ℕ), LinearMap.range (ι Q) ^ i ⊢ P x [PROOFSTEP] induction this using Submodule.iSup_induction' with -- _ this (fun i x hx => ?_) _ h_add | hp i x hx => induction hx using Submodule.pow_induction_on_right' with | hr r => exact hr r | hadd _x _y _i _ _ ihx ihy => exact h_add _ _ ihx ihy | hmul _i x _hx px m hm => obtain ⟨m, rfl⟩ := hm exact h_ι_mul _ _ px | h0 => simpa only [map_zero] using hr 0 | hadd _x _y _ _ ihx ihy => exact h_add _ _ ihx ihy [GOAL] case hp R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : AddCommGroup N inst✝¹ : Module R M inst✝ : Module R N Q : QuadraticForm R M P : CliffordAlgebra Q → Prop hr : ∀ (r : R), P (↑(algebraMap R (CliffordAlgebra Q)) r) h_add : ∀ (x y : CliffordAlgebra Q), P x → P y → P (x + y) h_ι_mul : ∀ (m : M) (x : CliffordAlgebra Q), P x → P (x * ↑(ι Q) m) x✝ : CliffordAlgebra Q i : ℕ x : CliffordAlgebra Q hx : x ∈ LinearMap.range (ι Q) ^ i ⊢ P x [PROOFSTEP] | hp i x hx => induction hx using Submodule.pow_induction_on_right' with | hr r => exact hr r | hadd _x _y _i _ _ ihx ihy => exact h_add _ _ ihx ihy | hmul _i x _hx px m hm => obtain ⟨m, rfl⟩ := hm exact h_ι_mul _ _ px [GOAL] case hp R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : AddCommGroup N inst✝¹ : Module R M inst✝ : Module R N Q : QuadraticForm R M P : CliffordAlgebra Q → Prop hr : ∀ (r : R), P (↑(algebraMap R (CliffordAlgebra Q)) r) h_add : ∀ (x y : CliffordAlgebra Q), P x → P y → P (x + y) h_ι_mul : ∀ (m : M) (x : CliffordAlgebra Q), P x → P (x * ↑(ι Q) m) x✝ : CliffordAlgebra Q i : ℕ x : CliffordAlgebra Q hx : x ∈ LinearMap.range (ι Q) ^ i ⊢ P x [PROOFSTEP] induction hx using Submodule.pow_induction_on_right' with | hr r => exact hr r | hadd _x _y _i _ _ ihx ihy => exact h_add _ _ ihx ihy | hmul _i x _hx px m hm => obtain ⟨m, rfl⟩ := hm exact h_ι_mul _ _ px [GOAL] case hp R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : AddCommGroup N inst✝¹ : Module R M inst✝ : Module R N Q : QuadraticForm R M P : CliffordAlgebra Q → Prop hr : ∀ (r : R), P (↑(algebraMap R (CliffordAlgebra Q)) r) h_add : ∀ (x y : CliffordAlgebra Q), P x → P y → P (x + y) h_ι_mul : ∀ (m : M) (x : CliffordAlgebra Q), P x → P (x * ↑(ι Q) m) x✝ : CliffordAlgebra Q i : ℕ x : CliffordAlgebra Q hx : x ∈ LinearMap.range (ι Q) ^ i ⊢ P x [PROOFSTEP] induction hx using Submodule.pow_induction_on_right' with | hr r => exact hr r | hadd _x _y _i _ _ ihx ihy => exact h_add _ _ ihx ihy | hmul _i x _hx px m hm => obtain ⟨m, rfl⟩ := hm exact h_ι_mul _ _ px [GOAL] case hp.hr R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : AddCommGroup N inst✝¹ : Module R M inst✝ : Module R N Q : QuadraticForm R M P : CliffordAlgebra Q → Prop hr : ∀ (r : R), P (↑(algebraMap R (CliffordAlgebra Q)) r) h_add : ∀ (x y : CliffordAlgebra Q), P x → P y → P (x + y) h_ι_mul : ∀ (m : M) (x : CliffordAlgebra Q), P x → P (x * ↑(ι Q) m) x✝ : CliffordAlgebra Q i : ℕ x : CliffordAlgebra Q r : R ⊢ P (↑(algebraMap R (CliffordAlgebra Q)) r) [PROOFSTEP] | hr r => exact hr r [GOAL] case hp.hr R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : AddCommGroup N inst✝¹ : Module R M inst✝ : Module R N Q : QuadraticForm R M P : CliffordAlgebra Q → Prop hr : ∀ (r : R), P (↑(algebraMap R (CliffordAlgebra Q)) r) h_add : ∀ (x y : CliffordAlgebra Q), P x → P y → P (x + y) h_ι_mul : ∀ (m : M) (x : CliffordAlgebra Q), P x → P (x * ↑(ι Q) m) x✝ : CliffordAlgebra Q i : ℕ x : CliffordAlgebra Q r : R ⊢ P (↑(algebraMap R (CliffordAlgebra Q)) r) [PROOFSTEP] exact hr r [GOAL] case hp.hadd R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : AddCommGroup N inst✝¹ : Module R M inst✝ : Module R N Q : QuadraticForm R M P : CliffordAlgebra Q → Prop hr : ∀ (r : R), P (↑(algebraMap R (CliffordAlgebra Q)) r) h_add : ∀ (x y : CliffordAlgebra Q), P x → P y → P (x + y) h_ι_mul : ∀ (m : M) (x : CliffordAlgebra Q), P x → P (x * ↑(ι Q) m) x✝ : CliffordAlgebra Q i : ℕ x _x _y : CliffordAlgebra Q _i : ℕ hx✝ : _x ∈ LinearMap.range (ι Q) ^ _i hy✝ : _y ∈ LinearMap.range (ι Q) ^ _i ihx : P _x ihy : P _y ⊢ P (_x + _y) [PROOFSTEP] | hadd _x _y _i _ _ ihx ihy => exact h_add _ _ ihx ihy [GOAL] case hp.hadd R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : AddCommGroup N inst✝¹ : Module R M inst✝ : Module R N Q : QuadraticForm R M P : CliffordAlgebra Q → Prop hr : ∀ (r : R), P (↑(algebraMap R (CliffordAlgebra Q)) r) h_add : ∀ (x y : CliffordAlgebra Q), P x → P y → P (x + y) h_ι_mul : ∀ (m : M) (x : CliffordAlgebra Q), P x → P (x * ↑(ι Q) m) x✝ : CliffordAlgebra Q i : ℕ x _x _y : CliffordAlgebra Q _i : ℕ hx✝ : _x ∈ LinearMap.range (ι Q) ^ _i hy✝ : _y ∈ LinearMap.range (ι Q) ^ _i ihx : P _x ihy : P _y ⊢ P (_x + _y) [PROOFSTEP] exact h_add _ _ ihx ihy [GOAL] case hp.hmul R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : AddCommGroup N inst✝¹ : Module R M inst✝ : Module R N Q : QuadraticForm R M P : CliffordAlgebra Q → Prop hr : ∀ (r : R), P (↑(algebraMap R (CliffordAlgebra Q)) r) h_add : ∀ (x y : CliffordAlgebra Q), P x → P y → P (x + y) h_ι_mul : ∀ (m : M) (x : CliffordAlgebra Q), P x → P (x * ↑(ι Q) m) x✝¹ : CliffordAlgebra Q i : ℕ x✝ : CliffordAlgebra Q _i : ℕ x : CliffordAlgebra Q _hx : x ∈ LinearMap.range (ι Q) ^ _i px : P x m : CliffordAlgebra Q hm : m ∈ LinearMap.range (ι Q) ⊢ P (x * m) [PROOFSTEP] | hmul _i x _hx px m hm => obtain ⟨m, rfl⟩ := hm exact h_ι_mul _ _ px [GOAL] case hp.hmul R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : AddCommGroup N inst✝¹ : Module R M inst✝ : Module R N Q : QuadraticForm R M P : CliffordAlgebra Q → Prop hr : ∀ (r : R), P (↑(algebraMap R (CliffordAlgebra Q)) r) h_add : ∀ (x y : CliffordAlgebra Q), P x → P y → P (x + y) h_ι_mul : ∀ (m : M) (x : CliffordAlgebra Q), P x → P (x * ↑(ι Q) m) x✝¹ : CliffordAlgebra Q i : ℕ x✝ : CliffordAlgebra Q _i : ℕ x : CliffordAlgebra Q _hx : x ∈ LinearMap.range (ι Q) ^ _i px : P x m : CliffordAlgebra Q hm : m ∈ LinearMap.range (ι Q) ⊢ P (x * m) [PROOFSTEP] obtain ⟨m, rfl⟩ := hm [GOAL] case hp.hmul.intro R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : AddCommGroup N inst✝¹ : Module R M inst✝ : Module R N Q : QuadraticForm R M P : CliffordAlgebra Q → Prop hr : ∀ (r : R), P (↑(algebraMap R (CliffordAlgebra Q)) r) h_add : ∀ (x y : CliffordAlgebra Q), P x → P y → P (x + y) h_ι_mul : ∀ (m : M) (x : CliffordAlgebra Q), P x → P (x * ↑(ι Q) m) x✝¹ : CliffordAlgebra Q i : ℕ x✝ : CliffordAlgebra Q _i : ℕ x : CliffordAlgebra Q _hx : x ∈ LinearMap.range (ι Q) ^ _i px : P x m : M ⊢ P (x * ↑(ι Q) m) [PROOFSTEP] exact h_ι_mul _ _ px [GOAL] case h0 R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : AddCommGroup N inst✝¹ : Module R M inst✝ : Module R N Q : QuadraticForm R M P : CliffordAlgebra Q → Prop hr : ∀ (r : R), P (↑(algebraMap R (CliffordAlgebra Q)) r) h_add : ∀ (x y : CliffordAlgebra Q), P x → P y → P (x + y) h_ι_mul : ∀ (m : M) (x : CliffordAlgebra Q), P x → P (x * ↑(ι Q) m) x : CliffordAlgebra Q ⊢ P 0 [PROOFSTEP] | h0 => simpa only [map_zero] using hr 0 [GOAL] case h0 R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : AddCommGroup N inst✝¹ : Module R M inst✝ : Module R N Q : QuadraticForm R M P : CliffordAlgebra Q → Prop hr : ∀ (r : R), P (↑(algebraMap R (CliffordAlgebra Q)) r) h_add : ∀ (x y : CliffordAlgebra Q), P x → P y → P (x + y) h_ι_mul : ∀ (m : M) (x : CliffordAlgebra Q), P x → P (x * ↑(ι Q) m) x : CliffordAlgebra Q ⊢ P 0 [PROOFSTEP] simpa only [map_zero] using hr 0 [GOAL] case hadd R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : AddCommGroup N inst✝¹ : Module R M inst✝ : Module R N Q : QuadraticForm R M P : CliffordAlgebra Q → Prop hr : ∀ (r : R), P (↑(algebraMap R (CliffordAlgebra Q)) r) h_add : ∀ (x y : CliffordAlgebra Q), P x → P y → P (x + y) h_ι_mul : ∀ (m : M) (x : CliffordAlgebra Q), P x → P (x * ↑(ι Q) m) x _x _y : CliffordAlgebra Q hx✝ : _x ∈ ⨆ (i : ℕ), LinearMap.range (ι Q) ^ i hy✝ : _y ∈ ⨆ (i : ℕ), LinearMap.range (ι Q) ^ i ihx : P _x ihy : P _y ⊢ P (_x + _y) [PROOFSTEP] | hadd _x _y _ _ ihx ihy => exact h_add _ _ ihx ihy [GOAL] case hadd R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : AddCommGroup N inst✝¹ : Module R M inst✝ : Module R N Q : QuadraticForm R M P : CliffordAlgebra Q → Prop hr : ∀ (r : R), P (↑(algebraMap R (CliffordAlgebra Q)) r) h_add : ∀ (x y : CliffordAlgebra Q), P x → P y → P (x + y) h_ι_mul : ∀ (m : M) (x : CliffordAlgebra Q), P x → P (x * ↑(ι Q) m) x _x _y : CliffordAlgebra Q hx✝ : _x ∈ ⨆ (i : ℕ), LinearMap.range (ι Q) ^ i hy✝ : _y ∈ ⨆ (i : ℕ), LinearMap.range (ι Q) ^ i ihx : P _x ihy : P _y ⊢ P (_x + _y) [PROOFSTEP] exact h_add _ _ ihx ihy [GOAL] R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : AddCommGroup N inst✝¹ : Module R M inst✝ : Module R N Q : QuadraticForm R M P : CliffordAlgebra Q → Prop hr : ∀ (r : R), P (↑(algebraMap R (CliffordAlgebra Q)) r) h_add : ∀ (x y : CliffordAlgebra Q), P x → P y → P (x + y) h_mul_ι : ∀ (x : CliffordAlgebra Q) (m : M), P x → P (↑(ι Q) m * x) ⊢ ∀ (x : CliffordAlgebra Q), P x [PROOFSTEP] refine' reverse_involutive.surjective.forall.2 _ [GOAL] R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : AddCommGroup N inst✝¹ : Module R M inst✝ : Module R N Q : QuadraticForm R M P : CliffordAlgebra Q → Prop hr : ∀ (r : R), P (↑(algebraMap R (CliffordAlgebra Q)) r) h_add : ∀ (x y : CliffordAlgebra Q), P x → P y → P (x + y) h_mul_ι : ∀ (x : CliffordAlgebra Q) (m : M), P x → P (↑(ι Q) m * x) ⊢ ∀ (x : CliffordAlgebra Q), P (↑reverse x) [PROOFSTEP] intro x [GOAL] R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : AddCommGroup N inst✝¹ : Module R M inst✝ : Module R N Q : QuadraticForm R M P : CliffordAlgebra Q → Prop hr : ∀ (r : R), P (↑(algebraMap R (CliffordAlgebra Q)) r) h_add : ∀ (x y : CliffordAlgebra Q), P x → P y → P (x + y) h_mul_ι : ∀ (x : CliffordAlgebra Q) (m : M), P x → P (↑(ι Q) m * x) x : CliffordAlgebra Q ⊢ P (↑reverse x) [PROOFSTEP] induction' x using CliffordAlgebra.right_induction with r x y hx hy m x hx [GOAL] case hr R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : AddCommGroup N inst✝¹ : Module R M inst✝ : Module R N Q : QuadraticForm R M P : CliffordAlgebra Q → Prop hr : ∀ (r : R), P (↑(algebraMap R (CliffordAlgebra Q)) r) h_add : ∀ (x y : CliffordAlgebra Q), P x → P y → P (x + y) h_mul_ι : ∀ (x : CliffordAlgebra Q) (m : M), P x → P (↑(ι Q) m * x) r : R ⊢ P (↑reverse (↑(algebraMap R (CliffordAlgebra Q)) r)) [PROOFSTEP] simpa only [reverse.commutes] using hr r [GOAL] case h_add R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : AddCommGroup N inst✝¹ : Module R M inst✝ : Module R N Q : QuadraticForm R M P : CliffordAlgebra Q → Prop hr : ∀ (r : R), P (↑(algebraMap R (CliffordAlgebra Q)) r) h_add : ∀ (x y : CliffordAlgebra Q), P x → P y → P (x + y) h_mul_ι : ∀ (x : CliffordAlgebra Q) (m : M), P x → P (↑(ι Q) m * x) x y : CliffordAlgebra Q hx : P (↑reverse x) hy : P (↑reverse y) ⊢ P (↑reverse (x + y)) [PROOFSTEP] simpa only [map_add] using h_add _ _ hx hy [GOAL] case h_ι_mul R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : AddCommGroup N inst✝¹ : Module R M inst✝ : Module R N Q : QuadraticForm R M P : CliffordAlgebra Q → Prop hr : ∀ (r : R), P (↑(algebraMap R (CliffordAlgebra Q)) r) h_add : ∀ (x y : CliffordAlgebra Q), P x → P y → P (x + y) h_mul_ι : ∀ (x : CliffordAlgebra Q) (m : M), P x → P (↑(ι Q) m * x) m : M x : CliffordAlgebra Q hx : P (↑reverse x) ⊢ P (↑reverse (x * ↑(ι Q) m)) [PROOFSTEP] simpa only [reverse.map_mul, reverse_ι] using h_mul_ι _ _ hx [GOAL] R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : AddCommGroup N inst✝¹ : Module R M inst✝ : Module R N Q : QuadraticForm R M f : M →ₗ[R] CliffordAlgebra Q × N →ₗ[R] N ⊢ M →ₗ[R] Module.End R (CliffordAlgebra Q × N) [PROOFSTEP] have v_mul := (Algebra.lmul R (CliffordAlgebra Q)).toLinearMap ∘ₗ ι Q [GOAL] R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : AddCommGroup N inst✝¹ : Module R M inst✝ : Module R N Q : QuadraticForm R M f : M →ₗ[R] CliffordAlgebra Q × N →ₗ[R] N v_mul : M →ₗ[R] Module.End R (CliffordAlgebra Q) ⊢ M →ₗ[R] Module.End R (CliffordAlgebra Q × N) [PROOFSTEP] have l := v_mul.compl₂ (LinearMap.fst _ _ N) [GOAL] R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : AddCommGroup N inst✝¹ : Module R M inst✝ : Module R N Q : QuadraticForm R M f : M →ₗ[R] CliffordAlgebra Q × N →ₗ[R] N v_mul : M →ₗ[R] Module.End R (CliffordAlgebra Q) l : M →ₗ[R] CliffordAlgebra Q × N →ₗ[R] CliffordAlgebra Q ⊢ M →ₗ[R] Module.End R (CliffordAlgebra Q × N) [PROOFSTEP] exact { toFun := fun m => (l m).prod (f m) map_add' := fun v₂ v₂ => LinearMap.ext fun x => Prod.ext (LinearMap.congr_fun (l.map_add _ _) x) (LinearMap.congr_fun (f.map_add _ _) x) map_smul' := fun c v => LinearMap.ext fun x => Prod.ext (LinearMap.congr_fun (l.map_smul _ _) x) (LinearMap.congr_fun (f.map_smul _ _) x) } [GOAL] R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : AddCommGroup N inst✝¹ : Module R M inst✝ : Module R N Q : QuadraticForm R M f : M →ₗ[R] CliffordAlgebra Q × N →ₗ[R] N hf : ∀ (m : M) (x : CliffordAlgebra Q) (fx : N), ↑(↑f m) (↑(ι Q) m * x, ↑(↑f m) (x, fx)) = ↑Q m • fx v : M x_fx : CliffordAlgebra Q × N ⊢ ↑(↑(foldr'Aux Q f) v) (↑(↑(foldr'Aux Q f) v) x_fx) = ↑Q v • x_fx [PROOFSTEP] cases' x_fx with x fx [GOAL] case mk R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : AddCommGroup N inst✝¹ : Module R M inst✝ : Module R N Q : QuadraticForm R M f : M →ₗ[R] CliffordAlgebra Q × N →ₗ[R] N hf : ∀ (m : M) (x : CliffordAlgebra Q) (fx : N), ↑(↑f m) (↑(ι Q) m * x, ↑(↑f m) (x, fx)) = ↑Q m • fx v : M x : CliffordAlgebra Q fx : N ⊢ ↑(↑(foldr'Aux Q f) v) (↑(↑(foldr'Aux Q f) v) (x, fx)) = ↑Q v • (x, fx) [PROOFSTEP] simp only [foldr'Aux_apply_apply] [GOAL] case mk R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : AddCommGroup N inst✝¹ : Module R M inst✝ : Module R N Q : QuadraticForm R M f : M →ₗ[R] CliffordAlgebra Q × N →ₗ[R] N hf : ∀ (m : M) (x : CliffordAlgebra Q) (fx : N), ↑(↑f m) (↑(ι Q) m * x, ↑(↑f m) (x, fx)) = ↑Q m • fx v : M x : CliffordAlgebra Q fx : N ⊢ (↑(ι Q) v * (↑(ι Q) v * x), ↑(↑f v) (↑(ι Q) v * x, ↑(↑f v) (x, fx))) = ↑Q v • (x, fx) [PROOFSTEP] rw [← mul_assoc, ι_sq_scalar, ← Algebra.smul_def, hf, Prod.smul_mk] [GOAL] R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : AddCommGroup N inst✝¹ : Module R M inst✝ : Module R N Q : QuadraticForm R M f : M →ₗ[R] CliffordAlgebra Q × N →ₗ[R] N hf : ∀ (m : M) (x : CliffordAlgebra Q) (fx : N), ↑(↑f m) (↑(ι Q) m * x, ↑(↑f m) (x, fx)) = ↑Q m • fx n : N m : M x : CliffordAlgebra Q ⊢ ↑(foldr' Q f hf n) (↑(ι Q) m * x) = ↑(↑f m) (x, ↑(foldr' Q f hf n) x) [PROOFSTEP] dsimp [foldr'] [GOAL] R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : AddCommGroup N inst✝¹ : Module R M inst✝ : Module R N Q : QuadraticForm R M f : M →ₗ[R] CliffordAlgebra Q × N →ₗ[R] N hf : ∀ (m : M) (x : CliffordAlgebra Q) (fx : N), ↑(↑f m) (↑(ι Q) m * x, ↑(↑f m) (x, fx)) = ↑Q m • fx n : N m : M x : CliffordAlgebra Q ⊢ (↑(↑(foldr Q (foldr'Aux Q f) (_ : ∀ (v : M) (x_fx : CliffordAlgebra Q × N), ↑(↑(foldr'Aux Q f) v) (↑(↑(foldr'Aux Q f) v) x_fx) = ↑Q v • x_fx)) (1, n)) (↑(ι Q) m * x)).snd = ↑(↑f m) (x, (↑(↑(foldr Q (foldr'Aux Q f) (_ : ∀ (v : M) (x_fx : CliffordAlgebra Q × N), ↑(↑(foldr'Aux Q f) v) (↑(↑(foldr'Aux Q f) v) x_fx) = ↑Q v • x_fx)) (1, n)) x).snd) [PROOFSTEP] rw [foldr_mul, foldr_ι, foldr'Aux_apply_apply] [GOAL] R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : AddCommGroup N inst✝¹ : Module R M inst✝ : Module R N Q : QuadraticForm R M f : M →ₗ[R] CliffordAlgebra Q × N →ₗ[R] N hf : ∀ (m : M) (x : CliffordAlgebra Q) (fx : N), ↑(↑f m) (↑(ι Q) m * x, ↑(↑f m) (x, fx)) = ↑Q m • fx n : N m : M x : CliffordAlgebra Q ⊢ (↑(ι Q) m * (↑(↑(foldr Q (foldr'Aux Q f) (_ : ∀ (v : M) (x_fx : CliffordAlgebra Q × N), ↑(↑(foldr'Aux Q f) v) (↑(↑(foldr'Aux Q f) v) x_fx) = ↑Q v • x_fx)) (1, n)) x).fst, ↑(↑f m) (↑(↑(foldr Q (foldr'Aux Q f) (_ : ∀ (v : M) (x_fx : CliffordAlgebra Q × N), ↑(↑(foldr'Aux Q f) v) (↑(↑(foldr'Aux Q f) v) x_fx) = ↑Q v • x_fx)) (1, n)) x)).snd = ↑(↑f m) (x, (↑(↑(foldr Q (foldr'Aux Q f) (_ : ∀ (v : M) (x_fx : CliffordAlgebra Q × N), ↑(↑(foldr'Aux Q f) v) (↑(↑(foldr'Aux Q f) v) x_fx) = ↑Q v • x_fx)) (1, n)) x).snd) [PROOFSTEP] refine' congr_arg (f m) (Prod.mk.eta.symm.trans _) [GOAL] R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : AddCommGroup N inst✝¹ : Module R M inst✝ : Module R N Q : QuadraticForm R M f : M →ₗ[R] CliffordAlgebra Q × N →ₗ[R] N hf : ∀ (m : M) (x : CliffordAlgebra Q) (fx : N), ↑(↑f m) (↑(ι Q) m * x, ↑(↑f m) (x, fx)) = ↑Q m • fx n : N m : M x : CliffordAlgebra Q ⊢ ((↑(↑(foldr Q (foldr'Aux Q f) (_ : ∀ (v : M) (x_fx : CliffordAlgebra Q × N), ↑(↑(foldr'Aux Q f) v) (↑(↑(foldr'Aux Q f) v) x_fx) = ↑Q v • x_fx)) (1, n)) x).fst, (↑(↑(foldr Q (foldr'Aux Q f) (_ : ∀ (v : M) (x_fx : CliffordAlgebra Q × N), ↑(↑(foldr'Aux Q f) v) (↑(↑(foldr'Aux Q f) v) x_fx) = ↑Q v • x_fx)) (1, n)) x).snd) = (x, (↑(↑(foldr Q (foldr'Aux Q f) (_ : ∀ (v : M) (x_fx : CliffordAlgebra Q × N), ↑(↑(foldr'Aux Q f) v) (↑(↑(foldr'Aux Q f) v) x_fx) = ↑Q v • x_fx)) (1, n)) x).snd) [PROOFSTEP] congr 1 [GOAL] case e_fst R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : AddCommGroup N inst✝¹ : Module R M inst✝ : Module R N Q : QuadraticForm R M f : M →ₗ[R] CliffordAlgebra Q × N →ₗ[R] N hf : ∀ (m : M) (x : CliffordAlgebra Q) (fx : N), ↑(↑f m) (↑(ι Q) m * x, ↑(↑f m) (x, fx)) = ↑Q m • fx n : N m : M x : CliffordAlgebra Q ⊢ (↑(↑(foldr Q (foldr'Aux Q f) (_ : ∀ (v : M) (x_fx : CliffordAlgebra Q × N), ↑(↑(foldr'Aux Q f) v) (↑(↑(foldr'Aux Q f) v) x_fx) = ↑Q v • x_fx)) (1, n)) x).fst = x [PROOFSTEP] induction' x using CliffordAlgebra.left_induction with r x y hx hy m x hx [GOAL] case e_fst.hr R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : AddCommGroup N inst✝¹ : Module R M inst✝ : Module R N Q : QuadraticForm R M f : M →ₗ[R] CliffordAlgebra Q × N →ₗ[R] N hf : ∀ (m : M) (x : CliffordAlgebra Q) (fx : N), ↑(↑f m) (↑(ι Q) m * x, ↑(↑f m) (x, fx)) = ↑Q m • fx n : N m : M r : R ⊢ (↑(↑(foldr Q (foldr'Aux Q f) (_ : ∀ (v : M) (x_fx : CliffordAlgebra Q × N), ↑(↑(foldr'Aux Q f) v) (↑(↑(foldr'Aux Q f) v) x_fx) = ↑Q v • x_fx)) (1, n)) (↑(algebraMap R (CliffordAlgebra Q)) r)).fst = ↑(algebraMap R (CliffordAlgebra Q)) r [PROOFSTEP] simp_rw [foldr_algebraMap, Prod.smul_mk, Algebra.algebraMap_eq_smul_one] [GOAL] case e_fst.h_add R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : AddCommGroup N inst✝¹ : Module R M inst✝ : Module R N Q : QuadraticForm R M f : M →ₗ[R] CliffordAlgebra Q × N →ₗ[R] N hf : ∀ (m : M) (x : CliffordAlgebra Q) (fx : N), ↑(↑f m) (↑(ι Q) m * x, ↑(↑f m) (x, fx)) = ↑Q m • fx n : N m : M x y : CliffordAlgebra Q hx : (↑(↑(foldr Q (foldr'Aux Q f) (_ : ∀ (v : M) (x_fx : CliffordAlgebra Q × N), ↑(↑(foldr'Aux Q f) v) (↑(↑(foldr'Aux Q f) v) x_fx) = ↑Q v • x_fx)) (1, n)) x).fst = x hy : (↑(↑(foldr Q (foldr'Aux Q f) (_ : ∀ (v : M) (x_fx : CliffordAlgebra Q × N), ↑(↑(foldr'Aux Q f) v) (↑(↑(foldr'Aux Q f) v) x_fx) = ↑Q v • x_fx)) (1, n)) y).fst = y ⊢ (↑(↑(foldr Q (foldr'Aux Q f) (_ : ∀ (v : M) (x_fx : CliffordAlgebra Q × N), ↑(↑(foldr'Aux Q f) v) (↑(↑(foldr'Aux Q f) v) x_fx) = ↑Q v • x_fx)) (1, n)) (x + y)).fst = x + y [PROOFSTEP] rw [map_add, Prod.fst_add, hx, hy] [GOAL] case e_fst.h_mul_ι R : Type u_1 M : Type u_2 N : Type u_3 inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : AddCommGroup N inst✝¹ : Module R M inst✝ : Module R N Q : QuadraticForm R M f : M →ₗ[R] CliffordAlgebra Q × N →ₗ[R] N hf : ∀ (m : M) (x : CliffordAlgebra Q) (fx : N), ↑(↑f m) (↑(ι Q) m * x, ↑(↑f m) (x, fx)) = ↑Q m • fx n : N m✝ : M m : CliffordAlgebra Q x : M hx : (↑(↑(foldr Q (foldr'Aux Q f) (_ : ∀ (v : M) (x_fx : CliffordAlgebra Q × N), ↑(↑(foldr'Aux Q f) v) (↑(↑(foldr'Aux Q f) v) x_fx) = ↑Q v • x_fx)) (1, n)) m).fst = m ⊢ (↑(↑(foldr Q (foldr'Aux Q f) (_ : ∀ (v : M) (x_fx : CliffordAlgebra Q × N), ↑(↑(foldr'Aux Q f) v) (↑(↑(foldr'Aux Q f) v) x_fx) = ↑Q v • x_fx)) (1, n)) (↑(ι Q) x * m)).fst = ↑(ι Q) x * m [PROOFSTEP] rw [foldr_mul, foldr_ι, foldr'Aux_apply_apply, hx]
{"mathlib_filename": "Mathlib.LinearAlgebra.CliffordAlgebra.Fold", "llama_tokens": 14319}
[GOAL] k : Type u_1 E : Type u_2 PE : Type u_3 inst✝³ : OrderedRing k inst✝² : OrderedAddCommGroup E inst✝¹ : Module k E inst✝ : OrderedSMul k E a a' b b' : E r r' : k ha : a ≤ a' hr : r ≤ 1 ⊢ ↑(lineMap a b) r ≤ ↑(lineMap a' b) r [PROOFSTEP] simp only [lineMap_apply_module] [GOAL] k : Type u_1 E : Type u_2 PE : Type u_3 inst✝³ : OrderedRing k inst✝² : OrderedAddCommGroup E inst✝¹ : Module k E inst✝ : OrderedSMul k E a a' b b' : E r r' : k ha : a ≤ a' hr : r ≤ 1 ⊢ (1 - r) • a + r • b ≤ (1 - r) • a' + r • b [PROOFSTEP] exact add_le_add_right (smul_le_smul_of_nonneg ha (sub_nonneg.2 hr)) _ [GOAL] k : Type u_1 E : Type u_2 PE : Type u_3 inst✝³ : OrderedRing k inst✝² : OrderedAddCommGroup E inst✝¹ : Module k E inst✝ : OrderedSMul k E a a' b b' : E r r' : k ha : a < a' hr : r < 1 ⊢ ↑(lineMap a b) r < ↑(lineMap a' b) r [PROOFSTEP] simp only [lineMap_apply_module] [GOAL] k : Type u_1 E : Type u_2 PE : Type u_3 inst✝³ : OrderedRing k inst✝² : OrderedAddCommGroup E inst✝¹ : Module k E inst✝ : OrderedSMul k E a a' b b' : E r r' : k ha : a < a' hr : r < 1 ⊢ (1 - r) • a + r • b < (1 - r) • a' + r • b [PROOFSTEP] exact add_lt_add_right (smul_lt_smul_of_pos ha (sub_pos.2 hr)) _ [GOAL] k : Type u_1 E : Type u_2 PE : Type u_3 inst✝³ : OrderedRing k inst✝² : OrderedAddCommGroup E inst✝¹ : Module k E inst✝ : OrderedSMul k E a a' b b' : E r r' : k hb : b ≤ b' hr : 0 ≤ r ⊢ ↑(lineMap a b) r ≤ ↑(lineMap a b') r [PROOFSTEP] simp only [lineMap_apply_module] [GOAL] k : Type u_1 E : Type u_2 PE : Type u_3 inst✝³ : OrderedRing k inst✝² : OrderedAddCommGroup E inst✝¹ : Module k E inst✝ : OrderedSMul k E a a' b b' : E r r' : k hb : b ≤ b' hr : 0 ≤ r ⊢ (1 - r) • a + r • b ≤ (1 - r) • a + r • b' [PROOFSTEP] exact add_le_add_left (smul_le_smul_of_nonneg hb hr) _ [GOAL] k : Type u_1 E : Type u_2 PE : Type u_3 inst✝³ : OrderedRing k inst✝² : OrderedAddCommGroup E inst✝¹ : Module k E inst✝ : OrderedSMul k E a a' b b' : E r r' : k hb : b < b' hr : 0 < r ⊢ ↑(lineMap a b) r < ↑(lineMap a b') r [PROOFSTEP] simp only [lineMap_apply_module] [GOAL] k : Type u_1 E : Type u_2 PE : Type u_3 inst✝³ : OrderedRing k inst✝² : OrderedAddCommGroup E inst✝¹ : Module k E inst✝ : OrderedSMul k E a a' b b' : E r r' : k hb : b < b' hr : 0 < r ⊢ (1 - r) • a + r • b < (1 - r) • a + r • b' [PROOFSTEP] exact add_lt_add_left (smul_lt_smul_of_pos hb hr) _ [GOAL] k : Type u_1 E : Type u_2 PE : Type u_3 inst✝³ : OrderedRing k inst✝² : OrderedAddCommGroup E inst✝¹ : Module k E inst✝ : OrderedSMul k E a a' b b' : E r r' : k ha : a < a' hb : b < b' h₀ : 0 ≤ r h₁ : r ≤ 1 ⊢ ↑(lineMap a b) r < ↑(lineMap a' b') r [PROOFSTEP] rcases h₀.eq_or_lt with (rfl | h₀) [GOAL] case inl k : Type u_1 E : Type u_2 PE : Type u_3 inst✝³ : OrderedRing k inst✝² : OrderedAddCommGroup E inst✝¹ : Module k E inst✝ : OrderedSMul k E a a' b b' : E r' : k ha : a < a' hb : b < b' h₀ : 0 ≤ 0 h₁ : 0 ≤ 1 ⊢ ↑(lineMap a b) 0 < ↑(lineMap a' b') 0 [PROOFSTEP] simpa [GOAL] case inr k : Type u_1 E : Type u_2 PE : Type u_3 inst✝³ : OrderedRing k inst✝² : OrderedAddCommGroup E inst✝¹ : Module k E inst✝ : OrderedSMul k E a a' b b' : E r r' : k ha : a < a' hb : b < b' h₀✝ : 0 ≤ r h₁ : r ≤ 1 h₀ : 0 < r ⊢ ↑(lineMap a b) r < ↑(lineMap a' b') r [PROOFSTEP] exact (lineMap_mono_left ha.le h₁).trans_lt (lineMap_strict_mono_right hb h₀) [GOAL] k : Type u_1 E : Type u_2 PE : Type u_3 inst✝³ : OrderedRing k inst✝² : OrderedAddCommGroup E inst✝¹ : Module k E inst✝ : OrderedSMul k E a a' b b' : E r r' : k h : r < r' ⊢ ↑(lineMap a b) r < ↑(lineMap a b) r' ↔ a < b [PROOFSTEP] simp only [lineMap_apply_module] [GOAL] k : Type u_1 E : Type u_2 PE : Type u_3 inst✝³ : OrderedRing k inst✝² : OrderedAddCommGroup E inst✝¹ : Module k E inst✝ : OrderedSMul k E a a' b b' : E r r' : k h : r < r' ⊢ (1 - r) • a + r • b < (1 - r') • a + r' • b ↔ a < b [PROOFSTEP] rw [← lt_sub_iff_add_lt, add_sub_assoc, ← sub_lt_iff_lt_add', ← sub_smul, ← sub_smul, sub_sub_sub_cancel_left, smul_lt_smul_iff_of_pos (sub_pos.2 h)] [GOAL] k : Type u_1 E : Type u_2 PE : Type u_3 inst✝³ : OrderedRing k inst✝² : OrderedAddCommGroup E inst✝¹ : Module k E inst✝ : OrderedSMul k E a a' b b' : E r r' : k h : 0 < r ⊢ a < ↑(lineMap a b) r ↔ ↑(lineMap a b) 0 < ↑(lineMap a b) r [PROOFSTEP] rw [lineMap_apply_zero] [GOAL] k : Type u_1 E : Type u_2 PE : Type u_3 inst✝³ : OrderedRing k inst✝² : OrderedAddCommGroup E inst✝¹ : Module k E inst✝ : OrderedSMul k E a a' b b' : E r r' : k h : r < 1 ⊢ ↑(lineMap a b) r < b ↔ ↑(lineMap a b) r < ↑(lineMap a b) 1 [PROOFSTEP] rw [lineMap_apply_one] [GOAL] k : Type u_1 E : Type u_2 PE : Type u_3 inst✝³ : LinearOrderedField k inst✝² : OrderedAddCommGroup E inst✝¹ : Module k E inst✝ : OrderedSMul k E a b : E r r' : k h : r < r' ⊢ ↑(lineMap a b) r ≤ ↑(lineMap a b) r' ↔ a ≤ b [PROOFSTEP] simp only [lineMap_apply_module] [GOAL] k : Type u_1 E : Type u_2 PE : Type u_3 inst✝³ : LinearOrderedField k inst✝² : OrderedAddCommGroup E inst✝¹ : Module k E inst✝ : OrderedSMul k E a b : E r r' : k h : r < r' ⊢ (1 - r) • a + r • b ≤ (1 - r') • a + r' • b ↔ a ≤ b [PROOFSTEP] rw [← le_sub_iff_add_le, add_sub_assoc, ← sub_le_iff_le_add', ← sub_smul, ← sub_smul, sub_sub_sub_cancel_left, smul_le_smul_iff_of_pos (sub_pos.2 h)] [GOAL] k : Type u_1 E : Type u_2 PE : Type u_3 inst✝³ : LinearOrderedField k inst✝² : OrderedAddCommGroup E inst✝¹ : Module k E inst✝ : OrderedSMul k E a b : E r r' : k h : 0 < r ⊢ a ≤ ↑(lineMap a b) r ↔ ↑(lineMap a b) 0 ≤ ↑(lineMap a b) r [PROOFSTEP] rw [lineMap_apply_zero] [GOAL] k : Type u_1 E : Type u_2 PE : Type u_3 inst✝³ : LinearOrderedField k inst✝² : OrderedAddCommGroup E inst✝¹ : Module k E inst✝ : OrderedSMul k E a b : E r r' : k h : r < 1 ⊢ ↑(lineMap a b) r ≤ b ↔ ↑(lineMap a b) r ≤ ↑(lineMap a b) 1 [PROOFSTEP] rw [lineMap_apply_one] [GOAL] k : Type u_1 E : Type u_2 PE : Type u_3 inst✝³ : LinearOrderedField k inst✝² : OrderedAddCommGroup E inst✝¹ : Module k E inst✝ : OrderedSMul k E f : k → E a b r : k h : 0 < r * (b - a) ⊢ f (↑(lineMap a b) r) ≤ ↑(lineMap (f a) (f b)) r ↔ slope f a (↑(lineMap a b) r) ≤ slope f a b [PROOFSTEP] rw [lineMap_apply, lineMap_apply, slope, slope, vsub_eq_sub, vsub_eq_sub, vsub_eq_sub, vadd_eq_add, vadd_eq_add, smul_eq_mul, add_sub_cancel, smul_sub, smul_sub, smul_sub, sub_le_iff_le_add, mul_inv_rev, mul_smul, mul_smul, ← smul_sub, ← smul_sub, ← smul_add, smul_smul, ← mul_inv_rev, inv_smul_le_iff h, smul_smul, mul_inv_cancel_right₀ (right_ne_zero_of_mul h.ne'), smul_add, smul_inv_smul₀ (left_ne_zero_of_mul h.ne')] [GOAL] k : Type u_1 E : Type u_2 PE : Type u_3 inst✝³ : LinearOrderedField k inst✝² : OrderedAddCommGroup E inst✝¹ : Module k E inst✝ : OrderedSMul k E f : k → E a b r : k h : 0 < (1 - r) * (b - a) ⊢ f (↑(lineMap a b) r) ≤ ↑(lineMap (f a) (f b)) r ↔ slope f a b ≤ slope f (↑(lineMap a b) r) b [PROOFSTEP] rw [← lineMap_apply_one_sub, ← lineMap_apply_one_sub _ _ r] [GOAL] k : Type u_1 E : Type u_2 PE : Type u_3 inst✝³ : LinearOrderedField k inst✝² : OrderedAddCommGroup E inst✝¹ : Module k E inst✝ : OrderedSMul k E f : k → E a b r : k h : 0 < (1 - r) * (b - a) ⊢ f (↑(lineMap b a) (1 - r)) ≤ ↑(lineMap (f b) (f a)) (1 - r) ↔ slope f a b ≤ slope f (↑(lineMap b a) (1 - r)) b [PROOFSTEP] revert h [GOAL] k : Type u_1 E : Type u_2 PE : Type u_3 inst✝³ : LinearOrderedField k inst✝² : OrderedAddCommGroup E inst✝¹ : Module k E inst✝ : OrderedSMul k E f : k → E a b r : k ⊢ 0 < (1 - r) * (b - a) → (f (↑(lineMap b a) (1 - r)) ≤ ↑(lineMap (f b) (f a)) (1 - r) ↔ slope f a b ≤ slope f (↑(lineMap b a) (1 - r)) b) [PROOFSTEP] generalize 1 - r = r' [GOAL] k : Type u_1 E : Type u_2 PE : Type u_3 inst✝³ : LinearOrderedField k inst✝² : OrderedAddCommGroup E inst✝¹ : Module k E inst✝ : OrderedSMul k E f : k → E a b r r' : k ⊢ 0 < r' * (b - a) → (f (↑(lineMap b a) r') ≤ ↑(lineMap (f b) (f a)) r' ↔ slope f a b ≤ slope f (↑(lineMap b a) r') b) [PROOFSTEP] clear! r [GOAL] k : Type u_1 E : Type u_2 PE : Type u_3 inst✝³ : LinearOrderedField k inst✝² : OrderedAddCommGroup E inst✝¹ : Module k E inst✝ : OrderedSMul k E f : k → E a b r' : k ⊢ 0 < r' * (b - a) → (f (↑(lineMap b a) r') ≤ ↑(lineMap (f b) (f a)) r' ↔ slope f a b ≤ slope f (↑(lineMap b a) r') b) [PROOFSTEP] intro h [GOAL] k : Type u_1 E : Type u_2 PE : Type u_3 inst✝³ : LinearOrderedField k inst✝² : OrderedAddCommGroup E inst✝¹ : Module k E inst✝ : OrderedSMul k E f : k → E a b r' : k h : 0 < r' * (b - a) ⊢ f (↑(lineMap b a) r') ≤ ↑(lineMap (f b) (f a)) r' ↔ slope f a b ≤ slope f (↑(lineMap b a) r') b [PROOFSTEP] simp_rw [lineMap_apply, slope, vsub_eq_sub, vadd_eq_add, smul_eq_mul] [GOAL] k : Type u_1 E : Type u_2 PE : Type u_3 inst✝³ : LinearOrderedField k inst✝² : OrderedAddCommGroup E inst✝¹ : Module k E inst✝ : OrderedSMul k E f : k → E a b r' : k h : 0 < r' * (b - a) ⊢ f (r' * (a - b) + b) ≤ r' • (f a - f b) + f b ↔ (b - a)⁻¹ • (f b - f a) ≤ (b - (r' * (a - b) + b))⁻¹ • (f b - f (r' * (a - b) + b)) [PROOFSTEP] rw [sub_add_eq_sub_sub_swap, sub_self, zero_sub, neg_mul_eq_mul_neg, neg_sub, le_inv_smul_iff h, smul_smul, mul_inv_cancel_right₀, le_sub_comm, ← neg_sub (f b), smul_neg, neg_add_eq_sub] [GOAL] case h k : Type u_1 E : Type u_2 PE : Type u_3 inst✝³ : LinearOrderedField k inst✝² : OrderedAddCommGroup E inst✝¹ : Module k E inst✝ : OrderedSMul k E f : k → E a b r' : k h : 0 < r' * (b - a) ⊢ b - a ≠ 0 [PROOFSTEP] exact right_ne_zero_of_mul h.ne' [GOAL] k : Type u_1 E : Type u_2 PE : Type u_3 inst✝³ : LinearOrderedField k inst✝² : OrderedAddCommGroup E inst✝¹ : Module k E inst✝ : OrderedSMul k E f : k → E a b r : k hab : a < b h₀ : 0 < r h₁ : r < 1 ⊢ f (↑(lineMap a b) r) ≤ ↑(lineMap (f a) (f b)) r ↔ slope f a (↑(lineMap a b) r) ≤ slope f (↑(lineMap a b) r) b [PROOFSTEP] rw [map_le_lineMap_iff_slope_le_slope_left (mul_pos h₀ (sub_pos.2 hab)), ← lineMap_slope_lineMap_slope_lineMap f a b r, right_le_lineMap_iff_le h₁]
{"mathlib_filename": "Mathlib.LinearAlgebra.AffineSpace.Ordered", "llama_tokens": 5152}
[GOAL] K : Type v V : Type w inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V inst✝² : IsAlgClosed K inst✝¹ : FiniteDimensional K V inst✝ : Nontrivial V f : End K V ⊢ ∃ c, HasEigenvalue f c [PROOFSTEP] simp_rw [hasEigenvalue_iff_mem_spectrum] [GOAL] K : Type v V : Type w inst✝⁵ : Field K inst✝⁴ : AddCommGroup V inst✝³ : Module K V inst✝² : IsAlgClosed K inst✝¹ : FiniteDimensional K V inst✝ : Nontrivial V f : End K V ⊢ ∃ c, c ∈ spectrum K f [PROOFSTEP] exact spectrum.nonempty_of_isAlgClosed_of_finiteDimensional K f [GOAL] K : Type v V : Type w inst✝⁴ : Field K inst✝³ : AddCommGroup V inst✝² : Module K V inst✝¹ : IsAlgClosed K inst✝ : FiniteDimensional K V f : End K V ⊢ ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤ [PROOFSTEP] induction' h_dim : finrank K V using Nat.strong_induction_on with n ih generalizing V [GOAL] case h K : Type v V✝ : Type w inst✝⁷ : Field K inst✝⁶ : AddCommGroup V✝ inst✝⁵ : Module K V✝ inst✝⁴ : IsAlgClosed K inst✝³ : FiniteDimensional K V✝ f✝ : End K V✝ x✝ : ℕ h_dim✝ : finrank K V✝ = x✝ n : ℕ ih : ∀ (m : ℕ), m < n → ∀ {V : Type w} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] (f : End K V), finrank K V = m → ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤ V : Type w inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : End K V h_dim : finrank K V = n ⊢ ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤ [PROOFSTEP] cases' n with n [GOAL] case h.zero K : Type v V✝ : Type w inst✝⁷ : Field K inst✝⁶ : AddCommGroup V✝ inst✝⁵ : Module K V✝ inst✝⁴ : IsAlgClosed K inst✝³ : FiniteDimensional K V✝ f✝ : End K V✝ x✝ : ℕ h_dim✝ : finrank K V✝ = x✝ V : Type w inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : End K V ih : ∀ (m : ℕ), m < Nat.zero → ∀ {V : Type w} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] (f : End K V), finrank K V = m → ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤ h_dim : finrank K V = Nat.zero ⊢ ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤ [PROOFSTEP] rw [← top_le_iff] [GOAL] case h.zero K : Type v V✝ : Type w inst✝⁷ : Field K inst✝⁶ : AddCommGroup V✝ inst✝⁵ : Module K V✝ inst✝⁴ : IsAlgClosed K inst✝³ : FiniteDimensional K V✝ f✝ : End K V✝ x✝ : ℕ h_dim✝ : finrank K V✝ = x✝ V : Type w inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : End K V ih : ∀ (m : ℕ), m < Nat.zero → ∀ {V : Type w} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] (f : End K V), finrank K V = m → ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤ h_dim : finrank K V = Nat.zero ⊢ ⊤ ≤ ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k [PROOFSTEP] simp only [finrank_eq_zero.1 (Eq.trans (finrank_top _ _) h_dim), bot_le] -- Otherwise the vector space is nontrivial. [GOAL] case h.succ K : Type v V✝ : Type w inst✝⁷ : Field K inst✝⁶ : AddCommGroup V✝ inst✝⁵ : Module K V✝ inst✝⁴ : IsAlgClosed K inst✝³ : FiniteDimensional K V✝ f✝ : End K V✝ x✝ : ℕ h_dim✝ : finrank K V✝ = x✝ V : Type w inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : End K V n : ℕ ih : ∀ (m : ℕ), m < Nat.succ n → ∀ {V : Type w} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] (f : End K V), finrank K V = m → ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤ h_dim : finrank K V = Nat.succ n ⊢ ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤ [PROOFSTEP] haveI : Nontrivial V := finrank_pos_iff.1 (by rw [h_dim]; apply Nat.zero_lt_succ) -- Hence, `f` has an eigenvalue `μ₀`. [GOAL] K : Type v V✝ : Type w inst✝⁷ : Field K inst✝⁶ : AddCommGroup V✝ inst✝⁵ : Module K V✝ inst✝⁴ : IsAlgClosed K inst✝³ : FiniteDimensional K V✝ f✝ : End K V✝ x✝ : ℕ h_dim✝ : finrank K V✝ = x✝ V : Type w inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : End K V n : ℕ ih : ∀ (m : ℕ), m < Nat.succ n → ∀ {V : Type w} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] (f : End K V), finrank K V = m → ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤ h_dim : finrank K V = Nat.succ n ⊢ 0 < finrank ?m.10065 V [PROOFSTEP] rw [h_dim] [GOAL] K : Type v V✝ : Type w inst✝⁷ : Field K inst✝⁶ : AddCommGroup V✝ inst✝⁵ : Module K V✝ inst✝⁴ : IsAlgClosed K inst✝³ : FiniteDimensional K V✝ f✝ : End K V✝ x✝ : ℕ h_dim✝ : finrank K V✝ = x✝ V : Type w inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : End K V n : ℕ ih : ∀ (m : ℕ), m < Nat.succ n → ∀ {V : Type w} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] (f : End K V), finrank K V = m → ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤ h_dim : finrank K V = Nat.succ n ⊢ 0 < Nat.succ n [PROOFSTEP] apply Nat.zero_lt_succ [GOAL] case h.succ K : Type v V✝ : Type w inst✝⁷ : Field K inst✝⁶ : AddCommGroup V✝ inst✝⁵ : Module K V✝ inst✝⁴ : IsAlgClosed K inst✝³ : FiniteDimensional K V✝ f✝ : End K V✝ x✝ : ℕ h_dim✝ : finrank K V✝ = x✝ V : Type w inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : End K V n : ℕ ih : ∀ (m : ℕ), m < Nat.succ n → ∀ {V : Type w} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] (f : End K V), finrank K V = m → ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤ h_dim : finrank K V = Nat.succ n this : Nontrivial V ⊢ ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤ [PROOFSTEP] obtain ⟨μ₀, hμ₀⟩ : ∃ μ₀, f.HasEigenvalue μ₀ := exists_eigenvalue f [GOAL] case h.succ.intro K : Type v V✝ : Type w inst✝⁷ : Field K inst✝⁶ : AddCommGroup V✝ inst✝⁵ : Module K V✝ inst✝⁴ : IsAlgClosed K inst✝³ : FiniteDimensional K V✝ f✝ : End K V✝ x✝ : ℕ h_dim✝ : finrank K V✝ = x✝ V : Type w inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : End K V n : ℕ ih : ∀ (m : ℕ), m < Nat.succ n → ∀ {V : Type w} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] (f : End K V), finrank K V = m → ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤ h_dim : finrank K V = Nat.succ n this : Nontrivial V μ₀ : K hμ₀ : HasEigenvalue f μ₀ ⊢ ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤ [PROOFSTEP] let ES := f.generalizedEigenspace μ₀ (finrank K V) -- and `ER` to be the generalized eigenrange. [GOAL] case h.succ.intro K : Type v V✝ : Type w inst✝⁷ : Field K inst✝⁶ : AddCommGroup V✝ inst✝⁵ : Module K V✝ inst✝⁴ : IsAlgClosed K inst✝³ : FiniteDimensional K V✝ f✝ : End K V✝ x✝ : ℕ h_dim✝ : finrank K V✝ = x✝ V : Type w inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : End K V n : ℕ ih : ∀ (m : ℕ), m < Nat.succ n → ∀ {V : Type w} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] (f : End K V), finrank K V = m → ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤ h_dim : finrank K V = Nat.succ n this : Nontrivial V μ₀ : K hμ₀ : HasEigenvalue f μ₀ ES : Submodule K V := ↑(generalizedEigenspace f μ₀) (finrank K V) ⊢ ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤ [PROOFSTEP] let ER := f.generalizedEigenrange μ₀ (finrank K V) -- `f` maps `ER` into itself. [GOAL] case h.succ.intro K : Type v V✝ : Type w inst✝⁷ : Field K inst✝⁶ : AddCommGroup V✝ inst✝⁵ : Module K V✝ inst✝⁴ : IsAlgClosed K inst✝³ : FiniteDimensional K V✝ f✝ : End K V✝ x✝ : ℕ h_dim✝ : finrank K V✝ = x✝ V : Type w inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : End K V n : ℕ ih : ∀ (m : ℕ), m < Nat.succ n → ∀ {V : Type w} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] (f : End K V), finrank K V = m → ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤ h_dim : finrank K V = Nat.succ n this : Nontrivial V μ₀ : K hμ₀ : HasEigenvalue f μ₀ ES : Submodule K V := ↑(generalizedEigenspace f μ₀) (finrank K V) ER : Submodule K V := generalizedEigenrange f μ₀ (finrank K V) ⊢ ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤ [PROOFSTEP] have h_f_ER : ∀ x : V, x ∈ ER → f x ∈ ER := fun x hx => map_generalizedEigenrange_le (Submodule.mem_map_of_mem hx) -- Therefore, we can define the restriction `f'` of `f` to `ER`. [GOAL] case h.succ.intro K : Type v V✝ : Type w inst✝⁷ : Field K inst✝⁶ : AddCommGroup V✝ inst✝⁵ : Module K V✝ inst✝⁴ : IsAlgClosed K inst✝³ : FiniteDimensional K V✝ f✝ : End K V✝ x✝ : ℕ h_dim✝ : finrank K V✝ = x✝ V : Type w inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : End K V n : ℕ ih : ∀ (m : ℕ), m < Nat.succ n → ∀ {V : Type w} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] (f : End K V), finrank K V = m → ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤ h_dim : finrank K V = Nat.succ n this : Nontrivial V μ₀ : K hμ₀ : HasEigenvalue f μ₀ ES : Submodule K V := ↑(generalizedEigenspace f μ₀) (finrank K V) ER : Submodule K V := generalizedEigenrange f μ₀ (finrank K V) h_f_ER : ∀ (x : V), x ∈ ER → ↑f x ∈ ER ⊢ ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤ [PROOFSTEP] let f' : End K ER := f.restrict h_f_ER [GOAL] case h.succ.intro K : Type v V✝ : Type w inst✝⁷ : Field K inst✝⁶ : AddCommGroup V✝ inst✝⁵ : Module K V✝ inst✝⁴ : IsAlgClosed K inst✝³ : FiniteDimensional K V✝ f✝ : End K V✝ x✝ : ℕ h_dim✝ : finrank K V✝ = x✝ V : Type w inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : End K V n : ℕ ih : ∀ (m : ℕ), m < Nat.succ n → ∀ {V : Type w} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] (f : End K V), finrank K V = m → ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤ h_dim : finrank K V = Nat.succ n this : Nontrivial V μ₀ : K hμ₀ : HasEigenvalue f μ₀ ES : Submodule K V := ↑(generalizedEigenspace f μ₀) (finrank K V) ER : Submodule K V := generalizedEigenrange f μ₀ (finrank K V) h_f_ER : ∀ (x : V), x ∈ ER → ↑f x ∈ ER f' : End K { x // x ∈ ER } := LinearMap.restrict f h_f_ER ⊢ ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤ [PROOFSTEP] have h_dim_ES_pos : 0 < finrank K ES := by dsimp only rw [h_dim] apply pos_finrank_generalizedEigenspace_of_hasEigenvalue hμ₀ (Nat.zero_lt_succ n) -- and the dimensions of `ES` and `ER` add up to `finrank K V`. [GOAL] K : Type v V✝ : Type w inst✝⁷ : Field K inst✝⁶ : AddCommGroup V✝ inst✝⁵ : Module K V✝ inst✝⁴ : IsAlgClosed K inst✝³ : FiniteDimensional K V✝ f✝ : End K V✝ x✝ : ℕ h_dim✝ : finrank K V✝ = x✝ V : Type w inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : End K V n : ℕ ih : ∀ (m : ℕ), m < Nat.succ n → ∀ {V : Type w} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] (f : End K V), finrank K V = m → ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤ h_dim : finrank K V = Nat.succ n this : Nontrivial V μ₀ : K hμ₀ : HasEigenvalue f μ₀ ES : Submodule K V := ↑(generalizedEigenspace f μ₀) (finrank K V) ER : Submodule K V := generalizedEigenrange f μ₀ (finrank K V) h_f_ER : ∀ (x : V), x ∈ ER → ↑f x ∈ ER f' : End K { x // x ∈ ER } := LinearMap.restrict f h_f_ER ⊢ 0 < finrank K { x // x ∈ ES } [PROOFSTEP] dsimp only [GOAL] K : Type v V✝ : Type w inst✝⁷ : Field K inst✝⁶ : AddCommGroup V✝ inst✝⁵ : Module K V✝ inst✝⁴ : IsAlgClosed K inst✝³ : FiniteDimensional K V✝ f✝ : End K V✝ x✝ : ℕ h_dim✝ : finrank K V✝ = x✝ V : Type w inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : End K V n : ℕ ih : ∀ (m : ℕ), m < Nat.succ n → ∀ {V : Type w} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] (f : End K V), finrank K V = m → ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤ h_dim : finrank K V = Nat.succ n this : Nontrivial V μ₀ : K hμ₀ : HasEigenvalue f μ₀ ES : Submodule K V := ↑(generalizedEigenspace f μ₀) (finrank K V) ER : Submodule K V := generalizedEigenrange f μ₀ (finrank K V) h_f_ER : ∀ (x : V), x ∈ ER → ↑f x ∈ ER f' : End K { x // x ∈ ER } := LinearMap.restrict f h_f_ER ⊢ 0 < finrank K { x // x ∈ ↑(generalizedEigenspace f μ₀) (finrank K V) } [PROOFSTEP] rw [h_dim] [GOAL] K : Type v V✝ : Type w inst✝⁷ : Field K inst✝⁶ : AddCommGroup V✝ inst✝⁵ : Module K V✝ inst✝⁴ : IsAlgClosed K inst✝³ : FiniteDimensional K V✝ f✝ : End K V✝ x✝ : ℕ h_dim✝ : finrank K V✝ = x✝ V : Type w inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : End K V n : ℕ ih : ∀ (m : ℕ), m < Nat.succ n → ∀ {V : Type w} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] (f : End K V), finrank K V = m → ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤ h_dim : finrank K V = Nat.succ n this : Nontrivial V μ₀ : K hμ₀ : HasEigenvalue f μ₀ ES : Submodule K V := ↑(generalizedEigenspace f μ₀) (finrank K V) ER : Submodule K V := generalizedEigenrange f μ₀ (finrank K V) h_f_ER : ∀ (x : V), x ∈ ER → ↑f x ∈ ER f' : End K { x // x ∈ ER } := LinearMap.restrict f h_f_ER ⊢ 0 < finrank K { x // x ∈ ↑(generalizedEigenspace f μ₀) (Nat.succ n) } [PROOFSTEP] apply pos_finrank_generalizedEigenspace_of_hasEigenvalue hμ₀ (Nat.zero_lt_succ n) -- and the dimensions of `ES` and `ER` add up to `finrank K V`. [GOAL] case h.succ.intro K : Type v V✝ : Type w inst✝⁷ : Field K inst✝⁶ : AddCommGroup V✝ inst✝⁵ : Module K V✝ inst✝⁴ : IsAlgClosed K inst✝³ : FiniteDimensional K V✝ f✝ : End K V✝ x✝ : ℕ h_dim✝ : finrank K V✝ = x✝ V : Type w inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : End K V n : ℕ ih : ∀ (m : ℕ), m < Nat.succ n → ∀ {V : Type w} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] (f : End K V), finrank K V = m → ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤ h_dim : finrank K V = Nat.succ n this : Nontrivial V μ₀ : K hμ₀ : HasEigenvalue f μ₀ ES : Submodule K V := ↑(generalizedEigenspace f μ₀) (finrank K V) ER : Submodule K V := generalizedEigenrange f μ₀ (finrank K V) h_f_ER : ∀ (x : V), x ∈ ER → ↑f x ∈ ER f' : End K { x // x ∈ ER } := LinearMap.restrict f h_f_ER h_dim_ES_pos : 0 < finrank K { x // x ∈ ES } ⊢ ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤ [PROOFSTEP] have h_dim_add : finrank K ER + finrank K ES = finrank K V := by apply LinearMap.finrank_range_add_finrank_ker [GOAL] K : Type v V✝ : Type w inst✝⁷ : Field K inst✝⁶ : AddCommGroup V✝ inst✝⁵ : Module K V✝ inst✝⁴ : IsAlgClosed K inst✝³ : FiniteDimensional K V✝ f✝ : End K V✝ x✝ : ℕ h_dim✝ : finrank K V✝ = x✝ V : Type w inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : End K V n : ℕ ih : ∀ (m : ℕ), m < Nat.succ n → ∀ {V : Type w} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] (f : End K V), finrank K V = m → ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤ h_dim : finrank K V = Nat.succ n this : Nontrivial V μ₀ : K hμ₀ : HasEigenvalue f μ₀ ES : Submodule K V := ↑(generalizedEigenspace f μ₀) (finrank K V) ER : Submodule K V := generalizedEigenrange f μ₀ (finrank K V) h_f_ER : ∀ (x : V), x ∈ ER → ↑f x ∈ ER f' : End K { x // x ∈ ER } := LinearMap.restrict f h_f_ER h_dim_ES_pos : 0 < finrank K { x // x ∈ ES } ⊢ finrank K { x // x ∈ ER } + finrank K { x // x ∈ ES } = finrank K V [PROOFSTEP] apply LinearMap.finrank_range_add_finrank_ker [GOAL] case h.succ.intro K : Type v V✝ : Type w inst✝⁷ : Field K inst✝⁶ : AddCommGroup V✝ inst✝⁵ : Module K V✝ inst✝⁴ : IsAlgClosed K inst✝³ : FiniteDimensional K V✝ f✝ : End K V✝ x✝ : ℕ h_dim✝ : finrank K V✝ = x✝ V : Type w inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : End K V n : ℕ ih : ∀ (m : ℕ), m < Nat.succ n → ∀ {V : Type w} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] (f : End K V), finrank K V = m → ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤ h_dim : finrank K V = Nat.succ n this : Nontrivial V μ₀ : K hμ₀ : HasEigenvalue f μ₀ ES : Submodule K V := ↑(generalizedEigenspace f μ₀) (finrank K V) ER : Submodule K V := generalizedEigenrange f μ₀ (finrank K V) h_f_ER : ∀ (x : V), x ∈ ER → ↑f x ∈ ER f' : End K { x // x ∈ ER } := LinearMap.restrict f h_f_ER h_dim_ES_pos : 0 < finrank K { x // x ∈ ES } h_dim_add : finrank K { x // x ∈ ER } + finrank K { x // x ∈ ES } = finrank K V ⊢ ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤ [PROOFSTEP] have h_dim_ER : finrank K ER < n.succ := by linarith -- This allows us to apply the induction hypothesis on `ER`: [GOAL] K : Type v V✝ : Type w inst✝⁷ : Field K inst✝⁶ : AddCommGroup V✝ inst✝⁵ : Module K V✝ inst✝⁴ : IsAlgClosed K inst✝³ : FiniteDimensional K V✝ f✝ : End K V✝ x✝ : ℕ h_dim✝ : finrank K V✝ = x✝ V : Type w inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : End K V n : ℕ ih : ∀ (m : ℕ), m < Nat.succ n → ∀ {V : Type w} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] (f : End K V), finrank K V = m → ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤ h_dim : finrank K V = Nat.succ n this : Nontrivial V μ₀ : K hμ₀ : HasEigenvalue f μ₀ ES : Submodule K V := ↑(generalizedEigenspace f μ₀) (finrank K V) ER : Submodule K V := generalizedEigenrange f μ₀ (finrank K V) h_f_ER : ∀ (x : V), x ∈ ER → ↑f x ∈ ER f' : End K { x // x ∈ ER } := LinearMap.restrict f h_f_ER h_dim_ES_pos : 0 < finrank K { x // x ∈ ES } h_dim_add : finrank K { x // x ∈ ER } + finrank K { x // x ∈ ES } = finrank K V ⊢ finrank K { x // x ∈ ER } < Nat.succ n [PROOFSTEP] linarith -- This allows us to apply the induction hypothesis on `ER`: [GOAL] case h.succ.intro K : Type v V✝ : Type w inst✝⁷ : Field K inst✝⁶ : AddCommGroup V✝ inst✝⁵ : Module K V✝ inst✝⁴ : IsAlgClosed K inst✝³ : FiniteDimensional K V✝ f✝ : End K V✝ x✝ : ℕ h_dim✝ : finrank K V✝ = x✝ V : Type w inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : End K V n : ℕ ih : ∀ (m : ℕ), m < Nat.succ n → ∀ {V : Type w} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] (f : End K V), finrank K V = m → ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤ h_dim : finrank K V = Nat.succ n this : Nontrivial V μ₀ : K hμ₀ : HasEigenvalue f μ₀ ES : Submodule K V := ↑(generalizedEigenspace f μ₀) (finrank K V) ER : Submodule K V := generalizedEigenrange f μ₀ (finrank K V) h_f_ER : ∀ (x : V), x ∈ ER → ↑f x ∈ ER f' : End K { x // x ∈ ER } := LinearMap.restrict f h_f_ER h_dim_ES_pos : 0 < finrank K { x // x ∈ ES } h_dim_add : finrank K { x // x ∈ ER } + finrank K { x // x ∈ ES } = finrank K V h_dim_ER : finrank K { x // x ∈ ER } < Nat.succ n ⊢ ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤ [PROOFSTEP] have ih_ER : ⨆ (μ : K) (k : ℕ), f'.generalizedEigenspace μ k = ⊤ := ih (finrank K ER) h_dim_ER f' rfl [GOAL] case h.succ.intro K : Type v V✝ : Type w inst✝⁷ : Field K inst✝⁶ : AddCommGroup V✝ inst✝⁵ : Module K V✝ inst✝⁴ : IsAlgClosed K inst✝³ : FiniteDimensional K V✝ f✝ : End K V✝ x✝ : ℕ h_dim✝ : finrank K V✝ = x✝ V : Type w inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : End K V n : ℕ ih : ∀ (m : ℕ), m < Nat.succ n → ∀ {V : Type w} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] (f : End K V), finrank K V = m → ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤ h_dim : finrank K V = Nat.succ n this : Nontrivial V μ₀ : K hμ₀ : HasEigenvalue f μ₀ ES : Submodule K V := ↑(generalizedEigenspace f μ₀) (finrank K V) ER : Submodule K V := generalizedEigenrange f μ₀ (finrank K V) h_f_ER : ∀ (x : V), x ∈ ER → ↑f x ∈ ER f' : End K { x // x ∈ ER } := LinearMap.restrict f h_f_ER h_dim_ES_pos : 0 < finrank K { x // x ∈ ES } h_dim_add : finrank K { x // x ∈ ER } + finrank K { x // x ∈ ES } = finrank K V h_dim_ER : finrank K { x // x ∈ ER } < Nat.succ n ih_ER : ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f' μ) k = ⊤ ⊢ ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤ [PROOFSTEP] have ih_ER' : ⨆ (μ : K) (k : ℕ), (f'.generalizedEigenspace μ k).map ER.subtype = ER := by simp only [(Submodule.map_iSup _ _).symm, ih_ER, Submodule.map_subtype_top ER] -- Moreover, every generalized eigenspace of `f'` is contained in the corresponding generalized -- eigenspace of `f`. [GOAL] K : Type v V✝ : Type w inst✝⁷ : Field K inst✝⁶ : AddCommGroup V✝ inst✝⁵ : Module K V✝ inst✝⁴ : IsAlgClosed K inst✝³ : FiniteDimensional K V✝ f✝ : End K V✝ x✝ : ℕ h_dim✝ : finrank K V✝ = x✝ V : Type w inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : End K V n : ℕ ih : ∀ (m : ℕ), m < Nat.succ n → ∀ {V : Type w} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] (f : End K V), finrank K V = m → ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤ h_dim : finrank K V = Nat.succ n this : Nontrivial V μ₀ : K hμ₀ : HasEigenvalue f μ₀ ES : Submodule K V := ↑(generalizedEigenspace f μ₀) (finrank K V) ER : Submodule K V := generalizedEigenrange f μ₀ (finrank K V) h_f_ER : ∀ (x : V), x ∈ ER → ↑f x ∈ ER f' : End K { x // x ∈ ER } := LinearMap.restrict f h_f_ER h_dim_ES_pos : 0 < finrank K { x // x ∈ ES } h_dim_add : finrank K { x // x ∈ ER } + finrank K { x // x ∈ ES } = finrank K V h_dim_ER : finrank K { x // x ∈ ER } < Nat.succ n ih_ER : ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f' μ) k = ⊤ ⊢ ⨆ (μ : K) (k : ℕ), Submodule.map (Submodule.subtype ER) (↑(generalizedEigenspace f' μ) k) = ER [PROOFSTEP] simp only [(Submodule.map_iSup _ _).symm, ih_ER, Submodule.map_subtype_top ER] -- Moreover, every generalized eigenspace of `f'` is contained in the corresponding generalized -- eigenspace of `f`. [GOAL] case h.succ.intro K : Type v V✝ : Type w inst✝⁷ : Field K inst✝⁶ : AddCommGroup V✝ inst✝⁵ : Module K V✝ inst✝⁴ : IsAlgClosed K inst✝³ : FiniteDimensional K V✝ f✝ : End K V✝ x✝ : ℕ h_dim✝ : finrank K V✝ = x✝ V : Type w inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : End K V n : ℕ ih : ∀ (m : ℕ), m < Nat.succ n → ∀ {V : Type w} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] (f : End K V), finrank K V = m → ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤ h_dim : finrank K V = Nat.succ n this : Nontrivial V μ₀ : K hμ₀ : HasEigenvalue f μ₀ ES : Submodule K V := ↑(generalizedEigenspace f μ₀) (finrank K V) ER : Submodule K V := generalizedEigenrange f μ₀ (finrank K V) h_f_ER : ∀ (x : V), x ∈ ER → ↑f x ∈ ER f' : End K { x // x ∈ ER } := LinearMap.restrict f h_f_ER h_dim_ES_pos : 0 < finrank K { x // x ∈ ES } h_dim_add : finrank K { x // x ∈ ER } + finrank K { x // x ∈ ES } = finrank K V h_dim_ER : finrank K { x // x ∈ ER } < Nat.succ n ih_ER : ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f' μ) k = ⊤ ih_ER' : ⨆ (μ : K) (k : ℕ), Submodule.map (Submodule.subtype ER) (↑(generalizedEigenspace f' μ) k) = ER ⊢ ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤ [PROOFSTEP] have hff' : ∀ μ k, (f'.generalizedEigenspace μ k).map ER.subtype ≤ f.generalizedEigenspace μ k := by intros rw [generalizedEigenspace_restrict] apply Submodule.map_comap_le [GOAL] K : Type v V✝ : Type w inst✝⁷ : Field K inst✝⁶ : AddCommGroup V✝ inst✝⁵ : Module K V✝ inst✝⁴ : IsAlgClosed K inst✝³ : FiniteDimensional K V✝ f✝ : End K V✝ x✝ : ℕ h_dim✝ : finrank K V✝ = x✝ V : Type w inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : End K V n : ℕ ih : ∀ (m : ℕ), m < Nat.succ n → ∀ {V : Type w} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] (f : End K V), finrank K V = m → ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤ h_dim : finrank K V = Nat.succ n this : Nontrivial V μ₀ : K hμ₀ : HasEigenvalue f μ₀ ES : Submodule K V := ↑(generalizedEigenspace f μ₀) (finrank K V) ER : Submodule K V := generalizedEigenrange f μ₀ (finrank K V) h_f_ER : ∀ (x : V), x ∈ ER → ↑f x ∈ ER f' : End K { x // x ∈ ER } := LinearMap.restrict f h_f_ER h_dim_ES_pos : 0 < finrank K { x // x ∈ ES } h_dim_add : finrank K { x // x ∈ ER } + finrank K { x // x ∈ ES } = finrank K V h_dim_ER : finrank K { x // x ∈ ER } < Nat.succ n ih_ER : ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f' μ) k = ⊤ ih_ER' : ⨆ (μ : K) (k : ℕ), Submodule.map (Submodule.subtype ER) (↑(generalizedEigenspace f' μ) k) = ER ⊢ ∀ (μ : K) (k : ℕ), Submodule.map (Submodule.subtype ER) (↑(generalizedEigenspace f' μ) k) ≤ ↑(generalizedEigenspace f μ) k [PROOFSTEP] intros [GOAL] K : Type v V✝ : Type w inst✝⁷ : Field K inst✝⁶ : AddCommGroup V✝ inst✝⁵ : Module K V✝ inst✝⁴ : IsAlgClosed K inst✝³ : FiniteDimensional K V✝ f✝ : End K V✝ x✝ : ℕ h_dim✝ : finrank K V✝ = x✝ V : Type w inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : End K V n : ℕ ih : ∀ (m : ℕ), m < Nat.succ n → ∀ {V : Type w} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] (f : End K V), finrank K V = m → ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤ h_dim : finrank K V = Nat.succ n this : Nontrivial V μ₀ : K hμ₀ : HasEigenvalue f μ₀ ES : Submodule K V := ↑(generalizedEigenspace f μ₀) (finrank K V) ER : Submodule K V := generalizedEigenrange f μ₀ (finrank K V) h_f_ER : ∀ (x : V), x ∈ ER → ↑f x ∈ ER f' : End K { x // x ∈ ER } := LinearMap.restrict f h_f_ER h_dim_ES_pos : 0 < finrank K { x // x ∈ ES } h_dim_add : finrank K { x // x ∈ ER } + finrank K { x // x ∈ ES } = finrank K V h_dim_ER : finrank K { x // x ∈ ER } < Nat.succ n ih_ER : ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f' μ) k = ⊤ ih_ER' : ⨆ (μ : K) (k : ℕ), Submodule.map (Submodule.subtype ER) (↑(generalizedEigenspace f' μ) k) = ER μ✝ : K k✝ : ℕ ⊢ Submodule.map (Submodule.subtype ER) (↑(generalizedEigenspace f' μ✝) k✝) ≤ ↑(generalizedEigenspace f μ✝) k✝ [PROOFSTEP] rw [generalizedEigenspace_restrict] [GOAL] K : Type v V✝ : Type w inst✝⁷ : Field K inst✝⁶ : AddCommGroup V✝ inst✝⁵ : Module K V✝ inst✝⁴ : IsAlgClosed K inst✝³ : FiniteDimensional K V✝ f✝ : End K V✝ x✝ : ℕ h_dim✝ : finrank K V✝ = x✝ V : Type w inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : End K V n : ℕ ih : ∀ (m : ℕ), m < Nat.succ n → ∀ {V : Type w} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] (f : End K V), finrank K V = m → ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤ h_dim : finrank K V = Nat.succ n this : Nontrivial V μ₀ : K hμ₀ : HasEigenvalue f μ₀ ES : Submodule K V := ↑(generalizedEigenspace f μ₀) (finrank K V) ER : Submodule K V := generalizedEigenrange f μ₀ (finrank K V) h_f_ER : ∀ (x : V), x ∈ ER → ↑f x ∈ ER f' : End K { x // x ∈ ER } := LinearMap.restrict f h_f_ER h_dim_ES_pos : 0 < finrank K { x // x ∈ ES } h_dim_add : finrank K { x // x ∈ ER } + finrank K { x // x ∈ ES } = finrank K V h_dim_ER : finrank K { x // x ∈ ER } < Nat.succ n ih_ER : ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f' μ) k = ⊤ ih_ER' : ⨆ (μ : K) (k : ℕ), Submodule.map (Submodule.subtype ER) (↑(generalizedEigenspace f' μ) k) = ER μ✝ : K k✝ : ℕ ⊢ Submodule.map (Submodule.subtype ER) (Submodule.comap (Submodule.subtype ER) (↑(generalizedEigenspace f μ✝) k✝)) ≤ ↑(generalizedEigenspace f μ✝) k✝ [PROOFSTEP] apply Submodule.map_comap_le [GOAL] case h.succ.intro K : Type v V✝ : Type w inst✝⁷ : Field K inst✝⁶ : AddCommGroup V✝ inst✝⁵ : Module K V✝ inst✝⁴ : IsAlgClosed K inst✝³ : FiniteDimensional K V✝ f✝ : End K V✝ x✝ : ℕ h_dim✝ : finrank K V✝ = x✝ V : Type w inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : End K V n : ℕ ih : ∀ (m : ℕ), m < Nat.succ n → ∀ {V : Type w} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] (f : End K V), finrank K V = m → ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤ h_dim : finrank K V = Nat.succ n this : Nontrivial V μ₀ : K hμ₀ : HasEigenvalue f μ₀ ES : Submodule K V := ↑(generalizedEigenspace f μ₀) (finrank K V) ER : Submodule K V := generalizedEigenrange f μ₀ (finrank K V) h_f_ER : ∀ (x : V), x ∈ ER → ↑f x ∈ ER f' : End K { x // x ∈ ER } := LinearMap.restrict f h_f_ER h_dim_ES_pos : 0 < finrank K { x // x ∈ ES } h_dim_add : finrank K { x // x ∈ ER } + finrank K { x // x ∈ ES } = finrank K V h_dim_ER : finrank K { x // x ∈ ER } < Nat.succ n ih_ER : ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f' μ) k = ⊤ ih_ER' : ⨆ (μ : K) (k : ℕ), Submodule.map (Submodule.subtype ER) (↑(generalizedEigenspace f' μ) k) = ER hff' : ∀ (μ : K) (k : ℕ), Submodule.map (Submodule.subtype ER) (↑(generalizedEigenspace f' μ) k) ≤ ↑(generalizedEigenspace f μ) k ⊢ ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤ [PROOFSTEP] have hER : ER ≤ ⨆ (μ : K) (k : ℕ), f.generalizedEigenspace μ k := by rw [← ih_ER'] exact iSup₂_mono hff' [GOAL] K : Type v V✝ : Type w inst✝⁷ : Field K inst✝⁶ : AddCommGroup V✝ inst✝⁵ : Module K V✝ inst✝⁴ : IsAlgClosed K inst✝³ : FiniteDimensional K V✝ f✝ : End K V✝ x✝ : ℕ h_dim✝ : finrank K V✝ = x✝ V : Type w inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : End K V n : ℕ ih : ∀ (m : ℕ), m < Nat.succ n → ∀ {V : Type w} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] (f : End K V), finrank K V = m → ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤ h_dim : finrank K V = Nat.succ n this : Nontrivial V μ₀ : K hμ₀ : HasEigenvalue f μ₀ ES : Submodule K V := ↑(generalizedEigenspace f μ₀) (finrank K V) ER : Submodule K V := generalizedEigenrange f μ₀ (finrank K V) h_f_ER : ∀ (x : V), x ∈ ER → ↑f x ∈ ER f' : End K { x // x ∈ ER } := LinearMap.restrict f h_f_ER h_dim_ES_pos : 0 < finrank K { x // x ∈ ES } h_dim_add : finrank K { x // x ∈ ER } + finrank K { x // x ∈ ES } = finrank K V h_dim_ER : finrank K { x // x ∈ ER } < Nat.succ n ih_ER : ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f' μ) k = ⊤ ih_ER' : ⨆ (μ : K) (k : ℕ), Submodule.map (Submodule.subtype ER) (↑(generalizedEigenspace f' μ) k) = ER hff' : ∀ (μ : K) (k : ℕ), Submodule.map (Submodule.subtype ER) (↑(generalizedEigenspace f' μ) k) ≤ ↑(generalizedEigenspace f μ) k ⊢ ER ≤ ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k [PROOFSTEP] rw [← ih_ER'] [GOAL] K : Type v V✝ : Type w inst✝⁷ : Field K inst✝⁶ : AddCommGroup V✝ inst✝⁵ : Module K V✝ inst✝⁴ : IsAlgClosed K inst✝³ : FiniteDimensional K V✝ f✝ : End K V✝ x✝ : ℕ h_dim✝ : finrank K V✝ = x✝ V : Type w inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : End K V n : ℕ ih : ∀ (m : ℕ), m < Nat.succ n → ∀ {V : Type w} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] (f : End K V), finrank K V = m → ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤ h_dim : finrank K V = Nat.succ n this : Nontrivial V μ₀ : K hμ₀ : HasEigenvalue f μ₀ ES : Submodule K V := ↑(generalizedEigenspace f μ₀) (finrank K V) ER : Submodule K V := generalizedEigenrange f μ₀ (finrank K V) h_f_ER : ∀ (x : V), x ∈ ER → ↑f x ∈ ER f' : End K { x // x ∈ ER } := LinearMap.restrict f h_f_ER h_dim_ES_pos : 0 < finrank K { x // x ∈ ES } h_dim_add : finrank K { x // x ∈ ER } + finrank K { x // x ∈ ES } = finrank K V h_dim_ER : finrank K { x // x ∈ ER } < Nat.succ n ih_ER : ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f' μ) k = ⊤ ih_ER' : ⨆ (μ : K) (k : ℕ), Submodule.map (Submodule.subtype ER) (↑(generalizedEigenspace f' μ) k) = ER hff' : ∀ (μ : K) (k : ℕ), Submodule.map (Submodule.subtype ER) (↑(generalizedEigenspace f' μ) k) ≤ ↑(generalizedEigenspace f μ) k ⊢ ⨆ (μ : K) (k : ℕ), Submodule.map (Submodule.subtype ER) (↑(generalizedEigenspace f' μ) k) ≤ ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k [PROOFSTEP] exact iSup₂_mono hff' [GOAL] case h.succ.intro K : Type v V✝ : Type w inst✝⁷ : Field K inst✝⁶ : AddCommGroup V✝ inst✝⁵ : Module K V✝ inst✝⁴ : IsAlgClosed K inst✝³ : FiniteDimensional K V✝ f✝ : End K V✝ x✝ : ℕ h_dim✝ : finrank K V✝ = x✝ V : Type w inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : End K V n : ℕ ih : ∀ (m : ℕ), m < Nat.succ n → ∀ {V : Type w} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] (f : End K V), finrank K V = m → ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤ h_dim : finrank K V = Nat.succ n this : Nontrivial V μ₀ : K hμ₀ : HasEigenvalue f μ₀ ES : Submodule K V := ↑(generalizedEigenspace f μ₀) (finrank K V) ER : Submodule K V := generalizedEigenrange f μ₀ (finrank K V) h_f_ER : ∀ (x : V), x ∈ ER → ↑f x ∈ ER f' : End K { x // x ∈ ER } := LinearMap.restrict f h_f_ER h_dim_ES_pos : 0 < finrank K { x // x ∈ ES } h_dim_add : finrank K { x // x ∈ ER } + finrank K { x // x ∈ ES } = finrank K V h_dim_ER : finrank K { x // x ∈ ER } < Nat.succ n ih_ER : ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f' μ) k = ⊤ ih_ER' : ⨆ (μ : K) (k : ℕ), Submodule.map (Submodule.subtype ER) (↑(generalizedEigenspace f' μ) k) = ER hff' : ∀ (μ : K) (k : ℕ), Submodule.map (Submodule.subtype ER) (↑(generalizedEigenspace f' μ) k) ≤ ↑(generalizedEigenspace f μ) k hER : ER ≤ ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k ⊢ ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤ [PROOFSTEP] have hES : ES ≤ ⨆ (μ : K) (k : ℕ), f.generalizedEigenspace μ k := le_trans (le_iSup (fun k => f.generalizedEigenspace μ₀ k) (finrank K V)) (le_iSup (fun μ : K => ⨆ k : ℕ, f.generalizedEigenspace μ k) μ₀) -- Moreover, we know that `ER` and `ES` are disjoint. [GOAL] case h.succ.intro K : Type v V✝ : Type w inst✝⁷ : Field K inst✝⁶ : AddCommGroup V✝ inst✝⁵ : Module K V✝ inst✝⁴ : IsAlgClosed K inst✝³ : FiniteDimensional K V✝ f✝ : End K V✝ x✝ : ℕ h_dim✝ : finrank K V✝ = x✝ V : Type w inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : End K V n : ℕ ih : ∀ (m : ℕ), m < Nat.succ n → ∀ {V : Type w} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] (f : End K V), finrank K V = m → ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤ h_dim : finrank K V = Nat.succ n this : Nontrivial V μ₀ : K hμ₀ : HasEigenvalue f μ₀ ES : Submodule K V := ↑(generalizedEigenspace f μ₀) (finrank K V) ER : Submodule K V := generalizedEigenrange f μ₀ (finrank K V) h_f_ER : ∀ (x : V), x ∈ ER → ↑f x ∈ ER f' : End K { x // x ∈ ER } := LinearMap.restrict f h_f_ER h_dim_ES_pos : 0 < finrank K { x // x ∈ ES } h_dim_add : finrank K { x // x ∈ ER } + finrank K { x // x ∈ ES } = finrank K V h_dim_ER : finrank K { x // x ∈ ER } < Nat.succ n ih_ER : ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f' μ) k = ⊤ ih_ER' : ⨆ (μ : K) (k : ℕ), Submodule.map (Submodule.subtype ER) (↑(generalizedEigenspace f' μ) k) = ER hff' : ∀ (μ : K) (k : ℕ), Submodule.map (Submodule.subtype ER) (↑(generalizedEigenspace f' μ) k) ≤ ↑(generalizedEigenspace f μ) k hER : ER ≤ ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k hES : ES ≤ ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k ⊢ ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤ [PROOFSTEP] have h_disjoint : Disjoint ER ES := generalized_eigenvec_disjoint_range_ker f μ₀ [GOAL] case h.succ.intro K : Type v V✝ : Type w inst✝⁷ : Field K inst✝⁶ : AddCommGroup V✝ inst✝⁵ : Module K V✝ inst✝⁴ : IsAlgClosed K inst✝³ : FiniteDimensional K V✝ f✝ : End K V✝ x✝ : ℕ h_dim✝ : finrank K V✝ = x✝ V : Type w inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : End K V n : ℕ ih : ∀ (m : ℕ), m < Nat.succ n → ∀ {V : Type w} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] (f : End K V), finrank K V = m → ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤ h_dim : finrank K V = Nat.succ n this : Nontrivial V μ₀ : K hμ₀ : HasEigenvalue f μ₀ ES : Submodule K V := ↑(generalizedEigenspace f μ₀) (finrank K V) ER : Submodule K V := generalizedEigenrange f μ₀ (finrank K V) h_f_ER : ∀ (x : V), x ∈ ER → ↑f x ∈ ER f' : End K { x // x ∈ ER } := LinearMap.restrict f h_f_ER h_dim_ES_pos : 0 < finrank K { x // x ∈ ES } h_dim_add : finrank K { x // x ∈ ER } + finrank K { x // x ∈ ES } = finrank K V h_dim_ER : finrank K { x // x ∈ ER } < Nat.succ n ih_ER : ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f' μ) k = ⊤ ih_ER' : ⨆ (μ : K) (k : ℕ), Submodule.map (Submodule.subtype ER) (↑(generalizedEigenspace f' μ) k) = ER hff' : ∀ (μ : K) (k : ℕ), Submodule.map (Submodule.subtype ER) (↑(generalizedEigenspace f' μ) k) ≤ ↑(generalizedEigenspace f μ) k hER : ER ≤ ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k hES : ES ≤ ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k h_disjoint : Disjoint ER ES ⊢ ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤ [PROOFSTEP] show ⨆ (μ : K) (k : ℕ), f.generalizedEigenspace μ k = ⊤ [GOAL] case h.succ.intro K : Type v V✝ : Type w inst✝⁷ : Field K inst✝⁶ : AddCommGroup V✝ inst✝⁵ : Module K V✝ inst✝⁴ : IsAlgClosed K inst✝³ : FiniteDimensional K V✝ f✝ : End K V✝ x✝ : ℕ h_dim✝ : finrank K V✝ = x✝ V : Type w inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : End K V n : ℕ ih : ∀ (m : ℕ), m < Nat.succ n → ∀ {V : Type w} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] (f : End K V), finrank K V = m → ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤ h_dim : finrank K V = Nat.succ n this : Nontrivial V μ₀ : K hμ₀ : HasEigenvalue f μ₀ ES : Submodule K V := ↑(generalizedEigenspace f μ₀) (finrank K V) ER : Submodule K V := generalizedEigenrange f μ₀ (finrank K V) h_f_ER : ∀ (x : V), x ∈ ER → ↑f x ∈ ER f' : End K { x // x ∈ ER } := LinearMap.restrict f h_f_ER h_dim_ES_pos : 0 < finrank K { x // x ∈ ES } h_dim_add : finrank K { x // x ∈ ER } + finrank K { x // x ∈ ES } = finrank K V h_dim_ER : finrank K { x // x ∈ ER } < Nat.succ n ih_ER : ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f' μ) k = ⊤ ih_ER' : ⨆ (μ : K) (k : ℕ), Submodule.map (Submodule.subtype ER) (↑(generalizedEigenspace f' μ) k) = ER hff' : ∀ (μ : K) (k : ℕ), Submodule.map (Submodule.subtype ER) (↑(generalizedEigenspace f' μ) k) ≤ ↑(generalizedEigenspace f μ) k hER : ER ≤ ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k hES : ES ≤ ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k h_disjoint : Disjoint ER ES ⊢ ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤ [PROOFSTEP] rw [← top_le_iff, ← Submodule.eq_top_of_disjoint ER ES h_dim_add h_disjoint] [GOAL] case h.succ.intro K : Type v V✝ : Type w inst✝⁷ : Field K inst✝⁶ : AddCommGroup V✝ inst✝⁵ : Module K V✝ inst✝⁴ : IsAlgClosed K inst✝³ : FiniteDimensional K V✝ f✝ : End K V✝ x✝ : ℕ h_dim✝ : finrank K V✝ = x✝ V : Type w inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : End K V n : ℕ ih : ∀ (m : ℕ), m < Nat.succ n → ∀ {V : Type w} [inst : AddCommGroup V] [inst_1 : Module K V] [inst_2 : FiniteDimensional K V] (f : End K V), finrank K V = m → ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k = ⊤ h_dim : finrank K V = Nat.succ n this : Nontrivial V μ₀ : K hμ₀ : HasEigenvalue f μ₀ ES : Submodule K V := ↑(generalizedEigenspace f μ₀) (finrank K V) ER : Submodule K V := generalizedEigenrange f μ₀ (finrank K V) h_f_ER : ∀ (x : V), x ∈ ER → ↑f x ∈ ER f' : End K { x // x ∈ ER } := LinearMap.restrict f h_f_ER h_dim_ES_pos : 0 < finrank K { x // x ∈ ES } h_dim_add : finrank K { x // x ∈ ER } + finrank K { x // x ∈ ES } = finrank K V h_dim_ER : finrank K { x // x ∈ ER } < Nat.succ n ih_ER : ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f' μ) k = ⊤ ih_ER' : ⨆ (μ : K) (k : ℕ), Submodule.map (Submodule.subtype ER) (↑(generalizedEigenspace f' μ) k) = ER hff' : ∀ (μ : K) (k : ℕ), Submodule.map (Submodule.subtype ER) (↑(generalizedEigenspace f' μ) k) ≤ ↑(generalizedEigenspace f μ) k hER : ER ≤ ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k hES : ES ≤ ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k h_disjoint : Disjoint ER ES ⊢ ER ⊔ ES ≤ ⨆ (μ : K) (k : ℕ), ↑(generalizedEigenspace f μ) k [PROOFSTEP] apply sup_le hER hES
{"mathlib_filename": "Mathlib.LinearAlgebra.Eigenspace.IsAlgClosed", "llama_tokens": 19866}
[GOAL] R : Type u_1 M : Type u_2 inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M m : M ⊢ ↑(ι R) m ∈ LinearMap.range (ι R) ^ 1 [PROOFSTEP] simpa only [pow_one] using LinearMap.mem_range_self _ m [GOAL] R : Type u_1 M : Type u_2 inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M m : M ⊢ ↑(ι R) m ∈ LinearMap.range (ι R) ^ 1 [PROOFSTEP] simpa only [pow_one] using LinearMap.mem_range_self _ m [GOAL] R : Type u_1 M : Type u_2 inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M m : M ⊢ ↑(GradedAlgebra.ι R M) m * ↑(GradedAlgebra.ι R M) m = 0 [PROOFSTEP] rw [GradedAlgebra.ι_apply, DirectSum.of_mul_of] [GOAL] R : Type u_1 M : Type u_2 inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M m : M ⊢ ↑(DirectSum.of (fun i => { x // x ∈ LinearMap.range (ι R) ^ i }) (1 + 1)) (GradedMonoid.GMul.mul { val := ↑(ι R) m, property := (_ : ↑(ι R) m ∈ LinearMap.range (ι R) ^ 1) } { val := ↑(ι R) m, property := (_ : ↑(ι R) m ∈ LinearMap.range (ι R) ^ 1) }) = 0 [PROOFSTEP] refine DFinsupp.single_eq_zero.mpr (Subtype.ext <| ExteriorAlgebra.ι_sq_zero _) [GOAL] R : Type u_1 M : Type u_2 inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M ⊢ M →ₗ[R] ⨁ (i : ℕ), { x // x ∈ LinearMap.range (ι R) ^ i } [PROOFSTEP] apply GradedAlgebra.ι R M [GOAL] R : Type u_1 M : Type u_2 inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M i : ℕ x : { x // x ∈ LinearMap.range (ι R) ^ i } ⊢ ↑(liftι R M) ↑x = ↑(DirectSum.of (fun i => { x // x ∈ LinearMap.range (ι R) ^ i }) i) x [PROOFSTEP] cases' x with x hx [GOAL] case mk R : Type u_1 M : Type u_2 inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M i : ℕ x : ExteriorAlgebra R M hx : x ∈ LinearMap.range (ι R) ^ i ⊢ ↑(liftι R M) ↑{ val := x, property := hx } = ↑(DirectSum.of (fun i => { x // x ∈ LinearMap.range (ι R) ^ i }) i) { val := x, property := hx } [PROOFSTEP] dsimp only [Subtype.coe_mk, DirectSum.lof_eq_of] -- Porting note: original statement was -- refine Submodule.pow_induction_on_left' _ (fun r => ?_) (fun x y i hx hy ihx ihy => ?_) -- (fun m hm i x hx ih => ?_) hx -- but it created invalid goals [GOAL] case mk R : Type u_1 M : Type u_2 inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M i : ℕ x : ExteriorAlgebra R M hx : x ∈ LinearMap.range (ι R) ^ i ⊢ ↑(liftι R M) x = ↑(DirectSum.of (fun i => { x // x ∈ LinearMap.range (ι R) ^ i }) i) { val := x, property := hx } [PROOFSTEP] induction hx using Submodule.pow_induction_on_left' with | hr => simp_rw [AlgHom.commutes, DirectSum.algebraMap_apply]; rfl | hadd _ _ _ _ _ ihx ihy => simp_rw [AlgHom.map_add, ihx, ihy, ← map_add]; rfl | hmul _ hm _ _ _ ih => obtain ⟨_, rfl⟩ := hm simp_rw [AlgHom.map_mul, ih, GradedAlgebra.liftι, lift_ι_apply, GradedAlgebra.ι_apply R M, DirectSum.of_mul_of] exact DirectSum.of_eq_of_gradedMonoid_eq (Sigma.subtype_ext (add_comm _ _) rfl) [GOAL] case mk R : Type u_1 M : Type u_2 inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M i : ℕ x : ExteriorAlgebra R M hx : x ∈ LinearMap.range (ι R) ^ i ⊢ ↑(liftι R M) x = ↑(DirectSum.of (fun i => { x // x ∈ LinearMap.range (ι R) ^ i }) i) { val := x, property := hx } [PROOFSTEP] induction hx using Submodule.pow_induction_on_left' with | hr => simp_rw [AlgHom.commutes, DirectSum.algebraMap_apply]; rfl | hadd _ _ _ _ _ ihx ihy => simp_rw [AlgHom.map_add, ihx, ihy, ← map_add]; rfl | hmul _ hm _ _ _ ih => obtain ⟨_, rfl⟩ := hm simp_rw [AlgHom.map_mul, ih, GradedAlgebra.liftι, lift_ι_apply, GradedAlgebra.ι_apply R M, DirectSum.of_mul_of] exact DirectSum.of_eq_of_gradedMonoid_eq (Sigma.subtype_ext (add_comm _ _) rfl) [GOAL] case mk.hr R : Type u_1 M : Type u_2 inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M i : ℕ x : ExteriorAlgebra R M r✝ : R ⊢ ↑(liftι R M) (↑(algebraMap R (ExteriorAlgebra R M)) r✝) = ↑(DirectSum.of (fun i => { x // x ∈ LinearMap.range (ι R) ^ i }) 0) { val := ↑(algebraMap R (ExteriorAlgebra R M)) r✝, property := (_ : ↑(algebraMap R (ExteriorAlgebra R M)) r✝ ∈ 1) } [PROOFSTEP] | hr => simp_rw [AlgHom.commutes, DirectSum.algebraMap_apply]; rfl [GOAL] case mk.hr R : Type u_1 M : Type u_2 inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M i : ℕ x : ExteriorAlgebra R M r✝ : R ⊢ ↑(liftι R M) (↑(algebraMap R (ExteriorAlgebra R M)) r✝) = ↑(DirectSum.of (fun i => { x // x ∈ LinearMap.range (ι R) ^ i }) 0) { val := ↑(algebraMap R (ExteriorAlgebra R M)) r✝, property := (_ : ↑(algebraMap R (ExteriorAlgebra R M)) r✝ ∈ 1) } [PROOFSTEP] simp_rw [AlgHom.commutes, DirectSum.algebraMap_apply] [GOAL] case mk.hr R : Type u_1 M : Type u_2 inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M i : ℕ x : ExteriorAlgebra R M r✝ : R ⊢ ↑(DirectSum.of (fun i => { x // x ∈ LinearMap.range (ι R) ^ i }) 0) (↑DirectSum.GAlgebra.toFun r✝) = ↑(DirectSum.of (fun i => { x // x ∈ LinearMap.range (ι R) ^ i }) 0) { val := ↑(algebraMap R (ExteriorAlgebra R M)) r✝, property := (_ : ↑(algebraMap R (ExteriorAlgebra R M)) r✝ ∈ 1) } [PROOFSTEP] rfl [GOAL] case mk.hadd R : Type u_1 M : Type u_2 inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M i : ℕ x x✝ y✝ : ExteriorAlgebra R M i✝ : ℕ hx✝ : x✝ ∈ LinearMap.range (ι R) ^ i✝ hy✝ : y✝ ∈ LinearMap.range (ι R) ^ i✝ ihx : ↑(liftι R M) x✝ = ↑(DirectSum.of (fun i => { x // x ∈ LinearMap.range (ι R) ^ i }) i✝) { val := x✝, property := hx✝ } ihy : ↑(liftι R M) y✝ = ↑(DirectSum.of (fun i => { x // x ∈ LinearMap.range (ι R) ^ i }) i✝) { val := y✝, property := hy✝ } ⊢ ↑(liftι R M) (x✝ + y✝) = ↑(DirectSum.of (fun i => { x // x ∈ LinearMap.range (ι R) ^ i }) i✝) { val := x✝ + y✝, property := (_ : x✝ + y✝ ∈ LinearMap.range (ι R) ^ i✝) } [PROOFSTEP] | hadd _ _ _ _ _ ihx ihy => simp_rw [AlgHom.map_add, ihx, ihy, ← map_add]; rfl [GOAL] case mk.hadd R : Type u_1 M : Type u_2 inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M i : ℕ x x✝ y✝ : ExteriorAlgebra R M i✝ : ℕ hx✝ : x✝ ∈ LinearMap.range (ι R) ^ i✝ hy✝ : y✝ ∈ LinearMap.range (ι R) ^ i✝ ihx : ↑(liftι R M) x✝ = ↑(DirectSum.of (fun i => { x // x ∈ LinearMap.range (ι R) ^ i }) i✝) { val := x✝, property := hx✝ } ihy : ↑(liftι R M) y✝ = ↑(DirectSum.of (fun i => { x // x ∈ LinearMap.range (ι R) ^ i }) i✝) { val := y✝, property := hy✝ } ⊢ ↑(liftι R M) (x✝ + y✝) = ↑(DirectSum.of (fun i => { x // x ∈ LinearMap.range (ι R) ^ i }) i✝) { val := x✝ + y✝, property := (_ : x✝ + y✝ ∈ LinearMap.range (ι R) ^ i✝) } [PROOFSTEP] simp_rw [AlgHom.map_add, ihx, ihy, ← map_add] [GOAL] case mk.hadd R : Type u_1 M : Type u_2 inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M i : ℕ x x✝ y✝ : ExteriorAlgebra R M i✝ : ℕ hx✝ : x✝ ∈ LinearMap.range (ι R) ^ i✝ hy✝ : y✝ ∈ LinearMap.range (ι R) ^ i✝ ihx : ↑(liftι R M) x✝ = ↑(DirectSum.of (fun i => { x // x ∈ LinearMap.range (ι R) ^ i }) i✝) { val := x✝, property := hx✝ } ihy : ↑(liftι R M) y✝ = ↑(DirectSum.of (fun i => { x // x ∈ LinearMap.range (ι R) ^ i }) i✝) { val := y✝, property := hy✝ } ⊢ ↑(DirectSum.of (fun i => { x // x ∈ LinearMap.range (ι R) ^ i }) i✝) ({ val := x✝, property := hx✝ } + { val := y✝, property := hy✝ }) = ↑(DirectSum.of (fun i => { x // x ∈ LinearMap.range (ι R) ^ i }) i✝) { val := x✝ + y✝, property := (_ : x✝ + y✝ ∈ LinearMap.range (ι R) ^ i✝) } [PROOFSTEP] rfl [GOAL] case mk.hmul R : Type u_1 M : Type u_2 inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M i : ℕ x m✝ : ExteriorAlgebra R M hm : m✝ ∈ LinearMap.range (ι R) i✝ : ℕ x✝ : ExteriorAlgebra R M hx✝ : x✝ ∈ LinearMap.range (ι R) ^ i✝ ih : ↑(liftι R M) x✝ = ↑(DirectSum.of (fun i => { x // x ∈ LinearMap.range (ι R) ^ i }) i✝) { val := x✝, property := hx✝ } ⊢ ↑(liftι R M) (m✝ * x✝) = ↑(DirectSum.of (fun i => { x // x ∈ LinearMap.range (ι R) ^ i }) (Nat.succ i✝)) { val := m✝ * x✝, property := (_ : m✝ * x✝ ∈ LinearMap.range (ι R) * npowRec i✝ (LinearMap.range (ι R))) } [PROOFSTEP] | hmul _ hm _ _ _ ih => obtain ⟨_, rfl⟩ := hm simp_rw [AlgHom.map_mul, ih, GradedAlgebra.liftι, lift_ι_apply, GradedAlgebra.ι_apply R M, DirectSum.of_mul_of] exact DirectSum.of_eq_of_gradedMonoid_eq (Sigma.subtype_ext (add_comm _ _) rfl) [GOAL] case mk.hmul R : Type u_1 M : Type u_2 inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M i : ℕ x m✝ : ExteriorAlgebra R M hm : m✝ ∈ LinearMap.range (ι R) i✝ : ℕ x✝ : ExteriorAlgebra R M hx✝ : x✝ ∈ LinearMap.range (ι R) ^ i✝ ih : ↑(liftι R M) x✝ = ↑(DirectSum.of (fun i => { x // x ∈ LinearMap.range (ι R) ^ i }) i✝) { val := x✝, property := hx✝ } ⊢ ↑(liftι R M) (m✝ * x✝) = ↑(DirectSum.of (fun i => { x // x ∈ LinearMap.range (ι R) ^ i }) (Nat.succ i✝)) { val := m✝ * x✝, property := (_ : m✝ * x✝ ∈ LinearMap.range (ι R) * npowRec i✝ (LinearMap.range (ι R))) } [PROOFSTEP] obtain ⟨_, rfl⟩ := hm [GOAL] case mk.hmul.intro R : Type u_1 M : Type u_2 inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M i : ℕ x : ExteriorAlgebra R M i✝ : ℕ x✝ : ExteriorAlgebra R M hx✝ : x✝ ∈ LinearMap.range (ι R) ^ i✝ ih : ↑(liftι R M) x✝ = ↑(DirectSum.of (fun i => { x // x ∈ LinearMap.range (ι R) ^ i }) i✝) { val := x✝, property := hx✝ } w✝ : M ⊢ ↑(liftι R M) (↑(ι R) w✝ * x✝) = ↑(DirectSum.of (fun i => { x // x ∈ LinearMap.range (ι R) ^ i }) (Nat.succ i✝)) { val := ↑(ι R) w✝ * x✝, property := (_ : ↑(ι R) w✝ * x✝ ∈ LinearMap.range (ι R) * npowRec i✝ (LinearMap.range (ι R))) } [PROOFSTEP] simp_rw [AlgHom.map_mul, ih, GradedAlgebra.liftι, lift_ι_apply, GradedAlgebra.ι_apply R M, DirectSum.of_mul_of] [GOAL] case mk.hmul.intro R : Type u_1 M : Type u_2 inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M i : ℕ x : ExteriorAlgebra R M i✝ : ℕ x✝ : ExteriorAlgebra R M hx✝ : x✝ ∈ LinearMap.range (ι R) ^ i✝ ih : ↑(liftι R M) x✝ = ↑(DirectSum.of (fun i => { x // x ∈ LinearMap.range (ι R) ^ i }) i✝) { val := x✝, property := hx✝ } w✝ : M ⊢ ↑(DirectSum.of (fun i => { x // x ∈ LinearMap.range (ι R) ^ i }) (1 + i✝)) (GradedMonoid.GMul.mul { val := ↑(ι R) w✝, property := (_ : ↑(ι R) w✝ ∈ LinearMap.range (ι R) ^ 1) } { val := x✝, property := hx✝ }) = ↑(DirectSum.of (fun i => { x // x ∈ LinearMap.range (ι R) ^ i }) (Nat.succ i✝)) { val := ↑(ι R) w✝ * x✝, property := (_ : ↑(ι R) w✝ * x✝ ∈ LinearMap.range (ι R) * npowRec i✝ (LinearMap.range (ι R))) } [PROOFSTEP] exact DirectSum.of_eq_of_gradedMonoid_eq (Sigma.subtype_ext (add_comm _ _) rfl) [GOAL] R : Type u_1 M : Type u_2 inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M ⊢ ExteriorAlgebra R M →ₐ[R] ⨁ (i : ℕ), { x // x ∈ LinearMap.range (ι R) ^ i } [PROOFSTEP] apply GradedAlgebra.liftι R M [GOAL] R : Type u_1 M : Type u_2 inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M ⊢ AlgHom.comp (DirectSum.coeAlgHom fun x => LinearMap.range (ι R) ^ x) (GradedAlgebra.liftι R M) = AlgHom.id R (ExteriorAlgebra R M) [PROOFSTEP] ext m [GOAL] case a.h R : Type u_1 M : Type u_2 inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M m : M ⊢ ↑(LinearMap.comp (AlgHom.toLinearMap (AlgHom.comp (DirectSum.coeAlgHom fun x => LinearMap.range (ι R) ^ x) (GradedAlgebra.liftι R M))) (CliffordAlgebra.ι 0)) m = ↑(LinearMap.comp (AlgHom.toLinearMap (AlgHom.id R (ExteriorAlgebra R M))) (CliffordAlgebra.ι 0)) m [PROOFSTEP] dsimp only [LinearMap.comp_apply, AlgHom.toLinearMap_apply, AlgHom.comp_apply, AlgHom.id_apply, GradedAlgebra.liftι] [GOAL] case a.h R : Type u_1 M : Type u_2 inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M m : M ⊢ ↑(DirectSum.coeAlgHom fun x => LinearMap.range (ι R) ^ x) (↑(↑(lift R) { val := GradedAlgebra.ι R M, property := (_ : ∀ (m : M), ↑(GradedAlgebra.ι R M) m * ↑(GradedAlgebra.ι R M) m = 0) }) (↑(CliffordAlgebra.ι 0) m)) = ↑(CliffordAlgebra.ι 0) m [PROOFSTEP] rw [lift_ι_apply, GradedAlgebra.ι_apply R M, DirectSum.coeAlgHom_of, Subtype.coe_mk] [GOAL] R : Type u_1 M : Type u_2 inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M ⊢ ∀ (i : ℕ) (x : { x // x ∈ LinearMap.range (ι R) ^ i }), ↑(GradedAlgebra.liftι R M) ↑x = ↑(DirectSum.of (fun i => { x // x ∈ LinearMap.range (ι R) ^ i }) i) x [PROOFSTEP] apply GradedAlgebra.liftι_eq R M
{"mathlib_filename": "Mathlib.LinearAlgebra.ExteriorAlgebra.Grading", "llama_tokens": 6096}
[GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹⁰ : Semiring R inst✝⁹ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁸ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ inst✝⁵ : AddCommMonoid M' inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝³ : (i : ι) → Module R (M₁ i) inst✝² : Module R M₂ inst✝¹ : Module R M₃ inst✝ : Module R M' f✝ f' f g : MultilinearMap R M₁ M₂ h : (fun f => f.toFun) f = (fun f => f.toFun) g ⊢ f = g [PROOFSTEP] cases f [GOAL] case mk R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹⁰ : Semiring R inst✝⁹ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁸ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ inst✝⁵ : AddCommMonoid M' inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝³ : (i : ι) → Module R (M₁ i) inst✝² : Module R M₂ inst✝¹ : Module R M₃ inst✝ : Module R M' f f' g : MultilinearMap R M₁ M₂ toFun✝ : ((i : ι) → M₁ i) → M₂ map_add'✝ : ∀ [inst : DecidableEq ι] (m : (i : ι) → M₁ i) (i : ι) (x y : M₁ i), toFun✝ (update m i (x + y)) = toFun✝ (update m i x) + toFun✝ (update m i y) map_smul'✝ : ∀ [inst : DecidableEq ι] (m : (i : ι) → M₁ i) (i : ι) (c : R) (x : M₁ i), toFun✝ (update m i (c • x)) = c • toFun✝ (update m i x) h : (fun f => f.toFun) { toFun := toFun✝, map_add' := map_add'✝, map_smul' := map_smul'✝ } = (fun f => f.toFun) g ⊢ { toFun := toFun✝, map_add' := map_add'✝, map_smul' := map_smul'✝ } = g [PROOFSTEP] cases g [GOAL] case mk.mk R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹⁰ : Semiring R inst✝⁹ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁸ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ inst✝⁵ : AddCommMonoid M' inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝³ : (i : ι) → Module R (M₁ i) inst✝² : Module R M₂ inst✝¹ : Module R M₃ inst✝ : Module R M' f f' : MultilinearMap R M₁ M₂ toFun✝¹ : ((i : ι) → M₁ i) → M₂ map_add'✝¹ : ∀ [inst : DecidableEq ι] (m : (i : ι) → M₁ i) (i : ι) (x y : M₁ i), toFun✝¹ (update m i (x + y)) = toFun✝¹ (update m i x) + toFun✝¹ (update m i y) map_smul'✝¹ : ∀ [inst : DecidableEq ι] (m : (i : ι) → M₁ i) (i : ι) (c : R) (x : M₁ i), toFun✝¹ (update m i (c • x)) = c • toFun✝¹ (update m i x) toFun✝ : ((i : ι) → M₁ i) → M₂ map_add'✝ : ∀ [inst : DecidableEq ι] (m : (i : ι) → M₁ i) (i : ι) (x y : M₁ i), toFun✝ (update m i (x + y)) = toFun✝ (update m i x) + toFun✝ (update m i y) map_smul'✝ : ∀ [inst : DecidableEq ι] (m : (i : ι) → M₁ i) (i : ι) (c : R) (x : M₁ i), toFun✝ (update m i (c • x)) = c • toFun✝ (update m i x) h : (fun f => f.toFun) { toFun := toFun✝¹, map_add' := map_add'✝¹, map_smul' := map_smul'✝¹ } = (fun f => f.toFun) { toFun := toFun✝, map_add' := map_add'✝, map_smul' := map_smul'✝ } ⊢ { toFun := toFun✝¹, map_add' := map_add'✝¹, map_smul' := map_smul'✝¹ } = { toFun := toFun✝, map_add' := map_add'✝, map_smul' := map_smul'✝ } [PROOFSTEP] cases h [GOAL] case mk.mk.refl R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹⁰ : Semiring R inst✝⁹ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁸ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ inst✝⁵ : AddCommMonoid M' inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝³ : (i : ι) → Module R (M₁ i) inst✝² : Module R M₂ inst✝¹ : Module R M₃ inst✝ : Module R M' f f' : MultilinearMap R M₁ M₂ toFun✝ : ((i : ι) → M₁ i) → M₂ map_add'✝¹ : ∀ [inst : DecidableEq ι] (m : (i : ι) → M₁ i) (i : ι) (x y : M₁ i), toFun✝ (update m i (x + y)) = toFun✝ (update m i x) + toFun✝ (update m i y) map_smul'✝¹ : ∀ [inst : DecidableEq ι] (m : (i : ι) → M₁ i) (i : ι) (c : R) (x : M₁ i), toFun✝ (update m i (c • x)) = c • toFun✝ (update m i x) map_add'✝ : ∀ [inst : DecidableEq ι] (m : (i : ι) → M₁ i) (i : ι) (x y : M₁ i), toFun✝ (update m i (x + y)) = toFun✝ (update m i x) + toFun✝ (update m i y) map_smul'✝ : ∀ [inst : DecidableEq ι] (m : (i : ι) → M₁ i) (i : ι) (c : R) (x : M₁ i), toFun✝ (update m i (c • x)) = c • toFun✝ (update m i x) ⊢ { toFun := toFun✝, map_add' := map_add'✝¹, map_smul' := map_smul'✝¹ } = { toFun := toFun✝, map_add' := map_add'✝, map_smul' := map_smul'✝ } [PROOFSTEP] rfl [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹⁰ : Semiring R inst✝⁹ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁸ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ inst✝⁵ : AddCommMonoid M' inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝³ : (i : ι) → Module R (M₁ i) inst✝² : Module R M₂ inst✝¹ : Module R M₃ inst✝ : Module R M' f f' : MultilinearMap R M₁ M₂ ⊢ Injective FunLike.coe [PROOFSTEP] intro f g h [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹⁰ : Semiring R inst✝⁹ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁸ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ inst✝⁵ : AddCommMonoid M' inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝³ : (i : ι) → Module R (M₁ i) inst✝² : Module R M₂ inst✝¹ : Module R M₃ inst✝ : Module R M' f✝ f' f g : MultilinearMap R M₁ M₂ h : ↑f = ↑g ⊢ f = g [PROOFSTEP] cases f [GOAL] case mk R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹⁰ : Semiring R inst✝⁹ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁸ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ inst✝⁵ : AddCommMonoid M' inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝³ : (i : ι) → Module R (M₁ i) inst✝² : Module R M₂ inst✝¹ : Module R M₃ inst✝ : Module R M' f f' g : MultilinearMap R M₁ M₂ toFun✝ : ((i : ι) → M₁ i) → M₂ map_add'✝ : ∀ [inst : DecidableEq ι] (m : (i : ι) → M₁ i) (i : ι) (x y : M₁ i), toFun✝ (update m i (x + y)) = toFun✝ (update m i x) + toFun✝ (update m i y) map_smul'✝ : ∀ [inst : DecidableEq ι] (m : (i : ι) → M₁ i) (i : ι) (c : R) (x : M₁ i), toFun✝ (update m i (c • x)) = c • toFun✝ (update m i x) h : ↑{ toFun := toFun✝, map_add' := map_add'✝, map_smul' := map_smul'✝ } = ↑g ⊢ { toFun := toFun✝, map_add' := map_add'✝, map_smul' := map_smul'✝ } = g [PROOFSTEP] cases g [GOAL] case mk.mk R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹⁰ : Semiring R inst✝⁹ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁸ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ inst✝⁵ : AddCommMonoid M' inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝³ : (i : ι) → Module R (M₁ i) inst✝² : Module R M₂ inst✝¹ : Module R M₃ inst✝ : Module R M' f f' : MultilinearMap R M₁ M₂ toFun✝¹ : ((i : ι) → M₁ i) → M₂ map_add'✝¹ : ∀ [inst : DecidableEq ι] (m : (i : ι) → M₁ i) (i : ι) (x y : M₁ i), toFun✝¹ (update m i (x + y)) = toFun✝¹ (update m i x) + toFun✝¹ (update m i y) map_smul'✝¹ : ∀ [inst : DecidableEq ι] (m : (i : ι) → M₁ i) (i : ι) (c : R) (x : M₁ i), toFun✝¹ (update m i (c • x)) = c • toFun✝¹ (update m i x) toFun✝ : ((i : ι) → M₁ i) → M₂ map_add'✝ : ∀ [inst : DecidableEq ι] (m : (i : ι) → M₁ i) (i : ι) (x y : M₁ i), toFun✝ (update m i (x + y)) = toFun✝ (update m i x) + toFun✝ (update m i y) map_smul'✝ : ∀ [inst : DecidableEq ι] (m : (i : ι) → M₁ i) (i : ι) (c : R) (x : M₁ i), toFun✝ (update m i (c • x)) = c • toFun✝ (update m i x) h : ↑{ toFun := toFun✝¹, map_add' := map_add'✝¹, map_smul' := map_smul'✝¹ } = ↑{ toFun := toFun✝, map_add' := map_add'✝, map_smul' := map_smul'✝ } ⊢ { toFun := toFun✝¹, map_add' := map_add'✝¹, map_smul' := map_smul'✝¹ } = { toFun := toFun✝, map_add' := map_add'✝, map_smul' := map_smul'✝ } [PROOFSTEP] cases h [GOAL] case mk.mk.refl R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹⁰ : Semiring R inst✝⁹ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁸ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ inst✝⁵ : AddCommMonoid M' inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝³ : (i : ι) → Module R (M₁ i) inst✝² : Module R M₂ inst✝¹ : Module R M₃ inst✝ : Module R M' f f' : MultilinearMap R M₁ M₂ toFun✝ : ((i : ι) → M₁ i) → M₂ map_add'✝¹ : ∀ [inst : DecidableEq ι] (m : (i : ι) → M₁ i) (i : ι) (x y : M₁ i), toFun✝ (update m i (x + y)) = toFun✝ (update m i x) + toFun✝ (update m i y) map_smul'✝¹ : ∀ [inst : DecidableEq ι] (m : (i : ι) → M₁ i) (i : ι) (c : R) (x : M₁ i), toFun✝ (update m i (c • x)) = c • toFun✝ (update m i x) map_add'✝ : ∀ [inst : DecidableEq ι] (m : (i : ι) → M₁ i) (i : ι) (x y : M₁ i), toFun✝ (update m i (x + y)) = toFun✝ (update m i x) + toFun✝ (update m i y) map_smul'✝ : ∀ [inst : DecidableEq ι] (m : (i : ι) → M₁ i) (i : ι) (c : R) (x : M₁ i), toFun✝ (update m i (c • x)) = c • toFun✝ (update m i x) ⊢ { toFun := toFun✝, map_add' := map_add'✝¹, map_smul' := map_smul'✝¹ } = { toFun := toFun✝, map_add' := map_add'✝, map_smul' := map_smul'✝ } [PROOFSTEP] rfl [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹⁰ : Semiring R inst✝⁹ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁸ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ inst✝⁵ : AddCommMonoid M' inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝³ : (i : ι) → Module R (M₁ i) inst✝² : Module R M₂ inst✝¹ : Module R M₃ inst✝ : Module R M' f✝ f' f : MultilinearMap R M₁ M₂ h₁ : ∀ [inst : DecidableEq ι] (m : (i : ι) → M₁ i) (i : ι) (x y : M₁ i), ↑f (update m i (x + y)) = ↑f (update m i x) + ↑f (update m i y) h₂ : ∀ [inst : DecidableEq ι] (m : (i : ι) → M₁ i) (i : ι) (c : R) (x : M₁ i), ↑f (update m i (c • x)) = c • ↑f (update m i x) ⊢ { toFun := ↑f, map_add' := h₁, map_smul' := h₂ } = f [PROOFSTEP] ext [GOAL] case H R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹⁰ : Semiring R inst✝⁹ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁸ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ inst✝⁵ : AddCommMonoid M' inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝³ : (i : ι) → Module R (M₁ i) inst✝² : Module R M₂ inst✝¹ : Module R M₃ inst✝ : Module R M' f✝ f' f : MultilinearMap R M₁ M₂ h₁ : ∀ [inst : DecidableEq ι] (m : (i : ι) → M₁ i) (i : ι) (x y : M₁ i), ↑f (update m i (x + y)) = ↑f (update m i x) + ↑f (update m i y) h₂ : ∀ [inst : DecidableEq ι] (m : (i : ι) → M₁ i) (i : ι) (c : R) (x : M₁ i), ↑f (update m i (c • x)) = c • ↑f (update m i x) x✝ : (i : ι) → M₁ i ⊢ ↑{ toFun := ↑f, map_add' := h₁, map_smul' := h₂ } x✝ = ↑f x✝ [PROOFSTEP] rfl [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹⁰ : Semiring R inst✝⁹ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁸ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ inst✝⁵ : AddCommMonoid M' inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝³ : (i : ι) → Module R (M₁ i) inst✝² : Module R M₂ inst✝¹ : Module R M₃ inst✝ : Module R M' f f' : MultilinearMap R M₁ M₂ m : (i : ι) → M₁ i i : ι h : m i = 0 ⊢ ↑f m = 0 [PROOFSTEP] classical have : (0 : R) • (0 : M₁ i) = 0 := by simp rw [← update_eq_self i m, h, ← this, f.map_smul, zero_smul R (M := M₂)] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹⁰ : Semiring R inst✝⁹ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁸ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ inst✝⁵ : AddCommMonoid M' inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝³ : (i : ι) → Module R (M₁ i) inst✝² : Module R M₂ inst✝¹ : Module R M₃ inst✝ : Module R M' f f' : MultilinearMap R M₁ M₂ m : (i : ι) → M₁ i i : ι h : m i = 0 ⊢ ↑f m = 0 [PROOFSTEP] have : (0 : R) • (0 : M₁ i) = 0 := by simp [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹⁰ : Semiring R inst✝⁹ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁸ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ inst✝⁵ : AddCommMonoid M' inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝³ : (i : ι) → Module R (M₁ i) inst✝² : Module R M₂ inst✝¹ : Module R M₃ inst✝ : Module R M' f f' : MultilinearMap R M₁ M₂ m : (i : ι) → M₁ i i : ι h : m i = 0 ⊢ 0 • 0 = 0 [PROOFSTEP] simp [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹⁰ : Semiring R inst✝⁹ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁸ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ inst✝⁵ : AddCommMonoid M' inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝³ : (i : ι) → Module R (M₁ i) inst✝² : Module R M₂ inst✝¹ : Module R M₃ inst✝ : Module R M' f f' : MultilinearMap R M₁ M₂ m : (i : ι) → M₁ i i : ι h : m i = 0 this : 0 • 0 = 0 ⊢ ↑f m = 0 [PROOFSTEP] rw [← update_eq_self i m, h, ← this, f.map_smul, zero_smul R (M := M₂)] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹¹ : Semiring R inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : AddCommMonoid M₃ inst✝⁶ : AddCommMonoid M' inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝⁴ : (i : ι) → Module R (M₁ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ inst✝¹ : Module R M' f f' : MultilinearMap R M₁ M₂ inst✝ : Nonempty ι ⊢ ↑f 0 = 0 [PROOFSTEP] obtain ⟨i, _⟩ : ∃ i : ι, i ∈ Set.univ := Set.exists_mem_of_nonempty ι [GOAL] case intro R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹¹ : Semiring R inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : AddCommMonoid M₃ inst✝⁶ : AddCommMonoid M' inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝⁴ : (i : ι) → Module R (M₁ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ inst✝¹ : Module R M' f f' : MultilinearMap R M₁ M₂ inst✝ : Nonempty ι i : ι h✝ : i ∈ univ ⊢ ↑f 0 = 0 [PROOFSTEP] exact map_coord_zero f i rfl [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹¹ : Semiring R inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : AddCommMonoid M₃ inst✝⁶ : AddCommMonoid M' inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝⁴ : (i : ι) → Module R (M₁ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ inst✝¹ : Module R M' f✝ f'✝ f f' : MultilinearMap R M₁ M₂ inst✝ : DecidableEq ι m : (i : ι) → M₁ i i : ι x y : M₁ i ⊢ (fun x => ↑f x + ↑f' x) (update m i (x + y)) = (fun x => ↑f x + ↑f' x) (update m i x) + (fun x => ↑f x + ↑f' x) (update m i y) [PROOFSTEP] simp [add_left_comm, add_assoc] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹¹ : Semiring R inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : AddCommMonoid M₃ inst✝⁶ : AddCommMonoid M' inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝⁴ : (i : ι) → Module R (M₁ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ inst✝¹ : Module R M' f✝ f'✝ f f' : MultilinearMap R M₁ M₂ inst✝ : DecidableEq ι m : (i : ι) → M₁ i i : ι c : R x : M₁ i ⊢ (fun x => ↑f x + ↑f' x) (update m i (c • x)) = c • (fun x => ↑f x + ↑f' x) (update m i x) [PROOFSTEP] simp [smul_add] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹¹ : Semiring R inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : AddCommMonoid M₃ inst✝⁶ : AddCommMonoid M' inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝⁴ : (i : ι) → Module R (M₁ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ inst✝¹ : Module R M' f f' : MultilinearMap R M₁ M₂ inst✝ : DecidableEq ι x✝² : (i : ι) → M₁ i i : ι x✝¹ x✝ : M₁ i ⊢ (fun x => 0) (update x✝² i (x✝¹ + x✝)) = (fun x => 0) (update x✝² i x✝¹) + (fun x => 0) (update x✝² i x✝) [PROOFSTEP] simp [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹¹ : Semiring R inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : AddCommMonoid M₃ inst✝⁶ : AddCommMonoid M' inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝⁴ : (i : ι) → Module R (M₁ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ inst✝¹ : Module R M' f f' : MultilinearMap R M₁ M₂ inst✝ : DecidableEq ι x✝¹ : (i : ι) → M₁ i i : ι c : R x✝ : M₁ i ⊢ (fun x => 0) (update x✝¹ i (c • x✝)) = c • (fun x => 0) (update x✝¹ i x✝) [PROOFSTEP] simp [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹⁷ : Semiring R inst✝¹⁶ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝¹⁵ : (i : ι) → AddCommMonoid (M₁ i) inst✝¹⁴ : AddCommMonoid M₂ inst✝¹³ : AddCommMonoid M₃ inst✝¹² : AddCommMonoid M' inst✝¹¹ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹⁰ : (i : ι) → Module R (M₁ i) inst✝⁹ : Module R M₂ inst✝⁸ : Module R M₃ inst✝⁷ : Module R M' f✝ f' : MultilinearMap R M₁ M₂ R' : Type u_1 A : Type u_2 inst✝⁶ : Monoid R' inst✝⁵ : Semiring A inst✝⁴ : (i : ι) → Module A (M₁ i) inst✝³ : DistribMulAction R' M₂ inst✝² : Module A M₂ inst✝¹ : SMulCommClass A R' M₂ c : R' f : MultilinearMap A M₁ M₂ inst✝ : DecidableEq ι m : (i : ι) → M₁ i i : ι x y : M₁ i ⊢ (fun m => c • ↑f m) (update m i (x + y)) = (fun m => c • ↑f m) (update m i x) + (fun m => c • ↑f m) (update m i y) [PROOFSTEP] simp [smul_add] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹⁷ : Semiring R inst✝¹⁶ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝¹⁵ : (i : ι) → AddCommMonoid (M₁ i) inst✝¹⁴ : AddCommMonoid M₂ inst✝¹³ : AddCommMonoid M₃ inst✝¹² : AddCommMonoid M' inst✝¹¹ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹⁰ : (i : ι) → Module R (M₁ i) inst✝⁹ : Module R M₂ inst✝⁸ : Module R M₃ inst✝⁷ : Module R M' f✝ f' : MultilinearMap R M₁ M₂ R' : Type u_1 A : Type u_2 inst✝⁶ : Monoid R' inst✝⁵ : Semiring A inst✝⁴ : (i : ι) → Module A (M₁ i) inst✝³ : DistribMulAction R' M₂ inst✝² : Module A M₂ inst✝¹ : SMulCommClass A R' M₂ c : R' f : MultilinearMap A M₁ M₂ inst✝ : DecidableEq ι l : (i : ι) → M₁ i i : ι x : A d : M₁ i ⊢ (fun m => c • ↑f m) (update l i (x • d)) = x • (fun m => c • ↑f m) (update l i d) [PROOFSTEP] simp [← smul_comm x c (_ : M₂)] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹⁰ : Semiring R inst✝⁹ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁸ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ inst✝⁵ : AddCommMonoid M' inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝³ : (i : ι) → Module R (M₁ i) inst✝² : Module R M₂ inst✝¹ : Module R M₃ inst✝ : Module R M' f✝ f' : MultilinearMap R M₁ M₂ α : Type u_1 f : α → MultilinearMap R M₁ M₂ m : (i : ι) → M₁ i ⊢ ∀ {s : Finset α}, ↑(∑ a in s, f a) m = ∑ a in s, ↑(f a) m [PROOFSTEP] classical apply Finset.induction · rw [Finset.sum_empty] simp · intro a s has H rw [Finset.sum_insert has] simp [H, has] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹⁰ : Semiring R inst✝⁹ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁸ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ inst✝⁵ : AddCommMonoid M' inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝³ : (i : ι) → Module R (M₁ i) inst✝² : Module R M₂ inst✝¹ : Module R M₃ inst✝ : Module R M' f✝ f' : MultilinearMap R M₁ M₂ α : Type u_1 f : α → MultilinearMap R M₁ M₂ m : (i : ι) → M₁ i ⊢ ∀ {s : Finset α}, ↑(∑ a in s, f a) m = ∑ a in s, ↑(f a) m [PROOFSTEP] apply Finset.induction [GOAL] case empty R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹⁰ : Semiring R inst✝⁹ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁸ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ inst✝⁵ : AddCommMonoid M' inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝³ : (i : ι) → Module R (M₁ i) inst✝² : Module R M₂ inst✝¹ : Module R M₃ inst✝ : Module R M' f✝ f' : MultilinearMap R M₁ M₂ α : Type u_1 f : α → MultilinearMap R M₁ M₂ m : (i : ι) → M₁ i ⊢ ↑(∑ a in ∅, f a) m = ∑ a in ∅, ↑(f a) m [PROOFSTEP] rw [Finset.sum_empty] [GOAL] case empty R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹⁰ : Semiring R inst✝⁹ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁸ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ inst✝⁵ : AddCommMonoid M' inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝³ : (i : ι) → Module R (M₁ i) inst✝² : Module R M₂ inst✝¹ : Module R M₃ inst✝ : Module R M' f✝ f' : MultilinearMap R M₁ M₂ α : Type u_1 f : α → MultilinearMap R M₁ M₂ m : (i : ι) → M₁ i ⊢ ↑0 m = ∑ a in ∅, ↑(f a) m [PROOFSTEP] simp [GOAL] case insert R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹⁰ : Semiring R inst✝⁹ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁸ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ inst✝⁵ : AddCommMonoid M' inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝³ : (i : ι) → Module R (M₁ i) inst✝² : Module R M₂ inst✝¹ : Module R M₃ inst✝ : Module R M' f✝ f' : MultilinearMap R M₁ M₂ α : Type u_1 f : α → MultilinearMap R M₁ M₂ m : (i : ι) → M₁ i ⊢ ∀ ⦃a : α⦄ {s : Finset α}, ¬a ∈ s → ↑(∑ a in s, f a) m = ∑ a in s, ↑(f a) m → ↑(∑ a in insert a s, f a) m = ∑ a in insert a s, ↑(f a) m [PROOFSTEP] intro a s has H [GOAL] case insert R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹⁰ : Semiring R inst✝⁹ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁸ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ inst✝⁵ : AddCommMonoid M' inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝³ : (i : ι) → Module R (M₁ i) inst✝² : Module R M₂ inst✝¹ : Module R M₃ inst✝ : Module R M' f✝ f' : MultilinearMap R M₁ M₂ α : Type u_1 f : α → MultilinearMap R M₁ M₂ m : (i : ι) → M₁ i a : α s : Finset α has : ¬a ∈ s H : ↑(∑ a in s, f a) m = ∑ a in s, ↑(f a) m ⊢ ↑(∑ a in insert a s, f a) m = ∑ a in insert a s, ↑(f a) m [PROOFSTEP] rw [Finset.sum_insert has] [GOAL] case insert R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹⁰ : Semiring R inst✝⁹ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁸ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ inst✝⁵ : AddCommMonoid M' inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝³ : (i : ι) → Module R (M₁ i) inst✝² : Module R M₂ inst✝¹ : Module R M₃ inst✝ : Module R M' f✝ f' : MultilinearMap R M₁ M₂ α : Type u_1 f : α → MultilinearMap R M₁ M₂ m : (i : ι) → M₁ i a : α s : Finset α has : ¬a ∈ s H : ↑(∑ a in s, f a) m = ∑ a in s, ↑(f a) m ⊢ ↑(f a + ∑ x in s, f x) m = ∑ a in insert a s, ↑(f a) m [PROOFSTEP] simp [H, has] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹¹ : Semiring R inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : AddCommMonoid M₃ inst✝⁶ : AddCommMonoid M' inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝⁴ : (i : ι) → Module R (M₁ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ inst✝¹ : Module R M' f f' : MultilinearMap R M₁ M₂ inst✝ : DecidableEq ι m : (i : ι) → M₁ i i : ι x y : M₁ i ⊢ (fun x => ↑f (update m i x)) (x + y) = (fun x => ↑f (update m i x)) x + (fun x => ↑f (update m i x)) y [PROOFSTEP] simp [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹¹ : Semiring R inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : AddCommMonoid M₃ inst✝⁶ : AddCommMonoid M' inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝⁴ : (i : ι) → Module R (M₁ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ inst✝¹ : Module R M' f f' : MultilinearMap R M₁ M₂ inst✝ : DecidableEq ι m : (i : ι) → M₁ i i : ι c : R x : M₁ i ⊢ AddHom.toFun { toFun := fun x => ↑f (update m i x), map_add' := (_ : ∀ (x y : M₁ i), ↑f (update m i (x + y)) = ↑f (update m i x) + ↑f (update m i y)) } (c • x) = ↑(RingHom.id R) c • AddHom.toFun { toFun := fun x => ↑f (update m i x), map_add' := (_ : ∀ (x y : M₁ i), ↑f (update m i (x + y)) = ↑f (update m i x) + ↑f (update m i y)) } x [PROOFSTEP] simp [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹¹ : Semiring R inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : AddCommMonoid M₃ inst✝⁶ : AddCommMonoid M' inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝⁴ : (i : ι) → Module R (M₁ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ inst✝¹ : Module R M' f✝ f' f : MultilinearMap R M₁ M₂ g : MultilinearMap R M₁ M₃ inst✝ : DecidableEq ι m : (i : ι) → M₁ i i : ι x y : M₁ i ⊢ (fun m => (↑f m, ↑g m)) (update m i (x + y)) = (fun m => (↑f m, ↑g m)) (update m i x) + (fun m => (↑f m, ↑g m)) (update m i y) [PROOFSTEP] simp [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹¹ : Semiring R inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : AddCommMonoid M₃ inst✝⁶ : AddCommMonoid M' inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝⁴ : (i : ι) → Module R (M₁ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ inst✝¹ : Module R M' f✝ f' f : MultilinearMap R M₁ M₂ g : MultilinearMap R M₁ M₃ inst✝ : DecidableEq ι m : (i : ι) → M₁ i i : ι c : R x : M₁ i ⊢ (fun m => (↑f m, ↑g m)) (update m i (c • x)) = c • (fun m => (↑f m, ↑g m)) (update m i x) [PROOFSTEP] simp [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ inst✝¹ : Subsingleton ι i' : ι inst✝ : DecidableEq ι m : ι → M₂ i : ι x y : M₂ ⊢ eval i' (update m i (x + y)) = eval i' (update m i x) + eval i' (update m i y) [PROOFSTEP] rw [Subsingleton.elim i i'] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ inst✝¹ : Subsingleton ι i' : ι inst✝ : DecidableEq ι m : ι → M₂ i : ι x y : M₂ ⊢ eval i' (update m i' (x + y)) = eval i' (update m i' x) + eval i' (update m i' y) [PROOFSTEP] simp only [Function.eval, Function.update_same] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ inst✝¹ : Subsingleton ι i' : ι inst✝ : DecidableEq ι m : ι → M₂ i : ι r : R x : M₂ ⊢ eval i' (update m i (r • x)) = r • eval i' (update m i x) [PROOFSTEP] rw [Subsingleton.elim i i'] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ inst✝¹ : Subsingleton ι i' : ι inst✝ : DecidableEq ι m : ι → M₂ i : ι r : R x : M₂ ⊢ eval i' (update m i' (r • x)) = r • eval i' (update m i' x) [PROOFSTEP] simp only [Function.eval, Function.update_same] [GOAL] R : Type u ι : Type u' n✝ : ℕ M : Fin (Nat.succ n✝) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹¹ : Semiring R inst✝¹⁰ : (i : Fin (Nat.succ n✝)) → AddCommMonoid (M i) inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : AddCommMonoid M₃ inst✝⁶ : AddCommMonoid M' inst✝⁵ : (i : Fin (Nat.succ n✝)) → Module R (M i) inst✝⁴ : (i : ι) → Module R (M₁ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ inst✝¹ : Module R M' f✝ f' : MultilinearMap R M₁ M₂ k n : ℕ f : MultilinearMap R (fun x => M') M₂ s : Finset (Fin n) hk : Finset.card s = k z : M' inst✝ : DecidableEq (Fin k) v : Fin k → M' i : Fin k x y : M' ⊢ (fun v => ↑f fun j => if h : j ∈ s then v (↑(OrderIso.symm (Finset.orderIsoOfFin s hk)) { val := j, property := h }) else z) (update v i (x + y)) = (fun v => ↑f fun j => if h : j ∈ s then v (↑(OrderIso.symm (Finset.orderIsoOfFin s hk)) { val := j, property := h }) else z) (update v i x) + (fun v => ↑f fun j => if h : j ∈ s then v (↑(OrderIso.symm (Finset.orderIsoOfFin s hk)) { val := j, property := h }) else z) (update v i y) [PROOFSTEP] have : FunLike.coe (s.orderIsoOfFin hk).symm = (s.orderIsoOfFin hk).toEquiv.symm := rfl [GOAL] R : Type u ι : Type u' n✝ : ℕ M : Fin (Nat.succ n✝) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹¹ : Semiring R inst✝¹⁰ : (i : Fin (Nat.succ n✝)) → AddCommMonoid (M i) inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : AddCommMonoid M₃ inst✝⁶ : AddCommMonoid M' inst✝⁵ : (i : Fin (Nat.succ n✝)) → Module R (M i) inst✝⁴ : (i : ι) → Module R (M₁ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ inst✝¹ : Module R M' f✝ f' : MultilinearMap R M₁ M₂ k n : ℕ f : MultilinearMap R (fun x => M') M₂ s : Finset (Fin n) hk : Finset.card s = k z : M' inst✝ : DecidableEq (Fin k) v : Fin k → M' i : Fin k x y : M' this : ↑(OrderIso.symm (Finset.orderIsoOfFin s hk)) = ↑(Finset.orderIsoOfFin s hk).symm ⊢ (fun v => ↑f fun j => if h : j ∈ s then v (↑(OrderIso.symm (Finset.orderIsoOfFin s hk)) { val := j, property := h }) else z) (update v i (x + y)) = (fun v => ↑f fun j => if h : j ∈ s then v (↑(OrderIso.symm (Finset.orderIsoOfFin s hk)) { val := j, property := h }) else z) (update v i x) + (fun v => ↑f fun j => if h : j ∈ s then v (↑(OrderIso.symm (Finset.orderIsoOfFin s hk)) { val := j, property := h }) else z) (update v i y) [PROOFSTEP] simp only [this] [GOAL] R : Type u ι : Type u' n✝ : ℕ M : Fin (Nat.succ n✝) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹¹ : Semiring R inst✝¹⁰ : (i : Fin (Nat.succ n✝)) → AddCommMonoid (M i) inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : AddCommMonoid M₃ inst✝⁶ : AddCommMonoid M' inst✝⁵ : (i : Fin (Nat.succ n✝)) → Module R (M i) inst✝⁴ : (i : ι) → Module R (M₁ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ inst✝¹ : Module R M' f✝ f' : MultilinearMap R M₁ M₂ k n : ℕ f : MultilinearMap R (fun x => M') M₂ s : Finset (Fin n) hk : Finset.card s = k z : M' inst✝ : DecidableEq (Fin k) v : Fin k → M' i : Fin k x y : M' this : ↑(OrderIso.symm (Finset.orderIsoOfFin s hk)) = ↑(Finset.orderIsoOfFin s hk).symm ⊢ (↑f fun j => if h : j ∈ s then update v i (x + y) (↑(OrderIso.symm (Finset.orderIsoOfFin s hk)) { val := j, property := h }) else z) = (↑f fun j => if h : j ∈ s then update v i x (↑(OrderIso.symm (Finset.orderIsoOfFin s hk)) { val := j, property := h }) else z) + ↑f fun j => if h : j ∈ s then update v i y (↑(OrderIso.symm (Finset.orderIsoOfFin s hk)) { val := j, property := h }) else z [PROOFSTEP] erw [dite_comp_equiv_update (s.orderIsoOfFin hk).toEquiv, dite_comp_equiv_update (s.orderIsoOfFin hk).toEquiv, dite_comp_equiv_update (s.orderIsoOfFin hk).toEquiv] [GOAL] R : Type u ι : Type u' n✝ : ℕ M : Fin (Nat.succ n✝) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹¹ : Semiring R inst✝¹⁰ : (i : Fin (Nat.succ n✝)) → AddCommMonoid (M i) inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : AddCommMonoid M₃ inst✝⁶ : AddCommMonoid M' inst✝⁵ : (i : Fin (Nat.succ n✝)) → Module R (M i) inst✝⁴ : (i : ι) → Module R (M₁ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ inst✝¹ : Module R M' f✝ f' : MultilinearMap R M₁ M₂ k n : ℕ f : MultilinearMap R (fun x => M') M₂ s : Finset (Fin n) hk : Finset.card s = k z : M' inst✝ : DecidableEq (Fin k) v : Fin k → M' i : Fin k x y : M' this : ↑(OrderIso.symm (Finset.orderIsoOfFin s hk)) = ↑(Finset.orderIsoOfFin s hk).symm ⊢ ↑f (update (fun i => if h : i ∈ s then v (↑(Finset.orderIsoOfFin s hk).symm { val := i, property := h }) else z) (↑(↑(Finset.orderIsoOfFin s hk).toEquiv i)) (x + y)) = ↑f (update (fun i => if h : i ∈ s then v (↑(Finset.orderIsoOfFin s hk).symm { val := i, property := h }) else z) (↑(↑(Finset.orderIsoOfFin s hk).toEquiv i)) x) + ↑f (update (fun i => if h : i ∈ s then v (↑(Finset.orderIsoOfFin s hk).symm { val := i, property := h }) else z) (↑(↑(Finset.orderIsoOfFin s hk).toEquiv i)) y) [PROOFSTEP] simp [GOAL] R : Type u ι : Type u' n✝ : ℕ M : Fin (Nat.succ n✝) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹¹ : Semiring R inst✝¹⁰ : (i : Fin (Nat.succ n✝)) → AddCommMonoid (M i) inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : AddCommMonoid M₃ inst✝⁶ : AddCommMonoid M' inst✝⁵ : (i : Fin (Nat.succ n✝)) → Module R (M i) inst✝⁴ : (i : ι) → Module R (M₁ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ inst✝¹ : Module R M' f✝ f' : MultilinearMap R M₁ M₂ k n : ℕ f : MultilinearMap R (fun x => M') M₂ s : Finset (Fin n) hk : Finset.card s = k z : M' inst✝ : DecidableEq (Fin k) v : Fin k → M' i : Fin k c : R x : M' ⊢ (fun v => ↑f fun j => if h : j ∈ s then v (↑(OrderIso.symm (Finset.orderIsoOfFin s hk)) { val := j, property := h }) else z) (update v i (c • x)) = c • (fun v => ↑f fun j => if h : j ∈ s then v (↑(OrderIso.symm (Finset.orderIsoOfFin s hk)) { val := j, property := h }) else z) (update v i x) [PROOFSTEP] have : FunLike.coe (s.orderIsoOfFin hk).symm = (s.orderIsoOfFin hk).toEquiv.symm := rfl [GOAL] R : Type u ι : Type u' n✝ : ℕ M : Fin (Nat.succ n✝) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹¹ : Semiring R inst✝¹⁰ : (i : Fin (Nat.succ n✝)) → AddCommMonoid (M i) inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : AddCommMonoid M₃ inst✝⁶ : AddCommMonoid M' inst✝⁵ : (i : Fin (Nat.succ n✝)) → Module R (M i) inst✝⁴ : (i : ι) → Module R (M₁ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ inst✝¹ : Module R M' f✝ f' : MultilinearMap R M₁ M₂ k n : ℕ f : MultilinearMap R (fun x => M') M₂ s : Finset (Fin n) hk : Finset.card s = k z : M' inst✝ : DecidableEq (Fin k) v : Fin k → M' i : Fin k c : R x : M' this : ↑(OrderIso.symm (Finset.orderIsoOfFin s hk)) = ↑(Finset.orderIsoOfFin s hk).symm ⊢ (fun v => ↑f fun j => if h : j ∈ s then v (↑(OrderIso.symm (Finset.orderIsoOfFin s hk)) { val := j, property := h }) else z) (update v i (c • x)) = c • (fun v => ↑f fun j => if h : j ∈ s then v (↑(OrderIso.symm (Finset.orderIsoOfFin s hk)) { val := j, property := h }) else z) (update v i x) [PROOFSTEP] simp only [this] [GOAL] R : Type u ι : Type u' n✝ : ℕ M : Fin (Nat.succ n✝) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹¹ : Semiring R inst✝¹⁰ : (i : Fin (Nat.succ n✝)) → AddCommMonoid (M i) inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : AddCommMonoid M₃ inst✝⁶ : AddCommMonoid M' inst✝⁵ : (i : Fin (Nat.succ n✝)) → Module R (M i) inst✝⁴ : (i : ι) → Module R (M₁ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ inst✝¹ : Module R M' f✝ f' : MultilinearMap R M₁ M₂ k n : ℕ f : MultilinearMap R (fun x => M') M₂ s : Finset (Fin n) hk : Finset.card s = k z : M' inst✝ : DecidableEq (Fin k) v : Fin k → M' i : Fin k c : R x : M' this : ↑(OrderIso.symm (Finset.orderIsoOfFin s hk)) = ↑(Finset.orderIsoOfFin s hk).symm ⊢ (↑f fun j => if h : j ∈ s then update v i (c • x) (↑(OrderIso.symm (Finset.orderIsoOfFin s hk)) { val := j, property := h }) else z) = c • ↑f fun j => if h : j ∈ s then update v i x (↑(OrderIso.symm (Finset.orderIsoOfFin s hk)) { val := j, property := h }) else z [PROOFSTEP] erw [dite_comp_equiv_update (s.orderIsoOfFin hk).toEquiv, dite_comp_equiv_update (s.orderIsoOfFin hk).toEquiv] [GOAL] R : Type u ι : Type u' n✝ : ℕ M : Fin (Nat.succ n✝) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹¹ : Semiring R inst✝¹⁰ : (i : Fin (Nat.succ n✝)) → AddCommMonoid (M i) inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : AddCommMonoid M₃ inst✝⁶ : AddCommMonoid M' inst✝⁵ : (i : Fin (Nat.succ n✝)) → Module R (M i) inst✝⁴ : (i : ι) → Module R (M₁ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ inst✝¹ : Module R M' f✝ f' : MultilinearMap R M₁ M₂ k n : ℕ f : MultilinearMap R (fun x => M') M₂ s : Finset (Fin n) hk : Finset.card s = k z : M' inst✝ : DecidableEq (Fin k) v : Fin k → M' i : Fin k c : R x : M' this : ↑(OrderIso.symm (Finset.orderIsoOfFin s hk)) = ↑(Finset.orderIsoOfFin s hk).symm ⊢ ↑f (update (fun i => if h : i ∈ s then v (↑(Finset.orderIsoOfFin s hk).symm { val := i, property := h }) else z) (↑(↑(Finset.orderIsoOfFin s hk).toEquiv i)) (c • x)) = c • ↑f (update (fun i => if h : i ∈ s then v (↑(Finset.orderIsoOfFin s hk).symm { val := i, property := h }) else z) (↑(↑(Finset.orderIsoOfFin s hk).toEquiv i)) x) [PROOFSTEP] simp [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹⁰ : Semiring R inst✝⁹ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁸ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ inst✝⁵ : AddCommMonoid M' inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝³ : (i : ι) → Module R (M₁ i) inst✝² : Module R M₂ inst✝¹ : Module R M₃ inst✝ : Module R M' f✝ f' : MultilinearMap R M₁ M₂ f : MultilinearMap R M M₂ m : (i : Fin n) → M (succ i) x y : M 0 ⊢ ↑f (cons (x + y) m) = ↑f (cons x m) + ↑f (cons y m) [PROOFSTEP] simp_rw [← update_cons_zero x m (x + y), f.map_add, update_cons_zero] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹⁰ : Semiring R inst✝⁹ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁸ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ inst✝⁵ : AddCommMonoid M' inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝³ : (i : ι) → Module R (M₁ i) inst✝² : Module R M₂ inst✝¹ : Module R M₃ inst✝ : Module R M' f✝ f' : MultilinearMap R M₁ M₂ f : MultilinearMap R M M₂ m : (i : Fin n) → M (succ i) c : R x : M 0 ⊢ ↑f (cons (c • x) m) = c • ↑f (cons x m) [PROOFSTEP] simp_rw [← update_cons_zero x m (c • x), f.map_smul, update_cons_zero] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹⁰ : Semiring R inst✝⁹ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁸ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ inst✝⁵ : AddCommMonoid M' inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝³ : (i : ι) → Module R (M₁ i) inst✝² : Module R M₂ inst✝¹ : Module R M₃ inst✝ : Module R M' f✝ f' : MultilinearMap R M₁ M₂ f : MultilinearMap R M M₂ m : (i : Fin n) → M (castSucc i) x y : M (last n) ⊢ ↑f (snoc m (x + y)) = ↑f (snoc m x) + ↑f (snoc m y) [PROOFSTEP] simp_rw [← update_snoc_last x m (x + y), f.map_add, update_snoc_last] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹⁰ : Semiring R inst✝⁹ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁸ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ inst✝⁵ : AddCommMonoid M' inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝³ : (i : ι) → Module R (M₁ i) inst✝² : Module R M₂ inst✝¹ : Module R M₃ inst✝ : Module R M' f✝ f' : MultilinearMap R M₁ M₂ f : MultilinearMap R M M₂ m : (i : Fin n) → M (castSucc i) c : R x : M (last n) ⊢ ↑f (snoc m (c • x)) = c • ↑f (snoc m x) [PROOFSTEP] simp_rw [← update_snoc_last x m (c • x), f.map_smul, update_snoc_last] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹⁵ : Semiring R inst✝¹⁴ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝¹³ : (i : ι) → AddCommMonoid (M₁ i) inst✝¹² : AddCommMonoid M₂ inst✝¹¹ : AddCommMonoid M₃ inst✝¹⁰ : AddCommMonoid M' inst✝⁹ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝⁸ : (i : ι) → Module R (M₁ i) inst✝⁷ : Module R M₂ inst✝⁶ : Module R M₃ inst✝⁵ : Module R M' f✝ f' : MultilinearMap R M₁ M₂ M₁' : ι → Type u_1 inst✝⁴ : (i : ι) → AddCommMonoid (M₁' i) inst✝³ : (i : ι) → Module R (M₁' i) M₁'' : ι → Type u_2 inst✝² : (i : ι) → AddCommMonoid (M₁'' i) inst✝¹ : (i : ι) → Module R (M₁'' i) g : MultilinearMap R M₁' M₂ f : (i : ι) → M₁ i →ₗ[R] M₁' i inst✝ : DecidableEq ι m : (i : ι) → M₁ i i : ι x y : M₁ i ⊢ (fun m => ↑g fun i => ↑(f i) (m i)) (update m i (x + y)) = (fun m => ↑g fun i => ↑(f i) (m i)) (update m i x) + (fun m => ↑g fun i => ↑(f i) (m i)) (update m i y) [PROOFSTEP] have : ∀ j z, f j (update m i z j) = update (fun k => f k (m k)) i (f i z) j := fun j z => Function.apply_update (fun k => f k) _ _ _ _ [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹⁵ : Semiring R inst✝¹⁴ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝¹³ : (i : ι) → AddCommMonoid (M₁ i) inst✝¹² : AddCommMonoid M₂ inst✝¹¹ : AddCommMonoid M₃ inst✝¹⁰ : AddCommMonoid M' inst✝⁹ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝⁸ : (i : ι) → Module R (M₁ i) inst✝⁷ : Module R M₂ inst✝⁶ : Module R M₃ inst✝⁵ : Module R M' f✝ f' : MultilinearMap R M₁ M₂ M₁' : ι → Type u_1 inst✝⁴ : (i : ι) → AddCommMonoid (M₁' i) inst✝³ : (i : ι) → Module R (M₁' i) M₁'' : ι → Type u_2 inst✝² : (i : ι) → AddCommMonoid (M₁'' i) inst✝¹ : (i : ι) → Module R (M₁'' i) g : MultilinearMap R M₁' M₂ f : (i : ι) → M₁ i →ₗ[R] M₁' i inst✝ : DecidableEq ι m : (i : ι) → M₁ i i : ι x y : M₁ i this : ∀ (j : ι) (z : M₁ i), ↑(f j) (update m i z j) = update (fun k => ↑(f k) (m k)) i (↑(f i) z) j ⊢ (fun m => ↑g fun i => ↑(f i) (m i)) (update m i (x + y)) = (fun m => ↑g fun i => ↑(f i) (m i)) (update m i x) + (fun m => ↑g fun i => ↑(f i) (m i)) (update m i y) [PROOFSTEP] simp [this] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹⁵ : Semiring R inst✝¹⁴ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝¹³ : (i : ι) → AddCommMonoid (M₁ i) inst✝¹² : AddCommMonoid M₂ inst✝¹¹ : AddCommMonoid M₃ inst✝¹⁰ : AddCommMonoid M' inst✝⁹ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝⁸ : (i : ι) → Module R (M₁ i) inst✝⁷ : Module R M₂ inst✝⁶ : Module R M₃ inst✝⁵ : Module R M' f✝ f' : MultilinearMap R M₁ M₂ M₁' : ι → Type u_1 inst✝⁴ : (i : ι) → AddCommMonoid (M₁' i) inst✝³ : (i : ι) → Module R (M₁' i) M₁'' : ι → Type u_2 inst✝² : (i : ι) → AddCommMonoid (M₁'' i) inst✝¹ : (i : ι) → Module R (M₁'' i) g : MultilinearMap R M₁' M₂ f : (i : ι) → M₁ i →ₗ[R] M₁' i inst✝ : DecidableEq ι m : (i : ι) → M₁ i i : ι c : R x : M₁ i ⊢ (fun m => ↑g fun i => ↑(f i) (m i)) (update m i (c • x)) = c • (fun m => ↑g fun i => ↑(f i) (m i)) (update m i x) [PROOFSTEP] have : ∀ j z, f j (update m i z j) = update (fun k => f k (m k)) i (f i z) j := fun j z => Function.apply_update (fun k => f k) _ _ _ _ [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹⁵ : Semiring R inst✝¹⁴ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝¹³ : (i : ι) → AddCommMonoid (M₁ i) inst✝¹² : AddCommMonoid M₂ inst✝¹¹ : AddCommMonoid M₃ inst✝¹⁰ : AddCommMonoid M' inst✝⁹ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝⁸ : (i : ι) → Module R (M₁ i) inst✝⁷ : Module R M₂ inst✝⁶ : Module R M₃ inst✝⁵ : Module R M' f✝ f' : MultilinearMap R M₁ M₂ M₁' : ι → Type u_1 inst✝⁴ : (i : ι) → AddCommMonoid (M₁' i) inst✝³ : (i : ι) → Module R (M₁' i) M₁'' : ι → Type u_2 inst✝² : (i : ι) → AddCommMonoid (M₁'' i) inst✝¹ : (i : ι) → Module R (M₁'' i) g : MultilinearMap R M₁' M₂ f : (i : ι) → M₁ i →ₗ[R] M₁' i inst✝ : DecidableEq ι m : (i : ι) → M₁ i i : ι c : R x : M₁ i this : ∀ (j : ι) (z : M₁ i), ↑(f j) (update m i z j) = update (fun k => ↑(f k) (m k)) i (↑(f i) z) j ⊢ (fun m => ↑g fun i => ↑(f i) (m i)) (update m i (c • x)) = c • (fun m => ↑g fun i => ↑(f i) (m i)) (update m i x) [PROOFSTEP] simp [this] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹⁴ : Semiring R inst✝¹³ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝¹² : (i : ι) → AddCommMonoid (M₁ i) inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : AddCommMonoid M₃ inst✝⁹ : AddCommMonoid M' inst✝⁸ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝⁷ : (i : ι) → Module R (M₁ i) inst✝⁶ : Module R M₂ inst✝⁵ : Module R M₃ inst✝⁴ : Module R M' f✝ f' : MultilinearMap R M₁ M₂ M₁' : ι → Type u_1 inst✝³ : (i : ι) → AddCommMonoid (M₁' i) inst✝² : (i : ι) → Module R (M₁' i) M₁'' : ι → Type u_2 inst✝¹ : (i : ι) → AddCommMonoid (M₁'' i) inst✝ : (i : ι) → Module R (M₁'' i) f : (i : ι) → M₁ i →ₗ[R] M₁' i hf : ∀ (i : ι), Surjective ↑(f i) g₁ g₂ : MultilinearMap R M₁' M₂ h : (fun g => compLinearMap g f) g₁ = (fun g => compLinearMap g f) g₂ x : (i : ι) → M₁' i ⊢ ↑g₁ x = ↑g₂ x [PROOFSTEP] simpa [fun i => surjInv_eq (hf i)] using ext_iff.mp h fun i => surjInv (hf i) (x i) [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹⁴ : Semiring R inst✝¹³ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝¹² : (i : ι) → AddCommMonoid (M₁ i) inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : AddCommMonoid M₃ inst✝⁹ : AddCommMonoid M' inst✝⁸ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝⁷ : (i : ι) → Module R (M₁ i) inst✝⁶ : Module R M₂ inst✝⁵ : Module R M₃ inst✝⁴ : Module R M' f✝ f' : MultilinearMap R M₁ M₂ M₁' : ι → Type u_1 inst✝³ : (i : ι) → AddCommMonoid (M₁' i) inst✝² : (i : ι) → Module R (M₁' i) M₁'' : ι → Type u_2 inst✝¹ : (i : ι) → AddCommMonoid (M₁'' i) inst✝ : (i : ι) → Module R (M₁'' i) g : MultilinearMap R M₁' M₂ f : (i : ι) → M₁ i ≃ₗ[R] M₁' i ⊢ (compLinearMap g fun i => ↑(f i)) = 0 ↔ g = 0 [PROOFSTEP] set f' := fun i => (f i : M₁ i →ₗ[R] M₁' i) [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹⁴ : Semiring R inst✝¹³ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝¹² : (i : ι) → AddCommMonoid (M₁ i) inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : AddCommMonoid M₃ inst✝⁹ : AddCommMonoid M' inst✝⁸ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝⁷ : (i : ι) → Module R (M₁ i) inst✝⁶ : Module R M₂ inst✝⁵ : Module R M₃ inst✝⁴ : Module R M' f✝ f'✝ : MultilinearMap R M₁ M₂ M₁' : ι → Type u_1 inst✝³ : (i : ι) → AddCommMonoid (M₁' i) inst✝² : (i : ι) → Module R (M₁' i) M₁'' : ι → Type u_2 inst✝¹ : (i : ι) → AddCommMonoid (M₁'' i) inst✝ : (i : ι) → Module R (M₁'' i) g : MultilinearMap R M₁' M₂ f : (i : ι) → M₁ i ≃ₗ[R] M₁' i f' : (i : ι) → M₁ i →ₗ[R] M₁' i := fun i => ↑(f i) ⊢ compLinearMap g f' = 0 ↔ g = 0 [PROOFSTEP] rw [← zero_compLinearMap f', compLinearMap_inj f' fun i => (f i).surjective] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹¹ : Semiring R inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : AddCommMonoid M₃ inst✝⁶ : AddCommMonoid M' inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝⁴ : (i : ι) → Module R (M₁ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ inst✝¹ : Module R M' f f' : MultilinearMap R M₁ M₂ inst✝ : DecidableEq ι m m' : (i : ι) → M₁ i t : Finset ι ⊢ ↑f (Finset.piecewise t (m + m') m') = ∑ s in Finset.powerset t, ↑f (Finset.piecewise s m m') [PROOFSTEP] revert m' [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹¹ : Semiring R inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : AddCommMonoid M₃ inst✝⁶ : AddCommMonoid M' inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝⁴ : (i : ι) → Module R (M₁ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ inst✝¹ : Module R M' f f' : MultilinearMap R M₁ M₂ inst✝ : DecidableEq ι m : (i : ι) → M₁ i t : Finset ι ⊢ ∀ (m' : (i : ι) → M₁ i), ↑f (Finset.piecewise t (m + m') m') = ∑ s in Finset.powerset t, ↑f (Finset.piecewise s m m') [PROOFSTEP] refine' Finset.induction_on t (by simp) _ [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹¹ : Semiring R inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : AddCommMonoid M₃ inst✝⁶ : AddCommMonoid M' inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝⁴ : (i : ι) → Module R (M₁ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ inst✝¹ : Module R M' f f' : MultilinearMap R M₁ M₂ inst✝ : DecidableEq ι m : (i : ι) → M₁ i t : Finset ι ⊢ ∀ (m' : (i : ι) → M₁ i), ↑f (Finset.piecewise ∅ (m + m') m') = ∑ s in Finset.powerset ∅, ↑f (Finset.piecewise s m m') [PROOFSTEP] simp [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹¹ : Semiring R inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : AddCommMonoid M₃ inst✝⁶ : AddCommMonoid M' inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝⁴ : (i : ι) → Module R (M₁ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ inst✝¹ : Module R M' f f' : MultilinearMap R M₁ M₂ inst✝ : DecidableEq ι m : (i : ι) → M₁ i t : Finset ι ⊢ ∀ ⦃a : ι⦄ {s : Finset ι}, ¬a ∈ s → (∀ (m' : (i : ι) → M₁ i), ↑f (Finset.piecewise s (m + m') m') = ∑ s in Finset.powerset s, ↑f (Finset.piecewise s m m')) → ∀ (m' : (i : ι) → M₁ i), ↑f (Finset.piecewise (insert a s) (m + m') m') = ∑ s in Finset.powerset (insert a s), ↑f (Finset.piecewise s m m') [PROOFSTEP] intro i t hit Hrec m' [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹¹ : Semiring R inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : AddCommMonoid M₃ inst✝⁶ : AddCommMonoid M' inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝⁴ : (i : ι) → Module R (M₁ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ inst✝¹ : Module R M' f f' : MultilinearMap R M₁ M₂ inst✝ : DecidableEq ι m : (i : ι) → M₁ i t✝ : Finset ι i : ι t : Finset ι hit : ¬i ∈ t Hrec : ∀ (m' : (i : ι) → M₁ i), ↑f (Finset.piecewise t (m + m') m') = ∑ s in Finset.powerset t, ↑f (Finset.piecewise s m m') m' : (i : ι) → M₁ i ⊢ ↑f (Finset.piecewise (insert i t) (m + m') m') = ∑ s in Finset.powerset (insert i t), ↑f (Finset.piecewise s m m') [PROOFSTEP] have A : (insert i t).piecewise (m + m') m' = update (t.piecewise (m + m') m') i (m i + m' i) := t.piecewise_insert _ _ _ [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹¹ : Semiring R inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : AddCommMonoid M₃ inst✝⁶ : AddCommMonoid M' inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝⁴ : (i : ι) → Module R (M₁ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ inst✝¹ : Module R M' f f' : MultilinearMap R M₁ M₂ inst✝ : DecidableEq ι m : (i : ι) → M₁ i t✝ : Finset ι i : ι t : Finset ι hit : ¬i ∈ t Hrec : ∀ (m' : (i : ι) → M₁ i), ↑f (Finset.piecewise t (m + m') m') = ∑ s in Finset.powerset t, ↑f (Finset.piecewise s m m') m' : (i : ι) → M₁ i A : Finset.piecewise (insert i t) (m + m') m' = update (Finset.piecewise t (m + m') m') i (m i + m' i) ⊢ ↑f (Finset.piecewise (insert i t) (m + m') m') = ∑ s in Finset.powerset (insert i t), ↑f (Finset.piecewise s m m') [PROOFSTEP] have B : update (t.piecewise (m + m') m') i (m' i) = t.piecewise (m + m') m' := by ext j by_cases h : j = i · rw [h] simp [hit] · simp [h] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹¹ : Semiring R inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : AddCommMonoid M₃ inst✝⁶ : AddCommMonoid M' inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝⁴ : (i : ι) → Module R (M₁ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ inst✝¹ : Module R M' f f' : MultilinearMap R M₁ M₂ inst✝ : DecidableEq ι m : (i : ι) → M₁ i t✝ : Finset ι i : ι t : Finset ι hit : ¬i ∈ t Hrec : ∀ (m' : (i : ι) → M₁ i), ↑f (Finset.piecewise t (m + m') m') = ∑ s in Finset.powerset t, ↑f (Finset.piecewise s m m') m' : (i : ι) → M₁ i A : Finset.piecewise (insert i t) (m + m') m' = update (Finset.piecewise t (m + m') m') i (m i + m' i) ⊢ update (Finset.piecewise t (m + m') m') i (m' i) = Finset.piecewise t (m + m') m' [PROOFSTEP] ext j [GOAL] case h R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹¹ : Semiring R inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : AddCommMonoid M₃ inst✝⁶ : AddCommMonoid M' inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝⁴ : (i : ι) → Module R (M₁ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ inst✝¹ : Module R M' f f' : MultilinearMap R M₁ M₂ inst✝ : DecidableEq ι m : (i : ι) → M₁ i t✝ : Finset ι i : ι t : Finset ι hit : ¬i ∈ t Hrec : ∀ (m' : (i : ι) → M₁ i), ↑f (Finset.piecewise t (m + m') m') = ∑ s in Finset.powerset t, ↑f (Finset.piecewise s m m') m' : (i : ι) → M₁ i A : Finset.piecewise (insert i t) (m + m') m' = update (Finset.piecewise t (m + m') m') i (m i + m' i) j : ι ⊢ update (Finset.piecewise t (m + m') m') i (m' i) j = Finset.piecewise t (m + m') m' j [PROOFSTEP] by_cases h : j = i [GOAL] case pos R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹¹ : Semiring R inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : AddCommMonoid M₃ inst✝⁶ : AddCommMonoid M' inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝⁴ : (i : ι) → Module R (M₁ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ inst✝¹ : Module R M' f f' : MultilinearMap R M₁ M₂ inst✝ : DecidableEq ι m : (i : ι) → M₁ i t✝ : Finset ι i : ι t : Finset ι hit : ¬i ∈ t Hrec : ∀ (m' : (i : ι) → M₁ i), ↑f (Finset.piecewise t (m + m') m') = ∑ s in Finset.powerset t, ↑f (Finset.piecewise s m m') m' : (i : ι) → M₁ i A : Finset.piecewise (insert i t) (m + m') m' = update (Finset.piecewise t (m + m') m') i (m i + m' i) j : ι h : j = i ⊢ update (Finset.piecewise t (m + m') m') i (m' i) j = Finset.piecewise t (m + m') m' j [PROOFSTEP] rw [h] [GOAL] case pos R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹¹ : Semiring R inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : AddCommMonoid M₃ inst✝⁶ : AddCommMonoid M' inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝⁴ : (i : ι) → Module R (M₁ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ inst✝¹ : Module R M' f f' : MultilinearMap R M₁ M₂ inst✝ : DecidableEq ι m : (i : ι) → M₁ i t✝ : Finset ι i : ι t : Finset ι hit : ¬i ∈ t Hrec : ∀ (m' : (i : ι) → M₁ i), ↑f (Finset.piecewise t (m + m') m') = ∑ s in Finset.powerset t, ↑f (Finset.piecewise s m m') m' : (i : ι) → M₁ i A : Finset.piecewise (insert i t) (m + m') m' = update (Finset.piecewise t (m + m') m') i (m i + m' i) j : ι h : j = i ⊢ update (Finset.piecewise t (m + m') m') i (m' i) i = Finset.piecewise t (m + m') m' i [PROOFSTEP] simp [hit] [GOAL] case neg R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹¹ : Semiring R inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : AddCommMonoid M₃ inst✝⁶ : AddCommMonoid M' inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝⁴ : (i : ι) → Module R (M₁ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ inst✝¹ : Module R M' f f' : MultilinearMap R M₁ M₂ inst✝ : DecidableEq ι m : (i : ι) → M₁ i t✝ : Finset ι i : ι t : Finset ι hit : ¬i ∈ t Hrec : ∀ (m' : (i : ι) → M₁ i), ↑f (Finset.piecewise t (m + m') m') = ∑ s in Finset.powerset t, ↑f (Finset.piecewise s m m') m' : (i : ι) → M₁ i A : Finset.piecewise (insert i t) (m + m') m' = update (Finset.piecewise t (m + m') m') i (m i + m' i) j : ι h : ¬j = i ⊢ update (Finset.piecewise t (m + m') m') i (m' i) j = Finset.piecewise t (m + m') m' j [PROOFSTEP] simp [h] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹¹ : Semiring R inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : AddCommMonoid M₃ inst✝⁶ : AddCommMonoid M' inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝⁴ : (i : ι) → Module R (M₁ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ inst✝¹ : Module R M' f f' : MultilinearMap R M₁ M₂ inst✝ : DecidableEq ι m : (i : ι) → M₁ i t✝ : Finset ι i : ι t : Finset ι hit : ¬i ∈ t Hrec : ∀ (m' : (i : ι) → M₁ i), ↑f (Finset.piecewise t (m + m') m') = ∑ s in Finset.powerset t, ↑f (Finset.piecewise s m m') m' : (i : ι) → M₁ i A : Finset.piecewise (insert i t) (m + m') m' = update (Finset.piecewise t (m + m') m') i (m i + m' i) B : update (Finset.piecewise t (m + m') m') i (m' i) = Finset.piecewise t (m + m') m' ⊢ ↑f (Finset.piecewise (insert i t) (m + m') m') = ∑ s in Finset.powerset (insert i t), ↑f (Finset.piecewise s m m') [PROOFSTEP] let m'' := update m' i (m i) [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹¹ : Semiring R inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : AddCommMonoid M₃ inst✝⁶ : AddCommMonoid M' inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝⁴ : (i : ι) → Module R (M₁ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ inst✝¹ : Module R M' f f' : MultilinearMap R M₁ M₂ inst✝ : DecidableEq ι m : (i : ι) → M₁ i t✝ : Finset ι i : ι t : Finset ι hit : ¬i ∈ t Hrec : ∀ (m' : (i : ι) → M₁ i), ↑f (Finset.piecewise t (m + m') m') = ∑ s in Finset.powerset t, ↑f (Finset.piecewise s m m') m' : (i : ι) → M₁ i A : Finset.piecewise (insert i t) (m + m') m' = update (Finset.piecewise t (m + m') m') i (m i + m' i) B : update (Finset.piecewise t (m + m') m') i (m' i) = Finset.piecewise t (m + m') m' m'' : (a : ι) → M₁ a := update m' i (m i) ⊢ ↑f (Finset.piecewise (insert i t) (m + m') m') = ∑ s in Finset.powerset (insert i t), ↑f (Finset.piecewise s m m') [PROOFSTEP] have C : update (t.piecewise (m + m') m') i (m i) = t.piecewise (m + m'') m'' := by ext j by_cases h : j = i · rw [h] simp [hit] · by_cases h' : j ∈ t <;> simp [h, hit, h'] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹¹ : Semiring R inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : AddCommMonoid M₃ inst✝⁶ : AddCommMonoid M' inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝⁴ : (i : ι) → Module R (M₁ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ inst✝¹ : Module R M' f f' : MultilinearMap R M₁ M₂ inst✝ : DecidableEq ι m : (i : ι) → M₁ i t✝ : Finset ι i : ι t : Finset ι hit : ¬i ∈ t Hrec : ∀ (m' : (i : ι) → M₁ i), ↑f (Finset.piecewise t (m + m') m') = ∑ s in Finset.powerset t, ↑f (Finset.piecewise s m m') m' : (i : ι) → M₁ i A : Finset.piecewise (insert i t) (m + m') m' = update (Finset.piecewise t (m + m') m') i (m i + m' i) B : update (Finset.piecewise t (m + m') m') i (m' i) = Finset.piecewise t (m + m') m' m'' : (a : ι) → M₁ a := update m' i (m i) ⊢ update (Finset.piecewise t (m + m') m') i (m i) = Finset.piecewise t (m + m'') m'' [PROOFSTEP] ext j [GOAL] case h R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹¹ : Semiring R inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : AddCommMonoid M₃ inst✝⁶ : AddCommMonoid M' inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝⁴ : (i : ι) → Module R (M₁ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ inst✝¹ : Module R M' f f' : MultilinearMap R M₁ M₂ inst✝ : DecidableEq ι m : (i : ι) → M₁ i t✝ : Finset ι i : ι t : Finset ι hit : ¬i ∈ t Hrec : ∀ (m' : (i : ι) → M₁ i), ↑f (Finset.piecewise t (m + m') m') = ∑ s in Finset.powerset t, ↑f (Finset.piecewise s m m') m' : (i : ι) → M₁ i A : Finset.piecewise (insert i t) (m + m') m' = update (Finset.piecewise t (m + m') m') i (m i + m' i) B : update (Finset.piecewise t (m + m') m') i (m' i) = Finset.piecewise t (m + m') m' m'' : (a : ι) → M₁ a := update m' i (m i) j : ι ⊢ update (Finset.piecewise t (m + m') m') i (m i) j = Finset.piecewise t (m + m'') m'' j [PROOFSTEP] by_cases h : j = i [GOAL] case pos R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹¹ : Semiring R inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : AddCommMonoid M₃ inst✝⁶ : AddCommMonoid M' inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝⁴ : (i : ι) → Module R (M₁ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ inst✝¹ : Module R M' f f' : MultilinearMap R M₁ M₂ inst✝ : DecidableEq ι m : (i : ι) → M₁ i t✝ : Finset ι i : ι t : Finset ι hit : ¬i ∈ t Hrec : ∀ (m' : (i : ι) → M₁ i), ↑f (Finset.piecewise t (m + m') m') = ∑ s in Finset.powerset t, ↑f (Finset.piecewise s m m') m' : (i : ι) → M₁ i A : Finset.piecewise (insert i t) (m + m') m' = update (Finset.piecewise t (m + m') m') i (m i + m' i) B : update (Finset.piecewise t (m + m') m') i (m' i) = Finset.piecewise t (m + m') m' m'' : (a : ι) → M₁ a := update m' i (m i) j : ι h : j = i ⊢ update (Finset.piecewise t (m + m') m') i (m i) j = Finset.piecewise t (m + m'') m'' j [PROOFSTEP] rw [h] [GOAL] case pos R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹¹ : Semiring R inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : AddCommMonoid M₃ inst✝⁶ : AddCommMonoid M' inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝⁴ : (i : ι) → Module R (M₁ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ inst✝¹ : Module R M' f f' : MultilinearMap R M₁ M₂ inst✝ : DecidableEq ι m : (i : ι) → M₁ i t✝ : Finset ι i : ι t : Finset ι hit : ¬i ∈ t Hrec : ∀ (m' : (i : ι) → M₁ i), ↑f (Finset.piecewise t (m + m') m') = ∑ s in Finset.powerset t, ↑f (Finset.piecewise s m m') m' : (i : ι) → M₁ i A : Finset.piecewise (insert i t) (m + m') m' = update (Finset.piecewise t (m + m') m') i (m i + m' i) B : update (Finset.piecewise t (m + m') m') i (m' i) = Finset.piecewise t (m + m') m' m'' : (a : ι) → M₁ a := update m' i (m i) j : ι h : j = i ⊢ update (Finset.piecewise t (m + m') m') i (m i) i = Finset.piecewise t (m + m'') m'' i [PROOFSTEP] simp [hit] [GOAL] case neg R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹¹ : Semiring R inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : AddCommMonoid M₃ inst✝⁶ : AddCommMonoid M' inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝⁴ : (i : ι) → Module R (M₁ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ inst✝¹ : Module R M' f f' : MultilinearMap R M₁ M₂ inst✝ : DecidableEq ι m : (i : ι) → M₁ i t✝ : Finset ι i : ι t : Finset ι hit : ¬i ∈ t Hrec : ∀ (m' : (i : ι) → M₁ i), ↑f (Finset.piecewise t (m + m') m') = ∑ s in Finset.powerset t, ↑f (Finset.piecewise s m m') m' : (i : ι) → M₁ i A : Finset.piecewise (insert i t) (m + m') m' = update (Finset.piecewise t (m + m') m') i (m i + m' i) B : update (Finset.piecewise t (m + m') m') i (m' i) = Finset.piecewise t (m + m') m' m'' : (a : ι) → M₁ a := update m' i (m i) j : ι h : ¬j = i ⊢ update (Finset.piecewise t (m + m') m') i (m i) j = Finset.piecewise t (m + m'') m'' j [PROOFSTEP] by_cases h' : j ∈ t [GOAL] case pos R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹¹ : Semiring R inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : AddCommMonoid M₃ inst✝⁶ : AddCommMonoid M' inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝⁴ : (i : ι) → Module R (M₁ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ inst✝¹ : Module R M' f f' : MultilinearMap R M₁ M₂ inst✝ : DecidableEq ι m : (i : ι) → M₁ i t✝ : Finset ι i : ι t : Finset ι hit : ¬i ∈ t Hrec : ∀ (m' : (i : ι) → M₁ i), ↑f (Finset.piecewise t (m + m') m') = ∑ s in Finset.powerset t, ↑f (Finset.piecewise s m m') m' : (i : ι) → M₁ i A : Finset.piecewise (insert i t) (m + m') m' = update (Finset.piecewise t (m + m') m') i (m i + m' i) B : update (Finset.piecewise t (m + m') m') i (m' i) = Finset.piecewise t (m + m') m' m'' : (a : ι) → M₁ a := update m' i (m i) j : ι h : ¬j = i h' : j ∈ t ⊢ update (Finset.piecewise t (m + m') m') i (m i) j = Finset.piecewise t (m + m'') m'' j [PROOFSTEP] simp [h, hit, h'] [GOAL] case neg R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹¹ : Semiring R inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : AddCommMonoid M₃ inst✝⁶ : AddCommMonoid M' inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝⁴ : (i : ι) → Module R (M₁ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ inst✝¹ : Module R M' f f' : MultilinearMap R M₁ M₂ inst✝ : DecidableEq ι m : (i : ι) → M₁ i t✝ : Finset ι i : ι t : Finset ι hit : ¬i ∈ t Hrec : ∀ (m' : (i : ι) → M₁ i), ↑f (Finset.piecewise t (m + m') m') = ∑ s in Finset.powerset t, ↑f (Finset.piecewise s m m') m' : (i : ι) → M₁ i A : Finset.piecewise (insert i t) (m + m') m' = update (Finset.piecewise t (m + m') m') i (m i + m' i) B : update (Finset.piecewise t (m + m') m') i (m' i) = Finset.piecewise t (m + m') m' m'' : (a : ι) → M₁ a := update m' i (m i) j : ι h : ¬j = i h' : ¬j ∈ t ⊢ update (Finset.piecewise t (m + m') m') i (m i) j = Finset.piecewise t (m + m'') m'' j [PROOFSTEP] simp [h, hit, h'] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹¹ : Semiring R inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : AddCommMonoid M₃ inst✝⁶ : AddCommMonoid M' inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝⁴ : (i : ι) → Module R (M₁ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ inst✝¹ : Module R M' f f' : MultilinearMap R M₁ M₂ inst✝ : DecidableEq ι m : (i : ι) → M₁ i t✝ : Finset ι i : ι t : Finset ι hit : ¬i ∈ t Hrec : ∀ (m' : (i : ι) → M₁ i), ↑f (Finset.piecewise t (m + m') m') = ∑ s in Finset.powerset t, ↑f (Finset.piecewise s m m') m' : (i : ι) → M₁ i A : Finset.piecewise (insert i t) (m + m') m' = update (Finset.piecewise t (m + m') m') i (m i + m' i) B : update (Finset.piecewise t (m + m') m') i (m' i) = Finset.piecewise t (m + m') m' m'' : (a : ι) → M₁ a := update m' i (m i) C : update (Finset.piecewise t (m + m') m') i (m i) = Finset.piecewise t (m + m'') m'' ⊢ ↑f (Finset.piecewise (insert i t) (m + m') m') = ∑ s in Finset.powerset (insert i t), ↑f (Finset.piecewise s m m') [PROOFSTEP] rw [A, f.map_add, B, C, Finset.sum_powerset_insert hit, Hrec, Hrec, add_comm (_ : M₂)] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹¹ : Semiring R inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : AddCommMonoid M₃ inst✝⁶ : AddCommMonoid M' inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝⁴ : (i : ι) → Module R (M₁ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ inst✝¹ : Module R M' f f' : MultilinearMap R M₁ M₂ inst✝ : DecidableEq ι m : (i : ι) → M₁ i t✝ : Finset ι i : ι t : Finset ι hit : ¬i ∈ t Hrec : ∀ (m' : (i : ι) → M₁ i), ↑f (Finset.piecewise t (m + m') m') = ∑ s in Finset.powerset t, ↑f (Finset.piecewise s m m') m' : (i : ι) → M₁ i A : Finset.piecewise (insert i t) (m + m') m' = update (Finset.piecewise t (m + m') m') i (m i + m' i) B : update (Finset.piecewise t (m + m') m') i (m' i) = Finset.piecewise t (m + m') m' m'' : (a : ι) → M₁ a := update m' i (m i) C : update (Finset.piecewise t (m + m') m') i (m i) = Finset.piecewise t (m + m'') m'' ⊢ ∑ s in Finset.powerset t, ↑f (Finset.piecewise s m m') + ∑ s in Finset.powerset t, ↑f (Finset.piecewise s m m'') = ∑ a in Finset.powerset t, ↑f (Finset.piecewise a m m') + ∑ t in Finset.powerset t, ↑f (Finset.piecewise (insert i t) m m') [PROOFSTEP] congr 1 [GOAL] case e_a R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹¹ : Semiring R inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : AddCommMonoid M₃ inst✝⁶ : AddCommMonoid M' inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝⁴ : (i : ι) → Module R (M₁ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ inst✝¹ : Module R M' f f' : MultilinearMap R M₁ M₂ inst✝ : DecidableEq ι m : (i : ι) → M₁ i t✝ : Finset ι i : ι t : Finset ι hit : ¬i ∈ t Hrec : ∀ (m' : (i : ι) → M₁ i), ↑f (Finset.piecewise t (m + m') m') = ∑ s in Finset.powerset t, ↑f (Finset.piecewise s m m') m' : (i : ι) → M₁ i A : Finset.piecewise (insert i t) (m + m') m' = update (Finset.piecewise t (m + m') m') i (m i + m' i) B : update (Finset.piecewise t (m + m') m') i (m' i) = Finset.piecewise t (m + m') m' m'' : (a : ι) → M₁ a := update m' i (m i) C : update (Finset.piecewise t (m + m') m') i (m i) = Finset.piecewise t (m + m'') m'' ⊢ ∑ s in Finset.powerset t, ↑f (Finset.piecewise s m m'') = ∑ t in Finset.powerset t, ↑f (Finset.piecewise (insert i t) m m') [PROOFSTEP] refine Finset.sum_congr rfl fun s hs => ?_ [GOAL] case e_a R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹¹ : Semiring R inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : AddCommMonoid M₃ inst✝⁶ : AddCommMonoid M' inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝⁴ : (i : ι) → Module R (M₁ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ inst✝¹ : Module R M' f f' : MultilinearMap R M₁ M₂ inst✝ : DecidableEq ι m : (i : ι) → M₁ i t✝ : Finset ι i : ι t : Finset ι hit : ¬i ∈ t Hrec : ∀ (m' : (i : ι) → M₁ i), ↑f (Finset.piecewise t (m + m') m') = ∑ s in Finset.powerset t, ↑f (Finset.piecewise s m m') m' : (i : ι) → M₁ i A : Finset.piecewise (insert i t) (m + m') m' = update (Finset.piecewise t (m + m') m') i (m i + m' i) B : update (Finset.piecewise t (m + m') m') i (m' i) = Finset.piecewise t (m + m') m' m'' : (a : ι) → M₁ a := update m' i (m i) C : update (Finset.piecewise t (m + m') m') i (m i) = Finset.piecewise t (m + m'') m'' s : Finset ι hs : s ∈ Finset.powerset t ⊢ ↑f (Finset.piecewise s m m'') = ↑f (Finset.piecewise (insert i s) m m') [PROOFSTEP] have : (insert i s).piecewise m m' = s.piecewise m m'' := by ext j by_cases h : j = i · rw [h] simp [Finset.not_mem_of_mem_powerset_of_not_mem hs hit] · by_cases h' : j ∈ s <;> simp [h, h'] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹¹ : Semiring R inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : AddCommMonoid M₃ inst✝⁶ : AddCommMonoid M' inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝⁴ : (i : ι) → Module R (M₁ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ inst✝¹ : Module R M' f f' : MultilinearMap R M₁ M₂ inst✝ : DecidableEq ι m : (i : ι) → M₁ i t✝ : Finset ι i : ι t : Finset ι hit : ¬i ∈ t Hrec : ∀ (m' : (i : ι) → M₁ i), ↑f (Finset.piecewise t (m + m') m') = ∑ s in Finset.powerset t, ↑f (Finset.piecewise s m m') m' : (i : ι) → M₁ i A : Finset.piecewise (insert i t) (m + m') m' = update (Finset.piecewise t (m + m') m') i (m i + m' i) B : update (Finset.piecewise t (m + m') m') i (m' i) = Finset.piecewise t (m + m') m' m'' : (a : ι) → M₁ a := update m' i (m i) C : update (Finset.piecewise t (m + m') m') i (m i) = Finset.piecewise t (m + m'') m'' s : Finset ι hs : s ∈ Finset.powerset t ⊢ Finset.piecewise (insert i s) m m' = Finset.piecewise s m m'' [PROOFSTEP] ext j [GOAL] case h R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹¹ : Semiring R inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : AddCommMonoid M₃ inst✝⁶ : AddCommMonoid M' inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝⁴ : (i : ι) → Module R (M₁ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ inst✝¹ : Module R M' f f' : MultilinearMap R M₁ M₂ inst✝ : DecidableEq ι m : (i : ι) → M₁ i t✝ : Finset ι i : ι t : Finset ι hit : ¬i ∈ t Hrec : ∀ (m' : (i : ι) → M₁ i), ↑f (Finset.piecewise t (m + m') m') = ∑ s in Finset.powerset t, ↑f (Finset.piecewise s m m') m' : (i : ι) → M₁ i A : Finset.piecewise (insert i t) (m + m') m' = update (Finset.piecewise t (m + m') m') i (m i + m' i) B : update (Finset.piecewise t (m + m') m') i (m' i) = Finset.piecewise t (m + m') m' m'' : (a : ι) → M₁ a := update m' i (m i) C : update (Finset.piecewise t (m + m') m') i (m i) = Finset.piecewise t (m + m'') m'' s : Finset ι hs : s ∈ Finset.powerset t j : ι ⊢ Finset.piecewise (insert i s) m m' j = Finset.piecewise s m m'' j [PROOFSTEP] by_cases h : j = i [GOAL] case pos R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹¹ : Semiring R inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : AddCommMonoid M₃ inst✝⁶ : AddCommMonoid M' inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝⁴ : (i : ι) → Module R (M₁ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ inst✝¹ : Module R M' f f' : MultilinearMap R M₁ M₂ inst✝ : DecidableEq ι m : (i : ι) → M₁ i t✝ : Finset ι i : ι t : Finset ι hit : ¬i ∈ t Hrec : ∀ (m' : (i : ι) → M₁ i), ↑f (Finset.piecewise t (m + m') m') = ∑ s in Finset.powerset t, ↑f (Finset.piecewise s m m') m' : (i : ι) → M₁ i A : Finset.piecewise (insert i t) (m + m') m' = update (Finset.piecewise t (m + m') m') i (m i + m' i) B : update (Finset.piecewise t (m + m') m') i (m' i) = Finset.piecewise t (m + m') m' m'' : (a : ι) → M₁ a := update m' i (m i) C : update (Finset.piecewise t (m + m') m') i (m i) = Finset.piecewise t (m + m'') m'' s : Finset ι hs : s ∈ Finset.powerset t j : ι h : j = i ⊢ Finset.piecewise (insert i s) m m' j = Finset.piecewise s m m'' j [PROOFSTEP] rw [h] [GOAL] case pos R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹¹ : Semiring R inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : AddCommMonoid M₃ inst✝⁶ : AddCommMonoid M' inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝⁴ : (i : ι) → Module R (M₁ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ inst✝¹ : Module R M' f f' : MultilinearMap R M₁ M₂ inst✝ : DecidableEq ι m : (i : ι) → M₁ i t✝ : Finset ι i : ι t : Finset ι hit : ¬i ∈ t Hrec : ∀ (m' : (i : ι) → M₁ i), ↑f (Finset.piecewise t (m + m') m') = ∑ s in Finset.powerset t, ↑f (Finset.piecewise s m m') m' : (i : ι) → M₁ i A : Finset.piecewise (insert i t) (m + m') m' = update (Finset.piecewise t (m + m') m') i (m i + m' i) B : update (Finset.piecewise t (m + m') m') i (m' i) = Finset.piecewise t (m + m') m' m'' : (a : ι) → M₁ a := update m' i (m i) C : update (Finset.piecewise t (m + m') m') i (m i) = Finset.piecewise t (m + m'') m'' s : Finset ι hs : s ∈ Finset.powerset t j : ι h : j = i ⊢ Finset.piecewise (insert i s) m m' i = Finset.piecewise s m m'' i [PROOFSTEP] simp [Finset.not_mem_of_mem_powerset_of_not_mem hs hit] [GOAL] case neg R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹¹ : Semiring R inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : AddCommMonoid M₃ inst✝⁶ : AddCommMonoid M' inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝⁴ : (i : ι) → Module R (M₁ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ inst✝¹ : Module R M' f f' : MultilinearMap R M₁ M₂ inst✝ : DecidableEq ι m : (i : ι) → M₁ i t✝ : Finset ι i : ι t : Finset ι hit : ¬i ∈ t Hrec : ∀ (m' : (i : ι) → M₁ i), ↑f (Finset.piecewise t (m + m') m') = ∑ s in Finset.powerset t, ↑f (Finset.piecewise s m m') m' : (i : ι) → M₁ i A : Finset.piecewise (insert i t) (m + m') m' = update (Finset.piecewise t (m + m') m') i (m i + m' i) B : update (Finset.piecewise t (m + m') m') i (m' i) = Finset.piecewise t (m + m') m' m'' : (a : ι) → M₁ a := update m' i (m i) C : update (Finset.piecewise t (m + m') m') i (m i) = Finset.piecewise t (m + m'') m'' s : Finset ι hs : s ∈ Finset.powerset t j : ι h : ¬j = i ⊢ Finset.piecewise (insert i s) m m' j = Finset.piecewise s m m'' j [PROOFSTEP] by_cases h' : j ∈ s [GOAL] case pos R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹¹ : Semiring R inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : AddCommMonoid M₃ inst✝⁶ : AddCommMonoid M' inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝⁴ : (i : ι) → Module R (M₁ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ inst✝¹ : Module R M' f f' : MultilinearMap R M₁ M₂ inst✝ : DecidableEq ι m : (i : ι) → M₁ i t✝ : Finset ι i : ι t : Finset ι hit : ¬i ∈ t Hrec : ∀ (m' : (i : ι) → M₁ i), ↑f (Finset.piecewise t (m + m') m') = ∑ s in Finset.powerset t, ↑f (Finset.piecewise s m m') m' : (i : ι) → M₁ i A : Finset.piecewise (insert i t) (m + m') m' = update (Finset.piecewise t (m + m') m') i (m i + m' i) B : update (Finset.piecewise t (m + m') m') i (m' i) = Finset.piecewise t (m + m') m' m'' : (a : ι) → M₁ a := update m' i (m i) C : update (Finset.piecewise t (m + m') m') i (m i) = Finset.piecewise t (m + m'') m'' s : Finset ι hs : s ∈ Finset.powerset t j : ι h : ¬j = i h' : j ∈ s ⊢ Finset.piecewise (insert i s) m m' j = Finset.piecewise s m m'' j [PROOFSTEP] simp [h, h'] [GOAL] case neg R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹¹ : Semiring R inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : AddCommMonoid M₃ inst✝⁶ : AddCommMonoid M' inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝⁴ : (i : ι) → Module R (M₁ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ inst✝¹ : Module R M' f f' : MultilinearMap R M₁ M₂ inst✝ : DecidableEq ι m : (i : ι) → M₁ i t✝ : Finset ι i : ι t : Finset ι hit : ¬i ∈ t Hrec : ∀ (m' : (i : ι) → M₁ i), ↑f (Finset.piecewise t (m + m') m') = ∑ s in Finset.powerset t, ↑f (Finset.piecewise s m m') m' : (i : ι) → M₁ i A : Finset.piecewise (insert i t) (m + m') m' = update (Finset.piecewise t (m + m') m') i (m i + m' i) B : update (Finset.piecewise t (m + m') m') i (m' i) = Finset.piecewise t (m + m') m' m'' : (a : ι) → M₁ a := update m' i (m i) C : update (Finset.piecewise t (m + m') m') i (m i) = Finset.piecewise t (m + m'') m'' s : Finset ι hs : s ∈ Finset.powerset t j : ι h : ¬j = i h' : ¬j ∈ s ⊢ Finset.piecewise (insert i s) m m' j = Finset.piecewise s m m'' j [PROOFSTEP] simp [h, h'] [GOAL] case e_a R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹¹ : Semiring R inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : AddCommMonoid M₃ inst✝⁶ : AddCommMonoid M' inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝⁴ : (i : ι) → Module R (M₁ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ inst✝¹ : Module R M' f f' : MultilinearMap R M₁ M₂ inst✝ : DecidableEq ι m : (i : ι) → M₁ i t✝ : Finset ι i : ι t : Finset ι hit : ¬i ∈ t Hrec : ∀ (m' : (i : ι) → M₁ i), ↑f (Finset.piecewise t (m + m') m') = ∑ s in Finset.powerset t, ↑f (Finset.piecewise s m m') m' : (i : ι) → M₁ i A : Finset.piecewise (insert i t) (m + m') m' = update (Finset.piecewise t (m + m') m') i (m i + m' i) B : update (Finset.piecewise t (m + m') m') i (m' i) = Finset.piecewise t (m + m') m' m'' : (a : ι) → M₁ a := update m' i (m i) C : update (Finset.piecewise t (m + m') m') i (m i) = Finset.piecewise t (m + m'') m'' s : Finset ι hs : s ∈ Finset.powerset t this : Finset.piecewise (insert i s) m m' = Finset.piecewise s m m'' ⊢ ↑f (Finset.piecewise s m m'') = ↑f (Finset.piecewise (insert i s) m m') [PROOFSTEP] rw [this] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ inst✝¹ : DecidableEq ι inst✝ : Fintype ι m m' : (i : ι) → M₁ i ⊢ ↑f (m + m') = ∑ s : Finset ι, ↑f (Finset.piecewise s m m') [PROOFSTEP] simpa using f.map_piecewise_add m m' Finset.univ [GOAL] R : Type u ι : Type u' n✝ : ℕ M : Fin (Nat.succ n✝) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n : ℕ h : ∑ i : ι, Finset.card (A i) = n ⊢ (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) [PROOFSTEP] letI := fun i => Classical.decEq (α i) [GOAL] R : Type u ι : Type u' n✝ : ℕ M : Fin (Nat.succ n✝) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n : ℕ h : ∑ i : ι, Finset.card (A i) = n this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) ⊢ (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) [PROOFSTEP] induction' n using Nat.strong_induction_on with n IH generalizing A [GOAL] case h R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n ⊢ (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) [PROOFSTEP] by_cases Ai_empty : ∃ i, A i = ∅ [GOAL] case pos R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∃ i, A i = ∅ ⊢ (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) [PROOFSTEP] rcases Ai_empty with ⟨i, hi⟩ [GOAL] case pos.intro R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n i : ι hi : A i = ∅ ⊢ (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) [PROOFSTEP] have : ∑ j in A i, g i j = 0 := by rw [hi, Finset.sum_empty] [GOAL] R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n i : ι hi : A i = ∅ ⊢ ∑ j in A i, g i j = 0 [PROOFSTEP] rw [hi, Finset.sum_empty] [GOAL] case pos.intro R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this✝ : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n i : ι hi : A i = ∅ this : ∑ j in A i, g i j = 0 ⊢ (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) [PROOFSTEP] rw [f.map_coord_zero i this] [GOAL] case pos.intro R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this✝ : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n i : ι hi : A i = ∅ this : ∑ j in A i, g i j = 0 ⊢ 0 = ∑ r in piFinset A, ↑f fun i => g i (r i) [PROOFSTEP] have : piFinset A = ∅ := by refine Finset.eq_empty_of_forall_not_mem fun r hr => ?_ have : r i ∈ A i := mem_piFinset.mp hr i simp [hi] at this [GOAL] R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this✝ : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n i : ι hi : A i = ∅ this : ∑ j in A i, g i j = 0 ⊢ piFinset A = ∅ [PROOFSTEP] refine Finset.eq_empty_of_forall_not_mem fun r hr => ?_ [GOAL] R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this✝ : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n i : ι hi : A i = ∅ this : ∑ j in A i, g i j = 0 r : (a : ι) → α a hr : r ∈ piFinset A ⊢ False [PROOFSTEP] have : r i ∈ A i := mem_piFinset.mp hr i [GOAL] R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this✝¹ : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n i : ι hi : A i = ∅ this✝ : ∑ j in A i, g i j = 0 r : (a : ι) → α a hr : r ∈ piFinset A this : r i ∈ A i ⊢ False [PROOFSTEP] simp [hi] at this [GOAL] case pos.intro R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this✝¹ : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n i : ι hi : A i = ∅ this✝ : ∑ j in A i, g i j = 0 this : piFinset A = ∅ ⊢ 0 = ∑ r in piFinset A, ↑f fun i => g i (r i) [PROOFSTEP] rw [this, Finset.sum_empty] [GOAL] case neg R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ¬∃ i, A i = ∅ ⊢ (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) [PROOFSTEP] push_neg at Ai_empty [GOAL] case neg R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ ⊢ (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) [PROOFSTEP] by_cases Ai_singleton : ∀ i, (A i).card ≤ 1 [GOAL] case pos R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ Ai_singleton : ∀ (i : ι), Finset.card (A i) ≤ 1 ⊢ (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) [PROOFSTEP] have Ai_card : ∀ i, (A i).card = 1 := by intro i have pos : Finset.card (A i) ≠ 0 := by simp [Finset.card_eq_zero, Ai_empty i] have : Finset.card (A i) ≤ 1 := Ai_singleton i exact le_antisymm this (Nat.succ_le_of_lt (_root_.pos_iff_ne_zero.mpr pos)) [GOAL] R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ Ai_singleton : ∀ (i : ι), Finset.card (A i) ≤ 1 ⊢ ∀ (i : ι), Finset.card (A i) = 1 [PROOFSTEP] intro i [GOAL] R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ Ai_singleton : ∀ (i : ι), Finset.card (A i) ≤ 1 i : ι ⊢ Finset.card (A i) = 1 [PROOFSTEP] have pos : Finset.card (A i) ≠ 0 := by simp [Finset.card_eq_zero, Ai_empty i] [GOAL] R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ Ai_singleton : ∀ (i : ι), Finset.card (A i) ≤ 1 i : ι ⊢ Finset.card (A i) ≠ 0 [PROOFSTEP] simp [Finset.card_eq_zero, Ai_empty i] [GOAL] R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ Ai_singleton : ∀ (i : ι), Finset.card (A i) ≤ 1 i : ι pos : Finset.card (A i) ≠ 0 ⊢ Finset.card (A i) = 1 [PROOFSTEP] have : Finset.card (A i) ≤ 1 := Ai_singleton i [GOAL] R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this✝ : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ Ai_singleton : ∀ (i : ι), Finset.card (A i) ≤ 1 i : ι pos : Finset.card (A i) ≠ 0 this : Finset.card (A i) ≤ 1 ⊢ Finset.card (A i) = 1 [PROOFSTEP] exact le_antisymm this (Nat.succ_le_of_lt (_root_.pos_iff_ne_zero.mpr pos)) [GOAL] case pos R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ Ai_singleton : ∀ (i : ι), Finset.card (A i) ≤ 1 Ai_card : ∀ (i : ι), Finset.card (A i) = 1 ⊢ (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) [PROOFSTEP] have : ∀ r : ∀ i, α i, r ∈ piFinset A → (f fun i => g i (r i)) = f fun i => ∑ j in A i, g i j := by intro r hr congr with i have : ∀ j ∈ A i, g i j = g i (r i) := by intro j hj congr apply Finset.card_le_one_iff.1 (Ai_singleton i) hj exact mem_piFinset.mp hr i simp only [Finset.sum_congr rfl this, Finset.mem_univ, Finset.sum_const, Ai_card i, one_nsmul] [GOAL] R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ Ai_singleton : ∀ (i : ι), Finset.card (A i) ≤ 1 Ai_card : ∀ (i : ι), Finset.card (A i) = 1 ⊢ ∀ (r : (i : ι) → α i), r ∈ piFinset A → (↑f fun i => g i (r i)) = ↑f fun i => ∑ j in A i, g i j [PROOFSTEP] intro r hr [GOAL] R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ Ai_singleton : ∀ (i : ι), Finset.card (A i) ≤ 1 Ai_card : ∀ (i : ι), Finset.card (A i) = 1 r : (i : ι) → α i hr : r ∈ piFinset A ⊢ (↑f fun i => g i (r i)) = ↑f fun i => ∑ j in A i, g i j [PROOFSTEP] congr with i [GOAL] case h.e_6.h.h R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ Ai_singleton : ∀ (i : ι), Finset.card (A i) ≤ 1 Ai_card : ∀ (i : ι), Finset.card (A i) = 1 r : (i : ι) → α i hr : r ∈ piFinset A i : ι ⊢ g i (r i) = ∑ j in A i, g i j [PROOFSTEP] have : ∀ j ∈ A i, g i j = g i (r i) := by intro j hj congr apply Finset.card_le_one_iff.1 (Ai_singleton i) hj exact mem_piFinset.mp hr i [GOAL] R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ Ai_singleton : ∀ (i : ι), Finset.card (A i) ≤ 1 Ai_card : ∀ (i : ι), Finset.card (A i) = 1 r : (i : ι) → α i hr : r ∈ piFinset A i : ι ⊢ ∀ (j : α i), j ∈ A i → g i j = g i (r i) [PROOFSTEP] intro j hj [GOAL] R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ Ai_singleton : ∀ (i : ι), Finset.card (A i) ≤ 1 Ai_card : ∀ (i : ι), Finset.card (A i) = 1 r : (i : ι) → α i hr : r ∈ piFinset A i : ι j : α i hj : j ∈ A i ⊢ g i j = g i (r i) [PROOFSTEP] congr [GOAL] case e_a R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ Ai_singleton : ∀ (i : ι), Finset.card (A i) ≤ 1 Ai_card : ∀ (i : ι), Finset.card (A i) = 1 r : (i : ι) → α i hr : r ∈ piFinset A i : ι j : α i hj : j ∈ A i ⊢ j = r i [PROOFSTEP] apply Finset.card_le_one_iff.1 (Ai_singleton i) hj [GOAL] case e_a R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ Ai_singleton : ∀ (i : ι), Finset.card (A i) ≤ 1 Ai_card : ∀ (i : ι), Finset.card (A i) = 1 r : (i : ι) → α i hr : r ∈ piFinset A i : ι j : α i hj : j ∈ A i ⊢ r i ∈ A i [PROOFSTEP] exact mem_piFinset.mp hr i [GOAL] case h.e_6.h.h R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this✝ : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ Ai_singleton : ∀ (i : ι), Finset.card (A i) ≤ 1 Ai_card : ∀ (i : ι), Finset.card (A i) = 1 r : (i : ι) → α i hr : r ∈ piFinset A i : ι this : ∀ (j : α i), j ∈ A i → g i j = g i (r i) ⊢ g i (r i) = ∑ j in A i, g i j [PROOFSTEP] simp only [Finset.sum_congr rfl this, Finset.mem_univ, Finset.sum_const, Ai_card i, one_nsmul] [GOAL] case pos R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this✝ : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ Ai_singleton : ∀ (i : ι), Finset.card (A i) ≤ 1 Ai_card : ∀ (i : ι), Finset.card (A i) = 1 this : ∀ (r : (i : ι) → α i), r ∈ piFinset A → (↑f fun i => g i (r i)) = ↑f fun i => ∑ j in A i, g i j ⊢ (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) [PROOFSTEP] simp only [Finset.sum_congr rfl this, Ai_card, card_piFinset, prod_const_one, one_nsmul, Finset.sum_const] -- Remains the interesting case where one of the `A i`, say `A i₀`, has cardinality at least 2. -- We will split into two parts `B i₀` and `C i₀` of smaller cardinality, let `B i = C i = A i` -- for `i ≠ i₀`, apply the inductive assumption to `B` and `C`, and add up the corresponding -- parts to get the sum for `A`. [GOAL] case neg R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ Ai_singleton : ¬∀ (i : ι), Finset.card (A i) ≤ 1 ⊢ (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) [PROOFSTEP] push_neg at Ai_singleton [GOAL] case neg R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ Ai_singleton : ∃ i, 1 < Finset.card (A i) ⊢ (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) [PROOFSTEP] obtain ⟨i₀, hi₀⟩ : ∃ i, 1 < (A i).card := Ai_singleton [GOAL] case neg.intro R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) ⊢ (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) [PROOFSTEP] obtain ⟨j₁, j₂, _, hj₂, _⟩ : ∃ j₁ j₂, j₁ ∈ A i₀ ∧ j₂ ∈ A i₀ ∧ j₁ ≠ j₂ := Finset.one_lt_card_iff.1 hi₀ [GOAL] case neg.intro.intro.intro.intro.intro R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ ⊢ (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) [PROOFSTEP] let B := Function.update A i₀ (A i₀ \ { j₂ }) [GOAL] case neg.intro.intro.intro.intro.intro R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) ⊢ (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) [PROOFSTEP] let C := Function.update A i₀ { j₂ } [GOAL] case neg.intro.intro.intro.intro.intro R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} ⊢ (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) [PROOFSTEP] have B_subset_A : ∀ i, B i ⊆ A i := by intro i by_cases hi : i = i₀ · rw [hi] simp only [sdiff_subset, update_same] · simp only [hi, update_noteq, Ne.def, not_false_iff, Finset.Subset.refl] [GOAL] R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} ⊢ ∀ (i : ι), B i ⊆ A i [PROOFSTEP] intro i [GOAL] R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} i : ι ⊢ B i ⊆ A i [PROOFSTEP] by_cases hi : i = i₀ [GOAL] case pos R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} i : ι hi : i = i₀ ⊢ B i ⊆ A i [PROOFSTEP] rw [hi] [GOAL] case pos R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} i : ι hi : i = i₀ ⊢ B i₀ ⊆ A i₀ [PROOFSTEP] simp only [sdiff_subset, update_same] [GOAL] case neg R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} i : ι hi : ¬i = i₀ ⊢ B i ⊆ A i [PROOFSTEP] simp only [hi, update_noteq, Ne.def, not_false_iff, Finset.Subset.refl] [GOAL] case neg.intro.intro.intro.intro.intro R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} B_subset_A : ∀ (i : ι), B i ⊆ A i ⊢ (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) [PROOFSTEP] have C_subset_A : ∀ i, C i ⊆ A i := by intro i by_cases hi : i = i₀ · rw [hi] simp only [hj₂, Finset.singleton_subset_iff, update_same] · simp only [hi, update_noteq, Ne.def, not_false_iff, Finset.Subset.refl] -- split the sum at `i₀` as the sum over `B i₀` plus the sum over `C i₀`, to use additivity. [GOAL] R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} B_subset_A : ∀ (i : ι), B i ⊆ A i ⊢ ∀ (i : ι), C i ⊆ A i [PROOFSTEP] intro i [GOAL] R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} B_subset_A : ∀ (i : ι), B i ⊆ A i i : ι ⊢ C i ⊆ A i [PROOFSTEP] by_cases hi : i = i₀ [GOAL] case pos R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} B_subset_A : ∀ (i : ι), B i ⊆ A i i : ι hi : i = i₀ ⊢ C i ⊆ A i [PROOFSTEP] rw [hi] [GOAL] case pos R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} B_subset_A : ∀ (i : ι), B i ⊆ A i i : ι hi : i = i₀ ⊢ C i₀ ⊆ A i₀ [PROOFSTEP] simp only [hj₂, Finset.singleton_subset_iff, update_same] [GOAL] case neg R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} B_subset_A : ∀ (i : ι), B i ⊆ A i i : ι hi : ¬i = i₀ ⊢ C i ⊆ A i [PROOFSTEP] simp only [hi, update_noteq, Ne.def, not_false_iff, Finset.Subset.refl] -- split the sum at `i₀` as the sum over `B i₀` plus the sum over `C i₀`, to use additivity. [GOAL] case neg.intro.intro.intro.intro.intro R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} B_subset_A : ∀ (i : ι), B i ⊆ A i C_subset_A : ∀ (i : ι), C i ⊆ A i ⊢ (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) [PROOFSTEP] have A_eq_BC : (fun i => ∑ j in A i, g i j) = Function.update (fun i => ∑ j in A i, g i j) i₀ ((∑ j in B i₀, g i₀ j) + ∑ j in C i₀, g i₀ j) := by ext i by_cases hi : i = i₀ · rw [hi, update_same] have : A i₀ = B i₀ ∪ C i₀ := by simp only [Function.update_same, Finset.sdiff_union_self_eq_union] symm simp only [hj₂, Finset.singleton_subset_iff, Finset.union_eq_left_iff_subset] rw [this] refine Finset.sum_union <| Finset.disjoint_right.2 fun j hj => ?_ have : j = j₂ := by simpa using hj rw [this] simp only [mem_sdiff, eq_self_iff_true, not_true, not_false_iff, Finset.mem_singleton, update_same, and_false_iff] · simp [hi] [GOAL] R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} B_subset_A : ∀ (i : ι), B i ⊆ A i C_subset_A : ∀ (i : ι), C i ⊆ A i ⊢ (fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j) [PROOFSTEP] ext i [GOAL] case h R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} B_subset_A : ∀ (i : ι), B i ⊆ A i C_subset_A : ∀ (i : ι), C i ⊆ A i i : ι ⊢ ∑ j in A i, g i j = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j) i [PROOFSTEP] by_cases hi : i = i₀ [GOAL] case pos R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} B_subset_A : ∀ (i : ι), B i ⊆ A i C_subset_A : ∀ (i : ι), C i ⊆ A i i : ι hi : i = i₀ ⊢ ∑ j in A i, g i j = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j) i [PROOFSTEP] rw [hi, update_same] [GOAL] case pos R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} B_subset_A : ∀ (i : ι), B i ⊆ A i C_subset_A : ∀ (i : ι), C i ⊆ A i i : ι hi : i = i₀ ⊢ ∑ j in A i₀, g i₀ j = ∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j [PROOFSTEP] have : A i₀ = B i₀ ∪ C i₀ := by simp only [Function.update_same, Finset.sdiff_union_self_eq_union] symm simp only [hj₂, Finset.singleton_subset_iff, Finset.union_eq_left_iff_subset] [GOAL] R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} B_subset_A : ∀ (i : ι), B i ⊆ A i C_subset_A : ∀ (i : ι), C i ⊆ A i i : ι hi : i = i₀ ⊢ A i₀ = B i₀ ∪ C i₀ [PROOFSTEP] simp only [Function.update_same, Finset.sdiff_union_self_eq_union] [GOAL] R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} B_subset_A : ∀ (i : ι), B i ⊆ A i C_subset_A : ∀ (i : ι), C i ⊆ A i i : ι hi : i = i₀ ⊢ A i₀ = A i₀ ∪ {j₂} [PROOFSTEP] symm [GOAL] R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} B_subset_A : ∀ (i : ι), B i ⊆ A i C_subset_A : ∀ (i : ι), C i ⊆ A i i : ι hi : i = i₀ ⊢ A i₀ ∪ {j₂} = A i₀ [PROOFSTEP] simp only [hj₂, Finset.singleton_subset_iff, Finset.union_eq_left_iff_subset] [GOAL] case pos R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this✝ : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} B_subset_A : ∀ (i : ι), B i ⊆ A i C_subset_A : ∀ (i : ι), C i ⊆ A i i : ι hi : i = i₀ this : A i₀ = B i₀ ∪ C i₀ ⊢ ∑ j in A i₀, g i₀ j = ∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j [PROOFSTEP] rw [this] [GOAL] case pos R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this✝ : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} B_subset_A : ∀ (i : ι), B i ⊆ A i C_subset_A : ∀ (i : ι), C i ⊆ A i i : ι hi : i = i₀ this : A i₀ = B i₀ ∪ C i₀ ⊢ ∑ j in B i₀ ∪ C i₀, g i₀ j = ∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j [PROOFSTEP] refine Finset.sum_union <| Finset.disjoint_right.2 fun j hj => ?_ [GOAL] case pos R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this✝ : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} B_subset_A : ∀ (i : ι), B i ⊆ A i C_subset_A : ∀ (i : ι), C i ⊆ A i i : ι hi : i = i₀ this : A i₀ = B i₀ ∪ C i₀ j : α i₀ hj : j ∈ C i₀ ⊢ ¬j ∈ B i₀ [PROOFSTEP] have : j = j₂ := by simpa using hj [GOAL] R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this✝ : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} B_subset_A : ∀ (i : ι), B i ⊆ A i C_subset_A : ∀ (i : ι), C i ⊆ A i i : ι hi : i = i₀ this : A i₀ = B i₀ ∪ C i₀ j : α i₀ hj : j ∈ C i₀ ⊢ j = j₂ [PROOFSTEP] simpa using hj [GOAL] case pos R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this✝¹ : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} B_subset_A : ∀ (i : ι), B i ⊆ A i C_subset_A : ∀ (i : ι), C i ⊆ A i i : ι hi : i = i₀ this✝ : A i₀ = B i₀ ∪ C i₀ j : α i₀ hj : j ∈ C i₀ this : j = j₂ ⊢ ¬j ∈ B i₀ [PROOFSTEP] rw [this] [GOAL] case pos R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this✝¹ : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} B_subset_A : ∀ (i : ι), B i ⊆ A i C_subset_A : ∀ (i : ι), C i ⊆ A i i : ι hi : i = i₀ this✝ : A i₀ = B i₀ ∪ C i₀ j : α i₀ hj : j ∈ C i₀ this : j = j₂ ⊢ ¬j₂ ∈ B i₀ [PROOFSTEP] simp only [mem_sdiff, eq_self_iff_true, not_true, not_false_iff, Finset.mem_singleton, update_same, and_false_iff] [GOAL] case neg R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} B_subset_A : ∀ (i : ι), B i ⊆ A i C_subset_A : ∀ (i : ι), C i ⊆ A i i : ι hi : ¬i = i₀ ⊢ ∑ j in A i, g i j = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j) i [PROOFSTEP] simp [hi] [GOAL] case neg.intro.intro.intro.intro.intro R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} B_subset_A : ∀ (i : ι), B i ⊆ A i C_subset_A : ∀ (i : ι), C i ⊆ A i A_eq_BC : (fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j) ⊢ (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) [PROOFSTEP] have Beq : Function.update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j := by ext i by_cases hi : i = i₀ · rw [hi] simp only [update_same] · simp only [hi, update_noteq, Ne.def, not_false_iff] [GOAL] R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} B_subset_A : ∀ (i : ι), B i ⊆ A i C_subset_A : ∀ (i : ι), C i ⊆ A i A_eq_BC : (fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j) ⊢ update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j [PROOFSTEP] ext i [GOAL] case h R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} B_subset_A : ∀ (i : ι), B i ⊆ A i C_subset_A : ∀ (i : ι), C i ⊆ A i A_eq_BC : (fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j) i : ι ⊢ update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) i = ∑ j in B i, g i j [PROOFSTEP] by_cases hi : i = i₀ [GOAL] case pos R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} B_subset_A : ∀ (i : ι), B i ⊆ A i C_subset_A : ∀ (i : ι), C i ⊆ A i A_eq_BC : (fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j) i : ι hi : i = i₀ ⊢ update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) i = ∑ j in B i, g i j [PROOFSTEP] rw [hi] [GOAL] case pos R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} B_subset_A : ∀ (i : ι), B i ⊆ A i C_subset_A : ∀ (i : ι), C i ⊆ A i A_eq_BC : (fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j) i : ι hi : i = i₀ ⊢ update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) i₀ = ∑ j in B i₀, g i₀ j [PROOFSTEP] simp only [update_same] [GOAL] case neg R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} B_subset_A : ∀ (i : ι), B i ⊆ A i C_subset_A : ∀ (i : ι), C i ⊆ A i A_eq_BC : (fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j) i : ι hi : ¬i = i₀ ⊢ update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) i = ∑ j in B i, g i j [PROOFSTEP] simp only [hi, update_noteq, Ne.def, not_false_iff] [GOAL] case neg.intro.intro.intro.intro.intro R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} B_subset_A : ∀ (i : ι), B i ⊆ A i C_subset_A : ∀ (i : ι), C i ⊆ A i A_eq_BC : (fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j) Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j ⊢ (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) [PROOFSTEP] have Ceq : Function.update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j := by ext i by_cases hi : i = i₀ · rw [hi] simp only [update_same] · simp only [hi, update_noteq, Ne.def, not_false_iff] -- Express the inductive assumption for `B` [GOAL] R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} B_subset_A : ∀ (i : ι), B i ⊆ A i C_subset_A : ∀ (i : ι), C i ⊆ A i A_eq_BC : (fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j) Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j ⊢ update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j [PROOFSTEP] ext i [GOAL] case h R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} B_subset_A : ∀ (i : ι), B i ⊆ A i C_subset_A : ∀ (i : ι), C i ⊆ A i A_eq_BC : (fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j) Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j i : ι ⊢ update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) i = ∑ j in C i, g i j [PROOFSTEP] by_cases hi : i = i₀ [GOAL] case pos R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} B_subset_A : ∀ (i : ι), B i ⊆ A i C_subset_A : ∀ (i : ι), C i ⊆ A i A_eq_BC : (fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j) Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j i : ι hi : i = i₀ ⊢ update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) i = ∑ j in C i, g i j [PROOFSTEP] rw [hi] [GOAL] case pos R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} B_subset_A : ∀ (i : ι), B i ⊆ A i C_subset_A : ∀ (i : ι), C i ⊆ A i A_eq_BC : (fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j) Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j i : ι hi : i = i₀ ⊢ update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) i₀ = ∑ j in C i₀, g i₀ j [PROOFSTEP] simp only [update_same] [GOAL] case neg R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} B_subset_A : ∀ (i : ι), B i ⊆ A i C_subset_A : ∀ (i : ι), C i ⊆ A i A_eq_BC : (fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j) Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j i : ι hi : ¬i = i₀ ⊢ update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) i = ∑ j in C i, g i j [PROOFSTEP] simp only [hi, update_noteq, Ne.def, not_false_iff] -- Express the inductive assumption for `B` [GOAL] case neg.intro.intro.intro.intro.intro R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} B_subset_A : ∀ (i : ι), B i ⊆ A i C_subset_A : ∀ (i : ι), C i ⊆ A i A_eq_BC : (fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j) Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j Ceq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j ⊢ (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) [PROOFSTEP] have Brec : (f fun i => ∑ j in B i, g i j) = ∑ r in piFinset B, f fun i => g i (r i) := by have : (∑ i, Finset.card (B i)) < ∑ i, Finset.card (A i) := by refine' Finset.sum_lt_sum (fun i _ => Finset.card_le_of_subset (B_subset_A i)) ⟨i₀, Finset.mem_univ _, _⟩ have : { j₂ } ⊆ A i₀ := by simp [hj₂] simp only [Finset.card_sdiff this, Function.update_same, Finset.card_singleton] exact Nat.pred_lt (ne_of_gt (lt_trans Nat.zero_lt_one hi₀)) rw [h] at this exact IH _ this B rfl [GOAL] R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} B_subset_A : ∀ (i : ι), B i ⊆ A i C_subset_A : ∀ (i : ι), C i ⊆ A i A_eq_BC : (fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j) Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j Ceq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j ⊢ (↑f fun i => ∑ j in B i, g i j) = ∑ r in piFinset B, ↑f fun i => g i (r i) [PROOFSTEP] have : (∑ i, Finset.card (B i)) < ∑ i, Finset.card (A i) := by refine' Finset.sum_lt_sum (fun i _ => Finset.card_le_of_subset (B_subset_A i)) ⟨i₀, Finset.mem_univ _, _⟩ have : { j₂ } ⊆ A i₀ := by simp [hj₂] simp only [Finset.card_sdiff this, Function.update_same, Finset.card_singleton] exact Nat.pred_lt (ne_of_gt (lt_trans Nat.zero_lt_one hi₀)) [GOAL] R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} B_subset_A : ∀ (i : ι), B i ⊆ A i C_subset_A : ∀ (i : ι), C i ⊆ A i A_eq_BC : (fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j) Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j Ceq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j ⊢ ∑ i : ι, Finset.card (B i) < ∑ i : ι, Finset.card (A i) [PROOFSTEP] refine' Finset.sum_lt_sum (fun i _ => Finset.card_le_of_subset (B_subset_A i)) ⟨i₀, Finset.mem_univ _, _⟩ [GOAL] R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} B_subset_A : ∀ (i : ι), B i ⊆ A i C_subset_A : ∀ (i : ι), C i ⊆ A i A_eq_BC : (fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j) Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j Ceq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j ⊢ Finset.card (B i₀) < Finset.card (A i₀) [PROOFSTEP] have : { j₂ } ⊆ A i₀ := by simp [hj₂] [GOAL] R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} B_subset_A : ∀ (i : ι), B i ⊆ A i C_subset_A : ∀ (i : ι), C i ⊆ A i A_eq_BC : (fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j) Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j Ceq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j ⊢ {j₂} ⊆ A i₀ [PROOFSTEP] simp [hj₂] [GOAL] R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this✝ : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} B_subset_A : ∀ (i : ι), B i ⊆ A i C_subset_A : ∀ (i : ι), C i ⊆ A i A_eq_BC : (fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j) Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j Ceq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j this : {j₂} ⊆ A i₀ ⊢ Finset.card (B i₀) < Finset.card (A i₀) [PROOFSTEP] simp only [Finset.card_sdiff this, Function.update_same, Finset.card_singleton] [GOAL] R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this✝ : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} B_subset_A : ∀ (i : ι), B i ⊆ A i C_subset_A : ∀ (i : ι), C i ⊆ A i A_eq_BC : (fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j) Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j Ceq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j this : {j₂} ⊆ A i₀ ⊢ Finset.card (A i₀) - 1 < Finset.card (A i₀) [PROOFSTEP] exact Nat.pred_lt (ne_of_gt (lt_trans Nat.zero_lt_one hi₀)) [GOAL] R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this✝ : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} B_subset_A : ∀ (i : ι), B i ⊆ A i C_subset_A : ∀ (i : ι), C i ⊆ A i A_eq_BC : (fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j) Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j Ceq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j this : ∑ i : ι, Finset.card (B i) < ∑ i : ι, Finset.card (A i) ⊢ (↑f fun i => ∑ j in B i, g i j) = ∑ r in piFinset B, ↑f fun i => g i (r i) [PROOFSTEP] rw [h] at this [GOAL] R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this✝ : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} B_subset_A : ∀ (i : ι), B i ⊆ A i C_subset_A : ∀ (i : ι), C i ⊆ A i A_eq_BC : (fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j) Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j Ceq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j this : ∑ i : ι, Finset.card (B i) < n ⊢ (↑f fun i => ∑ j in B i, g i j) = ∑ r in piFinset B, ↑f fun i => g i (r i) [PROOFSTEP] exact IH _ this B rfl [GOAL] case neg.intro.intro.intro.intro.intro R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} B_subset_A : ∀ (i : ι), B i ⊆ A i C_subset_A : ∀ (i : ι), C i ⊆ A i A_eq_BC : (fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j) Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j Ceq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j Brec : (↑f fun i => ∑ j in B i, g i j) = ∑ r in piFinset B, ↑f fun i => g i (r i) ⊢ (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) [PROOFSTEP] have Crec : (f fun i => ∑ j in C i, g i j) = ∑ r in piFinset C, f fun i => g i (r i) := by have : (∑ i, Finset.card (C i)) < ∑ i, Finset.card (A i) := Finset.sum_lt_sum (fun i _ => Finset.card_le_of_subset (C_subset_A i)) ⟨i₀, Finset.mem_univ _, by simp [hi₀]⟩ rw [h] at this exact IH _ this C rfl [GOAL] R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} B_subset_A : ∀ (i : ι), B i ⊆ A i C_subset_A : ∀ (i : ι), C i ⊆ A i A_eq_BC : (fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j) Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j Ceq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j Brec : (↑f fun i => ∑ j in B i, g i j) = ∑ r in piFinset B, ↑f fun i => g i (r i) ⊢ (↑f fun i => ∑ j in C i, g i j) = ∑ r in piFinset C, ↑f fun i => g i (r i) [PROOFSTEP] have : (∑ i, Finset.card (C i)) < ∑ i, Finset.card (A i) := Finset.sum_lt_sum (fun i _ => Finset.card_le_of_subset (C_subset_A i)) ⟨i₀, Finset.mem_univ _, by simp [hi₀]⟩ [GOAL] R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} B_subset_A : ∀ (i : ι), B i ⊆ A i C_subset_A : ∀ (i : ι), C i ⊆ A i A_eq_BC : (fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j) Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j Ceq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j Brec : (↑f fun i => ∑ j in B i, g i j) = ∑ r in piFinset B, ↑f fun i => g i (r i) ⊢ Finset.card (C i₀) < Finset.card (A i₀) [PROOFSTEP] simp [hi₀] [GOAL] R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this✝ : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} B_subset_A : ∀ (i : ι), B i ⊆ A i C_subset_A : ∀ (i : ι), C i ⊆ A i A_eq_BC : (fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j) Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j Ceq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j Brec : (↑f fun i => ∑ j in B i, g i j) = ∑ r in piFinset B, ↑f fun i => g i (r i) this : ∑ i : ι, Finset.card (C i) < ∑ i : ι, Finset.card (A i) ⊢ (↑f fun i => ∑ j in C i, g i j) = ∑ r in piFinset C, ↑f fun i => g i (r i) [PROOFSTEP] rw [h] at this [GOAL] R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this✝ : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} B_subset_A : ∀ (i : ι), B i ⊆ A i C_subset_A : ∀ (i : ι), C i ⊆ A i A_eq_BC : (fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j) Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j Ceq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j Brec : (↑f fun i => ∑ j in B i, g i j) = ∑ r in piFinset B, ↑f fun i => g i (r i) this : ∑ i : ι, Finset.card (C i) < n ⊢ (↑f fun i => ∑ j in C i, g i j) = ∑ r in piFinset C, ↑f fun i => g i (r i) [PROOFSTEP] exact IH _ this C rfl [GOAL] case neg.intro.intro.intro.intro.intro R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} B_subset_A : ∀ (i : ι), B i ⊆ A i C_subset_A : ∀ (i : ι), C i ⊆ A i A_eq_BC : (fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j) Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j Ceq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j Brec : (↑f fun i => ∑ j in B i, g i j) = ∑ r in piFinset B, ↑f fun i => g i (r i) Crec : (↑f fun i => ∑ j in C i, g i j) = ∑ r in piFinset C, ↑f fun i => g i (r i) ⊢ (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) [PROOFSTEP] have D : Disjoint (piFinset B) (piFinset C) := haveI : Disjoint (B i₀) (C i₀) := by simp piFinset_disjoint_of_disjoint B C this [GOAL] R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} B_subset_A : ∀ (i : ι), B i ⊆ A i C_subset_A : ∀ (i : ι), C i ⊆ A i A_eq_BC : (fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j) Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j Ceq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j Brec : (↑f fun i => ∑ j in B i, g i j) = ∑ r in piFinset B, ↑f fun i => g i (r i) Crec : (↑f fun i => ∑ j in C i, g i j) = ∑ r in piFinset C, ↑f fun i => g i (r i) ⊢ Disjoint (B i₀) (C i₀) [PROOFSTEP] simp [GOAL] case neg.intro.intro.intro.intro.intro R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} B_subset_A : ∀ (i : ι), B i ⊆ A i C_subset_A : ∀ (i : ι), C i ⊆ A i A_eq_BC : (fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j) Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j Ceq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j Brec : (↑f fun i => ∑ j in B i, g i j) = ∑ r in piFinset B, ↑f fun i => g i (r i) Crec : (↑f fun i => ∑ j in C i, g i j) = ∑ r in piFinset C, ↑f fun i => g i (r i) D : Disjoint (piFinset B) (piFinset C) ⊢ (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) [PROOFSTEP] have pi_BC : piFinset A = piFinset B ∪ piFinset C := by apply Finset.Subset.antisymm · intro r hr by_cases hri₀ : r i₀ = j₂ · apply Finset.mem_union_right refine mem_piFinset.2 fun i => ?_ by_cases hi : i = i₀ · have : r i₀ ∈ C i₀ := by simp [hri₀] rwa [hi] · simp [hi, mem_piFinset.1 hr i] · apply Finset.mem_union_left refine mem_piFinset.2 fun i => ?_ by_cases hi : i = i₀ · have : r i₀ ∈ B i₀ := by simp [hri₀, mem_piFinset.1 hr i₀] rwa [hi] · simp [hi, mem_piFinset.1 hr i] · exact Finset.union_subset (piFinset_subset _ _ fun i => B_subset_A i) (piFinset_subset _ _ fun i => C_subset_A i) [GOAL] R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} B_subset_A : ∀ (i : ι), B i ⊆ A i C_subset_A : ∀ (i : ι), C i ⊆ A i A_eq_BC : (fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j) Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j Ceq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j Brec : (↑f fun i => ∑ j in B i, g i j) = ∑ r in piFinset B, ↑f fun i => g i (r i) Crec : (↑f fun i => ∑ j in C i, g i j) = ∑ r in piFinset C, ↑f fun i => g i (r i) D : Disjoint (piFinset B) (piFinset C) ⊢ piFinset A = piFinset B ∪ piFinset C [PROOFSTEP] apply Finset.Subset.antisymm [GOAL] case H₁ R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} B_subset_A : ∀ (i : ι), B i ⊆ A i C_subset_A : ∀ (i : ι), C i ⊆ A i A_eq_BC : (fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j) Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j Ceq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j Brec : (↑f fun i => ∑ j in B i, g i j) = ∑ r in piFinset B, ↑f fun i => g i (r i) Crec : (↑f fun i => ∑ j in C i, g i j) = ∑ r in piFinset C, ↑f fun i => g i (r i) D : Disjoint (piFinset B) (piFinset C) ⊢ piFinset A ⊆ piFinset B ∪ piFinset C [PROOFSTEP] intro r hr [GOAL] case H₁ R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} B_subset_A : ∀ (i : ι), B i ⊆ A i C_subset_A : ∀ (i : ι), C i ⊆ A i A_eq_BC : (fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j) Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j Ceq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j Brec : (↑f fun i => ∑ j in B i, g i j) = ∑ r in piFinset B, ↑f fun i => g i (r i) Crec : (↑f fun i => ∑ j in C i, g i j) = ∑ r in piFinset C, ↑f fun i => g i (r i) D : Disjoint (piFinset B) (piFinset C) r : (a : ι) → α a hr : r ∈ piFinset A ⊢ r ∈ piFinset B ∪ piFinset C [PROOFSTEP] by_cases hri₀ : r i₀ = j₂ [GOAL] case pos R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} B_subset_A : ∀ (i : ι), B i ⊆ A i C_subset_A : ∀ (i : ι), C i ⊆ A i A_eq_BC : (fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j) Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j Ceq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j Brec : (↑f fun i => ∑ j in B i, g i j) = ∑ r in piFinset B, ↑f fun i => g i (r i) Crec : (↑f fun i => ∑ j in C i, g i j) = ∑ r in piFinset C, ↑f fun i => g i (r i) D : Disjoint (piFinset B) (piFinset C) r : (a : ι) → α a hr : r ∈ piFinset A hri₀ : r i₀ = j₂ ⊢ r ∈ piFinset B ∪ piFinset C [PROOFSTEP] apply Finset.mem_union_right [GOAL] case pos.h R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} B_subset_A : ∀ (i : ι), B i ⊆ A i C_subset_A : ∀ (i : ι), C i ⊆ A i A_eq_BC : (fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j) Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j Ceq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j Brec : (↑f fun i => ∑ j in B i, g i j) = ∑ r in piFinset B, ↑f fun i => g i (r i) Crec : (↑f fun i => ∑ j in C i, g i j) = ∑ r in piFinset C, ↑f fun i => g i (r i) D : Disjoint (piFinset B) (piFinset C) r : (a : ι) → α a hr : r ∈ piFinset A hri₀ : r i₀ = j₂ ⊢ r ∈ piFinset C [PROOFSTEP] refine mem_piFinset.2 fun i => ?_ [GOAL] case pos.h R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} B_subset_A : ∀ (i : ι), B i ⊆ A i C_subset_A : ∀ (i : ι), C i ⊆ A i A_eq_BC : (fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j) Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j Ceq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j Brec : (↑f fun i => ∑ j in B i, g i j) = ∑ r in piFinset B, ↑f fun i => g i (r i) Crec : (↑f fun i => ∑ j in C i, g i j) = ∑ r in piFinset C, ↑f fun i => g i (r i) D : Disjoint (piFinset B) (piFinset C) r : (a : ι) → α a hr : r ∈ piFinset A hri₀ : r i₀ = j₂ i : ι ⊢ r i ∈ C i [PROOFSTEP] by_cases hi : i = i₀ [GOAL] case pos R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} B_subset_A : ∀ (i : ι), B i ⊆ A i C_subset_A : ∀ (i : ι), C i ⊆ A i A_eq_BC : (fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j) Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j Ceq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j Brec : (↑f fun i => ∑ j in B i, g i j) = ∑ r in piFinset B, ↑f fun i => g i (r i) Crec : (↑f fun i => ∑ j in C i, g i j) = ∑ r in piFinset C, ↑f fun i => g i (r i) D : Disjoint (piFinset B) (piFinset C) r : (a : ι) → α a hr : r ∈ piFinset A hri₀ : r i₀ = j₂ i : ι hi : i = i₀ ⊢ r i ∈ C i [PROOFSTEP] have : r i₀ ∈ C i₀ := by simp [hri₀] [GOAL] R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} B_subset_A : ∀ (i : ι), B i ⊆ A i C_subset_A : ∀ (i : ι), C i ⊆ A i A_eq_BC : (fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j) Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j Ceq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j Brec : (↑f fun i => ∑ j in B i, g i j) = ∑ r in piFinset B, ↑f fun i => g i (r i) Crec : (↑f fun i => ∑ j in C i, g i j) = ∑ r in piFinset C, ↑f fun i => g i (r i) D : Disjoint (piFinset B) (piFinset C) r : (a : ι) → α a hr : r ∈ piFinset A hri₀ : r i₀ = j₂ i : ι hi : i = i₀ ⊢ r i₀ ∈ C i₀ [PROOFSTEP] simp [hri₀] [GOAL] case pos R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this✝ : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} B_subset_A : ∀ (i : ι), B i ⊆ A i C_subset_A : ∀ (i : ι), C i ⊆ A i A_eq_BC : (fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j) Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j Ceq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j Brec : (↑f fun i => ∑ j in B i, g i j) = ∑ r in piFinset B, ↑f fun i => g i (r i) Crec : (↑f fun i => ∑ j in C i, g i j) = ∑ r in piFinset C, ↑f fun i => g i (r i) D : Disjoint (piFinset B) (piFinset C) r : (a : ι) → α a hr : r ∈ piFinset A hri₀ : r i₀ = j₂ i : ι hi : i = i₀ this : r i₀ ∈ C i₀ ⊢ r i ∈ C i [PROOFSTEP] rwa [hi] [GOAL] case neg R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} B_subset_A : ∀ (i : ι), B i ⊆ A i C_subset_A : ∀ (i : ι), C i ⊆ A i A_eq_BC : (fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j) Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j Ceq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j Brec : (↑f fun i => ∑ j in B i, g i j) = ∑ r in piFinset B, ↑f fun i => g i (r i) Crec : (↑f fun i => ∑ j in C i, g i j) = ∑ r in piFinset C, ↑f fun i => g i (r i) D : Disjoint (piFinset B) (piFinset C) r : (a : ι) → α a hr : r ∈ piFinset A hri₀ : r i₀ = j₂ i : ι hi : ¬i = i₀ ⊢ r i ∈ C i [PROOFSTEP] simp [hi, mem_piFinset.1 hr i] [GOAL] case neg R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} B_subset_A : ∀ (i : ι), B i ⊆ A i C_subset_A : ∀ (i : ι), C i ⊆ A i A_eq_BC : (fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j) Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j Ceq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j Brec : (↑f fun i => ∑ j in B i, g i j) = ∑ r in piFinset B, ↑f fun i => g i (r i) Crec : (↑f fun i => ∑ j in C i, g i j) = ∑ r in piFinset C, ↑f fun i => g i (r i) D : Disjoint (piFinset B) (piFinset C) r : (a : ι) → α a hr : r ∈ piFinset A hri₀ : ¬r i₀ = j₂ ⊢ r ∈ piFinset B ∪ piFinset C [PROOFSTEP] apply Finset.mem_union_left [GOAL] case neg.h R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} B_subset_A : ∀ (i : ι), B i ⊆ A i C_subset_A : ∀ (i : ι), C i ⊆ A i A_eq_BC : (fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j) Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j Ceq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j Brec : (↑f fun i => ∑ j in B i, g i j) = ∑ r in piFinset B, ↑f fun i => g i (r i) Crec : (↑f fun i => ∑ j in C i, g i j) = ∑ r in piFinset C, ↑f fun i => g i (r i) D : Disjoint (piFinset B) (piFinset C) r : (a : ι) → α a hr : r ∈ piFinset A hri₀ : ¬r i₀ = j₂ ⊢ r ∈ piFinset B [PROOFSTEP] refine mem_piFinset.2 fun i => ?_ [GOAL] case neg.h R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} B_subset_A : ∀ (i : ι), B i ⊆ A i C_subset_A : ∀ (i : ι), C i ⊆ A i A_eq_BC : (fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j) Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j Ceq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j Brec : (↑f fun i => ∑ j in B i, g i j) = ∑ r in piFinset B, ↑f fun i => g i (r i) Crec : (↑f fun i => ∑ j in C i, g i j) = ∑ r in piFinset C, ↑f fun i => g i (r i) D : Disjoint (piFinset B) (piFinset C) r : (a : ι) → α a hr : r ∈ piFinset A hri₀ : ¬r i₀ = j₂ i : ι ⊢ r i ∈ B i [PROOFSTEP] by_cases hi : i = i₀ [GOAL] case pos R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} B_subset_A : ∀ (i : ι), B i ⊆ A i C_subset_A : ∀ (i : ι), C i ⊆ A i A_eq_BC : (fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j) Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j Ceq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j Brec : (↑f fun i => ∑ j in B i, g i j) = ∑ r in piFinset B, ↑f fun i => g i (r i) Crec : (↑f fun i => ∑ j in C i, g i j) = ∑ r in piFinset C, ↑f fun i => g i (r i) D : Disjoint (piFinset B) (piFinset C) r : (a : ι) → α a hr : r ∈ piFinset A hri₀ : ¬r i₀ = j₂ i : ι hi : i = i₀ ⊢ r i ∈ B i [PROOFSTEP] have : r i₀ ∈ B i₀ := by simp [hri₀, mem_piFinset.1 hr i₀] [GOAL] R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} B_subset_A : ∀ (i : ι), B i ⊆ A i C_subset_A : ∀ (i : ι), C i ⊆ A i A_eq_BC : (fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j) Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j Ceq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j Brec : (↑f fun i => ∑ j in B i, g i j) = ∑ r in piFinset B, ↑f fun i => g i (r i) Crec : (↑f fun i => ∑ j in C i, g i j) = ∑ r in piFinset C, ↑f fun i => g i (r i) D : Disjoint (piFinset B) (piFinset C) r : (a : ι) → α a hr : r ∈ piFinset A hri₀ : ¬r i₀ = j₂ i : ι hi : i = i₀ ⊢ r i₀ ∈ B i₀ [PROOFSTEP] simp [hri₀, mem_piFinset.1 hr i₀] [GOAL] case pos R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this✝ : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} B_subset_A : ∀ (i : ι), B i ⊆ A i C_subset_A : ∀ (i : ι), C i ⊆ A i A_eq_BC : (fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j) Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j Ceq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j Brec : (↑f fun i => ∑ j in B i, g i j) = ∑ r in piFinset B, ↑f fun i => g i (r i) Crec : (↑f fun i => ∑ j in C i, g i j) = ∑ r in piFinset C, ↑f fun i => g i (r i) D : Disjoint (piFinset B) (piFinset C) r : (a : ι) → α a hr : r ∈ piFinset A hri₀ : ¬r i₀ = j₂ i : ι hi : i = i₀ this : r i₀ ∈ B i₀ ⊢ r i ∈ B i [PROOFSTEP] rwa [hi] [GOAL] case neg R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} B_subset_A : ∀ (i : ι), B i ⊆ A i C_subset_A : ∀ (i : ι), C i ⊆ A i A_eq_BC : (fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j) Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j Ceq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j Brec : (↑f fun i => ∑ j in B i, g i j) = ∑ r in piFinset B, ↑f fun i => g i (r i) Crec : (↑f fun i => ∑ j in C i, g i j) = ∑ r in piFinset C, ↑f fun i => g i (r i) D : Disjoint (piFinset B) (piFinset C) r : (a : ι) → α a hr : r ∈ piFinset A hri₀ : ¬r i₀ = j₂ i : ι hi : ¬i = i₀ ⊢ r i ∈ B i [PROOFSTEP] simp [hi, mem_piFinset.1 hr i] [GOAL] case H₂ R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} B_subset_A : ∀ (i : ι), B i ⊆ A i C_subset_A : ∀ (i : ι), C i ⊆ A i A_eq_BC : (fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j) Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j Ceq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j Brec : (↑f fun i => ∑ j in B i, g i j) = ∑ r in piFinset B, ↑f fun i => g i (r i) Crec : (↑f fun i => ∑ j in C i, g i j) = ∑ r in piFinset C, ↑f fun i => g i (r i) D : Disjoint (piFinset B) (piFinset C) ⊢ piFinset B ∪ piFinset C ⊆ piFinset A [PROOFSTEP] exact Finset.union_subset (piFinset_subset _ _ fun i => B_subset_A i) (piFinset_subset _ _ fun i => C_subset_A i) [GOAL] case neg.intro.intro.intro.intro.intro R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} B_subset_A : ∀ (i : ι), B i ⊆ A i C_subset_A : ∀ (i : ι), C i ⊆ A i A_eq_BC : (fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j) Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j Ceq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j Brec : (↑f fun i => ∑ j in B i, g i j) = ∑ r in piFinset B, ↑f fun i => g i (r i) Crec : (↑f fun i => ∑ j in C i, g i j) = ∑ r in piFinset C, ↑f fun i => g i (r i) D : Disjoint (piFinset B) (piFinset C) pi_BC : piFinset A = piFinset B ∪ piFinset C ⊢ (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) [PROOFSTEP] rw [A_eq_BC] [GOAL] case neg.intro.intro.intro.intro.intro R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} B_subset_A : ∀ (i : ι), B i ⊆ A i C_subset_A : ∀ (i : ι), C i ⊆ A i A_eq_BC : (fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j) Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j Ceq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j Brec : (↑f fun i => ∑ j in B i, g i j) = ∑ r in piFinset B, ↑f fun i => g i (r i) Crec : (↑f fun i => ∑ j in C i, g i j) = ∑ r in piFinset C, ↑f fun i => g i (r i) D : Disjoint (piFinset B) (piFinset C) pi_BC : piFinset A = piFinset B ∪ piFinset C ⊢ ↑f (update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j)) = ∑ r in piFinset A, ↑f fun i => g i (r i) [PROOFSTEP] simp only [MultilinearMap.map_add, Beq, Ceq, Brec, Crec, pi_BC] [GOAL] case neg.intro.intro.intro.intro.intro R : Type u ι : Type u' n✝¹ : ℕ M : Fin (Nat.succ n✝¹) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹² : Semiring R inst✝¹¹ : (i : Fin (Nat.succ n✝¹)) → AddCommMonoid (M i) inst✝¹⁰ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁹ : AddCommMonoid M₂ inst✝⁸ : AddCommMonoid M₃ inst✝⁷ : AddCommMonoid M' inst✝⁶ : (i : Fin (Nat.succ n✝¹)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ inst✝³ : Module R M₃ inst✝² : Module R M' f f' : MultilinearMap R M₁ M₂ α : ι → Type u_1 g : (i : ι) → α i → M₁ i A✝ : (i : ι) → Finset (α i) inst✝¹ : DecidableEq ι inst✝ : Fintype ι n✝ : ℕ h✝ : ∑ i : ι, Finset.card (A✝ i) = n✝ this : (i : ι) → DecidableEq (α i) := fun i => Classical.decEq (α i) n : ℕ IH : ∀ (m : ℕ), m < n → ∀ (A : (i : ι) → Finset (α i)), ∑ i : ι, Finset.card (A i) = m → (↑f fun i => ∑ j in A i, g i j) = ∑ r in piFinset A, ↑f fun i => g i (r i) A : (i : ι) → Finset (α i) h : ∑ i : ι, Finset.card (A i) = n Ai_empty : ∀ (i : ι), A i ≠ ∅ i₀ : ι hi₀ : 1 < Finset.card (A i₀) j₁ j₂ : α i₀ left✝ : j₁ ∈ A i₀ hj₂ : j₂ ∈ A i₀ right✝ : j₁ ≠ j₂ B : (a : ι) → Finset (α a) := update A i₀ (A i₀ \ {j₂}) C : (a : ι) → Finset (α a) := update A i₀ {j₂} B_subset_A : ∀ (i : ι), B i ⊆ A i C_subset_A : ∀ (i : ι), C i ⊆ A i A_eq_BC : (fun i => ∑ j in A i, g i j) = update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j + ∑ j in C i₀, g i₀ j) Beq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in B i₀, g i₀ j) = fun i => ∑ j in B i, g i j Ceq : update (fun i => ∑ j in A i, g i j) i₀ (∑ j in C i₀, g i₀ j) = fun i => ∑ j in C i, g i j Brec : (↑f fun i => ∑ j in B i, g i j) = ∑ r in piFinset B, ↑f fun i => g i (r i) Crec : (↑f fun i => ∑ j in C i, g i j) = ∑ r in piFinset C, ↑f fun i => g i (r i) D : Disjoint (piFinset B) (piFinset C) pi_BC : piFinset A = piFinset B ∪ piFinset C ⊢ ((∑ x in piFinset (update A i₀ (A i₀ \ {j₂})), ↑f fun i => g i (x i)) + ∑ x in piFinset (update A i₀ {j₂}), ↑f fun i => g i (x i)) = ∑ x in piFinset (update A i₀ (A i₀ \ {j₂})) ∪ piFinset (update A i₀ {j₂}), ↑f fun i => g i (x i) [PROOFSTEP] rw [← Finset.sum_union D] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹¹ : Semiring R inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : AddCommMonoid M₃ inst✝⁶ : AddCommMonoid M' inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝⁴ : (i : ι) → Module R (M₁ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ inst✝¹ : Module R M' f f' : MultilinearMap R M₁ M₂ α✝ : ι → Type u_1 g✝ : (i : ι) → α✝ i → M₁ i A : (i : ι) → Finset (α✝ i) α : Type u_2 inst✝ : DecidableEq ι t : Finset α i : ι g : α → M₁ i m : (i : ι) → M₁ i ⊢ ↑f (update m i (∑ a in t, g a)) = ∑ a in t, ↑f (update m i (g a)) [PROOFSTEP] classical induction' t using Finset.induction with a t has ih h · simp · simp [Finset.sum_insert has, ih] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹¹ : Semiring R inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : AddCommMonoid M₃ inst✝⁶ : AddCommMonoid M' inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝⁴ : (i : ι) → Module R (M₁ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ inst✝¹ : Module R M' f f' : MultilinearMap R M₁ M₂ α✝ : ι → Type u_1 g✝ : (i : ι) → α✝ i → M₁ i A : (i : ι) → Finset (α✝ i) α : Type u_2 inst✝ : DecidableEq ι t : Finset α i : ι g : α → M₁ i m : (i : ι) → M₁ i ⊢ ↑f (update m i (∑ a in t, g a)) = ∑ a in t, ↑f (update m i (g a)) [PROOFSTEP] induction' t using Finset.induction with a t has ih h [GOAL] case empty R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹¹ : Semiring R inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : AddCommMonoid M₃ inst✝⁶ : AddCommMonoid M' inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝⁴ : (i : ι) → Module R (M₁ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ inst✝¹ : Module R M' f f' : MultilinearMap R M₁ M₂ α✝ : ι → Type u_1 g✝ : (i : ι) → α✝ i → M₁ i A : (i : ι) → Finset (α✝ i) α : Type u_2 inst✝ : DecidableEq ι i : ι g : α → M₁ i m : (i : ι) → M₁ i ⊢ ↑f (update m i (∑ a in ∅, g a)) = ∑ a in ∅, ↑f (update m i (g a)) [PROOFSTEP] simp [GOAL] case insert R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹¹ : Semiring R inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : AddCommMonoid M₃ inst✝⁶ : AddCommMonoid M' inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝⁴ : (i : ι) → Module R (M₁ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ inst✝¹ : Module R M' f f' : MultilinearMap R M₁ M₂ α✝ : ι → Type u_1 g✝ : (i : ι) → α✝ i → M₁ i A : (i : ι) → Finset (α✝ i) α : Type u_2 inst✝ : DecidableEq ι i : ι g : α → M₁ i m : (i : ι) → M₁ i a : α t : Finset α has : ¬a ∈ t ih : ↑f (update m i (∑ a in t, g a)) = ∑ a in t, ↑f (update m i (g a)) ⊢ ↑f (update m i (∑ a in insert a t, g a)) = ∑ a in insert a t, ↑f (update m i (g a)) [PROOFSTEP] simp [Finset.sum_insert has, ih] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹¹ : Semiring R inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : AddCommMonoid M₃ inst✝⁶ : AddCommMonoid M' inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝⁴ : (i : ι) → Module R (M₁ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ inst✝¹ : Module R M' f f' : MultilinearMap R M₁ M₂ ι₁ : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 σ : ι₁ ≃ ι₂ m : MultilinearMap R (fun x => M₂) M₃ inst✝ : DecidableEq ι₂ v : ι₂ → M₂ i : ι₂ a b : M₂ ⊢ (fun v => ↑m fun i => v (↑σ i)) (update v i (a + b)) = (fun v => ↑m fun i => v (↑σ i)) (update v i a) + (fun v => ↑m fun i => v (↑σ i)) (update v i b) [PROOFSTEP] letI := σ.injective.decidableEq [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹¹ : Semiring R inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : AddCommMonoid M₃ inst✝⁶ : AddCommMonoid M' inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝⁴ : (i : ι) → Module R (M₁ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ inst✝¹ : Module R M' f f' : MultilinearMap R M₁ M₂ ι₁ : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 σ : ι₁ ≃ ι₂ m : MultilinearMap R (fun x => M₂) M₃ inst✝ : DecidableEq ι₂ v : ι₂ → M₂ i : ι₂ a b : M₂ this : DecidableEq ι₁ := Injective.decidableEq (_ : Injective ↑σ) ⊢ (fun v => ↑m fun i => v (↑σ i)) (update v i (a + b)) = (fun v => ↑m fun i => v (↑σ i)) (update v i a) + (fun v => ↑m fun i => v (↑σ i)) (update v i b) [PROOFSTEP] simp_rw [Function.update_apply_equiv_apply v] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹¹ : Semiring R inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : AddCommMonoid M₃ inst✝⁶ : AddCommMonoid M' inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝⁴ : (i : ι) → Module R (M₁ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ inst✝¹ : Module R M' f f' : MultilinearMap R M₁ M₂ ι₁ : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 σ : ι₁ ≃ ι₂ m : MultilinearMap R (fun x => M₂) M₃ inst✝ : DecidableEq ι₂ v : ι₂ → M₂ i : ι₂ a b : M₂ this : DecidableEq ι₁ := Injective.decidableEq (_ : Injective ↑σ) ⊢ (↑m fun i_1 => update (v ∘ ↑σ) (↑σ.symm i) (a + b) i_1) = (↑m fun i_1 => update (v ∘ ↑σ) (↑σ.symm i) a i_1) + ↑m fun i_1 => update (v ∘ ↑σ) (↑σ.symm i) b i_1 [PROOFSTEP] rw [m.map_add] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹¹ : Semiring R inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : AddCommMonoid M₃ inst✝⁶ : AddCommMonoid M' inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝⁴ : (i : ι) → Module R (M₁ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ inst✝¹ : Module R M' f f' : MultilinearMap R M₁ M₂ ι₁ : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 σ : ι₁ ≃ ι₂ m : MultilinearMap R (fun x => M₂) M₃ inst✝ : DecidableEq ι₂ v : ι₂ → M₂ i : ι₂ a : R b : M₂ ⊢ (fun v => ↑m fun i => v (↑σ i)) (update v i (a • b)) = a • (fun v => ↑m fun i => v (↑σ i)) (update v i b) [PROOFSTEP] letI := σ.injective.decidableEq [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹¹ : Semiring R inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : AddCommMonoid M₃ inst✝⁶ : AddCommMonoid M' inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝⁴ : (i : ι) → Module R (M₁ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ inst✝¹ : Module R M' f f' : MultilinearMap R M₁ M₂ ι₁ : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 σ : ι₁ ≃ ι₂ m : MultilinearMap R (fun x => M₂) M₃ inst✝ : DecidableEq ι₂ v : ι₂ → M₂ i : ι₂ a : R b : M₂ this : DecidableEq ι₁ := Injective.decidableEq (_ : Injective ↑σ) ⊢ (fun v => ↑m fun i => v (↑σ i)) (update v i (a • b)) = a • (fun v => ↑m fun i => v (↑σ i)) (update v i b) [PROOFSTEP] simp_rw [Function.update_apply_equiv_apply v] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹¹ : Semiring R inst✝¹⁰ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁸ : AddCommMonoid M₂ inst✝⁷ : AddCommMonoid M₃ inst✝⁶ : AddCommMonoid M' inst✝⁵ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝⁴ : (i : ι) → Module R (M₁ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ inst✝¹ : Module R M' f f' : MultilinearMap R M₁ M₂ ι₁ : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 σ : ι₁ ≃ ι₂ m : MultilinearMap R (fun x => M₂) M₃ inst✝ : DecidableEq ι₂ v : ι₂ → M₂ i : ι₂ a : R b : M₂ this : DecidableEq ι₁ := Injective.decidableEq (_ : Injective ↑σ) ⊢ (↑m fun i_1 => update (v ∘ ↑σ) (↑σ.symm i) (a • b) i_1) = a • ↑m fun i_1 => update (v ∘ ↑σ) (↑σ.symm i) b i_1 [PROOFSTEP] rw [m.map_smul] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹⁰ : Semiring R inst✝⁹ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁸ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ inst✝⁵ : AddCommMonoid M' inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝³ : (i : ι) → Module R (M₁ i) inst✝² : Module R M₂ inst✝¹ : Module R M₃ inst✝ : Module R M' f f' : MultilinearMap R M₁ M₂ ι₁ : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 σ : ι₁ ≃ ι₂ m : MultilinearMap R (fun x => M₂) M₃ ⊢ domDomCongr σ.symm (domDomCongr σ m) = m [PROOFSTEP] ext [GOAL] case H R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹⁰ : Semiring R inst✝⁹ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁸ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ inst✝⁵ : AddCommMonoid M' inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝³ : (i : ι) → Module R (M₁ i) inst✝² : Module R M₂ inst✝¹ : Module R M₃ inst✝ : Module R M' f f' : MultilinearMap R M₁ M₂ ι₁ : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 σ : ι₁ ≃ ι₂ m : MultilinearMap R (fun x => M₂) M₃ x✝ : ι₁ → M₂ ⊢ ↑(domDomCongr σ.symm (domDomCongr σ m)) x✝ = ↑m x✝ [PROOFSTEP] simp [domDomCongr] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹⁰ : Semiring R inst✝⁹ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁸ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ inst✝⁵ : AddCommMonoid M' inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝³ : (i : ι) → Module R (M₁ i) inst✝² : Module R M₂ inst✝¹ : Module R M₃ inst✝ : Module R M' f f' : MultilinearMap R M₁ M₂ ι₁ : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 σ : ι₁ ≃ ι₂ m : MultilinearMap R (fun x => M₂) M₃ ⊢ domDomCongr σ (domDomCongr σ.symm m) = m [PROOFSTEP] ext [GOAL] case H R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹⁰ : Semiring R inst✝⁹ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁸ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ inst✝⁵ : AddCommMonoid M' inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝³ : (i : ι) → Module R (M₁ i) inst✝² : Module R M₂ inst✝¹ : Module R M₃ inst✝ : Module R M' f f' : MultilinearMap R M₁ M₂ ι₁ : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 σ : ι₁ ≃ ι₂ m : MultilinearMap R (fun x => M₂) M₃ x✝ : ι₂ → M₂ ⊢ ↑(domDomCongr σ (domDomCongr σ.symm m)) x✝ = ↑m x✝ [PROOFSTEP] simp [domDomCongr] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹⁰ : Semiring R inst✝⁹ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁸ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ inst✝⁵ : AddCommMonoid M' inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝³ : (i : ι) → Module R (M₁ i) inst✝² : Module R M₂ inst✝¹ : Module R M₃ inst✝ : Module R M' f f' : MultilinearMap R M₁ M₂ ι₁ : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 σ : ι₁ ≃ ι₂ a b : MultilinearMap R (fun x => M₂) M₃ ⊢ Equiv.toFun { toFun := domDomCongr σ, invFun := domDomCongr σ.symm, left_inv := (_ : ∀ (m : MultilinearMap R (fun x => M₂) M₃), domDomCongr σ.symm (domDomCongr σ m) = m), right_inv := (_ : ∀ (m : MultilinearMap R (fun x => M₂) M₃), domDomCongr σ (domDomCongr σ.symm m) = m) } (a + b) = Equiv.toFun { toFun := domDomCongr σ, invFun := domDomCongr σ.symm, left_inv := (_ : ∀ (m : MultilinearMap R (fun x => M₂) M₃), domDomCongr σ.symm (domDomCongr σ m) = m), right_inv := (_ : ∀ (m : MultilinearMap R (fun x => M₂) M₃), domDomCongr σ (domDomCongr σ.symm m) = m) } a + Equiv.toFun { toFun := domDomCongr σ, invFun := domDomCongr σ.symm, left_inv := (_ : ∀ (m : MultilinearMap R (fun x => M₂) M₃), domDomCongr σ.symm (domDomCongr σ m) = m), right_inv := (_ : ∀ (m : MultilinearMap R (fun x => M₂) M₃), domDomCongr σ (domDomCongr σ.symm m) = m) } b [PROOFSTEP] ext [GOAL] case H R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹⁰ : Semiring R inst✝⁹ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁸ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ inst✝⁵ : AddCommMonoid M' inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝³ : (i : ι) → Module R (M₁ i) inst✝² : Module R M₂ inst✝¹ : Module R M₃ inst✝ : Module R M' f f' : MultilinearMap R M₁ M₂ ι₁ : Type u_1 ι₂ : Type u_2 ι₃ : Type u_3 σ : ι₁ ≃ ι₂ a b : MultilinearMap R (fun x => M₂) M₃ x✝ : ι₂ → M₂ ⊢ ↑(Equiv.toFun { toFun := domDomCongr σ, invFun := domDomCongr σ.symm, left_inv := (_ : ∀ (m : MultilinearMap R (fun x => M₂) M₃), domDomCongr σ.symm (domDomCongr σ m) = m), right_inv := (_ : ∀ (m : MultilinearMap R (fun x => M₂) M₃), domDomCongr σ (domDomCongr σ.symm m) = m) } (a + b)) x✝ = ↑(Equiv.toFun { toFun := domDomCongr σ, invFun := domDomCongr σ.symm, left_inv := (_ : ∀ (m : MultilinearMap R (fun x => M₂) M₃), domDomCongr σ.symm (domDomCongr σ m) = m), right_inv := (_ : ∀ (m : MultilinearMap R (fun x => M₂) M₃), domDomCongr σ (domDomCongr σ.symm m) = m) } a + Equiv.toFun { toFun := domDomCongr σ, invFun := domDomCongr σ.symm, left_inv := (_ : ∀ (m : MultilinearMap R (fun x => M₂) M₃), domDomCongr σ.symm (domDomCongr σ m) = m), right_inv := (_ : ∀ (m : MultilinearMap R (fun x => M₂) M₃), domDomCongr σ (domDomCongr σ.symm m) = m) } b) x✝ [PROOFSTEP] simp [domDomCongr] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁹ : Semiring R inst✝⁸ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ inst✝⁵ : AddCommMonoid M' inst✝⁴ : (i : ι) → Module R (M₁ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ inst✝¹ : Module R M' g : M₂ →ₗ[R] M₃ f : MultilinearMap R M₁ M₂ inst✝ : DecidableEq ι m : (i : ι) → M₁ i i : ι x y : M₁ i ⊢ (↑g ∘ ↑f) (update m i (x + y)) = (↑g ∘ ↑f) (update m i x) + (↑g ∘ ↑f) (update m i y) [PROOFSTEP] simp [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁹ : Semiring R inst✝⁸ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : AddCommMonoid M₃ inst✝⁵ : AddCommMonoid M' inst✝⁴ : (i : ι) → Module R (M₁ i) inst✝³ : Module R M₂ inst✝² : Module R M₃ inst✝¹ : Module R M' g : M₂ →ₗ[R] M₃ f : MultilinearMap R M₁ M₂ inst✝ : DecidableEq ι m : (i : ι) → M₁ i i : ι c : R x : M₁ i ⊢ (↑g ∘ ↑f) (update m i (c • x)) = c • (↑g ∘ ↑f) (update m i x) [PROOFSTEP] simp [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁸ : Semiring R inst✝⁷ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommMonoid M₃ inst✝⁴ : AddCommMonoid M' inst✝³ : (i : ι) → Module R (M₁ i) inst✝² : Module R M₂ inst✝¹ : Module R M₃ inst✝ : Module R M' ι₁ : Type u_1 ι₂ : Type u_2 σ : ι₁ ≃ ι₂ g : M₂ →ₗ[R] M₃ f : MultilinearMap R (fun x => M') M₂ ⊢ MultilinearMap.domDomCongr σ (compMultilinearMap g f) = compMultilinearMap g (MultilinearMap.domDomCongr σ f) [PROOFSTEP] ext [GOAL] case H R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁸ : Semiring R inst✝⁷ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : AddCommMonoid M₃ inst✝⁴ : AddCommMonoid M' inst✝³ : (i : ι) → Module R (M₁ i) inst✝² : Module R M₂ inst✝¹ : Module R M₃ inst✝ : Module R M' ι₁ : Type u_1 ι₂ : Type u_2 σ : ι₁ ≃ ι₂ g : M₂ →ₗ[R] M₃ f : MultilinearMap R (fun x => M') M₂ x✝ : ι₂ → M' ⊢ ↑(MultilinearMap.domDomCongr σ (compMultilinearMap g f)) x✝ = ↑(compMultilinearMap g (MultilinearMap.domDomCongr σ f)) x✝ [PROOFSTEP] simp [MultilinearMap.domDomCongr] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁷ : CommSemiring R inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M₂ inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝² : (i : ι) → Module R (M₁ i) inst✝¹ : Module R M₂ f f' : MultilinearMap R M₁ M₂ inst✝ : DecidableEq ι c : ι → R m : (i : ι) → M₁ i s : Finset ι ⊢ ↑f (Finset.piecewise s (fun i => c i • m i) m) = (∏ i in s, c i) • ↑f m [PROOFSTEP] refine' s.induction_on (by simp) _ [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁷ : CommSemiring R inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M₂ inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝² : (i : ι) → Module R (M₁ i) inst✝¹ : Module R M₂ f f' : MultilinearMap R M₁ M₂ inst✝ : DecidableEq ι c : ι → R m : (i : ι) → M₁ i s : Finset ι ⊢ ↑f (Finset.piecewise ∅ (fun i => c i • m i) m) = (∏ i in ∅, c i) • ↑f m [PROOFSTEP] simp [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁷ : CommSemiring R inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M₂ inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝² : (i : ι) → Module R (M₁ i) inst✝¹ : Module R M₂ f f' : MultilinearMap R M₁ M₂ inst✝ : DecidableEq ι c : ι → R m : (i : ι) → M₁ i s : Finset ι ⊢ ∀ ⦃a : ι⦄ {s : Finset ι}, ¬a ∈ s → ↑f (Finset.piecewise s (fun i => c i • m i) m) = (∏ i in s, c i) • ↑f m → ↑f (Finset.piecewise (insert a s) (fun i => c i • m i) m) = (∏ i in insert a s, c i) • ↑f m [PROOFSTEP] intro j s j_not_mem_s Hrec [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁷ : CommSemiring R inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M₂ inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝² : (i : ι) → Module R (M₁ i) inst✝¹ : Module R M₂ f f' : MultilinearMap R M₁ M₂ inst✝ : DecidableEq ι c : ι → R m : (i : ι) → M₁ i s✝ : Finset ι j : ι s : Finset ι j_not_mem_s : ¬j ∈ s Hrec : ↑f (Finset.piecewise s (fun i => c i • m i) m) = (∏ i in s, c i) • ↑f m ⊢ ↑f (Finset.piecewise (insert j s) (fun i => c i • m i) m) = (∏ i in insert j s, c i) • ↑f m [PROOFSTEP] have A : Function.update (s.piecewise (fun i => c i • m i) m) j (m j) = s.piecewise (fun i => c i • m i) m := by ext i by_cases h : i = j · rw [h] simp [j_not_mem_s] · simp [h] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁷ : CommSemiring R inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M₂ inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝² : (i : ι) → Module R (M₁ i) inst✝¹ : Module R M₂ f f' : MultilinearMap R M₁ M₂ inst✝ : DecidableEq ι c : ι → R m : (i : ι) → M₁ i s✝ : Finset ι j : ι s : Finset ι j_not_mem_s : ¬j ∈ s Hrec : ↑f (Finset.piecewise s (fun i => c i • m i) m) = (∏ i in s, c i) • ↑f m ⊢ update (Finset.piecewise s (fun i => c i • m i) m) j (m j) = Finset.piecewise s (fun i => c i • m i) m [PROOFSTEP] ext i [GOAL] case h R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁷ : CommSemiring R inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M₂ inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝² : (i : ι) → Module R (M₁ i) inst✝¹ : Module R M₂ f f' : MultilinearMap R M₁ M₂ inst✝ : DecidableEq ι c : ι → R m : (i : ι) → M₁ i s✝ : Finset ι j : ι s : Finset ι j_not_mem_s : ¬j ∈ s Hrec : ↑f (Finset.piecewise s (fun i => c i • m i) m) = (∏ i in s, c i) • ↑f m i : ι ⊢ update (Finset.piecewise s (fun i => c i • m i) m) j (m j) i = Finset.piecewise s (fun i => c i • m i) m i [PROOFSTEP] by_cases h : i = j [GOAL] case pos R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁷ : CommSemiring R inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M₂ inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝² : (i : ι) → Module R (M₁ i) inst✝¹ : Module R M₂ f f' : MultilinearMap R M₁ M₂ inst✝ : DecidableEq ι c : ι → R m : (i : ι) → M₁ i s✝ : Finset ι j : ι s : Finset ι j_not_mem_s : ¬j ∈ s Hrec : ↑f (Finset.piecewise s (fun i => c i • m i) m) = (∏ i in s, c i) • ↑f m i : ι h : i = j ⊢ update (Finset.piecewise s (fun i => c i • m i) m) j (m j) i = Finset.piecewise s (fun i => c i • m i) m i [PROOFSTEP] rw [h] [GOAL] case pos R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁷ : CommSemiring R inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M₂ inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝² : (i : ι) → Module R (M₁ i) inst✝¹ : Module R M₂ f f' : MultilinearMap R M₁ M₂ inst✝ : DecidableEq ι c : ι → R m : (i : ι) → M₁ i s✝ : Finset ι j : ι s : Finset ι j_not_mem_s : ¬j ∈ s Hrec : ↑f (Finset.piecewise s (fun i => c i • m i) m) = (∏ i in s, c i) • ↑f m i : ι h : i = j ⊢ update (Finset.piecewise s (fun i => c i • m i) m) j (m j) j = Finset.piecewise s (fun i => c i • m i) m j [PROOFSTEP] simp [j_not_mem_s] [GOAL] case neg R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁷ : CommSemiring R inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M₂ inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝² : (i : ι) → Module R (M₁ i) inst✝¹ : Module R M₂ f f' : MultilinearMap R M₁ M₂ inst✝ : DecidableEq ι c : ι → R m : (i : ι) → M₁ i s✝ : Finset ι j : ι s : Finset ι j_not_mem_s : ¬j ∈ s Hrec : ↑f (Finset.piecewise s (fun i => c i • m i) m) = (∏ i in s, c i) • ↑f m i : ι h : ¬i = j ⊢ update (Finset.piecewise s (fun i => c i • m i) m) j (m j) i = Finset.piecewise s (fun i => c i • m i) m i [PROOFSTEP] simp [h] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁷ : CommSemiring R inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M₂ inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝² : (i : ι) → Module R (M₁ i) inst✝¹ : Module R M₂ f f' : MultilinearMap R M₁ M₂ inst✝ : DecidableEq ι c : ι → R m : (i : ι) → M₁ i s✝ : Finset ι j : ι s : Finset ι j_not_mem_s : ¬j ∈ s Hrec : ↑f (Finset.piecewise s (fun i => c i • m i) m) = (∏ i in s, c i) • ↑f m A : update (Finset.piecewise s (fun i => c i • m i) m) j (m j) = Finset.piecewise s (fun i => c i • m i) m ⊢ ↑f (Finset.piecewise (insert j s) (fun i => c i • m i) m) = (∏ i in insert j s, c i) • ↑f m [PROOFSTEP] rw [s.piecewise_insert, f.map_smul, A, Hrec] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁷ : CommSemiring R inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M₂ inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝² : (i : ι) → Module R (M₁ i) inst✝¹ : Module R M₂ f f' : MultilinearMap R M₁ M₂ inst✝ : DecidableEq ι c : ι → R m : (i : ι) → M₁ i s✝ : Finset ι j : ι s : Finset ι j_not_mem_s : ¬j ∈ s Hrec : ↑f (Finset.piecewise s (fun i => c i • m i) m) = (∏ i in s, c i) • ↑f m A : update (Finset.piecewise s (fun i => c i • m i) m) j (m j) = Finset.piecewise s (fun i => c i • m i) m ⊢ c j • (∏ i in s, c i) • ↑f m = (∏ i in insert j s, c i) • ↑f m [PROOFSTEP] simp [j_not_mem_s, mul_smul] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁷ : CommSemiring R inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M₂ inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝² : (i : ι) → Module R (M₁ i) inst✝¹ : Module R M₂ f f' : MultilinearMap R M₁ M₂ inst✝ : Fintype ι c : ι → R m : (i : ι) → M₁ i ⊢ (↑f fun i => c i • m i) = (∏ i : ι, c i) • ↑f m [PROOFSTEP] classical simpa using map_piecewise_smul f c m Finset.univ [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁷ : CommSemiring R inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M₂ inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝² : (i : ι) → Module R (M₁ i) inst✝¹ : Module R M₂ f f' : MultilinearMap R M₁ M₂ inst✝ : Fintype ι c : ι → R m : (i : ι) → M₁ i ⊢ (↑f fun i => c i • m i) = (∏ i : ι, c i) • ↑f m [PROOFSTEP] simpa using map_piecewise_smul f c m Finset.univ [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁸ : CommSemiring R inst✝⁷ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁶ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝³ : (i : ι) → Module R (M₁ i) inst✝² : Module R M₂ f f' : MultilinearMap R M₁ M₂ inst✝¹ : DecidableEq ι inst✝ : Fintype ι m : (i : ι) → M₁ i i : ι c : R x : M₁ i ⊢ ↑f (update (c • m) i x) = c ^ (Fintype.card ι - 1) • ↑f (update m i x) [PROOFSTEP] have : f ((Finset.univ.erase i).piecewise (c • update m i x) (update m i x)) = (∏ _i in Finset.univ.erase i, c) • f (update m i x) := map_piecewise_smul f _ _ _ [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁸ : CommSemiring R inst✝⁷ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁶ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝³ : (i : ι) → Module R (M₁ i) inst✝² : Module R M₂ f f' : MultilinearMap R M₁ M₂ inst✝¹ : DecidableEq ι inst✝ : Fintype ι m : (i : ι) → M₁ i i : ι c : R x : M₁ i this : ↑f (Finset.piecewise (Finset.erase Finset.univ i) (c • update m i x) (update m i x)) = (∏ _i in Finset.erase Finset.univ i, c) • ↑f (update m i x) ⊢ ↑f (update (c • m) i x) = c ^ (Fintype.card ι - 1) • ↑f (update m i x) [PROOFSTEP] simpa [← Function.update_smul c m] using this [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹⁴ : CommSemiring R inst✝¹³ : (i : ι) → AddCommMonoid (M₁ i) inst✝¹² : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝⁹ : (i : ι) → Module R (M₁ i) inst✝⁸ : Module R M₂ f✝ f' : MultilinearMap R M₁ M₂ R' : Type u_1 A : Type u_2 inst✝⁷ : Semiring R' inst✝⁶ : Semiring A inst✝⁵ : (i : ι) → Module A (M₁ i) inst✝⁴ : Module A M₂ inst✝³ : AddCommMonoid M₃ inst✝² : Module R' M₃ inst✝¹ : Module A M₃ inst✝ : SMulCommClass A R' M₃ ι₁ : Type ?u.427401 ι₂ : Type ?u.427507 σ : ι₁ ≃ ι₂ src✝ : MultilinearMap A (fun x => M₂) M₃ ≃+ MultilinearMap A (fun x => M₂) M₃ := domDomCongrEquiv σ c : R' f : MultilinearMap A (fun x => M₂) M₃ ⊢ AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (x y : MultilinearMap A (fun x => M₂) M₃), Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) } (c • f) = ↑(RingHom.id R') c • AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (x y : MultilinearMap A (fun x => M₂) M₃), Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) } f [PROOFSTEP] ext [GOAL] case H R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹⁴ : CommSemiring R inst✝¹³ : (i : ι) → AddCommMonoid (M₁ i) inst✝¹² : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝⁹ : (i : ι) → Module R (M₁ i) inst✝⁸ : Module R M₂ f✝ f' : MultilinearMap R M₁ M₂ R' : Type u_1 A : Type u_2 inst✝⁷ : Semiring R' inst✝⁶ : Semiring A inst✝⁵ : (i : ι) → Module A (M₁ i) inst✝⁴ : Module A M₂ inst✝³ : AddCommMonoid M₃ inst✝² : Module R' M₃ inst✝¹ : Module A M₃ inst✝ : SMulCommClass A R' M₃ ι₁ : Type ?u.427401 ι₂ : Type ?u.427507 σ : ι₁ ≃ ι₂ src✝ : MultilinearMap A (fun x => M₂) M₃ ≃+ MultilinearMap A (fun x => M₂) M₃ := domDomCongrEquiv σ c : R' f : MultilinearMap A (fun x => M₂) M₃ x✝ : ι₂ → M₂ ⊢ ↑(AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (x y : MultilinearMap A (fun x => M₂) M₃), Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) } (c • f)) x✝ = ↑(↑(RingHom.id R') c • AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (x y : MultilinearMap A (fun x => M₂) M₃), Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) } f) x✝ [PROOFSTEP] simp [MultilinearMap.domDomCongr] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹⁵ : CommSemiring R inst✝¹⁴ : (i : ι) → AddCommMonoid (M₁ i) inst✝¹³ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝¹² : AddCommMonoid M₂ inst✝¹¹ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹⁰ : (i : ι) → Module R (M₁ i) inst✝⁹ : Module R M₂ f✝ f' : MultilinearMap R M₁ M₂ R' : Type u_1 A : Type u_2 inst✝⁸ : Semiring R' inst✝⁷ : Semiring A inst✝⁶ : (i : ι) → Module A (M₁ i) inst✝⁵ : Module A M₂ inst✝⁴ : AddCommMonoid M₃ inst✝³ : Module R' M₃ inst✝² : Module A M₃ inst✝¹ : SMulCommClass A R' M₃ ι' : Type u_3 σ : ι ≃ ι' f : MultilinearMap R M₁ M₂ inst✝ : DecidableEq ι' m : (i : ι') → M₁ (↑σ.symm i) i : ι' ⊢ ∀ (x y : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y) [PROOFSTEP] letI := σ.decidableEq [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹⁵ : CommSemiring R inst✝¹⁴ : (i : ι) → AddCommMonoid (M₁ i) inst✝¹³ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝¹² : AddCommMonoid M₂ inst✝¹¹ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹⁰ : (i : ι) → Module R (M₁ i) inst✝⁹ : Module R M₂ f✝ f' : MultilinearMap R M₁ M₂ R' : Type u_1 A : Type u_2 inst✝⁸ : Semiring R' inst✝⁷ : Semiring A inst✝⁶ : (i : ι) → Module A (M₁ i) inst✝⁵ : Module A M₂ inst✝⁴ : AddCommMonoid M₃ inst✝³ : Module R' M₃ inst✝² : Module A M₃ inst✝¹ : SMulCommClass A R' M₃ ι' : Type u_3 σ : ι ≃ ι' f : MultilinearMap R M₁ M₂ inst✝ : DecidableEq ι' m : (i : ι') → M₁ (↑σ.symm i) i : ι' this : DecidableEq ι := Equiv.decidableEq σ ⊢ ∀ (x y : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y) [PROOFSTEP] rw [← σ.apply_symm_apply i] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹⁵ : CommSemiring R inst✝¹⁴ : (i : ι) → AddCommMonoid (M₁ i) inst✝¹³ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝¹² : AddCommMonoid M₂ inst✝¹¹ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹⁰ : (i : ι) → Module R (M₁ i) inst✝⁹ : Module R M₂ f✝ f' : MultilinearMap R M₁ M₂ R' : Type u_1 A : Type u_2 inst✝⁸ : Semiring R' inst✝⁷ : Semiring A inst✝⁶ : (i : ι) → Module A (M₁ i) inst✝⁵ : Module A M₂ inst✝⁴ : AddCommMonoid M₃ inst✝³ : Module R' M₃ inst✝² : Module A M₃ inst✝¹ : SMulCommClass A R' M₃ ι' : Type u_3 σ : ι ≃ ι' f : MultilinearMap R M₁ M₂ inst✝ : DecidableEq ι' m : (i : ι') → M₁ (↑σ.symm i) i : ι' this : DecidableEq ι := Equiv.decidableEq σ ⊢ ∀ (x y : M₁ (↑σ.symm (↑σ (↑σ.symm i)))), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m (↑σ (↑σ.symm i)) (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m (↑σ (↑σ.symm i)) x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m (↑σ (↑σ.symm i)) y) [PROOFSTEP] intro x y [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹⁵ : CommSemiring R inst✝¹⁴ : (i : ι) → AddCommMonoid (M₁ i) inst✝¹³ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝¹² : AddCommMonoid M₂ inst✝¹¹ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹⁰ : (i : ι) → Module R (M₁ i) inst✝⁹ : Module R M₂ f✝ f' : MultilinearMap R M₁ M₂ R' : Type u_1 A : Type u_2 inst✝⁸ : Semiring R' inst✝⁷ : Semiring A inst✝⁶ : (i : ι) → Module A (M₁ i) inst✝⁵ : Module A M₂ inst✝⁴ : AddCommMonoid M₃ inst✝³ : Module R' M₃ inst✝² : Module A M₃ inst✝¹ : SMulCommClass A R' M₃ ι' : Type u_3 σ : ι ≃ ι' f : MultilinearMap R M₁ M₂ inst✝ : DecidableEq ι' m : (i : ι') → M₁ (↑σ.symm i) i : ι' this : DecidableEq ι := Equiv.decidableEq σ x y : M₁ (↑σ.symm (↑σ (↑σ.symm i))) ⊢ (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m (↑σ (↑σ.symm i)) (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m (↑σ (↑σ.symm i)) x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m (↑σ (↑σ.symm i)) y) [PROOFSTEP] simp only [comp_apply, piCongrLeft'_symm_update, f.map_add] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹⁵ : CommSemiring R inst✝¹⁴ : (i : ι) → AddCommMonoid (M₁ i) inst✝¹³ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝¹² : AddCommMonoid M₂ inst✝¹¹ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹⁰ : (i : ι) → Module R (M₁ i) inst✝⁹ : Module R M₂ f✝ f' : MultilinearMap R M₁ M₂ R' : Type u_1 A : Type u_2 inst✝⁸ : Semiring R' inst✝⁷ : Semiring A inst✝⁶ : (i : ι) → Module A (M₁ i) inst✝⁵ : Module A M₂ inst✝⁴ : AddCommMonoid M₃ inst✝³ : Module R' M₃ inst✝² : Module A M₃ inst✝¹ : SMulCommClass A R' M₃ ι' : Type u_3 σ : ι ≃ ι' f : MultilinearMap R M₁ M₂ inst✝ : DecidableEq ι' m : (i : ι') → M₁ (↑σ.symm i) i : ι' c : R ⊢ ∀ (x : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) [PROOFSTEP] letI := σ.decidableEq [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹⁵ : CommSemiring R inst✝¹⁴ : (i : ι) → AddCommMonoid (M₁ i) inst✝¹³ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝¹² : AddCommMonoid M₂ inst✝¹¹ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹⁰ : (i : ι) → Module R (M₁ i) inst✝⁹ : Module R M₂ f✝ f' : MultilinearMap R M₁ M₂ R' : Type u_1 A : Type u_2 inst✝⁸ : Semiring R' inst✝⁷ : Semiring A inst✝⁶ : (i : ι) → Module A (M₁ i) inst✝⁵ : Module A M₂ inst✝⁴ : AddCommMonoid M₃ inst✝³ : Module R' M₃ inst✝² : Module A M₃ inst✝¹ : SMulCommClass A R' M₃ ι' : Type u_3 σ : ι ≃ ι' f : MultilinearMap R M₁ M₂ inst✝ : DecidableEq ι' m : (i : ι') → M₁ (↑σ.symm i) i : ι' c : R this : DecidableEq ι := Equiv.decidableEq σ ⊢ ∀ (x : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) [PROOFSTEP] rw [← σ.apply_symm_apply i] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹⁵ : CommSemiring R inst✝¹⁴ : (i : ι) → AddCommMonoid (M₁ i) inst✝¹³ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝¹² : AddCommMonoid M₂ inst✝¹¹ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹⁰ : (i : ι) → Module R (M₁ i) inst✝⁹ : Module R M₂ f✝ f' : MultilinearMap R M₁ M₂ R' : Type u_1 A : Type u_2 inst✝⁸ : Semiring R' inst✝⁷ : Semiring A inst✝⁶ : (i : ι) → Module A (M₁ i) inst✝⁵ : Module A M₂ inst✝⁴ : AddCommMonoid M₃ inst✝³ : Module R' M₃ inst✝² : Module A M₃ inst✝¹ : SMulCommClass A R' M₃ ι' : Type u_3 σ : ι ≃ ι' f : MultilinearMap R M₁ M₂ inst✝ : DecidableEq ι' m : (i : ι') → M₁ (↑σ.symm i) i : ι' c : R this : DecidableEq ι := Equiv.decidableEq σ ⊢ ∀ (x : M₁ (↑σ.symm (↑σ (↑σ.symm i)))), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m (↑σ (↑σ.symm i)) (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m (↑σ (↑σ.symm i)) x) [PROOFSTEP] intro x [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹⁵ : CommSemiring R inst✝¹⁴ : (i : ι) → AddCommMonoid (M₁ i) inst✝¹³ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝¹² : AddCommMonoid M₂ inst✝¹¹ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹⁰ : (i : ι) → Module R (M₁ i) inst✝⁹ : Module R M₂ f✝ f' : MultilinearMap R M₁ M₂ R' : Type u_1 A : Type u_2 inst✝⁸ : Semiring R' inst✝⁷ : Semiring A inst✝⁶ : (i : ι) → Module A (M₁ i) inst✝⁵ : Module A M₂ inst✝⁴ : AddCommMonoid M₃ inst✝³ : Module R' M₃ inst✝² : Module A M₃ inst✝¹ : SMulCommClass A R' M₃ ι' : Type u_3 σ : ι ≃ ι' f : MultilinearMap R M₁ M₂ inst✝ : DecidableEq ι' m : (i : ι') → M₁ (↑σ.symm i) i : ι' c : R this : DecidableEq ι := Equiv.decidableEq σ x : M₁ (↑σ.symm (↑σ (↑σ.symm i))) ⊢ (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m (↑σ (↑σ.symm i)) (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m (↑σ (↑σ.symm i)) x) [PROOFSTEP] simp only [Function.comp, piCongrLeft'_symm_update, f.map_smul] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹⁴ : CommSemiring R inst✝¹³ : (i : ι) → AddCommMonoid (M₁ i) inst✝¹² : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝⁹ : (i : ι) → Module R (M₁ i) inst✝⁸ : Module R M₂ f f' : MultilinearMap R M₁ M₂ R' : Type u_1 A : Type u_2 inst✝⁷ : Semiring R' inst✝⁶ : Semiring A inst✝⁵ : (i : ι) → Module A (M₁ i) inst✝⁴ : Module A M₂ inst✝³ : AddCommMonoid M₃ inst✝² : Module R' M₃ inst✝¹ : Module A M₃ inst✝ : SMulCommClass A R' M₃ ι' : Type u_3 σ : ι ≃ ι' f₁ f₂ : MultilinearMap R M₁ M₂ ⊢ (fun f => { toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm, map_add' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) }) (f₁ + f₂) = (fun f => { toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm, map_add' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) }) f₁ + (fun f => { toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm, map_add' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) }) f₂ [PROOFSTEP] ext [GOAL] case H R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹⁴ : CommSemiring R inst✝¹³ : (i : ι) → AddCommMonoid (M₁ i) inst✝¹² : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝⁹ : (i : ι) → Module R (M₁ i) inst✝⁸ : Module R M₂ f f' : MultilinearMap R M₁ M₂ R' : Type u_1 A : Type u_2 inst✝⁷ : Semiring R' inst✝⁶ : Semiring A inst✝⁵ : (i : ι) → Module A (M₁ i) inst✝⁴ : Module A M₂ inst✝³ : AddCommMonoid M₃ inst✝² : Module R' M₃ inst✝¹ : Module A M₃ inst✝ : SMulCommClass A R' M₃ ι' : Type u_3 σ : ι ≃ ι' f₁ f₂ : MultilinearMap R M₁ M₂ x✝ : (i : ι') → M₁ (↑σ.symm i) ⊢ ↑((fun f => { toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm, map_add' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) }) (f₁ + f₂)) x✝ = ↑((fun f => { toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm, map_add' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) }) f₁ + (fun f => { toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm, map_add' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) }) f₂) x✝ [PROOFSTEP] simp only [Function.comp, coe_mk, add_apply] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹⁴ : CommSemiring R inst✝¹³ : (i : ι) → AddCommMonoid (M₁ i) inst✝¹² : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝⁹ : (i : ι) → Module R (M₁ i) inst✝⁸ : Module R M₂ f✝ f' : MultilinearMap R M₁ M₂ R' : Type u_1 A : Type u_2 inst✝⁷ : Semiring R' inst✝⁶ : Semiring A inst✝⁵ : (i : ι) → Module A (M₁ i) inst✝⁴ : Module A M₂ inst✝³ : AddCommMonoid M₃ inst✝² : Module R' M₃ inst✝¹ : Module A M₃ inst✝ : SMulCommClass A R' M₃ ι' : Type u_3 σ : ι ≃ ι' c : R f : MultilinearMap R M₁ M₂ ⊢ AddHom.toFun { toFun := fun f => { toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm, map_add' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) }, map_add' := (_ : ∀ (f₁ f₂ : MultilinearMap R M₁ M₂), (fun f => { toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm, map_add' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) }) (f₁ + f₂) = (fun f => { toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm, map_add' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) }) f₁ + (fun f => { toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm, map_add' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) }) f₂) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := fun f => { toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm, map_add' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) }, map_add' := (_ : ∀ (f₁ f₂ : MultilinearMap R M₁ M₂), (fun f => { toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm, map_add' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) }) (f₁ + f₂) = (fun f => { toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm, map_add' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) }) f₁ + (fun f => { toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm, map_add' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) }) f₂) } f [PROOFSTEP] ext [GOAL] case H R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹⁴ : CommSemiring R inst✝¹³ : (i : ι) → AddCommMonoid (M₁ i) inst✝¹² : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝⁹ : (i : ι) → Module R (M₁ i) inst✝⁸ : Module R M₂ f✝ f' : MultilinearMap R M₁ M₂ R' : Type u_1 A : Type u_2 inst✝⁷ : Semiring R' inst✝⁶ : Semiring A inst✝⁵ : (i : ι) → Module A (M₁ i) inst✝⁴ : Module A M₂ inst✝³ : AddCommMonoid M₃ inst✝² : Module R' M₃ inst✝¹ : Module A M₃ inst✝ : SMulCommClass A R' M₃ ι' : Type u_3 σ : ι ≃ ι' c : R f : MultilinearMap R M₁ M₂ x✝ : (i : ι') → M₁ (↑σ.symm i) ⊢ ↑(AddHom.toFun { toFun := fun f => { toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm, map_add' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) }, map_add' := (_ : ∀ (f₁ f₂ : MultilinearMap R M₁ M₂), (fun f => { toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm, map_add' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) }) (f₁ + f₂) = (fun f => { toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm, map_add' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) }) f₁ + (fun f => { toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm, map_add' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) }) f₂) } (c • f)) x✝ = ↑(↑(RingHom.id R) c • AddHom.toFun { toFun := fun f => { toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm, map_add' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) }, map_add' := (_ : ∀ (f₁ f₂ : MultilinearMap R M₁ M₂), (fun f => { toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm, map_add' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) }) (f₁ + f₂) = (fun f => { toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm, map_add' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) }) f₁ + (fun f => { toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm, map_add' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) }) f₂) } f) x✝ [PROOFSTEP] simp only [Function.comp, coe_mk, smul_apply, RingHom.id_apply] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹⁵ : CommSemiring R inst✝¹⁴ : (i : ι) → AddCommMonoid (M₁ i) inst✝¹³ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝¹² : AddCommMonoid M₂ inst✝¹¹ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹⁰ : (i : ι) → Module R (M₁ i) inst✝⁹ : Module R M₂ f✝ f' : MultilinearMap R M₁ M₂ R' : Type u_1 A : Type u_2 inst✝⁸ : Semiring R' inst✝⁷ : Semiring A inst✝⁶ : (i : ι) → Module A (M₁ i) inst✝⁵ : Module A M₂ inst✝⁴ : AddCommMonoid M₃ inst✝³ : Module R' M₃ inst✝² : Module A M₃ inst✝¹ : SMulCommClass A R' M₃ ι' : Type u_3 σ : ι ≃ ι' f : MultilinearMap R (fun i => M₁ (↑σ.symm i)) M₂ inst✝ : DecidableEq ι m : (i : ι) → M₁ i i : ι ⊢ ∀ (x y : M₁ i), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m i y) [PROOFSTEP] letI := σ.symm.decidableEq [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹⁵ : CommSemiring R inst✝¹⁴ : (i : ι) → AddCommMonoid (M₁ i) inst✝¹³ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝¹² : AddCommMonoid M₂ inst✝¹¹ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹⁰ : (i : ι) → Module R (M₁ i) inst✝⁹ : Module R M₂ f✝ f' : MultilinearMap R M₁ M₂ R' : Type u_1 A : Type u_2 inst✝⁸ : Semiring R' inst✝⁷ : Semiring A inst✝⁶ : (i : ι) → Module A (M₁ i) inst✝⁵ : Module A M₂ inst✝⁴ : AddCommMonoid M₃ inst✝³ : Module R' M₃ inst✝² : Module A M₃ inst✝¹ : SMulCommClass A R' M₃ ι' : Type u_3 σ : ι ≃ ι' f : MultilinearMap R (fun i => M₁ (↑σ.symm i)) M₂ inst✝ : DecidableEq ι m : (i : ι) → M₁ i i : ι this : DecidableEq ι' := Equiv.decidableEq σ.symm ⊢ ∀ (x y : M₁ i), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m i y) [PROOFSTEP] rw [← σ.symm_apply_apply i] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹⁵ : CommSemiring R inst✝¹⁴ : (i : ι) → AddCommMonoid (M₁ i) inst✝¹³ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝¹² : AddCommMonoid M₂ inst✝¹¹ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹⁰ : (i : ι) → Module R (M₁ i) inst✝⁹ : Module R M₂ f✝ f' : MultilinearMap R M₁ M₂ R' : Type u_1 A : Type u_2 inst✝⁸ : Semiring R' inst✝⁷ : Semiring A inst✝⁶ : (i : ι) → Module A (M₁ i) inst✝⁵ : Module A M₂ inst✝⁴ : AddCommMonoid M₃ inst✝³ : Module R' M₃ inst✝² : Module A M₃ inst✝¹ : SMulCommClass A R' M₃ ι' : Type u_3 σ : ι ≃ ι' f : MultilinearMap R (fun i => M₁ (↑σ.symm i)) M₂ inst✝ : DecidableEq ι m : (i : ι) → M₁ i i : ι this : DecidableEq ι' := Equiv.decidableEq σ.symm ⊢ ∀ (x y : M₁ (↑σ.symm (↑σ i))), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m (↑σ.symm (↑σ i)) (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m (↑σ.symm (↑σ i)) x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m (↑σ.symm (↑σ i)) y) [PROOFSTEP] intro x y [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹⁵ : CommSemiring R inst✝¹⁴ : (i : ι) → AddCommMonoid (M₁ i) inst✝¹³ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝¹² : AddCommMonoid M₂ inst✝¹¹ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹⁰ : (i : ι) → Module R (M₁ i) inst✝⁹ : Module R M₂ f✝ f' : MultilinearMap R M₁ M₂ R' : Type u_1 A : Type u_2 inst✝⁸ : Semiring R' inst✝⁷ : Semiring A inst✝⁶ : (i : ι) → Module A (M₁ i) inst✝⁵ : Module A M₂ inst✝⁴ : AddCommMonoid M₃ inst✝³ : Module R' M₃ inst✝² : Module A M₃ inst✝¹ : SMulCommClass A R' M₃ ι' : Type u_3 σ : ι ≃ ι' f : MultilinearMap R (fun i => M₁ (↑σ.symm i)) M₂ inst✝ : DecidableEq ι m : (i : ι) → M₁ i i : ι this : DecidableEq ι' := Equiv.decidableEq σ.symm x y : M₁ (↑σ.symm (↑σ i)) ⊢ (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m (↑σ.symm (↑σ i)) (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m (↑σ.symm (↑σ i)) x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m (↑σ.symm (↑σ i)) y) [PROOFSTEP] simp only [comp_apply, piCongrLeft'_update, f.map_add] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹⁵ : CommSemiring R inst✝¹⁴ : (i : ι) → AddCommMonoid (M₁ i) inst✝¹³ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝¹² : AddCommMonoid M₂ inst✝¹¹ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹⁰ : (i : ι) → Module R (M₁ i) inst✝⁹ : Module R M₂ f✝ f' : MultilinearMap R M₁ M₂ R' : Type u_1 A : Type u_2 inst✝⁸ : Semiring R' inst✝⁷ : Semiring A inst✝⁶ : (i : ι) → Module A (M₁ i) inst✝⁵ : Module A M₂ inst✝⁴ : AddCommMonoid M₃ inst✝³ : Module R' M₃ inst✝² : Module A M₃ inst✝¹ : SMulCommClass A R' M₃ ι' : Type u_3 σ : ι ≃ ι' f : MultilinearMap R (fun i => M₁ (↑σ.symm i)) M₂ inst✝ : DecidableEq ι m : (i : ι) → M₁ i i : ι c : R ⊢ ∀ (x : M₁ i), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m i x) [PROOFSTEP] letI := σ.symm.decidableEq [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹⁵ : CommSemiring R inst✝¹⁴ : (i : ι) → AddCommMonoid (M₁ i) inst✝¹³ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝¹² : AddCommMonoid M₂ inst✝¹¹ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹⁰ : (i : ι) → Module R (M₁ i) inst✝⁹ : Module R M₂ f✝ f' : MultilinearMap R M₁ M₂ R' : Type u_1 A : Type u_2 inst✝⁸ : Semiring R' inst✝⁷ : Semiring A inst✝⁶ : (i : ι) → Module A (M₁ i) inst✝⁵ : Module A M₂ inst✝⁴ : AddCommMonoid M₃ inst✝³ : Module R' M₃ inst✝² : Module A M₃ inst✝¹ : SMulCommClass A R' M₃ ι' : Type u_3 σ : ι ≃ ι' f : MultilinearMap R (fun i => M₁ (↑σ.symm i)) M₂ inst✝ : DecidableEq ι m : (i : ι) → M₁ i i : ι c : R this : DecidableEq ι' := Equiv.decidableEq σ.symm ⊢ ∀ (x : M₁ i), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m i x) [PROOFSTEP] rw [← σ.symm_apply_apply i] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹⁵ : CommSemiring R inst✝¹⁴ : (i : ι) → AddCommMonoid (M₁ i) inst✝¹³ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝¹² : AddCommMonoid M₂ inst✝¹¹ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹⁰ : (i : ι) → Module R (M₁ i) inst✝⁹ : Module R M₂ f✝ f' : MultilinearMap R M₁ M₂ R' : Type u_1 A : Type u_2 inst✝⁸ : Semiring R' inst✝⁷ : Semiring A inst✝⁶ : (i : ι) → Module A (M₁ i) inst✝⁵ : Module A M₂ inst✝⁴ : AddCommMonoid M₃ inst✝³ : Module R' M₃ inst✝² : Module A M₃ inst✝¹ : SMulCommClass A R' M₃ ι' : Type u_3 σ : ι ≃ ι' f : MultilinearMap R (fun i => M₁ (↑σ.symm i)) M₂ inst✝ : DecidableEq ι m : (i : ι) → M₁ i i : ι c : R this : DecidableEq ι' := Equiv.decidableEq σ.symm ⊢ ∀ (x : M₁ (↑σ.symm (↑σ i))), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m (↑σ.symm (↑σ i)) (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m (↑σ.symm (↑σ i)) x) [PROOFSTEP] intro x [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹⁵ : CommSemiring R inst✝¹⁴ : (i : ι) → AddCommMonoid (M₁ i) inst✝¹³ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝¹² : AddCommMonoid M₂ inst✝¹¹ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹⁰ : (i : ι) → Module R (M₁ i) inst✝⁹ : Module R M₂ f✝ f' : MultilinearMap R M₁ M₂ R' : Type u_1 A : Type u_2 inst✝⁸ : Semiring R' inst✝⁷ : Semiring A inst✝⁶ : (i : ι) → Module A (M₁ i) inst✝⁵ : Module A M₂ inst✝⁴ : AddCommMonoid M₃ inst✝³ : Module R' M₃ inst✝² : Module A M₃ inst✝¹ : SMulCommClass A R' M₃ ι' : Type u_3 σ : ι ≃ ι' f : MultilinearMap R (fun i => M₁ (↑σ.symm i)) M₂ inst✝ : DecidableEq ι m : (i : ι) → M₁ i i : ι c : R this : DecidableEq ι' := Equiv.decidableEq σ.symm x : M₁ (↑σ.symm (↑σ i)) ⊢ (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m (↑σ.symm (↑σ i)) (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m (↑σ.symm (↑σ i)) x) [PROOFSTEP] simp only [Function.comp, piCongrLeft'_update, f.map_smul] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹⁴ : CommSemiring R inst✝¹³ : (i : ι) → AddCommMonoid (M₁ i) inst✝¹² : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝⁹ : (i : ι) → Module R (M₁ i) inst✝⁸ : Module R M₂ f✝ f' : MultilinearMap R M₁ M₂ R' : Type u_1 A : Type u_2 inst✝⁷ : Semiring R' inst✝⁶ : Semiring A inst✝⁵ : (i : ι) → Module A (M₁ i) inst✝⁴ : Module A M₂ inst✝³ : AddCommMonoid M₃ inst✝² : Module R' M₃ inst✝¹ : Module A M₃ inst✝ : SMulCommClass A R' M₃ ι' : Type u_3 σ : ι ≃ ι' f : MultilinearMap R M₁ M₂ ⊢ (fun f => { toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ), map_add' := (_ : ∀ [inst : DecidableEq ι] (m : (i : ι) → M₁ i) (i : ι) (x y : M₁ i), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι] (m : (i : ι) → M₁ i) (i : ι) (c : R) (x : M₁ i), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m i x)) }) (AddHom.toFun { toAddHom := { toFun := fun f => { toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm, map_add' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) }, map_add' := (_ : ∀ (f₁ f₂ : MultilinearMap R M₁ M₂), (fun f => { toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm, map_add' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) }) (f₁ + f₂) = (fun f => { toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm, map_add' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) }) f₁ + (fun f => { toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm, map_add' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) }) f₂) }, map_smul' := (_ : ∀ (c : R) (f : MultilinearMap R M₁ M₂), AddHom.toFun { toFun := fun f => { toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm, map_add' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) }, map_add' := (_ : ∀ (f₁ f₂ : MultilinearMap R M₁ M₂), (fun f => { toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm, map_add' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) }) (f₁ + f₂) = (fun f => { toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm, map_add' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) }) f₁ + (fun f => { toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm, map_add' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) }) f₂) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := fun f => { toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm, map_add' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) }, map_add' := (_ : ∀ (f₁ f₂ : MultilinearMap R M₁ M₂), (fun f => { toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm, map_add' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) }) (f₁ + f₂) = (fun f => { toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm, map_add' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) }) f₁ + (fun f => { toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm, map_add' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) }) f₂) } f) }.toAddHom f) = f [PROOFSTEP] ext [GOAL] case H R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹⁴ : CommSemiring R inst✝¹³ : (i : ι) → AddCommMonoid (M₁ i) inst✝¹² : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝⁹ : (i : ι) → Module R (M₁ i) inst✝⁸ : Module R M₂ f✝ f' : MultilinearMap R M₁ M₂ R' : Type u_1 A : Type u_2 inst✝⁷ : Semiring R' inst✝⁶ : Semiring A inst✝⁵ : (i : ι) → Module A (M₁ i) inst✝⁴ : Module A M₂ inst✝³ : AddCommMonoid M₃ inst✝² : Module R' M₃ inst✝¹ : Module A M₃ inst✝ : SMulCommClass A R' M₃ ι' : Type u_3 σ : ι ≃ ι' f : MultilinearMap R M₁ M₂ x✝ : (i : ι) → M₁ i ⊢ ↑((fun f => { toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ), map_add' := (_ : ∀ [inst : DecidableEq ι] (m : (i : ι) → M₁ i) (i : ι) (x y : M₁ i), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι] (m : (i : ι) → M₁ i) (i : ι) (c : R) (x : M₁ i), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m i x)) }) (AddHom.toFun { toAddHom := { toFun := fun f => { toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm, map_add' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) }, map_add' := (_ : ∀ (f₁ f₂ : MultilinearMap R M₁ M₂), (fun f => { toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm, map_add' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) }) (f₁ + f₂) = (fun f => { toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm, map_add' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) }) f₁ + (fun f => { toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm, map_add' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) }) f₂) }, map_smul' := (_ : ∀ (c : R) (f : MultilinearMap R M₁ M₂), AddHom.toFun { toFun := fun f => { toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm, map_add' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) }, map_add' := (_ : ∀ (f₁ f₂ : MultilinearMap R M₁ M₂), (fun f => { toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm, map_add' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) }) (f₁ + f₂) = (fun f => { toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm, map_add' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) }) f₁ + (fun f => { toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm, map_add' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) }) f₂) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := fun f => { toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm, map_add' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) }, map_add' := (_ : ∀ (f₁ f₂ : MultilinearMap R M₁ M₂), (fun f => { toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm, map_add' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) }) (f₁ + f₂) = (fun f => { toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm, map_add' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) }) f₁ + (fun f => { toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm, map_add' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) }) f₂) } f) }.toAddHom f)) x✝ = ↑f x✝ [PROOFSTEP] simp only [coe_mk, comp_apply, Equiv.symm_apply_apply] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹⁴ : CommSemiring R inst✝¹³ : (i : ι) → AddCommMonoid (M₁ i) inst✝¹² : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝⁹ : (i : ι) → Module R (M₁ i) inst✝⁸ : Module R M₂ f✝ f' : MultilinearMap R M₁ M₂ R' : Type u_1 A : Type u_2 inst✝⁷ : Semiring R' inst✝⁶ : Semiring A inst✝⁵ : (i : ι) → Module A (M₁ i) inst✝⁴ : Module A M₂ inst✝³ : AddCommMonoid M₃ inst✝² : Module R' M₃ inst✝¹ : Module A M₃ inst✝ : SMulCommClass A R' M₃ ι' : Type u_3 σ : ι ≃ ι' f : MultilinearMap R (fun i => M₁ (↑σ.symm i)) M₂ ⊢ AddHom.toFun { toAddHom := { toFun := fun f => { toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm, map_add' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) }, map_add' := (_ : ∀ (f₁ f₂ : MultilinearMap R M₁ M₂), (fun f => { toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm, map_add' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) }) (f₁ + f₂) = (fun f => { toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm, map_add' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) }) f₁ + (fun f => { toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm, map_add' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) }) f₂) }, map_smul' := (_ : ∀ (c : R) (f : MultilinearMap R M₁ M₂), AddHom.toFun { toFun := fun f => { toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm, map_add' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) }, map_add' := (_ : ∀ (f₁ f₂ : MultilinearMap R M₁ M₂), (fun f => { toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm, map_add' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) }) (f₁ + f₂) = (fun f => { toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm, map_add' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) }) f₁ + (fun f => { toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm, map_add' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) }) f₂) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := fun f => { toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm, map_add' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) }, map_add' := (_ : ∀ (f₁ f₂ : MultilinearMap R M₁ M₂), (fun f => { toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm, map_add' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) }) (f₁ + f₂) = (fun f => { toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm, map_add' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) }) f₁ + (fun f => { toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm, map_add' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) }) f₂) } f) }.toAddHom ((fun f => { toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ), map_add' := (_ : ∀ [inst : DecidableEq ι] (m : (i : ι) → M₁ i) (i : ι) (x y : M₁ i), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι] (m : (i : ι) → M₁ i) (i : ι) (c : R) (x : M₁ i), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m i x)) }) f) = f [PROOFSTEP] ext [GOAL] case H R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹⁴ : CommSemiring R inst✝¹³ : (i : ι) → AddCommMonoid (M₁ i) inst✝¹² : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝¹¹ : AddCommMonoid M₂ inst✝¹⁰ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝⁹ : (i : ι) → Module R (M₁ i) inst✝⁸ : Module R M₂ f✝ f' : MultilinearMap R M₁ M₂ R' : Type u_1 A : Type u_2 inst✝⁷ : Semiring R' inst✝⁶ : Semiring A inst✝⁵ : (i : ι) → Module A (M₁ i) inst✝⁴ : Module A M₂ inst✝³ : AddCommMonoid M₃ inst✝² : Module R' M₃ inst✝¹ : Module A M₃ inst✝ : SMulCommClass A R' M₃ ι' : Type u_3 σ : ι ≃ ι' f : MultilinearMap R (fun i => M₁ (↑σ.symm i)) M₂ x✝ : (i : ι') → M₁ (↑σ.symm i) ⊢ ↑(AddHom.toFun { toAddHom := { toFun := fun f => { toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm, map_add' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) }, map_add' := (_ : ∀ (f₁ f₂ : MultilinearMap R M₁ M₂), (fun f => { toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm, map_add' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) }) (f₁ + f₂) = (fun f => { toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm, map_add' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) }) f₁ + (fun f => { toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm, map_add' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) }) f₂) }, map_smul' := (_ : ∀ (c : R) (f : MultilinearMap R M₁ M₂), AddHom.toFun { toFun := fun f => { toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm, map_add' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) }, map_add' := (_ : ∀ (f₁ f₂ : MultilinearMap R M₁ M₂), (fun f => { toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm, map_add' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) }) (f₁ + f₂) = (fun f => { toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm, map_add' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) }) f₁ + (fun f => { toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm, map_add' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) }) f₂) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := fun f => { toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm, map_add' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) }, map_add' := (_ : ∀ (f₁ f₂ : MultilinearMap R M₁ M₂), (fun f => { toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm, map_add' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) }) (f₁ + f₂) = (fun f => { toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm, map_add' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) }) f₁ + (fun f => { toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm, map_add' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (x y : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (m : (i : ι') → M₁ (↑σ.symm i)) (i : ι') (c : R) (x : M₁ (↑σ.symm i)), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ).symm) (update m i x)) }) f₂) } f) }.toAddHom ((fun f => { toFun := ↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ), map_add' := (_ : ∀ [inst : DecidableEq ι] (m : (i : ι) → M₁ i) (i : ι) (x y : M₁ i), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m i (x + y)) = (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m i x) + (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m i y)), map_smul' := (_ : ∀ [inst : DecidableEq ι] (m : (i : ι) → M₁ i) (i : ι) (c : R) (x : M₁ i), (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m i (c • x)) = c • (↑f ∘ ↑(Equiv.piCongrLeft' M₁ σ)) (update m i x)) }) f)) x✝ = ↑f x✝ [PROOFSTEP] simp only [coe_mk, comp_apply, Equiv.apply_symm_apply] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹⁰ : CommSemiring R inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁸ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ f f' : MultilinearMap R M₁ M₂ A : Type u_1 inst✝³ : CommSemiring A inst✝² : Algebra R A inst✝¹ : Fintype ι inst✝ : DecidableEq ι m : ι → A i : ι x y : A ⊢ (fun m => ∏ i : ι, m i) (update m i (x + y)) = (fun m => ∏ i : ι, m i) (update m i x) + (fun m => ∏ i : ι, m i) (update m i y) [PROOFSTEP] simp [Finset.prod_update_of_mem, add_mul] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝¹⁰ : CommSemiring R inst✝⁹ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁸ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝⁵ : (i : ι) → Module R (M₁ i) inst✝⁴ : Module R M₂ f f' : MultilinearMap R M₁ M₂ A : Type u_1 inst✝³ : CommSemiring A inst✝² : Algebra R A inst✝¹ : Fintype ι inst✝ : DecidableEq ι m : ι → A i : ι c : R x : A ⊢ (fun m => ∏ i : ι, m i) (update m i (c • x)) = c • (fun m => ∏ i : ι, m i) (update m i x) [PROOFSTEP] simp [Finset.prod_update_of_mem] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁸ : CommSemiring R inst✝⁷ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁶ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝³ : (i : ι) → Module R (M₁ i) inst✝² : Module R M₂ f f' : MultilinearMap R M₁ M₂ A : Type u_1 inst✝¹ : Semiring A inst✝ : Algebra R A dec : DecidableEq (Fin n) m : Fin n → A i : Fin n x y : A ⊢ (fun m => List.prod (List.ofFn m)) (update m i (x + y)) = (fun m => List.prod (List.ofFn m)) (update m i x) + (fun m => List.prod (List.ofFn m)) (update m i y) [PROOFSTEP] rw [Subsingleton.elim dec (by infer_instance)] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁸ : CommSemiring R inst✝⁷ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁶ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝³ : (i : ι) → Module R (M₁ i) inst✝² : Module R M₂ f f' : MultilinearMap R M₁ M₂ A : Type u_1 inst✝¹ : Semiring A inst✝ : Algebra R A dec : DecidableEq (Fin n) m : Fin n → A i : Fin n x y : A ⊢ DecidableEq (Fin n) [PROOFSTEP] infer_instance [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁸ : CommSemiring R inst✝⁷ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁶ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝³ : (i : ι) → Module R (M₁ i) inst✝² : Module R M₂ f f' : MultilinearMap R M₁ M₂ A : Type u_1 inst✝¹ : Semiring A inst✝ : Algebra R A dec : DecidableEq (Fin n) m : Fin n → A i : Fin n x y : A ⊢ (fun m => List.prod (List.ofFn m)) (update m i (x + y)) = (fun m => List.prod (List.ofFn m)) (update m i x) + (fun m => List.prod (List.ofFn m)) (update m i y) [PROOFSTEP] have : (List.finRange n).indexOf i < n := by simpa using List.indexOf_lt_length.2 (List.mem_finRange i) [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁸ : CommSemiring R inst✝⁷ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁶ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝³ : (i : ι) → Module R (M₁ i) inst✝² : Module R M₂ f f' : MultilinearMap R M₁ M₂ A : Type u_1 inst✝¹ : Semiring A inst✝ : Algebra R A dec : DecidableEq (Fin n) m : Fin n → A i : Fin n x y : A ⊢ List.indexOf i (List.finRange n) < n [PROOFSTEP] simpa using List.indexOf_lt_length.2 (List.mem_finRange i) [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁸ : CommSemiring R inst✝⁷ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁶ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝³ : (i : ι) → Module R (M₁ i) inst✝² : Module R M₂ f f' : MultilinearMap R M₁ M₂ A : Type u_1 inst✝¹ : Semiring A inst✝ : Algebra R A dec : DecidableEq (Fin n) m : Fin n → A i : Fin n x y : A this : List.indexOf i (List.finRange n) < n ⊢ (fun m => List.prod (List.ofFn m)) (update m i (x + y)) = (fun m => List.prod (List.ofFn m)) (update m i x) + (fun m => List.prod (List.ofFn m)) (update m i y) [PROOFSTEP] simp [List.ofFn_eq_map, (List.nodup_finRange n).map_update, List.prod_set, add_mul, this, mul_add, add_mul] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁸ : CommSemiring R inst✝⁷ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁶ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝³ : (i : ι) → Module R (M₁ i) inst✝² : Module R M₂ f f' : MultilinearMap R M₁ M₂ A : Type u_1 inst✝¹ : Semiring A inst✝ : Algebra R A dec : DecidableEq (Fin n) m : Fin n → A i : Fin n c : R x : A ⊢ (fun m => List.prod (List.ofFn m)) (update m i (c • x)) = c • (fun m => List.prod (List.ofFn m)) (update m i x) [PROOFSTEP] rw [Subsingleton.elim dec (by infer_instance)] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁸ : CommSemiring R inst✝⁷ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁶ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝³ : (i : ι) → Module R (M₁ i) inst✝² : Module R M₂ f f' : MultilinearMap R M₁ M₂ A : Type u_1 inst✝¹ : Semiring A inst✝ : Algebra R A dec : DecidableEq (Fin n) m : Fin n → A i : Fin n c : R x : A ⊢ DecidableEq (Fin n) [PROOFSTEP] infer_instance [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁸ : CommSemiring R inst✝⁷ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁶ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝³ : (i : ι) → Module R (M₁ i) inst✝² : Module R M₂ f f' : MultilinearMap R M₁ M₂ A : Type u_1 inst✝¹ : Semiring A inst✝ : Algebra R A dec : DecidableEq (Fin n) m : Fin n → A i : Fin n c : R x : A ⊢ (fun m => List.prod (List.ofFn m)) (update m i (c • x)) = c • (fun m => List.prod (List.ofFn m)) (update m i x) [PROOFSTEP] have : (List.finRange n).indexOf i < n := by simpa using List.indexOf_lt_length.2 (List.mem_finRange i) [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁸ : CommSemiring R inst✝⁷ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁶ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝³ : (i : ι) → Module R (M₁ i) inst✝² : Module R M₂ f f' : MultilinearMap R M₁ M₂ A : Type u_1 inst✝¹ : Semiring A inst✝ : Algebra R A dec : DecidableEq (Fin n) m : Fin n → A i : Fin n c : R x : A ⊢ List.indexOf i (List.finRange n) < n [PROOFSTEP] simpa using List.indexOf_lt_length.2 (List.mem_finRange i) [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁸ : CommSemiring R inst✝⁷ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁶ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝³ : (i : ι) → Module R (M₁ i) inst✝² : Module R M₂ f f' : MultilinearMap R M₁ M₂ A : Type u_1 inst✝¹ : Semiring A inst✝ : Algebra R A dec : DecidableEq (Fin n) m : Fin n → A i : Fin n c : R x : A this : List.indexOf i (List.finRange n) < n ⊢ (fun m => List.prod (List.ofFn m)) (update m i (c • x)) = c • (fun m => List.prod (List.ofFn m)) (update m i x) [PROOFSTEP] simp [List.ofFn_eq_map, (List.nodup_finRange n).map_update, List.prod_set, this] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁸ : CommSemiring R inst✝⁷ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁶ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝³ : (i : ι) → Module R (M₁ i) inst✝² : Module R M₂ f f' : MultilinearMap R M₁ M₂ A : Type u_1 inst✝¹ : Semiring A inst✝ : Algebra R A a : A ⊢ (↑(MultilinearMap.mkPiAlgebraFin R n A) fun x => a) = a ^ n [PROOFSTEP] simp [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁷ : CommSemiring R inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M₂ inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝² : (i : ι) → Module R (M₁ i) inst✝¹ : Module R M₂ f✝ f' : MultilinearMap R M₁ M₂ inst✝ : Fintype ι f : MultilinearMap R (fun x => R) M₂ ⊢ MultilinearMap.mkPiRing R ι (↑f fun x => 1) = f [PROOFSTEP] ext m [GOAL] case H R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁷ : CommSemiring R inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M₂ inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝² : (i : ι) → Module R (M₁ i) inst✝¹ : Module R M₂ f✝ f' : MultilinearMap R M₁ M₂ inst✝ : Fintype ι f : MultilinearMap R (fun x => R) M₂ m : ι → R ⊢ ↑(MultilinearMap.mkPiRing R ι (↑f fun x => 1)) m = ↑f m [PROOFSTEP] have : m = fun i => m i • (1 : R) := by ext j simp [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁷ : CommSemiring R inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M₂ inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝² : (i : ι) → Module R (M₁ i) inst✝¹ : Module R M₂ f✝ f' : MultilinearMap R M₁ M₂ inst✝ : Fintype ι f : MultilinearMap R (fun x => R) M₂ m : ι → R ⊢ m = fun i => m i • 1 [PROOFSTEP] ext j [GOAL] case h R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁷ : CommSemiring R inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M₂ inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝² : (i : ι) → Module R (M₁ i) inst✝¹ : Module R M₂ f✝ f' : MultilinearMap R M₁ M₂ inst✝ : Fintype ι f : MultilinearMap R (fun x => R) M₂ m : ι → R j : ι ⊢ m j = m j • 1 [PROOFSTEP] simp [GOAL] case H R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁷ : CommSemiring R inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M₂ inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝² : (i : ι) → Module R (M₁ i) inst✝¹ : Module R M₂ f✝ f' : MultilinearMap R M₁ M₂ inst✝ : Fintype ι f : MultilinearMap R (fun x => R) M₂ m : ι → R this : m = fun i => m i • 1 ⊢ ↑(MultilinearMap.mkPiRing R ι (↑f fun x => 1)) m = ↑f m [PROOFSTEP] conv_rhs => rw [this, f.map_smul_univ] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁷ : CommSemiring R inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M₂ inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝² : (i : ι) → Module R (M₁ i) inst✝¹ : Module R M₂ f✝ f' : MultilinearMap R M₁ M₂ inst✝ : Fintype ι f : MultilinearMap R (fun x => R) M₂ m : ι → R this : m = fun i => m i • 1 | ↑f m [PROOFSTEP] rw [this, f.map_smul_univ] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁷ : CommSemiring R inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M₂ inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝² : (i : ι) → Module R (M₁ i) inst✝¹ : Module R M₂ f✝ f' : MultilinearMap R M₁ M₂ inst✝ : Fintype ι f : MultilinearMap R (fun x => R) M₂ m : ι → R this : m = fun i => m i • 1 | ↑f m [PROOFSTEP] rw [this, f.map_smul_univ] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁷ : CommSemiring R inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M₂ inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝² : (i : ι) → Module R (M₁ i) inst✝¹ : Module R M₂ f✝ f' : MultilinearMap R M₁ M₂ inst✝ : Fintype ι f : MultilinearMap R (fun x => R) M₂ m : ι → R this : m = fun i => m i • 1 | ↑f m [PROOFSTEP] rw [this, f.map_smul_univ] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁷ : CommSemiring R inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M₂ inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝² : (i : ι) → Module R (M₁ i) inst✝¹ : Module R M₂ f f' : MultilinearMap R M₁ M₂ inst✝ : Fintype ι z₁ z₂ : M₂ ⊢ MultilinearMap.mkPiRing R ι z₁ = MultilinearMap.mkPiRing R ι z₂ ↔ z₁ = z₂ [PROOFSTEP] simp_rw [MultilinearMap.ext_iff, mkPiRing_apply] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁷ : CommSemiring R inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M₂ inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝² : (i : ι) → Module R (M₁ i) inst✝¹ : Module R M₂ f f' : MultilinearMap R M₁ M₂ inst✝ : Fintype ι z₁ z₂ : M₂ ⊢ (∀ (x : ι → R), (∏ i : ι, x i) • z₁ = (∏ i : ι, x i) • z₂) ↔ z₁ = z₂ [PROOFSTEP] constructor [GOAL] case mp R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁷ : CommSemiring R inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M₂ inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝² : (i : ι) → Module R (M₁ i) inst✝¹ : Module R M₂ f f' : MultilinearMap R M₁ M₂ inst✝ : Fintype ι z₁ z₂ : M₂ ⊢ (∀ (x : ι → R), (∏ i : ι, x i) • z₁ = (∏ i : ι, x i) • z₂) → z₁ = z₂ [PROOFSTEP] intro h [GOAL] case mpr R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁷ : CommSemiring R inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M₂ inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝² : (i : ι) → Module R (M₁ i) inst✝¹ : Module R M₂ f f' : MultilinearMap R M₁ M₂ inst✝ : Fintype ι z₁ z₂ : M₂ ⊢ z₁ = z₂ → ∀ (x : ι → R), (∏ i : ι, x i) • z₁ = (∏ i : ι, x i) • z₂ [PROOFSTEP] intro h [GOAL] case mp R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁷ : CommSemiring R inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M₂ inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝² : (i : ι) → Module R (M₁ i) inst✝¹ : Module R M₂ f f' : MultilinearMap R M₁ M₂ inst✝ : Fintype ι z₁ z₂ : M₂ h : ∀ (x : ι → R), (∏ i : ι, x i) • z₁ = (∏ i : ι, x i) • z₂ ⊢ z₁ = z₂ [PROOFSTEP] simpa using h fun _ => 1 [GOAL] case mpr R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁷ : CommSemiring R inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M₂ inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝² : (i : ι) → Module R (M₁ i) inst✝¹ : Module R M₂ f f' : MultilinearMap R M₁ M₂ inst✝ : Fintype ι z₁ z₂ : M₂ h : z₁ = z₂ ⊢ ∀ (x : ι → R), (∏ i : ι, x i) • z₁ = (∏ i : ι, x i) • z₂ [PROOFSTEP] intro x [GOAL] case mpr R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁷ : CommSemiring R inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M₂ inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝² : (i : ι) → Module R (M₁ i) inst✝¹ : Module R M₂ f f' : MultilinearMap R M₁ M₂ inst✝ : Fintype ι z₁ z₂ : M₂ h : z₁ = z₂ x : ι → R ⊢ (∏ i : ι, x i) • z₁ = (∏ i : ι, x i) • z₂ [PROOFSTEP] simp [h] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁷ : CommSemiring R inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M₂ inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝² : (i : ι) → Module R (M₁ i) inst✝¹ : Module R M₂ f f' : MultilinearMap R M₁ M₂ inst✝ : Fintype ι ⊢ MultilinearMap.mkPiRing R ι 0 = 0 [PROOFSTEP] ext [GOAL] case H R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁷ : CommSemiring R inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M₂ inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝² : (i : ι) → Module R (M₁ i) inst✝¹ : Module R M₂ f f' : MultilinearMap R M₁ M₂ inst✝ : Fintype ι x✝ : ι → R ⊢ ↑(MultilinearMap.mkPiRing R ι 0) x✝ = ↑0 x✝ [PROOFSTEP] rw [mkPiRing_apply, smul_zero, MultilinearMap.zero_apply] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁷ : CommSemiring R inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M₂ inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝² : (i : ι) → Module R (M₁ i) inst✝¹ : Module R M₂ f f' : MultilinearMap R M₁ M₂ inst✝ : Fintype ι z : M₂ ⊢ MultilinearMap.mkPiRing R ι z = 0 ↔ z = 0 [PROOFSTEP] rw [← mkPiRing_zero, mkPiRing_eq_iff] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁵ : Semiring R inst✝⁴ : (i : ι) → AddCommMonoid (M₁ i) inst✝³ : AddCommGroup M₂ inst✝² : (i : ι) → Module R (M₁ i) inst✝¹ : Module R M₂ f✝ g f : MultilinearMap R M₁ M₂ inst✝ : DecidableEq ι m : (i : ι) → M₁ i i : ι x y : M₁ i ⊢ (fun m => -↑f m) (update m i (x + y)) = (fun m => -↑f m) (update m i x) + (fun m => -↑f m) (update m i y) [PROOFSTEP] simp [add_comm] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁵ : Semiring R inst✝⁴ : (i : ι) → AddCommMonoid (M₁ i) inst✝³ : AddCommGroup M₂ inst✝² : (i : ι) → Module R (M₁ i) inst✝¹ : Module R M₂ f✝ g f : MultilinearMap R M₁ M₂ inst✝ : DecidableEq ι m : (i : ι) → M₁ i i : ι c : R x : M₁ i ⊢ (fun m => -↑f m) (update m i (c • x)) = c • (fun m => -↑f m) (update m i x) [PROOFSTEP] simp [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁵ : Semiring R inst✝⁴ : (i : ι) → AddCommMonoid (M₁ i) inst✝³ : AddCommGroup M₂ inst✝² : (i : ι) → Module R (M₁ i) inst✝¹ : Module R M₂ f✝ g✝ f g : MultilinearMap R M₁ M₂ inst✝ : DecidableEq ι m : (i : ι) → M₁ i i : ι x y : M₁ i ⊢ (fun m => ↑f m - ↑g m) (update m i (x + y)) = (fun m => ↑f m - ↑g m) (update m i x) + (fun m => ↑f m - ↑g m) (update m i y) [PROOFSTEP] simp only [MultilinearMap.map_add, sub_eq_add_neg, neg_add] -- Porting note: used to be `cc` [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁵ : Semiring R inst✝⁴ : (i : ι) → AddCommMonoid (M₁ i) inst✝³ : AddCommGroup M₂ inst✝² : (i : ι) → Module R (M₁ i) inst✝¹ : Module R M₂ f✝ g✝ f g : MultilinearMap R M₁ M₂ inst✝ : DecidableEq ι m : (i : ι) → M₁ i i : ι x y : M₁ i ⊢ ↑f (update m i x) + ↑f (update m i y) + (-↑g (update m i x) + -↑g (update m i y)) = ↑f (update m i x) + -↑g (update m i x) + (↑f (update m i y) + -↑g (update m i y)) [PROOFSTEP] abel [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁵ : Semiring R inst✝⁴ : (i : ι) → AddCommMonoid (M₁ i) inst✝³ : AddCommGroup M₂ inst✝² : (i : ι) → Module R (M₁ i) inst✝¹ : Module R M₂ f✝ g✝ f g : MultilinearMap R M₁ M₂ inst✝ : DecidableEq ι m : (i : ι) → M₁ i i : ι x y : M₁ i ⊢ ↑f (update m i x) + ↑f (update m i y) + (-↑g (update m i x) + -↑g (update m i y)) = ↑f (update m i x) + -↑g (update m i x) + (↑f (update m i y) + -↑g (update m i y)) [PROOFSTEP] abel [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁵ : Semiring R inst✝⁴ : (i : ι) → AddCommMonoid (M₁ i) inst✝³ : AddCommGroup M₂ inst✝² : (i : ι) → Module R (M₁ i) inst✝¹ : Module R M₂ f✝ g✝ f g : MultilinearMap R M₁ M₂ inst✝ : DecidableEq ι m : (i : ι) → M₁ i i : ι c : R x : M₁ i ⊢ (fun m => ↑f m - ↑g m) (update m i (c • x)) = c • (fun m => ↑f m - ↑g m) (update m i x) [PROOFSTEP] simp only [MultilinearMap.map_smul, smul_sub] [GOAL] R : Type u ι : Type u' n✝ : ℕ M : Fin (Nat.succ n✝) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁵ : Semiring R inst✝⁴ : (i : ι) → AddCommMonoid (M₁ i) inst✝³ : AddCommGroup M₂ inst✝² : (i : ι) → Module R (M₁ i) inst✝¹ : Module R M₂ f✝ g : MultilinearMap R M₁ M₂ src✝ : AddCommMonoid (MultilinearMap R M₁ M₂) := addCommMonoid n : ℤ f : MultilinearMap R M₁ M₂ inst✝ : DecidableEq ι m : (i : ι) → M₁ i i : ι x y : M₁ i ⊢ (fun m => n • ↑f m) (update m i (x + y)) = (fun m => n • ↑f m) (update m i x) + (fun m => n • ↑f m) (update m i y) [PROOFSTEP] simp [smul_add] [GOAL] R : Type u ι : Type u' n✝ : ℕ M : Fin (Nat.succ n✝) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁵ : Semiring R inst✝⁴ : (i : ι) → AddCommMonoid (M₁ i) inst✝³ : AddCommGroup M₂ inst✝² : (i : ι) → Module R (M₁ i) inst✝¹ : Module R M₂ f✝ g : MultilinearMap R M₁ M₂ src✝ : AddCommMonoid (MultilinearMap R M₁ M₂) := addCommMonoid n : ℤ f : MultilinearMap R M₁ M₂ inst✝ : DecidableEq ι l : (i : ι) → M₁ i i : ι x : R d : M₁ i ⊢ (fun m => n • ↑f m) (update l i (x • d)) = x • (fun m => n • ↑f m) (update l i d) [PROOFSTEP] simp [← smul_comm x n (_ : M₂)] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁵ : Semiring R inst✝⁴ : (i : ι) → AddCommGroup (M₁ i) inst✝³ : AddCommGroup M₂ inst✝² : (i : ι) → Module R (M₁ i) inst✝¹ : Module R M₂ f : MultilinearMap R M₁ M₂ inst✝ : DecidableEq ι m : (i : ι) → M₁ i i : ι x : M₁ i ⊢ ↑f (update m i (-x)) + ↑f (update m i x) = 0 [PROOFSTEP] rw [← MultilinearMap.map_add, add_left_neg, f.map_coord_zero i (update_same i 0 m)] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁵ : Semiring R inst✝⁴ : (i : ι) → AddCommGroup (M₁ i) inst✝³ : AddCommGroup M₂ inst✝² : (i : ι) → Module R (M₁ i) inst✝¹ : Module R M₂ f : MultilinearMap R M₁ M₂ inst✝ : DecidableEq ι m : (i : ι) → M₁ i i : ι x y : M₁ i ⊢ ↑f (update m i (x - y)) = ↑f (update m i x) - ↑f (update m i y) [PROOFSTEP] rw [sub_eq_add_neg, sub_eq_add_neg, MultilinearMap.map_add, map_neg] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁵ : CommSemiring R inst✝⁴ : (i : ι) → AddCommMonoid (M₁ i) inst✝³ : AddCommMonoid M₂ inst✝² : (i : ι) → Module R (M₁ i) inst✝¹ : Module R M₂ inst✝ : Fintype ι z z' : M₂ ⊢ (fun z => MultilinearMap.mkPiRing R ι z) (z + z') = (fun z => MultilinearMap.mkPiRing R ι z) z + (fun z => MultilinearMap.mkPiRing R ι z) z' [PROOFSTEP] ext m [GOAL] case H R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁵ : CommSemiring R inst✝⁴ : (i : ι) → AddCommMonoid (M₁ i) inst✝³ : AddCommMonoid M₂ inst✝² : (i : ι) → Module R (M₁ i) inst✝¹ : Module R M₂ inst✝ : Fintype ι z z' : M₂ m : ι → R ⊢ ↑((fun z => MultilinearMap.mkPiRing R ι z) (z + z')) m = ↑((fun z => MultilinearMap.mkPiRing R ι z) z + (fun z => MultilinearMap.mkPiRing R ι z) z') m [PROOFSTEP] simp [smul_add] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁵ : CommSemiring R inst✝⁴ : (i : ι) → AddCommMonoid (M₁ i) inst✝³ : AddCommMonoid M₂ inst✝² : (i : ι) → Module R (M₁ i) inst✝¹ : Module R M₂ inst✝ : Fintype ι c : R z : M₂ ⊢ AddHom.toFun { toFun := fun z => MultilinearMap.mkPiRing R ι z, map_add' := (_ : ∀ (z z' : M₂), (fun z => MultilinearMap.mkPiRing R ι z) (z + z') = (fun z => MultilinearMap.mkPiRing R ι z) z + (fun z => MultilinearMap.mkPiRing R ι z) z') } (c • z) = ↑(RingHom.id R) c • AddHom.toFun { toFun := fun z => MultilinearMap.mkPiRing R ι z, map_add' := (_ : ∀ (z z' : M₂), (fun z => MultilinearMap.mkPiRing R ι z) (z + z') = (fun z => MultilinearMap.mkPiRing R ι z) z + (fun z => MultilinearMap.mkPiRing R ι z) z') } z [PROOFSTEP] ext m [GOAL] case H R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁵ : CommSemiring R inst✝⁴ : (i : ι) → AddCommMonoid (M₁ i) inst✝³ : AddCommMonoid M₂ inst✝² : (i : ι) → Module R (M₁ i) inst✝¹ : Module R M₂ inst✝ : Fintype ι c : R z : M₂ m : ι → R ⊢ ↑(AddHom.toFun { toFun := fun z => MultilinearMap.mkPiRing R ι z, map_add' := (_ : ∀ (z z' : M₂), (fun z => MultilinearMap.mkPiRing R ι z) (z + z') = (fun z => MultilinearMap.mkPiRing R ι z) z + (fun z => MultilinearMap.mkPiRing R ι z) z') } (c • z)) m = ↑(↑(RingHom.id R) c • AddHom.toFun { toFun := fun z => MultilinearMap.mkPiRing R ι z, map_add' := (_ : ∀ (z z' : M₂), (fun z => MultilinearMap.mkPiRing R ι z) (z + z') = (fun z => MultilinearMap.mkPiRing R ι z) z + (fun z => MultilinearMap.mkPiRing R ι z) z') } z) m [PROOFSTEP] simp [smul_smul, mul_comm] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁵ : CommSemiring R inst✝⁴ : (i : ι) → AddCommMonoid (M₁ i) inst✝³ : AddCommMonoid M₂ inst✝² : (i : ι) → Module R (M₁ i) inst✝¹ : Module R M₂ inst✝ : Fintype ι z : M₂ ⊢ (fun f => ↑f fun x => 1) (AddHom.toFun { toAddHom := { toFun := fun z => MultilinearMap.mkPiRing R ι z, map_add' := (_ : ∀ (z z' : M₂), (fun z => MultilinearMap.mkPiRing R ι z) (z + z') = (fun z => MultilinearMap.mkPiRing R ι z) z + (fun z => MultilinearMap.mkPiRing R ι z) z') }, map_smul' := (_ : ∀ (c : R) (z : M₂), AddHom.toFun { toFun := fun z => MultilinearMap.mkPiRing R ι z, map_add' := (_ : ∀ (z z' : M₂), (fun z => MultilinearMap.mkPiRing R ι z) (z + z') = (fun z => MultilinearMap.mkPiRing R ι z) z + (fun z => MultilinearMap.mkPiRing R ι z) z') } (c • z) = ↑(RingHom.id R) c • AddHom.toFun { toFun := fun z => MultilinearMap.mkPiRing R ι z, map_add' := (_ : ∀ (z z' : M₂), (fun z => MultilinearMap.mkPiRing R ι z) (z + z') = (fun z => MultilinearMap.mkPiRing R ι z) z + (fun z => MultilinearMap.mkPiRing R ι z) z') } z) }.toAddHom z) = z [PROOFSTEP] simp [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : M 0 →ₗ[R] MultilinearMap R (fun i => M (succ i)) M₂ dec : DecidableEq (Fin (Nat.succ n)) m : (i : Fin (Nat.succ n)) → M i i : Fin (Nat.succ n) x y : M i ⊢ (fun m => ↑(↑f (m 0)) (tail m)) (update m i (x + y)) = (fun m => ↑(↑f (m 0)) (tail m)) (update m i x) + (fun m => ↑(↑f (m 0)) (tail m)) (update m i y) [PROOFSTEP] rw [Subsingleton.elim dec (by clear dec; infer_instance)] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : M 0 →ₗ[R] MultilinearMap R (fun i => M (succ i)) M₂ dec : DecidableEq (Fin (Nat.succ n)) m : (i : Fin (Nat.succ n)) → M i i : Fin (Nat.succ n) x y : M i ⊢ DecidableEq (Fin (Nat.succ n)) [PROOFSTEP] clear dec [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : M 0 →ₗ[R] MultilinearMap R (fun i => M (succ i)) M₂ m : (i : Fin (Nat.succ n)) → M i i : Fin (Nat.succ n) x y : M i ⊢ DecidableEq (Fin (Nat.succ n)) [PROOFSTEP] infer_instance [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : M 0 →ₗ[R] MultilinearMap R (fun i => M (succ i)) M₂ dec : DecidableEq (Fin (Nat.succ n)) m : (i : Fin (Nat.succ n)) → M i i : Fin (Nat.succ n) x y : M i ⊢ (fun m => ↑(↑f (m 0)) (tail m)) (update m i (x + y)) = (fun m => ↑(↑f (m 0)) (tail m)) (update m i x) + (fun m => ↑(↑f (m 0)) (tail m)) (update m i y) [PROOFSTEP] clear dec [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : M 0 →ₗ[R] MultilinearMap R (fun i => M (succ i)) M₂ m : (i : Fin (Nat.succ n)) → M i i : Fin (Nat.succ n) x y : M i ⊢ (fun m => ↑(↑f (m 0)) (tail m)) (update m i (x + y)) = (fun m => ↑(↑f (m 0)) (tail m)) (update m i x) + (fun m => ↑(↑f (m 0)) (tail m)) (update m i y) [PROOFSTEP] by_cases h : i = 0 [GOAL] case pos R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : M 0 →ₗ[R] MultilinearMap R (fun i => M (succ i)) M₂ m : (i : Fin (Nat.succ n)) → M i i : Fin (Nat.succ n) x y : M i h : i = 0 ⊢ (fun m => ↑(↑f (m 0)) (tail m)) (update m i (x + y)) = (fun m => ↑(↑f (m 0)) (tail m)) (update m i x) + (fun m => ↑(↑f (m 0)) (tail m)) (update m i y) [PROOFSTEP] subst i [GOAL] case pos R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : M 0 →ₗ[R] MultilinearMap R (fun i => M (succ i)) M₂ m : (i : Fin (Nat.succ n)) → M i x y : M 0 ⊢ (fun m => ↑(↑f (m 0)) (tail m)) (update m 0 (x + y)) = (fun m => ↑(↑f (m 0)) (tail m)) (update m 0 x) + (fun m => ↑(↑f (m 0)) (tail m)) (update m 0 y) [PROOFSTEP] simp only [update_same, map_add, tail_update_zero, MultilinearMap.add_apply] [GOAL] case neg R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : M 0 →ₗ[R] MultilinearMap R (fun i => M (succ i)) M₂ m : (i : Fin (Nat.succ n)) → M i i : Fin (Nat.succ n) x y : M i h : ¬i = 0 ⊢ (fun m => ↑(↑f (m 0)) (tail m)) (update m i (x + y)) = (fun m => ↑(↑f (m 0)) (tail m)) (update m i x) + (fun m => ↑(↑f (m 0)) (tail m)) (update m i y) [PROOFSTEP] simp_rw [update_noteq (Ne.symm h)] [GOAL] case neg R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : M 0 →ₗ[R] MultilinearMap R (fun i => M (succ i)) M₂ m : (i : Fin (Nat.succ n)) → M i i : Fin (Nat.succ n) x y : M i h : ¬i = 0 ⊢ ↑(↑f (m 0)) (tail (update m i (x + y))) = ↑(↑f (m 0)) (tail (update m i x)) + ↑(↑f (m 0)) (tail (update m i y)) [PROOFSTEP] revert x y [GOAL] case neg R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : M 0 →ₗ[R] MultilinearMap R (fun i => M (succ i)) M₂ m : (i : Fin (Nat.succ n)) → M i i : Fin (Nat.succ n) h : ¬i = 0 ⊢ ∀ (x y : M i), ↑(↑f (m 0)) (tail (update m i (x + y))) = ↑(↑f (m 0)) (tail (update m i x)) + ↑(↑f (m 0)) (tail (update m i y)) [PROOFSTEP] rw [← succ_pred i h] [GOAL] case neg R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : M 0 →ₗ[R] MultilinearMap R (fun i => M (succ i)) M₂ m : (i : Fin (Nat.succ n)) → M i i : Fin (Nat.succ n) h : ¬i = 0 ⊢ ∀ (x y : M (succ (pred i h))), ↑(↑f (m 0)) (tail (update m (succ (pred i h)) (x + y))) = ↑(↑f (m 0)) (tail (update m (succ (pred i h)) x)) + ↑(↑f (m 0)) (tail (update m (succ (pred i h)) y)) [PROOFSTEP] intro x y [GOAL] case neg R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : M 0 →ₗ[R] MultilinearMap R (fun i => M (succ i)) M₂ m : (i : Fin (Nat.succ n)) → M i i : Fin (Nat.succ n) h : ¬i = 0 x y : M (succ (pred i h)) ⊢ ↑(↑f (m 0)) (tail (update m (succ (pred i h)) (x + y))) = ↑(↑f (m 0)) (tail (update m (succ (pred i h)) x)) + ↑(↑f (m 0)) (tail (update m (succ (pred i h)) y)) [PROOFSTEP] rw [tail_update_succ, MultilinearMap.map_add, tail_update_succ, tail_update_succ] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : M 0 →ₗ[R] MultilinearMap R (fun i => M (succ i)) M₂ dec : DecidableEq (Fin (Nat.succ n)) m : (i : Fin (Nat.succ n)) → M i i : Fin (Nat.succ n) c : R x : M i ⊢ (fun m => ↑(↑f (m 0)) (tail m)) (update m i (c • x)) = c • (fun m => ↑(↑f (m 0)) (tail m)) (update m i x) [PROOFSTEP] rw [Subsingleton.elim dec (by clear dec; infer_instance)] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : M 0 →ₗ[R] MultilinearMap R (fun i => M (succ i)) M₂ dec : DecidableEq (Fin (Nat.succ n)) m : (i : Fin (Nat.succ n)) → M i i : Fin (Nat.succ n) c : R x : M i ⊢ DecidableEq (Fin (Nat.succ n)) [PROOFSTEP] clear dec [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : M 0 →ₗ[R] MultilinearMap R (fun i => M (succ i)) M₂ m : (i : Fin (Nat.succ n)) → M i i : Fin (Nat.succ n) c : R x : M i ⊢ DecidableEq (Fin (Nat.succ n)) [PROOFSTEP] infer_instance [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : M 0 →ₗ[R] MultilinearMap R (fun i => M (succ i)) M₂ dec : DecidableEq (Fin (Nat.succ n)) m : (i : Fin (Nat.succ n)) → M i i : Fin (Nat.succ n) c : R x : M i ⊢ (fun m => ↑(↑f (m 0)) (tail m)) (update m i (c • x)) = c • (fun m => ↑(↑f (m 0)) (tail m)) (update m i x) [PROOFSTEP] clear dec [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : M 0 →ₗ[R] MultilinearMap R (fun i => M (succ i)) M₂ m : (i : Fin (Nat.succ n)) → M i i : Fin (Nat.succ n) c : R x : M i ⊢ (fun m => ↑(↑f (m 0)) (tail m)) (update m i (c • x)) = c • (fun m => ↑(↑f (m 0)) (tail m)) (update m i x) [PROOFSTEP] by_cases h : i = 0 [GOAL] case pos R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : M 0 →ₗ[R] MultilinearMap R (fun i => M (succ i)) M₂ m : (i : Fin (Nat.succ n)) → M i i : Fin (Nat.succ n) c : R x : M i h : i = 0 ⊢ (fun m => ↑(↑f (m 0)) (tail m)) (update m i (c • x)) = c • (fun m => ↑(↑f (m 0)) (tail m)) (update m i x) [PROOFSTEP] subst i [GOAL] case pos R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : M 0 →ₗ[R] MultilinearMap R (fun i => M (succ i)) M₂ m : (i : Fin (Nat.succ n)) → M i c : R x : M 0 ⊢ (fun m => ↑(↑f (m 0)) (tail m)) (update m 0 (c • x)) = c • (fun m => ↑(↑f (m 0)) (tail m)) (update m 0 x) [PROOFSTEP] simp only [update_same, map_smul, tail_update_zero, MultilinearMap.smul_apply] [GOAL] case neg R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : M 0 →ₗ[R] MultilinearMap R (fun i => M (succ i)) M₂ m : (i : Fin (Nat.succ n)) → M i i : Fin (Nat.succ n) c : R x : M i h : ¬i = 0 ⊢ (fun m => ↑(↑f (m 0)) (tail m)) (update m i (c • x)) = c • (fun m => ↑(↑f (m 0)) (tail m)) (update m i x) [PROOFSTEP] simp_rw [update_noteq (Ne.symm h)] [GOAL] case neg R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : M 0 →ₗ[R] MultilinearMap R (fun i => M (succ i)) M₂ m : (i : Fin (Nat.succ n)) → M i i : Fin (Nat.succ n) c : R x : M i h : ¬i = 0 ⊢ ↑(↑f (m 0)) (tail (update m i (c • x))) = c • ↑(↑f (m 0)) (tail (update m i x)) [PROOFSTEP] revert x [GOAL] case neg R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : M 0 →ₗ[R] MultilinearMap R (fun i => M (succ i)) M₂ m : (i : Fin (Nat.succ n)) → M i i : Fin (Nat.succ n) c : R h : ¬i = 0 ⊢ ∀ (x : M i), ↑(↑f (m 0)) (tail (update m i (c • x))) = c • ↑(↑f (m 0)) (tail (update m i x)) [PROOFSTEP] rw [← succ_pred i h] [GOAL] case neg R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : M 0 →ₗ[R] MultilinearMap R (fun i => M (succ i)) M₂ m : (i : Fin (Nat.succ n)) → M i i : Fin (Nat.succ n) c : R h : ¬i = 0 ⊢ ∀ (x : M (succ (pred i h))), ↑(↑f (m 0)) (tail (update m (succ (pred i h)) (c • x))) = c • ↑(↑f (m 0)) (tail (update m (succ (pred i h)) x)) [PROOFSTEP] intro x [GOAL] case neg R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : M 0 →ₗ[R] MultilinearMap R (fun i => M (succ i)) M₂ m : (i : Fin (Nat.succ n)) → M i i : Fin (Nat.succ n) c : R h : ¬i = 0 x : M (succ (pred i h)) ⊢ ↑(↑f (m 0)) (tail (update m (succ (pred i h)) (c • x))) = c • ↑(↑f (m 0)) (tail (update m (succ (pred i h)) x)) [PROOFSTEP] rw [tail_update_succ, tail_update_succ, MultilinearMap.map_smul] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : MultilinearMap R M M₂ x : M 0 dec : DecidableEq (Fin n) m : (i : Fin n) → M (succ i) i : Fin n y y' : M (succ i) ⊢ (fun m => ↑f (cons x m)) (update m i (y + y')) = (fun m => ↑f (cons x m)) (update m i y) + (fun m => ↑f (cons x m)) (update m i y') [PROOFSTEP] rw [Subsingleton.elim dec (by clear dec; infer_instance)] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : MultilinearMap R M M₂ x : M 0 dec : DecidableEq (Fin n) m : (i : Fin n) → M (succ i) i : Fin n y y' : M (succ i) ⊢ DecidableEq (Fin n) [PROOFSTEP] clear dec [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : MultilinearMap R M M₂ x : M 0 m : (i : Fin n) → M (succ i) i : Fin n y y' : M (succ i) ⊢ DecidableEq (Fin n) [PROOFSTEP] infer_instance [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : MultilinearMap R M M₂ x : M 0 dec : DecidableEq (Fin n) m : (i : Fin n) → M (succ i) i : Fin n y y' : M (succ i) ⊢ (fun m => ↑f (cons x m)) (update m i (y + y')) = (fun m => ↑f (cons x m)) (update m i y) + (fun m => ↑f (cons x m)) (update m i y') [PROOFSTEP] simp [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : MultilinearMap R M M₂ x : M 0 dec : DecidableEq (Fin n) m : (i : Fin n) → M (succ i) i : Fin n y : R c : M (succ i) ⊢ (fun m => ↑f (cons x m)) (update m i (y • c)) = y • (fun m => ↑f (cons x m)) (update m i c) [PROOFSTEP] rw [Subsingleton.elim dec (by clear dec; infer_instance)] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : MultilinearMap R M M₂ x : M 0 dec : DecidableEq (Fin n) m : (i : Fin n) → M (succ i) i : Fin n y : R c : M (succ i) ⊢ DecidableEq (Fin n) [PROOFSTEP] clear dec [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : MultilinearMap R M M₂ x : M 0 m : (i : Fin n) → M (succ i) i : Fin n y : R c : M (succ i) ⊢ DecidableEq (Fin n) [PROOFSTEP] infer_instance [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : MultilinearMap R M M₂ x : M 0 dec : DecidableEq (Fin n) m : (i : Fin n) → M (succ i) i : Fin n y : R c : M (succ i) ⊢ (fun m => ↑f (cons x m)) (update m i (y • c)) = y • (fun m => ↑f (cons x m)) (update m i c) [PROOFSTEP] simp [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : MultilinearMap R M M₂ x y : M 0 ⊢ (fun x => { toFun := fun m => ↑f (cons x m), map_add' := (_ : ∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y y' : M (succ i)), (fun m => ↑f (cons x m)) (update m i (y + y')) = (fun m => ↑f (cons x m)) (update m i y) + (fun m => ↑f (cons x m)) (update m i y')), map_smul' := (_ : ∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y : R) (c : M (succ i)), (fun m => ↑f (cons x m)) (update m i (y • c)) = y • (fun m => ↑f (cons x m)) (update m i c)) }) (x + y) = (fun x => { toFun := fun m => ↑f (cons x m), map_add' := (_ : ∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y y' : M (succ i)), (fun m => ↑f (cons x m)) (update m i (y + y')) = (fun m => ↑f (cons x m)) (update m i y) + (fun m => ↑f (cons x m)) (update m i y')), map_smul' := (_ : ∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y : R) (c : M (succ i)), (fun m => ↑f (cons x m)) (update m i (y • c)) = y • (fun m => ↑f (cons x m)) (update m i c)) }) x + (fun x => { toFun := fun m => ↑f (cons x m), map_add' := (_ : ∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y y' : M (succ i)), (fun m => ↑f (cons x m)) (update m i (y + y')) = (fun m => ↑f (cons x m)) (update m i y) + (fun m => ↑f (cons x m)) (update m i y')), map_smul' := (_ : ∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y : R) (c : M (succ i)), (fun m => ↑f (cons x m)) (update m i (y • c)) = y • (fun m => ↑f (cons x m)) (update m i c)) }) y [PROOFSTEP] ext m [GOAL] case H R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : MultilinearMap R M M₂ x y : M 0 m : (i : Fin n) → M (succ i) ⊢ ↑((fun x => { toFun := fun m => ↑f (cons x m), map_add' := (_ : ∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y y' : M (succ i)), (fun m => ↑f (cons x m)) (update m i (y + y')) = (fun m => ↑f (cons x m)) (update m i y) + (fun m => ↑f (cons x m)) (update m i y')), map_smul' := (_ : ∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y : R) (c : M (succ i)), (fun m => ↑f (cons x m)) (update m i (y • c)) = y • (fun m => ↑f (cons x m)) (update m i c)) }) (x + y)) m = ↑((fun x => { toFun := fun m => ↑f (cons x m), map_add' := (_ : ∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y y' : M (succ i)), (fun m => ↑f (cons x m)) (update m i (y + y')) = (fun m => ↑f (cons x m)) (update m i y) + (fun m => ↑f (cons x m)) (update m i y')), map_smul' := (_ : ∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y : R) (c : M (succ i)), (fun m => ↑f (cons x m)) (update m i (y • c)) = y • (fun m => ↑f (cons x m)) (update m i c)) }) x + (fun x => { toFun := fun m => ↑f (cons x m), map_add' := (_ : ∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y y' : M (succ i)), (fun m => ↑f (cons x m)) (update m i (y + y')) = (fun m => ↑f (cons x m)) (update m i y) + (fun m => ↑f (cons x m)) (update m i y')), map_smul' := (_ : ∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y : R) (c : M (succ i)), (fun m => ↑f (cons x m)) (update m i (y • c)) = y • (fun m => ↑f (cons x m)) (update m i c)) }) y) m [PROOFSTEP] exact cons_add f m x y [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : MultilinearMap R M M₂ c : R x : M 0 ⊢ AddHom.toFun { toFun := fun x => { toFun := fun m => ↑f (cons x m), map_add' := (_ : ∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y y' : M (succ i)), (fun m => ↑f (cons x m)) (update m i (y + y')) = (fun m => ↑f (cons x m)) (update m i y) + (fun m => ↑f (cons x m)) (update m i y')), map_smul' := (_ : ∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y : R) (c : M (succ i)), (fun m => ↑f (cons x m)) (update m i (y • c)) = y • (fun m => ↑f (cons x m)) (update m i c)) }, map_add' := (_ : ∀ (x y : M 0), (fun x => { toFun := fun m => ↑f (cons x m), map_add' := (_ : ∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y y' : M (succ i)), (fun m => ↑f (cons x m)) (update m i (y + y')) = (fun m => ↑f (cons x m)) (update m i y) + (fun m => ↑f (cons x m)) (update m i y')), map_smul' := (_ : ∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y : R) (c : M (succ i)), (fun m => ↑f (cons x m)) (update m i (y • c)) = y • (fun m => ↑f (cons x m)) (update m i c)) }) (x + y) = (fun x => { toFun := fun m => ↑f (cons x m), map_add' := (_ : ∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y y' : M (succ i)), (fun m => ↑f (cons x m)) (update m i (y + y')) = (fun m => ↑f (cons x m)) (update m i y) + (fun m => ↑f (cons x m)) (update m i y')), map_smul' := (_ : ∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y : R) (c : M (succ i)), (fun m => ↑f (cons x m)) (update m i (y • c)) = y • (fun m => ↑f (cons x m)) (update m i c)) }) x + (fun x => { toFun := fun m => ↑f (cons x m), map_add' := (_ : ∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y y' : M (succ i)), (fun m => ↑f (cons x m)) (update m i (y + y')) = (fun m => ↑f (cons x m)) (update m i y) + (fun m => ↑f (cons x m)) (update m i y')), map_smul' := (_ : ∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y : R) (c : M (succ i)), (fun m => ↑f (cons x m)) (update m i (y • c)) = y • (fun m => ↑f (cons x m)) (update m i c)) }) y) } (c • x) = ↑(RingHom.id R) c • AddHom.toFun { toFun := fun x => { toFun := fun m => ↑f (cons x m), map_add' := (_ : ∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y y' : M (succ i)), (fun m => ↑f (cons x m)) (update m i (y + y')) = (fun m => ↑f (cons x m)) (update m i y) + (fun m => ↑f (cons x m)) (update m i y')), map_smul' := (_ : ∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y : R) (c : M (succ i)), (fun m => ↑f (cons x m)) (update m i (y • c)) = y • (fun m => ↑f (cons x m)) (update m i c)) }, map_add' := (_ : ∀ (x y : M 0), (fun x => { toFun := fun m => ↑f (cons x m), map_add' := (_ : ∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y y' : M (succ i)), (fun m => ↑f (cons x m)) (update m i (y + y')) = (fun m => ↑f (cons x m)) (update m i y) + (fun m => ↑f (cons x m)) (update m i y')), map_smul' := (_ : ∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y : R) (c : M (succ i)), (fun m => ↑f (cons x m)) (update m i (y • c)) = y • (fun m => ↑f (cons x m)) (update m i c)) }) (x + y) = (fun x => { toFun := fun m => ↑f (cons x m), map_add' := (_ : ∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y y' : M (succ i)), (fun m => ↑f (cons x m)) (update m i (y + y')) = (fun m => ↑f (cons x m)) (update m i y) + (fun m => ↑f (cons x m)) (update m i y')), map_smul' := (_ : ∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y : R) (c : M (succ i)), (fun m => ↑f (cons x m)) (update m i (y • c)) = y • (fun m => ↑f (cons x m)) (update m i c)) }) x + (fun x => { toFun := fun m => ↑f (cons x m), map_add' := (_ : ∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y y' : M (succ i)), (fun m => ↑f (cons x m)) (update m i (y + y')) = (fun m => ↑f (cons x m)) (update m i y) + (fun m => ↑f (cons x m)) (update m i y')), map_smul' := (_ : ∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y : R) (c : M (succ i)), (fun m => ↑f (cons x m)) (update m i (y • c)) = y • (fun m => ↑f (cons x m)) (update m i c)) }) y) } x [PROOFSTEP] ext m [GOAL] case H R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : MultilinearMap R M M₂ c : R x : M 0 m : (i : Fin n) → M (succ i) ⊢ ↑(AddHom.toFun { toFun := fun x => { toFun := fun m => ↑f (cons x m), map_add' := (_ : ∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y y' : M (succ i)), (fun m => ↑f (cons x m)) (update m i (y + y')) = (fun m => ↑f (cons x m)) (update m i y) + (fun m => ↑f (cons x m)) (update m i y')), map_smul' := (_ : ∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y : R) (c : M (succ i)), (fun m => ↑f (cons x m)) (update m i (y • c)) = y • (fun m => ↑f (cons x m)) (update m i c)) }, map_add' := (_ : ∀ (x y : M 0), (fun x => { toFun := fun m => ↑f (cons x m), map_add' := (_ : ∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y y' : M (succ i)), (fun m => ↑f (cons x m)) (update m i (y + y')) = (fun m => ↑f (cons x m)) (update m i y) + (fun m => ↑f (cons x m)) (update m i y')), map_smul' := (_ : ∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y : R) (c : M (succ i)), (fun m => ↑f (cons x m)) (update m i (y • c)) = y • (fun m => ↑f (cons x m)) (update m i c)) }) (x + y) = (fun x => { toFun := fun m => ↑f (cons x m), map_add' := (_ : ∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y y' : M (succ i)), (fun m => ↑f (cons x m)) (update m i (y + y')) = (fun m => ↑f (cons x m)) (update m i y) + (fun m => ↑f (cons x m)) (update m i y')), map_smul' := (_ : ∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y : R) (c : M (succ i)), (fun m => ↑f (cons x m)) (update m i (y • c)) = y • (fun m => ↑f (cons x m)) (update m i c)) }) x + (fun x => { toFun := fun m => ↑f (cons x m), map_add' := (_ : ∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y y' : M (succ i)), (fun m => ↑f (cons x m)) (update m i (y + y')) = (fun m => ↑f (cons x m)) (update m i y) + (fun m => ↑f (cons x m)) (update m i y')), map_smul' := (_ : ∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y : R) (c : M (succ i)), (fun m => ↑f (cons x m)) (update m i (y • c)) = y • (fun m => ↑f (cons x m)) (update m i c)) }) y) } (c • x)) m = ↑(↑(RingHom.id R) c • AddHom.toFun { toFun := fun x => { toFun := fun m => ↑f (cons x m), map_add' := (_ : ∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y y' : M (succ i)), (fun m => ↑f (cons x m)) (update m i (y + y')) = (fun m => ↑f (cons x m)) (update m i y) + (fun m => ↑f (cons x m)) (update m i y')), map_smul' := (_ : ∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y : R) (c : M (succ i)), (fun m => ↑f (cons x m)) (update m i (y • c)) = y • (fun m => ↑f (cons x m)) (update m i c)) }, map_add' := (_ : ∀ (x y : M 0), (fun x => { toFun := fun m => ↑f (cons x m), map_add' := (_ : ∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y y' : M (succ i)), (fun m => ↑f (cons x m)) (update m i (y + y')) = (fun m => ↑f (cons x m)) (update m i y) + (fun m => ↑f (cons x m)) (update m i y')), map_smul' := (_ : ∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y : R) (c : M (succ i)), (fun m => ↑f (cons x m)) (update m i (y • c)) = y • (fun m => ↑f (cons x m)) (update m i c)) }) (x + y) = (fun x => { toFun := fun m => ↑f (cons x m), map_add' := (_ : ∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y y' : M (succ i)), (fun m => ↑f (cons x m)) (update m i (y + y')) = (fun m => ↑f (cons x m)) (update m i y) + (fun m => ↑f (cons x m)) (update m i y')), map_smul' := (_ : ∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y : R) (c : M (succ i)), (fun m => ↑f (cons x m)) (update m i (y • c)) = y • (fun m => ↑f (cons x m)) (update m i c)) }) x + (fun x => { toFun := fun m => ↑f (cons x m), map_add' := (_ : ∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y y' : M (succ i)), (fun m => ↑f (cons x m)) (update m i (y + y')) = (fun m => ↑f (cons x m)) (update m i y) + (fun m => ↑f (cons x m)) (update m i y')), map_smul' := (_ : ∀ (dec : DecidableEq (Fin n)) (m : (i : Fin n) → M (succ i)) (i : Fin n) (y : R) (c : M (succ i)), (fun m => ↑f (cons x m)) (update m i (y • c)) = y • (fun m => ↑f (cons x m)) (update m i c)) }) y) } x) m [PROOFSTEP] exact cons_smul f m c x [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : M 0 →ₗ[R] MultilinearMap R (fun i => M (succ i)) M₂ ⊢ curryLeft (uncurryLeft f) = f [PROOFSTEP] ext m x [GOAL] case h.H R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : M 0 →ₗ[R] MultilinearMap R (fun i => M (succ i)) M₂ m : M 0 x : (i : Fin n) → M (succ i) ⊢ ↑(↑(curryLeft (uncurryLeft f)) m) x = ↑(↑f m) x [PROOFSTEP] simp only [tail_cons, LinearMap.uncurryLeft_apply, MultilinearMap.curryLeft_apply] [GOAL] case h.H R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : M 0 →ₗ[R] MultilinearMap R (fun i => M (succ i)) M₂ m : M 0 x : (i : Fin n) → M (succ i) ⊢ ↑(↑f (cons m x 0)) x = ↑(↑f m) x [PROOFSTEP] rw [cons_zero] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : MultilinearMap R M M₂ ⊢ LinearMap.uncurryLeft (curryLeft f) = f [PROOFSTEP] ext m [GOAL] case H R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : MultilinearMap R M M₂ m : (i : Fin (Nat.succ n)) → M i ⊢ ↑(LinearMap.uncurryLeft (curryLeft f)) m = ↑f m [PROOFSTEP] simp [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f₁ f₂ : M 0 →ₗ[R] MultilinearMap R (fun i => M (succ i)) M₂ ⊢ LinearMap.uncurryLeft (f₁ + f₂) = LinearMap.uncurryLeft f₁ + LinearMap.uncurryLeft f₂ [PROOFSTEP] ext m [GOAL] case H R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f₁ f₂ : M 0 →ₗ[R] MultilinearMap R (fun i => M (succ i)) M₂ m : (i : Fin (Nat.succ n)) → M i ⊢ ↑(LinearMap.uncurryLeft (f₁ + f₂)) m = ↑(LinearMap.uncurryLeft f₁ + LinearMap.uncurryLeft f₂) m [PROOFSTEP] rfl [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ c : R f : M 0 →ₗ[R] MultilinearMap R (fun i => M (succ i)) M₂ ⊢ AddHom.toFun { toFun := LinearMap.uncurryLeft, map_add' := (_ : ∀ (f₁ f₂ : M 0 →ₗ[R] MultilinearMap R (fun i => M (succ i)) M₂), LinearMap.uncurryLeft (f₁ + f₂) = LinearMap.uncurryLeft f₁ + LinearMap.uncurryLeft f₂) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := LinearMap.uncurryLeft, map_add' := (_ : ∀ (f₁ f₂ : M 0 →ₗ[R] MultilinearMap R (fun i => M (succ i)) M₂), LinearMap.uncurryLeft (f₁ + f₂) = LinearMap.uncurryLeft f₁ + LinearMap.uncurryLeft f₂) } f [PROOFSTEP] ext m [GOAL] case H R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ c : R f : M 0 →ₗ[R] MultilinearMap R (fun i => M (succ i)) M₂ m : (i : Fin (Nat.succ n)) → M i ⊢ ↑(AddHom.toFun { toFun := LinearMap.uncurryLeft, map_add' := (_ : ∀ (f₁ f₂ : M 0 →ₗ[R] MultilinearMap R (fun i => M (succ i)) M₂), LinearMap.uncurryLeft (f₁ + f₂) = LinearMap.uncurryLeft f₁ + LinearMap.uncurryLeft f₂) } (c • f)) m = ↑(↑(RingHom.id R) c • AddHom.toFun { toFun := LinearMap.uncurryLeft, map_add' := (_ : ∀ (f₁ f₂ : M 0 →ₗ[R] MultilinearMap R (fun i => M (succ i)) M₂), LinearMap.uncurryLeft (f₁ + f₂) = LinearMap.uncurryLeft f₁ + LinearMap.uncurryLeft f₂) } f) m [PROOFSTEP] rfl [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂) dec : DecidableEq (Fin (Nat.succ n)) m : (i : Fin (Nat.succ n)) → M i i : Fin (Nat.succ n) x y : M i ⊢ (fun m => ↑(↑f (init m)) (m (last n))) (update m i (x + y)) = (fun m => ↑(↑f (init m)) (m (last n))) (update m i x) + (fun m => ↑(↑f (init m)) (m (last n))) (update m i y) [PROOFSTEP] rw [Subsingleton.elim dec (by clear dec; infer_instance)] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂) dec : DecidableEq (Fin (Nat.succ n)) m : (i : Fin (Nat.succ n)) → M i i : Fin (Nat.succ n) x y : M i ⊢ DecidableEq (Fin (Nat.succ n)) [PROOFSTEP] clear dec [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂) m : (i : Fin (Nat.succ n)) → M i i : Fin (Nat.succ n) x y : M i ⊢ DecidableEq (Fin (Nat.succ n)) [PROOFSTEP] infer_instance [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂) dec : DecidableEq (Fin (Nat.succ n)) m : (i : Fin (Nat.succ n)) → M i i : Fin (Nat.succ n) x y : M i ⊢ (fun m => ↑(↑f (init m)) (m (last n))) (update m i (x + y)) = (fun m => ↑(↑f (init m)) (m (last n))) (update m i x) + (fun m => ↑(↑f (init m)) (m (last n))) (update m i y) [PROOFSTEP] clear dec [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂) m : (i : Fin (Nat.succ n)) → M i i : Fin (Nat.succ n) x y : M i ⊢ (fun m => ↑(↑f (init m)) (m (last n))) (update m i (x + y)) = (fun m => ↑(↑f (init m)) (m (last n))) (update m i x) + (fun m => ↑(↑f (init m)) (m (last n))) (update m i y) [PROOFSTEP] by_cases h : i.val < n [GOAL] case pos R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂) m : (i : Fin (Nat.succ n)) → M i i : Fin (Nat.succ n) x y : M i h : ↑i < n ⊢ (fun m => ↑(↑f (init m)) (m (last n))) (update m i (x + y)) = (fun m => ↑(↑f (init m)) (m (last n))) (update m i x) + (fun m => ↑(↑f (init m)) (m (last n))) (update m i y) [PROOFSTEP] have : last n ≠ i := Ne.symm (ne_of_lt h) [GOAL] case pos R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂) m : (i : Fin (Nat.succ n)) → M i i : Fin (Nat.succ n) x y : M i h : ↑i < n this : last n ≠ i ⊢ (fun m => ↑(↑f (init m)) (m (last n))) (update m i (x + y)) = (fun m => ↑(↑f (init m)) (m (last n))) (update m i x) + (fun m => ↑(↑f (init m)) (m (last n))) (update m i y) [PROOFSTEP] simp_rw [update_noteq this] [GOAL] case pos R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂) m : (i : Fin (Nat.succ n)) → M i i : Fin (Nat.succ n) x y : M i h : ↑i < n this : last n ≠ i ⊢ ↑(↑f (init (update m i (x + y)))) (m (last n)) = ↑(↑f (init (update m i x))) (m (last n)) + ↑(↑f (init (update m i y))) (m (last n)) [PROOFSTEP] revert x y [GOAL] case pos R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂) m : (i : Fin (Nat.succ n)) → M i i : Fin (Nat.succ n) h : ↑i < n this : last n ≠ i ⊢ ∀ (x y : M i), ↑(↑f (init (update m i (x + y)))) (m (last n)) = ↑(↑f (init (update m i x))) (m (last n)) + ↑(↑f (init (update m i y))) (m (last n)) [PROOFSTEP] rw [(castSucc_castLT i h).symm] [GOAL] case pos R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂) m : (i : Fin (Nat.succ n)) → M i i : Fin (Nat.succ n) h : ↑i < n this : last n ≠ i ⊢ ∀ (x y : M (castSucc (castLT i h))), ↑(↑f (init (update m (castSucc (castLT i h)) (x + y)))) (m (last n)) = ↑(↑f (init (update m (castSucc (castLT i h)) x))) (m (last n)) + ↑(↑f (init (update m (castSucc (castLT i h)) y))) (m (last n)) [PROOFSTEP] intro x y [GOAL] case pos R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂) m : (i : Fin (Nat.succ n)) → M i i : Fin (Nat.succ n) h : ↑i < n this : last n ≠ i x y : M (castSucc (castLT i h)) ⊢ ↑(↑f (init (update m (castSucc (castLT i h)) (x + y)))) (m (last n)) = ↑(↑f (init (update m (castSucc (castLT i h)) x))) (m (last n)) + ↑(↑f (init (update m (castSucc (castLT i h)) y))) (m (last n)) [PROOFSTEP] rw [init_update_castSucc, MultilinearMap.map_add, init_update_castSucc, init_update_castSucc, LinearMap.add_apply] [GOAL] case neg R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂) m : (i : Fin (Nat.succ n)) → M i i : Fin (Nat.succ n) x y : M i h : ¬↑i < n ⊢ (fun m => ↑(↑f (init m)) (m (last n))) (update m i (x + y)) = (fun m => ↑(↑f (init m)) (m (last n))) (update m i x) + (fun m => ↑(↑f (init m)) (m (last n))) (update m i y) [PROOFSTEP] revert x y [GOAL] case neg R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂) m : (i : Fin (Nat.succ n)) → M i i : Fin (Nat.succ n) h : ¬↑i < n ⊢ ∀ (x y : M i), (fun m => ↑(↑f (init m)) (m (last n))) (update m i (x + y)) = (fun m => ↑(↑f (init m)) (m (last n))) (update m i x) + (fun m => ↑(↑f (init m)) (m (last n))) (update m i y) [PROOFSTEP] rw [eq_last_of_not_lt h] [GOAL] case neg R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂) m : (i : Fin (Nat.succ n)) → M i i : Fin (Nat.succ n) h : ¬↑i < n ⊢ ∀ (x y : M (last n)), (fun m => ↑(↑f (init m)) (m (last n))) (update m (last n) (x + y)) = (fun m => ↑(↑f (init m)) (m (last n))) (update m (last n) x) + (fun m => ↑(↑f (init m)) (m (last n))) (update m (last n) y) [PROOFSTEP] intro x y [GOAL] case neg R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂) m : (i : Fin (Nat.succ n)) → M i i : Fin (Nat.succ n) h : ¬↑i < n x y : M (last n) ⊢ (fun m => ↑(↑f (init m)) (m (last n))) (update m (last n) (x + y)) = (fun m => ↑(↑f (init m)) (m (last n))) (update m (last n) x) + (fun m => ↑(↑f (init m)) (m (last n))) (update m (last n) y) [PROOFSTEP] simp_rw [init_update_last, update_same, LinearMap.map_add] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂) dec : DecidableEq (Fin (Nat.succ n)) m : (i : Fin (Nat.succ n)) → M i i : Fin (Nat.succ n) c : R x : M i ⊢ (fun m => ↑(↑f (init m)) (m (last n))) (update m i (c • x)) = c • (fun m => ↑(↑f (init m)) (m (last n))) (update m i x) [PROOFSTEP] rw [Subsingleton.elim dec (by clear dec; infer_instance)] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂) dec : DecidableEq (Fin (Nat.succ n)) m : (i : Fin (Nat.succ n)) → M i i : Fin (Nat.succ n) c : R x : M i ⊢ DecidableEq (Fin (Nat.succ n)) [PROOFSTEP] clear dec [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂) m : (i : Fin (Nat.succ n)) → M i i : Fin (Nat.succ n) c : R x : M i ⊢ DecidableEq (Fin (Nat.succ n)) [PROOFSTEP] infer_instance [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂) dec : DecidableEq (Fin (Nat.succ n)) m : (i : Fin (Nat.succ n)) → M i i : Fin (Nat.succ n) c : R x : M i ⊢ (fun m => ↑(↑f (init m)) (m (last n))) (update m i (c • x)) = c • (fun m => ↑(↑f (init m)) (m (last n))) (update m i x) [PROOFSTEP] clear dec [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂) m : (i : Fin (Nat.succ n)) → M i i : Fin (Nat.succ n) c : R x : M i ⊢ (fun m => ↑(↑f (init m)) (m (last n))) (update m i (c • x)) = c • (fun m => ↑(↑f (init m)) (m (last n))) (update m i x) [PROOFSTEP] by_cases h : i.val < n [GOAL] case pos R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂) m : (i : Fin (Nat.succ n)) → M i i : Fin (Nat.succ n) c : R x : M i h : ↑i < n ⊢ (fun m => ↑(↑f (init m)) (m (last n))) (update m i (c • x)) = c • (fun m => ↑(↑f (init m)) (m (last n))) (update m i x) [PROOFSTEP] have : last n ≠ i := Ne.symm (ne_of_lt h) [GOAL] case pos R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂) m : (i : Fin (Nat.succ n)) → M i i : Fin (Nat.succ n) c : R x : M i h : ↑i < n this : last n ≠ i ⊢ (fun m => ↑(↑f (init m)) (m (last n))) (update m i (c • x)) = c • (fun m => ↑(↑f (init m)) (m (last n))) (update m i x) [PROOFSTEP] simp_rw [update_noteq this] [GOAL] case pos R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂) m : (i : Fin (Nat.succ n)) → M i i : Fin (Nat.succ n) c : R x : M i h : ↑i < n this : last n ≠ i ⊢ ↑(↑f (init (update m i (c • x)))) (m (last n)) = c • ↑(↑f (init (update m i x))) (m (last n)) [PROOFSTEP] revert x [GOAL] case pos R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂) m : (i : Fin (Nat.succ n)) → M i i : Fin (Nat.succ n) c : R h : ↑i < n this : last n ≠ i ⊢ ∀ (x : M i), ↑(↑f (init (update m i (c • x)))) (m (last n)) = c • ↑(↑f (init (update m i x))) (m (last n)) [PROOFSTEP] rw [(castSucc_castLT i h).symm] [GOAL] case pos R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂) m : (i : Fin (Nat.succ n)) → M i i : Fin (Nat.succ n) c : R h : ↑i < n this : last n ≠ i ⊢ ∀ (x : M (castSucc (castLT i h))), ↑(↑f (init (update m (castSucc (castLT i h)) (c • x)))) (m (last n)) = c • ↑(↑f (init (update m (castSucc (castLT i h)) x))) (m (last n)) [PROOFSTEP] intro x [GOAL] case pos R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂) m : (i : Fin (Nat.succ n)) → M i i : Fin (Nat.succ n) c : R h : ↑i < n this : last n ≠ i x : M (castSucc (castLT i h)) ⊢ ↑(↑f (init (update m (castSucc (castLT i h)) (c • x)))) (m (last n)) = c • ↑(↑f (init (update m (castSucc (castLT i h)) x))) (m (last n)) [PROOFSTEP] rw [init_update_castSucc, init_update_castSucc, MultilinearMap.map_smul, LinearMap.smul_apply] [GOAL] case neg R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂) m : (i : Fin (Nat.succ n)) → M i i : Fin (Nat.succ n) c : R x : M i h : ¬↑i < n ⊢ (fun m => ↑(↑f (init m)) (m (last n))) (update m i (c • x)) = c • (fun m => ↑(↑f (init m)) (m (last n))) (update m i x) [PROOFSTEP] revert x [GOAL] case neg R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂) m : (i : Fin (Nat.succ n)) → M i i : Fin (Nat.succ n) c : R h : ¬↑i < n ⊢ ∀ (x : M i), (fun m => ↑(↑f (init m)) (m (last n))) (update m i (c • x)) = c • (fun m => ↑(↑f (init m)) (m (last n))) (update m i x) [PROOFSTEP] rw [eq_last_of_not_lt h] [GOAL] case neg R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂) m : (i : Fin (Nat.succ n)) → M i i : Fin (Nat.succ n) c : R h : ¬↑i < n ⊢ ∀ (x : M (last n)), (fun m => ↑(↑f (init m)) (m (last n))) (update m (last n) (c • x)) = c • (fun m => ↑(↑f (init m)) (m (last n))) (update m (last n) x) [PROOFSTEP] intro x [GOAL] case neg R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂) m : (i : Fin (Nat.succ n)) → M i i : Fin (Nat.succ n) c : R h : ¬↑i < n x : M (last n) ⊢ (fun m => ↑(↑f (init m)) (m (last n))) (update m (last n) (c • x)) = c • (fun m => ↑(↑f (init m)) (m (last n))) (update m (last n) x) [PROOFSTEP] simp_rw [update_same, init_update_last, map_smul] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : MultilinearMap R M M₂ m : (i : Fin n) → M (castSucc i) x y : M (last n) ⊢ (fun x => ↑f (snoc m x)) (x + y) = (fun x => ↑f (snoc m x)) x + (fun x => ↑f (snoc m x)) y [PROOFSTEP] simp_rw [f.snoc_add] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : MultilinearMap R M M₂ m : (i : Fin n) → M (castSucc i) c : R x : M (last n) ⊢ AddHom.toFun { toFun := fun x => ↑f (snoc m x), map_add' := (_ : ∀ (x y : M (last n)), (fun x => ↑f (snoc m x)) (x + y) = (fun x => ↑f (snoc m x)) x + (fun x => ↑f (snoc m x)) y) } (c • x) = ↑(RingHom.id R) c • AddHom.toFun { toFun := fun x => ↑f (snoc m x), map_add' := (_ : ∀ (x y : M (last n)), (fun x => ↑f (snoc m x)) (x + y) = (fun x => ↑f (snoc m x)) x + (fun x => ↑f (snoc m x)) y) } x [PROOFSTEP] simp only [f.snoc_smul, RingHom.id_apply] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : MultilinearMap R M M₂ dec : DecidableEq (Fin n) m : (i : Fin n) → M (castSucc i) i : Fin n x y : M (castSucc i) ⊢ (fun m => { toAddHom := { toFun := fun x => ↑f (snoc m x), map_add' := (_ : ∀ (x y : M (last n)), (fun x => ↑f (snoc m x)) (x + y) = (fun x => ↑f (snoc m x)) x + (fun x => ↑f (snoc m x)) y) }, map_smul' := (_ : ∀ (c : R) (x : M (last n)), ↑f (snoc m (c • x)) = c • ↑f (snoc m x)) }) (update m i (x + y)) = (fun m => { toAddHom := { toFun := fun x => ↑f (snoc m x), map_add' := (_ : ∀ (x y : M (last n)), (fun x => ↑f (snoc m x)) (x + y) = (fun x => ↑f (snoc m x)) x + (fun x => ↑f (snoc m x)) y) }, map_smul' := (_ : ∀ (c : R) (x : M (last n)), ↑f (snoc m (c • x)) = c • ↑f (snoc m x)) }) (update m i x) + (fun m => { toAddHom := { toFun := fun x => ↑f (snoc m x), map_add' := (_ : ∀ (x y : M (last n)), (fun x => ↑f (snoc m x)) (x + y) = (fun x => ↑f (snoc m x)) x + (fun x => ↑f (snoc m x)) y) }, map_smul' := (_ : ∀ (c : R) (x : M (last n)), ↑f (snoc m (c • x)) = c • ↑f (snoc m x)) }) (update m i y) [PROOFSTEP] rw [Subsingleton.elim dec (by clear dec; infer_instance)] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : MultilinearMap R M M₂ dec : DecidableEq (Fin n) m : (i : Fin n) → M (castSucc i) i : Fin n x y : M (castSucc i) ⊢ DecidableEq (Fin n) [PROOFSTEP] clear dec [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : MultilinearMap R M M₂ m : (i : Fin n) → M (castSucc i) i : Fin n x y : M (castSucc i) ⊢ DecidableEq (Fin n) [PROOFSTEP] infer_instance [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : MultilinearMap R M M₂ dec : DecidableEq (Fin n) m : (i : Fin n) → M (castSucc i) i : Fin n x y : M (castSucc i) ⊢ (fun m => { toAddHom := { toFun := fun x => ↑f (snoc m x), map_add' := (_ : ∀ (x y : M (last n)), (fun x => ↑f (snoc m x)) (x + y) = (fun x => ↑f (snoc m x)) x + (fun x => ↑f (snoc m x)) y) }, map_smul' := (_ : ∀ (c : R) (x : M (last n)), ↑f (snoc m (c • x)) = c • ↑f (snoc m x)) }) (update m i (x + y)) = (fun m => { toAddHom := { toFun := fun x => ↑f (snoc m x), map_add' := (_ : ∀ (x y : M (last n)), (fun x => ↑f (snoc m x)) (x + y) = (fun x => ↑f (snoc m x)) x + (fun x => ↑f (snoc m x)) y) }, map_smul' := (_ : ∀ (c : R) (x : M (last n)), ↑f (snoc m (c • x)) = c • ↑f (snoc m x)) }) (update m i x) + (fun m => { toAddHom := { toFun := fun x => ↑f (snoc m x), map_add' := (_ : ∀ (x y : M (last n)), (fun x => ↑f (snoc m x)) (x + y) = (fun x => ↑f (snoc m x)) x + (fun x => ↑f (snoc m x)) y) }, map_smul' := (_ : ∀ (c : R) (x : M (last n)), ↑f (snoc m (c • x)) = c • ↑f (snoc m x)) }) (update m i y) [PROOFSTEP] clear dec [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : MultilinearMap R M M₂ m : (i : Fin n) → M (castSucc i) i : Fin n x y : M (castSucc i) ⊢ (fun m => { toAddHom := { toFun := fun x => ↑f (snoc m x), map_add' := (_ : ∀ (x y : M (last n)), (fun x => ↑f (snoc m x)) (x + y) = (fun x => ↑f (snoc m x)) x + (fun x => ↑f (snoc m x)) y) }, map_smul' := (_ : ∀ (c : R) (x : M (last n)), ↑f (snoc m (c • x)) = c • ↑f (snoc m x)) }) (update m i (x + y)) = (fun m => { toAddHom := { toFun := fun x => ↑f (snoc m x), map_add' := (_ : ∀ (x y : M (last n)), (fun x => ↑f (snoc m x)) (x + y) = (fun x => ↑f (snoc m x)) x + (fun x => ↑f (snoc m x)) y) }, map_smul' := (_ : ∀ (c : R) (x : M (last n)), ↑f (snoc m (c • x)) = c • ↑f (snoc m x)) }) (update m i x) + (fun m => { toAddHom := { toFun := fun x => ↑f (snoc m x), map_add' := (_ : ∀ (x y : M (last n)), (fun x => ↑f (snoc m x)) (x + y) = (fun x => ↑f (snoc m x)) x + (fun x => ↑f (snoc m x)) y) }, map_smul' := (_ : ∀ (c : R) (x : M (last n)), ↑f (snoc m (c • x)) = c • ↑f (snoc m x)) }) (update m i y) [PROOFSTEP] ext z [GOAL] case h R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : MultilinearMap R M M₂ m : (i : Fin n) → M (castSucc i) i : Fin n x y : M (castSucc i) z : M (last n) ⊢ ↑((fun m => { toAddHom := { toFun := fun x => ↑f (snoc m x), map_add' := (_ : ∀ (x y : M (last n)), (fun x => ↑f (snoc m x)) (x + y) = (fun x => ↑f (snoc m x)) x + (fun x => ↑f (snoc m x)) y) }, map_smul' := (_ : ∀ (c : R) (x : M (last n)), ↑f (snoc m (c • x)) = c • ↑f (snoc m x)) }) (update m i (x + y))) z = ↑((fun m => { toAddHom := { toFun := fun x => ↑f (snoc m x), map_add' := (_ : ∀ (x y : M (last n)), (fun x => ↑f (snoc m x)) (x + y) = (fun x => ↑f (snoc m x)) x + (fun x => ↑f (snoc m x)) y) }, map_smul' := (_ : ∀ (c : R) (x : M (last n)), ↑f (snoc m (c • x)) = c • ↑f (snoc m x)) }) (update m i x) + (fun m => { toAddHom := { toFun := fun x => ↑f (snoc m x), map_add' := (_ : ∀ (x y : M (last n)), (fun x => ↑f (snoc m x)) (x + y) = (fun x => ↑f (snoc m x)) x + (fun x => ↑f (snoc m x)) y) }, map_smul' := (_ : ∀ (c : R) (x : M (last n)), ↑f (snoc m (c • x)) = c • ↑f (snoc m x)) }) (update m i y)) z [PROOFSTEP] change f (snoc (update m i (x + y)) z) = f (snoc (update m i x) z) + f (snoc (update m i y) z) [GOAL] case h R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : MultilinearMap R M M₂ m : (i : Fin n) → M (castSucc i) i : Fin n x y : M (castSucc i) z : M (last n) ⊢ ↑f (snoc (update m i (x + y)) z) = ↑f (snoc (update m i x) z) + ↑f (snoc (update m i y) z) [PROOFSTEP] rw [snoc_update, snoc_update, snoc_update, f.map_add] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : MultilinearMap R M M₂ dec : DecidableEq (Fin n) m : (i : Fin n) → M (castSucc i) i : Fin n c : R x : M (castSucc i) ⊢ (fun m => { toAddHom := { toFun := fun x => ↑f (snoc m x), map_add' := (_ : ∀ (x y : M (last n)), (fun x => ↑f (snoc m x)) (x + y) = (fun x => ↑f (snoc m x)) x + (fun x => ↑f (snoc m x)) y) }, map_smul' := (_ : ∀ (c : R) (x : M (last n)), ↑f (snoc m (c • x)) = c • ↑f (snoc m x)) }) (update m i (c • x)) = c • (fun m => { toAddHom := { toFun := fun x => ↑f (snoc m x), map_add' := (_ : ∀ (x y : M (last n)), (fun x => ↑f (snoc m x)) (x + y) = (fun x => ↑f (snoc m x)) x + (fun x => ↑f (snoc m x)) y) }, map_smul' := (_ : ∀ (c : R) (x : M (last n)), ↑f (snoc m (c • x)) = c • ↑f (snoc m x)) }) (update m i x) [PROOFSTEP] rw [Subsingleton.elim dec (by clear dec; infer_instance)] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : MultilinearMap R M M₂ dec : DecidableEq (Fin n) m : (i : Fin n) → M (castSucc i) i : Fin n c : R x : M (castSucc i) ⊢ DecidableEq (Fin n) [PROOFSTEP] clear dec [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : MultilinearMap R M M₂ m : (i : Fin n) → M (castSucc i) i : Fin n c : R x : M (castSucc i) ⊢ DecidableEq (Fin n) [PROOFSTEP] infer_instance [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : MultilinearMap R M M₂ dec : DecidableEq (Fin n) m : (i : Fin n) → M (castSucc i) i : Fin n c : R x : M (castSucc i) ⊢ (fun m => { toAddHom := { toFun := fun x => ↑f (snoc m x), map_add' := (_ : ∀ (x y : M (last n)), (fun x => ↑f (snoc m x)) (x + y) = (fun x => ↑f (snoc m x)) x + (fun x => ↑f (snoc m x)) y) }, map_smul' := (_ : ∀ (c : R) (x : M (last n)), ↑f (snoc m (c • x)) = c • ↑f (snoc m x)) }) (update m i (c • x)) = c • (fun m => { toAddHom := { toFun := fun x => ↑f (snoc m x), map_add' := (_ : ∀ (x y : M (last n)), (fun x => ↑f (snoc m x)) (x + y) = (fun x => ↑f (snoc m x)) x + (fun x => ↑f (snoc m x)) y) }, map_smul' := (_ : ∀ (c : R) (x : M (last n)), ↑f (snoc m (c • x)) = c • ↑f (snoc m x)) }) (update m i x) [PROOFSTEP] clear dec [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : MultilinearMap R M M₂ m : (i : Fin n) → M (castSucc i) i : Fin n c : R x : M (castSucc i) ⊢ (fun m => { toAddHom := { toFun := fun x => ↑f (snoc m x), map_add' := (_ : ∀ (x y : M (last n)), (fun x => ↑f (snoc m x)) (x + y) = (fun x => ↑f (snoc m x)) x + (fun x => ↑f (snoc m x)) y) }, map_smul' := (_ : ∀ (c : R) (x : M (last n)), ↑f (snoc m (c • x)) = c • ↑f (snoc m x)) }) (update m i (c • x)) = c • (fun m => { toAddHom := { toFun := fun x => ↑f (snoc m x), map_add' := (_ : ∀ (x y : M (last n)), (fun x => ↑f (snoc m x)) (x + y) = (fun x => ↑f (snoc m x)) x + (fun x => ↑f (snoc m x)) y) }, map_smul' := (_ : ∀ (c : R) (x : M (last n)), ↑f (snoc m (c • x)) = c • ↑f (snoc m x)) }) (update m i x) [PROOFSTEP] ext z [GOAL] case h R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : MultilinearMap R M M₂ m : (i : Fin n) → M (castSucc i) i : Fin n c : R x : M (castSucc i) z : M (last n) ⊢ ↑((fun m => { toAddHom := { toFun := fun x => ↑f (snoc m x), map_add' := (_ : ∀ (x y : M (last n)), (fun x => ↑f (snoc m x)) (x + y) = (fun x => ↑f (snoc m x)) x + (fun x => ↑f (snoc m x)) y) }, map_smul' := (_ : ∀ (c : R) (x : M (last n)), ↑f (snoc m (c • x)) = c • ↑f (snoc m x)) }) (update m i (c • x))) z = ↑(c • (fun m => { toAddHom := { toFun := fun x => ↑f (snoc m x), map_add' := (_ : ∀ (x y : M (last n)), (fun x => ↑f (snoc m x)) (x + y) = (fun x => ↑f (snoc m x)) x + (fun x => ↑f (snoc m x)) y) }, map_smul' := (_ : ∀ (c : R) (x : M (last n)), ↑f (snoc m (c • x)) = c • ↑f (snoc m x)) }) (update m i x)) z [PROOFSTEP] change f (snoc (update m i (c • x)) z) = c • f (snoc (update m i x) z) [GOAL] case h R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : MultilinearMap R M M₂ m : (i : Fin n) → M (castSucc i) i : Fin n c : R x : M (castSucc i) z : M (last n) ⊢ ↑f (snoc (update m i (c • x)) z) = c • ↑f (snoc (update m i x) z) [PROOFSTEP] rw [snoc_update, snoc_update, f.map_smul] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂) ⊢ curryRight (uncurryRight f) = f [PROOFSTEP] ext m x [GOAL] case H.h R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂) m : (i : Fin n) → M (castSucc i) x : M (last n) ⊢ ↑(↑(curryRight (uncurryRight f)) m) x = ↑(↑f m) x [PROOFSTEP] simp only [snoc_last, MultilinearMap.curryRight_apply, MultilinearMap.uncurryRight_apply] [GOAL] case H.h R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂) m : (i : Fin n) → M (castSucc i) x : M (last n) ⊢ ↑(↑f (init (snoc m x))) x = ↑(↑f m) x [PROOFSTEP] rw [init_snoc] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : MultilinearMap R M M₂ ⊢ uncurryRight (curryRight f) = f [PROOFSTEP] ext m [GOAL] case H R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f : MultilinearMap R M M₂ m : (i : Fin (Nat.succ n)) → M i ⊢ ↑(uncurryRight (curryRight f)) m = ↑f m [PROOFSTEP] simp [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f₁ f₂ : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂) ⊢ uncurryRight (f₁ + f₂) = uncurryRight f₁ + uncurryRight f₂ [PROOFSTEP] ext m [GOAL] case H R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ f₁ f₂ : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂) m : (i : Fin (Nat.succ n)) → M i ⊢ ↑(uncurryRight (f₁ + f₂)) m = ↑(uncurryRight f₁ + uncurryRight f₂) m [PROOFSTEP] rfl [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ c : R f : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂) ⊢ AddHom.toFun { toFun := uncurryRight, map_add' := (_ : ∀ (f₁ f₂ : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂)), uncurryRight (f₁ + f₂) = uncurryRight f₁ + uncurryRight f₂) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := uncurryRight, map_add' := (_ : ∀ (f₁ f₂ : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂)), uncurryRight (f₁ + f₂) = uncurryRight f₁ + uncurryRight f₂) } f [PROOFSTEP] ext m [GOAL] case H R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ c : R f : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂) m : (i : Fin (Nat.succ n)) → M i ⊢ ↑(AddHom.toFun { toFun := uncurryRight, map_add' := (_ : ∀ (f₁ f₂ : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂)), uncurryRight (f₁ + f₂) = uncurryRight f₁ + uncurryRight f₂) } (c • f)) m = ↑(↑(RingHom.id R) c • AddHom.toFun { toFun := uncurryRight, map_add' := (_ : ∀ (f₁ f₂ : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂)), uncurryRight (f₁ + f₂) = uncurryRight f₁ + uncurryRight f₂) } f) m [PROOFSTEP] rw [smul_apply] [GOAL] case H R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ c : R f : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂) m : (i : Fin (Nat.succ n)) → M i ⊢ ↑(AddHom.toFun { toFun := uncurryRight, map_add' := (_ : ∀ (f₁ f₂ : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂)), uncurryRight (f₁ + f₂) = uncurryRight f₁ + uncurryRight f₂) } (c • f)) m = ↑(RingHom.id R) c • ↑(AddHom.toFun { toFun := uncurryRight, map_add' := (_ : ∀ (f₁ f₂ : MultilinearMap R (fun i => M (castSucc i)) (M (last n) →ₗ[R] M₂)), uncurryRight (f₁ + f₂) = uncurryRight f₁ + uncurryRight f₂) } f) m [PROOFSTEP] rfl [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁷ : CommSemiring R inst✝⁶ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁵ : AddCommMonoid M' inst✝⁴ : AddCommMonoid M₂ inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝² : Module R M' inst✝¹ : Module R M₂ ι' : Type u_1 f : MultilinearMap R (fun x => M') M₂ u : ι → M' inst✝ : DecidableEq ι' v : ι' → M' i : ι' x y : M' ⊢ (fun v => ↑f (Sum.elim u v)) (update v i (x + y)) = (fun v => ↑f (Sum.elim u v)) (update v i x) + (fun v => ↑f (Sum.elim u v)) (update v i y) [PROOFSTEP] letI := Classical.decEq ι [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁷ : CommSemiring R inst✝⁶ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁵ : AddCommMonoid M' inst✝⁴ : AddCommMonoid M₂ inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝² : Module R M' inst✝¹ : Module R M₂ ι' : Type u_1 f : MultilinearMap R (fun x => M') M₂ u : ι → M' inst✝ : DecidableEq ι' v : ι' → M' i : ι' x y : M' this : DecidableEq ι := Classical.decEq ι ⊢ (fun v => ↑f (Sum.elim u v)) (update v i (x + y)) = (fun v => ↑f (Sum.elim u v)) (update v i x) + (fun v => ↑f (Sum.elim u v)) (update v i y) [PROOFSTEP] simp only [← Sum.update_elim_inr, f.map_add] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁷ : CommSemiring R inst✝⁶ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁵ : AddCommMonoid M' inst✝⁴ : AddCommMonoid M₂ inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝² : Module R M' inst✝¹ : Module R M₂ ι' : Type u_1 f : MultilinearMap R (fun x => M') M₂ u : ι → M' inst✝ : DecidableEq ι' v : ι' → M' i : ι' c : R x : M' ⊢ (fun v => ↑f (Sum.elim u v)) (update v i (c • x)) = c • (fun v => ↑f (Sum.elim u v)) (update v i x) [PROOFSTEP] letI := Classical.decEq ι [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁷ : CommSemiring R inst✝⁶ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁵ : AddCommMonoid M' inst✝⁴ : AddCommMonoid M₂ inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝² : Module R M' inst✝¹ : Module R M₂ ι' : Type u_1 f : MultilinearMap R (fun x => M') M₂ u : ι → M' inst✝ : DecidableEq ι' v : ι' → M' i : ι' c : R x : M' this : DecidableEq ι := Classical.decEq ι ⊢ (fun v => ↑f (Sum.elim u v)) (update v i (c • x)) = c • (fun v => ↑f (Sum.elim u v)) (update v i x) [PROOFSTEP] simp only [← Sum.update_elim_inr, f.map_smul] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁷ : CommSemiring R inst✝⁶ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁵ : AddCommMonoid M' inst✝⁴ : AddCommMonoid M₂ inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝² : Module R M' inst✝¹ : Module R M₂ ι' : Type u_1 f : MultilinearMap R (fun x => M') M₂ inst✝ : DecidableEq ι u : ι → M' i : ι x y : M' v : ι' → M' ⊢ ↑((fun u => { toFun := fun v => ↑f (Sum.elim u v), map_add' := (_ : ∀ [inst : DecidableEq ι'] (v : ι' → M') (i : ι') (x y : M'), ↑f (Sum.elim u (update v i (x + y))) = ↑f (Sum.elim u (update v i x)) + ↑f (Sum.elim u (update v i y))), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (v : ι' → M') (i : ι') (c : R) (x : M'), ↑f (Sum.elim u (update v i (c • x))) = c • ↑f (Sum.elim u (update v i x))) }) (update u i (x + y))) v = ↑((fun u => { toFun := fun v => ↑f (Sum.elim u v), map_add' := (_ : ∀ [inst : DecidableEq ι'] (v : ι' → M') (i : ι') (x y : M'), ↑f (Sum.elim u (update v i (x + y))) = ↑f (Sum.elim u (update v i x)) + ↑f (Sum.elim u (update v i y))), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (v : ι' → M') (i : ι') (c : R) (x : M'), ↑f (Sum.elim u (update v i (c • x))) = c • ↑f (Sum.elim u (update v i x))) }) (update u i x) + (fun u => { toFun := fun v => ↑f (Sum.elim u v), map_add' := (_ : ∀ [inst : DecidableEq ι'] (v : ι' → M') (i : ι') (x y : M'), ↑f (Sum.elim u (update v i (x + y))) = ↑f (Sum.elim u (update v i x)) + ↑f (Sum.elim u (update v i y))), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (v : ι' → M') (i : ι') (c : R) (x : M'), ↑f (Sum.elim u (update v i (c • x))) = c • ↑f (Sum.elim u (update v i x))) }) (update u i y)) v [PROOFSTEP] letI := Classical.decEq ι' [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁷ : CommSemiring R inst✝⁶ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁵ : AddCommMonoid M' inst✝⁴ : AddCommMonoid M₂ inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝² : Module R M' inst✝¹ : Module R M₂ ι' : Type u_1 f : MultilinearMap R (fun x => M') M₂ inst✝ : DecidableEq ι u : ι → M' i : ι x y : M' v : ι' → M' this : DecidableEq ι' := Classical.decEq ι' ⊢ ↑((fun u => { toFun := fun v => ↑f (Sum.elim u v), map_add' := (_ : ∀ [inst : DecidableEq ι'] (v : ι' → M') (i : ι') (x y : M'), ↑f (Sum.elim u (update v i (x + y))) = ↑f (Sum.elim u (update v i x)) + ↑f (Sum.elim u (update v i y))), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (v : ι' → M') (i : ι') (c : R) (x : M'), ↑f (Sum.elim u (update v i (c • x))) = c • ↑f (Sum.elim u (update v i x))) }) (update u i (x + y))) v = ↑((fun u => { toFun := fun v => ↑f (Sum.elim u v), map_add' := (_ : ∀ [inst : DecidableEq ι'] (v : ι' → M') (i : ι') (x y : M'), ↑f (Sum.elim u (update v i (x + y))) = ↑f (Sum.elim u (update v i x)) + ↑f (Sum.elim u (update v i y))), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (v : ι' → M') (i : ι') (c : R) (x : M'), ↑f (Sum.elim u (update v i (c • x))) = c • ↑f (Sum.elim u (update v i x))) }) (update u i x) + (fun u => { toFun := fun v => ↑f (Sum.elim u v), map_add' := (_ : ∀ [inst : DecidableEq ι'] (v : ι' → M') (i : ι') (x y : M'), ↑f (Sum.elim u (update v i (x + y))) = ↑f (Sum.elim u (update v i x)) + ↑f (Sum.elim u (update v i y))), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (v : ι' → M') (i : ι') (c : R) (x : M'), ↑f (Sum.elim u (update v i (c • x))) = c • ↑f (Sum.elim u (update v i x))) }) (update u i y)) v [PROOFSTEP] simp only [MultilinearMap.coe_mk, add_apply, ← Sum.update_elim_inl, f.map_add] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁷ : CommSemiring R inst✝⁶ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁵ : AddCommMonoid M' inst✝⁴ : AddCommMonoid M₂ inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝² : Module R M' inst✝¹ : Module R M₂ ι' : Type u_1 f : MultilinearMap R (fun x => M') M₂ inst✝ : DecidableEq ι u : ι → M' i : ι c : R x : M' v : ι' → M' ⊢ ↑((fun u => { toFun := fun v => ↑f (Sum.elim u v), map_add' := (_ : ∀ [inst : DecidableEq ι'] (v : ι' → M') (i : ι') (x y : M'), ↑f (Sum.elim u (update v i (x + y))) = ↑f (Sum.elim u (update v i x)) + ↑f (Sum.elim u (update v i y))), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (v : ι' → M') (i : ι') (c : R) (x : M'), ↑f (Sum.elim u (update v i (c • x))) = c • ↑f (Sum.elim u (update v i x))) }) (update u i (c • x))) v = ↑(c • (fun u => { toFun := fun v => ↑f (Sum.elim u v), map_add' := (_ : ∀ [inst : DecidableEq ι'] (v : ι' → M') (i : ι') (x y : M'), ↑f (Sum.elim u (update v i (x + y))) = ↑f (Sum.elim u (update v i x)) + ↑f (Sum.elim u (update v i y))), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (v : ι' → M') (i : ι') (c : R) (x : M'), ↑f (Sum.elim u (update v i (c • x))) = c • ↑f (Sum.elim u (update v i x))) }) (update u i x)) v [PROOFSTEP] letI := Classical.decEq ι' [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁷ : CommSemiring R inst✝⁶ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁵ : AddCommMonoid M' inst✝⁴ : AddCommMonoid M₂ inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝² : Module R M' inst✝¹ : Module R M₂ ι' : Type u_1 f : MultilinearMap R (fun x => M') M₂ inst✝ : DecidableEq ι u : ι → M' i : ι c : R x : M' v : ι' → M' this : DecidableEq ι' := Classical.decEq ι' ⊢ ↑((fun u => { toFun := fun v => ↑f (Sum.elim u v), map_add' := (_ : ∀ [inst : DecidableEq ι'] (v : ι' → M') (i : ι') (x y : M'), ↑f (Sum.elim u (update v i (x + y))) = ↑f (Sum.elim u (update v i x)) + ↑f (Sum.elim u (update v i y))), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (v : ι' → M') (i : ι') (c : R) (x : M'), ↑f (Sum.elim u (update v i (c • x))) = c • ↑f (Sum.elim u (update v i x))) }) (update u i (c • x))) v = ↑(c • (fun u => { toFun := fun v => ↑f (Sum.elim u v), map_add' := (_ : ∀ [inst : DecidableEq ι'] (v : ι' → M') (i : ι') (x y : M'), ↑f (Sum.elim u (update v i (x + y))) = ↑f (Sum.elim u (update v i x)) + ↑f (Sum.elim u (update v i y))), map_smul' := (_ : ∀ [inst : DecidableEq ι'] (v : ι' → M') (i : ι') (c : R) (x : M'), ↑f (Sum.elim u (update v i (c • x))) = c • ↑f (Sum.elim u (update v i x))) }) (update u i x)) v [PROOFSTEP] simp only [MultilinearMap.coe_mk, smul_apply, ← Sum.update_elim_inl, f.map_smul] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁷ : CommSemiring R inst✝⁶ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁵ : AddCommMonoid M' inst✝⁴ : AddCommMonoid M₂ inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝² : Module R M' inst✝¹ : Module R M₂ ι' : Type u_1 f : MultilinearMap R (fun x => M') (MultilinearMap R (fun x => M') M₂) inst✝ : DecidableEq (ι ⊕ ι') u : ι ⊕ ι' → M' i : ι ⊕ ι' x y : M' ⊢ (fun u => ↑(↑f (u ∘ Sum.inl)) (u ∘ Sum.inr)) (update u i (x + y)) = (fun u => ↑(↑f (u ∘ Sum.inl)) (u ∘ Sum.inr)) (update u i x) + (fun u => ↑(↑f (u ∘ Sum.inl)) (u ∘ Sum.inr)) (update u i y) [PROOFSTEP] letI := (@Sum.inl_injective ι ι').decidableEq [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁷ : CommSemiring R inst✝⁶ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁵ : AddCommMonoid M' inst✝⁴ : AddCommMonoid M₂ inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝² : Module R M' inst✝¹ : Module R M₂ ι' : Type u_1 f : MultilinearMap R (fun x => M') (MultilinearMap R (fun x => M') M₂) inst✝ : DecidableEq (ι ⊕ ι') u : ι ⊕ ι' → M' i : ι ⊕ ι' x y : M' this : DecidableEq ι := Injective.decidableEq (_ : Injective Sum.inl) ⊢ (fun u => ↑(↑f (u ∘ Sum.inl)) (u ∘ Sum.inr)) (update u i (x + y)) = (fun u => ↑(↑f (u ∘ Sum.inl)) (u ∘ Sum.inr)) (update u i x) + (fun u => ↑(↑f (u ∘ Sum.inl)) (u ∘ Sum.inr)) (update u i y) [PROOFSTEP] letI := (@Sum.inr_injective ι ι').decidableEq [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁷ : CommSemiring R inst✝⁶ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁵ : AddCommMonoid M' inst✝⁴ : AddCommMonoid M₂ inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝² : Module R M' inst✝¹ : Module R M₂ ι' : Type u_1 f : MultilinearMap R (fun x => M') (MultilinearMap R (fun x => M') M₂) inst✝ : DecidableEq (ι ⊕ ι') u : ι ⊕ ι' → M' i : ι ⊕ ι' x y : M' this✝ : DecidableEq ι := Injective.decidableEq (_ : Injective Sum.inl) this : DecidableEq ι' := Injective.decidableEq (_ : Injective Sum.inr) ⊢ (fun u => ↑(↑f (u ∘ Sum.inl)) (u ∘ Sum.inr)) (update u i (x + y)) = (fun u => ↑(↑f (u ∘ Sum.inl)) (u ∘ Sum.inr)) (update u i x) + (fun u => ↑(↑f (u ∘ Sum.inl)) (u ∘ Sum.inr)) (update u i y) [PROOFSTEP] cases i [GOAL] case inl R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁷ : CommSemiring R inst✝⁶ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁵ : AddCommMonoid M' inst✝⁴ : AddCommMonoid M₂ inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝² : Module R M' inst✝¹ : Module R M₂ ι' : Type u_1 f : MultilinearMap R (fun x => M') (MultilinearMap R (fun x => M') M₂) inst✝ : DecidableEq (ι ⊕ ι') u : ι ⊕ ι' → M' x y : M' this✝ : DecidableEq ι := Injective.decidableEq (_ : Injective Sum.inl) this : DecidableEq ι' := Injective.decidableEq (_ : Injective Sum.inr) val✝ : ι ⊢ (fun u => ↑(↑f (u ∘ Sum.inl)) (u ∘ Sum.inr)) (update u (Sum.inl val✝) (x + y)) = (fun u => ↑(↑f (u ∘ Sum.inl)) (u ∘ Sum.inr)) (update u (Sum.inl val✝) x) + (fun u => ↑(↑f (u ∘ Sum.inl)) (u ∘ Sum.inr)) (update u (Sum.inl val✝) y) [PROOFSTEP] simp only [MultilinearMap.map_add, add_apply, Sum.update_inl_comp_inl, Sum.update_inl_comp_inr, Sum.update_inr_comp_inl, Sum.update_inr_comp_inr] [GOAL] case inr R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁷ : CommSemiring R inst✝⁶ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁵ : AddCommMonoid M' inst✝⁴ : AddCommMonoid M₂ inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝² : Module R M' inst✝¹ : Module R M₂ ι' : Type u_1 f : MultilinearMap R (fun x => M') (MultilinearMap R (fun x => M') M₂) inst✝ : DecidableEq (ι ⊕ ι') u : ι ⊕ ι' → M' x y : M' this✝ : DecidableEq ι := Injective.decidableEq (_ : Injective Sum.inl) this : DecidableEq ι' := Injective.decidableEq (_ : Injective Sum.inr) val✝ : ι' ⊢ (fun u => ↑(↑f (u ∘ Sum.inl)) (u ∘ Sum.inr)) (update u (Sum.inr val✝) (x + y)) = (fun u => ↑(↑f (u ∘ Sum.inl)) (u ∘ Sum.inr)) (update u (Sum.inr val✝) x) + (fun u => ↑(↑f (u ∘ Sum.inl)) (u ∘ Sum.inr)) (update u (Sum.inr val✝) y) [PROOFSTEP] simp only [MultilinearMap.map_add, add_apply, Sum.update_inl_comp_inl, Sum.update_inl_comp_inr, Sum.update_inr_comp_inl, Sum.update_inr_comp_inr] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁷ : CommSemiring R inst✝⁶ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁵ : AddCommMonoid M' inst✝⁴ : AddCommMonoid M₂ inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝² : Module R M' inst✝¹ : Module R M₂ ι' : Type u_1 f : MultilinearMap R (fun x => M') (MultilinearMap R (fun x => M') M₂) inst✝ : DecidableEq (ι ⊕ ι') u : ι ⊕ ι' → M' i : ι ⊕ ι' c : R x : M' ⊢ (fun u => ↑(↑f (u ∘ Sum.inl)) (u ∘ Sum.inr)) (update u i (c • x)) = c • (fun u => ↑(↑f (u ∘ Sum.inl)) (u ∘ Sum.inr)) (update u i x) [PROOFSTEP] letI := (@Sum.inl_injective ι ι').decidableEq [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁷ : CommSemiring R inst✝⁶ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁵ : AddCommMonoid M' inst✝⁴ : AddCommMonoid M₂ inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝² : Module R M' inst✝¹ : Module R M₂ ι' : Type u_1 f : MultilinearMap R (fun x => M') (MultilinearMap R (fun x => M') M₂) inst✝ : DecidableEq (ι ⊕ ι') u : ι ⊕ ι' → M' i : ι ⊕ ι' c : R x : M' this : DecidableEq ι := Injective.decidableEq (_ : Injective Sum.inl) ⊢ (fun u => ↑(↑f (u ∘ Sum.inl)) (u ∘ Sum.inr)) (update u i (c • x)) = c • (fun u => ↑(↑f (u ∘ Sum.inl)) (u ∘ Sum.inr)) (update u i x) [PROOFSTEP] letI := (@Sum.inr_injective ι ι').decidableEq [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁷ : CommSemiring R inst✝⁶ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁵ : AddCommMonoid M' inst✝⁴ : AddCommMonoid M₂ inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝² : Module R M' inst✝¹ : Module R M₂ ι' : Type u_1 f : MultilinearMap R (fun x => M') (MultilinearMap R (fun x => M') M₂) inst✝ : DecidableEq (ι ⊕ ι') u : ι ⊕ ι' → M' i : ι ⊕ ι' c : R x : M' this✝ : DecidableEq ι := Injective.decidableEq (_ : Injective Sum.inl) this : DecidableEq ι' := Injective.decidableEq (_ : Injective Sum.inr) ⊢ (fun u => ↑(↑f (u ∘ Sum.inl)) (u ∘ Sum.inr)) (update u i (c • x)) = c • (fun u => ↑(↑f (u ∘ Sum.inl)) (u ∘ Sum.inr)) (update u i x) [PROOFSTEP] cases i [GOAL] case inl R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁷ : CommSemiring R inst✝⁶ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁵ : AddCommMonoid M' inst✝⁴ : AddCommMonoid M₂ inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝² : Module R M' inst✝¹ : Module R M₂ ι' : Type u_1 f : MultilinearMap R (fun x => M') (MultilinearMap R (fun x => M') M₂) inst✝ : DecidableEq (ι ⊕ ι') u : ι ⊕ ι' → M' c : R x : M' this✝ : DecidableEq ι := Injective.decidableEq (_ : Injective Sum.inl) this : DecidableEq ι' := Injective.decidableEq (_ : Injective Sum.inr) val✝ : ι ⊢ (fun u => ↑(↑f (u ∘ Sum.inl)) (u ∘ Sum.inr)) (update u (Sum.inl val✝) (c • x)) = c • (fun u => ↑(↑f (u ∘ Sum.inl)) (u ∘ Sum.inr)) (update u (Sum.inl val✝) x) [PROOFSTEP] simp only [MultilinearMap.map_smul, smul_apply, Sum.update_inl_comp_inl, Sum.update_inl_comp_inr, Sum.update_inr_comp_inl, Sum.update_inr_comp_inr] [GOAL] case inr R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁷ : CommSemiring R inst✝⁶ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁵ : AddCommMonoid M' inst✝⁴ : AddCommMonoid M₂ inst✝³ : (i : Fin (Nat.succ n)) → Module R (M i) inst✝² : Module R M' inst✝¹ : Module R M₂ ι' : Type u_1 f : MultilinearMap R (fun x => M') (MultilinearMap R (fun x => M') M₂) inst✝ : DecidableEq (ι ⊕ ι') u : ι ⊕ ι' → M' c : R x : M' this✝ : DecidableEq ι := Injective.decidableEq (_ : Injective Sum.inl) this : DecidableEq ι' := Injective.decidableEq (_ : Injective Sum.inr) val✝ : ι' ⊢ (fun u => ↑(↑f (u ∘ Sum.inl)) (u ∘ Sum.inr)) (update u (Sum.inr val✝) (c • x)) = c • (fun u => ↑(↑f (u ∘ Sum.inl)) (u ∘ Sum.inr)) (update u (Sum.inr val✝) x) [PROOFSTEP] simp only [MultilinearMap.map_smul, smul_apply, Sum.update_inl_comp_inl, Sum.update_inl_comp_inr, Sum.update_inr_comp_inl, Sum.update_inr_comp_inr] [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ ι' : Type u_1 f g : MultilinearMap R (fun x => M') M₂ ⊢ currySum (f + g) = currySum f + currySum g [PROOFSTEP] ext [GOAL] case H.H R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ ι' : Type u_1 f g : MultilinearMap R (fun x => M') M₂ x✝¹ : ι → M' x✝ : ι' → M' ⊢ ↑(↑(currySum (f + g)) x✝¹) x✝ = ↑(↑(currySum f + currySum g) x✝¹) x✝ [PROOFSTEP] rfl [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ ι' : Type u_1 c : R f : MultilinearMap R (fun x => M') M₂ ⊢ AddHom.toFun { toFun := currySum, map_add' := (_ : ∀ (f g : MultilinearMap R (fun x => M') M₂), currySum (f + g) = currySum f + currySum g) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := currySum, map_add' := (_ : ∀ (f g : MultilinearMap R (fun x => M') M₂), currySum (f + g) = currySum f + currySum g) } f [PROOFSTEP] ext [GOAL] case H.H R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ ι' : Type u_1 c : R f : MultilinearMap R (fun x => M') M₂ x✝¹ : ι → M' x✝ : ι' → M' ⊢ ↑(↑(AddHom.toFun { toFun := currySum, map_add' := (_ : ∀ (f g : MultilinearMap R (fun x => M') M₂), currySum (f + g) = currySum f + currySum g) } (c • f)) x✝¹) x✝ = ↑(↑(↑(RingHom.id R) c • AddHom.toFun { toFun := currySum, map_add' := (_ : ∀ (f g : MultilinearMap R (fun x => M') M₂), currySum (f + g) = currySum f + currySum g) } f) x✝¹) x✝ [PROOFSTEP] rfl [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ ι' : Type u_1 f : MultilinearMap R (fun x => M') M₂ u : ι ⊕ ι' → M' ⊢ ↑(uncurrySum (AddHom.toFun { toAddHom := { toFun := currySum, map_add' := (_ : ∀ (f g : MultilinearMap R (fun x => M') M₂), currySum (f + g) = currySum f + currySum g) }, map_smul' := (_ : ∀ (c : R) (f : MultilinearMap R (fun x => M') M₂), AddHom.toFun { toFun := currySum, map_add' := (_ : ∀ (f g : MultilinearMap R (fun x => M') M₂), currySum (f + g) = currySum f + currySum g) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := currySum, map_add' := (_ : ∀ (f g : MultilinearMap R (fun x => M') M₂), currySum (f + g) = currySum f + currySum g) } f) }.toAddHom f)) u = ↑f u [PROOFSTEP] simp [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ ι' : Type u_1 f : MultilinearMap R (fun x => M') (MultilinearMap R (fun x => M') M₂) ⊢ AddHom.toFun { toAddHom := { toFun := currySum, map_add' := (_ : ∀ (f g : MultilinearMap R (fun x => M') M₂), currySum (f + g) = currySum f + currySum g) }, map_smul' := (_ : ∀ (c : R) (f : MultilinearMap R (fun x => M') M₂), AddHom.toFun { toFun := currySum, map_add' := (_ : ∀ (f g : MultilinearMap R (fun x => M') M₂), currySum (f + g) = currySum f + currySum g) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := currySum, map_add' := (_ : ∀ (f g : MultilinearMap R (fun x => M') M₂), currySum (f + g) = currySum f + currySum g) } f) }.toAddHom (uncurrySum f) = f [PROOFSTEP] ext [GOAL] case H.H R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ ι' : Type u_1 f : MultilinearMap R (fun x => M') (MultilinearMap R (fun x => M') M₂) x✝¹ : ι → M' x✝ : ι' → M' ⊢ ↑(↑(AddHom.toFun { toAddHom := { toFun := currySum, map_add' := (_ : ∀ (f g : MultilinearMap R (fun x => M') M₂), currySum (f + g) = currySum f + currySum g) }, map_smul' := (_ : ∀ (c : R) (f : MultilinearMap R (fun x => M') M₂), AddHom.toFun { toFun := currySum, map_add' := (_ : ∀ (f g : MultilinearMap R (fun x => M') M₂), currySum (f + g) = currySum f + currySum g) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := currySum, map_add' := (_ : ∀ (f g : MultilinearMap R (fun x => M') M₂), currySum (f + g) = currySum f + currySum g) } f) }.toAddHom (uncurrySum f)) x✝¹) x✝ = ↑(↑f x✝¹) x✝ [PROOFSTEP] simp [GOAL] R : Type u ι : Type u' n✝ : ℕ M : Fin (Nat.succ n✝) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n✝)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n✝)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ ι' : Type u_1 k l n : ℕ s : Finset (Fin n) hk : Finset.card s = k hl : Finset.card sᶜ = l f : MultilinearMap R (fun x => M') (MultilinearMap R (fun x => M') M₂) x y : M' ⊢ ↑(↑(LinearEquiv.symm (curryFinFinset R M₂ M' hk hl)) f) (Finset.piecewise s (fun x_1 => x) fun x => y) = ↑(↑f fun x_1 => x) fun x => y [PROOFSTEP] rw [curryFinFinset_symm_apply] [GOAL] R : Type u ι : Type u' n✝ : ℕ M : Fin (Nat.succ n✝) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n✝)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n✝)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ ι' : Type u_1 k l n : ℕ s : Finset (Fin n) hk : Finset.card s = k hl : Finset.card sᶜ = l f : MultilinearMap R (fun x => M') (MultilinearMap R (fun x => M') M₂) x y : M' ⊢ (↑(↑f fun i => Finset.piecewise s (fun x_1 => x) (fun x => y) (↑(finSumEquivOfFinset hk hl) (Sum.inl i))) fun i => Finset.piecewise s (fun x_1 => x) (fun x => y) (↑(finSumEquivOfFinset hk hl) (Sum.inr i))) = ↑(↑f fun x_1 => x) fun x => y [PROOFSTEP] congr [GOAL] case h.e_5.h.h.e_6.h R : Type u ι : Type u' n✝ : ℕ M : Fin (Nat.succ n✝) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n✝)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n✝)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ ι' : Type u_1 k l n : ℕ s : Finset (Fin n) hk : Finset.card s = k hl : Finset.card sᶜ = l f : MultilinearMap R (fun x => M') (MultilinearMap R (fun x => M') M₂) x y : M' ⊢ (fun i => Finset.piecewise s (fun x_1 => x) (fun x => y) (↑(finSumEquivOfFinset hk hl) (Sum.inl i))) = fun x_1 => x [PROOFSTEP] ext [GOAL] case h.e_5.h.h.e_6.h.h R : Type u ι : Type u' n✝ : ℕ M : Fin (Nat.succ n✝) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n✝)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n✝)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ ι' : Type u_1 k l n : ℕ s : Finset (Fin n) hk : Finset.card s = k hl : Finset.card sᶜ = l f : MultilinearMap R (fun x => M') (MultilinearMap R (fun x => M') M₂) x y : M' x✝ : Fin k ⊢ Finset.piecewise s (fun x_1 => x) (fun x => y) (↑(finSumEquivOfFinset hk hl) (Sum.inl x✝)) = x [PROOFSTEP] rw [finSumEquivOfFinset_inl, Finset.piecewise_eq_of_mem] [GOAL] case h.e_5.h.h.e_6.h.h.hi R : Type u ι : Type u' n✝ : ℕ M : Fin (Nat.succ n✝) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n✝)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n✝)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ ι' : Type u_1 k l n : ℕ s : Finset (Fin n) hk : Finset.card s = k hl : Finset.card sᶜ = l f : MultilinearMap R (fun x => M') (MultilinearMap R (fun x => M') M₂) x y : M' x✝ : Fin k ⊢ ↑(Finset.orderEmbOfFin s hk) x✝ ∈ s [PROOFSTEP] apply Finset.orderEmbOfFin_mem [GOAL] case h.e_6.h R : Type u ι : Type u' n✝ : ℕ M : Fin (Nat.succ n✝) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n✝)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n✝)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ ι' : Type u_1 k l n : ℕ s : Finset (Fin n) hk : Finset.card s = k hl : Finset.card sᶜ = l f : MultilinearMap R (fun x => M') (MultilinearMap R (fun x => M') M₂) x y : M' ⊢ (fun i => Finset.piecewise s (fun x_1 => x) (fun x => y) (↑(finSumEquivOfFinset hk hl) (Sum.inr i))) = fun x => y [PROOFSTEP] ext [GOAL] case h.e_6.h.h R : Type u ι : Type u' n✝ : ℕ M : Fin (Nat.succ n✝) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n✝)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n✝)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ ι' : Type u_1 k l n : ℕ s : Finset (Fin n) hk : Finset.card s = k hl : Finset.card sᶜ = l f : MultilinearMap R (fun x => M') (MultilinearMap R (fun x => M') M₂) x y : M' x✝ : Fin l ⊢ Finset.piecewise s (fun x_1 => x) (fun x => y) (↑(finSumEquivOfFinset hk hl) (Sum.inr x✝)) = y [PROOFSTEP] rw [finSumEquivOfFinset_inr, Finset.piecewise_eq_of_not_mem] [GOAL] case h.e_6.h.h.hi R : Type u ι : Type u' n✝ : ℕ M : Fin (Nat.succ n✝) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n✝)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n✝)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ ι' : Type u_1 k l n : ℕ s : Finset (Fin n) hk : Finset.card s = k hl : Finset.card sᶜ = l f : MultilinearMap R (fun x => M') (MultilinearMap R (fun x => M') M₂) x y : M' x✝ : Fin l ⊢ ¬↑(Finset.orderEmbOfFin sᶜ hl) x✝ ∈ s [PROOFSTEP] exact Finset.mem_compl.1 (Finset.orderEmbOfFin_mem _ _ _) [GOAL] R : Type u ι : Type u' n✝ : ℕ M : Fin (Nat.succ n✝) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n✝)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n✝)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ ι' : Type u_1 k l n : ℕ s : Finset (Fin n) hk : Finset.card s = k hl : Finset.card sᶜ = l f : MultilinearMap R (fun x => M') (MultilinearMap R (fun x => M') M₂) x y : M' ⊢ (↑(↑f fun x_1 => x) fun i => Finset.piecewise s (fun x_1 => x) (fun x => y) (↑(finSumEquivOfFinset hk hl) (Sum.inr i))) = ↑(↑f fun x_1 => x) fun x => y [PROOFSTEP] have := curryFinFinset_symm_apply_piecewise_const hk hl f x y [GOAL] R : Type u ι : Type u' n✝ : ℕ M : Fin (Nat.succ n✝) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n✝)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n✝)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ ι' : Type u_1 k l n : ℕ s : Finset (Fin n) hk : Finset.card s = k hl : Finset.card sᶜ = l f : MultilinearMap R (fun x => M') (MultilinearMap R (fun x => M') M₂) x y : M' this : ↑(↑(LinearEquiv.symm (curryFinFinset R M₂ M' hk hl)) f) (Finset.piecewise s (fun x_1 => x) fun x => y) = ↑(↑f fun x_1 => x) fun x => y ⊢ (↑(↑f fun x_1 => x) fun i => Finset.piecewise s (fun x_1 => x) (fun x => y) (↑(finSumEquivOfFinset hk hl) (Sum.inr i))) = ↑(↑f fun x_1 => x) fun x => y [PROOFSTEP] simp only [curryFinFinset_symm_apply, finSumEquivOfFinset_inl, Finset.orderEmbOfFin_mem, Finset.piecewise_eq_of_mem, finSumEquivOfFinset_inr] at this [GOAL] R : Type u ι : Type u' n✝ : ℕ M : Fin (Nat.succ n✝) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n✝)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n✝)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ ι' : Type u_1 k l n : ℕ s : Finset (Fin n) hk : Finset.card s = k hl : Finset.card sᶜ = l f : MultilinearMap R (fun x => M') (MultilinearMap R (fun x => M') M₂) x y : M' this : (↑(↑f fun i => x) fun i => Finset.piecewise s (fun x_1 => x) (fun x => y) (↑(finSumEquivOfFinset hk hl) (Sum.inr i))) = ↑(↑f fun i => x) fun x => y ⊢ (↑(↑f fun x_1 => x) fun i => Finset.piecewise s (fun x_1 => x) (fun x => y) (↑(finSumEquivOfFinset hk hl) (Sum.inr i))) = ↑(↑f fun x_1 => x) fun x => y [PROOFSTEP] exact this [GOAL] R : Type u ι : Type u' n✝ : ℕ M : Fin (Nat.succ n✝) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n✝)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n✝)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ ι' : Type u_1 k l n : ℕ s : Finset (Fin n) hk : Finset.card s = k hl : Finset.card sᶜ = l f : MultilinearMap R (fun x => M') M₂ x y : M' ⊢ (↑(↑(↑(curryFinFinset R M₂ M' hk hl) f) fun x_1 => x) fun x => y) = ↑f (Finset.piecewise s (fun x_1 => x) fun x => y) [PROOFSTEP] refine' (curryFinFinset_symm_apply_piecewise_const hk hl _ _ _).symm.trans _ -- `rw` fails [GOAL] R : Type u ι : Type u' n✝ : ℕ M : Fin (Nat.succ n✝) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n✝)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n✝)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ ι' : Type u_1 k l n : ℕ s : Finset (Fin n) hk : Finset.card s = k hl : Finset.card sᶜ = l f : MultilinearMap R (fun x => M') M₂ x y : M' ⊢ ↑(↑(LinearEquiv.symm (curryFinFinset R M₂ M' hk hl)) (↑(curryFinFinset R M₂ M' hk hl) f)) (Finset.piecewise s (fun x_1 => x) fun x => y) = ↑f (Finset.piecewise s (fun x_1 => x) fun x => y) [PROOFSTEP] rw [LinearEquiv.symm_apply_apply] [GOAL] R : Type u ι : Type u' n✝ : ℕ M : Fin (Nat.succ n✝) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n✝)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n✝)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ ι' : Type u_1 k l n : ℕ s : Finset (Fin n) hk : Finset.card s = k hl : Finset.card sᶜ = l f : MultilinearMap R (fun x => M') M₂ x y : M' ⊢ (↑f fun i => Sum.elim (fun x_1 => x) (fun x => y) (↑(finSumEquivOfFinset hk hl).symm i)) = ↑f (Finset.piecewise s (fun x_1 => x) fun x => y) [PROOFSTEP] rw [← curryFinFinset_apply] [GOAL] R : Type u ι : Type u' n✝ : ℕ M : Fin (Nat.succ n✝) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁶ : CommSemiring R inst✝⁵ : (i : Fin (Nat.succ n✝)) → AddCommMonoid (M i) inst✝⁴ : AddCommMonoid M' inst✝³ : AddCommMonoid M₂ inst✝² : (i : Fin (Nat.succ n✝)) → Module R (M i) inst✝¹ : Module R M' inst✝ : Module R M₂ ι' : Type u_1 k l n : ℕ s : Finset (Fin n) hk : Finset.card s = k hl : Finset.card sᶜ = l f : MultilinearMap R (fun x => M') M₂ x y : M' ⊢ (↑(↑(↑(curryFinFinset R M₂ M' hk hl) f) fun x_1 => x) fun x => y) = ↑f (Finset.piecewise s (fun x_1 => x) fun x => y) [PROOFSTEP] apply curryFinFinset_apply_const [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁷ : Ring R inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁵ : AddCommMonoid M' inst✝⁴ : AddCommMonoid M₂ inst✝³ : (i : ι) → Module R (M₁ i) inst✝² : Module R M' inst✝¹ : Module R M₂ inst✝ : Nonempty ι f : MultilinearMap R M₁ M₂ p : (i : ι) → Submodule R (M₁ i) c : R x✝¹ : M₂ x✝ : x✝¹ ∈ ↑f '' {v | ∀ (i : ι), v i ∈ p i} x : (i : ι) → M₁ i hx : x ∈ {v | ∀ (i : ι), v i ∈ p i} hf : ↑f x = x✝¹ ⊢ c • x✝¹ ∈ ↑f '' {v | ∀ (i : ι), v i ∈ p i} [PROOFSTEP] let ⟨i⟩ := ‹Nonempty ι› [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁷ : Ring R inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁵ : AddCommMonoid M' inst✝⁴ : AddCommMonoid M₂ inst✝³ : (i : ι) → Module R (M₁ i) inst✝² : Module R M' inst✝¹ : Module R M₂ inst✝ : Nonempty ι f : MultilinearMap R M₁ M₂ p : (i : ι) → Submodule R (M₁ i) c : R x✝¹ : M₂ x✝ : x✝¹ ∈ ↑f '' {v | ∀ (i : ι), v i ∈ p i} x : (i : ι) → M₁ i hx : x ∈ {v | ∀ (i : ι), v i ∈ p i} hf : ↑f x = x✝¹ i : ι ⊢ c • x✝¹ ∈ ↑f '' {v | ∀ (i : ι), v i ∈ p i} [PROOFSTEP] letI := Classical.decEq ι [GOAL] R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁷ : Ring R inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁵ : AddCommMonoid M' inst✝⁴ : AddCommMonoid M₂ inst✝³ : (i : ι) → Module R (M₁ i) inst✝² : Module R M' inst✝¹ : Module R M₂ inst✝ : Nonempty ι f : MultilinearMap R M₁ M₂ p : (i : ι) → Submodule R (M₁ i) c : R x✝¹ : M₂ x✝ : x✝¹ ∈ ↑f '' {v | ∀ (i : ι), v i ∈ p i} x : (i : ι) → M₁ i hx : x ∈ {v | ∀ (i : ι), v i ∈ p i} hf : ↑f x = x✝¹ i : ι this : DecidableEq ι := Classical.decEq ι ⊢ c • x✝¹ ∈ ↑f '' {v | ∀ (i : ι), v i ∈ p i} [PROOFSTEP] refine' ⟨update x i (c • x i), fun j => if hij : j = i then _ else _, hf ▸ _⟩ [GOAL] case refine'_1 R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁷ : Ring R inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁵ : AddCommMonoid M' inst✝⁴ : AddCommMonoid M₂ inst✝³ : (i : ι) → Module R (M₁ i) inst✝² : Module R M' inst✝¹ : Module R M₂ inst✝ : Nonempty ι f : MultilinearMap R M₁ M₂ p : (i : ι) → Submodule R (M₁ i) c : R x✝¹ : M₂ x✝ : x✝¹ ∈ ↑f '' {v | ∀ (i : ι), v i ∈ p i} x : (i : ι) → M₁ i hx : x ∈ {v | ∀ (i : ι), v i ∈ p i} hf : ↑f x = x✝¹ i : ι this : DecidableEq ι := Classical.decEq ι j : ι hij : j = i ⊢ update x i (c • x i) j ∈ p j [PROOFSTEP] rw [hij, update_same] [GOAL] case refine'_1 R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁷ : Ring R inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁵ : AddCommMonoid M' inst✝⁴ : AddCommMonoid M₂ inst✝³ : (i : ι) → Module R (M₁ i) inst✝² : Module R M' inst✝¹ : Module R M₂ inst✝ : Nonempty ι f : MultilinearMap R M₁ M₂ p : (i : ι) → Submodule R (M₁ i) c : R x✝¹ : M₂ x✝ : x✝¹ ∈ ↑f '' {v | ∀ (i : ι), v i ∈ p i} x : (i : ι) → M₁ i hx : x ∈ {v | ∀ (i : ι), v i ∈ p i} hf : ↑f x = x✝¹ i : ι this : DecidableEq ι := Classical.decEq ι j : ι hij : j = i ⊢ c • x i ∈ p i [PROOFSTEP] exact (p i).smul_mem _ (hx i) [GOAL] case refine'_2 R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁷ : Ring R inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁵ : AddCommMonoid M' inst✝⁴ : AddCommMonoid M₂ inst✝³ : (i : ι) → Module R (M₁ i) inst✝² : Module R M' inst✝¹ : Module R M₂ inst✝ : Nonempty ι f : MultilinearMap R M₁ M₂ p : (i : ι) → Submodule R (M₁ i) c : R x✝¹ : M₂ x✝ : x✝¹ ∈ ↑f '' {v | ∀ (i : ι), v i ∈ p i} x : (i : ι) → M₁ i hx : x ∈ {v | ∀ (i : ι), v i ∈ p i} hf : ↑f x = x✝¹ i : ι this : DecidableEq ι := Classical.decEq ι j : ι hij : ¬j = i ⊢ update x i (c • x i) j ∈ p j [PROOFSTEP] rw [update_noteq hij] [GOAL] case refine'_2 R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁷ : Ring R inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁵ : AddCommMonoid M' inst✝⁴ : AddCommMonoid M₂ inst✝³ : (i : ι) → Module R (M₁ i) inst✝² : Module R M' inst✝¹ : Module R M₂ inst✝ : Nonempty ι f : MultilinearMap R M₁ M₂ p : (i : ι) → Submodule R (M₁ i) c : R x✝¹ : M₂ x✝ : x✝¹ ∈ ↑f '' {v | ∀ (i : ι), v i ∈ p i} x : (i : ι) → M₁ i hx : x ∈ {v | ∀ (i : ι), v i ∈ p i} hf : ↑f x = x✝¹ i : ι this : DecidableEq ι := Classical.decEq ι j : ι hij : ¬j = i ⊢ x j ∈ p j [PROOFSTEP] exact hx j [GOAL] case refine'_3 R : Type u ι : Type u' n : ℕ M : Fin (Nat.succ n) → Type v M₁ : ι → Type v₁ M₂ : Type v₂ M₃ : Type v₃ M' : Type v' inst✝⁷ : Ring R inst✝⁶ : (i : ι) → AddCommMonoid (M₁ i) inst✝⁵ : AddCommMonoid M' inst✝⁴ : AddCommMonoid M₂ inst✝³ : (i : ι) → Module R (M₁ i) inst✝² : Module R M' inst✝¹ : Module R M₂ inst✝ : Nonempty ι f : MultilinearMap R M₁ M₂ p : (i : ι) → Submodule R (M₁ i) c : R x✝¹ : M₂ x✝ : x✝¹ ∈ ↑f '' {v | ∀ (i : ι), v i ∈ p i} x : (i : ι) → M₁ i hx : x ∈ {v | ∀ (i : ι), v i ∈ p i} hf : ↑f x = x✝¹ i : ι this : DecidableEq ι := Classical.decEq ι ⊢ ↑f (update x i (c • x i)) = c • ↑f x [PROOFSTEP] rw [f.map_smul, update_eq_self]
{"mathlib_filename": "Mathlib.LinearAlgebra.Multilinear.Basic", "llama_tokens": 279751}
[GOAL] R : Type u_1 inst✝⁴ : CommRing R I : Ideal R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M N : Type u_3 inst✝¹ : AddCommGroup N inst✝ : Module R N f : (n : ℕ) → M ⧸ I ^ n • ⊤ m n : ℕ h : m ≤ n ⊢ I ^ n • ⊤ ≤ LinearMap.ker (mkQ (I ^ m • ⊤)) [PROOFSTEP] rw [ker_mkQ] [GOAL] R : Type u_1 inst✝⁴ : CommRing R I : Ideal R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M N : Type u_3 inst✝¹ : AddCommGroup N inst✝ : Module R N f : (n : ℕ) → M ⧸ I ^ n • ⊤ m n : ℕ h : m ≤ n ⊢ I ^ n • ⊤ ≤ I ^ m • ⊤ [PROOFSTEP] exact smul_mono (Ideal.pow_le_pow h) le_rfl [GOAL] R : Type u_1 inst✝⁴ : CommRing R I : Ideal R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M N : Type u_3 inst✝¹ : AddCommGroup N inst✝ : Module R N a✝ b✝ : (n : ℕ) → M ⧸ I ^ n • ⊤ hf : a✝ ∈ {f | ∀ {m n : ℕ} (h : m ≤ n), ↑(liftQ (I ^ n • ⊤) (mkQ (I ^ m • ⊤)) (_ : I ^ n • ⊤ ≤ LinearMap.ker (mkQ (I ^ m • ⊤)))) (f n) = f m} hg : b✝ ∈ {f | ∀ {m n : ℕ} (h : m ≤ n), ↑(liftQ (I ^ n • ⊤) (mkQ (I ^ m • ⊤)) (_ : I ^ n • ⊤ ≤ LinearMap.ker (mkQ (I ^ m • ⊤)))) (f n) = f m} m n : ℕ hmn : m ≤ n ⊢ ↑(liftQ (I ^ n • ⊤) (mkQ (I ^ m • ⊤)) (_ : I ^ n • ⊤ ≤ LinearMap.ker (mkQ (I ^ m • ⊤)))) ((a✝ + b✝) n) = (a✝ + b✝) m [PROOFSTEP] rw [Pi.add_apply, Pi.add_apply, LinearMap.map_add, hf hmn, hg hmn] [GOAL] R : Type u_1 inst✝⁴ : CommRing R I : Ideal R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M N : Type u_3 inst✝¹ : AddCommGroup N inst✝ : Module R N m✝ n✝ : ℕ hmn : m✝ ≤ n✝ ⊢ ↑(liftQ (I ^ n✝ • ⊤) (mkQ (I ^ m✝ • ⊤)) (_ : I ^ n✝ • ⊤ ≤ LinearMap.ker (mkQ (I ^ m✝ • ⊤)))) (OfNat.ofNat 0 n✝) = OfNat.ofNat 0 m✝ [PROOFSTEP] rw [Pi.zero_apply, Pi.zero_apply, LinearMap.map_zero] [GOAL] R : Type u_1 inst✝⁴ : CommRing R I : Ideal R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M N : Type u_3 inst✝¹ : AddCommGroup N inst✝ : Module R N c : R f : (n : ℕ) → M ⧸ I ^ n • ⊤ hf : f ∈ { toAddSubsemigroup := { carrier := {f | ∀ {m n : ℕ} (h : m ≤ n), ↑(liftQ (I ^ n • ⊤) (mkQ (I ^ m • ⊤)) (_ : I ^ n • ⊤ ≤ LinearMap.ker (mkQ (I ^ m • ⊤)))) (f n) = f m}, add_mem' := (_ : ∀ {a b : (n : ℕ) → M ⧸ I ^ n • ⊤}, a ∈ {f | ∀ {m n : ℕ} (h : m ≤ n), ↑(liftQ (I ^ n • ⊤) (mkQ (I ^ m • ⊤)) (_ : I ^ n • ⊤ ≤ LinearMap.ker (mkQ (I ^ m • ⊤)))) (f n) = f m} → b ∈ {f | ∀ {m n : ℕ} (h : m ≤ n), ↑(liftQ (I ^ n • ⊤) (mkQ (I ^ m • ⊤)) (_ : I ^ n • ⊤ ≤ LinearMap.ker (mkQ (I ^ m • ⊤)))) (f n) = f m} → ∀ (m n : ℕ) (hmn : m ≤ n), ↑(liftQ (I ^ n • ⊤) (mkQ (I ^ m • ⊤)) (_ : I ^ n • ⊤ ≤ LinearMap.ker (mkQ (I ^ m • ⊤)))) ((a + b) n) = (a + b) m) }, zero_mem' := (_ : ∀ {m n : ℕ} (hmn : m ≤ n), ↑(liftQ (I ^ n • ⊤) (mkQ (I ^ m • ⊤)) (_ : I ^ n • ⊤ ≤ LinearMap.ker (mkQ (I ^ m • ⊤)))) (OfNat.ofNat 0 n) = OfNat.ofNat 0 m) }.toAddSubsemigroup.carrier m n : ℕ hmn : m ≤ n ⊢ ↑(liftQ (I ^ n • ⊤) (mkQ (I ^ m • ⊤)) (_ : I ^ n • ⊤ ≤ LinearMap.ker (mkQ (I ^ m • ⊤)))) ((c • f) n) = (c • f) m [PROOFSTEP] rw [Pi.smul_apply, Pi.smul_apply, LinearMap.map_smul, hf hmn] [GOAL] R : Type u_1 inst✝⁴ : CommRing R I : Ideal R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M N : Type u_3 inst✝¹ : AddCommGroup N inst✝ : Module R N x : M hx : ∀ (n : ℕ), x ≡ 0 [SMOD ⊥ ^ n • ⊤] ⊢ x = 0 [PROOFSTEP] simpa only [pow_one ⊥, bot_smul, SModEq.bot] using hx 1 [GOAL] R : Type u_1 inst✝⁴ : CommRing R I : Ideal R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M N : Type u_3 inst✝¹ : AddCommGroup N inst✝ : Module R N h : IsHausdorff ⊤ M x y : M n : ℕ ⊢ x - y ≡ 0 [SMOD ⊤ ^ n • ⊤] [PROOFSTEP] rw [Ideal.top_pow, top_smul] [GOAL] R : Type u_1 inst✝⁴ : CommRing R I : Ideal R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M N : Type u_3 inst✝¹ : AddCommGroup N inst✝ : Module R N h : IsHausdorff ⊤ M x y : M n : ℕ ⊢ x - y ≡ 0 [SMOD ⊤] [PROOFSTEP] exact SModEq.top [GOAL] R : Type u_1 inst✝⁴ : CommRing R I : Ideal R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M N : Type u_3 inst✝¹ : AddCommGroup N inst✝ : Module R N x✝ : Hausdorffification I M x : M hx : ∀ (n : ℕ), Quotient.mk'' x ≡ 0 [SMOD I ^ n • ⊤] n : ℕ ⊢ x ∈ I ^ n • ⊤ [PROOFSTEP] have := comap_map_mkQ (⨅ n : ℕ, I ^ n • ⊤ : Submodule R M) (I ^ n • ⊤) [GOAL] R : Type u_1 inst✝⁴ : CommRing R I : Ideal R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M N : Type u_3 inst✝¹ : AddCommGroup N inst✝ : Module R N x✝ : Hausdorffification I M x : M hx : ∀ (n : ℕ), Quotient.mk'' x ≡ 0 [SMOD I ^ n • ⊤] n : ℕ this : comap (mkQ (⨅ (n : ℕ), I ^ n • ⊤)) (map (mkQ (⨅ (n : ℕ), I ^ n • ⊤)) (I ^ n • ⊤)) = (⨅ (n : ℕ), I ^ n • ⊤) ⊔ I ^ n • ⊤ ⊢ x ∈ I ^ n • ⊤ [PROOFSTEP] simp only [sup_of_le_right (iInf_le (fun n => (I ^ n • ⊤ : Submodule R M)) n)] at this [GOAL] R : Type u_1 inst✝⁴ : CommRing R I : Ideal R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M N : Type u_3 inst✝¹ : AddCommGroup N inst✝ : Module R N x✝ : Hausdorffification I M x : M hx : ∀ (n : ℕ), Quotient.mk'' x ≡ 0 [SMOD I ^ n • ⊤] n : ℕ this : comap (mkQ (⨅ (n : ℕ), I ^ n • ⊤)) (map (mkQ (⨅ (n : ℕ), I ^ n • ⊤)) (I ^ n • ⊤)) = I ^ n • ⊤ ⊢ x ∈ I ^ n • ⊤ [PROOFSTEP] rw [← this, map_smul'', mem_comap, Submodule.map_top, range_mkQ, ← SModEq.zero] [GOAL] R : Type u_1 inst✝⁴ : CommRing R I : Ideal R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M N : Type u_3 inst✝¹ : AddCommGroup N inst✝ : Module R N x✝ : Hausdorffification I M x : M hx : ∀ (n : ℕ), Quotient.mk'' x ≡ 0 [SMOD I ^ n • ⊤] n : ℕ this : comap (mkQ (⨅ (n : ℕ), I ^ n • ⊤)) (map (mkQ (⨅ (n : ℕ), I ^ n • ⊤)) (I ^ n • ⊤)) = I ^ n • ⊤ ⊢ ↑(mkQ (⨅ (n : ℕ), I ^ n • ⊤)) x ≡ 0 [SMOD I ^ n • ⊤] [PROOFSTEP] exact hx n [GOAL] R : Type u_1 inst✝⁴ : CommRing R I : Ideal R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M N : Type u_3 inst✝¹ : AddCommGroup N inst✝ : Module R N h : IsHausdorff I N f : M →ₗ[R] N n : ℕ ⊢ map f (I ^ n • ⊤) ≤ I ^ n • ⊤ [PROOFSTEP] rw [map_smul''] [GOAL] R : Type u_1 inst✝⁴ : CommRing R I : Ideal R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M N : Type u_3 inst✝¹ : AddCommGroup N inst✝ : Module R N h : IsHausdorff I N f : M →ₗ[R] N n : ℕ ⊢ I ^ n • map f ⊤ ≤ I ^ n • ⊤ [PROOFSTEP] exact smul_mono le_rfl le_top [GOAL] R : Type u_1 inst✝⁴ : CommRing R I : Ideal R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M N : Type u_3 inst✝¹ : AddCommGroup N inst✝ : Module R N h : IsHausdorff I N f : M →ₗ[R] N g : Hausdorffification I M →ₗ[R] N hg : LinearMap.comp g (of I M) = f x✝ : Hausdorffification I M x : M ⊢ ↑g (↑(of I M) x) = ↑(lift I f) (↑(of I M) x) [PROOFSTEP] rw [lift_of, ← hg, LinearMap.comp_apply] [GOAL] R : Type u_1 inst✝⁴ : CommRing R I : Ideal R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M N : Type u_3 inst✝¹ : AddCommGroup N inst✝ : Module R N ⊢ IsPrecomplete ⊥ M [PROOFSTEP] refine' ⟨fun f hf => ⟨f 1, fun n => _⟩⟩ [GOAL] R : Type u_1 inst✝⁴ : CommRing R I : Ideal R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M N : Type u_3 inst✝¹ : AddCommGroup N inst✝ : Module R N f : ℕ → M hf : ∀ {m n : ℕ}, m ≤ n → f m ≡ f n [SMOD ⊥ ^ m • ⊤] n : ℕ ⊢ f n ≡ f 1 [SMOD ⊥ ^ n • ⊤] [PROOFSTEP] cases' n with n [GOAL] case zero R : Type u_1 inst✝⁴ : CommRing R I : Ideal R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M N : Type u_3 inst✝¹ : AddCommGroup N inst✝ : Module R N f : ℕ → M hf : ∀ {m n : ℕ}, m ≤ n → f m ≡ f n [SMOD ⊥ ^ m • ⊤] ⊢ f Nat.zero ≡ f 1 [SMOD ⊥ ^ Nat.zero • ⊤] [PROOFSTEP] rw [pow_zero, Ideal.one_eq_top, top_smul] [GOAL] case zero R : Type u_1 inst✝⁴ : CommRing R I : Ideal R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M N : Type u_3 inst✝¹ : AddCommGroup N inst✝ : Module R N f : ℕ → M hf : ∀ {m n : ℕ}, m ≤ n → f m ≡ f n [SMOD ⊥ ^ m • ⊤] ⊢ f Nat.zero ≡ f 1 [SMOD ⊤] [PROOFSTEP] exact SModEq.top [GOAL] case succ R : Type u_1 inst✝⁴ : CommRing R I : Ideal R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M N : Type u_3 inst✝¹ : AddCommGroup N inst✝ : Module R N f : ℕ → M hf : ∀ {m n : ℕ}, m ≤ n → f m ≡ f n [SMOD ⊥ ^ m • ⊤] n : ℕ ⊢ f (Nat.succ n) ≡ f 1 [SMOD ⊥ ^ Nat.succ n • ⊤] [PROOFSTEP] specialize hf (Nat.le_add_left 1 n) [GOAL] case succ R : Type u_1 inst✝⁴ : CommRing R I : Ideal R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M N : Type u_3 inst✝¹ : AddCommGroup N inst✝ : Module R N f : ℕ → M n : ℕ hf : f 1 ≡ f (n + 1) [SMOD ⊥ ^ 1 • ⊤] ⊢ f (Nat.succ n) ≡ f 1 [SMOD ⊥ ^ Nat.succ n • ⊤] [PROOFSTEP] rw [pow_one, bot_smul, SModEq.bot] at hf [GOAL] case succ R : Type u_1 inst✝⁴ : CommRing R I : Ideal R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M N : Type u_3 inst✝¹ : AddCommGroup N inst✝ : Module R N f : ℕ → M n : ℕ hf : f 1 = f (n + 1) ⊢ f (Nat.succ n) ≡ f 1 [SMOD ⊥ ^ Nat.succ n • ⊤] [PROOFSTEP] rw [hf] [GOAL] R : Type u_1 inst✝⁴ : CommRing R I : Ideal R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M N : Type u_3 inst✝¹ : AddCommGroup N inst✝ : Module R N f : ℕ → M x✝ : ∀ {m n : ℕ}, m ≤ n → f m ≡ f n [SMOD ⊤ ^ m • ⊤] n : ℕ ⊢ f n ≡ 0 [SMOD ⊤ ^ n • ⊤] [PROOFSTEP] rw [Ideal.top_pow, top_smul] [GOAL] R : Type u_1 inst✝⁴ : CommRing R I : Ideal R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M N : Type u_3 inst✝¹ : AddCommGroup N inst✝ : Module R N f : ℕ → M x✝ : ∀ {m n : ℕ}, m ≤ n → f m ≡ f n [SMOD ⊤ ^ m • ⊤] n : ℕ ⊢ f n ≡ 0 [SMOD ⊤] [PROOFSTEP] exact SModEq.top [GOAL] R : Type u_1 inst✝⁵ : CommRing R I : Ideal R M : Type u_2 inst✝⁴ : AddCommGroup M inst✝³ : Module R M N : Type u_3 inst✝² : AddCommGroup N inst✝¹ : Module R N inst✝ : Subsingleton M f : ℕ → M x✝ : ∀ {m n : ℕ}, m ≤ n → f m ≡ f n [SMOD I ^ m • ⊤] n : ℕ ⊢ f n ≡ 0 [SMOD I ^ n • ⊤] [PROOFSTEP] rw [Subsingleton.elim (f n) 0] [GOAL] R : Type u_1 inst✝⁴ : CommRing R I : Ideal R M : Type u_2 inst✝³ : AddCommGroup M inst✝² : Module R M N : Type u_3 inst✝¹ : AddCommGroup N inst✝ : Module R N x : { x // x ∈ adicCompletion I M } hx : ∀ (n : ℕ), x ≡ 0 [SMOD I ^ n • ⊤] n : ℕ x✝¹ x✝ : { x // x ∈ adicCompletion I M } ih1 : ↑(eval I M n) x✝¹ = ↑(eval I M n) 0 ih2 : ↑(eval I M n) x✝ = ↑(eval I M n) 0 ⊢ ↑(eval I M n) (x✝¹ + x✝) = ↑(eval I M n) 0 [PROOFSTEP] rw [LinearMap.map_add, ih1, ih2, LinearMap.map_zero, add_zero] [GOAL] R : Type u_1 inst✝⁵ : CommRing R I : Ideal R M : Type u_2 inst✝⁴ : AddCommGroup M inst✝³ : Module R M N : Type u_3 inst✝² : AddCommGroup N inst✝¹ : Module R N inst✝ : IsAdicComplete I R ⊢ I ≤ Ideal.jacobson ⊥ [PROOFSTEP] intro x hx [GOAL] R : Type u_1 inst✝⁵ : CommRing R I : Ideal R M : Type u_2 inst✝⁴ : AddCommGroup M inst✝³ : Module R M N : Type u_3 inst✝² : AddCommGroup N inst✝¹ : Module R N inst✝ : IsAdicComplete I R x : R hx : x ∈ I ⊢ x ∈ Ideal.jacobson ⊥ [PROOFSTEP] rw [← Ideal.neg_mem_iff, Ideal.mem_jacobson_bot] [GOAL] R : Type u_1 inst✝⁵ : CommRing R I : Ideal R M : Type u_2 inst✝⁴ : AddCommGroup M inst✝³ : Module R M N : Type u_3 inst✝² : AddCommGroup N inst✝¹ : Module R N inst✝ : IsAdicComplete I R x : R hx : x ∈ I ⊢ ∀ (y : R), IsUnit (-x * y + 1) [PROOFSTEP] intro y [GOAL] R : Type u_1 inst✝⁵ : CommRing R I : Ideal R M : Type u_2 inst✝⁴ : AddCommGroup M inst✝³ : Module R M N : Type u_3 inst✝² : AddCommGroup N inst✝¹ : Module R N inst✝ : IsAdicComplete I R x : R hx : x ∈ I y : R ⊢ IsUnit (-x * y + 1) [PROOFSTEP] rw [add_comm] [GOAL] R : Type u_1 inst✝⁵ : CommRing R I : Ideal R M : Type u_2 inst✝⁴ : AddCommGroup M inst✝³ : Module R M N : Type u_3 inst✝² : AddCommGroup N inst✝¹ : Module R N inst✝ : IsAdicComplete I R x : R hx : x ∈ I y : R ⊢ IsUnit (1 + -x * y) [PROOFSTEP] let f : ℕ → R := fun n => ∑ i in range n, (x * y) ^ i [GOAL] R : Type u_1 inst✝⁵ : CommRing R I : Ideal R M : Type u_2 inst✝⁴ : AddCommGroup M inst✝³ : Module R M N : Type u_3 inst✝² : AddCommGroup N inst✝¹ : Module R N inst✝ : IsAdicComplete I R x : R hx : x ∈ I y : R f : ℕ → R := fun n => ∑ i in range n, (x * y) ^ i ⊢ IsUnit (1 + -x * y) [PROOFSTEP] have hf : ∀ m n, m ≤ n → f m ≡ f n [SMOD I ^ m • (⊤ : Submodule R R)] := by intro m n h simp only [Algebra.id.smul_eq_mul, Ideal.mul_top, SModEq.sub_mem] rw [← add_tsub_cancel_of_le h, Finset.sum_range_add, ← sub_sub, sub_self, zero_sub, @neg_mem_iff] apply Submodule.sum_mem intro n _ rw [mul_pow, pow_add, mul_assoc] exact Ideal.mul_mem_right _ (I ^ m) (Ideal.pow_mem_pow hx m) [GOAL] R : Type u_1 inst✝⁵ : CommRing R I : Ideal R M : Type u_2 inst✝⁴ : AddCommGroup M inst✝³ : Module R M N : Type u_3 inst✝² : AddCommGroup N inst✝¹ : Module R N inst✝ : IsAdicComplete I R x : R hx : x ∈ I y : R f : ℕ → R := fun n => ∑ i in range n, (x * y) ^ i ⊢ ∀ (m n : ℕ), m ≤ n → f m ≡ f n [SMOD I ^ m • ⊤] [PROOFSTEP] intro m n h [GOAL] R : Type u_1 inst✝⁵ : CommRing R I : Ideal R M : Type u_2 inst✝⁴ : AddCommGroup M inst✝³ : Module R M N : Type u_3 inst✝² : AddCommGroup N inst✝¹ : Module R N inst✝ : IsAdicComplete I R x : R hx : x ∈ I y : R f : ℕ → R := fun n => ∑ i in range n, (x * y) ^ i m n : ℕ h : m ≤ n ⊢ f m ≡ f n [SMOD I ^ m • ⊤] [PROOFSTEP] simp only [Algebra.id.smul_eq_mul, Ideal.mul_top, SModEq.sub_mem] [GOAL] R : Type u_1 inst✝⁵ : CommRing R I : Ideal R M : Type u_2 inst✝⁴ : AddCommGroup M inst✝³ : Module R M N : Type u_3 inst✝² : AddCommGroup N inst✝¹ : Module R N inst✝ : IsAdicComplete I R x : R hx : x ∈ I y : R f : ℕ → R := fun n => ∑ i in range n, (x * y) ^ i m n : ℕ h : m ≤ n ⊢ ∑ i in range m, (x * y) ^ i - ∑ i in range n, (x * y) ^ i ∈ I ^ m [PROOFSTEP] rw [← add_tsub_cancel_of_le h, Finset.sum_range_add, ← sub_sub, sub_self, zero_sub, @neg_mem_iff] [GOAL] R : Type u_1 inst✝⁵ : CommRing R I : Ideal R M : Type u_2 inst✝⁴ : AddCommGroup M inst✝³ : Module R M N : Type u_3 inst✝² : AddCommGroup N inst✝¹ : Module R N inst✝ : IsAdicComplete I R x : R hx : x ∈ I y : R f : ℕ → R := fun n => ∑ i in range n, (x * y) ^ i m n : ℕ h : m ≤ n ⊢ ∑ x_1 in range (n - m), (x * y) ^ (m + x_1) ∈ I ^ m [PROOFSTEP] apply Submodule.sum_mem [GOAL] case a R : Type u_1 inst✝⁵ : CommRing R I : Ideal R M : Type u_2 inst✝⁴ : AddCommGroup M inst✝³ : Module R M N : Type u_3 inst✝² : AddCommGroup N inst✝¹ : Module R N inst✝ : IsAdicComplete I R x : R hx : x ∈ I y : R f : ℕ → R := fun n => ∑ i in range n, (x * y) ^ i m n : ℕ h : m ≤ n ⊢ ∀ (c : ℕ), c ∈ range (n - m) → (x * y) ^ (m + c) ∈ I ^ m [PROOFSTEP] intro n _ [GOAL] case a R : Type u_1 inst✝⁵ : CommRing R I : Ideal R M : Type u_2 inst✝⁴ : AddCommGroup M inst✝³ : Module R M N : Type u_3 inst✝² : AddCommGroup N inst✝¹ : Module R N inst✝ : IsAdicComplete I R x : R hx : x ∈ I y : R f : ℕ → R := fun n => ∑ i in range n, (x * y) ^ i m n✝ : ℕ h : m ≤ n✝ n : ℕ a✝ : n ∈ range (n✝ - m) ⊢ (x * y) ^ (m + n) ∈ I ^ m [PROOFSTEP] rw [mul_pow, pow_add, mul_assoc] [GOAL] case a R : Type u_1 inst✝⁵ : CommRing R I : Ideal R M : Type u_2 inst✝⁴ : AddCommGroup M inst✝³ : Module R M N : Type u_3 inst✝² : AddCommGroup N inst✝¹ : Module R N inst✝ : IsAdicComplete I R x : R hx : x ∈ I y : R f : ℕ → R := fun n => ∑ i in range n, (x * y) ^ i m n✝ : ℕ h : m ≤ n✝ n : ℕ a✝ : n ∈ range (n✝ - m) ⊢ x ^ m * (x ^ n * y ^ (m + n)) ∈ I ^ m [PROOFSTEP] exact Ideal.mul_mem_right _ (I ^ m) (Ideal.pow_mem_pow hx m) [GOAL] R : Type u_1 inst✝⁵ : CommRing R I : Ideal R M : Type u_2 inst✝⁴ : AddCommGroup M inst✝³ : Module R M N : Type u_3 inst✝² : AddCommGroup N inst✝¹ : Module R N inst✝ : IsAdicComplete I R x : R hx : x ∈ I y : R f : ℕ → R := fun n => ∑ i in range n, (x * y) ^ i hf : ∀ (m n : ℕ), m ≤ n → f m ≡ f n [SMOD I ^ m • ⊤] ⊢ IsUnit (1 + -x * y) [PROOFSTEP] obtain ⟨L, hL⟩ := IsPrecomplete.prec toIsPrecomplete @hf [GOAL] case intro R : Type u_1 inst✝⁵ : CommRing R I : Ideal R M : Type u_2 inst✝⁴ : AddCommGroup M inst✝³ : Module R M N : Type u_3 inst✝² : AddCommGroup N inst✝¹ : Module R N inst✝ : IsAdicComplete I R x : R hx : x ∈ I y : R f : ℕ → R := fun n => ∑ i in range n, (x * y) ^ i hf : ∀ (m n : ℕ), m ≤ n → f m ≡ f n [SMOD I ^ m • ⊤] L : R hL : ∀ (n : ℕ), f n ≡ L [SMOD I ^ n • ⊤] ⊢ IsUnit (1 + -x * y) [PROOFSTEP] rw [isUnit_iff_exists_inv] [GOAL] case intro R : Type u_1 inst✝⁵ : CommRing R I : Ideal R M : Type u_2 inst✝⁴ : AddCommGroup M inst✝³ : Module R M N : Type u_3 inst✝² : AddCommGroup N inst✝¹ : Module R N inst✝ : IsAdicComplete I R x : R hx : x ∈ I y : R f : ℕ → R := fun n => ∑ i in range n, (x * y) ^ i hf : ∀ (m n : ℕ), m ≤ n → f m ≡ f n [SMOD I ^ m • ⊤] L : R hL : ∀ (n : ℕ), f n ≡ L [SMOD I ^ n • ⊤] ⊢ ∃ b, (1 + -x * y) * b = 1 [PROOFSTEP] use L [GOAL] case h R : Type u_1 inst✝⁵ : CommRing R I : Ideal R M : Type u_2 inst✝⁴ : AddCommGroup M inst✝³ : Module R M N : Type u_3 inst✝² : AddCommGroup N inst✝¹ : Module R N inst✝ : IsAdicComplete I R x : R hx : x ∈ I y : R f : ℕ → R := fun n => ∑ i in range n, (x * y) ^ i hf : ∀ (m n : ℕ), m ≤ n → f m ≡ f n [SMOD I ^ m • ⊤] L : R hL : ∀ (n : ℕ), f n ≡ L [SMOD I ^ n • ⊤] ⊢ (1 + -x * y) * L = 1 [PROOFSTEP] rw [← sub_eq_zero, neg_mul] [GOAL] case h R : Type u_1 inst✝⁵ : CommRing R I : Ideal R M : Type u_2 inst✝⁴ : AddCommGroup M inst✝³ : Module R M N : Type u_3 inst✝² : AddCommGroup N inst✝¹ : Module R N inst✝ : IsAdicComplete I R x : R hx : x ∈ I y : R f : ℕ → R := fun n => ∑ i in range n, (x * y) ^ i hf : ∀ (m n : ℕ), m ≤ n → f m ≡ f n [SMOD I ^ m • ⊤] L : R hL : ∀ (n : ℕ), f n ≡ L [SMOD I ^ n • ⊤] ⊢ (1 + -(x * y)) * L - 1 = 0 [PROOFSTEP] apply IsHausdorff.haus (toIsHausdorff : IsHausdorff I R) [GOAL] case h.a R : Type u_1 inst✝⁵ : CommRing R I : Ideal R M : Type u_2 inst✝⁴ : AddCommGroup M inst✝³ : Module R M N : Type u_3 inst✝² : AddCommGroup N inst✝¹ : Module R N inst✝ : IsAdicComplete I R x : R hx : x ∈ I y : R f : ℕ → R := fun n => ∑ i in range n, (x * y) ^ i hf : ∀ (m n : ℕ), m ≤ n → f m ≡ f n [SMOD I ^ m • ⊤] L : R hL : ∀ (n : ℕ), f n ≡ L [SMOD I ^ n • ⊤] ⊢ ∀ (n : ℕ), (1 + -(x * y)) * L - 1 ≡ 0 [SMOD I ^ n • ⊤] [PROOFSTEP] intro n [GOAL] case h.a R : Type u_1 inst✝⁵ : CommRing R I : Ideal R M : Type u_2 inst✝⁴ : AddCommGroup M inst✝³ : Module R M N : Type u_3 inst✝² : AddCommGroup N inst✝¹ : Module R N inst✝ : IsAdicComplete I R x : R hx : x ∈ I y : R f : ℕ → R := fun n => ∑ i in range n, (x * y) ^ i hf : ∀ (m n : ℕ), m ≤ n → f m ≡ f n [SMOD I ^ m • ⊤] L : R hL : ∀ (n : ℕ), f n ≡ L [SMOD I ^ n • ⊤] n : ℕ ⊢ (1 + -(x * y)) * L - 1 ≡ 0 [SMOD I ^ n • ⊤] [PROOFSTEP] specialize hL n [GOAL] case h.a R : Type u_1 inst✝⁵ : CommRing R I : Ideal R M : Type u_2 inst✝⁴ : AddCommGroup M inst✝³ : Module R M N : Type u_3 inst✝² : AddCommGroup N inst✝¹ : Module R N inst✝ : IsAdicComplete I R x : R hx : x ∈ I y : R f : ℕ → R := fun n => ∑ i in range n, (x * y) ^ i hf : ∀ (m n : ℕ), m ≤ n → f m ≡ f n [SMOD I ^ m • ⊤] L : R n : ℕ hL : f n ≡ L [SMOD I ^ n • ⊤] ⊢ (1 + -(x * y)) * L - 1 ≡ 0 [SMOD I ^ n • ⊤] [PROOFSTEP] rw [SModEq.sub_mem, Algebra.id.smul_eq_mul, Ideal.mul_top] at hL ⊢ [GOAL] case h.a R : Type u_1 inst✝⁵ : CommRing R I : Ideal R M : Type u_2 inst✝⁴ : AddCommGroup M inst✝³ : Module R M N : Type u_3 inst✝² : AddCommGroup N inst✝¹ : Module R N inst✝ : IsAdicComplete I R x : R hx : x ∈ I y : R f : ℕ → R := fun n => ∑ i in range n, (x * y) ^ i hf : ∀ (m n : ℕ), m ≤ n → f m ≡ f n [SMOD I ^ m • ⊤] L : R n : ℕ hL : f n - L ∈ I ^ n ⊢ (1 + -(x * y)) * L - 1 - 0 ∈ I ^ n [PROOFSTEP] rw [sub_zero] [GOAL] case h.a R : Type u_1 inst✝⁵ : CommRing R I : Ideal R M : Type u_2 inst✝⁴ : AddCommGroup M inst✝³ : Module R M N : Type u_3 inst✝² : AddCommGroup N inst✝¹ : Module R N inst✝ : IsAdicComplete I R x : R hx : x ∈ I y : R f : ℕ → R := fun n => ∑ i in range n, (x * y) ^ i hf : ∀ (m n : ℕ), m ≤ n → f m ≡ f n [SMOD I ^ m • ⊤] L : R n : ℕ hL : f n - L ∈ I ^ n ⊢ (1 + -(x * y)) * L - 1 ∈ I ^ n [PROOFSTEP] suffices (1 - x * y) * f n - 1 ∈ I ^ n by convert Ideal.sub_mem _ this (Ideal.mul_mem_left _ (1 + -(x * y)) hL) using 1 ring [GOAL] R : Type u_1 inst✝⁵ : CommRing R I : Ideal R M : Type u_2 inst✝⁴ : AddCommGroup M inst✝³ : Module R M N : Type u_3 inst✝² : AddCommGroup N inst✝¹ : Module R N inst✝ : IsAdicComplete I R x : R hx : x ∈ I y : R f : ℕ → R := fun n => ∑ i in range n, (x * y) ^ i hf : ∀ (m n : ℕ), m ≤ n → f m ≡ f n [SMOD I ^ m • ⊤] L : R n : ℕ hL : f n - L ∈ I ^ n this : (1 - x * y) * f n - 1 ∈ I ^ n ⊢ (1 + -(x * y)) * L - 1 ∈ I ^ n [PROOFSTEP] convert Ideal.sub_mem _ this (Ideal.mul_mem_left _ (1 + -(x * y)) hL) using 1 [GOAL] case h.e'_4 R : Type u_1 inst✝⁵ : CommRing R I : Ideal R M : Type u_2 inst✝⁴ : AddCommGroup M inst✝³ : Module R M N : Type u_3 inst✝² : AddCommGroup N inst✝¹ : Module R N inst✝ : IsAdicComplete I R x : R hx : x ∈ I y : R f : ℕ → R := fun n => ∑ i in range n, (x * y) ^ i hf : ∀ (m n : ℕ), m ≤ n → f m ≡ f n [SMOD I ^ m • ⊤] L : R n : ℕ hL : f n - L ∈ I ^ n this : (1 - x * y) * f n - 1 ∈ I ^ n ⊢ (1 + -(x * y)) * L - 1 = (1 - x * y) * f n - 1 - (1 + -(x * y)) * (f n - L) [PROOFSTEP] ring [GOAL] case h.a R : Type u_1 inst✝⁵ : CommRing R I : Ideal R M : Type u_2 inst✝⁴ : AddCommGroup M inst✝³ : Module R M N : Type u_3 inst✝² : AddCommGroup N inst✝¹ : Module R N inst✝ : IsAdicComplete I R x : R hx : x ∈ I y : R f : ℕ → R := fun n => ∑ i in range n, (x * y) ^ i hf : ∀ (m n : ℕ), m ≤ n → f m ≡ f n [SMOD I ^ m • ⊤] L : R n : ℕ hL : f n - L ∈ I ^ n ⊢ (1 - x * y) * f n - 1 ∈ I ^ n [PROOFSTEP] cases n [GOAL] case h.a.zero R : Type u_1 inst✝⁵ : CommRing R I : Ideal R M : Type u_2 inst✝⁴ : AddCommGroup M inst✝³ : Module R M N : Type u_3 inst✝² : AddCommGroup N inst✝¹ : Module R N inst✝ : IsAdicComplete I R x : R hx : x ∈ I y : R f : ℕ → R := fun n => ∑ i in range n, (x * y) ^ i hf : ∀ (m n : ℕ), m ≤ n → f m ≡ f n [SMOD I ^ m • ⊤] L : R hL : f Nat.zero - L ∈ I ^ Nat.zero ⊢ (1 - x * y) * f Nat.zero - 1 ∈ I ^ Nat.zero [PROOFSTEP] simp only [Ideal.one_eq_top, pow_zero, Nat.zero_eq, mem_top] [GOAL] case h.a.succ R : Type u_1 inst✝⁵ : CommRing R I : Ideal R M : Type u_2 inst✝⁴ : AddCommGroup M inst✝³ : Module R M N : Type u_3 inst✝² : AddCommGroup N inst✝¹ : Module R N inst✝ : IsAdicComplete I R x : R hx : x ∈ I y : R f : ℕ → R := fun n => ∑ i in range n, (x * y) ^ i hf : ∀ (m n : ℕ), m ≤ n → f m ≡ f n [SMOD I ^ m • ⊤] L : R n✝ : ℕ hL : f (Nat.succ n✝) - L ∈ I ^ Nat.succ n✝ ⊢ (1 - x * y) * f (Nat.succ n✝) - 1 ∈ I ^ Nat.succ n✝ [PROOFSTEP] rw [← neg_sub _ (1 : R), neg_mul, mul_geom_sum, neg_sub, sub_sub, add_comm, ← sub_sub, sub_self, zero_sub, @neg_mem_iff, mul_pow] [GOAL] case h.a.succ R : Type u_1 inst✝⁵ : CommRing R I : Ideal R M : Type u_2 inst✝⁴ : AddCommGroup M inst✝³ : Module R M N : Type u_3 inst✝² : AddCommGroup N inst✝¹ : Module R N inst✝ : IsAdicComplete I R x : R hx : x ∈ I y : R f : ℕ → R := fun n => ∑ i in range n, (x * y) ^ i hf : ∀ (m n : ℕ), m ≤ n → f m ≡ f n [SMOD I ^ m • ⊤] L : R n✝ : ℕ hL : f (Nat.succ n✝) - L ∈ I ^ Nat.succ n✝ ⊢ x ^ Nat.succ n✝ * y ^ Nat.succ n✝ ∈ I ^ Nat.succ n✝ [PROOFSTEP] exact Ideal.mul_mem_right _ (I ^ _) (Ideal.pow_mem_pow hx _)
{"mathlib_filename": "Mathlib.LinearAlgebra.AdicCompletion", "llama_tokens": 12432}
[GOAL] α : Type u_1 β : Type u_2 m : Type u_3 n : Type u_4 R : Type u_5 inst✝ : AddGroup n ⊢ Injective circulant [PROOFSTEP] intro v w h [GOAL] α : Type u_1 β : Type u_2 m : Type u_3 n : Type u_4 R : Type u_5 inst✝ : AddGroup n v w : n → α h : circulant v = circulant w ⊢ v = w [PROOFSTEP] ext k [GOAL] case h α : Type u_1 β : Type u_2 m : Type u_3 n : Type u_4 R : Type u_5 inst✝ : AddGroup n v w : n → α h : circulant v = circulant w k : n ⊢ v k = w k [PROOFSTEP] rw [← circulant_col_zero_eq v, ← circulant_col_zero_eq w, h] [GOAL] α : Type u_1 β : Type u_2 m : Type u_3 n : Type u_4 R : Type u_5 ⊢ Injective fun v => circulant v [PROOFSTEP] simp [Injective] [GOAL] α : Type u_1 β : Type u_2 m : Type u_3 n : Type u_4 R : Type u_5 inst✝ : AddGroup n v : n → α ⊢ (circulant v)ᵀ = circulant fun i => v (-i) [PROOFSTEP] ext [GOAL] case a.h α : Type u_1 β : Type u_2 m : Type u_3 n : Type u_4 R : Type u_5 inst✝ : AddGroup n v : n → α i✝ x✝ : n ⊢ (circulant v)ᵀ i✝ x✝ = circulant (fun i => v (-i)) i✝ x✝ [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 m : Type u_3 n : Type u_4 R : Type u_5 inst✝¹ : Star α inst✝ : AddGroup n v : n → α ⊢ (circulant v)ᴴ = circulant (star fun i => v (-i)) [PROOFSTEP] ext [GOAL] case a.h α : Type u_1 β : Type u_2 m : Type u_3 n : Type u_4 R : Type u_5 inst✝¹ : Star α inst✝ : AddGroup n v : n → α i✝ x✝ : n ⊢ (circulant v)ᴴ i✝ x✝ = circulant (star fun i => v (-i)) i✝ x✝ [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 m : Type u_3 n : Type u_4 R : Type u_5 ⊢ ∀ (v : Fin 0 → α), (circulant v)ᵀ = circulant fun i => v (-i) [PROOFSTEP] simp [Injective] [GOAL] α : Type u_1 β : Type u_2 m : Type u_3 n : Type u_4 R : Type u_5 inst✝ : Star α ⊢ ∀ (v : Fin 0 → α), (circulant v)ᴴ = circulant (star fun i => v (-i)) [PROOFSTEP] simp [Injective] [GOAL] α : Type u_1 β : Type u_2 m : Type u_3 n : Type u_4 R : Type u_5 inst✝² : Semiring α inst✝¹ : Fintype n inst✝ : AddGroup n v w : n → α ⊢ circulant v * circulant w = circulant (mulVec (circulant v) w) [PROOFSTEP] ext i j [GOAL] case a.h α : Type u_1 β : Type u_2 m : Type u_3 n : Type u_4 R : Type u_5 inst✝² : Semiring α inst✝¹ : Fintype n inst✝ : AddGroup n v w : n → α i j : n ⊢ (circulant v * circulant w) i j = circulant (mulVec (circulant v) w) i j [PROOFSTEP] simp only [mul_apply, mulVec, circulant_apply, dotProduct] [GOAL] case a.h α : Type u_1 β : Type u_2 m : Type u_3 n : Type u_4 R : Type u_5 inst✝² : Semiring α inst✝¹ : Fintype n inst✝ : AddGroup n v w : n → α i j : n ⊢ ∑ x : n, v (i - x) * w (x - j) = ∑ x : n, v (i - j - x) * w x [PROOFSTEP] refine' Fintype.sum_equiv (Equiv.subRight j) _ _ _ [GOAL] case a.h α : Type u_1 β : Type u_2 m : Type u_3 n : Type u_4 R : Type u_5 inst✝² : Semiring α inst✝¹ : Fintype n inst✝ : AddGroup n v w : n → α i j : n ⊢ ∀ (x : n), v (i - x) * w (x - j) = v (i - j - ↑(Equiv.subRight j) x) * w (↑(Equiv.subRight j) x) [PROOFSTEP] intro x [GOAL] case a.h α : Type u_1 β : Type u_2 m : Type u_3 n : Type u_4 R : Type u_5 inst✝² : Semiring α inst✝¹ : Fintype n inst✝ : AddGroup n v w : n → α i j x : n ⊢ v (i - x) * w (x - j) = v (i - j - ↑(Equiv.subRight j) x) * w (↑(Equiv.subRight j) x) [PROOFSTEP] simp only [Equiv.subRight_apply, sub_sub_sub_cancel_right] [GOAL] α : Type u_1 β : Type u_2 m : Type u_3 n : Type u_4 R : Type u_5 inst✝ : Semiring α ⊢ ∀ (v w : Fin 0 → α), circulant v * circulant w = circulant (mulVec (circulant v) w) [PROOFSTEP] simp [Injective] [GOAL] α : Type u_1 β : Type u_2 m : Type u_3 n : Type u_4 R : Type u_5 inst✝³ : CommSemigroup α inst✝² : AddCommMonoid α inst✝¹ : Fintype n inst✝ : AddCommGroup n v w : n → α ⊢ circulant v * circulant w = circulant w * circulant v [PROOFSTEP] ext i j [GOAL] case a.h α : Type u_1 β : Type u_2 m : Type u_3 n : Type u_4 R : Type u_5 inst✝³ : CommSemigroup α inst✝² : AddCommMonoid α inst✝¹ : Fintype n inst✝ : AddCommGroup n v w : n → α i j : n ⊢ (circulant v * circulant w) i j = (circulant w * circulant v) i j [PROOFSTEP] simp only [mul_apply, circulant_apply, mul_comm] [GOAL] case a.h α : Type u_1 β : Type u_2 m : Type u_3 n : Type u_4 R : Type u_5 inst✝³ : CommSemigroup α inst✝² : AddCommMonoid α inst✝¹ : Fintype n inst✝ : AddCommGroup n v w : n → α i j : n ⊢ ∑ x : n, v (i - x) * w (x - j) = ∑ x : n, w (i - x) * v (x - j) [PROOFSTEP] refine' Fintype.sum_equiv ((Equiv.subLeft i).trans (Equiv.addRight j)) _ _ _ [GOAL] case a.h α : Type u_1 β : Type u_2 m : Type u_3 n : Type u_4 R : Type u_5 inst✝³ : CommSemigroup α inst✝² : AddCommMonoid α inst✝¹ : Fintype n inst✝ : AddCommGroup n v w : n → α i j : n ⊢ ∀ (x : n), v (i - x) * w (x - j) = w (i - ↑((Equiv.subLeft i).trans (Equiv.addRight j)) x) * v (↑((Equiv.subLeft i).trans (Equiv.addRight j)) x - j) [PROOFSTEP] intro x [GOAL] case a.h α : Type u_1 β : Type u_2 m : Type u_3 n : Type u_4 R : Type u_5 inst✝³ : CommSemigroup α inst✝² : AddCommMonoid α inst✝¹ : Fintype n inst✝ : AddCommGroup n v w : n → α i j x : n ⊢ v (i - x) * w (x - j) = w (i - ↑((Equiv.subLeft i).trans (Equiv.addRight j)) x) * v (↑((Equiv.subLeft i).trans (Equiv.addRight j)) x - j) [PROOFSTEP] simp [mul_comm] [GOAL] case a.h α : Type u_1 β : Type u_2 m : Type u_3 n : Type u_4 R : Type u_5 inst✝³ : CommSemigroup α inst✝² : AddCommMonoid α inst✝¹ : Fintype n inst✝ : AddCommGroup n v w : n → α i j x : n ⊢ v (i - x) * w (x - j) = v (i - x) * w (i - (i - x + j)) [PROOFSTEP] congr 2 [GOAL] case a.h.e_a.e_a α : Type u_1 β : Type u_2 m : Type u_3 n : Type u_4 R : Type u_5 inst✝³ : CommSemigroup α inst✝² : AddCommMonoid α inst✝¹ : Fintype n inst✝ : AddCommGroup n v w : n → α i j x : n ⊢ x - j = i - (i - x + j) [PROOFSTEP] abel [GOAL] case a.h.e_a.e_a α : Type u_1 β : Type u_2 m : Type u_3 n : Type u_4 R : Type u_5 inst✝³ : CommSemigroup α inst✝² : AddCommMonoid α inst✝¹ : Fintype n inst✝ : AddCommGroup n v w : n → α i j x : n ⊢ x - j = i - (i - x + j) [PROOFSTEP] abel [GOAL] α : Type u_1 β : Type u_2 m : Type u_3 n : Type u_4 R : Type u_5 inst✝¹ : CommSemigroup α inst✝ : AddCommMonoid α ⊢ ∀ (v w : Fin 0 → α), circulant v * circulant w = circulant w * circulant v [PROOFSTEP] simp [Injective] [GOAL] α✝ : Type u_1 β : Type u_2 m : Type u_3 n✝ : Type u_4 R : Type u_5 α : Type u_6 n : Type u_7 inst✝³ : Zero α inst✝² : One α inst✝¹ : DecidableEq n inst✝ : AddGroup n ⊢ circulant (Pi.single 0 1) = 1 [PROOFSTEP] ext i j [GOAL] case a.h α✝ : Type u_1 β : Type u_2 m : Type u_3 n✝ : Type u_4 R : Type u_5 α : Type u_6 n : Type u_7 inst✝³ : Zero α inst✝² : One α inst✝¹ : DecidableEq n inst✝ : AddGroup n i j : n ⊢ circulant (Pi.single 0 1) i j = OfNat.ofNat 1 i j [PROOFSTEP] simp [one_apply, Pi.single_apply, sub_eq_zero] [GOAL] α : Type u_1 β : Type u_2 m : Type u_3 n✝ : Type u_4 R : Type u_5 n : Type u_6 inst✝³ : Semiring α inst✝² : DecidableEq n inst✝¹ : AddGroup n inst✝ : Fintype n a : α ⊢ circulant (Pi.single 0 a) = ↑(scalar n) a [PROOFSTEP] ext i j [GOAL] case a.h α : Type u_1 β : Type u_2 m : Type u_3 n✝ : Type u_4 R : Type u_5 n : Type u_6 inst✝³ : Semiring α inst✝² : DecidableEq n inst✝¹ : AddGroup n inst✝ : Fintype n a : α i j : n ⊢ circulant (Pi.single 0 a) i j = ↑(scalar n) a i j [PROOFSTEP] simp [Pi.single_apply, one_apply, sub_eq_zero] [GOAL] α✝ : Type u_1 β : Type u_2 m : Type u_3 n : Type u_4 R : Type u_5 α : Type u_6 inst✝¹ : Zero α inst✝ : One α ⊢ (circulant fun i => if ↑i = 0 then 1 else 0) = 1 [PROOFSTEP] simp [Injective] [GOAL] α✝ : Type u_1 β : Type u_2 m : Type u_3 n✝ : Type u_4 R : Type u_5 α : Type u_6 inst✝¹ : Zero α inst✝ : One α n : ℕ ⊢ (circulant fun i => if ↑i = 0 then 1 else 0) = 1 [PROOFSTEP] rw [← circulant_single_one] [GOAL] α✝ : Type u_1 β : Type u_2 m : Type u_3 n✝ : Type u_4 R : Type u_5 α : Type u_6 inst✝¹ : Zero α inst✝ : One α n : ℕ ⊢ (circulant fun i => if ↑i = 0 then 1 else 0) = circulant (Pi.single 0 1) [PROOFSTEP] congr with j [GOAL] case a.h α✝ : Type u_1 β : Type u_2 m : Type u_3 n✝ : Type u_4 R : Type u_5 α : Type u_6 inst✝¹ : Zero α inst✝ : One α n : ℕ j x✝ : Fin (n + 1) ⊢ circulant (fun i => if ↑i = 0 then 1 else 0) j x✝ = circulant (Pi.single 0 1) j x✝ [PROOFSTEP] simp [Pi.single_apply, Fin.ext_iff] [GOAL] α : Type u_1 β : Type u_2 m : Type u_3 n : Type u_4 R : Type u_5 inst✝ : AddGroup n v : n → α ⊢ IsSymm (circulant v) ↔ ∀ (i : n), v (-i) = v i [PROOFSTEP] rw [IsSymm, transpose_circulant, circulant_inj, funext_iff] [GOAL] α : Type u_1 β : Type u_2 m : Type u_3 n : Type u_4 R : Type u_5 v✝ : Fin 0 → α ⊢ IsSymm (circulant v✝) ↔ ∀ (i : Fin 0), v✝ (-i) = v✝ i [PROOFSTEP] simp [IsSymm.ext_iff, IsEmpty.forall_iff]
{"mathlib_filename": "Mathlib.LinearAlgebra.Matrix.Circulant", "llama_tokens": 4425}
[GOAL] K : Type v V : Type w inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V f : End K V q : K[X] hq : degree q = 1 ⊢ eigenspace f (-coeff q 0 / leadingCoeff q) = LinearMap.ker (leadingCoeff q • f - ↑(algebraMap K (End K V)) (-coeff q 0)) [PROOFSTEP] rw [eigenspace_div] [GOAL] case hb K : Type v V : Type w inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V f : End K V q : K[X] hq : degree q = 1 ⊢ leadingCoeff q ≠ 0 [PROOFSTEP] intro h [GOAL] case hb K : Type v V : Type w inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V f : End K V q : K[X] hq : degree q = 1 h : leadingCoeff q = 0 ⊢ False [PROOFSTEP] rw [leadingCoeff_eq_zero_iff_deg_eq_bot.1 h] at hq [GOAL] case hb K : Type v V : Type w inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V f : End K V q : K[X] hq : ⊥ = 1 h : leadingCoeff q = 0 ⊢ False [PROOFSTEP] cases hq [GOAL] K : Type v V : Type w inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V f : End K V q : K[X] hq : degree q = 1 ⊢ LinearMap.ker (leadingCoeff q • f - ↑(algebraMap K (End K V)) (-coeff q 0)) = LinearMap.ker (↑(aeval f) (↑C (leadingCoeff q) * X + ↑C (coeff q 0))) [PROOFSTEP] rw [C_mul', aeval_def] [GOAL] K : Type v V : Type w inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V f : End K V q : K[X] hq : degree q = 1 ⊢ LinearMap.ker (leadingCoeff q • f - ↑(algebraMap K (End K V)) (-coeff q 0)) = LinearMap.ker (eval₂ (algebraMap K (End K V)) f (leadingCoeff q • X + ↑C (coeff q 0))) [PROOFSTEP] simp [algebraMap, Algebra.toRingHom] [GOAL] K : Type v V : Type w inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V f : End K V q : K[X] hq : degree q = 1 ⊢ LinearMap.ker (↑(aeval f) (↑C (leadingCoeff q) * X + ↑C (coeff q 0))) = LinearMap.ker (↑(aeval f) q) [PROOFSTEP] rwa [← eq_X_add_C_of_degree_eq_one] [GOAL] K : Type v V : Type w inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V f : End K V c : K[X]ˣ ⊢ LinearMap.ker (↑(aeval f) ↑c) = ⊥ [PROOFSTEP] rw [Polynomial.eq_C_of_degree_eq_zero (degree_coe_units c)] [GOAL] K : Type v V : Type w inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V f : End K V c : K[X]ˣ ⊢ LinearMap.ker (↑(aeval f) (↑C (coeff (↑c) 0))) = ⊥ [PROOFSTEP] simp only [aeval_def, eval₂_C] [GOAL] K : Type v V : Type w inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V f : End K V c : K[X]ˣ ⊢ LinearMap.ker (↑(algebraMap K (End K V)) (coeff (↑c) 0)) = ⊥ [PROOFSTEP] apply ker_algebraMap_end [GOAL] case ha K : Type v V : Type w inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V f : End K V c : K[X]ˣ ⊢ coeff (↑c) 0 ≠ 0 [PROOFSTEP] apply coeff_coe_units_zero_ne_zero c [GOAL] K : Type v V : Type w inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V f : End K V p : K[X] μ : K x : V h : HasEigenvector f μ x ⊢ ↑(↑(aeval f) p) x = eval μ p • x [PROOFSTEP] refine' p.induction_on _ _ _ [GOAL] case refine'_1 K : Type v V : Type w inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V f : End K V p : K[X] μ : K x : V h : HasEigenvector f μ x ⊢ ∀ (a : K), ↑(↑(aeval f) (↑C a)) x = eval μ (↑C a) • x [PROOFSTEP] intro a [GOAL] case refine'_1 K : Type v V : Type w inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V f : End K V p : K[X] μ : K x : V h : HasEigenvector f μ x a : K ⊢ ↑(↑(aeval f) (↑C a)) x = eval μ (↑C a) • x [PROOFSTEP] simp [Module.algebraMap_end_apply] [GOAL] case refine'_2 K : Type v V : Type w inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V f : End K V p : K[X] μ : K x : V h : HasEigenvector f μ x ⊢ ∀ (p q : K[X]), ↑(↑(aeval f) p) x = eval μ p • x → ↑(↑(aeval f) q) x = eval μ q • x → ↑(↑(aeval f) (p + q)) x = eval μ (p + q) • x [PROOFSTEP] intro p q hp hq [GOAL] case refine'_2 K : Type v V : Type w inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V f : End K V p✝ : K[X] μ : K x : V h : HasEigenvector f μ x p q : K[X] hp : ↑(↑(aeval f) p) x = eval μ p • x hq : ↑(↑(aeval f) q) x = eval μ q • x ⊢ ↑(↑(aeval f) (p + q)) x = eval μ (p + q) • x [PROOFSTEP] simp [hp, hq, add_smul] [GOAL] case refine'_3 K : Type v V : Type w inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V f : End K V p : K[X] μ : K x : V h : HasEigenvector f μ x ⊢ ∀ (n : ℕ) (a : K), ↑(↑(aeval f) (↑C a * X ^ n)) x = eval μ (↑C a * X ^ n) • x → ↑(↑(aeval f) (↑C a * X ^ (n + 1))) x = eval μ (↑C a * X ^ (n + 1)) • x [PROOFSTEP] intro n a hna [GOAL] case refine'_3 K : Type v V : Type w inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V f : End K V p : K[X] μ : K x : V h : HasEigenvector f μ x n : ℕ a : K hna : ↑(↑(aeval f) (↑C a * X ^ n)) x = eval μ (↑C a * X ^ n) • x ⊢ ↑(↑(aeval f) (↑C a * X ^ (n + 1))) x = eval μ (↑C a * X ^ (n + 1)) • x [PROOFSTEP] rw [mul_comm, pow_succ, mul_assoc, AlgHom.map_mul, LinearMap.mul_apply, mul_comm, hna] [GOAL] case refine'_3 K : Type v V : Type w inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V f : End K V p : K[X] μ : K x : V h : HasEigenvector f μ x n : ℕ a : K hna : ↑(↑(aeval f) (↑C a * X ^ n)) x = eval μ (↑C a * X ^ n) • x ⊢ ↑(↑(aeval f) X) (eval μ (↑C a * X ^ n) • x) = eval μ (X * (↑C a * X ^ n)) • x [PROOFSTEP] simp only [mem_eigenspace_iff.1 h.1, smul_smul, aeval_X, eval_mul, eval_C, eval_pow, eval_X, LinearMap.map_smulₛₗ, RingHom.id_apply, mul_comm] [GOAL] K : Type v V : Type w inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V f : End K V μ : K h : HasEigenvalue f μ ⊢ IsRoot (minpoly K f) μ [PROOFSTEP] rcases(Submodule.ne_bot_iff _).1 h with ⟨w, ⟨H, ne0⟩⟩ [GOAL] case intro.intro K : Type v V : Type w inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V f : End K V μ : K h : HasEigenvalue f μ w : V H : w ∈ eigenspace f μ ne0 : w ≠ 0 ⊢ IsRoot (minpoly K f) μ [PROOFSTEP] refine' Or.resolve_right (smul_eq_zero.1 _) ne0 [GOAL] case intro.intro K : Type v V : Type w inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V f : End K V μ : K h : HasEigenvalue f μ w : V H : w ∈ eigenspace f μ ne0 : w ≠ 0 ⊢ eval μ (minpoly K f) • w = 0 [PROOFSTEP] simp [← aeval_apply_of_hasEigenvector ⟨H, ne0⟩, minpoly.aeval K f] [GOAL] K : Type v V : Type w inst✝³ : Field K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : End K V μ : K h : IsRoot (minpoly K f) μ ⊢ HasEigenvalue f μ [PROOFSTEP] cases' dvd_iff_isRoot.2 h with p hp [GOAL] case intro K : Type v V : Type w inst✝³ : Field K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : End K V μ : K h : IsRoot (minpoly K f) μ p : K[X] hp : minpoly K f = (X - ↑C μ) * p ⊢ HasEigenvalue f μ [PROOFSTEP] rw [HasEigenvalue, eigenspace] [GOAL] case intro K : Type v V : Type w inst✝³ : Field K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : End K V μ : K h : IsRoot (minpoly K f) μ p : K[X] hp : minpoly K f = (X - ↑C μ) * p ⊢ LinearMap.ker (f - ↑(algebraMap K (End K V)) μ) ≠ ⊥ [PROOFSTEP] intro con [GOAL] case intro K : Type v V : Type w inst✝³ : Field K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : End K V μ : K h : IsRoot (minpoly K f) μ p : K[X] hp : minpoly K f = (X - ↑C μ) * p con : LinearMap.ker (f - ↑(algebraMap K (End K V)) μ) = ⊥ ⊢ False [PROOFSTEP] cases' (LinearMap.isUnit_iff_ker_eq_bot _).2 con with u hu [GOAL] case intro.intro K : Type v V : Type w inst✝³ : Field K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : End K V μ : K h : IsRoot (minpoly K f) μ p : K[X] hp : minpoly K f = (X - ↑C μ) * p con : LinearMap.ker (f - ↑(algebraMap K (End K V)) μ) = ⊥ u : (V →ₗ[K] V)ˣ hu : ↑u = f - ↑(algebraMap K (End K V)) μ ⊢ False [PROOFSTEP] have p_ne_0 : p ≠ 0 := by intro con apply minpoly.ne_zero f.isIntegral rw [hp, con, mul_zero] [GOAL] K : Type v V : Type w inst✝³ : Field K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : End K V μ : K h : IsRoot (minpoly K f) μ p : K[X] hp : minpoly K f = (X - ↑C μ) * p con : LinearMap.ker (f - ↑(algebraMap K (End K V)) μ) = ⊥ u : (V →ₗ[K] V)ˣ hu : ↑u = f - ↑(algebraMap K (End K V)) μ ⊢ p ≠ 0 [PROOFSTEP] intro con [GOAL] K : Type v V : Type w inst✝³ : Field K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : End K V μ : K h : IsRoot (minpoly K f) μ p : K[X] hp : minpoly K f = (X - ↑C μ) * p con✝ : LinearMap.ker (f - ↑(algebraMap K (End K V)) μ) = ⊥ u : (V →ₗ[K] V)ˣ hu : ↑u = f - ↑(algebraMap K (End K V)) μ con : p = 0 ⊢ False [PROOFSTEP] apply minpoly.ne_zero f.isIntegral [GOAL] K : Type v V : Type w inst✝³ : Field K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : End K V μ : K h : IsRoot (minpoly K f) μ p : K[X] hp : minpoly K f = (X - ↑C μ) * p con✝ : LinearMap.ker (f - ↑(algebraMap K (End K V)) μ) = ⊥ u : (V →ₗ[K] V)ˣ hu : ↑u = f - ↑(algebraMap K (End K V)) μ con : p = 0 ⊢ minpoly K f = 0 [PROOFSTEP] rw [hp, con, mul_zero] [GOAL] case intro.intro K : Type v V : Type w inst✝³ : Field K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : End K V μ : K h : IsRoot (minpoly K f) μ p : K[X] hp : minpoly K f = (X - ↑C μ) * p con : LinearMap.ker (f - ↑(algebraMap K (End K V)) μ) = ⊥ u : (V →ₗ[K] V)ˣ hu : ↑u = f - ↑(algebraMap K (End K V)) μ p_ne_0 : p ≠ 0 ⊢ False [PROOFSTEP] have : (aeval f) p = 0 := by have h_aeval := minpoly.aeval K f revert h_aeval simp [hp, ← hu] [GOAL] K : Type v V : Type w inst✝³ : Field K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : End K V μ : K h : IsRoot (minpoly K f) μ p : K[X] hp : minpoly K f = (X - ↑C μ) * p con : LinearMap.ker (f - ↑(algebraMap K (End K V)) μ) = ⊥ u : (V →ₗ[K] V)ˣ hu : ↑u = f - ↑(algebraMap K (End K V)) μ p_ne_0 : p ≠ 0 ⊢ ↑(aeval f) p = 0 [PROOFSTEP] have h_aeval := minpoly.aeval K f [GOAL] K : Type v V : Type w inst✝³ : Field K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : End K V μ : K h : IsRoot (minpoly K f) μ p : K[X] hp : minpoly K f = (X - ↑C μ) * p con : LinearMap.ker (f - ↑(algebraMap K (End K V)) μ) = ⊥ u : (V →ₗ[K] V)ˣ hu : ↑u = f - ↑(algebraMap K (End K V)) μ p_ne_0 : p ≠ 0 h_aeval : ↑(aeval f) (minpoly K f) = 0 ⊢ ↑(aeval f) p = 0 [PROOFSTEP] revert h_aeval [GOAL] K : Type v V : Type w inst✝³ : Field K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : End K V μ : K h : IsRoot (minpoly K f) μ p : K[X] hp : minpoly K f = (X - ↑C μ) * p con : LinearMap.ker (f - ↑(algebraMap K (End K V)) μ) = ⊥ u : (V →ₗ[K] V)ˣ hu : ↑u = f - ↑(algebraMap K (End K V)) μ p_ne_0 : p ≠ 0 ⊢ ↑(aeval f) (minpoly K f) = 0 → ↑(aeval f) p = 0 [PROOFSTEP] simp [hp, ← hu] [GOAL] case intro.intro K : Type v V : Type w inst✝³ : Field K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : End K V μ : K h : IsRoot (minpoly K f) μ p : K[X] hp : minpoly K f = (X - ↑C μ) * p con : LinearMap.ker (f - ↑(algebraMap K (End K V)) μ) = ⊥ u : (V →ₗ[K] V)ˣ hu : ↑u = f - ↑(algebraMap K (End K V)) μ p_ne_0 : p ≠ 0 this : ↑(aeval f) p = 0 ⊢ False [PROOFSTEP] have h_deg := minpoly.degree_le_of_ne_zero K f p_ne_0 this [GOAL] case intro.intro K : Type v V : Type w inst✝³ : Field K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : End K V μ : K h : IsRoot (minpoly K f) μ p : K[X] hp : minpoly K f = (X - ↑C μ) * p con : LinearMap.ker (f - ↑(algebraMap K (End K V)) μ) = ⊥ u : (V →ₗ[K] V)ˣ hu : ↑u = f - ↑(algebraMap K (End K V)) μ p_ne_0 : p ≠ 0 this : ↑(aeval f) p = 0 h_deg : degree (minpoly K f) ≤ degree p ⊢ False [PROOFSTEP] rw [hp, degree_mul, degree_X_sub_C, Polynomial.degree_eq_natDegree p_ne_0] at h_deg [GOAL] case intro.intro K : Type v V : Type w inst✝³ : Field K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : End K V μ : K h : IsRoot (minpoly K f) μ p : K[X] hp : minpoly K f = (X - ↑C μ) * p con : LinearMap.ker (f - ↑(algebraMap K (End K V)) μ) = ⊥ u : (V →ₗ[K] V)ˣ hu : ↑u = f - ↑(algebraMap K (End K V)) μ p_ne_0 : p ≠ 0 this : ↑(aeval f) p = 0 h_deg : 1 + ↑(natDegree p) ≤ ↑(natDegree p) ⊢ False [PROOFSTEP] norm_cast at h_deg [GOAL] case intro.intro K : Type v V : Type w inst✝³ : Field K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f : End K V μ : K h : IsRoot (minpoly K f) μ p : K[X] hp : minpoly K f = (X - ↑C μ) * p con : LinearMap.ker (f - ↑(algebraMap K (End K V)) μ) = ⊥ u : (V →ₗ[K] V)ˣ hu : ↑u = f - ↑(algebraMap K (End K V)) μ p_ne_0 : p ≠ 0 this : ↑(aeval f) p = 0 h_deg : 1 + natDegree p ≤ natDegree p ⊢ False [PROOFSTEP] linarith [GOAL] K : Type v V : Type w inst✝³ : Field K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f✝ : End K V μ : K f : End K V ⊢ Set.Finite {μ | eigenspace f μ ≠ ⊥} [PROOFSTEP] have h : minpoly K f ≠ 0 := minpoly.ne_zero f.isIntegral [GOAL] K : Type v V : Type w inst✝³ : Field K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f✝ : End K V μ : K f : End K V h : minpoly K f ≠ 0 ⊢ Set.Finite {μ | eigenspace f μ ≠ ⊥} [PROOFSTEP] convert (minpoly K f).rootSet_finite K [GOAL] case h.e'_2 K : Type v V : Type w inst✝³ : Field K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f✝ : End K V μ : K f : End K V h : minpoly K f ≠ 0 ⊢ {μ | eigenspace f μ ≠ ⊥} = rootSet (minpoly K f) K [PROOFSTEP] ext μ [GOAL] case h.e'_2.h K : Type v V : Type w inst✝³ : Field K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V f✝ : End K V μ✝ : K f : End K V h : minpoly K f ≠ 0 μ : K ⊢ μ ∈ {μ | eigenspace f μ ≠ ⊥} ↔ μ ∈ rootSet (minpoly K f) K [PROOFSTEP] rw [Set.mem_setOf_eq, ← HasEigenvalue, hasEigenvalue_iff_isRoot, mem_rootSet_of_ne h, IsRoot, coe_aeval_eq_eval]
{"mathlib_filename": "Mathlib.LinearAlgebra.Eigenspace.Minpoly", "llama_tokens": 6988}
[GOAL] m : Type u_1 n : Type u_2 R : Type u_3 𝕜 : Type u_4 inst✝⁵ : Fintype m inst✝⁴ : Fintype n inst✝³ : CommRing R inst✝² : PartialOrder R inst✝¹ : StarOrderedRing R inst✝ : IsROrC 𝕜 M : Matrix n n R hM : PosDef M ⊢ PosSemidef M [PROOFSTEP] refine' ⟨hM.1, _⟩ [GOAL] m : Type u_1 n : Type u_2 R : Type u_3 𝕜 : Type u_4 inst✝⁵ : Fintype m inst✝⁴ : Fintype n inst✝³ : CommRing R inst✝² : PartialOrder R inst✝¹ : StarOrderedRing R inst✝ : IsROrC 𝕜 M : Matrix n n R hM : PosDef M ⊢ ∀ (x : n → R), 0 ≤ star x ⬝ᵥ mulVec M x [PROOFSTEP] intro x [GOAL] m : Type u_1 n : Type u_2 R : Type u_3 𝕜 : Type u_4 inst✝⁵ : Fintype m inst✝⁴ : Fintype n inst✝³ : CommRing R inst✝² : PartialOrder R inst✝¹ : StarOrderedRing R inst✝ : IsROrC 𝕜 M : Matrix n n R hM : PosDef M x : n → R ⊢ 0 ≤ star x ⬝ᵥ mulVec M x [PROOFSTEP] by_cases hx : x = 0 [GOAL] case pos m : Type u_1 n : Type u_2 R : Type u_3 𝕜 : Type u_4 inst✝⁵ : Fintype m inst✝⁴ : Fintype n inst✝³ : CommRing R inst✝² : PartialOrder R inst✝¹ : StarOrderedRing R inst✝ : IsROrC 𝕜 M : Matrix n n R hM : PosDef M x : n → R hx : x = 0 ⊢ 0 ≤ star x ⬝ᵥ mulVec M x [PROOFSTEP] simp only [hx, zero_dotProduct, star_zero, IsROrC.zero_re'] [GOAL] case pos m : Type u_1 n : Type u_2 R : Type u_3 𝕜 : Type u_4 inst✝⁵ : Fintype m inst✝⁴ : Fintype n inst✝³ : CommRing R inst✝² : PartialOrder R inst✝¹ : StarOrderedRing R inst✝ : IsROrC 𝕜 M : Matrix n n R hM : PosDef M x : n → R hx : x = 0 ⊢ 0 ≤ 0 [PROOFSTEP] exact le_rfl [GOAL] case neg m : Type u_1 n : Type u_2 R : Type u_3 𝕜 : Type u_4 inst✝⁵ : Fintype m inst✝⁴ : Fintype n inst✝³ : CommRing R inst✝² : PartialOrder R inst✝¹ : StarOrderedRing R inst✝ : IsROrC 𝕜 M : Matrix n n R hM : PosDef M x : n → R hx : ¬x = 0 ⊢ 0 ≤ star x ⬝ᵥ mulVec M x [PROOFSTEP] exact le_of_lt (hM.2 x hx) [GOAL] m : Type u_1 n : Type u_2 R : Type u_3 𝕜 : Type u_4 inst✝⁵ : Fintype m inst✝⁴ : Fintype n inst✝³ : CommRing R inst✝² : PartialOrder R inst✝¹ : StarOrderedRing R inst✝ : IsROrC 𝕜 M : Matrix n n R hM : PosSemidef M e : m ≃ n ⊢ PosSemidef (Matrix.submatrix M ↑e ↑e) [PROOFSTEP] refine' ⟨hM.1.submatrix e, fun x => _⟩ [GOAL] m : Type u_1 n : Type u_2 R : Type u_3 𝕜 : Type u_4 inst✝⁵ : Fintype m inst✝⁴ : Fintype n inst✝³ : CommRing R inst✝² : PartialOrder R inst✝¹ : StarOrderedRing R inst✝ : IsROrC 𝕜 M : Matrix n n R hM : PosSemidef M e : m ≃ n x : m → R ⊢ 0 ≤ star x ⬝ᵥ mulVec (Matrix.submatrix M ↑e ↑e) x [PROOFSTEP] have : (M.submatrix (⇑e) e).mulVec x = (M.mulVec fun i : n => x (e.symm i)) ∘ e := by ext i dsimp only [(· ∘ ·), mulVec, dotProduct] rw [Finset.sum_bij' (fun i _ => e i) _ _ fun i _ => e.symm i] <;> simp only [eq_self_iff_true, imp_true_iff, Equiv.symm_apply_apply, Finset.mem_univ, submatrix_apply, Equiv.apply_symm_apply] [GOAL] m : Type u_1 n : Type u_2 R : Type u_3 𝕜 : Type u_4 inst✝⁵ : Fintype m inst✝⁴ : Fintype n inst✝³ : CommRing R inst✝² : PartialOrder R inst✝¹ : StarOrderedRing R inst✝ : IsROrC 𝕜 M : Matrix n n R hM : PosSemidef M e : m ≃ n x : m → R ⊢ mulVec (Matrix.submatrix M ↑e ↑e) x = (mulVec M fun i => x (↑e.symm i)) ∘ ↑e [PROOFSTEP] ext i [GOAL] case h m : Type u_1 n : Type u_2 R : Type u_3 𝕜 : Type u_4 inst✝⁵ : Fintype m inst✝⁴ : Fintype n inst✝³ : CommRing R inst✝² : PartialOrder R inst✝¹ : StarOrderedRing R inst✝ : IsROrC 𝕜 M : Matrix n n R hM : PosSemidef M e : m ≃ n x : m → R i : m ⊢ mulVec (Matrix.submatrix M ↑e ↑e) x i = ((mulVec M fun i => x (↑e.symm i)) ∘ ↑e) i [PROOFSTEP] dsimp only [(· ∘ ·), mulVec, dotProduct] [GOAL] case h m : Type u_1 n : Type u_2 R : Type u_3 𝕜 : Type u_4 inst✝⁵ : Fintype m inst✝⁴ : Fintype n inst✝³ : CommRing R inst✝² : PartialOrder R inst✝¹ : StarOrderedRing R inst✝ : IsROrC 𝕜 M : Matrix n n R hM : PosSemidef M e : m ≃ n x : m → R i : m ⊢ (Finset.sum Finset.univ fun i_1 => Matrix.submatrix M (↑e) (↑e) i i_1 * x i_1) = Finset.sum Finset.univ fun i_1 => M (↑e i) i_1 * x (↑e.symm i_1) [PROOFSTEP] rw [Finset.sum_bij' (fun i _ => e i) _ _ fun i _ => e.symm i] [GOAL] case h.hj m : Type u_1 n : Type u_2 R : Type u_3 𝕜 : Type u_4 inst✝⁵ : Fintype m inst✝⁴ : Fintype n inst✝³ : CommRing R inst✝² : PartialOrder R inst✝¹ : StarOrderedRing R inst✝ : IsROrC 𝕜 M : Matrix n n R hM : PosSemidef M e : m ≃ n x : m → R i : m ⊢ ∀ (a : n), a ∈ Finset.univ → ↑e.symm a ∈ Finset.univ [PROOFSTEP] simp only [eq_self_iff_true, imp_true_iff, Equiv.symm_apply_apply, Finset.mem_univ, submatrix_apply, Equiv.apply_symm_apply] [GOAL] case h.left_inv m : Type u_1 n : Type u_2 R : Type u_3 𝕜 : Type u_4 inst✝⁵ : Fintype m inst✝⁴ : Fintype n inst✝³ : CommRing R inst✝² : PartialOrder R inst✝¹ : StarOrderedRing R inst✝ : IsROrC 𝕜 M : Matrix n n R hM : PosSemidef M e : m ≃ n x : m → R i : m ⊢ ∀ (a : m), a ∈ Finset.univ → ↑e.symm (↑e a) = a [PROOFSTEP] simp only [eq_self_iff_true, imp_true_iff, Equiv.symm_apply_apply, Finset.mem_univ, submatrix_apply, Equiv.apply_symm_apply] [GOAL] case h.right_inv m : Type u_1 n : Type u_2 R : Type u_3 𝕜 : Type u_4 inst✝⁵ : Fintype m inst✝⁴ : Fintype n inst✝³ : CommRing R inst✝² : PartialOrder R inst✝¹ : StarOrderedRing R inst✝ : IsROrC 𝕜 M : Matrix n n R hM : PosSemidef M e : m ≃ n x : m → R i : m ⊢ ∀ (a : n), a ∈ Finset.univ → ↑e (↑e.symm a) = a [PROOFSTEP] simp only [eq_self_iff_true, imp_true_iff, Equiv.symm_apply_apply, Finset.mem_univ, submatrix_apply, Equiv.apply_symm_apply] [GOAL] m : Type u_1 n : Type u_2 R : Type u_3 𝕜 : Type u_4 inst✝⁵ : Fintype m inst✝⁴ : Fintype n inst✝³ : CommRing R inst✝² : PartialOrder R inst✝¹ : StarOrderedRing R inst✝ : IsROrC 𝕜 M : Matrix n n R hM : PosSemidef M e : m ≃ n x : m → R i : m ⊢ ∀ (a : m) (ha : a ∈ Finset.univ), (fun i x => ↑e i) a ha ∈ Finset.univ [PROOFSTEP] simp only [eq_self_iff_true, imp_true_iff, Equiv.symm_apply_apply, Finset.mem_univ, submatrix_apply, Equiv.apply_symm_apply] [GOAL] m : Type u_1 n : Type u_2 R : Type u_3 𝕜 : Type u_4 inst✝⁵ : Fintype m inst✝⁴ : Fintype n inst✝³ : CommRing R inst✝² : PartialOrder R inst✝¹ : StarOrderedRing R inst✝ : IsROrC 𝕜 M : Matrix n n R hM : PosSemidef M e : m ≃ n x : m → R i : m ⊢ ∀ (a : m) (ha : a ∈ Finset.univ), Matrix.submatrix M (↑e) (↑e) i a * x a = M (↑e i) ((fun i x => ↑e i) a ha) * x (↑e.symm ((fun i x => ↑e i) a ha)) [PROOFSTEP] simp only [eq_self_iff_true, imp_true_iff, Equiv.symm_apply_apply, Finset.mem_univ, submatrix_apply, Equiv.apply_symm_apply] [GOAL] m : Type u_1 n : Type u_2 R : Type u_3 𝕜 : Type u_4 inst✝⁵ : Fintype m inst✝⁴ : Fintype n inst✝³ : CommRing R inst✝² : PartialOrder R inst✝¹ : StarOrderedRing R inst✝ : IsROrC 𝕜 M : Matrix n n R hM : PosSemidef M e : m ≃ n x : m → R this : mulVec (Matrix.submatrix M ↑e ↑e) x = (mulVec M fun i => x (↑e.symm i)) ∘ ↑e ⊢ 0 ≤ star x ⬝ᵥ mulVec (Matrix.submatrix M ↑e ↑e) x [PROOFSTEP] rw [this] [GOAL] m : Type u_1 n : Type u_2 R : Type u_3 𝕜 : Type u_4 inst✝⁵ : Fintype m inst✝⁴ : Fintype n inst✝³ : CommRing R inst✝² : PartialOrder R inst✝¹ : StarOrderedRing R inst✝ : IsROrC 𝕜 M : Matrix n n R hM : PosSemidef M e : m ≃ n x : m → R this : mulVec (Matrix.submatrix M ↑e ↑e) x = (mulVec M fun i => x (↑e.symm i)) ∘ ↑e ⊢ 0 ≤ star x ⬝ᵥ (mulVec M fun i => x (↑e.symm i)) ∘ ↑e [PROOFSTEP] convert hM.2 fun i => x (e.symm i) using 3 [GOAL] case h.e'_4 m : Type u_1 n : Type u_2 R : Type u_3 𝕜 : Type u_4 inst✝⁵ : Fintype m inst✝⁴ : Fintype n inst✝³ : CommRing R inst✝² : PartialOrder R inst✝¹ : StarOrderedRing R inst✝ : IsROrC 𝕜 M : Matrix n n R hM : PosSemidef M e : m ≃ n x : m → R this : mulVec (Matrix.submatrix M ↑e ↑e) x = (mulVec M fun i => x (↑e.symm i)) ∘ ↑e ⊢ star x ⬝ᵥ (mulVec M fun i => x (↑e.symm i)) ∘ ↑e = (star fun i => x (↑e.symm i)) ⬝ᵥ mulVec M fun i => x (↑e.symm i) [PROOFSTEP] unfold dotProduct [GOAL] case h.e'_4 m : Type u_1 n : Type u_2 R : Type u_3 𝕜 : Type u_4 inst✝⁵ : Fintype m inst✝⁴ : Fintype n inst✝³ : CommRing R inst✝² : PartialOrder R inst✝¹ : StarOrderedRing R inst✝ : IsROrC 𝕜 M : Matrix n n R hM : PosSemidef M e : m ≃ n x : m → R this : mulVec (Matrix.submatrix M ↑e ↑e) x = (mulVec M fun i => x (↑e.symm i)) ∘ ↑e ⊢ (Finset.sum Finset.univ fun i => star x i * ((mulVec M fun i => x (↑e.symm i)) ∘ ↑e) i) = Finset.sum Finset.univ fun i => star (fun i => x (↑e.symm i)) i * mulVec M (fun i => x (↑e.symm i)) i [PROOFSTEP] rw [Finset.sum_bij' (fun i _ => e i) _ _ fun i _ => e.symm i] [GOAL] case h.e'_4.hj m : Type u_1 n : Type u_2 R : Type u_3 𝕜 : Type u_4 inst✝⁵ : Fintype m inst✝⁴ : Fintype n inst✝³ : CommRing R inst✝² : PartialOrder R inst✝¹ : StarOrderedRing R inst✝ : IsROrC 𝕜 M : Matrix n n R hM : PosSemidef M e : m ≃ n x : m → R this : mulVec (Matrix.submatrix M ↑e ↑e) x = (mulVec M fun i => x (↑e.symm i)) ∘ ↑e ⊢ ∀ (a : n), a ∈ Finset.univ → ↑e.symm a ∈ Finset.univ [PROOFSTEP] simp [GOAL] case h.e'_4.left_inv m : Type u_1 n : Type u_2 R : Type u_3 𝕜 : Type u_4 inst✝⁵ : Fintype m inst✝⁴ : Fintype n inst✝³ : CommRing R inst✝² : PartialOrder R inst✝¹ : StarOrderedRing R inst✝ : IsROrC 𝕜 M : Matrix n n R hM : PosSemidef M e : m ≃ n x : m → R this : mulVec (Matrix.submatrix M ↑e ↑e) x = (mulVec M fun i => x (↑e.symm i)) ∘ ↑e ⊢ ∀ (a : m), a ∈ Finset.univ → ↑e.symm (↑e a) = a [PROOFSTEP] simp [GOAL] case h.e'_4.right_inv m : Type u_1 n : Type u_2 R : Type u_3 𝕜 : Type u_4 inst✝⁵ : Fintype m inst✝⁴ : Fintype n inst✝³ : CommRing R inst✝² : PartialOrder R inst✝¹ : StarOrderedRing R inst✝ : IsROrC 𝕜 M : Matrix n n R hM : PosSemidef M e : m ≃ n x : m → R this : mulVec (Matrix.submatrix M ↑e ↑e) x = (mulVec M fun i => x (↑e.symm i)) ∘ ↑e ⊢ ∀ (a : n), a ∈ Finset.univ → ↑e (↑e.symm a) = a [PROOFSTEP] simp [GOAL] m : Type u_1 n : Type u_2 R : Type u_3 𝕜 : Type u_4 inst✝⁵ : Fintype m inst✝⁴ : Fintype n inst✝³ : CommRing R inst✝² : PartialOrder R inst✝¹ : StarOrderedRing R inst✝ : IsROrC 𝕜 M : Matrix n n R hM : PosSemidef M e : m ≃ n x : m → R this : mulVec (Matrix.submatrix M ↑e ↑e) x = (mulVec M fun i => x (↑e.symm i)) ∘ ↑e ⊢ ∀ (a : m) (ha : a ∈ Finset.univ), (fun i x => ↑e i) a ha ∈ Finset.univ [PROOFSTEP] simp [GOAL] m : Type u_1 n : Type u_2 R : Type u_3 𝕜 : Type u_4 inst✝⁵ : Fintype m inst✝⁴ : Fintype n inst✝³ : CommRing R inst✝² : PartialOrder R inst✝¹ : StarOrderedRing R inst✝ : IsROrC 𝕜 M : Matrix n n R hM : PosSemidef M e : m ≃ n x : m → R this : mulVec (Matrix.submatrix M ↑e ↑e) x = (mulVec M fun i => x (↑e.symm i)) ∘ ↑e ⊢ ∀ (a : m) (ha : a ∈ Finset.univ), star x a * ((mulVec M fun i => x (↑e.symm i)) ∘ ↑e) a = star (fun i => x (↑e.symm i)) ((fun i x => ↑e i) a ha) * mulVec M (fun i => x (↑e.symm i)) ((fun i x => ↑e i) a ha) [PROOFSTEP] simp [GOAL] m : Type u_1 n : Type u_2 R : Type u_3 𝕜 : Type u_4 inst✝⁵ : Fintype m inst✝⁴ : Fintype n inst✝³ : CommRing R inst✝² : PartialOrder R inst✝¹ : StarOrderedRing R inst✝ : IsROrC 𝕜 M : Matrix n n R e : m ≃ n h : PosSemidef (submatrix M ↑e ↑e) ⊢ PosSemidef M [PROOFSTEP] simpa using h.submatrix e.symm [GOAL] m : Type u_1 n : Type u_2 R : Type u_3 𝕜 : Type u_4 inst✝⁵ : Fintype m inst✝⁴ : Fintype n inst✝³ : CommRing R inst✝² : PartialOrder R inst✝¹ : StarOrderedRing R inst✝ : IsROrC 𝕜 M : Matrix n n R hM : PosDef M ⊢ PosDef Mᵀ [PROOFSTEP] refine ⟨IsHermitian.transpose hM.1, fun x hx => ?_⟩ [GOAL] m : Type u_1 n : Type u_2 R : Type u_3 𝕜 : Type u_4 inst✝⁵ : Fintype m inst✝⁴ : Fintype n inst✝³ : CommRing R inst✝² : PartialOrder R inst✝¹ : StarOrderedRing R inst✝ : IsROrC 𝕜 M : Matrix n n R hM : PosDef M x : n → R hx : x ≠ 0 ⊢ 0 < star x ⬝ᵥ mulVec Mᵀ x [PROOFSTEP] convert hM.2 (star x) (star_ne_zero.2 hx) using 1 [GOAL] case h.e'_4 m : Type u_1 n : Type u_2 R : Type u_3 𝕜 : Type u_4 inst✝⁵ : Fintype m inst✝⁴ : Fintype n inst✝³ : CommRing R inst✝² : PartialOrder R inst✝¹ : StarOrderedRing R inst✝ : IsROrC 𝕜 M : Matrix n n R hM : PosDef M x : n → R hx : x ≠ 0 ⊢ star x ⬝ᵥ mulVec Mᵀ x = star (star x) ⬝ᵥ mulVec M (star x) [PROOFSTEP] rw [mulVec_transpose, Matrix.dotProduct_mulVec, star_star, dotProduct_comm] [GOAL] m : Type u_1 n : Type u_2 R : Type u_3 𝕜 : Type u_4 inst✝⁶ : Fintype m inst✝⁵ : Fintype n inst✝⁴ : CommRing R inst✝³ : PartialOrder R inst✝² : StarOrderedRing R inst✝¹ : IsROrC 𝕜 inst✝ : DecidableEq n M : Matrix n n ℝ hM : IsSymm M hMq : QuadraticForm.PosDef (toQuadraticForm' M) ⊢ PosDef M [PROOFSTEP] refine' ⟨hM, fun x hx => _⟩ [GOAL] m : Type u_1 n : Type u_2 R : Type u_3 𝕜 : Type u_4 inst✝⁶ : Fintype m inst✝⁵ : Fintype n inst✝⁴ : CommRing R inst✝³ : PartialOrder R inst✝² : StarOrderedRing R inst✝¹ : IsROrC 𝕜 inst✝ : DecidableEq n M : Matrix n n ℝ hM : IsSymm M hMq : QuadraticForm.PosDef (toQuadraticForm' M) x : n → ℝ hx : x ≠ 0 ⊢ 0 < star x ⬝ᵥ mulVec M x [PROOFSTEP] simp only [toQuadraticForm', QuadraticForm.PosDef, BilinForm.toQuadraticForm_apply, Matrix.toBilin'_apply'] at hMq [GOAL] m : Type u_1 n : Type u_2 R : Type u_3 𝕜 : Type u_4 inst✝⁶ : Fintype m inst✝⁵ : Fintype n inst✝⁴ : CommRing R inst✝³ : PartialOrder R inst✝² : StarOrderedRing R inst✝¹ : IsROrC 𝕜 inst✝ : DecidableEq n M : Matrix n n ℝ hM : IsSymm M x : n → ℝ hx : x ≠ 0 hMq : ∀ (x : n → ℝ), x ≠ 0 → 0 < x ⬝ᵥ mulVec M x ⊢ 0 < star x ⬝ᵥ mulVec M x [PROOFSTEP] apply hMq x hx [GOAL] m : Type u_1 n : Type u_2 R : Type u_3 𝕜 : Type u_4 inst✝⁶ : Fintype m inst✝⁵ : Fintype n inst✝⁴ : CommRing R inst✝³ : PartialOrder R inst✝² : StarOrderedRing R inst✝¹ : IsROrC 𝕜 inst✝ : DecidableEq n M : Matrix n n ℝ hM : PosDef M ⊢ QuadraticForm.PosDef (toQuadraticForm' M) [PROOFSTEP] intro x hx [GOAL] m : Type u_1 n : Type u_2 R : Type u_3 𝕜 : Type u_4 inst✝⁶ : Fintype m inst✝⁵ : Fintype n inst✝⁴ : CommRing R inst✝³ : PartialOrder R inst✝² : StarOrderedRing R inst✝¹ : IsROrC 𝕜 inst✝ : DecidableEq n M : Matrix n n ℝ hM : PosDef M x : n → ℝ hx : x ≠ 0 ⊢ 0 < ↑(toQuadraticForm' M) x [PROOFSTEP] simp only [toQuadraticForm', BilinForm.toQuadraticForm_apply, Matrix.toBilin'_apply'] [GOAL] m : Type u_1 n : Type u_2 R : Type u_3 𝕜 : Type u_4 inst✝⁶ : Fintype m inst✝⁵ : Fintype n inst✝⁴ : CommRing R inst✝³ : PartialOrder R inst✝² : StarOrderedRing R inst✝¹ : IsROrC 𝕜 inst✝ : DecidableEq n M : Matrix n n ℝ hM : PosDef M x : n → ℝ hx : x ≠ 0 ⊢ 0 < x ⬝ᵥ mulVec M x [PROOFSTEP] apply hM.2 x hx [GOAL] m : Type u_1 n : Type u_2 R : Type u_3 𝕜 : Type u_4 inst✝⁵ : Fintype m inst✝⁴ : Fintype n inst✝³ : CommRing R inst✝² : PartialOrder R inst✝¹ : StarOrderedRing R inst✝ : IsROrC 𝕜 A : Matrix m n R ⊢ PosSemidef (Aᴴ * A) [PROOFSTEP] refine ⟨isHermitian_transpose_mul_self _, fun x => ?_⟩ [GOAL] m : Type u_1 n : Type u_2 R : Type u_3 𝕜 : Type u_4 inst✝⁵ : Fintype m inst✝⁴ : Fintype n inst✝³ : CommRing R inst✝² : PartialOrder R inst✝¹ : StarOrderedRing R inst✝ : IsROrC 𝕜 A : Matrix m n R x : n → R ⊢ 0 ≤ star x ⬝ᵥ mulVec (Aᴴ * A) x [PROOFSTEP] rw [← mulVec_mulVec, dotProduct_mulVec, vecMul_conjTranspose, star_star] [GOAL] m : Type u_1 n : Type u_2 R : Type u_3 𝕜 : Type u_4 inst✝⁵ : Fintype m inst✝⁴ : Fintype n inst✝³ : CommRing R inst✝² : PartialOrder R inst✝¹ : StarOrderedRing R inst✝ : IsROrC 𝕜 A : Matrix m n R x : n → R ⊢ 0 ≤ star (mulVec A x) ⬝ᵥ mulVec A x [PROOFSTEP] exact Finset.sum_nonneg fun i _ => star_mul_self_nonneg _ [GOAL] m : Type u_1 n : Type u_2 R : Type u_3 𝕜 : Type u_4 inst✝⁵ : Fintype m inst✝⁴ : Fintype n inst✝³ : CommRing R inst✝² : PartialOrder R inst✝¹ : StarOrderedRing R inst✝ : IsROrC 𝕜 A : Matrix m n R ⊢ PosSemidef (A * Aᴴ) [PROOFSTEP] simpa only [conjTranspose_conjTranspose] using posSemidef_conjTranspose_mul_self Aᴴ [GOAL] m : Type u_1 n : Type u_2 R : Type u_3 𝕜 : Type u_4 inst✝⁷ : Fintype m inst✝⁶ : Fintype n inst✝⁵ : CommRing R inst✝⁴ : PartialOrder R inst✝³ : StarOrderedRing R inst✝² : IsROrC 𝕜 inst✝¹ : DecidableEq n inst✝ : DecidableEq 𝕜 A : Matrix n n 𝕜 hA : PosDef A i : n ⊢ 0 < IsHermitian.eigenvalues (_ : IsHermitian A) i [PROOFSTEP] rw [hA.1.eigenvalues_eq, hA.1.transpose_eigenvectorMatrix_apply] [GOAL] m : Type u_1 n : Type u_2 R : Type u_3 𝕜 : Type u_4 inst✝⁷ : Fintype m inst✝⁶ : Fintype n inst✝⁵ : CommRing R inst✝⁴ : PartialOrder R inst✝³ : StarOrderedRing R inst✝² : IsROrC 𝕜 inst✝¹ : DecidableEq n inst✝ : DecidableEq 𝕜 A : Matrix n n 𝕜 hA : PosDef A i : n ⊢ 0 < ↑IsROrC.re (star (↑(IsHermitian.eigenvectorBasis (_ : IsHermitian A)) i) ⬝ᵥ mulVec A (↑(IsHermitian.eigenvectorBasis (_ : IsHermitian A)) i)) [PROOFSTEP] exact hA.re_dotProduct_pos <| hA.1.eigenvectorBasis.orthonormal.ne_zero i [GOAL] m : Type u_1 n : Type u_2 R : Type u_3 𝕜 : Type u_4 inst✝⁶ : Fintype m inst✝⁵ : Fintype n inst✝⁴ : CommRing R inst✝³ : PartialOrder R inst✝² : StarOrderedRing R inst✝¹ : IsROrC 𝕜 M : Matrix n n ℝ hM : PosDef M inst✝ : DecidableEq n ⊢ 0 < det M [PROOFSTEP] rw [hM.isHermitian.det_eq_prod_eigenvalues] [GOAL] m : Type u_1 n : Type u_2 R : Type u_3 𝕜 : Type u_4 inst✝⁶ : Fintype m inst✝⁵ : Fintype n inst✝⁴ : CommRing R inst✝³ : PartialOrder R inst✝² : StarOrderedRing R inst✝¹ : IsROrC 𝕜 M : Matrix n n ℝ hM : PosDef M inst✝ : DecidableEq n ⊢ 0 < Finset.prod Finset.univ fun i => ↑(IsHermitian.eigenvalues (_ : IsHermitian M) i) [PROOFSTEP] apply Finset.prod_pos [GOAL] case h0 m : Type u_1 n : Type u_2 R : Type u_3 𝕜 : Type u_4 inst✝⁶ : Fintype m inst✝⁵ : Fintype n inst✝⁴ : CommRing R inst✝³ : PartialOrder R inst✝² : StarOrderedRing R inst✝¹ : IsROrC 𝕜 M : Matrix n n ℝ hM : PosDef M inst✝ : DecidableEq n ⊢ ∀ (i : n), i ∈ Finset.univ → 0 < ↑(IsHermitian.eigenvalues (_ : IsHermitian M) i) [PROOFSTEP] intro i _ [GOAL] case h0 m : Type u_1 n : Type u_2 R : Type u_3 𝕜 : Type u_4 inst✝⁶ : Fintype m inst✝⁵ : Fintype n inst✝⁴ : CommRing R inst✝³ : PartialOrder R inst✝² : StarOrderedRing R inst✝¹ : IsROrC 𝕜 M : Matrix n n ℝ hM : PosDef M inst✝ : DecidableEq n i : n a✝ : i ∈ Finset.univ ⊢ 0 < ↑(IsHermitian.eigenvalues (_ : IsHermitian M) i) [PROOFSTEP] rw [hM.isHermitian.eigenvalues_eq] [GOAL] case h0 m : Type u_1 n : Type u_2 R : Type u_3 𝕜 : Type u_4 inst✝⁶ : Fintype m inst✝⁵ : Fintype n inst✝⁴ : CommRing R inst✝³ : PartialOrder R inst✝² : StarOrderedRing R inst✝¹ : IsROrC 𝕜 M : Matrix n n ℝ hM : PosDef M inst✝ : DecidableEq n i : n a✝ : i ∈ Finset.univ ⊢ 0 < ↑(↑IsROrC.re (star ((IsHermitian.eigenvectorMatrix (_ : IsHermitian M))ᵀ i) ⬝ᵥ mulVec M ((IsHermitian.eigenvectorMatrix (_ : IsHermitian M))ᵀ i))) [PROOFSTEP] refine hM.2 _ fun h => ?_ [GOAL] case h0 m : Type u_1 n : Type u_2 R : Type u_3 𝕜 : Type u_4 inst✝⁶ : Fintype m inst✝⁵ : Fintype n inst✝⁴ : CommRing R inst✝³ : PartialOrder R inst✝² : StarOrderedRing R inst✝¹ : IsROrC 𝕜 M : Matrix n n ℝ hM : PosDef M inst✝ : DecidableEq n i : n a✝ : i ∈ Finset.univ h : (IsHermitian.eigenvectorMatrix (_ : IsHermitian M))ᵀ i = 0 ⊢ False [PROOFSTEP] have h_det : hM.isHermitian.eigenvectorMatrixᵀ.det = 0 := Matrix.det_eq_zero_of_row_eq_zero i fun j => congr_fun h j [GOAL] case h0 m : Type u_1 n : Type u_2 R : Type u_3 𝕜 : Type u_4 inst✝⁶ : Fintype m inst✝⁵ : Fintype n inst✝⁴ : CommRing R inst✝³ : PartialOrder R inst✝² : StarOrderedRing R inst✝¹ : IsROrC 𝕜 M : Matrix n n ℝ hM : PosDef M inst✝ : DecidableEq n i : n a✝ : i ∈ Finset.univ h : (IsHermitian.eigenvectorMatrix (_ : IsHermitian M))ᵀ i = 0 h_det : det (IsHermitian.eigenvectorMatrix (_ : IsHermitian M))ᵀ = 0 ⊢ False [PROOFSTEP] simpa only [h_det, not_isUnit_zero] using isUnit_det_of_invertible hM.isHermitian.eigenvectorMatrixᵀ [GOAL] n : Type u_1 inst✝¹ : Fintype n inst✝ : DecidableEq n Q : QuadraticForm ℝ (n → ℝ) hQ : Matrix.PosDef (toMatrix' Q) ⊢ PosDef Q [PROOFSTEP] rw [← toQuadraticForm_associated ℝ Q, ← BilinForm.toMatrix'.left_inv ((associatedHom ℝ) Q)] [GOAL] n : Type u_1 inst✝¹ : Fintype n inst✝ : DecidableEq n Q : QuadraticForm ℝ (n → ℝ) hQ : Matrix.PosDef (toMatrix' Q) ⊢ PosDef (BilinForm.toQuadraticForm (LinearEquiv.invFun BilinForm.toMatrix' (AddHom.toFun (↑BilinForm.toMatrix').toAddHom (↑(associatedHom ℝ) Q)))) [PROOFSTEP] apply Matrix.posDef_toQuadraticForm' hQ [GOAL] n : Type u_1 inst✝¹ : Fintype n inst✝ : DecidableEq n Q : QuadraticForm ℝ (n → ℝ) hQ : PosDef Q ⊢ Matrix.PosDef (toMatrix' Q) [PROOFSTEP] rw [← toQuadraticForm_associated ℝ Q, ← BilinForm.toMatrix'.left_inv ((associatedHom ℝ) Q)] at hQ [GOAL] n : Type u_1 inst✝¹ : Fintype n inst✝ : DecidableEq n Q : QuadraticForm ℝ (n → ℝ) hQ : PosDef (BilinForm.toQuadraticForm (LinearEquiv.invFun BilinForm.toMatrix' (AddHom.toFun (↑BilinForm.toMatrix').toAddHom (↑(associatedHom ℝ) Q)))) ⊢ Matrix.PosDef (toMatrix' Q) [PROOFSTEP] apply Matrix.posDef_of_toQuadraticForm' (isSymm_toMatrix' Q) hQ [GOAL] 𝕜 : Type u_1 inst✝¹ : IsROrC 𝕜 n : Type u_2 inst✝ : Fintype n M : Matrix n n 𝕜 hM : PosDef M x y : n → 𝕜 ⊢ ↑(starRingEnd 𝕜) (inner y x) = inner x y [PROOFSTEP] dsimp only [Inner.inner] [GOAL] 𝕜 : Type u_1 inst✝¹ : IsROrC 𝕜 n : Type u_2 inst✝ : Fintype n M : Matrix n n 𝕜 hM : PosDef M x y : n → 𝕜 ⊢ ↑(starRingEnd 𝕜) (star y ⬝ᵥ mulVec M x) = star x ⬝ᵥ mulVec M y [PROOFSTEP] rw [star_dotProduct, starRingEnd_apply, star_star, star_mulVec, dotProduct_mulVec, hM.isHermitian.eq] [GOAL] 𝕜 : Type u_1 inst✝¹ : IsROrC 𝕜 n : Type u_2 inst✝ : Fintype n M : Matrix n n 𝕜 hM : PosDef M x : n → 𝕜 ⊢ 0 ≤ ↑IsROrC.re (inner x x) [PROOFSTEP] by_cases h : x = 0 [GOAL] case pos 𝕜 : Type u_1 inst✝¹ : IsROrC 𝕜 n : Type u_2 inst✝ : Fintype n M : Matrix n n 𝕜 hM : PosDef M x : n → 𝕜 h : x = 0 ⊢ 0 ≤ ↑IsROrC.re (inner x x) [PROOFSTEP] simp [h] [GOAL] case neg 𝕜 : Type u_1 inst✝¹ : IsROrC 𝕜 n : Type u_2 inst✝ : Fintype n M : Matrix n n 𝕜 hM : PosDef M x : n → 𝕜 h : ¬x = 0 ⊢ 0 ≤ ↑IsROrC.re (inner x x) [PROOFSTEP] exact le_of_lt (hM.re_dotProduct_pos h) [GOAL] 𝕜 : Type u_1 inst✝¹ : IsROrC 𝕜 n : Type u_2 inst✝ : Fintype n M : Matrix n n 𝕜 hM : PosDef M x : n → 𝕜 hx : star x ⬝ᵥ mulVec M x = 0 ⊢ x = 0 [PROOFSTEP] by_contra' h [GOAL] 𝕜 : Type u_1 inst✝¹ : IsROrC 𝕜 n : Type u_2 inst✝ : Fintype n M : Matrix n n 𝕜 hM : PosDef M x : n → 𝕜 hx : star x ⬝ᵥ mulVec M x = 0 h : x ≠ 0 ⊢ False [PROOFSTEP] simpa [hx, lt_irrefl] using hM.re_dotProduct_pos h [GOAL] 𝕜 : Type u_1 inst✝¹ : IsROrC 𝕜 n : Type u_2 inst✝ : Fintype n M : Matrix n n 𝕜 hM : PosDef M ⊢ ∀ (x y z : n → 𝕜), inner (x + y) z = inner x z + inner y z [PROOFSTEP] simp only [star_add, add_dotProduct, eq_self_iff_true, forall_const] [GOAL] 𝕜 : Type u_1 inst✝¹ : IsROrC 𝕜 n : Type u_2 inst✝ : Fintype n M : Matrix n n 𝕜 hM : PosDef M x y : n → 𝕜 r : 𝕜 ⊢ inner (r • x) y = ↑(starRingEnd 𝕜) r * inner x y [PROOFSTEP] simp only [GOAL] 𝕜 : Type u_1 inst✝¹ : IsROrC 𝕜 n : Type u_2 inst✝ : Fintype n M : Matrix n n 𝕜 hM : PosDef M x y : n → 𝕜 r : 𝕜 ⊢ star (r • x) ⬝ᵥ mulVec M y = ↑(starRingEnd 𝕜) r * star x ⬝ᵥ mulVec M y [PROOFSTEP] rw [← smul_eq_mul, ← smul_dotProduct, starRingEnd_apply, ← star_smul]
{"mathlib_filename": "Mathlib.LinearAlgebra.Matrix.PosDef", "llama_tokens": 11763}
[GOAL] R : Type u_1 inst✝ : CommRing R src✝ : Ring (CliffordAlgebra 0) := instRing 0 x y : CliffordAlgebra 0 ⊢ x * y = y * x [PROOFSTEP] induction x using CliffordAlgebra.induction [GOAL] case h_grade0 R : Type u_1 inst✝ : CommRing R src✝ : Ring (CliffordAlgebra 0) := instRing 0 y : CliffordAlgebra 0 r✝ : R ⊢ ↑(algebraMap R (CliffordAlgebra 0)) r✝ * y = y * ↑(algebraMap R (CliffordAlgebra 0)) r✝ case h_grade1 R : Type u_1 inst✝ : CommRing R src✝ : Ring (CliffordAlgebra 0) := instRing 0 y : CliffordAlgebra 0 x✝ : Unit ⊢ ↑(ι 0) x✝ * y = y * ↑(ι 0) x✝ case h_mul R : Type u_1 inst✝ : CommRing R src✝ : Ring (CliffordAlgebra 0) := instRing 0 y a✝² b✝ : CliffordAlgebra 0 a✝¹ : a✝² * y = y * a✝² a✝ : b✝ * y = y * b✝ ⊢ a✝² * b✝ * y = y * (a✝² * b✝) case h_add R : Type u_1 inst✝ : CommRing R src✝ : Ring (CliffordAlgebra 0) := instRing 0 y a✝² b✝ : CliffordAlgebra 0 a✝¹ : a✝² * y = y * a✝² a✝ : b✝ * y = y * b✝ ⊢ (a✝² + b✝) * y = y * (a✝² + b✝) [PROOFSTEP] case h_grade0 r => apply Algebra.commutes [GOAL] R : Type u_1 inst✝ : CommRing R src✝ : Ring (CliffordAlgebra 0) := instRing 0 y : CliffordAlgebra 0 r : R ⊢ ↑(algebraMap R (CliffordAlgebra 0)) r * y = y * ↑(algebraMap R (CliffordAlgebra 0)) r [PROOFSTEP] case h_grade0 r => apply Algebra.commutes [GOAL] R : Type u_1 inst✝ : CommRing R src✝ : Ring (CliffordAlgebra 0) := instRing 0 y : CliffordAlgebra 0 r : R ⊢ ↑(algebraMap R (CliffordAlgebra 0)) r * y = y * ↑(algebraMap R (CliffordAlgebra 0)) r [PROOFSTEP] apply Algebra.commutes [GOAL] case h_grade1 R : Type u_1 inst✝ : CommRing R src✝ : Ring (CliffordAlgebra 0) := instRing 0 y : CliffordAlgebra 0 x✝ : Unit ⊢ ↑(ι 0) x✝ * y = y * ↑(ι 0) x✝ case h_mul R : Type u_1 inst✝ : CommRing R src✝ : Ring (CliffordAlgebra 0) := instRing 0 y a✝² b✝ : CliffordAlgebra 0 a✝¹ : a✝² * y = y * a✝² a✝ : b✝ * y = y * b✝ ⊢ a✝² * b✝ * y = y * (a✝² * b✝) case h_add R : Type u_1 inst✝ : CommRing R src✝ : Ring (CliffordAlgebra 0) := instRing 0 y a✝² b✝ : CliffordAlgebra 0 a✝¹ : a✝² * y = y * a✝² a✝ : b✝ * y = y * b✝ ⊢ (a✝² + b✝) * y = y * (a✝² + b✝) [PROOFSTEP] case h_grade1 x => simp [GOAL] R : Type u_1 inst✝ : CommRing R src✝ : Ring (CliffordAlgebra 0) := instRing 0 y : CliffordAlgebra 0 x : Unit ⊢ ↑(ι 0) x * y = y * ↑(ι 0) x [PROOFSTEP] case h_grade1 x => simp [GOAL] R : Type u_1 inst✝ : CommRing R src✝ : Ring (CliffordAlgebra 0) := instRing 0 y : CliffordAlgebra 0 x : Unit ⊢ ↑(ι 0) x * y = y * ↑(ι 0) x [PROOFSTEP] simp [GOAL] case h_mul R : Type u_1 inst✝ : CommRing R src✝ : Ring (CliffordAlgebra 0) := instRing 0 y a✝² b✝ : CliffordAlgebra 0 a✝¹ : a✝² * y = y * a✝² a✝ : b✝ * y = y * b✝ ⊢ a✝² * b✝ * y = y * (a✝² * b✝) case h_add R : Type u_1 inst✝ : CommRing R src✝ : Ring (CliffordAlgebra 0) := instRing 0 y a✝² b✝ : CliffordAlgebra 0 a✝¹ : a✝² * y = y * a✝² a✝ : b✝ * y = y * b✝ ⊢ (a✝² + b✝) * y = y * (a✝² + b✝) [PROOFSTEP] case h_add x₁ x₂ hx₁ hx₂ => rw [mul_add, add_mul, hx₁, hx₂] [GOAL] R : Type u_1 inst✝ : CommRing R src✝ : Ring (CliffordAlgebra 0) := instRing 0 y x₁ x₂ : CliffordAlgebra 0 hx₁ : x₁ * y = y * x₁ hx₂ : x₂ * y = y * x₂ ⊢ (x₁ + x₂) * y = y * (x₁ + x₂) [PROOFSTEP] case h_add x₁ x₂ hx₁ hx₂ => rw [mul_add, add_mul, hx₁, hx₂] [GOAL] R : Type u_1 inst✝ : CommRing R src✝ : Ring (CliffordAlgebra 0) := instRing 0 y x₁ x₂ : CliffordAlgebra 0 hx₁ : x₁ * y = y * x₁ hx₂ : x₂ * y = y * x₂ ⊢ (x₁ + x₂) * y = y * (x₁ + x₂) [PROOFSTEP] rw [mul_add, add_mul, hx₁, hx₂] [GOAL] case h_mul R : Type u_1 inst✝ : CommRing R src✝ : Ring (CliffordAlgebra 0) := instRing 0 y a✝² b✝ : CliffordAlgebra 0 a✝¹ : a✝² * y = y * a✝² a✝ : b✝ * y = y * b✝ ⊢ a✝² * b✝ * y = y * (a✝² * b✝) [PROOFSTEP] case h_mul x₁ x₂ hx₁ hx₂ => rw [mul_assoc, hx₂, ← mul_assoc, hx₁, ← mul_assoc] [GOAL] R : Type u_1 inst✝ : CommRing R src✝ : Ring (CliffordAlgebra 0) := instRing 0 y x₁ x₂ : CliffordAlgebra 0 hx₁ : x₁ * y = y * x₁ hx₂ : x₂ * y = y * x₂ ⊢ x₁ * x₂ * y = y * (x₁ * x₂) [PROOFSTEP] case h_mul x₁ x₂ hx₁ hx₂ => rw [mul_assoc, hx₂, ← mul_assoc, hx₁, ← mul_assoc] [GOAL] R : Type u_1 inst✝ : CommRing R src✝ : Ring (CliffordAlgebra 0) := instRing 0 y x₁ x₂ : CliffordAlgebra 0 hx₁ : x₁ * y = y * x₁ hx₂ : x₂ * y = y * x₂ ⊢ x₁ * x₂ * y = y * (x₁ * x₂) [PROOFSTEP] rw [mul_assoc, hx₂, ← mul_assoc, hx₁, ← mul_assoc] [GOAL] R : Type u_1 inst✝ : CommRing R x : CliffordAlgebra 0 ⊢ ↑reverse x = x [PROOFSTEP] induction x using CliffordAlgebra.induction [GOAL] case h_grade0 R : Type u_1 inst✝ : CommRing R r✝ : R ⊢ ↑reverse (↑(algebraMap R (CliffordAlgebra 0)) r✝) = ↑(algebraMap R (CliffordAlgebra 0)) r✝ case h_grade1 R : Type u_1 inst✝ : CommRing R x✝ : Unit ⊢ ↑reverse (↑(ι 0) x✝) = ↑(ι 0) x✝ case h_mul R : Type u_1 inst✝ : CommRing R a✝² b✝ : CliffordAlgebra 0 a✝¹ : ↑reverse a✝² = a✝² a✝ : ↑reverse b✝ = b✝ ⊢ ↑reverse (a✝² * b✝) = a✝² * b✝ case h_add R : Type u_1 inst✝ : CommRing R a✝² b✝ : CliffordAlgebra 0 a✝¹ : ↑reverse a✝² = a✝² a✝ : ↑reverse b✝ = b✝ ⊢ ↑reverse (a✝² + b✝) = a✝² + b✝ [PROOFSTEP] case h_grade0 r => exact reverse.commutes _ [GOAL] R : Type u_1 inst✝ : CommRing R r : R ⊢ ↑reverse (↑(algebraMap R (CliffordAlgebra 0)) r) = ↑(algebraMap R (CliffordAlgebra 0)) r [PROOFSTEP] case h_grade0 r => exact reverse.commutes _ [GOAL] R : Type u_1 inst✝ : CommRing R r : R ⊢ ↑reverse (↑(algebraMap R (CliffordAlgebra 0)) r) = ↑(algebraMap R (CliffordAlgebra 0)) r [PROOFSTEP] exact reverse.commutes _ [GOAL] case h_grade1 R : Type u_1 inst✝ : CommRing R x✝ : Unit ⊢ ↑reverse (↑(ι 0) x✝) = ↑(ι 0) x✝ case h_mul R : Type u_1 inst✝ : CommRing R a✝² b✝ : CliffordAlgebra 0 a✝¹ : ↑reverse a✝² = a✝² a✝ : ↑reverse b✝ = b✝ ⊢ ↑reverse (a✝² * b✝) = a✝² * b✝ case h_add R : Type u_1 inst✝ : CommRing R a✝² b✝ : CliffordAlgebra 0 a✝¹ : ↑reverse a✝² = a✝² a✝ : ↑reverse b✝ = b✝ ⊢ ↑reverse (a✝² + b✝) = a✝² + b✝ [PROOFSTEP] case h_grade1 x => rw [ι_eq_zero, LinearMap.zero_apply, reverse.map_zero] [GOAL] R : Type u_1 inst✝ : CommRing R x : Unit ⊢ ↑reverse (↑(ι 0) x) = ↑(ι 0) x [PROOFSTEP] case h_grade1 x => rw [ι_eq_zero, LinearMap.zero_apply, reverse.map_zero] [GOAL] R : Type u_1 inst✝ : CommRing R x : Unit ⊢ ↑reverse (↑(ι 0) x) = ↑(ι 0) x [PROOFSTEP] rw [ι_eq_zero, LinearMap.zero_apply, reverse.map_zero] [GOAL] case h_mul R : Type u_1 inst✝ : CommRing R a✝² b✝ : CliffordAlgebra 0 a✝¹ : ↑reverse a✝² = a✝² a✝ : ↑reverse b✝ = b✝ ⊢ ↑reverse (a✝² * b✝) = a✝² * b✝ case h_add R : Type u_1 inst✝ : CommRing R a✝² b✝ : CliffordAlgebra 0 a✝¹ : ↑reverse a✝² = a✝² a✝ : ↑reverse b✝ = b✝ ⊢ ↑reverse (a✝² + b✝) = a✝² + b✝ [PROOFSTEP] case h_mul x₁ x₂ hx₁ hx₂ => rw [reverse.map_mul, mul_comm, hx₁, hx₂] [GOAL] R : Type u_1 inst✝ : CommRing R x₁ x₂ : CliffordAlgebra 0 hx₁ : ↑reverse x₁ = x₁ hx₂ : ↑reverse x₂ = x₂ ⊢ ↑reverse (x₁ * x₂) = x₁ * x₂ [PROOFSTEP] case h_mul x₁ x₂ hx₁ hx₂ => rw [reverse.map_mul, mul_comm, hx₁, hx₂] [GOAL] R : Type u_1 inst✝ : CommRing R x₁ x₂ : CliffordAlgebra 0 hx₁ : ↑reverse x₁ = x₁ hx₂ : ↑reverse x₂ = x₂ ⊢ ↑reverse (x₁ * x₂) = x₁ * x₂ [PROOFSTEP] rw [reverse.map_mul, mul_comm, hx₁, hx₂] [GOAL] case h_add R : Type u_1 inst✝ : CommRing R a✝² b✝ : CliffordAlgebra 0 a✝¹ : ↑reverse a✝² = a✝² a✝ : ↑reverse b✝ = b✝ ⊢ ↑reverse (a✝² + b✝) = a✝² + b✝ [PROOFSTEP] case h_add x₁ x₂ hx₁ hx₂ => rw [reverse.map_add, hx₁, hx₂] [GOAL] R : Type u_1 inst✝ : CommRing R x₁ x₂ : CliffordAlgebra 0 hx₁ : ↑reverse x₁ = x₁ hx₂ : ↑reverse x₂ = x₂ ⊢ ↑reverse (x₁ + x₂) = x₁ + x₂ [PROOFSTEP] case h_add x₁ x₂ hx₁ hx₂ => rw [reverse.map_add, hx₁, hx₂] [GOAL] R : Type u_1 inst✝ : CommRing R x₁ x₂ : CliffordAlgebra 0 hx₁ : ↑reverse x₁ = x₁ hx₂ : ↑reverse x₂ = x₂ ⊢ ↑reverse (x₁ + x₂) = x₁ + x₂ [PROOFSTEP] rw [reverse.map_add, hx₁, hx₂] [GOAL] R : Type u_1 inst✝ : CommRing R ⊢ involute = AlgHom.id R (CliffordAlgebra 0) [PROOFSTEP] ext [GOAL] case a.h R : Type u_1 inst✝ : CommRing R x✝ : Unit ⊢ ↑(LinearMap.comp (AlgHom.toLinearMap involute) (ι 0)) x✝ = ↑(LinearMap.comp (AlgHom.toLinearMap (AlgHom.id R (CliffordAlgebra 0))) (ι 0)) x✝ [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝ : CommRing R ⊢ AlgHom.comp (↑(lift 0) { val := 0, property := (_ : ∀ (m : Unit), 0 * 0 = ↑(algebraMap R R) (↑0 m)) }) (Algebra.ofId R (CliffordAlgebra 0)) = AlgHom.id R R [PROOFSTEP] ext x [GOAL] case H R : Type u_1 inst✝ : CommRing R x : R ⊢ ↑(AlgHom.comp (↑(lift 0) { val := 0, property := (_ : ∀ (m : Unit), 0 * 0 = ↑(algebraMap R R) (↑0 m)) }) (Algebra.ofId R (CliffordAlgebra 0))) x = ↑(AlgHom.id R R) x [PROOFSTEP] exact AlgHom.commutes _ x [GOAL] R : Type u_1 inst✝ : CommRing R ⊢ AlgHom.comp (Algebra.ofId R (CliffordAlgebra 0)) (↑(lift 0) { val := 0, property := (_ : ∀ (m : Unit), 0 * 0 = ↑(algebraMap R R) (↑0 m)) }) = AlgHom.id R (CliffordAlgebra 0) [PROOFSTEP] ext : 1 [GOAL] case a R : Type u_1 inst✝ : CommRing R ⊢ LinearMap.comp (AlgHom.toLinearMap (AlgHom.comp (Algebra.ofId R (CliffordAlgebra 0)) (↑(lift 0) { val := 0, property := (_ : ∀ (m : Unit), 0 * 0 = ↑(algebraMap R R) (↑0 m)) }))) (ι 0) = LinearMap.comp (AlgHom.toLinearMap (AlgHom.id R (CliffordAlgebra 0))) (ι 0) [PROOFSTEP] rw [ι_eq_zero, LinearMap.comp_zero, LinearMap.comp_zero] [GOAL] r : ℝ ⊢ ↑(LinearMap.toSpanSingleton ℝ ℂ Complex.I) r * ↑(LinearMap.toSpanSingleton ℝ ℂ Complex.I) r = ↑(algebraMap ℝ ℂ) (↑Q r) [PROOFSTEP] dsimp [LinearMap.toSpanSingleton, LinearMap.id] [GOAL] r : ℝ ⊢ ↑r * Complex.I * (↑r * Complex.I) = ↑(-(r * r)) [PROOFSTEP] rw [mul_mul_mul_comm] [GOAL] r : ℝ ⊢ ↑r * ↑r * (Complex.I * Complex.I) = ↑(-(r * r)) [PROOFSTEP] simp [GOAL] c : CliffordAlgebra Q ⊢ ↑toComplex (↑involute c) = ↑(starRingEnd ((fun x => ℂ) c)) (↑toComplex c) [PROOFSTEP] have : toComplex (involute (ι Q 1)) = conj (toComplex (ι Q 1)) := by simp only [involute_ι, toComplex_ι, AlgHom.map_neg, one_smul, Complex.conj_I] [GOAL] c : CliffordAlgebra Q ⊢ ↑toComplex (↑involute (↑(ι Q) 1)) = ↑(starRingEnd ((fun x => ℂ) (↑(ι Q) 1))) (↑toComplex (↑(ι Q) 1)) [PROOFSTEP] simp only [involute_ι, toComplex_ι, AlgHom.map_neg, one_smul, Complex.conj_I] [GOAL] c : CliffordAlgebra Q this : ↑toComplex (↑involute (↑(ι Q) 1)) = ↑(starRingEnd ((fun x => ℂ) (↑(ι Q) 1))) (↑toComplex (↑(ι Q) 1)) ⊢ ↑toComplex (↑involute c) = ↑(starRingEnd ((fun x => ℂ) c)) (↑toComplex c) [PROOFSTEP] suffices toComplex.comp involute = Complex.conjAe.toAlgHom.comp toComplex by exact AlgHom.congr_fun this c [GOAL] c : CliffordAlgebra Q this✝ : ↑toComplex (↑involute (↑(ι Q) 1)) = ↑(starRingEnd ((fun x => ℂ) (↑(ι Q) 1))) (↑toComplex (↑(ι Q) 1)) this : AlgHom.comp toComplex involute = AlgHom.comp (↑Complex.conjAe) toComplex ⊢ ↑toComplex (↑involute c) = ↑(starRingEnd ((fun x => ℂ) c)) (↑toComplex c) [PROOFSTEP] exact AlgHom.congr_fun this c [GOAL] c : CliffordAlgebra Q this : ↑toComplex (↑involute (↑(ι Q) 1)) = ↑(starRingEnd ((fun x => ℂ) (↑(ι Q) 1))) (↑toComplex (↑(ι Q) 1)) ⊢ AlgHom.comp toComplex involute = AlgHom.comp (↑Complex.conjAe) toComplex [PROOFSTEP] ext : 2 [GOAL] case a.h c : CliffordAlgebra Q this : ↑toComplex (↑involute (↑(ι Q) 1)) = ↑(starRingEnd ((fun x => ℂ) (↑(ι Q) 1))) (↑toComplex (↑(ι Q) 1)) ⊢ ↑(LinearMap.comp (AlgHom.toLinearMap (AlgHom.comp toComplex involute)) (ι Q)) 1 = ↑(LinearMap.comp (AlgHom.toLinearMap (AlgHom.comp (↑Complex.conjAe) toComplex)) (ι Q)) 1 [PROOFSTEP] exact this [GOAL] ⊢ ↑(ι Q) 1 * ↑(ι Q) 1 = -1 [PROOFSTEP] rw [CliffordAlgebra.ι_sq_scalar, Q_apply, one_mul, RingHom.map_neg, RingHom.map_one] [GOAL] ⊢ ↑{ val := ↑(ι Q) 1, property := ofComplex.proof_1 } * ↑{ val := ↑(ι Q) 1, property := ofComplex.proof_1 } = -1 [PROOFSTEP] simp [GOAL] ⊢ AlgHom.comp toComplex ofComplex = AlgHom.id ℝ ℂ [PROOFSTEP] ext1 [GOAL] case h ⊢ ↑(AlgHom.comp toComplex ofComplex) Complex.I = ↑(AlgHom.id ℝ ℂ) Complex.I [PROOFSTEP] dsimp only [AlgHom.comp_apply, Subtype.coe_mk, AlgHom.id_apply] [GOAL] case h ⊢ ↑toComplex (↑ofComplex Complex.I) = Complex.I [PROOFSTEP] rw [ofComplex_I, toComplex_ι, one_smul] [GOAL] ⊢ AlgHom.comp ofComplex toComplex = AlgHom.id ℝ (CliffordAlgebra Q) [PROOFSTEP] ext [GOAL] case a.h ⊢ ↑(LinearMap.comp (AlgHom.toLinearMap (AlgHom.comp ofComplex toComplex)) (ι Q)) 1 = ↑(LinearMap.comp (AlgHom.toLinearMap (AlgHom.id ℝ (CliffordAlgebra Q))) (ι Q)) 1 [PROOFSTEP] dsimp only [LinearMap.comp_apply, Subtype.coe_mk, AlgHom.id_apply, AlgHom.toLinearMap_apply, AlgHom.comp_apply] [GOAL] case a.h ⊢ ↑ofComplex (↑toComplex (↑(ι Q) 1)) = ↑(ι Q) 1 [PROOFSTEP] rw [toComplex_ι, one_smul, ofComplex_I] [GOAL] src✝ : Ring (CliffordAlgebra Q) := instRing Q x y : CliffordAlgebra Q ⊢ ↑CliffordAlgebraComplex.equiv (x * y) = ↑CliffordAlgebraComplex.equiv (y * x) [PROOFSTEP] rw [AlgEquiv.map_mul, mul_comm, AlgEquiv.map_mul] [GOAL] x : CliffordAlgebra Q ⊢ ↑reverse x = x [PROOFSTEP] induction x using CliffordAlgebra.induction [GOAL] case h_grade0 r✝ : ℝ ⊢ ↑reverse (↑(algebraMap ℝ (CliffordAlgebra Q)) r✝) = ↑(algebraMap ℝ (CliffordAlgebra Q)) r✝ case h_grade1 x✝ : ℝ ⊢ ↑reverse (↑(ι Q) x✝) = ↑(ι Q) x✝ case h_mul a✝² b✝ : CliffordAlgebra Q a✝¹ : ↑reverse a✝² = a✝² a✝ : ↑reverse b✝ = b✝ ⊢ ↑reverse (a✝² * b✝) = a✝² * b✝ case h_add a✝² b✝ : CliffordAlgebra Q a✝¹ : ↑reverse a✝² = a✝² a✝ : ↑reverse b✝ = b✝ ⊢ ↑reverse (a✝² + b✝) = a✝² + b✝ [PROOFSTEP] case h_grade0 r => exact reverse.commutes _ [GOAL] r : ℝ ⊢ ↑reverse (↑(algebraMap ℝ (CliffordAlgebra Q)) r) = ↑(algebraMap ℝ (CliffordAlgebra Q)) r [PROOFSTEP] case h_grade0 r => exact reverse.commutes _ [GOAL] r : ℝ ⊢ ↑reverse (↑(algebraMap ℝ (CliffordAlgebra Q)) r) = ↑(algebraMap ℝ (CliffordAlgebra Q)) r [PROOFSTEP] exact reverse.commutes _ [GOAL] case h_grade1 x✝ : ℝ ⊢ ↑reverse (↑(ι Q) x✝) = ↑(ι Q) x✝ case h_mul a✝² b✝ : CliffordAlgebra Q a✝¹ : ↑reverse a✝² = a✝² a✝ : ↑reverse b✝ = b✝ ⊢ ↑reverse (a✝² * b✝) = a✝² * b✝ case h_add a✝² b✝ : CliffordAlgebra Q a✝¹ : ↑reverse a✝² = a✝² a✝ : ↑reverse b✝ = b✝ ⊢ ↑reverse (a✝² + b✝) = a✝² + b✝ [PROOFSTEP] case h_grade1 x => rw [reverse_ι] [GOAL] x : ℝ ⊢ ↑reverse (↑(ι Q) x) = ↑(ι Q) x [PROOFSTEP] case h_grade1 x => rw [reverse_ι] [GOAL] x : ℝ ⊢ ↑reverse (↑(ι Q) x) = ↑(ι Q) x [PROOFSTEP] rw [reverse_ι] [GOAL] case h_mul a✝² b✝ : CliffordAlgebra Q a✝¹ : ↑reverse a✝² = a✝² a✝ : ↑reverse b✝ = b✝ ⊢ ↑reverse (a✝² * b✝) = a✝² * b✝ case h_add a✝² b✝ : CliffordAlgebra Q a✝¹ : ↑reverse a✝² = a✝² a✝ : ↑reverse b✝ = b✝ ⊢ ↑reverse (a✝² + b✝) = a✝² + b✝ [PROOFSTEP] case h_mul x₁ x₂ hx₁ hx₂ => rw [reverse.map_mul, mul_comm, hx₁, hx₂] [GOAL] x₁ x₂ : CliffordAlgebra Q hx₁ : ↑reverse x₁ = x₁ hx₂ : ↑reverse x₂ = x₂ ⊢ ↑reverse (x₁ * x₂) = x₁ * x₂ [PROOFSTEP] case h_mul x₁ x₂ hx₁ hx₂ => rw [reverse.map_mul, mul_comm, hx₁, hx₂] [GOAL] x₁ x₂ : CliffordAlgebra Q hx₁ : ↑reverse x₁ = x₁ hx₂ : ↑reverse x₂ = x₂ ⊢ ↑reverse (x₁ * x₂) = x₁ * x₂ [PROOFSTEP] rw [reverse.map_mul, mul_comm, hx₁, hx₂] [GOAL] case h_add a✝² b✝ : CliffordAlgebra Q a✝¹ : ↑reverse a✝² = a✝² a✝ : ↑reverse b✝ = b✝ ⊢ ↑reverse (a✝² + b✝) = a✝² + b✝ [PROOFSTEP] case h_add x₁ x₂ hx₁ hx₂ => rw [reverse.map_add, hx₁, hx₂] [GOAL] x₁ x₂ : CliffordAlgebra Q hx₁ : ↑reverse x₁ = x₁ hx₂ : ↑reverse x₂ = x₂ ⊢ ↑reverse (x₁ + x₂) = x₁ + x₂ [PROOFSTEP] case h_add x₁ x₂ hx₁ hx₂ => rw [reverse.map_add, hx₁, hx₂] [GOAL] x₁ x₂ : CliffordAlgebra Q hx₁ : ↑reverse x₁ = x₁ hx₂ : ↑reverse x₂ = x₂ ⊢ ↑reverse (x₁ + x₂) = x₁ + x₂ [PROOFSTEP] rw [reverse.map_add, hx₁, hx₂] [GOAL] c : ℂ ⊢ ↑CliffordAlgebraComplex.equiv (↑ofComplex (↑(starRingEnd ℂ) c)) = ↑CliffordAlgebraComplex.equiv (↑involute (↑ofComplex c)) [PROOFSTEP] rw [equiv_apply, equiv_apply, toComplex_involute, toComplex_ofComplex, toComplex_ofComplex] [GOAL] R : Type u_1 inst✝ : CommRing R c₁ c₂ : R ⊢ ↑(ι (Q c₁ c₂)) (1, 0) * ↑(ι (Q c₁ c₂)) (1, 0) = c₁ • 1 [PROOFSTEP] rw [ι_sq_scalar, Q_apply, ← Algebra.algebraMap_eq_smul_one] [GOAL] R : Type u_1 inst✝ : CommRing R c₁ c₂ : R ⊢ ↑(algebraMap R (CliffordAlgebra (Q c₁ c₂))) (c₁ * ((1, 0).fst * (1, 0).fst) + c₂ * ((1, 0).snd * (1, 0).snd)) = ↑(algebraMap R (CliffordAlgebra (Q c₁ c₂))) c₁ [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝ : CommRing R c₁ c₂ : R ⊢ ↑(ι (Q c₁ c₂)) (0, 1) * ↑(ι (Q c₁ c₂)) (0, 1) = c₂ • 1 [PROOFSTEP] rw [ι_sq_scalar, Q_apply, ← Algebra.algebraMap_eq_smul_one] [GOAL] R : Type u_1 inst✝ : CommRing R c₁ c₂ : R ⊢ ↑(algebraMap R (CliffordAlgebra (Q c₁ c₂))) (c₁ * ((0, 1).fst * (0, 1).fst) + c₂ * ((0, 1).snd * (0, 1).snd)) = ↑(algebraMap R (CliffordAlgebra (Q c₁ c₂))) c₂ [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝ : CommRing R c₁ c₂ : R ⊢ ↑(ι (Q c₁ c₂)) (0, 1) * ↑(ι (Q c₁ c₂)) (1, 0) = -(↑(ι (Q c₁ c₂)) (1, 0) * ↑(ι (Q c₁ c₂)) (0, 1)) [PROOFSTEP] rw [eq_neg_iff_add_eq_zero, ι_mul_ι_add_swap, QuadraticForm.polar] [GOAL] R : Type u_1 inst✝ : CommRing R c₁ c₂ : R ⊢ ↑(algebraMap R (CliffordAlgebra (Q c₁ c₂))) (↑(Q c₁ c₂) ((0, 1) + (1, 0)) - ↑(Q c₁ c₂) (0, 1) - ↑(Q c₁ c₂) (1, 0)) = 0 [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝ : CommRing R c₁ c₂ : R v₁ v₂ : R × R ⊢ (fun v => { re := 0, imI := v.fst, imJ := v.snd, imK := 0 }) (v₁ + v₂) = (fun v => { re := 0, imI := v.fst, imJ := v.snd, imK := 0 }) v₁ + (fun v => { re := 0, imI := v.fst, imJ := v.snd, imK := 0 }) v₂ [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝ : CommRing R c₁ c₂ r : R v : R × R ⊢ AddHom.toFun { toFun := fun v => { re := 0, imI := v.fst, imJ := v.snd, imK := 0 }, map_add' := (_ : ∀ (v₁ v₂ : R × R), { re := 0, imI := v₁.fst + v₂.fst, imJ := v₁.snd + v₂.snd, imK := 0 } = { re := 0 + 0, imI := v₁.fst + v₂.fst, imJ := v₁.snd + v₂.snd, imK := 0 + 0 }) } (r • v) = ↑(RingHom.id R) r • AddHom.toFun { toFun := fun v => { re := 0, imI := v.fst, imJ := v.snd, imK := 0 }, map_add' := (_ : ∀ (v₁ v₂ : R × R), { re := 0, imI := v₁.fst + v₂.fst, imJ := v₁.snd + v₂.snd, imK := 0 } = { re := 0 + 0, imI := v₁.fst + v₂.fst, imJ := v₁.snd + v₂.snd, imK := 0 + 0 }) } v [PROOFSTEP] dsimp [GOAL] R : Type u_1 inst✝ : CommRing R c₁ c₂ r : R v : R × R ⊢ { re := 0, imI := (r • v).fst, imJ := (r • v).snd, imK := 0 } = { re := r * 0, imI := r * v.fst, imJ := r * v.snd, imK := r * 0 } [PROOFSTEP] rw [mul_zero] [GOAL] R : Type u_1 inst✝ : CommRing R c₁ c₂ r : R v : R × R ⊢ { re := 0, imI := (r • v).fst, imJ := (r • v).snd, imK := 0 } = { re := 0, imI := r * v.fst, imJ := r * v.snd, imK := 0 } [PROOFSTEP] rfl [GOAL] R : Type u_1 inst✝ : CommRing R c₁ c₂ : R v : R × R ⊢ ↑{ toAddHom := { toFun := fun v => { re := 0, imI := v.fst, imJ := v.snd, imK := 0 }, map_add' := (_ : ∀ (v₁ v₂ : R × R), { re := 0, imI := v₁.fst + v₂.fst, imJ := v₁.snd + v₂.snd, imK := 0 } = { re := 0 + 0, imI := v₁.fst + v₂.fst, imJ := v₁.snd + v₂.snd, imK := 0 + 0 }) }, map_smul' := (_ : ∀ (r : R) (v : R × R), AddHom.toFun { toFun := fun v => { re := 0, imI := v.fst, imJ := v.snd, imK := 0 }, map_add' := (_ : ∀ (v₁ v₂ : R × R), { re := 0, imI := v₁.fst + v₂.fst, imJ := v₁.snd + v₂.snd, imK := 0 } = { re := 0 + 0, imI := v₁.fst + v₂.fst, imJ := v₁.snd + v₂.snd, imK := 0 + 0 }) } (r • v) = ↑(RingHom.id R) r • AddHom.toFun { toFun := fun v => { re := 0, imI := v.fst, imJ := v.snd, imK := 0 }, map_add' := (_ : ∀ (v₁ v₂ : R × R), { re := 0, imI := v₁.fst + v₂.fst, imJ := v₁.snd + v₂.snd, imK := 0 } = { re := 0 + 0, imI := v₁.fst + v₂.fst, imJ := v₁.snd + v₂.snd, imK := 0 + 0 }) } v) } v * ↑{ toAddHom := { toFun := fun v => { re := 0, imI := v.fst, imJ := v.snd, imK := 0 }, map_add' := (_ : ∀ (v₁ v₂ : R × R), { re := 0, imI := v₁.fst + v₂.fst, imJ := v₁.snd + v₂.snd, imK := 0 } = { re := 0 + 0, imI := v₁.fst + v₂.fst, imJ := v₁.snd + v₂.snd, imK := 0 + 0 }) }, map_smul' := (_ : ∀ (r : R) (v : R × R), AddHom.toFun { toFun := fun v => { re := 0, imI := v.fst, imJ := v.snd, imK := 0 }, map_add' := (_ : ∀ (v₁ v₂ : R × R), { re := 0, imI := v₁.fst + v₂.fst, imJ := v₁.snd + v₂.snd, imK := 0 } = { re := 0 + 0, imI := v₁.fst + v₂.fst, imJ := v₁.snd + v₂.snd, imK := 0 + 0 }) } (r • v) = ↑(RingHom.id R) r • AddHom.toFun { toFun := fun v => { re := 0, imI := v.fst, imJ := v.snd, imK := 0 }, map_add' := (_ : ∀ (v₁ v₂ : R × R), { re := 0, imI := v₁.fst + v₂.fst, imJ := v₁.snd + v₂.snd, imK := 0 } = { re := 0 + 0, imI := v₁.fst + v₂.fst, imJ := v₁.snd + v₂.snd, imK := 0 + 0 }) } v) } v = ↑(algebraMap R ℍ[R,c₁,c₂]) (↑(Q c₁ c₂) v) [PROOFSTEP] dsimp [GOAL] R : Type u_1 inst✝ : CommRing R c₁ c₂ : R v : R × R ⊢ { re := 0 * 0 + c₁ * v.fst * v.fst + c₂ * v.snd * v.snd - c₁ * c₂ * 0 * 0, imI := 0 * v.fst + v.fst * 0 - c₂ * v.snd * 0 + c₂ * 0 * v.snd, imJ := 0 * v.snd + c₁ * v.fst * 0 + v.snd * 0 - c₁ * 0 * v.fst, imK := 0 * 0 + v.fst * v.snd - v.snd * v.fst + 0 * 0 } = ↑(c₁ * (v.fst * v.fst) + c₂ * (v.snd * v.snd)) [PROOFSTEP] ext [GOAL] case re R : Type u_1 inst✝ : CommRing R c₁ c₂ : R v : R × R ⊢ { re := 0 * 0 + c₁ * v.fst * v.fst + c₂ * v.snd * v.snd - c₁ * c₂ * 0 * 0, imI := 0 * v.fst + v.fst * 0 - c₂ * v.snd * 0 + c₂ * 0 * v.snd, imJ := 0 * v.snd + c₁ * v.fst * 0 + v.snd * 0 - c₁ * 0 * v.fst, imK := 0 * 0 + v.fst * v.snd - v.snd * v.fst + 0 * 0 }.re = (↑(c₁ * (v.fst * v.fst) + c₂ * (v.snd * v.snd))).re case imI R : Type u_1 inst✝ : CommRing R c₁ c₂ : R v : R × R ⊢ { re := 0 * 0 + c₁ * v.fst * v.fst + c₂ * v.snd * v.snd - c₁ * c₂ * 0 * 0, imI := 0 * v.fst + v.fst * 0 - c₂ * v.snd * 0 + c₂ * 0 * v.snd, imJ := 0 * v.snd + c₁ * v.fst * 0 + v.snd * 0 - c₁ * 0 * v.fst, imK := 0 * 0 + v.fst * v.snd - v.snd * v.fst + 0 * 0 }.imI = (↑(c₁ * (v.fst * v.fst) + c₂ * (v.snd * v.snd))).imI case imJ R : Type u_1 inst✝ : CommRing R c₁ c₂ : R v : R × R ⊢ { re := 0 * 0 + c₁ * v.fst * v.fst + c₂ * v.snd * v.snd - c₁ * c₂ * 0 * 0, imI := 0 * v.fst + v.fst * 0 - c₂ * v.snd * 0 + c₂ * 0 * v.snd, imJ := 0 * v.snd + c₁ * v.fst * 0 + v.snd * 0 - c₁ * 0 * v.fst, imK := 0 * 0 + v.fst * v.snd - v.snd * v.fst + 0 * 0 }.imJ = (↑(c₁ * (v.fst * v.fst) + c₂ * (v.snd * v.snd))).imJ case imK R : Type u_1 inst✝ : CommRing R c₁ c₂ : R v : R × R ⊢ { re := 0 * 0 + c₁ * v.fst * v.fst + c₂ * v.snd * v.snd - c₁ * c₂ * 0 * 0, imI := 0 * v.fst + v.fst * 0 - c₂ * v.snd * 0 + c₂ * 0 * v.snd, imJ := 0 * v.snd + c₁ * v.fst * 0 + v.snd * 0 - c₁ * 0 * v.fst, imK := 0 * 0 + v.fst * v.snd - v.snd * v.fst + 0 * 0 }.imK = (↑(c₁ * (v.fst * v.fst) + c₂ * (v.snd * v.snd))).imK [PROOFSTEP] all_goals dsimp; ring [GOAL] case re R : Type u_1 inst✝ : CommRing R c₁ c₂ : R v : R × R ⊢ { re := 0 * 0 + c₁ * v.fst * v.fst + c₂ * v.snd * v.snd - c₁ * c₂ * 0 * 0, imI := 0 * v.fst + v.fst * 0 - c₂ * v.snd * 0 + c₂ * 0 * v.snd, imJ := 0 * v.snd + c₁ * v.fst * 0 + v.snd * 0 - c₁ * 0 * v.fst, imK := 0 * 0 + v.fst * v.snd - v.snd * v.fst + 0 * 0 }.re = (↑(c₁ * (v.fst * v.fst) + c₂ * (v.snd * v.snd))).re [PROOFSTEP] dsimp [GOAL] case re R : Type u_1 inst✝ : CommRing R c₁ c₂ : R v : R × R ⊢ 0 * 0 + c₁ * v.fst * v.fst + c₂ * v.snd * v.snd - c₁ * c₂ * 0 * 0 = c₁ * (v.fst * v.fst) + c₂ * (v.snd * v.snd) [PROOFSTEP] ring [GOAL] case imI R : Type u_1 inst✝ : CommRing R c₁ c₂ : R v : R × R ⊢ { re := 0 * 0 + c₁ * v.fst * v.fst + c₂ * v.snd * v.snd - c₁ * c₂ * 0 * 0, imI := 0 * v.fst + v.fst * 0 - c₂ * v.snd * 0 + c₂ * 0 * v.snd, imJ := 0 * v.snd + c₁ * v.fst * 0 + v.snd * 0 - c₁ * 0 * v.fst, imK := 0 * 0 + v.fst * v.snd - v.snd * v.fst + 0 * 0 }.imI = (↑(c₁ * (v.fst * v.fst) + c₂ * (v.snd * v.snd))).imI [PROOFSTEP] dsimp [GOAL] case imI R : Type u_1 inst✝ : CommRing R c₁ c₂ : R v : R × R ⊢ 0 * v.fst + v.fst * 0 - c₂ * v.snd * 0 + c₂ * 0 * v.snd = 0 [PROOFSTEP] ring [GOAL] case imJ R : Type u_1 inst✝ : CommRing R c₁ c₂ : R v : R × R ⊢ { re := 0 * 0 + c₁ * v.fst * v.fst + c₂ * v.snd * v.snd - c₁ * c₂ * 0 * 0, imI := 0 * v.fst + v.fst * 0 - c₂ * v.snd * 0 + c₂ * 0 * v.snd, imJ := 0 * v.snd + c₁ * v.fst * 0 + v.snd * 0 - c₁ * 0 * v.fst, imK := 0 * 0 + v.fst * v.snd - v.snd * v.fst + 0 * 0 }.imJ = (↑(c₁ * (v.fst * v.fst) + c₂ * (v.snd * v.snd))).imJ [PROOFSTEP] dsimp [GOAL] case imJ R : Type u_1 inst✝ : CommRing R c₁ c₂ : R v : R × R ⊢ 0 * v.snd + c₁ * v.fst * 0 + v.snd * 0 - c₁ * 0 * v.fst = 0 [PROOFSTEP] ring [GOAL] case imK R : Type u_1 inst✝ : CommRing R c₁ c₂ : R v : R × R ⊢ { re := 0 * 0 + c₁ * v.fst * v.fst + c₂ * v.snd * v.snd - c₁ * c₂ * 0 * 0, imI := 0 * v.fst + v.fst * 0 - c₂ * v.snd * 0 + c₂ * 0 * v.snd, imJ := 0 * v.snd + c₁ * v.fst * 0 + v.snd * 0 - c₁ * 0 * v.fst, imK := 0 * 0 + v.fst * v.snd - v.snd * v.fst + 0 * 0 }.imK = (↑(c₁ * (v.fst * v.fst) + c₂ * (v.snd * v.snd))).imK [PROOFSTEP] dsimp [GOAL] case imK R : Type u_1 inst✝ : CommRing R c₁ c₂ : R v : R × R ⊢ 0 * 0 + v.fst * v.snd - v.snd * v.fst + 0 * 0 = 0 [PROOFSTEP] ring [GOAL] R : Type u_1 inst✝ : CommRing R c₁ c₂ : R c : CliffordAlgebra (Q c₁ c₂) ⊢ ↑toQuaternion (star c) = star (↑toQuaternion c) [PROOFSTEP] simp only [CliffordAlgebra.star_def'] [GOAL] R : Type u_1 inst✝ : CommRing R c₁ c₂ : R c : CliffordAlgebra (Q c₁ c₂) ⊢ ↑toQuaternion (↑involute (↑reverse c)) = star (↑toQuaternion c) [PROOFSTEP] induction c using CliffordAlgebra.induction [GOAL] case h_grade0 R : Type u_1 inst✝ : CommRing R c₁ c₂ r✝ : R ⊢ ↑toQuaternion (↑involute (↑reverse (↑(algebraMap R (CliffordAlgebra (Q c₁ c₂))) r✝))) = star (↑toQuaternion (↑(algebraMap R (CliffordAlgebra (Q c₁ c₂))) r✝)) case h_grade1 R : Type u_1 inst✝ : CommRing R c₁ c₂ : R x✝ : R × R ⊢ ↑toQuaternion (↑involute (↑reverse (↑(ι (Q c₁ c₂)) x✝))) = star (↑toQuaternion (↑(ι (Q c₁ c₂)) x✝)) case h_mul R : Type u_1 inst✝ : CommRing R c₁ c₂ : R a✝² b✝ : CliffordAlgebra (Q c₁ c₂) a✝¹ : ↑toQuaternion (↑involute (↑reverse a✝²)) = star (↑toQuaternion a✝²) a✝ : ↑toQuaternion (↑involute (↑reverse b✝)) = star (↑toQuaternion b✝) ⊢ ↑toQuaternion (↑involute (↑reverse (a✝² * b✝))) = star (↑toQuaternion (a✝² * b✝)) case h_add R : Type u_1 inst✝ : CommRing R c₁ c₂ : R a✝² b✝ : CliffordAlgebra (Q c₁ c₂) a✝¹ : ↑toQuaternion (↑involute (↑reverse a✝²)) = star (↑toQuaternion a✝²) a✝ : ↑toQuaternion (↑involute (↑reverse b✝)) = star (↑toQuaternion b✝) ⊢ ↑toQuaternion (↑involute (↑reverse (a✝² + b✝))) = star (↑toQuaternion (a✝² + b✝)) [PROOFSTEP] case h_grade0 r => simp only [reverse.commutes, AlgHom.commutes, QuaternionAlgebra.coe_algebraMap, QuaternionAlgebra.star_coe] [GOAL] R : Type u_1 inst✝ : CommRing R c₁ c₂ r : R ⊢ ↑toQuaternion (↑involute (↑reverse (↑(algebraMap R (CliffordAlgebra (Q c₁ c₂))) r))) = star (↑toQuaternion (↑(algebraMap R (CliffordAlgebra (Q c₁ c₂))) r)) [PROOFSTEP] case h_grade0 r => simp only [reverse.commutes, AlgHom.commutes, QuaternionAlgebra.coe_algebraMap, QuaternionAlgebra.star_coe] [GOAL] R : Type u_1 inst✝ : CommRing R c₁ c₂ r : R ⊢ ↑toQuaternion (↑involute (↑reverse (↑(algebraMap R (CliffordAlgebra (Q c₁ c₂))) r))) = star (↑toQuaternion (↑(algebraMap R (CliffordAlgebra (Q c₁ c₂))) r)) [PROOFSTEP] simp only [reverse.commutes, AlgHom.commutes, QuaternionAlgebra.coe_algebraMap, QuaternionAlgebra.star_coe] [GOAL] case h_grade1 R : Type u_1 inst✝ : CommRing R c₁ c₂ : R x✝ : R × R ⊢ ↑toQuaternion (↑involute (↑reverse (↑(ι (Q c₁ c₂)) x✝))) = star (↑toQuaternion (↑(ι (Q c₁ c₂)) x✝)) case h_mul R : Type u_1 inst✝ : CommRing R c₁ c₂ : R a✝² b✝ : CliffordAlgebra (Q c₁ c₂) a✝¹ : ↑toQuaternion (↑involute (↑reverse a✝²)) = star (↑toQuaternion a✝²) a✝ : ↑toQuaternion (↑involute (↑reverse b✝)) = star (↑toQuaternion b✝) ⊢ ↑toQuaternion (↑involute (↑reverse (a✝² * b✝))) = star (↑toQuaternion (a✝² * b✝)) case h_add R : Type u_1 inst✝ : CommRing R c₁ c₂ : R a✝² b✝ : CliffordAlgebra (Q c₁ c₂) a✝¹ : ↑toQuaternion (↑involute (↑reverse a✝²)) = star (↑toQuaternion a✝²) a✝ : ↑toQuaternion (↑involute (↑reverse b✝)) = star (↑toQuaternion b✝) ⊢ ↑toQuaternion (↑involute (↑reverse (a✝² + b✝))) = star (↑toQuaternion (a✝² + b✝)) [PROOFSTEP] case h_grade1 x => rw [reverse_ι, involute_ι, toQuaternion_ι, AlgHom.map_neg, toQuaternion_ι, QuaternionAlgebra.neg_mk, star_mk, neg_zero] [GOAL] R : Type u_1 inst✝ : CommRing R c₁ c₂ : R x : R × R ⊢ ↑toQuaternion (↑involute (↑reverse (↑(ι (Q c₁ c₂)) x))) = star (↑toQuaternion (↑(ι (Q c₁ c₂)) x)) [PROOFSTEP] case h_grade1 x => rw [reverse_ι, involute_ι, toQuaternion_ι, AlgHom.map_neg, toQuaternion_ι, QuaternionAlgebra.neg_mk, star_mk, neg_zero] [GOAL] R : Type u_1 inst✝ : CommRing R c₁ c₂ : R x : R × R ⊢ ↑toQuaternion (↑involute (↑reverse (↑(ι (Q c₁ c₂)) x))) = star (↑toQuaternion (↑(ι (Q c₁ c₂)) x)) [PROOFSTEP] rw [reverse_ι, involute_ι, toQuaternion_ι, AlgHom.map_neg, toQuaternion_ι, QuaternionAlgebra.neg_mk, star_mk, neg_zero] [GOAL] case h_mul R : Type u_1 inst✝ : CommRing R c₁ c₂ : R a✝² b✝ : CliffordAlgebra (Q c₁ c₂) a✝¹ : ↑toQuaternion (↑involute (↑reverse a✝²)) = star (↑toQuaternion a✝²) a✝ : ↑toQuaternion (↑involute (↑reverse b✝)) = star (↑toQuaternion b✝) ⊢ ↑toQuaternion (↑involute (↑reverse (a✝² * b✝))) = star (↑toQuaternion (a✝² * b✝)) case h_add R : Type u_1 inst✝ : CommRing R c₁ c₂ : R a✝² b✝ : CliffordAlgebra (Q c₁ c₂) a✝¹ : ↑toQuaternion (↑involute (↑reverse a✝²)) = star (↑toQuaternion a✝²) a✝ : ↑toQuaternion (↑involute (↑reverse b✝)) = star (↑toQuaternion b✝) ⊢ ↑toQuaternion (↑involute (↑reverse (a✝² + b✝))) = star (↑toQuaternion (a✝² + b✝)) [PROOFSTEP] case h_mul x₁ x₂ hx₁ hx₂ => simp only [reverse.map_mul, AlgHom.map_mul, hx₁, hx₂, star_mul] [GOAL] R : Type u_1 inst✝ : CommRing R c₁ c₂ : R x₁ x₂ : CliffordAlgebra (Q c₁ c₂) hx₁ : ↑toQuaternion (↑involute (↑reverse x₁)) = star (↑toQuaternion x₁) hx₂ : ↑toQuaternion (↑involute (↑reverse x₂)) = star (↑toQuaternion x₂) ⊢ ↑toQuaternion (↑involute (↑reverse (x₁ * x₂))) = star (↑toQuaternion (x₁ * x₂)) [PROOFSTEP] case h_mul x₁ x₂ hx₁ hx₂ => simp only [reverse.map_mul, AlgHom.map_mul, hx₁, hx₂, star_mul] [GOAL] R : Type u_1 inst✝ : CommRing R c₁ c₂ : R x₁ x₂ : CliffordAlgebra (Q c₁ c₂) hx₁ : ↑toQuaternion (↑involute (↑reverse x₁)) = star (↑toQuaternion x₁) hx₂ : ↑toQuaternion (↑involute (↑reverse x₂)) = star (↑toQuaternion x₂) ⊢ ↑toQuaternion (↑involute (↑reverse (x₁ * x₂))) = star (↑toQuaternion (x₁ * x₂)) [PROOFSTEP] simp only [reverse.map_mul, AlgHom.map_mul, hx₁, hx₂, star_mul] [GOAL] case h_add R : Type u_1 inst✝ : CommRing R c₁ c₂ : R a✝² b✝ : CliffordAlgebra (Q c₁ c₂) a✝¹ : ↑toQuaternion (↑involute (↑reverse a✝²)) = star (↑toQuaternion a✝²) a✝ : ↑toQuaternion (↑involute (↑reverse b✝)) = star (↑toQuaternion b✝) ⊢ ↑toQuaternion (↑involute (↑reverse (a✝² + b✝))) = star (↑toQuaternion (a✝² + b✝)) [PROOFSTEP] case h_add x₁ x₂ hx₁ hx₂ => simp only [reverse.map_add, AlgHom.map_add, hx₁, hx₂, star_add] [GOAL] R : Type u_1 inst✝ : CommRing R c₁ c₂ : R x₁ x₂ : CliffordAlgebra (Q c₁ c₂) hx₁ : ↑toQuaternion (↑involute (↑reverse x₁)) = star (↑toQuaternion x₁) hx₂ : ↑toQuaternion (↑involute (↑reverse x₂)) = star (↑toQuaternion x₂) ⊢ ↑toQuaternion (↑involute (↑reverse (x₁ + x₂))) = star (↑toQuaternion (x₁ + x₂)) [PROOFSTEP] case h_add x₁ x₂ hx₁ hx₂ => simp only [reverse.map_add, AlgHom.map_add, hx₁, hx₂, star_add] [GOAL] R : Type u_1 inst✝ : CommRing R c₁ c₂ : R x₁ x₂ : CliffordAlgebra (Q c₁ c₂) hx₁ : ↑toQuaternion (↑involute (↑reverse x₁)) = star (↑toQuaternion x₁) hx₂ : ↑toQuaternion (↑involute (↑reverse x₂)) = star (↑toQuaternion x₂) ⊢ ↑toQuaternion (↑involute (↑reverse (x₁ + x₂))) = star (↑toQuaternion (x₁ + x₂)) [PROOFSTEP] simp only [reverse.map_add, AlgHom.map_add, hx₁, hx₂, star_add] [GOAL] R : Type u_1 inst✝ : CommRing R c₁ c₂ : R ⊢ AlgHom.comp ofQuaternion toQuaternion = AlgHom.id R (CliffordAlgebra (Q c₁ c₂)) [PROOFSTEP] ext : 1 [GOAL] case a R : Type u_1 inst✝ : CommRing R c₁ c₂ : R ⊢ LinearMap.comp (AlgHom.toLinearMap (AlgHom.comp ofQuaternion toQuaternion)) (ι (Q c₁ c₂)) = LinearMap.comp (AlgHom.toLinearMap (AlgHom.id R (CliffordAlgebra (Q c₁ c₂)))) (ι (Q c₁ c₂)) [PROOFSTEP] dsimp -- before we end up with two goals and have to do this twice [GOAL] case a R : Type u_1 inst✝ : CommRing R c₁ c₂ : R ⊢ LinearMap.comp (LinearMap.comp (AlgHom.toLinearMap ofQuaternion) (AlgHom.toLinearMap toQuaternion)) (ι (Q c₁ c₂)) = LinearMap.comp (AlgHom.toLinearMap (AlgHom.id R (CliffordAlgebra (Q c₁ c₂)))) (ι (Q c₁ c₂)) [PROOFSTEP] ext [GOAL] case a.hl.h R : Type u_1 inst✝ : CommRing R c₁ c₂ : R ⊢ ↑(LinearMap.comp (LinearMap.comp (LinearMap.comp (AlgHom.toLinearMap ofQuaternion) (AlgHom.toLinearMap toQuaternion)) (ι (Q c₁ c₂))) (LinearMap.inl R R R)) 1 = ↑(LinearMap.comp (LinearMap.comp (AlgHom.toLinearMap (AlgHom.id R (CliffordAlgebra (Q c₁ c₂)))) (ι (Q c₁ c₂))) (LinearMap.inl R R R)) 1 case a.hr.h R : Type u_1 inst✝ : CommRing R c₁ c₂ : R ⊢ ↑(LinearMap.comp (LinearMap.comp (LinearMap.comp (AlgHom.toLinearMap ofQuaternion) (AlgHom.toLinearMap toQuaternion)) (ι (Q c₁ c₂))) (LinearMap.inr R R R)) 1 = ↑(LinearMap.comp (LinearMap.comp (AlgHom.toLinearMap (AlgHom.id R (CliffordAlgebra (Q c₁ c₂)))) (ι (Q c₁ c₂))) (LinearMap.inr R R R)) 1 [PROOFSTEP] all_goals dsimp rw [toQuaternion_ι] dsimp simp only [toQuaternion_ι, zero_smul, one_smul, zero_add, add_zero, RingHom.map_zero] [GOAL] case a.hl.h R : Type u_1 inst✝ : CommRing R c₁ c₂ : R ⊢ ↑(LinearMap.comp (LinearMap.comp (LinearMap.comp (AlgHom.toLinearMap ofQuaternion) (AlgHom.toLinearMap toQuaternion)) (ι (Q c₁ c₂))) (LinearMap.inl R R R)) 1 = ↑(LinearMap.comp (LinearMap.comp (AlgHom.toLinearMap (AlgHom.id R (CliffordAlgebra (Q c₁ c₂)))) (ι (Q c₁ c₂))) (LinearMap.inl R R R)) 1 [PROOFSTEP] dsimp [GOAL] case a.hl.h R : Type u_1 inst✝ : CommRing R c₁ c₂ : R ⊢ ↑ofQuaternion (↑toQuaternion (↑(ι (Q c₁ c₂)) (1, 0))) = ↑(ι (Q c₁ c₂)) (1, 0) [PROOFSTEP] rw [toQuaternion_ι] [GOAL] case a.hl.h R : Type u_1 inst✝ : CommRing R c₁ c₂ : R ⊢ ↑ofQuaternion { re := 0, imI := (1, 0).fst, imJ := (1, 0).snd, imK := 0 } = ↑(ι (Q c₁ c₂)) (1, 0) [PROOFSTEP] dsimp [GOAL] case a.hl.h R : Type u_1 inst✝ : CommRing R c₁ c₂ : R ⊢ ↑(algebraMap R (CliffordAlgebra (Q c₁ c₂))) 0 + 1 • ↑(ι (Q c₁ c₂)) (1, 0) + 0 • ↑(ι (Q c₁ c₂)) (0, 1) + 0 • (↑(ι (Q c₁ c₂)) (1, 0) * ↑(ι (Q c₁ c₂)) (0, 1)) = ↑(ι (Q c₁ c₂)) (1, 0) [PROOFSTEP] simp only [toQuaternion_ι, zero_smul, one_smul, zero_add, add_zero, RingHom.map_zero] [GOAL] case a.hr.h R : Type u_1 inst✝ : CommRing R c₁ c₂ : R ⊢ ↑(LinearMap.comp (LinearMap.comp (LinearMap.comp (AlgHom.toLinearMap ofQuaternion) (AlgHom.toLinearMap toQuaternion)) (ι (Q c₁ c₂))) (LinearMap.inr R R R)) 1 = ↑(LinearMap.comp (LinearMap.comp (AlgHom.toLinearMap (AlgHom.id R (CliffordAlgebra (Q c₁ c₂)))) (ι (Q c₁ c₂))) (LinearMap.inr R R R)) 1 [PROOFSTEP] dsimp [GOAL] case a.hr.h R : Type u_1 inst✝ : CommRing R c₁ c₂ : R ⊢ ↑ofQuaternion (↑toQuaternion (↑(ι (Q c₁ c₂)) (0, 1))) = ↑(ι (Q c₁ c₂)) (0, 1) [PROOFSTEP] rw [toQuaternion_ι] [GOAL] case a.hr.h R : Type u_1 inst✝ : CommRing R c₁ c₂ : R ⊢ ↑ofQuaternion { re := 0, imI := (0, 1).fst, imJ := (0, 1).snd, imK := 0 } = ↑(ι (Q c₁ c₂)) (0, 1) [PROOFSTEP] dsimp [GOAL] case a.hr.h R : Type u_1 inst✝ : CommRing R c₁ c₂ : R ⊢ ↑(algebraMap R (CliffordAlgebra (Q c₁ c₂))) 0 + 0 • ↑(ι (Q c₁ c₂)) (1, 0) + 1 • ↑(ι (Q c₁ c₂)) (0, 1) + 0 • (↑(ι (Q c₁ c₂)) (1, 0) * ↑(ι (Q c₁ c₂)) (0, 1)) = ↑(ι (Q c₁ c₂)) (0, 1) [PROOFSTEP] simp only [toQuaternion_ι, zero_smul, one_smul, zero_add, add_zero, RingHom.map_zero] [GOAL] R : Type u_1 inst✝ : CommRing R c₁ c₂ : R ⊢ AlgHom.comp toQuaternion ofQuaternion = AlgHom.id R ℍ[R,c₁,c₂] [PROOFSTEP] apply QuaternionAlgebra.lift.symm.injective [GOAL] case a R : Type u_1 inst✝ : CommRing R c₁ c₂ : R ⊢ ↑QuaternionAlgebra.lift.symm (AlgHom.comp toQuaternion ofQuaternion) = ↑QuaternionAlgebra.lift.symm (AlgHom.id R ℍ[R,c₁,c₂]) [PROOFSTEP] ext1 [GOAL] case a.hi R : Type u_1 inst✝ : CommRing R c₁ c₂ : R ⊢ (↑QuaternionAlgebra.lift.symm (AlgHom.comp toQuaternion ofQuaternion)).i = (↑QuaternionAlgebra.lift.symm (AlgHom.id R ℍ[R,c₁,c₂])).i [PROOFSTEP] dsimp [QuaternionAlgebra.Basis.lift] [GOAL] case a.hj R : Type u_1 inst✝ : CommRing R c₁ c₂ : R ⊢ (↑QuaternionAlgebra.lift.symm (AlgHom.comp toQuaternion ofQuaternion)).j = (↑QuaternionAlgebra.lift.symm (AlgHom.id R ℍ[R,c₁,c₂])).j [PROOFSTEP] dsimp [QuaternionAlgebra.Basis.lift] [GOAL] case a.hi R : Type u_1 inst✝ : CommRing R c₁ c₂ : R ⊢ ↑toQuaternion (↑(algebraMap R (CliffordAlgebra (Q c₁ c₂))) 0 + 1 • ↑(ι (Q c₁ c₂)) (1, 0) + 0 • ↑(ι (Q c₁ c₂)) (0, 1) + 0 • (↑(ι (Q c₁ c₂)) (1, 0) * ↑(ι (Q c₁ c₂)) (0, 1))) = { re := 0, imI := 1, imJ := 0, imK := 0 } [PROOFSTEP] simp [GOAL] case a.hj R : Type u_1 inst✝ : CommRing R c₁ c₂ : R ⊢ ↑toQuaternion (↑(algebraMap R (CliffordAlgebra (Q c₁ c₂))) 0 + 0 • ↑(ι (Q c₁ c₂)) (1, 0) + 1 • ↑(ι (Q c₁ c₂)) (0, 1) + 0 • (↑(ι (Q c₁ c₂)) (1, 0) * ↑(ι (Q c₁ c₂)) (0, 1))) = { re := 0, imI := 0, imJ := 1, imK := 0 } [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝ : CommRing R c₁ c₂ : R q : ℍ[R,c₁,c₂] ⊢ ↑CliffordAlgebraQuaternion.equiv (↑ofQuaternion (star q)) = ↑CliffordAlgebraQuaternion.equiv (star (↑ofQuaternion q)) [PROOFSTEP] rw [equiv_apply, equiv_apply, toQuaternion_star, toQuaternion_ofQuaternion, toQuaternion_ofQuaternion] [GOAL] R : Type u_1 M : Type u_2 inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M r₁ r₂ : R ⊢ ↑(ι 0) r₁ * ↑(ι 0) r₂ = 0 [PROOFSTEP] rw [← mul_one r₁, ← mul_one r₂, ← smul_eq_mul R, ← smul_eq_mul R, LinearMap.map_smul, LinearMap.map_smul, smul_mul_smul, ι_sq_scalar, QuadraticForm.zero_apply, RingHom.map_zero, smul_zero] [GOAL] R : Type u_1 M : Type u_2 inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M ⊢ AlgHom.comp (↑(CliffordAlgebra.lift 0) { val := inrHom R R, property := (_ : ∀ (m : R), inr m * inr m = 0) }) (↑DualNumber.lift { val := ↑(ι 0) 1, property := (_ : ↑(ι 0) 1 * ↑(ι 0) 1 = 0) }) = AlgHom.id R R[ε] [PROOFSTEP] ext : 1 [GOAL] case h R : Type u_1 M : Type u_2 inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M ⊢ ↑(AlgHom.comp (↑(CliffordAlgebra.lift 0) { val := inrHom R R, property := (_ : ∀ (m : R), inr m * inr m = 0) }) (↑DualNumber.lift { val := ↑(ι 0) 1, property := (_ : ↑(ι 0) 1 * ↑(ι 0) 1 = 0) })) ε = ↑(AlgHom.id R R[ε]) ε [PROOFSTEP] simp [GOAL] R : Type u_1 M : Type u_2 inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M ⊢ AlgHom.comp (↑DualNumber.lift { val := ↑(ι 0) 1, property := (_ : ↑(ι 0) 1 * ↑(ι 0) 1 = 0) }) (↑(CliffordAlgebra.lift 0) { val := inrHom R R, property := (_ : ∀ (m : R), inr m * inr m = 0) }) = AlgHom.id R (CliffordAlgebra 0) [PROOFSTEP] ext : 2 [GOAL] case a.h R : Type u_1 M : Type u_2 inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M ⊢ ↑(LinearMap.comp (AlgHom.toLinearMap (AlgHom.comp (↑DualNumber.lift { val := ↑(ι 0) 1, property := (_ : ↑(ι 0) 1 * ↑(ι 0) 1 = 0) }) (↑(CliffordAlgebra.lift 0) { val := inrHom R R, property := (_ : ∀ (m : R), inr m * inr m = 0) }))) (ι 0)) 1 = ↑(LinearMap.comp (AlgHom.toLinearMap (AlgHom.id R (CliffordAlgebra 0))) (ι 0)) 1 [PROOFSTEP] simp
{"mathlib_filename": "Mathlib.LinearAlgebra.CliffordAlgebra.Equivs", "llama_tokens": 21075}
[GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : FiniteDimensional k V p : ι → P hi : AffineIndependent k p ⊢ _root_.Finite ι [PROOFSTEP] nontriviality ι [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : FiniteDimensional k V p : ι → P hi : AffineIndependent k p ✝ : Nontrivial ι ⊢ _root_.Finite ι [PROOFSTEP] inhabit ι [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : FiniteDimensional k V p : ι → P hi : AffineIndependent k p ✝ : Nontrivial ι inhabited_h : Inhabited ι ⊢ _root_.Finite ι [PROOFSTEP] rw [affineIndependent_iff_linearIndependent_vsub k p default] at hi [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : FiniteDimensional k V p : ι → P ✝ : Nontrivial ι inhabited_h : Inhabited ι hi : LinearIndependent k fun i => p ↑i -ᵥ p default ⊢ _root_.Finite ι [PROOFSTEP] letI : IsNoetherian k V := IsNoetherian.iff_fg.2 inferInstance [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : FiniteDimensional k V p : ι → P ✝ : Nontrivial ι inhabited_h : Inhabited ι hi : LinearIndependent k fun i => p ↑i -ᵥ p default this : IsNoetherian k V := Iff.mpr IsNoetherian.iff_fg inferInstance ⊢ _root_.Finite ι [PROOFSTEP] exact (Set.finite_singleton default).finite_of_compl (Set.finite_coe_iff.1 hi.finite_of_isNoetherian) [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : DecidableEq P p : ι → P hi : AffineIndependent k p s : Finset ι n : ℕ hc : Finset.card s = n + 1 ⊢ finrank k { x // x ∈ vectorSpan k ↑(Finset.image p s) } = n [PROOFSTEP] classical have hi' := hi.range.mono (Set.image_subset_range p ↑s) have hc' : (s.image p).card = n + 1 := by rwa [s.card_image_of_injective hi.injective] have hn : (s.image p).Nonempty := by simp [hc', ← Finset.card_pos] rcases hn with ⟨p₁, hp₁⟩ have hp₁' : p₁ ∈ p '' s := by simpa using hp₁ rw [affineIndependent_set_iff_linearIndependent_vsub k hp₁', ← Finset.coe_singleton, ← Finset.coe_image, ← Finset.coe_sdiff, Finset.sdiff_singleton_eq_erase, ← Finset.coe_image] at hi' have hc : (Finset.image (fun p : P => p -ᵥ p₁) ((Finset.image p s).erase p₁)).card = n := by rw [Finset.card_image_of_injective _ (vsub_left_injective _), Finset.card_erase_of_mem hp₁] exact Nat.pred_eq_of_eq_succ hc' rwa [vectorSpan_eq_span_vsub_finset_right_ne k hp₁, finrank_span_finset_eq_card, hc] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : DecidableEq P p : ι → P hi : AffineIndependent k p s : Finset ι n : ℕ hc : Finset.card s = n + 1 ⊢ finrank k { x // x ∈ vectorSpan k ↑(Finset.image p s) } = n [PROOFSTEP] have hi' := hi.range.mono (Set.image_subset_range p ↑s) [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : DecidableEq P p : ι → P hi : AffineIndependent k p s : Finset ι n : ℕ hc : Finset.card s = n + 1 hi' : AffineIndependent k fun x => ↑x ⊢ finrank k { x // x ∈ vectorSpan k ↑(Finset.image p s) } = n [PROOFSTEP] have hc' : (s.image p).card = n + 1 := by rwa [s.card_image_of_injective hi.injective] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : DecidableEq P p : ι → P hi : AffineIndependent k p s : Finset ι n : ℕ hc : Finset.card s = n + 1 hi' : AffineIndependent k fun x => ↑x ⊢ Finset.card (Finset.image p s) = n + 1 [PROOFSTEP] rwa [s.card_image_of_injective hi.injective] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : DecidableEq P p : ι → P hi : AffineIndependent k p s : Finset ι n : ℕ hc : Finset.card s = n + 1 hi' : AffineIndependent k fun x => ↑x hc' : Finset.card (Finset.image p s) = n + 1 ⊢ finrank k { x // x ∈ vectorSpan k ↑(Finset.image p s) } = n [PROOFSTEP] have hn : (s.image p).Nonempty := by simp [hc', ← Finset.card_pos] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : DecidableEq P p : ι → P hi : AffineIndependent k p s : Finset ι n : ℕ hc : Finset.card s = n + 1 hi' : AffineIndependent k fun x => ↑x hc' : Finset.card (Finset.image p s) = n + 1 ⊢ Finset.Nonempty (Finset.image p s) [PROOFSTEP] simp [hc', ← Finset.card_pos] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : DecidableEq P p : ι → P hi : AffineIndependent k p s : Finset ι n : ℕ hc : Finset.card s = n + 1 hi' : AffineIndependent k fun x => ↑x hc' : Finset.card (Finset.image p s) = n + 1 hn : Finset.Nonempty (Finset.image p s) ⊢ finrank k { x // x ∈ vectorSpan k ↑(Finset.image p s) } = n [PROOFSTEP] rcases hn with ⟨p₁, hp₁⟩ [GOAL] case intro k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : DecidableEq P p : ι → P hi : AffineIndependent k p s : Finset ι n : ℕ hc : Finset.card s = n + 1 hi' : AffineIndependent k fun x => ↑x hc' : Finset.card (Finset.image p s) = n + 1 p₁ : P hp₁ : p₁ ∈ Finset.image p s ⊢ finrank k { x // x ∈ vectorSpan k ↑(Finset.image p s) } = n [PROOFSTEP] have hp₁' : p₁ ∈ p '' s := by simpa using hp₁ [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : DecidableEq P p : ι → P hi : AffineIndependent k p s : Finset ι n : ℕ hc : Finset.card s = n + 1 hi' : AffineIndependent k fun x => ↑x hc' : Finset.card (Finset.image p s) = n + 1 p₁ : P hp₁ : p₁ ∈ Finset.image p s ⊢ p₁ ∈ p '' ↑s [PROOFSTEP] simpa using hp₁ [GOAL] case intro k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : DecidableEq P p : ι → P hi : AffineIndependent k p s : Finset ι n : ℕ hc : Finset.card s = n + 1 hi' : AffineIndependent k fun x => ↑x hc' : Finset.card (Finset.image p s) = n + 1 p₁ : P hp₁ : p₁ ∈ Finset.image p s hp₁' : p₁ ∈ p '' ↑s ⊢ finrank k { x // x ∈ vectorSpan k ↑(Finset.image p s) } = n [PROOFSTEP] rw [affineIndependent_set_iff_linearIndependent_vsub k hp₁', ← Finset.coe_singleton, ← Finset.coe_image, ← Finset.coe_sdiff, Finset.sdiff_singleton_eq_erase, ← Finset.coe_image] at hi' [GOAL] case intro k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : DecidableEq P p : ι → P hi : AffineIndependent k p s : Finset ι n : ℕ hc : Finset.card s = n + 1 hc' : Finset.card (Finset.image p s) = n + 1 p₁ : P hi'✝² : LinearIndependent k fun v => ↑v hi'✝¹ : LinearIndependent k fun v => ↑v hi'✝ : LinearIndependent k fun v => ↑v hi' : LinearIndependent k fun v => ↑v hp₁ : p₁ ∈ Finset.image p s hp₁' : p₁ ∈ p '' ↑s ⊢ finrank k { x // x ∈ vectorSpan k ↑(Finset.image p s) } = n [PROOFSTEP] have hc : (Finset.image (fun p : P => p -ᵥ p₁) ((Finset.image p s).erase p₁)).card = n := by rw [Finset.card_image_of_injective _ (vsub_left_injective _), Finset.card_erase_of_mem hp₁] exact Nat.pred_eq_of_eq_succ hc' [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : DecidableEq P p : ι → P hi : AffineIndependent k p s : Finset ι n : ℕ hc : Finset.card s = n + 1 hc' : Finset.card (Finset.image p s) = n + 1 p₁ : P hi'✝² : LinearIndependent k fun v => ↑v hi'✝¹ : LinearIndependent k fun v => ↑v hi'✝ : LinearIndependent k fun v => ↑v hi' : LinearIndependent k fun v => ↑v hp₁ : p₁ ∈ Finset.image p s hp₁' : p₁ ∈ p '' ↑s ⊢ Finset.card (Finset.image (fun p => p -ᵥ p₁) (Finset.erase (Finset.image p s) p₁)) = n [PROOFSTEP] rw [Finset.card_image_of_injective _ (vsub_left_injective _), Finset.card_erase_of_mem hp₁] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : DecidableEq P p : ι → P hi : AffineIndependent k p s : Finset ι n : ℕ hc : Finset.card s = n + 1 hc' : Finset.card (Finset.image p s) = n + 1 p₁ : P hi'✝² : LinearIndependent k fun v => ↑v hi'✝¹ : LinearIndependent k fun v => ↑v hi'✝ : LinearIndependent k fun v => ↑v hi' : LinearIndependent k fun v => ↑v hp₁ : p₁ ∈ Finset.image p s hp₁' : p₁ ∈ p '' ↑s ⊢ Finset.card (Finset.image p s) - 1 = n [PROOFSTEP] exact Nat.pred_eq_of_eq_succ hc' [GOAL] case intro k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : DecidableEq P p : ι → P hi : AffineIndependent k p s : Finset ι n : ℕ hc✝ : Finset.card s = n + 1 hc' : Finset.card (Finset.image p s) = n + 1 p₁ : P hi'✝² : LinearIndependent k fun v => ↑v hi'✝¹ : LinearIndependent k fun v => ↑v hi'✝ : LinearIndependent k fun v => ↑v hi' : LinearIndependent k fun v => ↑v hp₁ : p₁ ∈ Finset.image p s hp₁' : p₁ ∈ p '' ↑s hc : Finset.card (Finset.image (fun p => p -ᵥ p₁) (Finset.erase (Finset.image p s) p₁)) = n ⊢ finrank k { x // x ∈ vectorSpan k ↑(Finset.image p s) } = n [PROOFSTEP] rwa [vectorSpan_eq_span_vsub_finset_right_ne k hp₁, finrank_span_finset_eq_card, hc] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : Fintype ι p : ι → P hi : AffineIndependent k p n : ℕ hc : Fintype.card ι = n + 1 ⊢ finrank k { x // x ∈ vectorSpan k (Set.range p) } = n [PROOFSTEP] classical rw [← Finset.card_univ] at hc rw [← Set.image_univ, ← Finset.coe_univ, ← Finset.coe_image] exact hi.finrank_vectorSpan_image_finset hc [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : Fintype ι p : ι → P hi : AffineIndependent k p n : ℕ hc : Fintype.card ι = n + 1 ⊢ finrank k { x // x ∈ vectorSpan k (Set.range p) } = n [PROOFSTEP] rw [← Finset.card_univ] at hc [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : Fintype ι p : ι → P hi : AffineIndependent k p n : ℕ hc : Finset.card Finset.univ = n + 1 ⊢ finrank k { x // x ∈ vectorSpan k (Set.range p) } = n [PROOFSTEP] rw [← Set.image_univ, ← Finset.coe_univ, ← Finset.coe_image] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : Fintype ι p : ι → P hi : AffineIndependent k p n : ℕ hc : Finset.card Finset.univ = n + 1 ⊢ finrank k { x // x ∈ vectorSpan k ↑(Finset.image p Finset.univ) } = n [PROOFSTEP] exact hi.finrank_vectorSpan_image_finset hc [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : DecidableEq P p : ι → P s : Finset ι n : ℕ hc : Finset.card s = n + 1 ⊢ finrank k { x // x ∈ vectorSpan k ↑(Finset.image p s) } ≤ n [PROOFSTEP] classical have hn : (s.image p).Nonempty := by rw [Finset.Nonempty.image_iff, ← Finset.card_pos, hc] apply Nat.succ_pos rcases hn with ⟨p₁, hp₁⟩ rw [vectorSpan_eq_span_vsub_finset_right_ne k hp₁] refine' le_trans (finrank_span_finset_le_card (((s.image p).erase p₁).image fun p => p -ᵥ p₁)) _ rw [Finset.card_image_of_injective _ (vsub_left_injective p₁), Finset.card_erase_of_mem hp₁, tsub_le_iff_right, ← hc] apply Finset.card_image_le [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : DecidableEq P p : ι → P s : Finset ι n : ℕ hc : Finset.card s = n + 1 ⊢ finrank k { x // x ∈ vectorSpan k ↑(Finset.image p s) } ≤ n [PROOFSTEP] have hn : (s.image p).Nonempty := by rw [Finset.Nonempty.image_iff, ← Finset.card_pos, hc] apply Nat.succ_pos [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : DecidableEq P p : ι → P s : Finset ι n : ℕ hc : Finset.card s = n + 1 ⊢ Finset.Nonempty (Finset.image p s) [PROOFSTEP] rw [Finset.Nonempty.image_iff, ← Finset.card_pos, hc] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : DecidableEq P p : ι → P s : Finset ι n : ℕ hc : Finset.card s = n + 1 ⊢ 0 < n + 1 [PROOFSTEP] apply Nat.succ_pos [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : DecidableEq P p : ι → P s : Finset ι n : ℕ hc : Finset.card s = n + 1 hn : Finset.Nonempty (Finset.image p s) ⊢ finrank k { x // x ∈ vectorSpan k ↑(Finset.image p s) } ≤ n [PROOFSTEP] rcases hn with ⟨p₁, hp₁⟩ [GOAL] case intro k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : DecidableEq P p : ι → P s : Finset ι n : ℕ hc : Finset.card s = n + 1 p₁ : P hp₁ : p₁ ∈ Finset.image p s ⊢ finrank k { x // x ∈ vectorSpan k ↑(Finset.image p s) } ≤ n [PROOFSTEP] rw [vectorSpan_eq_span_vsub_finset_right_ne k hp₁] [GOAL] case intro k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : DecidableEq P p : ι → P s : Finset ι n : ℕ hc : Finset.card s = n + 1 p₁ : P hp₁ : p₁ ∈ Finset.image p s ⊢ finrank k { x // x ∈ Submodule.span k ↑(Finset.image (fun x => x -ᵥ p₁) (Finset.erase (Finset.image p s) p₁)) } ≤ n [PROOFSTEP] refine' le_trans (finrank_span_finset_le_card (((s.image p).erase p₁).image fun p => p -ᵥ p₁)) _ [GOAL] case intro k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : DecidableEq P p : ι → P s : Finset ι n : ℕ hc : Finset.card s = n + 1 p₁ : P hp₁ : p₁ ∈ Finset.image p s ⊢ Finset.card (Finset.image (fun p => p -ᵥ p₁) (Finset.erase (Finset.image p s) p₁)) ≤ n [PROOFSTEP] rw [Finset.card_image_of_injective _ (vsub_left_injective p₁), Finset.card_erase_of_mem hp₁, tsub_le_iff_right, ← hc] [GOAL] case intro k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : DecidableEq P p : ι → P s : Finset ι n : ℕ hc : Finset.card s = n + 1 p₁ : P hp₁ : p₁ ∈ Finset.image p s ⊢ Finset.card (Finset.image p s) ≤ Finset.card s [PROOFSTEP] apply Finset.card_image_le [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : Fintype ι p : ι → P n : ℕ hc : Fintype.card ι = n + 1 ⊢ finrank k { x // x ∈ vectorSpan k (Set.range p) } ≤ n [PROOFSTEP] classical rw [← Set.image_univ, ← Finset.coe_univ, ← Finset.coe_image] rw [← Finset.card_univ] at hc exact finrank_vectorSpan_image_finset_le _ _ _ hc [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : Fintype ι p : ι → P n : ℕ hc : Fintype.card ι = n + 1 ⊢ finrank k { x // x ∈ vectorSpan k (Set.range p) } ≤ n [PROOFSTEP] rw [← Set.image_univ, ← Finset.coe_univ, ← Finset.coe_image] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : Fintype ι p : ι → P n : ℕ hc : Fintype.card ι = n + 1 ⊢ finrank k { x // x ∈ vectorSpan k ↑(Finset.image p Finset.univ) } ≤ n [PROOFSTEP] rw [← Finset.card_univ] at hc [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : Fintype ι p : ι → P n : ℕ hc : Finset.card Finset.univ = n + 1 ⊢ finrank k { x // x ∈ vectorSpan k ↑(Finset.image p Finset.univ) } ≤ n [PROOFSTEP] exact finrank_vectorSpan_image_finset_le _ _ _ hc [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : Fintype ι p : ι → P n : ℕ hc : Fintype.card ι = n + 1 ⊢ AffineIndependent k p ↔ finrank k { x // x ∈ vectorSpan k (Set.range p) } = n [PROOFSTEP] classical have hn : Nonempty ι := by simp [← Fintype.card_pos_iff, hc] cases' hn with i₁ rw [affineIndependent_iff_linearIndependent_vsub _ _ i₁, linearIndependent_iff_card_eq_finrank_span, eq_comm, vectorSpan_range_eq_span_range_vsub_right_ne k p i₁, Set.finrank] congr rw [← Finset.card_univ] at hc rw [Fintype.subtype_card] simp [Finset.filter_ne', Finset.card_erase_of_mem, hc] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : Fintype ι p : ι → P n : ℕ hc : Fintype.card ι = n + 1 ⊢ AffineIndependent k p ↔ finrank k { x // x ∈ vectorSpan k (Set.range p) } = n [PROOFSTEP] have hn : Nonempty ι := by simp [← Fintype.card_pos_iff, hc] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : Fintype ι p : ι → P n : ℕ hc : Fintype.card ι = n + 1 ⊢ Nonempty ι [PROOFSTEP] simp [← Fintype.card_pos_iff, hc] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : Fintype ι p : ι → P n : ℕ hc : Fintype.card ι = n + 1 hn : Nonempty ι ⊢ AffineIndependent k p ↔ finrank k { x // x ∈ vectorSpan k (Set.range p) } = n [PROOFSTEP] cases' hn with i₁ [GOAL] case intro k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : Fintype ι p : ι → P n : ℕ hc : Fintype.card ι = n + 1 i₁ : ι ⊢ AffineIndependent k p ↔ finrank k { x // x ∈ vectorSpan k (Set.range p) } = n [PROOFSTEP] rw [affineIndependent_iff_linearIndependent_vsub _ _ i₁, linearIndependent_iff_card_eq_finrank_span, eq_comm, vectorSpan_range_eq_span_range_vsub_right_ne k p i₁, Set.finrank] [GOAL] case intro k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : Fintype ι p : ι → P n : ℕ hc : Fintype.card ι = n + 1 i₁ : ι ⊢ finrank k { x // x ∈ Submodule.span k (Set.range fun i => p ↑i -ᵥ p i₁) } = Fintype.card { x // x ≠ i₁ } ↔ finrank k { x // x ∈ Submodule.span k (Set.range fun i => p ↑i -ᵥ p i₁) } = n [PROOFSTEP] congr [GOAL] case intro k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : Fintype ι p : ι → P n : ℕ hc : Fintype.card ι = n + 1 i₁ : ι ⊢ finrank k { x // x ∈ Submodule.span k (Set.range fun i => p ↑i -ᵥ p i₁) } = Fintype.card { x // x ≠ i₁ } ↔ finrank k { x // x ∈ Submodule.span k (Set.range fun i => p ↑i -ᵥ p i₁) } = n [PROOFSTEP] rw [← Finset.card_univ] at hc [GOAL] case intro k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : Fintype ι p : ι → P n : ℕ hc : Finset.card Finset.univ = n + 1 i₁ : ι ⊢ finrank k { x // x ∈ Submodule.span k (Set.range fun i => p ↑i -ᵥ p i₁) } = Fintype.card { x // x ≠ i₁ } ↔ finrank k { x // x ∈ Submodule.span k (Set.range fun i => p ↑i -ᵥ p i₁) } = n [PROOFSTEP] rw [Fintype.subtype_card] [GOAL] case intro k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : Fintype ι p : ι → P n : ℕ hc : Finset.card Finset.univ = n + 1 i₁ : ι ⊢ finrank k { x // x ∈ Submodule.span k (Set.range fun i => p ↑i -ᵥ p i₁) } = Finset.card (Finset.filter (fun x => x ≠ i₁) Finset.univ) ↔ finrank k { x // x ∈ Submodule.span k (Set.range fun i => p ↑i -ᵥ p i₁) } = n [PROOFSTEP] simp [Finset.filter_ne', Finset.card_erase_of_mem, hc] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : Fintype ι p : ι → P n : ℕ hc : Fintype.card ι = n + 1 ⊢ AffineIndependent k p ↔ n ≤ finrank k { x // x ∈ vectorSpan k (Set.range p) } [PROOFSTEP] rw [affineIndependent_iff_finrank_vectorSpan_eq k p hc] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : Fintype ι p : ι → P n : ℕ hc : Fintype.card ι = n + 1 ⊢ finrank k { x // x ∈ vectorSpan k (Set.range p) } = n ↔ n ≤ finrank k { x // x ∈ vectorSpan k (Set.range p) } [PROOFSTEP] constructor [GOAL] case mp k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : Fintype ι p : ι → P n : ℕ hc : Fintype.card ι = n + 1 ⊢ finrank k { x // x ∈ vectorSpan k (Set.range p) } = n → n ≤ finrank k { x // x ∈ vectorSpan k (Set.range p) } [PROOFSTEP] rintro rfl [GOAL] case mp k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : Fintype ι p : ι → P hc : Fintype.card ι = finrank k { x // x ∈ vectorSpan k (Set.range p) } + 1 ⊢ finrank k { x // x ∈ vectorSpan k (Set.range p) } ≤ finrank k { x // x ∈ vectorSpan k (Set.range p) } [PROOFSTEP] rfl [GOAL] case mpr k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : Fintype ι p : ι → P n : ℕ hc : Fintype.card ι = n + 1 ⊢ n ≤ finrank k { x // x ∈ vectorSpan k (Set.range p) } → finrank k { x // x ∈ vectorSpan k (Set.range p) } = n [PROOFSTEP] exact fun hle => le_antisymm (finrank_vectorSpan_range_le k p hc) hle [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : Fintype ι p : ι → P n : ℕ hc : Fintype.card ι = n + 2 ⊢ AffineIndependent k p ↔ ¬finrank k { x // x ∈ vectorSpan k (Set.range p) } ≤ n [PROOFSTEP] rw [affineIndependent_iff_le_finrank_vectorSpan k p hc, ← Nat.lt_iff_add_one_le, lt_iff_not_ge] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁵ : DivisionRing k inst✝⁴ : AddCommGroup V inst✝³ : Module k V inst✝² : AffineSpace V P inst✝¹ : DecidableEq P p : ι → P hi : AffineIndependent k p s : Finset ι sp : AffineSubspace k P inst✝ : FiniteDimensional k { x // x ∈ direction sp } hle : affineSpan k ↑(Finset.image p s) ≤ sp hc : Finset.card s = finrank k { x // x ∈ direction sp } + 1 ⊢ affineSpan k ↑(Finset.image p s) = sp [PROOFSTEP] have hn : s.Nonempty := by rw [← Finset.card_pos, hc] apply Nat.succ_pos [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁵ : DivisionRing k inst✝⁴ : AddCommGroup V inst✝³ : Module k V inst✝² : AffineSpace V P inst✝¹ : DecidableEq P p : ι → P hi : AffineIndependent k p s : Finset ι sp : AffineSubspace k P inst✝ : FiniteDimensional k { x // x ∈ direction sp } hle : affineSpan k ↑(Finset.image p s) ≤ sp hc : Finset.card s = finrank k { x // x ∈ direction sp } + 1 ⊢ Finset.Nonempty s [PROOFSTEP] rw [← Finset.card_pos, hc] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁵ : DivisionRing k inst✝⁴ : AddCommGroup V inst✝³ : Module k V inst✝² : AffineSpace V P inst✝¹ : DecidableEq P p : ι → P hi : AffineIndependent k p s : Finset ι sp : AffineSubspace k P inst✝ : FiniteDimensional k { x // x ∈ direction sp } hle : affineSpan k ↑(Finset.image p s) ≤ sp hc : Finset.card s = finrank k { x // x ∈ direction sp } + 1 ⊢ 0 < finrank k { x // x ∈ direction sp } + 1 [PROOFSTEP] apply Nat.succ_pos [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁵ : DivisionRing k inst✝⁴ : AddCommGroup V inst✝³ : Module k V inst✝² : AffineSpace V P inst✝¹ : DecidableEq P p : ι → P hi : AffineIndependent k p s : Finset ι sp : AffineSubspace k P inst✝ : FiniteDimensional k { x // x ∈ direction sp } hle : affineSpan k ↑(Finset.image p s) ≤ sp hc : Finset.card s = finrank k { x // x ∈ direction sp } + 1 hn : Finset.Nonempty s ⊢ affineSpan k ↑(Finset.image p s) = sp [PROOFSTEP] refine' eq_of_direction_eq_of_nonempty_of_le _ ((hn.image p).to_set.affineSpan k) hle [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁵ : DivisionRing k inst✝⁴ : AddCommGroup V inst✝³ : Module k V inst✝² : AffineSpace V P inst✝¹ : DecidableEq P p : ι → P hi : AffineIndependent k p s : Finset ι sp : AffineSubspace k P inst✝ : FiniteDimensional k { x // x ∈ direction sp } hle : affineSpan k ↑(Finset.image p s) ≤ sp hc : Finset.card s = finrank k { x // x ∈ direction sp } + 1 hn : Finset.Nonempty s ⊢ direction (affineSpan k ↑(Finset.image p s)) = direction sp [PROOFSTEP] have hd := direction_le hle [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁵ : DivisionRing k inst✝⁴ : AddCommGroup V inst✝³ : Module k V inst✝² : AffineSpace V P inst✝¹ : DecidableEq P p : ι → P hi : AffineIndependent k p s : Finset ι sp : AffineSubspace k P inst✝ : FiniteDimensional k { x // x ∈ direction sp } hle : affineSpan k ↑(Finset.image p s) ≤ sp hc : Finset.card s = finrank k { x // x ∈ direction sp } + 1 hn : Finset.Nonempty s hd : direction (affineSpan k ↑(Finset.image p s)) ≤ direction sp ⊢ direction (affineSpan k ↑(Finset.image p s)) = direction sp [PROOFSTEP] rw [direction_affineSpan] at hd ⊢ [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁵ : DivisionRing k inst✝⁴ : AddCommGroup V inst✝³ : Module k V inst✝² : AffineSpace V P inst✝¹ : DecidableEq P p : ι → P hi : AffineIndependent k p s : Finset ι sp : AffineSubspace k P inst✝ : FiniteDimensional k { x // x ∈ direction sp } hle : affineSpan k ↑(Finset.image p s) ≤ sp hc : Finset.card s = finrank k { x // x ∈ direction sp } + 1 hn : Finset.Nonempty s hd : vectorSpan k ↑(Finset.image p s) ≤ direction sp ⊢ vectorSpan k ↑(Finset.image p s) = direction sp [PROOFSTEP] exact hi.vectorSpan_image_finset_eq_of_le_of_card_eq_finrank_add_one hd hc [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁵ : DivisionRing k inst✝⁴ : AddCommGroup V inst✝³ : Module k V inst✝² : AffineSpace V P inst✝¹ : Fintype ι p : ι → P hi : AffineIndependent k p sp : AffineSubspace k P inst✝ : FiniteDimensional k { x // x ∈ direction sp } hle : affineSpan k (Set.range p) ≤ sp hc : Fintype.card ι = finrank k { x // x ∈ direction sp } + 1 ⊢ affineSpan k (Set.range p) = sp [PROOFSTEP] classical rw [← Finset.card_univ] at hc rw [← Set.image_univ, ← Finset.coe_univ, ← Finset.coe_image] at hle ⊢ exact hi.affineSpan_image_finset_eq_of_le_of_card_eq_finrank_add_one hle hc [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁵ : DivisionRing k inst✝⁴ : AddCommGroup V inst✝³ : Module k V inst✝² : AffineSpace V P inst✝¹ : Fintype ι p : ι → P hi : AffineIndependent k p sp : AffineSubspace k P inst✝ : FiniteDimensional k { x // x ∈ direction sp } hle : affineSpan k (Set.range p) ≤ sp hc : Fintype.card ι = finrank k { x // x ∈ direction sp } + 1 ⊢ affineSpan k (Set.range p) = sp [PROOFSTEP] rw [← Finset.card_univ] at hc [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁵ : DivisionRing k inst✝⁴ : AddCommGroup V inst✝³ : Module k V inst✝² : AffineSpace V P inst✝¹ : Fintype ι p : ι → P hi : AffineIndependent k p sp : AffineSubspace k P inst✝ : FiniteDimensional k { x // x ∈ direction sp } hle : affineSpan k (Set.range p) ≤ sp hc : Finset.card Finset.univ = finrank k { x // x ∈ direction sp } + 1 ⊢ affineSpan k (Set.range p) = sp [PROOFSTEP] rw [← Set.image_univ, ← Finset.coe_univ, ← Finset.coe_image] at hle ⊢ [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁵ : DivisionRing k inst✝⁴ : AddCommGroup V inst✝³ : Module k V inst✝² : AffineSpace V P inst✝¹ : Fintype ι p : ι → P hi : AffineIndependent k p sp : AffineSubspace k P inst✝ : FiniteDimensional k { x // x ∈ direction sp } hle✝¹ : affineSpan k (p '' Set.univ) ≤ sp hle✝ : affineSpan k (p '' ↑Finset.univ) ≤ sp hle : affineSpan k ↑(Finset.image p Finset.univ) ≤ sp hc : Finset.card Finset.univ = finrank k { x // x ∈ direction sp } + 1 ⊢ affineSpan k ↑(Finset.image p Finset.univ) = sp [PROOFSTEP] exact hi.affineSpan_image_finset_eq_of_le_of_card_eq_finrank_add_one hle hc [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁵ : DivisionRing k inst✝⁴ : AddCommGroup V inst✝³ : Module k V inst✝² : AffineSpace V P inst✝¹ : FiniteDimensional k V inst✝ : Fintype ι p : ι → P hi : AffineIndependent k p ⊢ affineSpan k (Set.range p) = ⊤ ↔ Fintype.card ι = finrank k V + 1 [PROOFSTEP] constructor [GOAL] case mp k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁵ : DivisionRing k inst✝⁴ : AddCommGroup V inst✝³ : Module k V inst✝² : AffineSpace V P inst✝¹ : FiniteDimensional k V inst✝ : Fintype ι p : ι → P hi : AffineIndependent k p ⊢ affineSpan k (Set.range p) = ⊤ → Fintype.card ι = finrank k V + 1 [PROOFSTEP] intro h_tot [GOAL] case mp k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁵ : DivisionRing k inst✝⁴ : AddCommGroup V inst✝³ : Module k V inst✝² : AffineSpace V P inst✝¹ : FiniteDimensional k V inst✝ : Fintype ι p : ι → P hi : AffineIndependent k p h_tot : affineSpan k (Set.range p) = ⊤ ⊢ Fintype.card ι = finrank k V + 1 [PROOFSTEP] let n := Fintype.card ι - 1 [GOAL] case mp k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁵ : DivisionRing k inst✝⁴ : AddCommGroup V inst✝³ : Module k V inst✝² : AffineSpace V P inst✝¹ : FiniteDimensional k V inst✝ : Fintype ι p : ι → P hi : AffineIndependent k p h_tot : affineSpan k (Set.range p) = ⊤ n : ℕ := Fintype.card ι - 1 ⊢ Fintype.card ι = finrank k V + 1 [PROOFSTEP] have hn : Fintype.card ι = n + 1 := (Nat.succ_pred_eq_of_pos (card_pos_of_affineSpan_eq_top k V P h_tot)).symm [GOAL] case mp k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁵ : DivisionRing k inst✝⁴ : AddCommGroup V inst✝³ : Module k V inst✝² : AffineSpace V P inst✝¹ : FiniteDimensional k V inst✝ : Fintype ι p : ι → P hi : AffineIndependent k p h_tot : affineSpan k (Set.range p) = ⊤ n : ℕ := Fintype.card ι - 1 hn : Fintype.card ι = n + 1 ⊢ Fintype.card ι = finrank k V + 1 [PROOFSTEP] rw [hn, ← finrank_top, ← (vectorSpan_eq_top_of_affineSpan_eq_top k V P) h_tot, ← hi.finrank_vectorSpan hn] [GOAL] case mpr k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁵ : DivisionRing k inst✝⁴ : AddCommGroup V inst✝³ : Module k V inst✝² : AffineSpace V P inst✝¹ : FiniteDimensional k V inst✝ : Fintype ι p : ι → P hi : AffineIndependent k p ⊢ Fintype.card ι = finrank k V + 1 → affineSpan k (Set.range p) = ⊤ [PROOFSTEP] intro hc [GOAL] case mpr k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁵ : DivisionRing k inst✝⁴ : AddCommGroup V inst✝³ : Module k V inst✝² : AffineSpace V P inst✝¹ : FiniteDimensional k V inst✝ : Fintype ι p : ι → P hi : AffineIndependent k p hc : Fintype.card ι = finrank k V + 1 ⊢ affineSpan k (Set.range p) = ⊤ [PROOFSTEP] rw [← finrank_top, ← direction_top k V P] at hc [GOAL] case mpr k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁵ : DivisionRing k inst✝⁴ : AddCommGroup V inst✝³ : Module k V inst✝² : AffineSpace V P inst✝¹ : FiniteDimensional k V inst✝ : Fintype ι p : ι → P hi : AffineIndependent k p hc : Fintype.card ι = finrank k { x // x ∈ direction ⊤ } + 1 ⊢ affineSpan k (Set.range p) = ⊤ [PROOFSTEP] exact hi.affineSpan_eq_of_le_of_card_eq_finrank_add_one le_top hc [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P inst✝ : FiniteDimensional k V n : ℕ T : Simplex k V n hrank : finrank k V = n ⊢ affineSpan k (Set.range T.points) = ⊤ [PROOFSTEP] rw [AffineIndependent.affineSpan_eq_top_iff_card_eq_finrank_add_one T.Independent, Fintype.card_fin, hrank] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P s : AffineSubspace k P inst✝ : FiniteDimensional k { x // x ∈ direction s } p : P ⊢ FiniteDimensional k { x // x ∈ vectorSpan k (insert p ↑s) } [PROOFSTEP] rw [← direction_affineSpan, ← affineSpan_insert_affineSpan] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P s : AffineSubspace k P inst✝ : FiniteDimensional k { x // x ∈ direction s } p : P ⊢ FiniteDimensional k { x // x ∈ direction (affineSpan k (insert p ↑(affineSpan k ↑s))) } [PROOFSTEP] rcases(s : Set P).eq_empty_or_nonempty with (hs | ⟨p₀, hp₀⟩) [GOAL] case inl k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P s : AffineSubspace k P inst✝ : FiniteDimensional k { x // x ∈ direction s } p : P hs : ↑s = ∅ ⊢ FiniteDimensional k { x // x ∈ direction (affineSpan k (insert p ↑(affineSpan k ↑s))) } [PROOFSTEP] rw [coe_eq_bot_iff] at hs [GOAL] case inl k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P s : AffineSubspace k P inst✝ : FiniteDimensional k { x // x ∈ direction s } p : P hs : s = ⊥ ⊢ FiniteDimensional k { x // x ∈ direction (affineSpan k (insert p ↑(affineSpan k ↑s))) } [PROOFSTEP] rw [hs, bot_coe, span_empty, bot_coe, direction_affineSpan] [GOAL] case inl k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P s : AffineSubspace k P inst✝ : FiniteDimensional k { x // x ∈ direction s } p : P hs : s = ⊥ ⊢ FiniteDimensional k { x // x ∈ vectorSpan k (insert p ∅) } [PROOFSTEP] convert finiteDimensional_bot _ _ [GOAL] case h.e'_2.h.e'_2.h.h.e'_5 k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P s : AffineSubspace k P inst✝ : FiniteDimensional k { x // x ∈ direction s } p : P hs : s = ⊥ x✝ : V ⊢ vectorSpan k (insert p ∅) = ⊥ [PROOFSTEP] simp [GOAL] case h.e'_4.e'_6 k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P s : AffineSubspace k P inst✝ : FiniteDimensional k { x // x ∈ direction s } p : P hs : s = ⊥ e_2✝ : { x // x ∈ vectorSpan k (insert p ∅) } = { x // x ∈ ⊥ } ⊢ vectorSpan k (insert p ∅) = ⊥ [PROOFSTEP] simp [GOAL] case h.e'_5.e'_6.h.h k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P s : AffineSubspace k P inst✝ : FiniteDimensional k { x // x ∈ direction s } p : P hs : s = ⊥ e_2✝ : { x // x ∈ vectorSpan k (insert p ∅) } = { x // x ∈ ⊥ } e_4✝ : HEq (Submodule.addCommGroup (vectorSpan k (insert p ∅))) (Submodule.addCommGroup ⊥) e_3✝ : Ring.toSemiring = DivisionSemiring.toSemiring ⊢ vectorSpan k (insert p ∅) = ⊥ [PROOFSTEP] simp [GOAL] case inr.intro k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P s : AffineSubspace k P inst✝ : FiniteDimensional k { x // x ∈ direction s } p p₀ : P hp₀ : p₀ ∈ ↑s ⊢ FiniteDimensional k { x // x ∈ direction (affineSpan k (insert p ↑(affineSpan k ↑s))) } [PROOFSTEP] rw [affineSpan_coe, direction_affineSpan_insert hp₀] [GOAL] case inr.intro k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P s : AffineSubspace k P inst✝ : FiniteDimensional k { x // x ∈ direction s } p p₀ : P hp₀ : p₀ ∈ ↑s ⊢ FiniteDimensional k { x // x ∈ Submodule.span k {p -ᵥ p₀} ⊔ direction s } [PROOFSTEP] infer_instance [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P s : Set P inst✝ : FiniteDimensional k { x // x ∈ vectorSpan k s } p : P ⊢ FiniteDimensional k { x // x ∈ vectorSpan k (insert p s) } [PROOFSTEP] haveI : FiniteDimensional k (affineSpan k s).direction := (direction_affineSpan k s).symm ▸ inferInstance [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P s : Set P inst✝ : FiniteDimensional k { x // x ∈ vectorSpan k s } p : P this : FiniteDimensional k { x // x ∈ direction (affineSpan k s) } ⊢ FiniteDimensional k { x // x ∈ vectorSpan k (insert p s) } [PROOFSTEP] rw [← direction_affineSpan, ← affineSpan_insert_affineSpan, direction_affineSpan] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P s : Set P inst✝ : FiniteDimensional k { x // x ∈ vectorSpan k s } p : P this : FiniteDimensional k { x // x ∈ direction (affineSpan k s) } ⊢ FiniteDimensional k { x // x ∈ vectorSpan k (insert p ↑(affineSpan k s)) } [PROOFSTEP] exact finiteDimensional_vectorSpan_insert (affineSpan k s) p [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P s : Set P inst✝ : FiniteDimensional k { x // x ∈ vectorSpan k s } ⊢ Collinear k s ↔ finrank k { x // x ∈ vectorSpan k s } ≤ 1 [PROOFSTEP] have h := collinear_iff_rank_le_one k s [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P s : Set P inst✝ : FiniteDimensional k { x // x ∈ vectorSpan k s } h : Collinear k s ↔ Module.rank k { x // x ∈ vectorSpan k s } ≤ 1 ⊢ Collinear k s ↔ finrank k { x // x ∈ vectorSpan k s } ≤ 1 [PROOFSTEP] rw [← finrank_eq_rank] at h [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P s : Set P inst✝ : FiniteDimensional k { x // x ∈ vectorSpan k s } h : Collinear k s ↔ ↑(finrank k { x // x ∈ vectorSpan k s }) ≤ 1 ⊢ Collinear k s ↔ finrank k { x // x ∈ vectorSpan k s } ≤ 1 [PROOFSTEP] exact_mod_cast h [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ⊢ Collinear k ∅ [PROOFSTEP] rw [collinear_iff_rank_le_one, vectorSpan_empty] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ⊢ Module.rank k { x // x ∈ ⊥ } ≤ 1 [PROOFSTEP] simp [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p : P ⊢ Collinear k {p} [PROOFSTEP] rw [collinear_iff_rank_le_one, vectorSpan_singleton] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p : P ⊢ Module.rank k { x // x ∈ ⊥ } ≤ 1 [PROOFSTEP] simp [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : Set P p₀ : P h : p₀ ∈ s ⊢ Collinear k s ↔ ∃ v, ∀ (p : P), p ∈ s → ∃ r, p = r • v +ᵥ p₀ [PROOFSTEP] simp_rw [collinear_iff_rank_le_one, rank_submodule_le_one_iff', Submodule.le_span_singleton_iff] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : Set P p₀ : P h : p₀ ∈ s ⊢ (∃ v₀, ∀ (v : V), v ∈ vectorSpan k s → ∃ r, r • v₀ = v) ↔ ∃ v, ∀ (p : P), p ∈ s → ∃ r, p = r • v +ᵥ p₀ [PROOFSTEP] constructor [GOAL] case mp k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : Set P p₀ : P h : p₀ ∈ s ⊢ (∃ v₀, ∀ (v : V), v ∈ vectorSpan k s → ∃ r, r • v₀ = v) → ∃ v, ∀ (p : P), p ∈ s → ∃ r, p = r • v +ᵥ p₀ [PROOFSTEP] rintro ⟨v₀, hv⟩ [GOAL] case mp.intro k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : Set P p₀ : P h : p₀ ∈ s v₀ : V hv : ∀ (v : V), v ∈ vectorSpan k s → ∃ r, r • v₀ = v ⊢ ∃ v, ∀ (p : P), p ∈ s → ∃ r, p = r • v +ᵥ p₀ [PROOFSTEP] use v₀ [GOAL] case h k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : Set P p₀ : P h : p₀ ∈ s v₀ : V hv : ∀ (v : V), v ∈ vectorSpan k s → ∃ r, r • v₀ = v ⊢ ∀ (p : P), p ∈ s → ∃ r, p = r • v₀ +ᵥ p₀ [PROOFSTEP] intro p hp [GOAL] case h k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : Set P p₀ : P h : p₀ ∈ s v₀ : V hv : ∀ (v : V), v ∈ vectorSpan k s → ∃ r, r • v₀ = v p : P hp : p ∈ s ⊢ ∃ r, p = r • v₀ +ᵥ p₀ [PROOFSTEP] obtain ⟨r, hr⟩ := hv (p -ᵥ p₀) (vsub_mem_vectorSpan k hp h) [GOAL] case h.intro k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : Set P p₀ : P h : p₀ ∈ s v₀ : V hv : ∀ (v : V), v ∈ vectorSpan k s → ∃ r, r • v₀ = v p : P hp : p ∈ s r : k hr : r • v₀ = p -ᵥ p₀ ⊢ ∃ r, p = r • v₀ +ᵥ p₀ [PROOFSTEP] use r [GOAL] case h k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : Set P p₀ : P h : p₀ ∈ s v₀ : V hv : ∀ (v : V), v ∈ vectorSpan k s → ∃ r, r • v₀ = v p : P hp : p ∈ s r : k hr : r • v₀ = p -ᵥ p₀ ⊢ p = r • v₀ +ᵥ p₀ [PROOFSTEP] rw [eq_vadd_iff_vsub_eq] [GOAL] case h k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : Set P p₀ : P h : p₀ ∈ s v₀ : V hv : ∀ (v : V), v ∈ vectorSpan k s → ∃ r, r • v₀ = v p : P hp : p ∈ s r : k hr : r • v₀ = p -ᵥ p₀ ⊢ p -ᵥ p₀ = r • v₀ [PROOFSTEP] exact hr.symm [GOAL] case mpr k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : Set P p₀ : P h : p₀ ∈ s ⊢ (∃ v, ∀ (p : P), p ∈ s → ∃ r, p = r • v +ᵥ p₀) → ∃ v₀, ∀ (v : V), v ∈ vectorSpan k s → ∃ r, r • v₀ = v [PROOFSTEP] rintro ⟨v, hp₀v⟩ [GOAL] case mpr.intro k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : Set P p₀ : P h : p₀ ∈ s v : V hp₀v : ∀ (p : P), p ∈ s → ∃ r, p = r • v +ᵥ p₀ ⊢ ∃ v₀, ∀ (v : V), v ∈ vectorSpan k s → ∃ r, r • v₀ = v [PROOFSTEP] use v [GOAL] case h k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : Set P p₀ : P h : p₀ ∈ s v : V hp₀v : ∀ (p : P), p ∈ s → ∃ r, p = r • v +ᵥ p₀ ⊢ ∀ (v_1 : V), v_1 ∈ vectorSpan k s → ∃ r, r • v = v_1 [PROOFSTEP] intro w hw [GOAL] case h k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : Set P p₀ : P h : p₀ ∈ s v : V hp₀v : ∀ (p : P), p ∈ s → ∃ r, p = r • v +ᵥ p₀ w : V hw : w ∈ vectorSpan k s ⊢ ∃ r, r • v = w [PROOFSTEP] have hs : vectorSpan k s ≤ k ∙ v := by rw [vectorSpan_eq_span_vsub_set_right k h, Submodule.span_le, Set.subset_def] intro x hx rw [SetLike.mem_coe, Submodule.mem_span_singleton] rw [Set.mem_image] at hx rcases hx with ⟨p, hp, rfl⟩ rcases hp₀v p hp with ⟨r, rfl⟩ use r simp [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : Set P p₀ : P h : p₀ ∈ s v : V hp₀v : ∀ (p : P), p ∈ s → ∃ r, p = r • v +ᵥ p₀ w : V hw : w ∈ vectorSpan k s ⊢ vectorSpan k s ≤ Submodule.span k {v} [PROOFSTEP] rw [vectorSpan_eq_span_vsub_set_right k h, Submodule.span_le, Set.subset_def] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : Set P p₀ : P h : p₀ ∈ s v : V hp₀v : ∀ (p : P), p ∈ s → ∃ r, p = r • v +ᵥ p₀ w : V hw : w ∈ vectorSpan k s ⊢ ∀ (x : V), x ∈ (fun x => x -ᵥ p₀) '' s → x ∈ ↑(Submodule.span k {v}) [PROOFSTEP] intro x hx [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : Set P p₀ : P h : p₀ ∈ s v : V hp₀v : ∀ (p : P), p ∈ s → ∃ r, p = r • v +ᵥ p₀ w : V hw : w ∈ vectorSpan k s x : V hx : x ∈ (fun x => x -ᵥ p₀) '' s ⊢ x ∈ ↑(Submodule.span k {v}) [PROOFSTEP] rw [SetLike.mem_coe, Submodule.mem_span_singleton] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : Set P p₀ : P h : p₀ ∈ s v : V hp₀v : ∀ (p : P), p ∈ s → ∃ r, p = r • v +ᵥ p₀ w : V hw : w ∈ vectorSpan k s x : V hx : x ∈ (fun x => x -ᵥ p₀) '' s ⊢ ∃ a, a • v = x [PROOFSTEP] rw [Set.mem_image] at hx [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : Set P p₀ : P h : p₀ ∈ s v : V hp₀v : ∀ (p : P), p ∈ s → ∃ r, p = r • v +ᵥ p₀ w : V hw : w ∈ vectorSpan k s x : V hx : ∃ x_1, x_1 ∈ s ∧ x_1 -ᵥ p₀ = x ⊢ ∃ a, a • v = x [PROOFSTEP] rcases hx with ⟨p, hp, rfl⟩ [GOAL] case intro.intro k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : Set P p₀ : P h : p₀ ∈ s v : V hp₀v : ∀ (p : P), p ∈ s → ∃ r, p = r • v +ᵥ p₀ w : V hw : w ∈ vectorSpan k s p : P hp : p ∈ s ⊢ ∃ a, a • v = p -ᵥ p₀ [PROOFSTEP] rcases hp₀v p hp with ⟨r, rfl⟩ [GOAL] case intro.intro.intro k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : Set P p₀ : P h : p₀ ∈ s v : V hp₀v : ∀ (p : P), p ∈ s → ∃ r, p = r • v +ᵥ p₀ w : V hw : w ∈ vectorSpan k s r : k hp : r • v +ᵥ p₀ ∈ s ⊢ ∃ a, a • v = r • v +ᵥ p₀ -ᵥ p₀ [PROOFSTEP] use r [GOAL] case h k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : Set P p₀ : P h : p₀ ∈ s v : V hp₀v : ∀ (p : P), p ∈ s → ∃ r, p = r • v +ᵥ p₀ w : V hw : w ∈ vectorSpan k s r : k hp : r • v +ᵥ p₀ ∈ s ⊢ r • v = r • v +ᵥ p₀ -ᵥ p₀ [PROOFSTEP] simp [GOAL] case h k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : Set P p₀ : P h : p₀ ∈ s v : V hp₀v : ∀ (p : P), p ∈ s → ∃ r, p = r • v +ᵥ p₀ w : V hw : w ∈ vectorSpan k s hs : vectorSpan k s ≤ Submodule.span k {v} ⊢ ∃ r, r • v = w [PROOFSTEP] have hw' := SetLike.le_def.1 hs hw [GOAL] case h k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : Set P p₀ : P h : p₀ ∈ s v : V hp₀v : ∀ (p : P), p ∈ s → ∃ r, p = r • v +ᵥ p₀ w : V hw : w ∈ vectorSpan k s hs : vectorSpan k s ≤ Submodule.span k {v} hw' : w ∈ Submodule.span k {v} ⊢ ∃ r, r • v = w [PROOFSTEP] rwa [Submodule.mem_span_singleton] at hw' [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : Set P ⊢ Collinear k s ↔ ∃ p₀ v, ∀ (p : P), p ∈ s → ∃ r, p = r • v +ᵥ p₀ [PROOFSTEP] rcases Set.eq_empty_or_nonempty s with (rfl | ⟨⟨p₁, hp₁⟩⟩) [GOAL] case inl k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P ⊢ Collinear k ∅ ↔ ∃ p₀ v, ∀ (p : P), p ∈ ∅ → ∃ r, p = r • v +ᵥ p₀ [PROOFSTEP] simp [collinear_empty] [GOAL] case inr.intro k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : Set P p₁ : P hp₁ : p₁ ∈ s ⊢ Collinear k s ↔ ∃ p₀ v, ∀ (p : P), p ∈ s → ∃ r, p = r • v +ᵥ p₀ [PROOFSTEP] rw [collinear_iff_of_mem hp₁] [GOAL] case inr.intro k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : Set P p₁ : P hp₁ : p₁ ∈ s ⊢ (∃ v, ∀ (p : P), p ∈ s → ∃ r, p = r • v +ᵥ p₁) ↔ ∃ p₀ v, ∀ (p : P), p ∈ s → ∃ r, p = r • v +ᵥ p₀ [PROOFSTEP] constructor [GOAL] case inr.intro.mp k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : Set P p₁ : P hp₁ : p₁ ∈ s ⊢ (∃ v, ∀ (p : P), p ∈ s → ∃ r, p = r • v +ᵥ p₁) → ∃ p₀ v, ∀ (p : P), p ∈ s → ∃ r, p = r • v +ᵥ p₀ [PROOFSTEP] exact fun h => ⟨p₁, h⟩ [GOAL] case inr.intro.mpr k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : Set P p₁ : P hp₁ : p₁ ∈ s ⊢ (∃ p₀ v, ∀ (p : P), p ∈ s → ∃ r, p = r • v +ᵥ p₀) → ∃ v, ∀ (p : P), p ∈ s → ∃ r, p = r • v +ᵥ p₁ [PROOFSTEP] rintro ⟨p, v, hv⟩ [GOAL] case inr.intro.mpr.intro.intro k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : Set P p₁ : P hp₁ : p₁ ∈ s p : P v : V hv : ∀ (p_1 : P), p_1 ∈ s → ∃ r, p_1 = r • v +ᵥ p ⊢ ∃ v, ∀ (p : P), p ∈ s → ∃ r, p = r • v +ᵥ p₁ [PROOFSTEP] use v [GOAL] case h k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : Set P p₁ : P hp₁ : p₁ ∈ s p : P v : V hv : ∀ (p_1 : P), p_1 ∈ s → ∃ r, p_1 = r • v +ᵥ p ⊢ ∀ (p : P), p ∈ s → ∃ r, p = r • v +ᵥ p₁ [PROOFSTEP] intro p₂ hp₂ [GOAL] case h k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : Set P p₁ : P hp₁ : p₁ ∈ s p : P v : V hv : ∀ (p_1 : P), p_1 ∈ s → ∃ r, p_1 = r • v +ᵥ p p₂ : P hp₂ : p₂ ∈ s ⊢ ∃ r, p₂ = r • v +ᵥ p₁ [PROOFSTEP] rcases hv p₂ hp₂ with ⟨r, rfl⟩ [GOAL] case h.intro k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : Set P p₁ : P hp₁ : p₁ ∈ s p : P v : V hv : ∀ (p_1 : P), p_1 ∈ s → ∃ r, p_1 = r • v +ᵥ p r : k hp₂ : r • v +ᵥ p ∈ s ⊢ ∃ r_1, r • v +ᵥ p = r_1 • v +ᵥ p₁ [PROOFSTEP] rcases hv p₁ hp₁ with ⟨r₁, rfl⟩ [GOAL] case h.intro.intro k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : Set P p : P v : V hv : ∀ (p_1 : P), p_1 ∈ s → ∃ r, p_1 = r • v +ᵥ p r : k hp₂ : r • v +ᵥ p ∈ s r₁ : k hp₁ : r₁ • v +ᵥ p ∈ s ⊢ ∃ r_1, r • v +ᵥ p = r_1 • v +ᵥ (r₁ • v +ᵥ p) [PROOFSTEP] use r - r₁ [GOAL] case h k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : Set P p : P v : V hv : ∀ (p_1 : P), p_1 ∈ s → ∃ r, p_1 = r • v +ᵥ p r : k hp₂ : r • v +ᵥ p ∈ s r₁ : k hp₁ : r₁ • v +ᵥ p ∈ s ⊢ r • v +ᵥ p = (r - r₁) • v +ᵥ (r₁ • v +ᵥ p) [PROOFSTEP] simp [vadd_vadd, ← add_smul] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p₁ p₂ : P ⊢ Collinear k {p₁, p₂} [PROOFSTEP] rw [collinear_iff_exists_forall_eq_smul_vadd] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p₁ p₂ : P ⊢ ∃ p₀ v, ∀ (p : P), p ∈ {p₁, p₂} → ∃ r, p = r • v +ᵥ p₀ [PROOFSTEP] use p₁, p₂ -ᵥ p₁ [GOAL] case h k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p₁ p₂ : P ⊢ ∀ (p : P), p ∈ {p₁, p₂} → ∃ r, p = r • (p₂ -ᵥ p₁) +ᵥ p₁ [PROOFSTEP] intro p hp [GOAL] case h k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p₁ p₂ p : P hp : p ∈ {p₁, p₂} ⊢ ∃ r, p = r • (p₂ -ᵥ p₁) +ᵥ p₁ [PROOFSTEP] rw [Set.mem_insert_iff, Set.mem_singleton_iff] at hp [GOAL] case h k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p₁ p₂ p : P hp : p = p₁ ∨ p = p₂ ⊢ ∃ r, p = r • (p₂ -ᵥ p₁) +ᵥ p₁ [PROOFSTEP] cases' hp with hp hp [GOAL] case h.inl k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p₁ p₂ p : P hp : p = p₁ ⊢ ∃ r, p = r • (p₂ -ᵥ p₁) +ᵥ p₁ [PROOFSTEP] use 0 [GOAL] case h k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p₁ p₂ p : P hp : p = p₁ ⊢ p = 0 • (p₂ -ᵥ p₁) +ᵥ p₁ [PROOFSTEP] simp [hp] [GOAL] case h.inr k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p₁ p₂ p : P hp : p = p₂ ⊢ ∃ r, p = r • (p₂ -ᵥ p₁) +ᵥ p₁ [PROOFSTEP] use 1 [GOAL] case h k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p₁ p₂ p : P hp : p = p₂ ⊢ p = 1 • (p₂ -ᵥ p₁) +ᵥ p₁ [PROOFSTEP] simp [hp] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p : Fin 3 → P ⊢ AffineIndependent k p ↔ ¬Collinear k (Set.range p) [PROOFSTEP] rw [collinear_iff_finrank_le_one, affineIndependent_iff_not_finrank_vectorSpan_le k p (Fintype.card_fin 3)] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p : Fin 3 → P ⊢ Collinear k (Set.range p) ↔ ¬AffineIndependent k p [PROOFSTEP] rw [collinear_iff_finrank_le_one, finrank_vectorSpan_le_iff_not_affineIndependent k p (Fintype.card_fin 3)] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p₁ p₂ p₃ : P ⊢ AffineIndependent k ![p₁, p₂, p₃] ↔ ¬Collinear k {p₁, p₂, p₃} [PROOFSTEP] rw [affineIndependent_iff_not_collinear] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p₁ p₂ p₃ : P ⊢ ¬Collinear k (Set.range ![p₁, p₂, p₃]) ↔ ¬Collinear k {p₁, p₂, p₃} [PROOFSTEP] simp_rw [Matrix.range_cons, Matrix.range_empty, Set.singleton_union, insert_emptyc_eq] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p : Fin 3 → P i₁ i₂ i₃ : Fin 3 h₁₂ : i₁ ≠ i₂ h₁₃ : i₁ ≠ i₃ h₂₃ : i₂ ≠ i₃ ⊢ AffineIndependent k p ↔ ¬Collinear k {p i₁, p i₂, p i₃} [PROOFSTEP] have hu : (Finset.univ : Finset (Fin 3)) = { i₁, i₂, i₃ } := by -- Porting note: Originally `by decide!`fin_cases i₁ <;> fin_cases i₂ <;> fin_cases i₃ <;> simp only at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p : Fin 3 → P i₁ i₂ i₃ : Fin 3 h₁₂ : i₁ ≠ i₂ h₁₃ : i₁ ≠ i₃ h₂₃ : i₂ ≠ i₃ ⊢ Finset.univ = {i₁, i₂, i₃} [PROOFSTEP] fin_cases i₁ [GOAL] case head k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p : Fin 3 → P i₂ i₃ : Fin 3 h₂₃ : i₂ ≠ i₃ h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ i₂ h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ i₃ ⊢ Finset.univ = {{ val := 0, isLt := (_ : 0 < 3) }, i₂, i₃} [PROOFSTEP] fin_cases i₂ [GOAL] case tail.head k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p : Fin 3 → P i₂ i₃ : Fin 3 h₂₃ : i₂ ≠ i₃ h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ i₂ h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ i₃ ⊢ Finset.univ = {{ val := 1, isLt := (_ : (fun a => a < 3) 1) }, i₂, i₃} [PROOFSTEP] fin_cases i₂ [GOAL] case tail.tail.head k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p : Fin 3 → P i₂ i₃ : Fin 3 h₂₃ : i₂ ≠ i₃ h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ i₂ h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ i₃ ⊢ Finset.univ = {{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, i₂, i₃} [PROOFSTEP] fin_cases i₂ [GOAL] case head.head k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p : Fin 3 → P i₃ : Fin 3 h₁₃ h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ i₃ h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) } ⊢ Finset.univ = {{ val := 0, isLt := (_ : 0 < 3) }, { val := 0, isLt := (_ : 0 < 3) }, i₃} [PROOFSTEP] fin_cases i₃ [GOAL] case head.tail.head k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p : Fin 3 → P i₃ : Fin 3 h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ i₃ h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ i₃ h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } ⊢ Finset.univ = {{ val := 0, isLt := (_ : 0 < 3) }, { val := 1, isLt := (_ : (fun a => a < 3) 1) }, i₃} [PROOFSTEP] fin_cases i₃ [GOAL] case head.tail.tail.head k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p : Fin 3 → P i₃ : Fin 3 h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ i₃ h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ i₃ h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ⊢ Finset.univ = {{ val := 0, isLt := (_ : 0 < 3) }, { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, i₃} [PROOFSTEP] fin_cases i₃ [GOAL] case tail.head.head k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p : Fin 3 → P i₃ : Fin 3 h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ i₃ h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ i₃ h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) } ⊢ Finset.univ = {{ val := 1, isLt := (_ : (fun a => a < 3) 1) }, { val := 0, isLt := (_ : 0 < 3) }, i₃} [PROOFSTEP] fin_cases i₃ [GOAL] case tail.head.tail.head k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p : Fin 3 → P i₃ : Fin 3 h₁₃ h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ i₃ h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } ⊢ Finset.univ = {{ val := 1, isLt := (_ : (fun a => a < 3) 1) }, { val := 1, isLt := (_ : (fun a => a < 3) 1) }, i₃} [PROOFSTEP] fin_cases i₃ [GOAL] case tail.head.tail.tail.head k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p : Fin 3 → P i₃ : Fin 3 h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ i₃ h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ i₃ h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ⊢ Finset.univ = {{ val := 1, isLt := (_ : (fun a => a < 3) 1) }, { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, i₃} [PROOFSTEP] fin_cases i₃ [GOAL] case tail.tail.head.head k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p : Fin 3 → P i₃ : Fin 3 h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ i₃ h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ i₃ h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) } ⊢ Finset.univ = {{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, { val := 0, isLt := (_ : 0 < 3) }, i₃} [PROOFSTEP] fin_cases i₃ [GOAL] case tail.tail.head.tail.head k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p : Fin 3 → P i₃ : Fin 3 h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ i₃ h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ i₃ h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } ⊢ Finset.univ = {{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, { val := 1, isLt := (_ : (fun a => a < 3) 1) }, i₃} [PROOFSTEP] fin_cases i₃ [GOAL] case tail.tail.head.tail.tail.head k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p : Fin 3 → P i₃ : Fin 3 h₁₃ h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ i₃ h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ⊢ Finset.univ = {{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, i₃} [PROOFSTEP] fin_cases i₃ [GOAL] case head.head.head k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p : Fin 3 → P h₁₂ h₁₃ h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) } ⊢ Finset.univ = {{ val := 0, isLt := (_ : 0 < 3) }, { val := 0, isLt := (_ : 0 < 3) }, { val := 0, isLt := (_ : 0 < 3) }} [PROOFSTEP] simp only at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case head.head.tail.head k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p : Fin 3 → P h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) } h₁₃ h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } ⊢ Finset.univ = {{ val := 0, isLt := (_ : 0 < 3) }, { val := 0, isLt := (_ : 0 < 3) }, { val := 1, isLt := (_ : (fun a => a < 3) 1) }} [PROOFSTEP] simp only at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case head.head.tail.tail.head k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p : Fin 3 → P h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) } h₁₃ h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ⊢ Finset.univ = {{ val := 0, isLt := (_ : 0 < 3) }, { val := 0, isLt := (_ : 0 < 3) }, { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }} [PROOFSTEP] simp only at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case head.tail.head.head k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p : Fin 3 → P h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) } h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) } ⊢ Finset.univ = {{ val := 0, isLt := (_ : 0 < 3) }, { val := 1, isLt := (_ : (fun a => a < 3) 1) }, { val := 0, isLt := (_ : 0 < 3) }} [PROOFSTEP] simp only at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case head.tail.head.tail.head k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p : Fin 3 → P h₁₂ h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } ⊢ Finset.univ = {{ val := 0, isLt := (_ : 0 < 3) }, { val := 1, isLt := (_ : (fun a => a < 3) 1) }, { val := 1, isLt := (_ : (fun a => a < 3) 1) }} [PROOFSTEP] simp only at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case head.tail.head.tail.tail.head k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p : Fin 3 → P h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ⊢ Finset.univ = {{ val := 0, isLt := (_ : 0 < 3) }, { val := 1, isLt := (_ : (fun a => a < 3) 1) }, { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }} [PROOFSTEP] simp only at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case head.tail.tail.head.head k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p : Fin 3 → P h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) } h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) } ⊢ Finset.univ = {{ val := 0, isLt := (_ : 0 < 3) }, { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, { val := 0, isLt := (_ : 0 < 3) }} [PROOFSTEP] simp only at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case head.tail.tail.head.tail.head k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p : Fin 3 → P h₁₂ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } ⊢ Finset.univ = {{ val := 0, isLt := (_ : 0 < 3) }, { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, { val := 1, isLt := (_ : (fun a => a < 3) 1) }} [PROOFSTEP] simp only at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case head.tail.tail.head.tail.tail.head k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p : Fin 3 → P h₁₂ h₁₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ⊢ Finset.univ = {{ val := 0, isLt := (_ : 0 < 3) }, { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }} [PROOFSTEP] simp only at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.head.head.head k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p : Fin 3 → P h₁₂ h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) } h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) } ⊢ Finset.univ = {{ val := 1, isLt := (_ : (fun a => a < 3) 1) }, { val := 0, isLt := (_ : 0 < 3) }, { val := 0, isLt := (_ : 0 < 3) }} [PROOFSTEP] simp only at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.head.head.tail.head k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p : Fin 3 → P h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) } h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } ⊢ Finset.univ = {{ val := 1, isLt := (_ : (fun a => a < 3) 1) }, { val := 0, isLt := (_ : 0 < 3) }, { val := 1, isLt := (_ : (fun a => a < 3) 1) }} [PROOFSTEP] simp only at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.head.head.tail.tail.head k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p : Fin 3 → P h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) } h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ⊢ Finset.univ = {{ val := 1, isLt := (_ : (fun a => a < 3) 1) }, { val := 0, isLt := (_ : 0 < 3) }, { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }} [PROOFSTEP] simp only at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.head.tail.head.head k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p : Fin 3 → P h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } h₁₃ h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) } ⊢ Finset.univ = {{ val := 1, isLt := (_ : (fun a => a < 3) 1) }, { val := 1, isLt := (_ : (fun a => a < 3) 1) }, { val := 0, isLt := (_ : 0 < 3) }} [PROOFSTEP] simp only at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.head.tail.head.tail.head k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p : Fin 3 → P h₁₂ h₁₃ h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } ⊢ Finset.univ = {{ val := 1, isLt := (_ : (fun a => a < 3) 1) }, { val := 1, isLt := (_ : (fun a => a < 3) 1) }, { val := 1, isLt := (_ : (fun a => a < 3) 1) }} [PROOFSTEP] simp only at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.head.tail.head.tail.tail.head k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p : Fin 3 → P h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } h₁₃ h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ⊢ Finset.univ = {{ val := 1, isLt := (_ : (fun a => a < 3) 1) }, { val := 1, isLt := (_ : (fun a => a < 3) 1) }, { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }} [PROOFSTEP] simp only at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.head.tail.tail.head.head k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p : Fin 3 → P h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) } h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) } ⊢ Finset.univ = {{ val := 1, isLt := (_ : (fun a => a < 3) 1) }, { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, { val := 0, isLt := (_ : 0 < 3) }} [PROOFSTEP] simp only at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.head.tail.tail.head.tail.head k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p : Fin 3 → P h₁₂ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } ⊢ Finset.univ = {{ val := 1, isLt := (_ : (fun a => a < 3) 1) }, { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, { val := 1, isLt := (_ : (fun a => a < 3) 1) }} [PROOFSTEP] simp only at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.head.tail.tail.head.tail.tail.head k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p : Fin 3 → P h₁₂ h₁₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ⊢ Finset.univ = {{ val := 1, isLt := (_ : (fun a => a < 3) 1) }, { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }} [PROOFSTEP] simp only at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.tail.head.head.head k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p : Fin 3 → P h₁₂ h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) } h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 0, isLt := (_ : 0 < 3) } ⊢ Finset.univ = {{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, { val := 0, isLt := (_ : 0 < 3) }, { val := 0, isLt := (_ : 0 < 3) }} [PROOFSTEP] simp only at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.tail.head.head.tail.head k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p : Fin 3 → P h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) } h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } ⊢ Finset.univ = {{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, { val := 0, isLt := (_ : 0 < 3) }, { val := 1, isLt := (_ : (fun a => a < 3) 1) }} [PROOFSTEP] simp only at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.tail.head.head.tail.tail.head k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p : Fin 3 → P h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) } h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } h₂₃ : { val := 0, isLt := (_ : 0 < 3) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ⊢ Finset.univ = {{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, { val := 0, isLt := (_ : 0 < 3) }, { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }} [PROOFSTEP] simp only at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.tail.head.tail.head.head k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p : Fin 3 → P h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) } h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 0, isLt := (_ : 0 < 3) } ⊢ Finset.univ = {{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, { val := 1, isLt := (_ : (fun a => a < 3) 1) }, { val := 0, isLt := (_ : 0 < 3) }} [PROOFSTEP] simp only at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.tail.head.tail.head.tail.head k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p : Fin 3 → P h₁₂ h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } ⊢ Finset.univ = {{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, { val := 1, isLt := (_ : (fun a => a < 3) 1) }, { val := 1, isLt := (_ : (fun a => a < 3) 1) }} [PROOFSTEP] simp only at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.tail.head.tail.head.tail.tail.head k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p : Fin 3 → P h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } h₁₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } h₂₃ : { val := 1, isLt := (_ : (fun a => a < 3) 1) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ⊢ Finset.univ = {{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, { val := 1, isLt := (_ : (fun a => a < 3) 1) }, { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }} [PROOFSTEP] simp only at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.tail.head.tail.tail.head.head k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p : Fin 3 → P h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } h₁₃ h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 0, isLt := (_ : 0 < 3) } ⊢ Finset.univ = {{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, { val := 0, isLt := (_ : 0 < 3) }} [PROOFSTEP] simp only at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.tail.head.tail.tail.head.tail.head k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p : Fin 3 → P h₁₂ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } h₁₃ h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 3) 1) } ⊢ Finset.univ = {{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, { val := 1, isLt := (_ : (fun a => a < 3) 1) }} [PROOFSTEP] simp only at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] case tail.tail.head.tail.tail.head.tail.tail.head k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p : Fin 3 → P h₁₂ h₁₃ h₂₃ : { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ≠ { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) } ⊢ Finset.univ = {{ val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }, { val := 2, isLt := (_ : (fun a => (fun a => a < 3) a) 2) }} [PROOFSTEP] simp only at h₁₂ h₁₃ h₂₃ ⊢ [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p : Fin 3 → P i₁ i₂ i₃ : Fin 3 h₁₂ : i₁ ≠ i₂ h₁₃ : i₁ ≠ i₃ h₂₃ : i₂ ≠ i₃ hu : Finset.univ = {i₁, i₂, i₃} ⊢ AffineIndependent k p ↔ ¬Collinear k {p i₁, p i₂, p i₃} [PROOFSTEP] rw [affineIndependent_iff_not_collinear, ← Set.image_univ, ← Finset.coe_univ, hu, Finset.coe_insert, Finset.coe_insert, Finset.coe_singleton, Set.image_insert_eq, Set.image_pair] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p₁ p₂ p₃ : P h : ¬Collinear k {p₁, p₂, p₃} ⊢ p₁ ≠ p₂ [PROOFSTEP] rintro rfl [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p₁ p₃ : P h : ¬Collinear k {p₁, p₁, p₃} ⊢ False [PROOFSTEP] simp [collinear_pair] at h [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p₁ p₂ p₃ : P h : ¬Collinear k {p₁, p₂, p₃} ⊢ p₁ ≠ p₃ [PROOFSTEP] rintro rfl [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p₁ p₂ : P h : ¬Collinear k {p₁, p₂, p₁} ⊢ False [PROOFSTEP] simp [collinear_pair] at h [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p₁ p₂ p₃ : P h : ¬Collinear k {p₁, p₂, p₃} ⊢ p₂ ≠ p₃ [PROOFSTEP] rintro rfl [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p₁ p₂ : P h : ¬Collinear k {p₁, p₂, p₂} ⊢ False [PROOFSTEP] simp [collinear_pair] at h [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : Set P h : Collinear k s p₁ p₂ p₃ : P hp₁ : p₁ ∈ s hp₂ : p₂ ∈ s hp₃ : p₃ ∈ s hp₁p₂ : p₁ ≠ p₂ ⊢ p₃ ∈ affineSpan k {p₁, p₂} [PROOFSTEP] rw [collinear_iff_of_mem hp₁] at h [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : Set P p₁ : P h : ∃ v, ∀ (p : P), p ∈ s → ∃ r, p = r • v +ᵥ p₁ p₂ p₃ : P hp₁ : p₁ ∈ s hp₂ : p₂ ∈ s hp₃ : p₃ ∈ s hp₁p₂ : p₁ ≠ p₂ ⊢ p₃ ∈ affineSpan k {p₁, p₂} [PROOFSTEP] rcases h with ⟨v, h⟩ [GOAL] case intro k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : Set P p₁ p₂ p₃ : P hp₁ : p₁ ∈ s hp₂ : p₂ ∈ s hp₃ : p₃ ∈ s hp₁p₂ : p₁ ≠ p₂ v : V h : ∀ (p : P), p ∈ s → ∃ r, p = r • v +ᵥ p₁ ⊢ p₃ ∈ affineSpan k {p₁, p₂} [PROOFSTEP] rcases h p₂ hp₂ with ⟨r₂, rfl⟩ [GOAL] case intro.intro k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : Set P p₁ p₃ : P hp₁ : p₁ ∈ s hp₃ : p₃ ∈ s v : V h : ∀ (p : P), p ∈ s → ∃ r, p = r • v +ᵥ p₁ r₂ : k hp₂ : r₂ • v +ᵥ p₁ ∈ s hp₁p₂ : p₁ ≠ r₂ • v +ᵥ p₁ ⊢ p₃ ∈ affineSpan k {p₁, r₂ • v +ᵥ p₁} [PROOFSTEP] rcases h p₃ hp₃ with ⟨r₃, rfl⟩ [GOAL] case intro.intro.intro k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : Set P p₁ : P hp₁ : p₁ ∈ s v : V h : ∀ (p : P), p ∈ s → ∃ r, p = r • v +ᵥ p₁ r₂ : k hp₂ : r₂ • v +ᵥ p₁ ∈ s hp₁p₂ : p₁ ≠ r₂ • v +ᵥ p₁ r₃ : k hp₃ : r₃ • v +ᵥ p₁ ∈ s ⊢ r₃ • v +ᵥ p₁ ∈ affineSpan k {p₁, r₂ • v +ᵥ p₁} [PROOFSTEP] rw [vadd_left_mem_affineSpan_pair] [GOAL] case intro.intro.intro k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : Set P p₁ : P hp₁ : p₁ ∈ s v : V h : ∀ (p : P), p ∈ s → ∃ r, p = r • v +ᵥ p₁ r₂ : k hp₂ : r₂ • v +ᵥ p₁ ∈ s hp₁p₂ : p₁ ≠ r₂ • v +ᵥ p₁ r₃ : k hp₃ : r₃ • v +ᵥ p₁ ∈ s ⊢ ∃ r, r • (r₂ • v +ᵥ p₁ -ᵥ p₁) = r₃ • v [PROOFSTEP] refine' ⟨r₃ / r₂, _⟩ [GOAL] case intro.intro.intro k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : Set P p₁ : P hp₁ : p₁ ∈ s v : V h : ∀ (p : P), p ∈ s → ∃ r, p = r • v +ᵥ p₁ r₂ : k hp₂ : r₂ • v +ᵥ p₁ ∈ s hp₁p₂ : p₁ ≠ r₂ • v +ᵥ p₁ r₃ : k hp₃ : r₃ • v +ᵥ p₁ ∈ s ⊢ (r₃ / r₂) • (r₂ • v +ᵥ p₁ -ᵥ p₁) = r₃ • v [PROOFSTEP] have h₂ : r₂ ≠ 0 := by rintro rfl simp at hp₁p₂ [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : Set P p₁ : P hp₁ : p₁ ∈ s v : V h : ∀ (p : P), p ∈ s → ∃ r, p = r • v +ᵥ p₁ r₂ : k hp₂ : r₂ • v +ᵥ p₁ ∈ s hp₁p₂ : p₁ ≠ r₂ • v +ᵥ p₁ r₃ : k hp₃ : r₃ • v +ᵥ p₁ ∈ s ⊢ r₂ ≠ 0 [PROOFSTEP] rintro rfl [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : Set P p₁ : P hp₁ : p₁ ∈ s v : V h : ∀ (p : P), p ∈ s → ∃ r, p = r • v +ᵥ p₁ r₃ : k hp₃ : r₃ • v +ᵥ p₁ ∈ s hp₂ : 0 • v +ᵥ p₁ ∈ s hp₁p₂ : p₁ ≠ 0 • v +ᵥ p₁ ⊢ False [PROOFSTEP] simp at hp₁p₂ [GOAL] case intro.intro.intro k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : Set P p₁ : P hp₁ : p₁ ∈ s v : V h : ∀ (p : P), p ∈ s → ∃ r, p = r • v +ᵥ p₁ r₂ : k hp₂ : r₂ • v +ᵥ p₁ ∈ s hp₁p₂ : p₁ ≠ r₂ • v +ᵥ p₁ r₃ : k hp₃ : r₃ • v +ᵥ p₁ ∈ s h₂ : r₂ ≠ 0 ⊢ (r₃ / r₂) • (r₂ • v +ᵥ p₁ -ᵥ p₁) = r₃ • v [PROOFSTEP] simp [smul_smul, h₂] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : Set P h : Collinear k s p₁ p₂ p₃ : P hp₂ : p₂ ∈ s hp₃ : p₃ ∈ s hp₂p₃ : p₂ ≠ p₃ ⊢ Collinear k (insert p₁ s) ↔ Collinear k {p₁, p₂, p₃} [PROOFSTEP] have hv : vectorSpan k (insert p₁ s) = vectorSpan k ({ p₁, p₂, p₃ } : Set P) := by -- Porting note: Original proof used `conv_lhs` and `conv_rhs`, but these tactics timed out. rw [← direction_affineSpan, ← affineSpan_insert_affineSpan] symm rw [← direction_affineSpan, ← affineSpan_insert_affineSpan, h.affineSpan_eq_of_ne hp₂ hp₃ hp₂p₃] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : Set P h : Collinear k s p₁ p₂ p₃ : P hp₂ : p₂ ∈ s hp₃ : p₃ ∈ s hp₂p₃ : p₂ ≠ p₃ ⊢ vectorSpan k (insert p₁ s) = vectorSpan k {p₁, p₂, p₃} [PROOFSTEP] rw [← direction_affineSpan, ← affineSpan_insert_affineSpan] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : Set P h : Collinear k s p₁ p₂ p₃ : P hp₂ : p₂ ∈ s hp₃ : p₃ ∈ s hp₂p₃ : p₂ ≠ p₃ ⊢ direction (affineSpan k (insert p₁ ↑(affineSpan k s))) = vectorSpan k {p₁, p₂, p₃} [PROOFSTEP] symm [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : Set P h : Collinear k s p₁ p₂ p₃ : P hp₂ : p₂ ∈ s hp₃ : p₃ ∈ s hp₂p₃ : p₂ ≠ p₃ ⊢ vectorSpan k {p₁, p₂, p₃} = direction (affineSpan k (insert p₁ ↑(affineSpan k s))) [PROOFSTEP] rw [← direction_affineSpan, ← affineSpan_insert_affineSpan, h.affineSpan_eq_of_ne hp₂ hp₃ hp₂p₃] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : Set P h : Collinear k s p₁ p₂ p₃ : P hp₂ : p₂ ∈ s hp₃ : p₃ ∈ s hp₂p₃ : p₂ ≠ p₃ hv : vectorSpan k (insert p₁ s) = vectorSpan k {p₁, p₂, p₃} ⊢ Collinear k (insert p₁ s) ↔ Collinear k {p₁, p₂, p₃} [PROOFSTEP] rw [Collinear, Collinear, hv] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : Set P p : P h : p ∈ affineSpan k s ⊢ Collinear k (insert p s) ↔ Collinear k s [PROOFSTEP] rw [Collinear, Collinear, vectorSpan_insert_eq_vectorSpan h] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p₁ p₂ p₃ : P h : p₁ ∈ affineSpan k {p₂, p₃} ⊢ Collinear k {p₁, p₂, p₃} [PROOFSTEP] rw [collinear_insert_iff_of_mem_affineSpan h] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p₁ p₂ p₃ : P h : p₁ ∈ affineSpan k {p₂, p₃} ⊢ Collinear k {p₂, p₃} [PROOFSTEP] exact collinear_pair _ _ _ [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p₁ p₂ p₃ p₄ : P h₁ : p₁ ∈ affineSpan k {p₃, p₄} h₂ : p₂ ∈ affineSpan k {p₃, p₄} ⊢ Collinear k {p₁, p₂, p₃, p₄} [PROOFSTEP] rw [collinear_insert_iff_of_mem_affineSpan ((AffineSubspace.le_def' _ _).1 (affineSpan_mono k (Set.subset_insert _ _)) _ h₁), collinear_insert_iff_of_mem_affineSpan h₂] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p₁ p₂ p₃ p₄ : P h₁ : p₁ ∈ affineSpan k {p₃, p₄} h₂ : p₂ ∈ affineSpan k {p₃, p₄} ⊢ Collinear k {p₃, p₄} [PROOFSTEP] exact collinear_pair _ _ _ [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p₁ p₂ p₃ p₄ p₅ : P h₁ : p₁ ∈ affineSpan k {p₄, p₅} h₂ : p₂ ∈ affineSpan k {p₄, p₅} h₃ : p₃ ∈ affineSpan k {p₄, p₅} ⊢ Collinear k {p₁, p₂, p₃, p₄, p₅} [PROOFSTEP] rw [collinear_insert_iff_of_mem_affineSpan ((AffineSubspace.le_def' _ _).1 (affineSpan_mono k ((Set.subset_insert _ _).trans (Set.subset_insert _ _))) _ h₁), collinear_insert_iff_of_mem_affineSpan ((AffineSubspace.le_def' _ _).1 (affineSpan_mono k (Set.subset_insert _ _)) _ h₂), collinear_insert_iff_of_mem_affineSpan h₃] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p₁ p₂ p₃ p₄ p₅ : P h₁ : p₁ ∈ affineSpan k {p₄, p₅} h₂ : p₂ ∈ affineSpan k {p₄, p₅} h₃ : p₃ ∈ affineSpan k {p₄, p₅} ⊢ Collinear k {p₄, p₅} [PROOFSTEP] exact collinear_pair _ _ _ [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p₁ p₂ p₃ p₄ p₅ : P h₁ : p₁ ∈ affineSpan k {p₄, p₅} h₂ : p₂ ∈ affineSpan k {p₄, p₅} h₃ : p₃ ∈ affineSpan k {p₄, p₅} ⊢ Collinear k {p₁, p₂, p₃, p₄} [PROOFSTEP] refine' (collinear_insert_insert_insert_of_mem_affineSpan_pair h₁ h₂ h₃).subset _ [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p₁ p₂ p₃ p₄ p₅ : P h₁ : p₁ ∈ affineSpan k {p₄, p₅} h₂ : p₂ ∈ affineSpan k {p₄, p₅} h₃ : p₃ ∈ affineSpan k {p₄, p₅} ⊢ {p₁, p₂, p₃, p₄} ⊆ {p₁, p₂, p₃, p₄, p₅} [PROOFSTEP] repeat apply Set.insert_subset_insert [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p₁ p₂ p₃ p₄ p₅ : P h₁ : p₁ ∈ affineSpan k {p₄, p₅} h₂ : p₂ ∈ affineSpan k {p₄, p₅} h₃ : p₃ ∈ affineSpan k {p₄, p₅} ⊢ {p₁, p₂, p₃, p₄} ⊆ {p₁, p₂, p₃, p₄, p₅} [PROOFSTEP] apply Set.insert_subset_insert [GOAL] case h k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p₁ p₂ p₃ p₄ p₅ : P h₁ : p₁ ∈ affineSpan k {p₄, p₅} h₂ : p₂ ∈ affineSpan k {p₄, p₅} h₃ : p₃ ∈ affineSpan k {p₄, p₅} ⊢ {p₂, p₃, p₄} ⊆ {p₂, p₃, p₄, p₅} [PROOFSTEP] apply Set.insert_subset_insert [GOAL] case h.h k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p₁ p₂ p₃ p₄ p₅ : P h₁ : p₁ ∈ affineSpan k {p₄, p₅} h₂ : p₂ ∈ affineSpan k {p₄, p₅} h₃ : p₃ ∈ affineSpan k {p₄, p₅} ⊢ {p₃, p₄} ⊆ {p₃, p₄, p₅} [PROOFSTEP] apply Set.insert_subset_insert [GOAL] case h.h.h k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p₁ p₂ p₃ p₄ p₅ : P h₁ : p₁ ∈ affineSpan k {p₄, p₅} h₂ : p₂ ∈ affineSpan k {p₄, p₅} h₃ : p₃ ∈ affineSpan k {p₄, p₅} ⊢ {p₄} ⊆ {p₄, p₅} [PROOFSTEP] apply Set.insert_subset_insert [GOAL] case h.h.h k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p₁ p₂ p₃ p₄ p₅ : P h₁ : p₁ ∈ affineSpan k {p₄, p₅} h₂ : p₂ ∈ affineSpan k {p₄, p₅} h₃ : p₃ ∈ affineSpan k {p₄, p₅} ⊢ {p₄} ⊆ {p₄, p₅} [PROOFSTEP] simp [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p₁ p₂ p₃ p₄ p₅ : P h₁ : p₁ ∈ affineSpan k {p₄, p₅} h₂ : p₂ ∈ affineSpan k {p₄, p₅} h₃ : p₃ ∈ affineSpan k {p₄, p₅} ⊢ Collinear k {p₁, p₂, p₃} [PROOFSTEP] refine' (collinear_insert_insert_insert_left_of_mem_affineSpan_pair h₁ h₂ h₃).subset _ [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P p₁ p₂ p₃ p₄ p₅ : P h₁ : p₁ ∈ affineSpan k {p₄, p₅} h₂ : p₂ ∈ affineSpan k {p₄, p₅} h₃ : p₃ ∈ affineSpan k {p₄, p₅} ⊢ {p₁, p₂, p₃} ⊆ {p₁, p₂, p₃, p₄} [PROOFSTEP] simp [Set.insert_subset_insert] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : Set P h : Coplanar k s ⊢ FiniteDimensional k { x // x ∈ vectorSpan k s } [PROOFSTEP] refine' IsNoetherian.iff_fg.1 (IsNoetherian.iff_rank_lt_aleph0.2 (lt_of_le_of_lt h _)) [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : Set P h : Coplanar k s ⊢ 2 < Cardinal.aleph0 [PROOFSTEP] exact Cardinal.lt_aleph0.2 ⟨2, rfl⟩ [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P s : Set P inst✝ : FiniteDimensional k { x // x ∈ vectorSpan k s } ⊢ Coplanar k s ↔ finrank k { x // x ∈ vectorSpan k s } ≤ 2 [PROOFSTEP] have h : Coplanar k s ↔ Module.rank k (vectorSpan k s) ≤ 2 := Iff.rfl [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P s : Set P inst✝ : FiniteDimensional k { x // x ∈ vectorSpan k s } h : Coplanar k s ↔ Module.rank k { x // x ∈ vectorSpan k s } ≤ 2 ⊢ Coplanar k s ↔ finrank k { x // x ∈ vectorSpan k s } ≤ 2 [PROOFSTEP] rw [← finrank_eq_rank] at h [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝⁴ : DivisionRing k inst✝³ : AddCommGroup V inst✝² : Module k V inst✝¹ : AffineSpace V P s : Set P inst✝ : FiniteDimensional k { x // x ∈ vectorSpan k s } h : Coplanar k s ↔ ↑(finrank k { x // x ∈ vectorSpan k s }) ≤ 2 ⊢ Coplanar k s ↔ finrank k { x // x ∈ vectorSpan k s } ≤ 2 [PROOFSTEP] exact_mod_cast h [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 ι : Type u_4 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : Set P p : P h : p ∈ affineSpan k s ⊢ Coplanar k (insert p s) ↔ Coplanar k s [PROOFSTEP] rw [Coplanar, Coplanar, vectorSpan_insert_eq_vectorSpan h] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : AffineSubspace k P p : P ⊢ finrank k { x // x ∈ vectorSpan k (insert p ↑s) } ≤ finrank k { x // x ∈ direction s } + 1 [PROOFSTEP] by_cases hf : FiniteDimensional k s.direction [GOAL] case pos k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : AffineSubspace k P p : P hf : FiniteDimensional k { x // x ∈ direction s } ⊢ finrank k { x // x ∈ vectorSpan k (insert p ↑s) } ≤ finrank k { x // x ∈ direction s } + 1 case neg k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : AffineSubspace k P p : P hf : ¬FiniteDimensional k { x // x ∈ direction s } ⊢ finrank k { x // x ∈ vectorSpan k (insert p ↑s) } ≤ finrank k { x // x ∈ direction s } + 1 [PROOFSTEP] swap [GOAL] case neg k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : AffineSubspace k P p : P hf : ¬FiniteDimensional k { x // x ∈ direction s } ⊢ finrank k { x // x ∈ vectorSpan k (insert p ↑s) } ≤ finrank k { x // x ∈ direction s } + 1 [PROOFSTEP] have hf' : ¬FiniteDimensional k (vectorSpan k (insert p (s : Set P))) := by intro h have h' : s.direction ≤ vectorSpan k (insert p (s : Set P)) := by conv_lhs => rw [← affineSpan_coe s, direction_affineSpan] exact vectorSpan_mono k (Set.subset_insert _ _) exact hf (Submodule.finiteDimensional_of_le h') [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : AffineSubspace k P p : P hf : ¬FiniteDimensional k { x // x ∈ direction s } ⊢ ¬FiniteDimensional k { x // x ∈ vectorSpan k (insert p ↑s) } [PROOFSTEP] intro h [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : AffineSubspace k P p : P hf : ¬FiniteDimensional k { x // x ∈ direction s } h : FiniteDimensional k { x // x ∈ vectorSpan k (insert p ↑s) } ⊢ False [PROOFSTEP] have h' : s.direction ≤ vectorSpan k (insert p (s : Set P)) := by conv_lhs => rw [← affineSpan_coe s, direction_affineSpan] exact vectorSpan_mono k (Set.subset_insert _ _) [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : AffineSubspace k P p : P hf : ¬FiniteDimensional k { x // x ∈ direction s } h : FiniteDimensional k { x // x ∈ vectorSpan k (insert p ↑s) } ⊢ direction s ≤ vectorSpan k (insert p ↑s) [PROOFSTEP] conv_lhs => rw [← affineSpan_coe s, direction_affineSpan] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : AffineSubspace k P p : P hf : ¬FiniteDimensional k { x // x ∈ direction s } h : FiniteDimensional k { x // x ∈ vectorSpan k (insert p ↑s) } | direction s [PROOFSTEP] rw [← affineSpan_coe s, direction_affineSpan] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : AffineSubspace k P p : P hf : ¬FiniteDimensional k { x // x ∈ direction s } h : FiniteDimensional k { x // x ∈ vectorSpan k (insert p ↑s) } | direction s [PROOFSTEP] rw [← affineSpan_coe s, direction_affineSpan] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : AffineSubspace k P p : P hf : ¬FiniteDimensional k { x // x ∈ direction s } h : FiniteDimensional k { x // x ∈ vectorSpan k (insert p ↑s) } | direction s [PROOFSTEP] rw [← affineSpan_coe s, direction_affineSpan] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : AffineSubspace k P p : P hf : ¬FiniteDimensional k { x // x ∈ direction s } h : FiniteDimensional k { x // x ∈ vectorSpan k (insert p ↑s) } ⊢ vectorSpan k ↑s ≤ vectorSpan k (insert p ↑s) [PROOFSTEP] exact vectorSpan_mono k (Set.subset_insert _ _) [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : AffineSubspace k P p : P hf : ¬FiniteDimensional k { x // x ∈ direction s } h : FiniteDimensional k { x // x ∈ vectorSpan k (insert p ↑s) } h' : direction s ≤ vectorSpan k (insert p ↑s) ⊢ False [PROOFSTEP] exact hf (Submodule.finiteDimensional_of_le h') [GOAL] case neg k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : AffineSubspace k P p : P hf : ¬FiniteDimensional k { x // x ∈ direction s } hf' : ¬FiniteDimensional k { x // x ∈ vectorSpan k (insert p ↑s) } ⊢ finrank k { x // x ∈ vectorSpan k (insert p ↑s) } ≤ finrank k { x // x ∈ direction s } + 1 [PROOFSTEP] rw [finrank_of_infinite_dimensional hf, finrank_of_infinite_dimensional hf', zero_add] [GOAL] case neg k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : AffineSubspace k P p : P hf : ¬FiniteDimensional k { x // x ∈ direction s } hf' : ¬FiniteDimensional k { x // x ∈ vectorSpan k (insert p ↑s) } ⊢ 0 ≤ 1 [PROOFSTEP] exact zero_le_one [GOAL] case pos k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : AffineSubspace k P p : P hf : FiniteDimensional k { x // x ∈ direction s } ⊢ finrank k { x // x ∈ vectorSpan k (insert p ↑s) } ≤ finrank k { x // x ∈ direction s } + 1 [PROOFSTEP] have : FiniteDimensional k s.direction := hf [GOAL] case pos k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : AffineSubspace k P p : P hf this : FiniteDimensional k { x // x ∈ direction s } ⊢ finrank k { x // x ∈ vectorSpan k (insert p ↑s) } ≤ finrank k { x // x ∈ direction s } + 1 [PROOFSTEP] rw [← direction_affineSpan, ← affineSpan_insert_affineSpan] [GOAL] case pos k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : AffineSubspace k P p : P hf this : FiniteDimensional k { x // x ∈ direction s } ⊢ finrank k { x // x ∈ direction (affineSpan k (insert p ↑(affineSpan k ↑s))) } ≤ finrank k { x // x ∈ direction s } + 1 [PROOFSTEP] rcases(s : Set P).eq_empty_or_nonempty with (hs | ⟨p₀, hp₀⟩) [GOAL] case pos.inl k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : AffineSubspace k P p : P hf this : FiniteDimensional k { x // x ∈ direction s } hs : ↑s = ∅ ⊢ finrank k { x // x ∈ direction (affineSpan k (insert p ↑(affineSpan k ↑s))) } ≤ finrank k { x // x ∈ direction s } + 1 [PROOFSTEP] rw [coe_eq_bot_iff] at hs [GOAL] case pos.inl k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : AffineSubspace k P p : P hf this : FiniteDimensional k { x // x ∈ direction s } hs : s = ⊥ ⊢ finrank k { x // x ∈ direction (affineSpan k (insert p ↑(affineSpan k ↑s))) } ≤ finrank k { x // x ∈ direction s } + 1 [PROOFSTEP] rw [hs, bot_coe, span_empty, bot_coe, direction_affineSpan, direction_bot, finrank_bot, zero_add] [GOAL] case pos.inl k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : AffineSubspace k P p : P hf this : FiniteDimensional k { x // x ∈ direction s } hs : s = ⊥ ⊢ finrank k { x // x ∈ vectorSpan k (insert p ∅) } ≤ 1 [PROOFSTEP] convert zero_le_one' ℕ [GOAL] case h.e'_3 k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : AffineSubspace k P p : P hf this : FiniteDimensional k { x // x ∈ direction s } hs : s = ⊥ ⊢ finrank k { x // x ∈ vectorSpan k (insert p ∅) } = 0 [PROOFSTEP] rw [← finrank_bot k V] [GOAL] case h.e'_3 k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : AffineSubspace k P p : P hf this : FiniteDimensional k { x // x ∈ direction s } hs : s = ⊥ ⊢ finrank k { x // x ∈ vectorSpan k (insert p ∅) } = finrank k { x // x ∈ ⊥ } [PROOFSTEP] convert rfl [GOAL] case h.e'_3.h.e'_2.h.e'_2.h.h.e'_5 k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : AffineSubspace k P p : P hf this : FiniteDimensional k { x // x ∈ direction s } hs : s = ⊥ x✝ : V ⊢ ⊥ = vectorSpan k (insert p ∅) [PROOFSTEP] simp [GOAL] case h.e'_3.h.e'_4.e'_6 k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : AffineSubspace k P p : P hf this : FiniteDimensional k { x // x ∈ direction s } hs : s = ⊥ e_2✝ : { x // x ∈ ⊥ } = { x // x ∈ vectorSpan k (insert p ∅) } ⊢ ⊥ = vectorSpan k (insert p ∅) [PROOFSTEP] simp [GOAL] case h.e'_3.h.e'_5.e'_6 k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : AffineSubspace k P p : P hf this : FiniteDimensional k { x // x ∈ direction s } hs : s = ⊥ e_2✝ : { x // x ∈ ⊥ } = { x // x ∈ vectorSpan k (insert p ∅) } e_3✝ : Ring.toSemiring = DivisionSemiring.toSemiring e_4✝ : HEq (Submodule.addCommGroup ⊥) (Submodule.addCommGroup (vectorSpan k (insert p ∅))) ⊢ ⊥ = vectorSpan k (insert p ∅) [PROOFSTEP] simp [GOAL] case pos.inr.intro k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : AffineSubspace k P p : P hf this : FiniteDimensional k { x // x ∈ direction s } p₀ : P hp₀ : p₀ ∈ ↑s ⊢ finrank k { x // x ∈ direction (affineSpan k (insert p ↑(affineSpan k ↑s))) } ≤ finrank k { x // x ∈ direction s } + 1 [PROOFSTEP] rw [affineSpan_coe, direction_affineSpan_insert hp₀, add_comm] [GOAL] case pos.inr.intro k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : AffineSubspace k P p : P hf this : FiniteDimensional k { x // x ∈ direction s } p₀ : P hp₀ : p₀ ∈ ↑s ⊢ finrank k { x // x ∈ Submodule.span k {p -ᵥ p₀} ⊔ direction s } ≤ 1 + finrank k { x // x ∈ direction s } [PROOFSTEP] refine' (Submodule.finrank_add_le_finrank_add_finrank _ _).trans (add_le_add_right _ _) [GOAL] case pos.inr.intro k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : AffineSubspace k P p : P hf this : FiniteDimensional k { x // x ∈ direction s } p₀ : P hp₀ : p₀ ∈ ↑s ⊢ finrank k { x // x ∈ Submodule.span k {p -ᵥ p₀} } ≤ 1 [PROOFSTEP] refine' finrank_le_one ⟨p -ᵥ p₀, Submodule.mem_span_singleton_self _⟩ fun v => _ [GOAL] case pos.inr.intro k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : AffineSubspace k P p : P hf this : FiniteDimensional k { x // x ∈ direction s } p₀ : P hp₀ : p₀ ∈ ↑s v : { x // x ∈ Submodule.span k {p -ᵥ p₀} } ⊢ ∃ c, c • { val := p -ᵥ p₀, property := (_ : p -ᵥ p₀ ∈ Submodule.span k {p -ᵥ p₀}) } = v [PROOFSTEP] have h := v.property [GOAL] case pos.inr.intro k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : AffineSubspace k P p : P hf this : FiniteDimensional k { x // x ∈ direction s } p₀ : P hp₀ : p₀ ∈ ↑s v : { x // x ∈ Submodule.span k {p -ᵥ p₀} } h : ↑v ∈ Submodule.span k {p -ᵥ p₀} ⊢ ∃ c, c • { val := p -ᵥ p₀, property := (_ : p -ᵥ p₀ ∈ Submodule.span k {p -ᵥ p₀}) } = v [PROOFSTEP] rw [Submodule.mem_span_singleton] at h [GOAL] case pos.inr.intro k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : AffineSubspace k P p : P hf this : FiniteDimensional k { x // x ∈ direction s } p₀ : P hp₀ : p₀ ∈ ↑s v : { x // x ∈ Submodule.span k {p -ᵥ p₀} } h : ∃ a, a • (p -ᵥ p₀) = ↑v ⊢ ∃ c, c • { val := p -ᵥ p₀, property := (_ : p -ᵥ p₀ ∈ Submodule.span k {p -ᵥ p₀}) } = v [PROOFSTEP] rcases h with ⟨c, hc⟩ [GOAL] case pos.inr.intro.intro k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : AffineSubspace k P p : P hf this : FiniteDimensional k { x // x ∈ direction s } p₀ : P hp₀ : p₀ ∈ ↑s v : { x // x ∈ Submodule.span k {p -ᵥ p₀} } c : k hc : c • (p -ᵥ p₀) = ↑v ⊢ ∃ c, c • { val := p -ᵥ p₀, property := (_ : p -ᵥ p₀ ∈ Submodule.span k {p -ᵥ p₀}) } = v [PROOFSTEP] refine' ⟨c, _⟩ [GOAL] case pos.inr.intro.intro k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : AffineSubspace k P p : P hf this : FiniteDimensional k { x // x ∈ direction s } p₀ : P hp₀ : p₀ ∈ ↑s v : { x // x ∈ Submodule.span k {p -ᵥ p₀} } c : k hc : c • (p -ᵥ p₀) = ↑v ⊢ c • { val := p -ᵥ p₀, property := (_ : p -ᵥ p₀ ∈ Submodule.span k {p -ᵥ p₀}) } = v [PROOFSTEP] ext [GOAL] case pos.inr.intro.intro.a k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : AffineSubspace k P p : P hf this : FiniteDimensional k { x // x ∈ direction s } p₀ : P hp₀ : p₀ ∈ ↑s v : { x // x ∈ Submodule.span k {p -ᵥ p₀} } c : k hc : c • (p -ᵥ p₀) = ↑v ⊢ ↑(c • { val := p -ᵥ p₀, property := (_ : p -ᵥ p₀ ∈ Submodule.span k {p -ᵥ p₀}) }) = ↑v [PROOFSTEP] exact hc [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : Set P p : P ⊢ finrank k { x // x ∈ vectorSpan k (insert p s) } ≤ finrank k { x // x ∈ vectorSpan k s } + 1 [PROOFSTEP] rw [← direction_affineSpan, ← affineSpan_insert_affineSpan, direction_affineSpan] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : Set P p : P ⊢ finrank k { x // x ∈ vectorSpan k (insert p ↑(affineSpan k s)) } ≤ finrank k { x // x ∈ vectorSpan k s } + 1 [PROOFSTEP] refine' (finrank_vectorSpan_insert_le _ _).trans (add_le_add_right _ _) [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : Set P p : P ⊢ finrank k { x // x ∈ direction (affineSpan k s) } ≤ finrank k { x // x ∈ vectorSpan k s } [PROOFSTEP] rw [direction_affineSpan] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : Set P h : Collinear k s p : P ⊢ Coplanar k (insert p s) [PROOFSTEP] have : FiniteDimensional k { x // x ∈ vectorSpan k s } := h.finiteDimensional_vectorSpan [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : Set P h : Collinear k s p : P this : FiniteDimensional k { x // x ∈ vectorSpan k s } ⊢ Coplanar k (insert p s) [PROOFSTEP] rw [coplanar_iff_finrank_le_two] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : Set P h : Collinear k s p : P this : FiniteDimensional k { x // x ∈ vectorSpan k s } ⊢ finrank k { x // x ∈ vectorSpan k (insert p s) } ≤ 2 [PROOFSTEP] exact (finrank_vectorSpan_insert_le_set k s p).trans (add_le_add_right h.finrank_le_one _) [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : Set P h : finrank k V = 2 ⊢ Coplanar k s [PROOFSTEP] have : FiniteDimensional k V := finiteDimensional_of_finrank_eq_succ h [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : Set P h : finrank k V = 2 this : FiniteDimensional k V ⊢ Coplanar k s [PROOFSTEP] rw [coplanar_iff_finrank_le_two, ← h] [GOAL] k : Type u_1 V : Type u_2 P : Type u_3 inst✝³ : DivisionRing k inst✝² : AddCommGroup V inst✝¹ : Module k V inst✝ : AffineSpace V P s : Set P h : finrank k V = 2 this : FiniteDimensional k V ⊢ finrank k { x // x ∈ vectorSpan k s } ≤ finrank k V [PROOFSTEP] exact Submodule.finrank_le _ [GOAL] ι : Type u₁ k : Type u₂ V : Type u₃ P : Type u₄ inst✝⁵ : AddCommGroup V inst✝⁴ : AffineSpace V P inst✝³ : DivisionRing k inst✝² : Module k V inst✝¹ : Fintype ι inst✝ : FiniteDimensional k V h : Fintype.card ι = FiniteDimensional.finrank k V + 1 ⊢ Nonempty (AffineBasis ι k P) [PROOFSTEP] obtain ⟨s, b, hb⟩ := AffineBasis.exists_affineBasis k V P [GOAL] case intro.intro ι : Type u₁ k : Type u₂ V : Type u₃ P : Type u₄ inst✝⁵ : AddCommGroup V inst✝⁴ : AffineSpace V P inst✝³ : DivisionRing k inst✝² : Module k V inst✝¹ : Fintype ι inst✝ : FiniteDimensional k V h : Fintype.card ι = FiniteDimensional.finrank k V + 1 s : Set P b : AffineBasis (↑s) k P hb : ↑b = Subtype.val ⊢ Nonempty (AffineBasis ι k P) [PROOFSTEP] lift s to Finset P using b.finite_set [GOAL] case intro.intro.intro ι : Type u₁ k : Type u₂ V : Type u₃ P : Type u₄ inst✝⁵ : AddCommGroup V inst✝⁴ : AffineSpace V P inst✝³ : DivisionRing k inst✝² : Module k V inst✝¹ : Fintype ι inst✝ : FiniteDimensional k V h : Fintype.card ι = FiniteDimensional.finrank k V + 1 s : Finset P b : AffineBasis (↑↑s) k P hb : ↑b = Subtype.val ⊢ Nonempty (AffineBasis ι k P) [PROOFSTEP] refine' ⟨b.reindex <| Fintype.equivOfCardEq _⟩ [GOAL] case intro.intro.intro ι : Type u₁ k : Type u₂ V : Type u₃ P : Type u₄ inst✝⁵ : AddCommGroup V inst✝⁴ : AffineSpace V P inst✝³ : DivisionRing k inst✝² : Module k V inst✝¹ : Fintype ι inst✝ : FiniteDimensional k V h : Fintype.card ι = FiniteDimensional.finrank k V + 1 s : Finset P b : AffineBasis (↑↑s) k P hb : ↑b = Subtype.val ⊢ Fintype.card ↑↑s = Fintype.card ι [PROOFSTEP] rw [h, ← b.card_eq_finrank_add_one]
{"mathlib_filename": "Mathlib.LinearAlgebra.AffineSpace.FiniteDimensional", "llama_tokens": 57598}
[GOAL] l : Type u_1 m : Type u_2 n : Type u_3 o : Type u_4 l' : Type u_5 m' : Type u_6 n' : Type u_7 o' : Type u_8 m'' : Type u_9 n'' : Type u_10 R : Type u_11 A : Type u_12 inst✝² : Semiring R inst✝¹ : AddCommMonoid A inst✝ : Module R A e₁ : m ≃ m' e₂ : n ≃ n' e₁' : m' ≃ m'' e₂' : n' ≃ n'' ⊢ LinearEquiv.trans (reindexLinearEquiv R A e₁ e₂) (reindexLinearEquiv R A e₁' e₂') = reindexLinearEquiv R A (e₁.trans e₁') (e₂.trans e₂') [PROOFSTEP] ext [GOAL] case h.a.h l : Type u_1 m : Type u_2 n : Type u_3 o : Type u_4 l' : Type u_5 m' : Type u_6 n' : Type u_7 o' : Type u_8 m'' : Type u_9 n'' : Type u_10 R : Type u_11 A : Type u_12 inst✝² : Semiring R inst✝¹ : AddCommMonoid A inst✝ : Module R A e₁ : m ≃ m' e₂ : n ≃ n' e₁' : m' ≃ m'' e₂' : n' ≃ n'' x✝¹ : Matrix m n A i✝ : m'' x✝ : n'' ⊢ ↑(LinearEquiv.trans (reindexLinearEquiv R A e₁ e₂) (reindexLinearEquiv R A e₁' e₂')) x✝¹ i✝ x✝ = ↑(reindexLinearEquiv R A (e₁.trans e₁') (e₂.trans e₂')) x✝¹ i✝ x✝ [PROOFSTEP] rfl [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 o : Type u_4 l' : Type u_5 m' : Type u_6 n' : Type u_7 o' : Type u_8 m'' : Type u_9 n'' : Type u_10 R : Type u_11 A : Type u_12 inst✝² : Semiring R inst✝¹ : AddCommMonoid A inst✝ : Module R A e₁ : m ≃ m' e₂ : n ≃ n' e₁' : m' ≃ m'' e₂' : n' ≃ n'' ⊢ ↑(reindexLinearEquiv R A e₁' e₂') ∘ ↑(reindexLinearEquiv R A e₁ e₂) = ↑(reindexLinearEquiv R A (e₁.trans e₁') (e₂.trans e₂')) [PROOFSTEP] rw [← reindexLinearEquiv_trans] [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 o : Type u_4 l' : Type u_5 m' : Type u_6 n' : Type u_7 o' : Type u_8 m'' : Type u_9 n'' : Type u_10 R : Type u_11 A : Type u_12 inst✝² : Semiring R inst✝¹ : AddCommMonoid A inst✝ : Module R A e₁ : m ≃ m' e₂ : n ≃ n' e₁' : m' ≃ m'' e₂' : n' ≃ n'' ⊢ ↑(reindexLinearEquiv R A e₁' e₂') ∘ ↑(reindexLinearEquiv R A e₁ e₂) = ↑(LinearEquiv.trans (reindexLinearEquiv R A e₁ e₂) (reindexLinearEquiv R A e₁' e₂')) [PROOFSTEP] rfl [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 o : Type u_4 l' : Type u_5 m' : Type u_6 n' : Type u_7 o' : Type u_8 m'' : Type u_9 n'' : Type u_10 R : Type u_11 A : Type u_12 inst✝⁴ : CommSemiring R inst✝³ : Fintype n inst✝² : Fintype m inst✝¹ : DecidableEq m inst✝ : DecidableEq n e : m ≃ n src✝ : Matrix m m R ≃ₗ[R] Matrix n n R := reindexLinearEquiv R R e e r : R ⊢ toFun { toFun := ↑(reindex e e), invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun), right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) } (↑(algebraMap R (Matrix m m R)) r) = ↑(algebraMap R (Matrix n n R)) r [PROOFSTEP] simp [algebraMap, Algebra.toRingHom, submatrix_smul _ 1]
{"mathlib_filename": "Mathlib.LinearAlgebra.Matrix.Reindex", "llama_tokens": 1388}
[GOAL] R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M m : M ⊢ ↑(-ι Q) m * ↑(-ι Q) m = ↑(algebraMap R (CliffordAlgebra Q)) (↑Q m) [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M ⊢ AlgHom.comp involute involute = AlgHom.id R (CliffordAlgebra Q) [PROOFSTEP] ext [GOAL] case a.h R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M x✝ : M ⊢ ↑(LinearMap.comp (AlgHom.toLinearMap (AlgHom.comp involute involute)) (ι Q)) x✝ = ↑(LinearMap.comp (AlgHom.toLinearMap (AlgHom.id R (CliffordAlgebra Q))) (ι Q)) x✝ [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M m : M ⊢ unop (↑(LinearMap.comp (↑(opLinearEquiv R)) (ι Q)) m * ↑(LinearMap.comp (↑(opLinearEquiv R)) (ι Q)) m) = unop (↑(algebraMap R (CliffordAlgebra Q)ᵐᵒᵖ) (↑Q m)) [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M m : M ⊢ ↑reverse (↑(ι Q) m) = ↑(ι Q) m [PROOFSTEP] simp [reverse] [GOAL] R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M r : R ⊢ ↑reverse (↑(algebraMap R (CliffordAlgebra Q)) r) = ↑(algebraMap R (CliffordAlgebra Q)) r [PROOFSTEP] simp [reverse] [GOAL] R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M ⊢ ↑reverse 1 = 1 [PROOFSTEP] convert reverse.commutes (Q := Q) (1 : R) [GOAL] case h.e'_2.h.e'_6 R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M ⊢ 1 = ↑(algebraMap R (CliffordAlgebra Q)) 1 [PROOFSTEP] simp [GOAL] case h.e'_3 R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M ⊢ 1 = ↑(algebraMap R (CliffordAlgebra Q)) 1 [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M a b : CliffordAlgebra Q ⊢ ↑reverse (a * b) = ↑reverse b * ↑reverse a [PROOFSTEP] simp [reverse] [GOAL] R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M ⊢ LinearMap.comp reverse reverse = LinearMap.id [PROOFSTEP] ext m [GOAL] case h R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M m : CliffordAlgebra Q ⊢ ↑(LinearMap.comp reverse reverse) m = ↑LinearMap.id m [PROOFSTEP] simp only [LinearMap.id_apply, LinearMap.comp_apply] [GOAL] case h R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M m : CliffordAlgebra Q ⊢ ↑reverse (↑reverse m) = m [PROOFSTEP] induction m using CliffordAlgebra.induction [GOAL] case h.h_grade0 R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M r✝ : R ⊢ ↑reverse (↑reverse (↑(algebraMap R (CliffordAlgebra Q)) r✝)) = ↑(algebraMap R (CliffordAlgebra Q)) r✝ case h.h_grade1 R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M x✝ : M ⊢ ↑reverse (↑reverse (↑(ι Q) x✝)) = ↑(ι Q) x✝ case h.h_mul R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M a✝² b✝ : CliffordAlgebra Q a✝¹ : ↑reverse (↑reverse a✝²) = a✝² a✝ : ↑reverse (↑reverse b✝) = b✝ ⊢ ↑reverse (↑reverse (a✝² * b✝)) = a✝² * b✝ case h.h_add R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M a✝² b✝ : CliffordAlgebra Q a✝¹ : ↑reverse (↑reverse a✝²) = a✝² a✝ : ↑reverse (↑reverse b✝) = b✝ ⊢ ↑reverse (↑reverse (a✝² + b✝)) = a✝² + b✝ [PROOFSTEP] case h_grade0 => rw [reverse.commutes, reverse.commutes] [GOAL] R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M r✝ : R ⊢ ↑reverse (↑reverse (↑(algebraMap R (CliffordAlgebra Q)) r✝)) = ↑(algebraMap R (CliffordAlgebra Q)) r✝ [PROOFSTEP] case h_grade0 => rw [reverse.commutes, reverse.commutes] [GOAL] R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M r✝ : R ⊢ ↑reverse (↑reverse (↑(algebraMap R (CliffordAlgebra Q)) r✝)) = ↑(algebraMap R (CliffordAlgebra Q)) r✝ [PROOFSTEP] rw [reverse.commutes, reverse.commutes] [GOAL] case h.h_grade1 R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M x✝ : M ⊢ ↑reverse (↑reverse (↑(ι Q) x✝)) = ↑(ι Q) x✝ case h.h_mul R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M a✝² b✝ : CliffordAlgebra Q a✝¹ : ↑reverse (↑reverse a✝²) = a✝² a✝ : ↑reverse (↑reverse b✝) = b✝ ⊢ ↑reverse (↑reverse (a✝² * b✝)) = a✝² * b✝ case h.h_add R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M a✝² b✝ : CliffordAlgebra Q a✝¹ : ↑reverse (↑reverse a✝²) = a✝² a✝ : ↑reverse (↑reverse b✝) = b✝ ⊢ ↑reverse (↑reverse (a✝² + b✝)) = a✝² + b✝ [PROOFSTEP] case h_grade1 => rw [reverse_ι, reverse_ι] [GOAL] R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M x✝ : M ⊢ ↑reverse (↑reverse (↑(ι Q) x✝)) = ↑(ι Q) x✝ [PROOFSTEP] case h_grade1 => rw [reverse_ι, reverse_ι] [GOAL] R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M x✝ : M ⊢ ↑reverse (↑reverse (↑(ι Q) x✝)) = ↑(ι Q) x✝ [PROOFSTEP] rw [reverse_ι, reverse_ι] [GOAL] case h.h_mul R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M a✝² b✝ : CliffordAlgebra Q a✝¹ : ↑reverse (↑reverse a✝²) = a✝² a✝ : ↑reverse (↑reverse b✝) = b✝ ⊢ ↑reverse (↑reverse (a✝² * b✝)) = a✝² * b✝ case h.h_add R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M a✝² b✝ : CliffordAlgebra Q a✝¹ : ↑reverse (↑reverse a✝²) = a✝² a✝ : ↑reverse (↑reverse b✝) = b✝ ⊢ ↑reverse (↑reverse (a✝² + b✝)) = a✝² + b✝ [PROOFSTEP] case h_mul a b ha hb => rw [reverse.map_mul, reverse.map_mul, ha, hb] [GOAL] R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M a b : CliffordAlgebra Q ha : ↑reverse (↑reverse a) = a hb : ↑reverse (↑reverse b) = b ⊢ ↑reverse (↑reverse (a * b)) = a * b [PROOFSTEP] case h_mul a b ha hb => rw [reverse.map_mul, reverse.map_mul, ha, hb] [GOAL] R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M a b : CliffordAlgebra Q ha : ↑reverse (↑reverse a) = a hb : ↑reverse (↑reverse b) = b ⊢ ↑reverse (↑reverse (a * b)) = a * b [PROOFSTEP] rw [reverse.map_mul, reverse.map_mul, ha, hb] [GOAL] case h.h_add R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M a✝² b✝ : CliffordAlgebra Q a✝¹ : ↑reverse (↑reverse a✝²) = a✝² a✝ : ↑reverse (↑reverse b✝) = b✝ ⊢ ↑reverse (↑reverse (a✝² + b✝)) = a✝² + b✝ [PROOFSTEP] case h_add a b ha hb => rw [reverse.map_add, reverse.map_add, ha, hb] [GOAL] R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M a b : CliffordAlgebra Q ha : ↑reverse (↑reverse a) = a hb : ↑reverse (↑reverse b) = b ⊢ ↑reverse (↑reverse (a + b)) = a + b [PROOFSTEP] case h_add a b ha hb => rw [reverse.map_add, reverse.map_add, ha, hb] [GOAL] R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M a b : CliffordAlgebra Q ha : ↑reverse (↑reverse a) = a hb : ↑reverse (↑reverse b) = b ⊢ ↑reverse (↑reverse (a + b)) = a + b [PROOFSTEP] rw [reverse.map_add, reverse.map_add, ha, hb] [GOAL] R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M ⊢ LinearMap.comp reverse (AlgHom.toLinearMap involute) = LinearMap.comp (AlgHom.toLinearMap involute) reverse [PROOFSTEP] ext x [GOAL] case h R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M x : CliffordAlgebra Q ⊢ ↑(LinearMap.comp reverse (AlgHom.toLinearMap involute)) x = ↑(LinearMap.comp (AlgHom.toLinearMap involute) reverse) x [PROOFSTEP] simp only [LinearMap.comp_apply, AlgHom.toLinearMap_apply] [GOAL] case h R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M x : CliffordAlgebra Q ⊢ ↑reverse (↑involute x) = ↑involute (↑reverse x) [PROOFSTEP] induction x using CliffordAlgebra.induction [GOAL] case h.h_grade0 R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M r✝ : R ⊢ ↑reverse (↑involute (↑(algebraMap R (CliffordAlgebra Q)) r✝)) = ↑involute (↑reverse (↑(algebraMap R (CliffordAlgebra Q)) r✝)) case h.h_grade1 R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M x✝ : M ⊢ ↑reverse (↑involute (↑(ι Q) x✝)) = ↑involute (↑reverse (↑(ι Q) x✝)) case h.h_mul R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M a✝² b✝ : CliffordAlgebra Q a✝¹ : ↑reverse (↑involute a✝²) = ↑involute (↑reverse a✝²) a✝ : ↑reverse (↑involute b✝) = ↑involute (↑reverse b✝) ⊢ ↑reverse (↑involute (a✝² * b✝)) = ↑involute (↑reverse (a✝² * b✝)) case h.h_add R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M a✝² b✝ : CliffordAlgebra Q a✝¹ : ↑reverse (↑involute a✝²) = ↑involute (↑reverse a✝²) a✝ : ↑reverse (↑involute b✝) = ↑involute (↑reverse b✝) ⊢ ↑reverse (↑involute (a✝² + b✝)) = ↑involute (↑reverse (a✝² + b✝)) [PROOFSTEP] case h_grade0 => simp [GOAL] R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M r✝ : R ⊢ ↑reverse (↑involute (↑(algebraMap R (CliffordAlgebra Q)) r✝)) = ↑involute (↑reverse (↑(algebraMap R (CliffordAlgebra Q)) r✝)) [PROOFSTEP] case h_grade0 => simp [GOAL] R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M r✝ : R ⊢ ↑reverse (↑involute (↑(algebraMap R (CliffordAlgebra Q)) r✝)) = ↑involute (↑reverse (↑(algebraMap R (CliffordAlgebra Q)) r✝)) [PROOFSTEP] simp [GOAL] case h.h_grade1 R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M x✝ : M ⊢ ↑reverse (↑involute (↑(ι Q) x✝)) = ↑involute (↑reverse (↑(ι Q) x✝)) case h.h_mul R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M a✝² b✝ : CliffordAlgebra Q a✝¹ : ↑reverse (↑involute a✝²) = ↑involute (↑reverse a✝²) a✝ : ↑reverse (↑involute b✝) = ↑involute (↑reverse b✝) ⊢ ↑reverse (↑involute (a✝² * b✝)) = ↑involute (↑reverse (a✝² * b✝)) case h.h_add R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M a✝² b✝ : CliffordAlgebra Q a✝¹ : ↑reverse (↑involute a✝²) = ↑involute (↑reverse a✝²) a✝ : ↑reverse (↑involute b✝) = ↑involute (↑reverse b✝) ⊢ ↑reverse (↑involute (a✝² + b✝)) = ↑involute (↑reverse (a✝² + b✝)) [PROOFSTEP] case h_grade1 => simp [GOAL] R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M x✝ : M ⊢ ↑reverse (↑involute (↑(ι Q) x✝)) = ↑involute (↑reverse (↑(ι Q) x✝)) [PROOFSTEP] case h_grade1 => simp [GOAL] R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M x✝ : M ⊢ ↑reverse (↑involute (↑(ι Q) x✝)) = ↑involute (↑reverse (↑(ι Q) x✝)) [PROOFSTEP] simp [GOAL] case h.h_mul R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M a✝² b✝ : CliffordAlgebra Q a✝¹ : ↑reverse (↑involute a✝²) = ↑involute (↑reverse a✝²) a✝ : ↑reverse (↑involute b✝) = ↑involute (↑reverse b✝) ⊢ ↑reverse (↑involute (a✝² * b✝)) = ↑involute (↑reverse (a✝² * b✝)) case h.h_add R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M a✝² b✝ : CliffordAlgebra Q a✝¹ : ↑reverse (↑involute a✝²) = ↑involute (↑reverse a✝²) a✝ : ↑reverse (↑involute b✝) = ↑involute (↑reverse b✝) ⊢ ↑reverse (↑involute (a✝² + b✝)) = ↑involute (↑reverse (a✝² + b✝)) [PROOFSTEP] case h_mul a b ha hb => simp only [ha, hb, reverse.map_mul, AlgHom.map_mul] [GOAL] R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M a b : CliffordAlgebra Q ha : ↑reverse (↑involute a) = ↑involute (↑reverse a) hb : ↑reverse (↑involute b) = ↑involute (↑reverse b) ⊢ ↑reverse (↑involute (a * b)) = ↑involute (↑reverse (a * b)) [PROOFSTEP] case h_mul a b ha hb => simp only [ha, hb, reverse.map_mul, AlgHom.map_mul] [GOAL] R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M a b : CliffordAlgebra Q ha : ↑reverse (↑involute a) = ↑involute (↑reverse a) hb : ↑reverse (↑involute b) = ↑involute (↑reverse b) ⊢ ↑reverse (↑involute (a * b)) = ↑involute (↑reverse (a * b)) [PROOFSTEP] simp only [ha, hb, reverse.map_mul, AlgHom.map_mul] [GOAL] case h.h_add R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M a✝² b✝ : CliffordAlgebra Q a✝¹ : ↑reverse (↑involute a✝²) = ↑involute (↑reverse a✝²) a✝ : ↑reverse (↑involute b✝) = ↑involute (↑reverse b✝) ⊢ ↑reverse (↑involute (a✝² + b✝)) = ↑involute (↑reverse (a✝² + b✝)) [PROOFSTEP] case h_add a b ha hb => simp only [ha, hb, reverse.map_add, AlgHom.map_add] [GOAL] R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M a b : CliffordAlgebra Q ha : ↑reverse (↑involute a) = ↑involute (↑reverse a) hb : ↑reverse (↑involute b) = ↑involute (↑reverse b) ⊢ ↑reverse (↑involute (a + b)) = ↑involute (↑reverse (a + b)) [PROOFSTEP] case h_add a b ha hb => simp only [ha, hb, reverse.map_add, AlgHom.map_add] [GOAL] R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M a b : CliffordAlgebra Q ha : ↑reverse (↑involute a) = ↑involute (↑reverse a) hb : ↑reverse (↑involute b) = ↑involute (↑reverse b) ⊢ ↑reverse (↑involute (a + b)) = ↑involute (↑reverse (a + b)) [PROOFSTEP] simp only [ha, hb, reverse.map_add, AlgHom.map_add] [GOAL] R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M ⊢ ↑reverse (List.prod (List.map ↑(ι Q) [])) = List.prod (List.reverse (List.map ↑(ι Q) [])) [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M x : M xs : List M ⊢ ↑reverse (List.prod (List.map (↑(ι Q)) (x :: xs))) = List.prod (List.reverse (List.map (↑(ι Q)) (x :: xs))) [PROOFSTEP] simp [reverse_prod_map_ι xs] [GOAL] R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M ⊢ ↑involute (List.prod (List.map ↑(ι Q) [])) = (-1) ^ List.length [] • List.prod (List.map ↑(ι Q) []) [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M x : M xs : List M ⊢ ↑involute (List.prod (List.map (↑(ι Q)) (x :: xs))) = (-1) ^ List.length (x :: xs) • List.prod (List.map (↑(ι Q)) (x :: xs)) [PROOFSTEP] simp [pow_succ, involute_prod_map_ι xs] [GOAL] R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M ⊢ Submodule.comap (AlgHom.toLinearMap involute) (LinearMap.range (ι Q)) = LinearMap.range (ι Q) [PROOFSTEP] rw [← submodule_map_involute_eq_comap, ι_range_map_involute] [GOAL] R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M n : ZMod 2 ⊢ Submodule.map (AlgHom.toLinearMap involute) (evenOdd Q n) = evenOdd Q n [PROOFSTEP] simp_rw [evenOdd, Submodule.map_iSup, Submodule.map_pow, ι_range_map_involute] [GOAL] R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M n : ZMod 2 ⊢ Submodule.comap (AlgHom.toLinearMap involute) (evenOdd Q n) = evenOdd Q n [PROOFSTEP] rw [← submodule_map_involute_eq_comap, evenOdd_map_involute] [GOAL] R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M ⊢ Submodule.map reverse (LinearMap.range (ι Q)) = LinearMap.range (ι Q) [PROOFSTEP] rw [reverse, Submodule.map_comp, ι_range_map_lift, LinearMap.range_comp, ← Submodule.map_comp] [GOAL] R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M ⊢ Submodule.map (LinearMap.comp ↑(LinearEquiv.symm (MulOpposite.opLinearEquiv R)) ↑(MulOpposite.opLinearEquiv R)) (LinearMap.range (ι Q)) = LinearMap.range (ι Q) [PROOFSTEP] exact Submodule.map_id _ [GOAL] R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M ⊢ Submodule.comap reverse (LinearMap.range (ι Q)) = LinearMap.range (ι Q) [PROOFSTEP] rw [← submodule_map_reverse_eq_comap, ι_range_map_reverse] [GOAL] R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M p q : Submodule R (CliffordAlgebra Q) ⊢ Submodule.map reverse (p * q) = Submodule.map reverse q * Submodule.map reverse p [PROOFSTEP] simp_rw [reverse, Submodule.map_comp, Submodule.map_mul, Submodule.map_unop_mul] [GOAL] R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M p q : Submodule R (CliffordAlgebra Q) ⊢ Submodule.comap reverse (p * q) = Submodule.comap reverse q * Submodule.comap reverse p [PROOFSTEP] simp_rw [← submodule_map_reverse_eq_comap, submodule_map_mul_reverse] [GOAL] R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M p : Submodule R (CliffordAlgebra Q) n : ℕ ⊢ Submodule.map reverse (p ^ n) = Submodule.map reverse p ^ n [PROOFSTEP] simp_rw [reverse, Submodule.map_comp, Submodule.map_pow, Submodule.map_unop_pow] [GOAL] R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M p : Submodule R (CliffordAlgebra Q) n : ℕ ⊢ Submodule.comap reverse (p ^ n) = Submodule.comap reverse p ^ n [PROOFSTEP] simp_rw [← submodule_map_reverse_eq_comap, submodule_map_pow_reverse] [GOAL] R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M n : ZMod 2 ⊢ Submodule.map reverse (evenOdd Q n) = evenOdd Q n [PROOFSTEP] simp_rw [evenOdd, Submodule.map_iSup, submodule_map_pow_reverse, ι_range_map_reverse] [GOAL] R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M n : ZMod 2 ⊢ Submodule.comap reverse (evenOdd Q n) = evenOdd Q n [PROOFSTEP] rw [← submodule_map_reverse_eq_comap, evenOdd_map_reverse] [GOAL] R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M x : CliffordAlgebra Q h : x ∈ evenOdd Q 0 ⊢ ↑involute x = x [PROOFSTEP] refine' even_induction Q (AlgHom.commutes _) _ _ x h [GOAL] case refine'_1 R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M x : CliffordAlgebra Q h : x ∈ evenOdd Q 0 ⊢ ∀ {x y : CliffordAlgebra Q} {hx : x ∈ evenOdd Q 0} {hy : y ∈ evenOdd Q 0}, ↑involute x = x → ↑involute y = y → ↑involute (x + y) = x + y [PROOFSTEP] rintro x y _hx _hy ihx ihy [GOAL] case refine'_1 R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M x✝ : CliffordAlgebra Q h : x✝ ∈ evenOdd Q 0 x y : CliffordAlgebra Q _hx : x ∈ evenOdd Q 0 _hy : y ∈ evenOdd Q 0 ihx : ↑involute x = x ihy : ↑involute y = y ⊢ ↑involute (x + y) = x + y [PROOFSTEP] rw [map_add, ihx, ihy] [GOAL] case refine'_2 R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M x : CliffordAlgebra Q h : x ∈ evenOdd Q 0 ⊢ ∀ (m₁ m₂ : M) {x : CliffordAlgebra Q} {hx : x ∈ evenOdd Q 0}, ↑involute x = x → ↑involute (↑(ι Q) m₁ * ↑(ι Q) m₂ * x) = ↑(ι Q) m₁ * ↑(ι Q) m₂ * x [PROOFSTEP] intro m₁ m₂ x _hx ihx [GOAL] case refine'_2 R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M x✝ : CliffordAlgebra Q h : x✝ ∈ evenOdd Q 0 m₁ m₂ : M x : CliffordAlgebra Q _hx : x ∈ evenOdd Q 0 ihx : ↑involute x = x ⊢ ↑involute (↑(ι Q) m₁ * ↑(ι Q) m₂ * x) = ↑(ι Q) m₁ * ↑(ι Q) m₂ * x [PROOFSTEP] rw [map_mul, map_mul, involute_ι, involute_ι, ihx, neg_mul_neg] [GOAL] R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M x : CliffordAlgebra Q h : x ∈ evenOdd Q 1 ⊢ ↑involute x = -x [PROOFSTEP] refine' odd_induction Q involute_ι _ _ x h [GOAL] case refine'_1 R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M x : CliffordAlgebra Q h : x ∈ evenOdd Q 1 ⊢ ∀ {x y : CliffordAlgebra Q} {hx : x ∈ evenOdd Q 1} {hy : y ∈ evenOdd Q 1}, ↑involute x = -x → ↑involute y = -y → ↑involute (x + y) = -(x + y) [PROOFSTEP] rintro x y _hx _hy ihx ihy [GOAL] case refine'_1 R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M x✝ : CliffordAlgebra Q h : x✝ ∈ evenOdd Q 1 x y : CliffordAlgebra Q _hx : x ∈ evenOdd Q 1 _hy : y ∈ evenOdd Q 1 ihx : ↑involute x = -x ihy : ↑involute y = -y ⊢ ↑involute (x + y) = -(x + y) [PROOFSTEP] rw [map_add, ihx, ihy, neg_add] [GOAL] case refine'_2 R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M x : CliffordAlgebra Q h : x ∈ evenOdd Q 1 ⊢ ∀ (m₁ m₂ : M) {x : CliffordAlgebra Q} {hx : x ∈ evenOdd Q 1}, ↑involute x = -x → ↑involute (↑(ι Q) m₁ * ↑(ι Q) m₂ * x) = -(↑(ι Q) m₁ * ↑(ι Q) m₂ * x) [PROOFSTEP] intro m₁ m₂ x _hx ihx [GOAL] case refine'_2 R : Type u_1 inst✝² : CommRing R M : Type u_2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M x✝ : CliffordAlgebra Q h : x✝ ∈ evenOdd Q 1 m₁ m₂ : M x : CliffordAlgebra Q _hx : x ∈ evenOdd Q 1 ihx : ↑involute x = -x ⊢ ↑involute (↑(ι Q) m₁ * ↑(ι Q) m₂ * x) = -(↑(ι Q) m₁ * ↑(ι Q) m₂ * x) [PROOFSTEP] rw [map_mul, map_mul, involute_ι, involute_ι, ihx, neg_mul_neg, mul_neg]
{"mathlib_filename": "Mathlib.LinearAlgebra.CliffordAlgebra.Conjugation", "llama_tokens": 11365}